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Abstract  28 

Human uptake of flame retardants (FRs) such as polybrominated diphenyl ethers (PBDEs) 29 

via indoor dust ingestion is commonly considered as 100% bioaccessible, leading to potential 30 

risk overestimation. Here, we present a novel in vitro colon-extended physiologically-based 31 

extraction test (CE-PBET) with Tenax TA® as an absorptive “sink” capable to enhance 32 

PBDE gut bioaccessibility. A cellulose-based dialysis membrane (MW cut-off 3.5kDa) with 33 

high pH and temperature tolerance was used to encapsulate Tenax TA®, facilitating efficient 34 

physical separation between the absorbent and the dust, while minimizing re-absorption of 35 

the ingested PBDEs to the dust particles. As a proof of concept, PBDE-spiked indoor dust 36 

samples (n=3) were tested under four different conditions; without any Tenax TA® addition 37 

(control) and with three different Tenax TA® loadings (i.e. 0.25, 0.5 or 0.75 g). Our results 38 

show that in order to maintain a constant sorptive gradient for the low MW PBDEs 0.5 g of 39 

Tenax TA® are required in CE-PBET.. Tenax TA® inclusion (0.5 g) resulted in 40%  gut 40 

bioaccessibility c.for BDE153 and BDE183, whereas greater bioaccessibility values were 41 

seen for less hydrophobic PBDEs such as BDE28 and BDE47 (̴ 60%). When tested using 42 

SRM 2585, our new Tenax TA® method did not present any statistically significant effect 43 

(p>0.05) between non- spiked and PBDE- spiked SRM 2585 treatments. Our study describes 44 

an efficient method where due to the sophisticated design, Tenax TA® recovery and 45 

subsequent bioaccessibility determination can be simply and reliably achieved.   46 

 47 

Keywords: bioaccessibility, Tenax TA®, dialysis membrane, PBDEs, indoor dust  48 

49 
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1. Introduction 50 

Despite the strict legislative measures on the use of Penta-BDE and Octa-BDE formulations 51 

in both the EU and USA in consumer products (e.g. carpets, electronic appliances and 52 

furniture polyurethane foam) (Dodson et al., 2012; European Commission, 2003) and their 53 

listing as persistent organic pollutants (POPs) under the Stockholm Convention (Stockholm 54 

Convention, 2009a, 2009b), polybrominated diphenyl ethers (PBDEs) are legacy flame 55 

retardants (FRs) being detected in considerable levels in indoor dust from China (Cao et al., 56 

2014; Sun et al., 2016), France (Raffy et al., 2017), the UK (Kademoglou et al., 2017; Tao et 57 

al., 2016), the Czech Republic, USA and Canada (Venier et al., 2016). Under this regime, 58 

human health concerns remain a critical issue, given the well-known PBDE potential to 59 

induce endocrine and thyroid disruption (Legler, 2008) and neurodevelopmental disorders in 60 

children (Bellinger, 2013; Costa and Giordano, 2007).  61 

Total pollutant concentration of a contaminated solid matrix is perceived as the bioavailable 62 

fraction after ingestion and it is frequently used in human risk and exposure assessment 63 

(Semple et al., 2004). However, the assumption that 100% of the ingested toxicant within a 64 

matrix being available is unrealistic (Collins et al., 2015). Animal bioavailability studies (e.g. 65 

rodents or swine) are representative of the in vivo situation, but are often hindered due to 66 

financial and ethical restrictions (Oomen et al., 2003; Ruby et al., 2002). To avoid risk 67 

overestimation, bioaccessibility, i.e. the maximal fraction of an organic pollutant released 68 

from an ingested matrix (e.g. dust) into the gastro-intestinal tract (GIT) fluids of the organism 69 

has been proposed as a more realistic but conservative approach in human exposure 70 

assessment of persistent organic pollutants (POPs), serving as a surrogate to bioavailability 71 

(Brandon et al., 2006; Dean and Ma, 2007; Oomen et al., 2000). Several physiologically-72 

based extraction tests (PBET) have been proposed to assess organic pollutant release and 73 

uptake from an ingested matrix via the GIT fluids in vitro (Brandon et al., 2006; Cave et al., 74 

2010; Gouliarmou and Mayer, 2012; Tilston et al., 2011; Van de Wiele et al., 2004), as a 75 

substitute to in vivo studies (James et al., 2011) or for high-throughput estimates of 76 

bioaccessibility when animal studies are not feasible (Rodríguez-Navas et al., 2017; Ruby et 77 

al., 1996). Due to the non-polar and hydrophobic nature of hydrophobic organic compounds 78 

(HOCs) such as PBDEs, sorption to indoor dust is likely to occur via volatilisation, abrasion 79 

or fragmentation (Cao et al., 2014; García-Alcega et al., 2016), marking dust ingestion as a 80 

potential major route of exposure to FRs for humans (Alves et al., 2014; Jones-Otazo et al., 81 

2005). Hence, in vitro bioaccessibility studies have been deployed, assessing human exposure 82 
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to contaminated indoor dust on a wide spectrum of HOCs including brominated flame 83 

retardants (BFRs) (Abdallah et al., 2012), organophosphate FR (OPFRs) (He et al., 2016; 84 

Quintana et al., 2017), pesticides and polychlorinated biphenyls (PCBs) (Ertl and Butte, 85 

2012) and polybrominated diphenyl ethers (PBDEs) (Yu et al., 2012). However, the lack of 86 

an adsorption sink in the various test formats may lead to risk underestimation due to the 87 

absence of constant concentration gradient (Collins et al., 2015). Sink conditions better 88 

mimic the sorption/desorption processes in the human GIT in vivo and, coupled with the 89 

lipid-rich environment of the GI lumen and a long matrix:fluid contact time, may improve the 90 

bioaccessibility estimates of HOCs, such as PBDEs (Collins et al., 2015; Zhang et al., 2015, 91 

2016).  92 

A colon-extended PBET system (CE-PBET) with a carbohydrate-rich colon compartment as 93 

a “sink”, favouring polycyclic aromatic hydrocarbons (PAHs) desorption from soil has been 94 

described (Tilston et al., 2011). Strong adsorbents  such as silicone-activated contaminant 95 

traps, cyclodextrins and silicone rods have also been proposed as “absorption sink” materials 96 

in PBET systems, to improve bioaccessibility estimates for PAH-contaminated soil and 97 

biochar (Gouliarmou et al., 2013; Mayer et al., 2016; Zhang et al., 2015). As part of the 98 

International Organization for Standardization (ISO) guideline on bioavailability, an extended 99 

(20h) Tenax-based extraction method achieved increased mobilisation (i.e. bioaccessibility) 100 

of HOCs from soils and sediments onto this infinite sink and has been proposed for 101 

standarisation (ISO, 2015; Ortega-Calvo et al., 2015). Tenax TA® is a versatile absorption 102 

sink with large surface area and high sorption capacity for HOCs and was thus used as an 103 

“infinite” sink in PBET systems, studying the uptake of FRs and PAHs via indoor dust (Fang 104 

and Stapleton, 2014) and soil (Li et al., 2015), respectively. Cornelissen et al (1997) 105 

employed Tenax TA® studying sorption/desorption kinetics of PAHs, alkylbenzenes and 106 

PCBs from dredged sediments; the sink captured the organic pollutants from the solid matrix 107 

but the Tenax TA® beads adhered to the glassware with consequent problems for physical 108 

separation and recovery of Tenax TA® from the matrix (Cornelissen et al., 1997). The 109 

variability in Tenax TA® mass recovery, its separation from the matrix and the design of an 110 

appropriate vessel for Tenax TA® inclusion (e.g. stainless steel net) during PBET incubation 111 

has discouraged further applications of Tenax TA® in environmental exposure studies (Li et 112 

al., 2016; Mayer et al., 2016). In the work presented here, we describe a novel in vitro 113 

method capable to overcome the aforementioned challenges concerning physical separation 114 

and recovery of Tenax TA® from the matrix, while facilitating its successful inclusion and 115 
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performance as an adsorption sink in a previously established bioaccessibility test, namely 116 

CE-PBET, for the assessment of oral bioaccessibility of PBDEs from indoor dust.  117 

To separate aqueous and solid matrices, a regenerated cellulose (RC) dialysis tubing method 118 

was employed, studying the sorption and dissolution of perchloroethane and PAHs from clay-119 

rich materials and sewage sludges, respectively (Allen-King et al., 1995; Woolgar and Jones, 120 

1999). RC membranes present high pH and temperature tolerances, carry no fixed charge and 121 

are highly resistant to halogenated hydrocarbons, such as PBDEs (Pollard, 1987). Tubing 122 

characteristics including length, width, membrane sealing method and molecular weight cut 123 

off (MWCO) have been evaluated.  For example, 2.5 g of contaminated sewage sludge were 124 

introduced into 10 cm of dialysis tubing with a 3.5 kDa MWCO (Woolgar and Jones, 1999). 125 

Alternatively, 20 cm of dialysis tubing (29 mm width; 12-14 kDa MWCO) was used to 126 

ensure that at least 30% of the analyte mass would remain in the solid phase after 127 

equilibration (Allen-King et al., 1995). The solid material in the tubing was then introduced 128 

inside glass bottles with synthetic groundwater spiked with the HOCs of interest. During 129 

equilibration, all non-settling particles were retained inside the dialysis membrane, while 130 

dissolved organic pollutants could permeate through the membrane and equilibrate across the 131 

dialysis tubing by passive diffusion (Allen-King et al., 1995).  132 

Our study aims are to systematically (a) develop an efficient method to separate Tenax TA® 133 

and indoor dust as a matrix whilst enabling desorption of PBDEs to the Tenax TA® and (b) 134 

optimise Tenax TA® as an absorption sink for PBDEs in a colon-extended gastro-intestinal 135 

bioaccessibility in vitro system (CE-PBET). 136 

2. Materials and methods 137 

2.1 Target analytes and indoor dust  138 

An indoor dust sample was collected in 2013 from a pre-existing vacuum cleaner bag in an 139 

office at Reading (UK) and was used during method development tests and the results are 140 

presented in sections 3.1 and 3.2. The dust sample was sieved to <250 μm, a particle cut off 141 

likely to be ingested by humans (Yu et al., 2012), using a  hexane-washed, metallic sieve and 142 

stored in hexane-washed, amber glass bottles at +4 oC. Concentrations of all target analytes in 143 

all dust samples were determined using methods described elsewhere (Kademoglou et al., 144 

2017). Briefly, 30 mg of dust was extracted with 2.5 mL hexane:acetone (3:1) using ultra-145 

sonication extraction for 10 min and vortexing for 1 min three times. The combined extract 146 
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was concentrated to 1 mL and loaded on aminopropyl (NH2) silica cartridges (500 mg, 3 mL, 147 

Agilent, USA) and further eluted with 10 mL hexane. The eluate was then further 148 

concentrated, following a clean-up on an acidified silica cartridge (5%, 1 g, 6 mL) and elution 149 

with 12 mL dichloromethane. The dust extracts were then evaporated, reconstituted with 100 150 

μL of iso-octane and filtered using a micro centrifuge filter lined with 0.45 μm pore size 151 

nylon filter (1.5 mL volume capacity) . Finally, the extracts were transferred to injection vials 152 

and analyzed on GC-ECNI-MS. Standard reference material for indoor dust SRM 2585 153 

(organic contaminants in house dust), purchased from the US National Institute of Standards 154 

and Technology (NIST, USA), was used to assess method performance and the results are 155 

presented in section 3.3. . Both SRM 2585 (used for method  performance assessment; 0.5 g) 156 

and dust samples (0.5 g) (used for method development) were spiked at environmentally 157 

relevant concentrations (200 ng; 200L of PBDEs native standard mix 1 ng/L prepared in 158 

iso-octane) and the validity of the spiking was confirmed analytically for both the SRM 2585 159 

and the dust (Table SI  2). After spiking, samples were shaken for 2h on an orbital shaker and 160 

allowed to stand inside a fumehood for 6h before the gastro-intestinal extraction for the 161 

solvent to evaporate, thus facilitating compound interactions with the matrix (Ballesteros-162 

Gómez et al., 2016).  163 

2.2 Dialysis membrane  164 

Approximately 16 cm of standard grade, flexible and transparent regenerated cellulose (RC) 165 

dialysis membrane with 3.5 kDa MWCO and 18 mm flat width (1.1mL/cm) (Spectra/Por™ 3, 166 

SpectrumLabs Inc., USA) was used to encapsulate the Tenax TA® beads. The membrane 167 

length and flat width were selected for the sample volume to be added in the membrane using 168 

an online tool provided by SpectrumLabs Inc. 169 

(http://www.spectrumlabs.com/dialysis/dtCalc.html), allowing for tube sealing with 19 mm 170 

metallic clips. MWCO selection for the RC membrane is primarily governed by the 171 

molecular weight (MW) of the biological molecules of the GI compartments and the target 172 

analytes of our study. To maximize the rate of dialysis, the membrane with the largest 173 

MWCO which will not cause excess loss of the desired analytes was used. Hence, the 174 

MWCO was selected to be over three-fold higher of the MW of the heaviest target analyte 175 

studied here (i.e. BDE183; MW= 722) (SpectrumLabs Inc., personal communication). The 176 

diffusion of PBDEs across the membrane was aided by the addition of 10 mL of GIT fluid 177 

(i.e. stomach, small intestine, colon) inside the RC membrane/Tenax TA® system.  178 

http://www.spectrumlabs.com/dialysis/dtCalc.html
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2.3 Gastro-intestinal Extraction 179 

The gastro-intestinal extraction test involved three compartments, namely stomach (1h; 180 

pH=2.5), small intestine (SI) (4h; pH=7) and colon (16h; pH=6.5) tested in sequential mode 181 

(Fig. 1). Fed CE-PBET conditions were achieved by the addition of dietary components such 182 

as mucin, lipid-rich carbohydrates and bile salts into stomach, SI and colon incubations as 183 

described in Table SI-3 according to (Tilston et al., 2011) and all media were prepared in 184 

deionised H2O (dH2O). All experiments were conducted in triplicate. Gut media aliquots (80 185 

mL) were added into clean, amber 100 mL Duran® glass bottles, sealed with PTFE-lined 186 

screw caps and stored at -20oC prior use if necessary. Tenax TA® beads were cleaned prior 187 

use to remove fine particles by ultrasonication with 40 mL acetone (x2), 40 mL 188 

acetone:hexane 1:1 (x2) and 40 mL hexane (x 2) for 10 min in each sonication step. Tenax® 189 

TA was then allowed to air-dry at 105 oC overnight and was stored in a hexane-washed, 190 

Duran® bottle inside a desiccator.  A short video demonstration of the Tenax TA® inclusion 191 

in the RC dialysis membrane is available online 192 

https://figshare.com/s/e7312fa7d177b35bc7d0  (video used for demonstration purposes only; 193 

the RC membrane is sealed using 19 mm metallic clips; see below). Before employment, the 194 

RC dialysis membrane was soaked in ultra-pure H2O at room temperature for 45 min under 195 

continuous stirring to remove any preservatives such as glycerine and sodium azide. The RC 196 

membrane was then thoroughly rinsed with dH2O and one side sealed with a 19 mm hexane-197 

washed, metallic clip. Using a small glass funnel, Tenax TA® (0.5 g) was added inside the 198 

RC membrane, followed by 10 mL of stomach medium. The tubing was then sealed using 199 

another metallic clip. Then, 0.5 g of indoor dust were added in the remaining 70 mL of 200 

stomach fluid and the RC membrane/Tenax TA® system was introduced to the bottle (Fig 201 

1A). A solid-to-liquid (S/L) ratio 1:140 was achieved, thus preventing any bioaccessibility 202 

underestimation due to poor dissolution of contaminants from dust (Abdallah et al., 2012; 203 

Dean and Ma, 2007). The bottles were placed at 45o angle inside a temperature-controlled 204 

waterbath at 37 oC and rotated at 130 rpm for 1h, mimicking the GIT peristaltic movement. 205 

After 1 h, the samples were removed from the waterbath and, due to the continuous character 206 

of CE-PBET, stomach fluid was converted to small intestine media (SI) by addition of bile 207 

salts (0.5 g/L) and pancreatine (1.78 g/L) with pH adjusted to 7 using saturated NaHCO3. The 208 

small intestine incubation continued as above for 4h (Fig 1 B). The stomach medium was 209 

converted to small intestine only outside the membrane, given the assumption that bile salts 210 

and pancreatine would permeate to the inner barrier of the RC membrane during the 4-h 211 

small intestine incubation step in order to reach a pH equilibrium between inside and outside 212 

https://figshare.com/s/e7312fa7d177b35bc7d0
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of the RC membrane/Tenax TA® system to sustain sorption/desorption by passive diffusion. 213 

According to Spectrum Labs Inc. (USA) instructions to users, a first-order permeability rate 214 

is observed provided that the RC tubing system is well stirred and the solvent (in our case gut 215 

fluid) is changed several times during the dialysis procedure (Spectrum Labs Inc., personal 216 

communication). The RC membrane/Tenax TA® system was then removed from the bottle 217 

and was allowed to sediment for 15 min. Due to its hydrophobic character, Tenax TA® floats 218 

on top of the small intestine fluid inside the membrane (Fig. SI 1). Tenax TA® was trapped 219 

on the one side of the membrane, while the other side was carefully unsealed. The small 220 

intestine fluid inside the membrane was carefully collected (≈8 mL), was subsequently 221 

combined with the remaining 70 mL from the incubation and stored at +4 o C prior to liquid-222 

liquid extraction (LLE).  223 

The transition between the small intestine and colon compartments was achieved by physical 224 

transfer: the dust was recovered from the 70 mL of small intestine media by centrifugation 225 

(3500 rpm, 15 min), then added to 70 mL of colon medium. Using the same RC membrane 226 

and Tenax TA® as in the small intestine compartment, approximately 8 mL of pre-warmed 227 

colon medium were added and sealed with the metallic clips as described for the stomach 228 

compartment, re-introduced into the bottle where the indoor dust was re-suspended using the 229 

colon medium and incubated for 16 h (Fig 1C). At the end of the colon incubation, the dust 230 

pellet was recovered by centrifugation as before and stored at -20 oC for extraction. Finally, 231 

Tenax TA® was recovered using clean cotton wool filtration, the colon fluid was passed 232 

through cotton wool, combined with the remaining 70 mL of colon fluid and stored at +4 oC 233 

for LLE (Fig SI-2). The cotton wool pieces from filtration together with the Tenax TA®, the 234 

RC membrane and the metallic clippers were collected in one bottle for ultra-sonication 235 

assisted extraction. More details on the RC membrane/ Tenax TA® system, Tenax TA® 236 

filtration and recovery are available at Fig. SI 1 and Fig.SI 2, respectively. 237 
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2.4 Tenax TA® sorption capacity 238 

An assessment of PBDE release via the gut and Tenax TA® sorption capacity with respect 239 

to the three CE-PBET compartments was conducted per batch (i.e. a single Tenax TA® 240 

sorption experiment was conducted separately relative to the CE-PBET compartment 241 

and its incubation duration), not in sequential mode (i.e. continuous Tenax TA® sorption; 242 

total incubation duration 21 h). Briefly, a fresh Tenax TA® sample (0.5 g) was incubated 243 

using a new RC dialysis membrane before the initiation of each CE-PBET compartment. 244 

Each Tenax TA® sample was finally harvested and subjected to extraction and clean up, 245 

along with the gut fluids and the residual dust as described in section 2.5.2. 5 Extraction 246 

and clean up  247 

Before extraction, all samples were spiked with 200 ng of internal standard (ISTD) mix (100 248 

μL of 2 ng/μL) prepared in toluene (BDE77 for BDE28, 47 and 100 and BDE128 for 249 

BDE153, 154 and 184 quantifications, respectively) and shaken on an orbital shaker for 1h. 250 

Gut fluids were subjected to a LLE using 30 mL hexane/ethyl acetate 3:1 v/v twice (Fig. SI2 251 

– step 1). Two mL of acetone were added to enhance separation, when necessary. A gel-like 252 

emulsion bilayer (mainly lipid and carbohydrates) was developed, especially in the colon 253 

compartment. Oven-baked Na2SO4 (400 oC; powder) was added in the combined LLE 254 

extracts to absorb all remaining water residues and dissolve the gel-like emulsion. All 255 

samples were then allowed to settle for 1h at room temperature and the extracts were 256 

collected by centrifugation (3500 rpm, 15 min). The residual dust and the recovered Tenax 257 

TA® beads (together with the glass wool and the metallic clips) were subjected to ultra-258 

sonication assisted extraction for 15 min using 30 mL acetone/hexane 1:3 v/v twice (Fig. SI-2 259 

– step 2 & 3). After each step, the extracts were collected by centrifugation (3500 rpm, 15 260 

min). All extracts collected from each step were combined, evaporated to 1mL hexane using 261 

Syncore ® Analyst evaporator (Buchi, Switzerland) and then loaded onto Florisil® cartridges 262 

(2 g, 6 mL), using a slightly modified method published elsewhere (Van den Eede et al., 263 

2012) (Fig. SI 2 – step 4). Briefly, Florisil® cartridges were pre-cleaned with 10 mL ethyl 264 

acetate and 6 mL of hexane; our target analytes were eluted using 20 mL hexane. This eluate 265 

was further concentrated to 1mL (in hexane) and then subjected to SPE clean-up on 5% 266 

acidified silica (5% AS) (2 g, 6 mL). The 5% AS cartridges were pre-cleaned with 6 mL 267 

hexane and 3 mL dichloromethane and then all extracts from the Florisil® step were loaded 268 

onto the SPE silica column. Our target analytes were eluted using 16 mL hexane and 8 mL 269 

dichloromethane and after collection, all eluates were concentrated near dryness under a 270 

gentle stream of N2, reconstituted in 100 μL of toluene and then filtered using a micro 271 
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centrifuge filter lined with 0.45 μm pore size nylon filter (1.5 mL volume capacity) . Finally, 272 

the samples were transferred to injection vials, biphenyl (40 ng) was added as an injection 273 

recovery standard and analysed by GC-EI/MS. Further details about instrumental analysis are 274 

available at SI. 275 

2.6 Data analysis  276 

Bioaccessibility can be expressed as a mass (e.g. ng of a contaminant solubilised in the GI 277 

tract), a concentration (ng/g of a contaminant in dust) or as a fraction expressed in percentage 278 

(BAF%) (Guney and Zagury, 2016). In our study, bioaccessibility was determined according 279 

to (García-Alcega et al., 2016) using Eq. 1, where mass FR (SI+colon+Tenax TA®) is set as 280 

the sum of FR mass (ng) determined in small intestine (SI), colon and Tenax TA® 281 

compartments of CE-PBET system and mass FR (dust residual) is the FR mass (ng) 282 

determined in the dust residual collected after 16h-incubation of CE-PBET colon 283 

compartment which is considered as the non-bioaccessible fraction.  284 

𝐵𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 % (𝐵𝐴𝐹%)286 

=
𝑚𝑎𝑠𝑠 𝐹𝑅 (𝑆𝐼 + 𝐶𝑜𝑙𝑜𝑛 + 𝑇𝑒𝑛𝑎𝑥 TA®) 

𝑚𝑎𝑠𝑠 𝐹𝑅 (𝑆𝐼 + 𝐶𝑜𝑙𝑜𝑛 + 𝑇𝑒𝑛𝑎𝑥®) + 𝑚𝑎𝑠𝑠 𝐹𝑅 (𝑑𝑢𝑠𝑡 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)
 𝑥 100 287 

 (Eq.1)  285 

GraphPad Prism® version 7.04 for Windows (GraphPad Software, La Jolla CA, USA) was 288 

used for statistical analysis. Prior to statistical analysis, all BAF% were converted into 289 

fractions and arc-sine transformed. This mathematical transformation is necessary for 290 

statistical analysis of results set in percentages in order to equalise variances among 291 

treatments (Sokal and Rohlf, 1995). Multiple t-tests (unpaired; p<0.05) were performed to 292 

assess statistically significant differences among the different Tenax TA® amounts added 293 

(sections 3.1 and 3.2), whereas ordinary two-way ANOVA (Uncorrected Fisher’s test, 294 

p<0.05) was performed to assess statistical differences for bioaccessibility with and without 295 

the addition of Tenax TA® in SRM 2585 method validation (section 3.3).  296 

2.7 Quality assurance and quality control 297 

All samples were analysed in triplicate together with oven-baked, laboratory-grade sand 298 

(procedural blank) and SRM 2585 (n=3, NIST, USA) was used for method validation and QC 299 

testing. Concentrations of our target analytes in method blanks were all below method limit 300 

of detection (mLOD) (0.05 ng/μL). RC membrane and Tenax TA® blanks were extracted for 301 
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FR background contamination prior use and all values were found below mLOD. No weight 302 

correction on bioaccessibility values with respect to potential Tenax TA® mass losses was 303 

employed in our study. According to the ISO 16751 method on organic pollutant 304 

bioavailability (2015), correction for such losses is recommended by air drying and weighing 305 

the dry amount of Tenax TA® after extraction (ISO, 2015). In our study separating Tenax 306 

TA® beads from the glass wool and the RC membrane post extraction was not feasible due to 307 

the character of Tenax TA® to adhere in any surface it comes in contact with during filtration 308 

(e.g. glass wool).Extraction efficiency (%) was assessed for SI, colon, Tenax TA® and 309 

residual dust compartments by spiking experiments (see SI Table 2). Briefly, 100 ng of native 310 

PBDEs (100 μL of 1 ng/μL) in iso-octane were spiked to SI and colon media, Tenax TA® 311 

(0.5 g) and dust (0.5 g). All samples were shaken on an orbital shaker for 1h. Finally, 30 mL 312 

of the corresponding extraction medium was added in each compartment, following the same 313 

sample preparation processes as before. Finally, biphenyl (40ng) was added as an injection 314 

recovery standard and the samples were analysed by GC-EI/MS. Extraction efficiency values 315 

for all target analytes were >60% in all CE-PBET compartments, except BDE100 efficiency 316 

which was 52% and 54% in Tenax TA® and residual dust, respectively. Such phenomena 317 

may be attributed to potential mass loses of Tenax TA® during glass wool filtration steps. 318 

Despite the moderately lower extraction efficiency for BDE100 in comparison to the other 319 

target analytes, the relative standard deviation (RSD%) of the method for BDE100 was 6%. 320 

Given the low deviation and variability, no correction was performed for BDE100 (Table SI 321 

3). Glass test tubes were cleaned by soaking for at least 12 h in an alkali solution. After 322 

washing, the tubes were rinsed with water and dried at 100 ºC for at least 12 h and burnt at 323 

400°C to remove all traces of contamination. 324 

3. Results and discussion 325 

3.1 Tenax TA® optimisation 326 

The addition of Tenax TA® in CE-PBET considerably increased the bioaccessible fraction 327 

(%BAF) of all target analytes, illustrating the value of Tenax TA® as an adsorbent matrix for 328 

HOCs. Different masses of Tenax TA® were added to the CE-PBET system to optimise the 329 

adsorbent sink to ensure exhaustive FR desorption from indoor dust. PBDE-spiked indoor 330 

dust samples (n=3) were tested under four different conditions; (A) without any Tenax TA® 331 

addition (control) and with three different amounts of Tenax TA®, namely 0.25 g (B), 0.5 g 332 

(C) and 0.75 g (D). The same length of RC dialysis membrane (16cm) and mass of dust (0.5 333 
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g) was used in all treatments. Our results show that Tenax TA® enhanced gut bioaccessibility 334 

for PBDEs by approximately two-fold (Fig. 2) and the bioaccessible fraction was 335 

significantly different (p<0.001) between the controls (no Tenax) and with Tenax TA® 336 

addition, for all target analytes (Fig. 2). For example, with no Tenax TA® (control), the 337 

bioaccessible fraction of the low brominated PBDEs, BDE28 and BDE47, was 37.7% and 338 

32.8%, respectively, whereas their BAF% increased with 0.25 g Tenax TA® inclusion to 339 

55.1% and 54.9%, respectively. A trend to decreasing BAF% with increasing degrees of 340 

bromination for PBDEs can be seen for the control treatments and the different amounts of 341 

Tenax (Fig 2). Such findings are in agreement with Fang and Stapleton (2014), where a 342 

negative relationship between gut bioaccessibility and PBDE physicochemical properties 343 

such as degrees of bromination, MW and log Kow was described (Fang and Stapleton, 2014). 344 

Few studies describe the influence of Tenax TA® inclusion on gut bioaccessibility of organic 345 

pollutants from solid matrices such as indoor dust or soil. CE-PBET and Tenax TA® were 346 

employed to assess FR gut bioaccessibility and for a wide range of low and high MW FRs 347 

present in indoor dust including BDE47, BDE100 and BDE183; in their experimental design, 348 

Fang and Stapleton (2014) used 0.5 g of Tenax as an absorptive sink but the effects of 349 

varying Tenax TA® content were not reported (Fang and Stapleton, 2014). In a study 350 

assessing PAHs bioaccessibility in soils from China, 0.25 g of Tenax TA® were added into a 351 

PBET in vitro system (Li et al., 2015). According to Li et al (2015), this mass was five-fold 352 

higher than the small intestine organic matter (OC), thus allowing sufficient sorption capacity 353 

for the PAHs mobilized during their study (Li et al., 2015). Zhang et al (2017) reported fast 354 

and efficient sorption only for high MW PAHs (i.e. 3 -5 benzene ring) using 0.1 g of Tenax 355 

TA® studying PAH soil bioaccessibility; poor extraction efficiencies were noted for volatile 356 

PAHs such as naphthalene, acenaphthylene and acenaphthene, possibly as a result of an air 357 

drying step during Tenax TA® collection and separation from the gut fluid (Zhang et al., 358 

2017). Varying the content of Tenax TA® (0.25, 0.5 and 0.75 g) in the CE-PBET system 359 

studied here, showed few statistically significant differences for our analyte recoveries. Here, 360 

statistically significant differences among the three Tenax TA® amounts tested were found 361 

only for BDE28 bioaccessibility as an exception; some increase in BDE28 BAF% with Tenax 362 

TA® content, rising from 55.1% with 0.25 g Tenax TA® to 66.7% with 0.5 g (0.25 g vs 0.5 g; 363 

p=0.017) and 69.9% with 0.75 g Tenax TA® added (0.25 g vs 0.5 g; p=0.006) was observed. 364 

These results reflect the physicochemical properties of this FR as a low MW tri-BDE 365 

congener; Tenax TA® is a hydrophobic sink and the calculated log Kow (EpiWeb) shows that 366 

BDE28 (log Kow 5.88) is less hydrophobic than BDE47 (log Kow 6.77) and hence greater 367 
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amounts of the adsorbent may be needed to capture all of the released BDE28. For all other 368 

analytes, there were no statistically significant differences in BAF% among the varying 369 

Tenax TA® amounts tested. In other words, for BDE28 being the least hydrophobic of our 370 

target analyte list, we propose that Tenax TA mass loading greater than 0.25 g is required in 371 

order maximise the sortion potentialof low MW PBDEs such as BDE28 to Tenax TA®.   372 

Given the a) high sorption capacity of Tenax TA®, b) the broad range of physical properties 373 

(MW, water solubility and log Kow) of our FRs mobilised from the ingested matrix and c) the 374 

relatively high Tenax TA® mass recovery (SI Fig 3), 0.5 g of Tenax TA® were selected and 375 

subsequently used below. Our results show that in order to maintain a constant sorptive 376 

gradient for the low MW PBDEs, a larger mass of Tenax TA® is required, since 0.25 g of 377 

Tenax TA® was not enough to sustain an exhaustive in vitro gut extraction for all target 378 

analytes.  379 

3.2 Tenax TA® sorption capacity to PBDEs in CEPBET components 380 

 381 

Here the influence of the gut media on Tenax sorption was being tested. Each compartment 382 

(i.e. stomach, small intestine colon) was tested independently so Eq. 1 was not suitable for 383 

calculating PBDE sorption capacity on the different Tenax TA® batches. Hence, Eq.1  was to 384 

determine the Tenax® loadings as fractions of the total concentration in each CE-PBET 385 

compartment PBDE sorption capacity (%) was determined using equation 2 (Eq. 2), where 386 

mass FR in Tenax TA® is the FR mass (ng) determined in each Tenax TA® sample for each 387 

CE-PBET compartment and mass FR in compartment is FR mass (ng) determined in CE-388 

PBET gut fluids separately.  389 

𝑇𝑒𝑛𝑎𝑥 𝑆𝑜𝑟𝑝𝑡𝑖𝑜𝑛 (%) =
mass FR in Tenax TA® 

𝑚𝑎𝑠𝑠 𝐹𝑅 in Tenax TA® +𝑚𝑎𝑠𝑠 FR in compartment
 𝑥 100  (Eq. 2) 390 

Shown in figure 3 are the results from PBDEs sorption to Tenax TA® in the three different 391 

CE-PBET compartments with respect to their incubation step. PBDE sorption to Tenax TA® 392 

results should not be considered as total PBDE bioaccessibility, but as the component 393 

attributable to Tenax TA® as an absorptive sink. Within the stomach compartment, BDE28 394 

and BDE47 presented higher sorption on Tenax TA® (43.7 % and 25.6%, respectively) 395 

compared to PBDEs with higher bromine content such as BDE154 and BDE183 where Tenax 396 

TA® sorption ranged from 7.0 % to 8.8 %, respectively. Comparing stomach and colon 397 

absorption, statistically significant relationships (p<0.01) were noted for all target analytes, 398 

apart from BDE28 and BDE47 (p>0.05). Fundamental differences between stomach and 399 



16 

 

colon media formulae, ingredient concentrations (Table SI 3) and incubation times can be 400 

considered as the driving factors for the interpretation of such results.  Small intestine 401 

absorption to Tenax TA® was similar to the colon  for BDE28 (66.2 % and 60.0  %, 402 

respectively, whereas it was found repeatedly lower than the colon for all the other target 403 

analytes (Fig. 3) without any considerable differences. Tenax TA®  sorption in the colon was 404 

higher than SI overall, but was not statistically significant for individual compounds  405 

exceptBDE183 sorption on Tenax TA® which was nearly two-fold higher in the colon in 406 

comparison to small intestine (52.6 % and 36.1 %, respectively, p=0.045). We believe that 407 

such findings are influenced by the addition of food components and bile salts as surfactants 408 

to the small intestine and colon compartments (Table SI 3). Such biological phenomena are 409 

able to enhance FR solubility and desorption potential from the dust to the gut (i.e. more 410 

released and freely available FR in the gut fluids), promoting thus higher FR mobilisation and 411 

sorption onto the Tenax TA sink (Oomen et al., 2004; Zhang et al., 2015).  Compared to the 412 

small intestine, incubation times and the concentration of compounds enhancing desorption 413 

(e.g. mucin) are higher in the colon. All these factors combine to increase the release from the 414 

dust that a higher concentration of PBDE is in solution and hence available for subsequent 415 

sorption onto Tenax TA® .Hence, both the “solvent” capacity of the medium and the “sink” 416 

capacity of the Tenax TA® are required to achieve optimum extraction of FRs from dust as a 417 

matrix. Besides Tenax TA®, our results further support the idea of dietary components 418 

addition in CE-PBET acting as additional mechanism enhancing FR mobilisation, especially 419 

in the lipid-rich colon compartment as reported by (Tilston et al., 2011). 420 

3.3 Method performance using SRM 2585 421 

The selected CE-PBET parameters as well as the overall performance of our new method 422 

were assessed using SRM 2585 serving as a well-characterised and homogenous dust sample.  423 

PBDE bioaccessibility was studied using a) CE-PBET without the Tenax TA® adsorption 424 

sink, b) CE-PBET with the addition of 0.5 g of Tenax TA® and c) PBDE-spiked SRM 2585 425 

(100 ng spike) to evaluate greater FR contamination levels under environmentally realistic 426 

conditions using SRM 2585 as the same homogenous dust sample. As observed for BAF% 427 

using a dust sample from Reading (section 3.1), statistically significant differences (p=0.03) 428 

were found in %BAF% for all target analytes when comparing CE-PBET without Tenax TA® 429 

addition (Fig. 4 A) and with Tenax TA® addition (Fig 4 B & C).  The BAF% when  Tenax 430 

TA® was used as an adsorption sink rerose between approximately two-fold (BDE153 and 431 

BDE183) with greater increases seen for the low-brominated and less hydrophobic FRs such 432 
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as BDE28 and BDE47 (nearly 3-fold bioaccessibility increases, respectively) (Fig. 4 B & C). 433 

No statistically significant effect (p>0.05) was found between the two SRM 2585 treatments 434 

(spiked and non-spiked) which both included 0.5 g of Tenax TA® and different FR 435 

contamination levels did not present any considerably different bioaccessibility values from 436 

the same dust matrix (Fig. 4 B & C). Finally, compared to the control treatments (i.e. no 437 

Tenax TA inclusion), the performance of the novel CE-PBET method described here using 438 

SRM 2585 offers two to three-fold gut bioaccessibility increase for a wide range of PBDEs 439 

with diverse physicochemical profiles, following a similar pattern to the indoor dust tested in 440 

section 3.1.  441 

3.4 Proposing a unified test approach  442 

This study describes an efficient method to physically separate Tenax TA® as an absorbent 443 

sink and indoor dust for in vitro bioaccessibility testing, and our model allows assessment of 444 

FRs (and potentially other HOCs) bioaccessibility from a solid matrix using artificial gastro-445 

intestinal fluids. Previous methods used a self-designed stainless steel sieve to separate and 446 

recover Tenax TA® beads (Fang and Stapleton, 2014; ISO, 2015; Li et al., 2015, 2016).  Our 447 

approach, using RC dialysis tubing provides some important benefits.  Dialysis tubing is 448 

readily available, reproducible (quality controlled) and can be sourced with a wide range of 449 

molecular weight cut offs. This allows investigators to select a membrane with a MW cut off 450 

sufficient to permit free diffusion of the analytes of interest, whilst restricting passage of 451 

larger macromolecules such as enzymes or proteins that may be added to simulated GI fluids. 452 

By restricting the passage of these unwanted materials, the sorption capacity of the Tenax 453 

TA® is predominantly used for the organic pollutants rather than media components and clean 454 

up and desorption is thus simplified.  The tubing functions effectively to physically separate 455 

the Tenax TA® from the solid matrix (dust) and has high pH and temperature tolerance. Our 456 

study also shows the benefits of using an adsorption sink in the CE-PBET system. Compared 457 

to controls with no Tenax TA®, inclusion of the resin increased gut bioaccessibility for 458 

PBDEs with diverse physicochemical profiles. For the low brominated BDE28, 0.25 g of 459 

Tenax TA® were insufficient for exhaustive in vitro gut absorption, illustrating that the 460 

amount of Tenax TA® added to the modified CE-PBET system should be optimized with 461 

respect to the physicochemical properties (e.g. LogKow, water solubility) of the target 462 

analytes tested. Other than BDE28, for the (hydrophobic) FR’s studied here, 0.5 g of Tenax 463 

TA® was shown to be an appropriate amount to add in order to ensure released pollutants 464 

were readily adsorbed. A proposed rule can be a Tenax TA® mass loading of 0.5 g for 465 
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organic compounds with LogKow < 6 (e.g. BDE28, low MW PAHs etc.), while 0.25 g of 466 

Tenax TA® mass loading can be employed for very lipophilic compounds such as penta- and 467 

octa- BDEs (LogKow > 6).   468 

3.5. Future work  469 

Given the assumption that first-order permeability rates can be obtained provided that the RC 470 

tubing system is well stirred and the gut fluid is changed several times during the dialysis 471 

procedure, no kinetic characterisation was conducted in the present study. However, we 472 

believe that further kinetic characterisation of the diffusion rates of the RC membrane system 473 

should be encouraged and explored in the future. Additionally, the proposed unified gut 474 

bioaccessibility method should be further examined against different matrices (e.g. soil) and 475 

groups of emerging organic pollutants with diverse physicochemical properties. Fang and 476 

Stapleton (2014) proposed their method to be employed for flame retardants with log Kow>5 477 

using 0.5 g of Tenax TA® mass loading in the test settings. Additionally, the ISO method on 478 

bioavailability was designed for non-polar organic compounds with log Kow>3 (ISO, 2015). 479 

Potentially, our unified method on in vitro gut bioaccessibility could be proposed to a wide 480 

range of organic pollutants and a rule of Tenax TA® mass loading could be established with 481 

respect to a pollutant’s log Kow and water solubulity values, e.g. 0.25 g of Tenax TA® mass 482 

loading should be used when testing for compounds with log Kow greater than 6 (i.e. more 483 

hydrophobic), whereas 0.5 g of Tenax TA® mass should be employed for organic compounds 484 

with log Kow lower than 6. Given the infinite sink inclusion, bioaccessibility parameters 485 

including a reduction of the S/L ratio could be potentially explored on the basis of mass 486 

transfer from the outside to inside of the membrane being quicker since the concentration 487 

outside would reach earlier the solubility limit. 488 

3.6 Conclusion  489 

Under the influence of the ISO 16751 method on the environmental availability of non-polar 490 

compounds being currently approved for registration, we propose a novel test format for 491 

assessing in vitro bioaccessibility of PBDEs with Tenax TA® addition as an adsorptive sink. 492 

Our data also show that the existing default assessment of risk (i.e. all the ingested pollutant 493 

in a solid matrix being bioavailable) is an overestimate and that the BAF% varies between 494 

~60% (BDE47) and ~50% (BDE153).  This study reveals that colon sorption to Tenax TA® 495 

for low MW BDEs was similar compared to small intestine sorption for BDE28, unlike other 496 

more hydrophobic PBDEs where colon sorption was higher than small intestine sorption. 497 
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Well designed in vitro bioaccessibility tests thus provide a simple approach for initial human 498 

risk assessments from ingested solid matrices giving a conservative, yet realistic indication of 499 

risk. 500 
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provided at supporting information.  503 
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Artwork and Tables with Captions 697 

 698 

Figure 1 – Schematic representation of CE-PBET gut compartments and parameters (i.e. stomach (1 h, pH = 2.5), small intestine (SI) (4 h, pH = 7) 699 

and colon (16 h, pH = 6.5)) using 0.5 g Tenax TA® added in 16 cm of RC dialysis membrane. 700 
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 701 

Figure 2 – CE-PBET bioaccessibility fraction (%BAF) of PBDEs without any Tenax TA® addition (control, A) and CE-PBET with Tenax TA® 702 

addition in three different amounts; i.e. 0.25 g (B), 0.5 g (C) and 0.75 g (D). Statistically significant differences shown here (**; p<0.01 and ***; 703 

p<0.001) were established between the control (A) and all Tenax TA® treatments (B, C, D). Bar charts represent average values of triplicates. Error 704 

bars represent one standard deviation.  705 

 706 
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 712 

Figure 3 – Line plots presenting FR sorption on Tenax TA®  separately in stomach (1h), small intestine (SI; 4h) and colon (16h) compartments. Line plots 713 
represent average values of triplicates. Error bars represent one standard deviation. 714 

  715 
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 716 

 717 

Figure 4 – Method performance of CE-PBET and bioaccessibility fraction (%BAF) using SRM 2585 without Tenax TA® inclusion (control; A), with Tenax 718 
TA® inclusion (B) and artificially spiked SRM 2585 and Tenax TA® inclusion (C). Statistically significant differences shown here (*; p<0.05, **; p<0.01 and 719 
***; p<0.001) were established between control treatments of SRM 2585 without Tenax TA® inclusion (A)  and treatments B and C with Tenax TA® inclusion . 720 
Bar charts represent average values of triplicates. Error bars represent one standard deviation.  721 
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