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ABSTRACT
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A new theoretical framework is derived for parameterization of subgrid

physical processes in atmospheric models; the application to parameterization

of convection and boundary layer fluxes is a particular focus. The derivation is

based on conditional filtering, which uses a set of quasi-Lagrangian labels to

pick out different regions of the fluid, such as convective updrafts and environ-

ment, before applying a spatial filter. This results in a set of coupled prognos-

tic equations for the different fluid components, including subfilter-scale flux

terms and entrainment/detrainment terms. The framework can accommodate

different types of approaches to parameterization, such as local turbulence

approaches and mass-flux approaches. It provides a natural way to distin-

guish between local and nonlocal transport processes, and makes a clearer

conceptual link to schemes based on coherent structures such as convective

plumes or thermals than the straightforward application of a filter without

the quasi-Lagrangian labels. The framework should facilitate the unification

of different approaches to parameterization by highlighting the different ap-

proximations made, and by helping to ensure that budgets of energy, entropy,

and momentum are handled consistently and without double counting. The

framework also points to various ways in which traditional parameterizations

might be extended, for example by including additional prognostic variables.

One possibility is to allow the large-scale dynamics of all the fluid compo-

nents to be handled by the dynamical core. This has the potential to improve

several aspects of convection-dynamics coupling, such as dynamical memory,

the location of compensating subsidence, and the propagation of convection

to neighboring grid columns.
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1. Introduction40

In weather and climate models a range of important processes occur on scales that are too fine41

to be resolved. These processes must therefore be represented by subgrid models or ‘parame-42

terizations’; for an introduction and overview see, e.g., Mote and O’Neill (2000); Randall (2000);43

Kalnay (2003). A formal theoretical framework on which to build a subgrid model can be obtained44

by applying a spatial filter to the governing equations (e.g. Leonard 1975; Germano 1992; Pope45

2000); this leads to equations for the filtered variables that resemble the original equations for the46

unfiltered variables, supplemented by terms representing the filter-scale effects of subfilter-scale47

variability. This formal approach is widely used in the development of numerical models for large48

eddy simulation (LES), but tends to be applied less systematically in the development of weather49

and climate models.50

In weather and climate models a great variety of processes need to be parameterized; these51

include unresolved waves, local turbulence, and coherent structures such as convective thermals52

or plumes. These physical processes are qualitatively quite different from each other, and lead to53

subgrid models that are structurally quite different, for example eddy diffusivity schemes for local54

turbulence compared with mass flux schemes for cumulus convection. The usual LES filtering55

approach does not, itself, make any distinction between these different types of subgrid process.56

Recent developments have suggested a requirement to be able to combine and extend these struc-57

turally different types of subgrid model (e.g. Lappen and Randall 2001; Arakawa 2004; Siebesma58

et al. 2007; Gerard et al. 2009; Grandpeix and Lafore 2010; Arakawa and Wu 2013; Storer et al.59

2015). For example, a convective boundary layer involves turbulent eddies on a range of length60

scales up to the depth of the boundary layer, implying that the turbulent vertical transport has both61

local and nonlocal contributions. This has motivated the inclusion of ‘countergradient’ transport62
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terms in boundary layer parameterizations (e.g. Holtslag and Boville 1993), as well as the devel-63

opment of the Eddy Diffusivity Mass Flux (EDMF) scheme (Soares et al. 2004; Siebesma et al.64

2007) which, as its name implies, combines the eddy diffusivity and mass flux approaches within65

a single scheme.66

A number of authors have argued for greater unification of parameterization schemes (e.g. Lap-67

pen and Randall 2001; Jakob and Siebesma 2003; Arakawa 2004; Siebesma et al. 2007), pointing68

out that the real atmosphere does not switch discontinuously for example between a dry boundary69

layer and a shallow-cumulus-topped boundary layer or between shallow convection and deep con-70

vection, and that such switching behavior in numerical models is unrealistic and undesirable. A71

concrete step in this direction is the scheme of Neggers et al. (2009) (see also Soares et al. 2004),72

which extends the EDMF approach by including moist processes and by allowing the thermals in73

the mass flux part of the scheme to penetrate above the top of the well-mixed boundary layer. The74

scheme is thus able to smoothly model transitions, in space and time, between a stratocumulus-75

topped boundary layer, a shallow cumulus regime, and a dry convective boundary layer.76

Finally, there is a need for parameterization schemes to take into account the grid resolution of77

the parent model, i.e. to be ‘scale aware’. The issue is particularly acute at resolutions that partly78

resolve the process in question: the so-called ‘gray zone’. Approaches to handling the convective79

gray zone have considered not only relaxing the assumption of small convective area fraction,80

traditionally employed in mass flux schemes (Arakawa and Wu 2013; Grell and Freitas 2014), but81

also broadening the structure of the scheme to include a stochastic element to account for local82

departures from statistical equilibrium (Keane and Plant 2012), to include additional prognostic83

quantities to carry some dynamical memory (e.g. Gerard et al. 2009; Grandpeix and Lafore 2010;84

Park 2014), or by using a higher-order turbulence model rather than an entraining plume model to85

calculate convective transports (e.g. Bogenschutz et al. 2013; Storer et al. 2015). It should also be86
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noted that the deep convective gray zone merges gradually into the shallow convective gray zone87

and then the boundary layer gray zone as horizontal resolution is refined. In other words, there is88

a rather broad range of model resolutions across which the challenges of representing gray zone89

processes must be addressed.90

These considerations point to the need for a theoretical framework that can accommodate these91

multiple approaches to parameterization, both individually and in combination. Such a framework92

would facilitate the unification of different parameterizations, or the coupling of different param-93

eterizations to each other and to the dynamical core. For example, it could help ensure that any94

dynamical or thermodynamic approximations are made consistently throughout a model. It could95

also help to prevent ‘double counting’ in which some contribution to a flux is computed in two96

different ways by two different parts of the model and counted twice in the total flux. It should97

be possible to derive specific parameterization schemes from the general framework via a set of98

clearly identifiable assumptions or approximations; this should enable the assumptions behind99

different parameterizations to be compared more easily. The framework should also be useful100

in interpreting observational data or LES data to underpin the development of parameterization101

schemes.102

In this paper a new theoretical framework is derived and proposed for developing, coupling, and103

unifying subgrid parameterizations. We particularly have in mind the application of this frame-104

work to the parameterization of convection and its coupling to the boundary layer and to the larger105

scale dynamics, motivated by current challenges in this area (e.g. Holloway et al. 2014; Gross et al.106

2017). However, the derivation is quite general.107

The derivation (sections 2 and 3) is based on the idea of conditional filtering. It is closely related108

to the idea of conditional averaging, which has been proposed, for example, by Dopazo (1977)109

for the study of intermittent turbulent flows. Here, however, we use a spatial filter rather than an110
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ensemble average, and we extend the approach to the fully compressible Euler equations. The111

spatial filter is analogous to that used in LES. However, in the conditional filtering approach the112

fluid is first partitioned into a number of regions identified by a set of quasi-Lagrangian labels113

that each take only the values 0 or 1. Multiplying the governing equations by one of the labels114

before applying the spatial filter effectively picks out only the fluid identified by that label. The115

process is repeated for each label in turn. For example, in the simplest version, one label might116

pick out cumulus updrafts while a second label picks out the rest of the fluid. In this way, with117

very few approximations, one obtains separate (but coupled) prognostic equations for each fluid118

component, each with corresponding subfilter-scale terms. The resulting equations resemble those119

used in modeling multiphase flow for engineering applications (e.g. Städtke 2006), though our120

derivation is somewhat simpler.121

A critical element of any application of the proposed framework is to ensure that fluid parcels are122

appropriately labelled, which will require fluid parcels to be relabelled as the flow evolves. For ex-123

ample, if different labels are used for updraft fluid and environmental fluid then fluid parcels must124

be relabelled as they are entrained into the updraft and relabelled again when they are detrained.125

Section 4 discusses how relabelling may be included in the framework, and briefly discusses the126

relationship between relabelling and physical processes such as mixing and source terms.127

Section 5 outlines how local turbulence closures and mass flux schemes are both accommodated128

in the proposed framework. It is instructive to see how a typical simple mass flux scheme is129

obtained by making certain approximations within the framework; this example is discussed in130

some detail.131

An attractive feature of the proposed framework is that it suggests how one might extend tra-132

ditional mass flux schemes for convection to include a prognostic treatment of the convective133

dynamics, allowing some aspects of dynamical memory to be captured. One could, moreover,134

7



allow the dynamical core to handle the convective as well as non-convective (or mean) dynamics.135

Such a treatment would allow convective systems to be advected to neighboring grid cells (e.g.136

Grandpeix and Lafore 2010). It would also allow the resolved dynamics to control the horizon-137

tal distribution of the compensating subsidence rather than the parameterized contribution being138

imposed in the convecting grid column (e.g. Krueger 2001; Kuell and Bott 2008). It would thus139

have the potential to overcome some significant limitations of most current convection schemes,140

especially at high horizontal resolution. This possibility is discussed briefly in section 6. Progress141

in analysing and implementing this approach will be reported elsewhere.142

2. Conditionaly filtered compressible Euler equations143

The derivation begins with the fully compressible Euler equations:144

∂ρ

∂ t
+∇ · (ρu) = 0, (1)

145

Dη

Dt
= 0, (2)

146

Dq
Dt

= 0, (3)
147

Du
Dt

+
1
ρ

∇p+∇Φ = 0, (4)
148

p = P(ρ,η ,q). (5)

Here, ρ is the total fluid density, u = (u,v,w) is the fluid velocity, p is pressure, and Φ is geopo-149

tential. For simplicity the governing equations have been expressed in terms of ‘conservative’150

variables η the specific entropy and q the total specific water content, and sources and sinks have151

been neglected. In reality source and sink terms are often important (e.g. Bannon 2002; Raymond152

2013), and it is straightforward to include them (section 3). It may be convenient to replace η153

by some function of η ; see section 4. Similarly, Coriolis terms have also been omitted, but it is154

straightforward to include them. The equation of state has been written in the generic form (5);155
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this form assumes thermodynamic equilibrium so that knowledge of ρ , η and q is enough to de-156

termine the mass fractions of water in vapor, liquid and frozen form, and hence determine p. This157

assumption is not critical to the derivation below and can be relaxed.158

The derivation also applies to simplified equation sets such as hydrostatic, anelastic, or Boussi-159

nesq. However, an increasing number of weather and climate models are now based on the non-160

hydrostatic compressible Euler equations in order to be accurate across a wide range of scales161

(Davies et al. 2003). In order to be applicable to such models, we retain the compressible Euler162

equations here. Moreover, we do not wish to encourage the introduction of inconsistencies that163

might result from the use of different underlying equation sets in the parameterizations and the164

dynamical core.165

In order to carry out conditional filtering a set of n Lagrangian labels Ii, i= 1, . . . ,n is introduced.166

At any point in the fluid one of the Ii is equal to 1 while the others are equal to 0. We will refer167

to the fluid with Ii = 1 as the ith fluid component. Eventually we envisage that the different fluid168

components might correspond to environment, updraft, and possibly downdraft, cold pool, near169

environment, further updrafts, etc. (Fig. 1). However, for the moment the Ii are just arbitrary170

Lagrangian labels.171

Because the Ii are Lagrangian labels, we can write172

DIi

Dt
= 0. (6)

This equation will be used in the form173

∂ Ii

∂ t
+u ·∇Ii = 0. (7)

In this form there are time and space derivatives of discontinuous functions; these must be inter-174

preted as Dirac δ -functions, and they will only make sense when integrated. However, the deriva-175

tion below avoids explicit consideration of these δ -functions. Also, the derivation avoids the need176
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to explicitly consider a surface integral over the boundary of any fluid component (though such177

consideration might be needed to formulate a specific parameterization of some terms).178

Now consider a formal spatial filtering of the governing equations. This is analogous to the179

derivation of the filtered equations used in LES, with the key difference that the filter is restricted180

to each fluid component in turn with the aid of the labels Ii. Let G(ξ,∆) be a kernel for the filter,181

where ∆ is the filter width and
∫

D G(ξ,∆)dξ = 1. Then a filtered variable, indicated by an overbar,182

is defined as a convolution of the unfiltered variable with the kernel:183

X(x) =
∫

D
G(x−x′,∆)X(x′)dx′, (8)

where the integration is over the domain D of interest. (A density-weighted filter X∗ may also184

be defined; see (A1).) It will be assumed below that the filter commutes with space and time185

derivatives: 1
186

∂X
∂ t

=
∂X
∂ t

; ∇X = ∇X ; etc. (9)

Now define σi to be the volume fraction of the ith fluid component on the filter scale:187

σi = Ii. (10)

Then, since ∑i Ii = 1, it follows that ∑i σi = 1. Also define the average density of the ith fluid188

component on the filter scale ρi by189

σiρi = Iiρ. (11)

To derive an evolution equation for σiρi, multiply (1) by Ii and add to ρ times (7) to obtain190

∂

∂ t
(Iiρ)+∇ · (Iiρu) = 0. (12)

1This assumption will not be valid if the filter scale ∆ varies in space or time. It will also break down near boundaries (such as the Earth’s

surface). The additional terms that arise from variations in ∆ and from the presence of boundaries can be formally included at the expense of some

additional complexity (e.g. Fureby and Tabor 1997; Chaouat and Schiestel 2013), and may be estimated numerically with the aid of a second filter

scale ∆̃ = 2∆ (Chaouat and Schiestel 2013).
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Apply the filter to this equation and use (9) to obtain191

∂

∂ t
(σiρi)+∇ · (Iiρu) = 0. (13)

If we now define ui to be the density-weighted velocity of the ith fluid component on the scale of192

the filter193

ui = Iiρu/Iiρ, (14)

i.e.194

σiρiui = Iiρu, (15)

then (13) becomes195

∂

∂ t
(σiρi)+∇ · (σiρiui) = 0. (16)

Next we derive an evolution equation for the entropy of the ith fluid component. Start by com-196

bining (2) with (1) to obtain the conservative form197

∂

∂ t
(ρη)+∇ · (ρuη) = 0. (17)

Take Ii times (17) plus ρη times (7) to obtain198

∂

∂ t
(Iiρη)+∇ · (Iiρuη) = 0. (18)

Now apply the filter and use (9) to obtain199

∂

∂ t
(Iiρη)+∇ · (Iiρuη) = 0. (19)

By analogy with (15), define ηi to be the density-weighted entropy of the ith fluid:200

σiρiηi = Iiρη . (20)

Now write201

Iiρuη = Iiρuηi +(Iiρuη− Iiρuηi)

= σiρiuiηi +Fηi
SF, (21)
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where Fηi
SF is the subfilter-scale flux of ηi. Thus, (19) becomes202

∂

∂ t
(σiρiηi)+∇ · (σiρiuiηi) =−∇.Fηi

SF. (22)

Subtracting ηi times (16) gives203

∂ηi

∂ t
+ui ·∇ηi =−

1
σiρi

∇.Fηi
SF, (23)

or, defining204

Di

Dt
≡ ∂

∂ t
+ui ·∇ (24)

to be the ‘material’ derivative following the ith fluid component,205

Diηi

Dt
=− 1

σiρi
∇.Fηi

SF. (25)

In an analogous way, one may define the average density-weighted water content of the ith fluid206

qi and obtain its evolution equation207

Diqi

Dt
=− 1

σiρi
∇.Fqi

SF. (26)

The subfilter-scale fluxes Fηi
SF and Fqi

SF are completely analogous to those obtained in the standard208

approach to filtering, in which there is only a single fluid component. But note that these are209

fluxes within fluid component i and involve contributions only from fluid component i; any fluxes210

between fluid components must occur through relabelling terms—see section 4.211

Next consider the momentum equation. A key feature of this derivation is that we wish to end212

up with the same pressure gradient term appearing in the momentum equations for each of the213

labelled fluid components; see section 6 for a brief discussion. Taking ρ times (4) plus u times (1)214

gives the flux form of the momentum equation215

∂

∂ t
(ρu)+∇ · (ρuu)+∇p+ρ∇Φ = 0. (27)
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Then Ii times (27) plus ρu times (7) gives216

∂

∂ t
(Iiρu)+∇ · (Iiρuu)+ Ii∇p+ Iiρ∇Φ = 0. (28)

Now apply the filter to (28) and consider each term in turn. To an excellent approximation ∇Φ217

will be constant over the filter scale, so218

Iiρ∇Φ = Iiρ∇Φ = σiρi∇Φ. (29)

The pressure gradient term is219

Ii∇p = σi∇p+
(

Ii∇p−σi∇p
)

= σi∇p+
(

∇(Ii p)−σi∇p
)
− p∇Ii. (30)

The term p∇Ii involves δ -functions at the boundary of the regions containing the ith fluid compo-220

nent, and it represents the net pressure force (per unit volume) exerted upon fluid i by the other221

components. It may be decomposed into contributions from the boundary between fluid compo-222

nent i and each other fluid component j:223

p∇Ii =−∑
j

di j, (31)

where di j is minus the pressure force (i.e. the ‘drag’) exerted by fluid j on fluid i on the scale of224

the filter. It can be seen that di j = −d j i, as required for conservation of momentum. (The case225

j = i can be included by defining di i = 0.) The term226

bi =
(

∇(Ii p)−σi∇p
)

(32)

accounts for the fact that the remaining filter-scale pressure gradient force is not given exactly by227

σi∇p. By summing over i and using (10) it can be seen that228

∑
i

bi = 0. (33)
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Now consider the time derivative term in (28). In (15) we have already defined ui to be the229

density-weighted u of the ith fluid, so230

∂

∂ t
Iiρu =

∂

∂ t
(σiρiui) . (34)

Finally, consider the momentum flux due to advection and write231

Iiρuu = Iiρuui +(Iiρuu− Iiρuui)

= σiρiuiui +Fui
SF, (35)

where Fui
SF is the subfilter-scale momentum flux tensor.232

Combining these results gives233

∂

∂ t
(σiρiui)+∇ · (σiρiuiui)+σi∇p+σiρi∇Φ

= −

{
∇ ·Fui

SF +bi +∑
j

di j

}
. (36)

Then, subtracting ui times (16) and dividing through by σiρi gives234

Diui

Dt
+

1
ρi

∇p+∇Φ =− 1
σiρi

{
∇ ·Fui

SF +bi +∑
j

di j

}
. (37)

It is easily verified that including a Coriolis term 2Ω×u on the left hand side of (4) leads to the235

appearance of a term 2Ω×ui on the left hand side of (37).236

For completeness a filtered version of the equation of state is also needed.237

p = P(ρi,ηi,qi)+Pi
SF, (38)

where Pi
SF = P(ρ,η ,q)−P(ρi,ηi,qi) represents subfilter-scale contributions to the equation of238

state. Because of the short time needed for acoustic waves to propagate across a grid cell and239

equilibrate the pressure field, it will often be justifiable to neglect Pi
SF. A variety of alternative240

forms can be obtained by rearranging (5) before apply the filter. In making a specific choice, the241

points discussed in section 4 should be noted.242
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So far, the only approximations made in going from (1)-(5) to the conditionally filtered equations243

(16), (25), (26), (37) and (38) is that ∇Φ is constant on the filter scale, and that the filter commutes244

with space and time derivatives.245

3. Inclusion of source terms246

Up to this point, to simplify the presentation, source and sink terms for entropy and total water247

have been neglected. In realistic flows such sources are important. This section shows that the248

inclusion of source terms in the framework is straightforward.249

For illustration, consider the budget of liquid water (superscript (l)), but neglect precipitation as250

well as freezing and thawing. The analogue of (3) for liquid water is then251

Dq(l)

Dt
=C−E, (39)

where C and E are the rates of condensation and evaporation, respectively. Combining with (1) to252

obtain the flux form of the equation, and then with (7) gives253

∂

∂ t
(Iiρq(l))+∇ · (Iiρuq(l)) = Iiρ(C−E). (40)

Application of the filter then leads to254

∂

∂ t
(σiρiq

(l)
i )+∇ · (σiρiuiq

(l)
i ) = σiρiCi−σiρiEi−∇.Fq(l)i

SF , (41)

where q(l)i is the mass-weighted filter-scale mean q(l) in fluid component i, Fq(l)i
SF is the subfilter-255

scale flux of q(l) in fluid i, and Ci and Ei are the mass-weighted filter-scale condensation and256

evaporation rates in fluid i, defined by257

σiρiCi = IiρiC; σiρiEi = IiρiE. (42)

The final result can be converted back to advective form by subtracting q(l)i times (16):258

Diq
(l)
i

Dt
=Ci−Ei−

1
σiρi

∇.Fq(l)i
SF . (43)
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Thus the source and sink terms are carried through the conditional filtering operation in a259

straightforward way. (Note, however, that care may be required if a source term is to be ex-260

pressed as a nonlinear function of other variables. For example, if condensation rate is a function261

of water vapor q(v) and temperature T then σiρiCi = IiρiC(q(v),T ) 6= σiρiC(q(v)i ,Ti) if there are262

subfilter-scale variations in q(v) or T within fluid i. However, such differences are commonly ne-263

glected.) Other source terms can be included in an analogous way. This particular example will264

be used to discuss the link between sources and relabelling in the next section.265

4. Relabelling266

A crucial aspect of any practical application of the proposed framework will be the relabelling of267

fluid parcels. In the above derivation the Ii are simply arbitrary Lagrangian labels. It is envisaged268

that the framework might be exploited by using the labels to pick out subsets of fluid parcels269

with certain properties. For example, fluid 2 might represent convective clouds or updrafts, as270

identified, for example, by the fluid’s vertical velocity, buoyancy, or liquid water content, while271

fluid 1 represents the updraft environment. It would then be necessary to allow fluid parcels272

to be relabelled as their properties change. For example, relabelling some of fluid 1 as fluid 2273

would correspond to entrainment while relabelling some of fluid 2 as fluid 1 would correspond to274

detrainment. Specifying cloud base mass fluxes, for example, would also involve relabelling.275

Even when there is such a clear conceptual link between fluid parcel labels and their physical276

properties, defining a suitable relabelling scheme is a difficult and far from fully solved research277

problem (e.g. de Rooy et al. 2013). Moreover, there are situations where it is not at all clear278

how best to assign parcel labels. For example, in the dry convective boundary layer there are279

local and nonlocal contributions to the vertical transport, and some success has been achieved280

in modeling these with the EDMF approach (Siebesma et al. 2007). However, joint probability281
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density functions (pdfs) of vertical velocity and temperature from LES (e.g. Wyngaard and Moeng282

1992) do not suggest any clear criterion for labelling the fluid as updraft and environment. Again,283

the best choice of relabelling scheme is an open research question. In this section we first note284

how relabelling can be included in the conditionally filtered equations. We then briefly discuss285

how the mathematical operation of relabelling may be linked to physical processes such as mixing286

and source terms.287

a. Inclusion of relabelling terms288

One way to bring relabelling into the framework would be to introduce source terms for the289

Lagrangian labels Ii. However, such source terms would necessarily have δ -function structure,290

making the subsequent mathematics cumbersome. Instead we choose to introduce the relabelling291

terms directly in the filtered equations (16), (25), (26), (37).292

Let Mi j be the rate per unit volume at which mass is converted from component j to compo-293

nent i. Then (16) becomes294

∂

∂ t
(σiρi)+∇ · (σiρiui) = ∑

j 6=i

(
Mi j−M ji

)
. (44)

(If we define Mii = 0 then we can include j = i in the sum too.) This formulation clearly introduces295

no net source to the total density ρ = ∑i σiρi.296

Next, let q̂i j be a representative value of q for the fluid that is converted from component j to297

component i. The flux form of the qi equation becomes298

∂

∂ t
(σiρiqi)+∇ · (σiρiuiqi) = ∑

j 6=i

(
Mi jq̂i j−M jiq̂ ji

)
−∇ ·Fqi

SF. (45)

Subtracting qi times (44) then leads to299

Diqi

Dt
=

1
σiρi

[
∑
j 6=i

{
Mi j(q̂i j−qi)−M ji(q̂ ji−qi)

}
−∇.Fqi

SF

]
. (46)
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This formulation clearly introduces no net source to the total density of water ρq = ∑i σiρiqi.300

A simple choice would be to set q̂ ji = qi, in which case the right hand side of (46) simplifies.301

However, we are not restricted to this choice, and a more accurate scheme might be obtained by302

making a different choice. For example, the air detrained from a cumulus updraft might typically303

be less moist than the average air in the updraft (e.g. de Rooy et al. 2013). There is an analogy here304

with flux-form advection schemes, as noted by Yano (2014), with q̂i j analogous to the moisture305

mixing ratio at a cell edge used in computing a moisture flux. The choice q̂ ji = qi corresponds to306

a first order upwind scheme, but other choices might give more accurate schemes.307

A similar argument allows the inclusion of relabelling terms in the entropy equation308

Diηi

Dt
=

1
σiρi

[
∑
j 6=i

{
Mi j(η̂i j−ηi)−M ji(η̂ ji−ηi)

}
−∇.Fηi

SF

]
. (47)

This formulation clearly conserves the total entropy. The simple choice η̂ ji = ηi is possible,309

leading to some simplification, but other choices might give more accurate results.310

As noted in section 2, it is possible to work with some function of entropy rather than entropy311

itself. If the fluid is a perfect gas and moisture can be neglected then there are two advantages312

to working with potential temperature θ rather than η . First note that the conditionally filtered313

potential temperature equation, including relabelling terms, would be314

Diθi

Dt
=

1
σiρi

[
∑
j 6=i

{
Mi j(θ̂i j−θi)−M ji(θ̂ ji−θi)

}
−∇.Fθi

SF

]
. (48)

This formulation would conserve the density-weighted potential temperature, rather than entropy.315

In this case it is appealing to write the equation of state in the form316

(
p
p0

)(1−κ)

=
R
p0

ρθ , (49)
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where p0 is a constant reference pressure, R is the gas constant for dry air, and κ = R/Cp with Cp317

the specific heat capacity at constant pressure. Multiplying by Ii and applying the filter then gives318 (
p
p0

)(1−κ)

=
R
p0

ρiθi +Pi
SF. (50)

If the subfilter-scale terms are negligible then multiplying by σi and summing over fluid compo-319

nents gives320 (
p
p0

)(1−κ)

=
R
p0

∑
i

σiρiθi =
R
p0

ρθ . (51)

Since the relabelling terms in (48) would preserve the right hand side of (51), they would therefore321

preserve p. Thus, relabelling terms should not introduce any pressure fluctuations that could322

generate acoustic waves and cause numerical problems.323

A closely related point is that the internal energy density of the ith fluid component (neglecting324

subfilter-scale contributions) CvρiTi = (Cv/R)p (where Cv = Cp−R is the specific heat capacity325

at constant volume) is a function only of p, and so would also be preserved by the relabelling326

terms in (48). Thus the total internal energy density ∑iCvσiρiTi would also be preserved by the327

relabelling terms.328

Finally, relabelling terms can be included in the momentum equation in an analogous way329

Diui

Dt
+

1
ρi

∇p+∇Φ =

1
σiρi

[
∑
j 6=i

{
Mi j(ûi j−ui)−M ji(û ji−ui)

}
−∇ ·Fui

SF−bi−∑
j

di j

]
. (52)

In this formulation the relabelling terms conserve momentum. On the other hand, they do not330

generally conserve the filter-scale kinetic energy; instead they imply a transfer of kinetic energy to331

(or from) the subfilter-scale. This transfer could, in principle, be diagnosed and used as a source332

for subfilter-scale kinetic energy or as a term in a diagnostic budget.333
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b. The relation between relabelling and physical processes334

In the discussion so far we have identified entrainment and detrainment with relabelling. Now,335

in the continuous equations (1)-(6), before filtering, the labels are completely passive; i.e. the336

values of Ii do not affect the solution for the other variables in any way. The labelling is purely a337

mathematical device for picking out certain regions of the fluid. On the other hand, it is normal to338

regard entrainment and detrainment as closely associated with physical processes such as mixing,339

condensation, and evaporation. The key to reconciling these two viewpoints is to recognize that, in340

order to be most useful, the choice of labelling should reflect the physical properties of the fluid.341

For example, in diagnosing entrainment rates from high-resolution simulations a critical step is342

how one defines, i.e. labels, updrafts (Couvreux et al. 2010; Yeo and Romps 2013). Consequently,343

relabelling should reflect changes in the physical properties of the fluid, which in turn will often344

be associated with source and sink terms. These ideas are explored a little more in this subsection.345

First note that there is a close relationship between relabelling and mixing. As a simple illustra-346

tive thought experiment, consider a situation in which q is uniform in fluid 1 and also in fluid 2,347

but with different values in each. Now consider relabelling some of fluid 1 as fluid 2. As a re-348

sult the mean mixing ratio in fluid 2 q2 will change. Also, there will now be some subfilter-scale349

variability of q in fluid 2; previously it was zero. In principle, if we were to keep track of the350

subfilter-scale variability, for example through budgets of variance and higher order moments,351

then the relabelling could be reversed; after all, the physical state of the system has not changed.352

However, if no attempt is made to keep track of the subfilter-scale variability then this information353

is lost; as far as a numerical model is concerned, the relabelled fluid 1 has effectively been mixed354

into fluid 2. Because of this implied mixing, in practice we will want to relabel in situations where355
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it is reasonable to assume that mixing occurs. This is exactly what is done in typical mass flux356

convection schemes for entrainment and detrainment.357

Next consider the link between source terms and relabelling. To illustrate the idea, consider the358

equation for liquid water mixing ratio (43), which includes condensation and evaporation terms.359

Introduce relabelling terms, by analogy with (46), but for simplicity neglect the subfilter-scale flux360

term, to leave361

Diq
(l)
i

Dt
=Ci−Ei (53)

+
1

σiρi

[
∑
j 6=i

{
Mi j(q̂

(l)
i j −q(l)i )−M ji(q̂

(l)
ji −q(l)i )

}]
.

At this point the mathematical operation of relabelling and the physical sources are conceptually362

distinct and correspond to different terms in the equation.363

Now suppose there are just two fluid components, and we wish to label air containing liquid364

water as fluid 2 and air without liquid water as fluid 1. In this way we impose a link between365

the mathematical labels and the physical state of the system. Since we now impose q(l)1 = 0, the366

equation for q(l)1 becomes367

0 =C1−E1 +
1

σ1ρ1

[
M12q̂(l)12 −M21q̂(l)21

]
. (54)

Thus we have a constraint relating the relabelling terms to the source terms. It would be natural368

to require that any condensation that occurs in fluid 1 will immediately result in relabelling (en-369

trainment) into fluid 2, while any relabelling of fluid containing liquid water from fluid 2 to fluid 1370

would immediately result in evaporation. In that case (54) breaks into two separate constraints:371

σ1ρ1C1 = M21q̂(l)21 , (55)

σ1ρ1E1 = M12q̂(l)12 . (56)
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These constraints ensure that the proposed labelling scheme remains consistent with the source372

and sink terms.373

5. Relation to existing approaches374

It will be useful to note how existing approaches to parameterizing the boundary layer and375

convection fit into the proposed framework. Many such schemes fit broadly into two types: local376

turbulence closures, and mass flux schemes. The example of a mass flux scheme for convection is377

perhaps the most instructive, and is discussed in some detail in section 5b. The local turbulence378

closure approach is mentioned briefly first. The EDMF approach may be considered a hybrid of379

the two, and is discussed briefly at the end of this section.380

An important detail is that atmospheric models are generally formulated to predict the evolution381

of filter-scale mean variables ρ , η
∗, q∗, u∗, with the dynamical core handling transport by u∗.382

Appendix A obtains the equations for these mean variables in the conditionally filtered framework.383

a. Local turbulence closures384

In terms of the conditionally filtered framework, local turbulence closures amount to considering385

a single fluid component, and modeling all of the boundary layer and convective fluxes through386

the subfilter-scale terms Fη

SF, Fq
SF, and Fu

SF. In this approach the calculation of the fluxes is essen-387

tially local, that is, the parameterized flux at a given point depends only on prognostic fields and388

quantities constructed from them, and their derivatives, at that point.389

The simplest such schemes include diagnostic eddy diffusivity schemes, usually applied to the390

boundary layer, in one dimension (e.g. Louis 1979) or three dimensions (e.g. Smagorinsky 1963;391

Germano et al. 1991). More sophisticated schemes attempt to diagnose or predict some higher392

order moments of the turbulent flow (e.g. Mellor and Yamada 1982). By assuming a particular393
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functional form for the subfilter-scale joint pdf of w, θ and q, for example, and predicting enough394

moments in order to fix the free parameters describing the pdf, it is possible to reconstruct all the395

other desired moments. This approach has been applied to unifying the treatment of the bound-396

ary layer, shallow convection, and even deep convection (Lappen and Randall 2001; Golaz 2002;397

Storer et al. 2015). All of these approaches correspond to making particular choices and approxi-398

mations within the proposed framework. Although the framework does not explicitly include the399

additional prognostic equations that might be needed for some higher-order turbulence closure,400

there is no barrier to including them.401

b. Reduction to a mass flux scheme402

It is instructive to see how a typical mass flux scheme can be obtained by making systematic403

approximations within the conditional filtering framework. The approximations are all familiar404

from the literature on convection parameterization. Since the purpose here is to illustrate how the405

argument goes, we neglect sources of entropy and water and consider only a very simple mass flux406

scheme.407

We begin by noting that mass flux schemes are often based on budgets of moist static energy408

rather than entropy. The moist static energy budget in turn is often broken down into separate bud-409

gets for dry static energy and for water vapor and condensed water with corresponding source and410

sink terms (e.g. Arakawa and Schubert 1974; Tiedtke 1989). Moist static energy is only approxi-411

mately conserved, both materially and in an integral sense (e.g. Romps 2015), so an approximation412

is involved in using its budget. Other mass flux schemes work in terms of entropy or related quan-413

tities, and the budget may be broken down into separate budgets for potential temperature and414

moisture quantities (e.g. Gregory and Rowntree 1990; Siebesma et al. 2007). In this section we415
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will use the entropy budget as it is the simplest for the purpose of illustration. The formulation in416

terms of conserved moist static energy is analgous.417

A typical mass flux scheme comprises three components: (i) convective source terms for the418

large-scale budget equations, which depend on the vertical profiles of properties within the cloud;419

(ii) a cloud model that determines the vertical profiles of cloud properties such as mass flux,420

entropy, and water content, given their values at cloud base; (iii) some trigger and closure assump-421

tions that determine whether convection occurs and the cloud base properties if it does. In this422

section we note how the large-scale budgets and cloud model for a typical mass flux scheme can423

be systematically derived from the conditionally filtered equations by making certain approxima-424

tions. Triggering and closure will not be discussed; as noted above, these remain difficult open425

research questions. We will consider the simplest possible situation with just two fluid compo-426

nents, i = 2 being the convecting fluid and i = 1 being the environment.427

The budgets for the filter-scale mean entropy and total moisture are given by (A8), (A6). We428

neglect the Fηi
SF and Fqi

SF terms. Such terms are not usually included in mass flux convection429

schemes. They are typically accounted for by other parameterizations such as the boundary layer430

scheme, or by a combined scheme such as EDMF (e.g. Siebesma et al. 2007). Also, horizontal431

contributions to the flux divergence on the right hand side of (A8) and (A6) are neglected. This432

leaves433

ρ
Dη
∗

Dt
=− ∂

∂ z
Fη

CF, (57)

434

ρ
Dq∗

Dt
=− ∂

∂ z
Fq

CF, (58)

where435

Fη

CF = σ1ρ1w1η1 +σ2ρ2w2η2−ρw∗η∗ (59)
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and436

Fq
CF = σ1ρ1w1q1 +σ2ρ2w2q2−ρw∗q∗. (60)

Next, if we assume that σ2 � 1 then η1 ≈ η
∗ and q1 ≈ q∗. Then, using (A2), (59) and (60)437

simplify to438

Fη

CF = σ2ρ2w2(η2−η
∗) = M(η2−η

∗) (61)

and439

Fq
CF = σ2ρ2w2(q2−q∗) = M(q2−q∗), (62)

where M = σ2ρ2w2 is the vertical mass flux in the convecting fluid.440

Equations (57) and (58), together with (61) and (62), specify the convective source terms for441

the large-scale thermodynamic variables in terms of the profiles of M, η2, and q2. The simplest442

convection schemes neglect the effect of convection on the large-scale momentum budget, and for443

simplicity we will do the same here.444

The cloud model is obtained by approximating the conditionally filtered equations for fluid 2.445

First Consider the mass budget (44). Assume that σ2ρ2 is steady and neglect horizontal transport446

in fluid 2 to obtain447

∂M
∂ z

= E−D, (63)

where E = M21 is the entrainment rate, and D = M12 is the detrainment rate. If desired, the448

entrainment and detrainment may be expressed as fractional entrainment rates per unit height:449

E = εM, D = δM.450

For the cloud water budget, in (45) assume that σ2ρ2q2 is steady, i.e. neglect storage of water in451

the cloud. Also neglect horizontal transport of water by the cloud, and neglect the Fqi
SF term, which452

represents transport of water by sub-cloud variability. The water budget then reduces to453

∂

∂ z
(Mq2) = Eq̂21−Dq̂12. (64)
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Next assume that the specific humidity in entrained air is equal to the mean environmental value454

q̂21 = q1, while the specific humidity in detrained air is equal to the mean cloud value q̂12 = q2, so455

that (64) simplifies to456

∂

∂ z
(Mq2) = Eq1−Dq2. (65)

An alternative form is obtained by subtracting q2 times (63):457

M
∂q2

∂ z
= E(q1−q2). (66)

In a similar way, by making analogous approximations, the cloud entropy budget may be written458

∂

∂ z
(Mη2) = Eη1−Dη2 (67)

or459

M
∂η2

∂ z
= E(η1−η2). (68)

Given cloud base values of M, q2, and η2, and vertical profiles of E and D (or ε and δ ), equa-460

tions (63), (65), and (67) may be integrated to obtain vertical profiles of M, q2, and η2.461

Values of cloud buoyancy will be needed to determine whether convection occurs. They will462

also be needed if a zero buoyancy condition is used to determine cloud top, if entrainment or463

detrainment are assumed to depend on buoyancy, or if an equation for cloud vertical velocity is to464

be solved. Consider the vertical momentum budget for fluid 2, i.e. the vertical component of (52):465

D2w2

Dt
+

1
ρ2

∂ p
∂ z

+
∂Φ

∂ z
=

1
σ2ρ2

[
M21(ŵ21−w2)−M12(ŵ12−w2)

− ∂

∂ z
Fw2

SF −b2−d21

]
. (69)

Here b2 and d21 are the vertical components of b2 and d21. The second and third terms on the left466

hand side together represent the negative of the buoyancy. They may be written in a more familiar467
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form by assuming that the filter-scale mean state is in hydrostatic balance468

1
ρ

∂ p
∂ z

+
∂Φ

∂ z
= 0, (70)

so that469

B =− 1
ρ2

∂ p
∂ z
− ∂Φ

∂ z
=−∂Φ

∂ z

(
ρ2−ρ

ρ2

)
. (71)

In a typical mass flux scheme ρ2 is not calculated directly. However, B can be diagnosed from the470

vertical profiles of thermodynamic properties of the cloud and its environment, together with the471

usual parcel assumption that the pressures in the cloud and the environment are equal.472

Some mass flux schemes solve an equation for vertical velocity in the updraft. This is useful,473

for example, if the vanishing of the vertical velocity is used to define the top of the updraft (e.g.474

Siebesma et al. 2007), or E and D are assumed to depend on updraft vertical velocity (e.g. Rio475

et al. 2010). Assuming w2 to be steady and neglecting horizontal transport of w2 and transport by476

subfilter-scale variations, (69) becomes477

w2
∂w2

∂ z
= B+

1
σ2ρ2

[E(ŵ21−w2)−D(ŵ12−w2)

−b2−d21] . (72)

This is typically simplified further by assuming ŵ21 = w1 ≈ 0 and ŵ12 = w2 to give478

∂

∂ z

(
w2

2
2

)
= B− 1

σ2ρ2
[Ew2 +b2 +d21] . (73)

However, there is evidence that this assumption is a not a good approximation (e.g. Sherwood et al.479

2013), and some schemes account for other values of ŵ21 and ŵ12 by using (73) with a modified480

value of E for the entrainment of w (e.g. Siebesma et al. 2007). A variety of schemes have been481

proposed for parameterizing the pressure drag terms b2 +d21.482

All of the assumptions and approximations made above are standard ones that can be found in483

the literature on parameterization of convection. Recent develpments have attemped to relax some484
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of these approximations. For example, Gerard et al. (2009); Arakawa and Wu (2013); Grell and485

Freitas (2014) attempt to remove the assumption that the volume fraction of convecting fluid is486

small. Kain (2004); Plant and Craig (2008); Gerard et al. (2009); Grandpeix and Lafore (2010)487

include some elements of memory about the state of convection or boundary layer cold pools re-488

sulting from convective downdrafts, thereby relaxing the steadiness assumption. Vertical transport489

of horizontal momentum, both by advection and via pressure fluctuations (the bi and di j terms),490

may be taken into account (e.g. Kim et al. 2008), representing ‘cumulus friction’.491

c. Eddy Diffusivity Mass Flux schemes492

EDMF schemes have been proposed to parameterize the local and nonlocal transports in the493

convective boundary layer, as well as transitions between the shallow cumulus, stratocumulus,494

and dry convective boundary layer. The net transport is decomposed into a local turbulent contri-495

bution modelled as an eddy diffusivity and a nonlocal contribution modelled using the mass flux496

approach. Thus, it combines the approaches discussed in sections 5a and 5b above, and it nicely497

illustrates how such hybrid approaches can be accommodated in the proposed framework. The498

dry convective boundary layer scheme of Siebesma et al. (2007) would correspond to using two499

fluid components, one to represent updraft and one to represent the rest of the fluid. The extended500

scheme of Neggers et al. (2009) would correspond to using three fluid components, one for dry501

updrafts, one for moist updrafts, and one for the rest of the fluid. In both cases subfilter-scale flux502

terms Fθi
SF, Fqi

SF, etc., could be included in one or more components to represent the eddy diffusive503

fluxes.504
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6. Multi-fluid schemes505

One of our motivations for introducing the above framework is to provide a derivation of the506

multi-fluid equations (44), (46), (47), (52), along with (38), in preparation for exploring their po-507

tential for representing convection in atmospheric models. The multi-fluid approach, like mass508

flux schemes, represents environment, updrafts, downdrafts, etc., by different fluid components.509

It could be simplified by neglecting the subfilter-scale fluxes Fηi
SF and Fui

SF and the pressure terms510

bi and di j. But crucially, unlike traditional mass flux schemes, it retains the full material deriva-511

tive Di/Dt for all fluid components. Hence it provides a natural and physically sound basis for512

representing some dynamical memory about the state of convection.513

A particularly attractive possibility for solving the multi-fluid equations in a numerical model514

is to allow the dynamical core to represent the filter-scale terms (i.e. the left hand sides) in the515

equations for all fluid components. Parameterizations of entrainment/detrainment terms Mi j and516

subfilter-scale fluxes FSF would still be needed; these could be based on exisiting approaches to517

modeling these terms. However, the main burden of handling the convective dynamics would be518

shifted to the dynamical core.2 We believe this approach has the potential to improve the model519

representation of the coupling between convection and the larger-scale circulation. First, it would520

help to ensure the consistency of the governing equations used throughout the model. Second,521

it would allow the dynamical core to control the location of the subsidence compensating con-522

vective mass flux, rather than a parameterized contribution being imposed in the convecting grid523

column. Third, it would allow information about the state of convection to be transported by the524

dynamical core to neighboring grid columns. Finally, with a suitably scale aware formulation of525

the parameterized terms, such an approach should work both at grid resolutions where convection526

2On a philosophical note, this would shift the established—but artificial—boundary between ‘dynamics’ and ‘physics’.
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is usually parameterized and at convection-resolving resolutions, and may even be able to work at527

intermediate gray zone resolutions.528

The difficulty of parameterizing convection, and the potential benefits of using a more funda-529

mental equation set with fewer approximations, has been used as a justification for the ‘superpa-530

rameterization’ approach to convection (Grabowski and Smolarkiewicz 1999; Randall et al. 2003),531

and is summarized in the epithet ‘the equations know more about convection than we do’. The ep-532

ithet might also be applied to the multi-fluid approach, since it attempts to solve a more complete533

and fundamental equation set than is usually done in conventional parameterizations.534

The derivation of section 2 was constructed in such a way that the same mean pressure gra-535

dient ∇p appears in the momentum equations for all fluid components. This feature becomes536

important when considering the multi-fluid equations, and particularly their numerical solution. If537

different fluid components were permitted to have different pressures pi then this would permit538

the equations to support subfilter-scale acoustic modes with the entire cloud field in synchronized539

oscillation. Besides being manifestly unphysical, such modes would likely be difficult to handle540

numerically. The use of a single pressure field in all the component momentum equations can be541

considered a type of filter that removes such acoustic modes. Note, however, that the different fluid542

components are not required to have the same density. Since buoyancy can be expressed entirely543

in terms of the densities of a fluid parcel and its environment together with gravity (e.g. Holton544

2004; Vallis 2017, see also equation (71) above), the use of a single pressure field does not prevent545

buoyancy effects from being explicitly represented. On the other hand, rising thermals do not in546

general experience the same pressure gradient as their environment. For example, pressure pertur-547

bations above and below a thermal can provide an effective drag (e.g. Romps and Charn 2015).548

Such small-scale pressure perturbations are included in the conditional filtering framework, but549

appear in the bi and di j terms, which must be parameterized.550
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Another advantage of using a single mean pressure field arises when considering numerical solu-551

tions. For example, a semi-implicit semi-Lagrangian solution scheme for the multi-fluid equations552

may be written down, by analogy with the ENDGame scheme used operationally at the Met Of-553

fice (Wood et al. 2014). Seeking an iterative solution method and eliminating unknowns leads to554

a Helmholtz problem for (increments to) the single pressure field that has the same form as that555

in ENDGame itself. Such a straightforward scheme would not be expected if different pi were556

allowed.557

It is important to check that the derivation in section 2 provides the right number of equations558

to determine all the unknowns; in particular we need to be able to determine both σi and ρi even559

though there is a prognostic equation only for the combined quantity σiρi. Counting the velocity560

vector as three components, we have 7n+1 unknown fields: σi, ρi, ηi, qi, ui, and p. We also have561

7n+ 1 equations: (16), (25), (26), (37), (5), and ∑i σi = 1. How the equations determine σi and562

ρi is most transparent for a perfect gas equation of state. The middle expression in (51) may be563

evaluated from directly predicted quantities σiρi and θi, giving p. Then (50) determines ρi, and564

finally σi = σiρi/ρi. It is noteworthy that the different fluid components are coupled by the ∇p565

term even in the case Mi j = 0.566

One variant of the multi-fluid scheme makes the approximation that the horizontal velocities567

vi of all fluid components are equal. This amounts to assuming that the horizontal components568

of di j are just what is required to maintain that equality of the vi. Since the vi are equal, vi =569

(∑i σiρivi)/ρ = v∗. The prognostic equation for vi is then just the horizontal component of (A9):570

ρ
Dv∗

Dt
+∇H p+ρ∇HΦ =−∑

i
∇ ·Fvi

SF, (74)

where ∇H is the horizontal gradient operator, Fvi
SF are the subfilter-scale fluxes of horizontal mo-571

mentum, and the Fv
CF contribution vanishes because of the equality of the vi. There might be some572
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computational benefit from making this approximation. On the other hand, there might be some573

benefit in modeling the vertical flux of horizontal momentum by retaining separate vi for each574

component, for example near squall lines or frontal convection. It would be valuable to explore575

this trade-off.576

We have begun to explore the potential of the multi-fluid approach theoretically and numerically.577

In the absence of entrainment/detrainment terms and subfilter-scale terms we have shown that578

the multi-fluid equations have a Hamiltonian formulation, and that the two-fluid system has a579

physically reasonable set of linear normal modes, providing some confidence in their physical580

soundness. We also have some preliminary results from a Boussinesq two-fluid model and from581

a single-column two-fluid model of the dry convective boundary layer, confirming that the system582

is amenable to numerical solution. These developments will be reported elsewhere.583

Ideas closely related to the multi-fluid approach have appeared previously several times in the584

literature. Libby (1975) and Dopazo (1977) derived conditionally averaged equations for incom-585

pressible flow, using labels to pick out turbulent and non-turbulent regions of the fluid. Equations586

closely resembling the multi-fluid equations are used in engineering applications to model two-587

phase flows such as particle-laden flow, bubbly liquids, and combustion of fuel droplets (e.g.588

Weller 2005; Städtke 2006). The applications include disperse flows, in which the changes of589

phase occur on unresolved scales (e.g. Drew 1983; Lance and Bataille 1991; Jackson 1997; Zhang590

and Prosperetti 1997; Rafique et al. 2004), and flows in which the interface between two phases591

is resolved but modeled as a thin region of mixed phase (e.g. Abgrall and Karni 2001; Allaire592

et al. 2002; Garrick et al. 2017). These two regimes are analogous to the regimes of subfilter-scale593

convection and resolved convection, which our proposed approach is intended to represent.594

Application of similar ideas to convective flows go back at least as far as Cushman-Roisin595

(1982), who proposed to describe dry convection in terms of ‘thermals’ and ‘antithermals’ with596
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separate dynamical equations for each. In relation to the meteorological literature, there are a597

number of similarities between our proposed framework and the work of Yano et al. (2010); Yano598

(2012, 2014, 2016). He too proposes to decompose the flow into a number of components each oc-599

cupying distinct regions, with separate dynamical equations for each component. However, there600

are some important differences too. Yano (2012) restricts attention to the hydrostatic primitive601

equations. He makes the segmentally constant approximation in which fluid properties within602

each component are assumed constant within a grid cell; he thus omits terms corresponding to603

our subfilter-scale fluxes. As a result of other approximations, the equations for the different fluid604

components fully decouple from each other in the absence of entrainment and detrainment; this605

is in contrast to (37) above, in which the fluid components remain coupled through the common606

∇p term and the requirement for ∑i σi = 1. Yano et al. (2010); Yano (2014, 2016) also make the607

segmentally constant approximation, but now the underlying equation set is the nonhydrostatic608

anelastic equations. Again the flow is decomposed into a number of components with the aid609

of labels analogous to our Ii. Yano (2014) and Yano (2016) focus on the transport equation and610

on the conceptual aspects of the approach. Yano et al. (2010) develop the approach into a two-611

dimensional vertical slice model and apply it to simulation of dry convection. To do this they must612

numerically solve a Poisson equation for the pressure at each time step. Thus their implementation613

resembles an adaptive mesh refinement method rather than a typical parameterization.614

Finally, the work of Kuell et al. (2007); Kuell and Bott (2008) should be mentioned. They allow615

the dynamical core to handle the environmental subsidence that compensates the net convective616

mass flux due to updrafts and downdrafts. The parameterization itself handles the convective617

updrafts and downdrafts and hence determines mass sink and source terms for the dynamical core.618

These mass source and sink terms correspond to the Mi j terms discussed in section 4 above.619
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7. Summary and discussion620

We have derived conditionally filtered versions of the compressible Euler equations. The condi-621

tionally filtered equations provide a framework for the parameterization of subgrid-scale processes622

such as convection and boundary layer fluxes in atmospheric models. We have shown how several623

existing approaches to parameterization fit within the framework. It has the benefit of accom-624

modating both local turbulence approaches and mass-flux approaches in a very natural way. It625

provides a natural way to distinguish between local and nonlocal transport processes, and makes626

a clearer conceptual link to schemes based on coherent structures such as convective plumes or627

thermals than the traditional unconditional filtering approach. It is hoped that the framework will628

facilitate the unification of different approaches to parameterization by highlighting the different629

approximations made, and helping to ensure consistency such as the avoidance of double counting.630

A major motivation for developing this framework is that it can accommodate various extensions631

to current approaches to parameterization, such as the inclusion of additional prognostic variables.632

In particular, it indicates how one could allow the dynamical core to handle the dynamics of633

convection; this multi-fluid approach has the potential to improve coupling between convection634

and large-scale dynamics in several ways (section 6), and we have begun to explore this possibility.635

A closely related point is that, in the proposed framework, the dynamics is expressed through636

a set of partial differential equations, to which standard numerical methods can be applied, sup-637

plemented by some subfilter-scale fluxes and relabelling terms that must be parameterized. In638

contrast, most convection parameterization schemes are not expressed as partial differential equa-639

tions (Cullen et al. 2001; Arakawa and Wu 2013), and they typically involve a variety of ad hoc640

switches to which the model behaviour may be very sensitive (Jakob and Siebesma 2003). Thus,641
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for a typical climate model, convergence with increasing resolution (if obtained at all) must be642

interpreted with considerable caution (Williamson 2008).643

Finally it should be emphasized that what we have derived is no more than a framework. It does644

not specify how the subfilter-scale fluxes or the relabelling terms are to be modeled. These remain645

very challenging problems in atmospheric modeling, though existing approaches will provide a646

very useful starting point. Moreover, the framework does not specify how many fluid components647

are to be used or how they are to be chosen. More components will lead to greater computational648

cost, particularly if the dynamics of all components is to be handled by the dynamical core, as649

suggested in section 6. There is clearly great scope for optimizing this choice, and again existing650

approaches should provide a useful starting point.651
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APPENDIX656

Atmospheric models are generally formulated such that the dynamical core integrates prognostic657

equations for unconditionally filtered variables. It will therefore be useful to note how these prog-658

nostic equations arise in the proposed framework. First define a density-weighted filter operation659

by660

ρX∗ ≡ ρX , (A1)

and note a useful identity661

ρX∗ = ρX = ∑
i

IiρX = ∑
i

σiρiXi. (A2)
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Summing (44) over i and noting the cancellation of the Mi j gives662

∂ρ

∂ t
+∇ · (ρ u∗) = 0. (A3)

This is exactly what we would obtain by directly applying the filter to the original density equa-663

tion (1).664

Summing (45) over i and again noting the cancellation of the Mi j gives665

∂

∂ t
(ρq∗)+∇ · (ρ u∗q∗) =−∇ ·

(
∑

i
Fqi

SF +Fq
CF

)
, (A4)

where666

Fq
CF = ∑

i
σiρiuiqi−ρ u∗q∗. (A5)

The advective form of the moisture equation is then obtained by subtracting q∗ times (A3) to obtain667

Dq∗

Dt
=− 1

ρ
∇ ·

(
∑

i
Fqi

SF +Fq
CF

)
, (A6)

where668

D
Dt
≡ ∂

∂ t
+u∗ ·∇ (A7)

is the ‘material’ derivative following the density-weighted mean flow. This equation agrees with669

what we would obtain by directly applying the filter to the flux form of the original moisture670

equation (3), but note how the subfilter-scale flux has been decomposed into contributions from671

the variations of properties within each fluid component Fqi
SF plus a contribution from the variations672

of properties between fluid components picked out by the conditional filtering Fq
CF.673

In an exactly analogous way we obtain an evolution equation for the filter-scale mean entropy674

Dη
∗

Dt
=− 1

ρ
∇ ·

(
∑

i
Fηi

SF +Fη

CF

)
, (A8)

An evolution equation for the filter-scale mean velocity is obtained by converting the fluid com-675

ponent momentum equation (52) to flux form, summing over i, and converting back to advective676
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form:677

Du∗

Dt
+

1
ρ

∇p+∇Φ =− 1
ρ

∇ ·

(
∑

i
Fui

SF +Fu
CF

)
. (A9)

Here we have used the antisymmetry of di j and the fact that ∑i bi = 0.678
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FIG. 1. Schematic horizontal section showing a decomposition of the fluid into multiple components, for

example updrafts (orange), downdrafts (blue), and environment (green). In each component one of the Ii is

equal to 1 and the others are equal to 0.
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