
Replacement of dietary saturated fat with 
unsaturated fats increases numbers of 
circulating endothelial progenitor cells and
decreases number of microparticles: 
findings from the randomized, controlled 
DIVAS study 
Article 

Accepted Version 

Weech, M. ORCID: https://orcid.org/0000-0003-1738-877X, 
Altowaijri, H., Mayneris-Perxachs, J., Vafeiadou, K., Madden, 
J., Todd, S. ORCID: https://orcid.org/0000-0002-9981-923X, 
Jackson, K. G. ORCID: https://orcid.org/0000-0002-0070-
3203, Lovegrove, J. A. ORCID: https://orcid.org/0000-0001-
7633-9455 and Yaqoob, P. ORCID: https://orcid.org/0000-
0002-6716-7599 (2018) Replacement of dietary saturated fat 
with unsaturated fats increases numbers of circulating 
endothelial progenitor cells and decreases number of 
microparticles: findings from the randomized, controlled DIVAS
study. American Journal of Clinical Nutrition, 107 (6). pp. 876-
882. ISSN 0002-9165 doi: https://doi.org/10.1093/ajcn/nqy018 
Available at https://centaur.reading.ac.uk/75013/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


To link to this article DOI: http://dx.doi.org/10.1093/ajcn/nqy018 

Publisher: American Society for Nutrition 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


 1 

Replacement of dietary saturated fat with unsaturated fats increases numbers of circulating 

endothelial progenitor cells and decreases numbers of microparticles: findings from the 

randomised, controlled DIVAS study1,2,3,4 

 

Michelle Weech, Hana Altowaijri, Jordi Mayneris-Perxachs, Katerina Vafeiadou, Jacqueline 

Madden, Susan Todd, Kim G. Jackson, Julie A. Lovegrove, Parveen Yaqoob 

 

1Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and 

Institute for Cardiovascular and Metabolic Research (MW, HA, J M-P, KV, JM, KGJ, JAL, PY) 

and Department of Mathematics and Statistics (ST), University of Reading, Whiteknights, 

Reading, UK 

 

Weech, Altowaijri, Mayneris-Perxachs, Vafeiadou, Madden, Todd, Jackson, Lovegrove, Yaqoob 

 

2Disclaimers: JAL is a member of the UK Scientific Advisory Committee on Nutrition (SACN) 

and the SACN sub-committee for ‘Saturated fat and Healthy’, she also chairs the ILSI committee 

on saturated fats and cardiovascular disease.  

 

3Corresponding author: Professor Parveen Yaqoob, Department of Food & Nutritional 

Sciences, University of Reading, Whiteknights PO Box 226, Reading, RG6 6AP, UK. Telephone: 

+44(0)118 3788720; Email: P.Yaqoob@reading.ac.uk 

 

4Sources of Support: Funded by the United Kingdom Food Standards Agency and Department 

of Health Policy Research Programme (024/0036). Unilever R&D produced and supplied in kind 



 2 

the study spreads and oils according to our specification, but was not involved in the design, 
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Abstract 1 

Background 2 

Endothelial progenitor cells (EPC) and microparticles (MP) are emerging novel markers of 3 

cardiovascular disease (CVD) risk, which could potentially be modified by dietary fat. We have 4 

previously shown that replacing dietary saturated fat (SFA) with monounsaturated (MUFA) or n-5 

6 polyunsaturated fat (PUFA) improved lipid biomarkers, blood pressure and markers of 6 

endothelial activation, but their effects on circulating EPCs and MPs are unclear. 7 

Objective 8 

The Dietary Intervention and VAScular function (DIVAS) study investigated the replacement of 9 

9.5-9.6% total energy (%TE) SFA with MUFA or n-6 PUFA for 16 weeks on EPC and MP 10 

numbers in UK adults with moderate CVD risk. 11 

Design 12 

In this randomized, controlled, single-blind, parallel group dietary intervention, men and women 13 

aged 21-60 y (n=190) with moderate CVD risk (≥50% above the population mean) consumed one 14 

of three 16-week isoenergetic diets. Target compositions for total fat, SFA, MUFA and n-6 15 

PUFA (%TE) were: SFA-rich diet (36:17:11:4, n=64), MUFA-rich diet (36:9:19:4, n=62) and n-6 16 

PUFA-rich diet (36:9:13:10, n=66). Circulating EPC, endothelial MP (EMP) and platelet MP 17 

(PMP) numbers were analysed by flow cytometry. Dietary intake, vascular function and other 18 

cardio-metabolic risk factors were determined at baseline.  19 

Results 20 

Relative to the SFA-rich diet, MUFA and n-6 PUFA-rich diets decreased EMP (-47.3%, -44.9%) 21 

and PMP numbers (-36.8%, -39.1%) (overall diet effects P<0.01). The MUFA-rich diet increased 22 

EPC numbers (+28.4%; P=0.023). Additional analyses using stepwise regression models 23 
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identified the augmentation index (measuring arterial stiffness determined by pulse wave 24 

analysis) as an independent predictor of baseline EPC and MP numbers.     25 

Conclusions 26 

Replacing 9.5-9.6%TE dietary SFA with MUFA increased EPC numbers and replacement with 27 

either MUFA or n-6 PUFA decreased MP numbers, suggesting beneficial effects on endothelial 28 

repair and maintenance. Further studies are warranted to determine the mechanisms underlying 29 

the favourable effects on EPC and MP numbers following SFA replacement.  30 

 31 

Keywords: Endothelial progenitor cells, Microparticles, Saturated fat, Monounsaturated fat, 32 

Polyunsaturated fat  33 
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Introduction 34 

Endothelial dysfunction occurs when the balance between endothelial injury and repair is 35 

disrupted (1). Microparticles (MP) are small (0.1-1µm) cell-derived vesicles released from the 36 

surface of many cell types, including endothelial cells and platelets, during apoptosis or 37 

activation, which may occur during endothelial injury. There is growing evidence for their use as 38 

diagnostic biomarkers for cardiovascular diseases (CVD) and their potential as pharmacological 39 

targets (2). Although present in healthy subjects, MP numbers are elevated in individuals with 40 

CVD and associated risk factors (2, 3), and addition of endothelial MP (EMP) numbers to the 41 

Framingham risk score model improves its prediction power of future CVD events (4). The 42 

impact of dietary and lifestyle factors on MP numbers is unclear. High fat meals acutely increase 43 

numbers of MP (5, 6), particularly when containing SFA and thermally-oxidised PUFA (7), 44 

supporting the well-accepted relationship between postprandial lipemia and endothelial activation 45 

(8). Very few studies have examined the chronic effects of dietary fat composition on MP 46 

numbers; we recently demonstrated decreased numbers of EMP, but not platelet microparticles 47 

(PMP), following fish oil supplementation (9).  48 

While MP are associated with endothelial injury, circulating bone marrow-derived 49 

endothelial progenitor cells (EPC) home to sites of endothelial injury where they induce 50 

neovascularization (10), potentially playing an important role in preserving the structural and 51 

functional integrity of the endothelium. Reduced EPC numbers and function are associated with 52 

CVD risk factors, including hypertension and hypercholesterolemia, and there is interest in the 53 

potential role of EPC as prognostic and/or diagnostic markers of CVD. However, clear data 54 

regarding the influence of dietary fat quality on the balance between endothelial injury and repair 55 

is limited. 56 
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Reduction of SFA intake to ≤10% of total energy (%TE) is a key public health strategy to 57 

reduce CVD risk (11). Replacing SFA with unsaturated fat, rather than carbohydrate, may afford 58 

greater CVD risk reduction (12, 13), yet it is not clear whether MUFA or n-6 PUFA have 59 

comparable effects on risk reduction or on emerging cellular markers of CVD risk (14). We 60 

recently demonstrated in the Dietary Intervention and VAScular function (DIVAS) study that 61 

substituting 9.5-9.6 %TE dietary SFA with either MUFA or n-6 PUFA did not significantly affect 62 

flow-mediated dilatation (FMD; primary outcome), but there were beneficial effects on lipid 63 

biomarkers, blood pressure and circulating E-selectin (15). Since the modification of dietary fat 64 

intake affects cellular markers of vascular function in the absence of alterations in FMD and 65 

previous studies suggest an impact of dietary fat composition on EPC numbers, this article 66 

presents additional outcome measures from the DIVAS study exploring the effect of substituting 67 

SFA with MUFA or n-6 PUFA on circulating EPC and MP numbers in subjects with moderate 68 

CVD risk. Multiple regression analyses also determined which dietary and CVD risk factors 69 

influence numbers of EPC and MP at baseline.   70 
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Methods 71 

Study participants and design 72 

The protocol for the DIVAS study has been described in full by Vafeiadou et al. (15). In 73 

summary, the study was a single-blind, randomized controlled parallel group study 74 

(NCT01478958) conducted according to the guidelines laid down in the Declaration of Helsinki. 75 

A favourable ethical opinion for conduct was given by the West Berkshire Local Research Ethics 76 

Committee (09/H0505/56) and the University of Reading Research Ethics committee (project 77 

number 09/40). Subjects provided written informed consent before participating. Non-smoking 78 

males and females aged 21-60 y with moderate CVD risk were recruited from Reading and the 79 

surrounding area in three cohorts between November 2009 and June 2012. A scoring tool 80 

described by Weech et al. identified individuals with a moderate risk of developing CVD (≥50% 81 

above the population mean) (16). Further inclusion criteria included normal blood biochemistry 82 

for liver and kidney function, not taking dietary supplements, not taking medication for 83 

hypertension, hypercholesterolemia, hyperlipidemia or inflammatory disorders, had not suffered 84 

from a myocardial infarction or stroke during the past 12 months or been diagnosed with 85 

diabetes, not pregnant or lactating, not consuming excessive amounts of alcohol (≤21 units for 86 

males and ≤14 units for females) and not participating in excessive amounts of aerobic exercise 87 

(≤3 x 20 min per week).  88 

 89 

Dietary intervention 90 

The food-exchange model for the dietary intervention has been described by Weech et al. (16). In 91 

brief, participants (n=202) were randomized (using minimization to match for age, gender, BMI 92 

and CVD risk score) to one of three 16 week intervention diets that aimed to replace 8%TE SFA 93 

with MUFA or n-6 PUFA. The target fatty acid compositions (as %TE) were as follows: SFA-94 
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rich diet (17% SFA, 11% MUFA and 4% n-6 PUFA); MUFA-rich diet (9% SFA, 19% MUFA 95 

and 4% n-6 PUFA); or n-6 PUFA-rich diet (9% SFA, 13% MUFA and 10% n-6 PUFA). All three 96 

isoenergetic diets provided 36%TE total fat, and n-3 PUFA, protein and carbohydrate were 97 

unchanged. The main sources of fats in the intervention diets were butter (SFA), refined olive oil 98 

and olive oil/rapeseed oil blended spread (MUFA) and safflower oil and spread (n-6 PUFA). 99 

Subjects were blinded to the diet allocation. Dietary intakes were determined from four day 100 

weighed diet diaries completed at baseline (week 0) and during the intervention (weeks 8 and 16), 101 

which were analyzed using Dietplan 6.6 (Foresfield, Horsham, UK). Following the intervention, 102 

target intakes were met or exceeded, and a greater replacement of SFA for MUFA (9.5%TE) and 103 

n-6 PUFA (9.6%TE) was achieved (16). For simplicity, the SFA-rich, MUFA-rich and n-6 104 

PUFA-rich diets will be referred to as the SFA, MUFA and n-6 PUFA diets going forward.    105 

 106 

Clinical and Biochemical analyses  107 

As described in full by Vafeiadou et al. (15), volunteers attended the Hugh Sinclair Unit of 108 

Human Nutrition (University of Reading, UK) at baseline (visit 1) and week 16 (visit 2) 109 

following an overnight fast. At each visit, non-invasive measurements of vascular function were 110 

performed: FMD (primary outcome), laser Doppler imaging with iontophoresis, pulse wave 111 

velocity, pulse wave analysis (determining the augmentation index (AIx)), and digital volume 112 

pulse (determining the stiffness and reflection indexes). 24 h ambulatory blood pressure and 113 

anthropometric measurements were also recorded. Fasting serum lipids, glucose and C-reactive 114 

protein (CRP) were analyzed using an ILAB600 clinical chemistry analyzer (Werfen UK Ltd, 115 

Warrington, UK). Insulin resistance was determined using HOMA-IR (17), and 10 y CVD risk 116 

was estimated using the validated QRISK®2-2013 CVD risk calculator (http://qrisk.org) (18). 117 

Plasma insulin and circulating markers of endothelial activation and inflammation (intercellular 118 
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adhesion molecule-1, vascular cell adhesion molecule-1, IL-6, TNFα, sE-selectin, sP-selectin, 119 

and von Willebrand Factor) were analyzed by commercial ELISA kits, plasma nitric oxide by 120 

chemiluminescence (15), and plasma phospholipid fatty acid composition by gas chromatography 121 

(16). Results for these outcome measures in response to the dietary intervention have been 122 

discussed previously (15, 16) and will not be presented again here. 123 

Enumeration of EPC, EMP and PMP 124 

EPC, EMP and PMP were analyzed by flow cytometry as previously described (9). CD34+KDR+ 125 

cells were defined as EPC and expressed as number of cells/mL of blood. EMP were defined as 126 

CD31+CD42b- particles and PMP as CD31+CD42b+ particles, both reported as counts/µL of 127 

blood.   128 

Statistical analysis 129 

The sample size was powered on the basis of a 2% (SD 2.3%) intergroup difference in %FMD, 130 

which was the primary outcome as reported in (15), with a 5% significance level and power of 131 

90%. At this level of power, 171 participants were required (n=57 per group), which increased to 132 

228 to include a 25% dropout rate (n=76 per group). This article reports further secondary 133 

outcomes of the DIVAS study (EPC and MP). For continuous variables, suitable checks of 134 

normality were implemented as appropriate. Differences between the diet groups at baseline were 135 

determined using one-way ANOVA and Chi-squared tests (gender). The General Linear Model 136 

was used to analyze the change from baseline (V2-V1) for EPC, EMP, and PMP when comparing 137 

the three dietary groups. The model included the baseline values of each corresponding variable 138 

of interest, age, gender, BMI and diet group as prognostic factors. Where the overall diet effect 139 

was significant, differences between diet groups were determined by post-hoc analyses using the 140 
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Tukey adjustment for multiple treatment comparisons to control for type 1 errors, and one sample 141 

t-tests determined whether the change from baseline was significantly different to zero for each 142 

diet. Statistical significance was assumed if P≤0.05 and statistical analyses were performed using 143 

SPSS version 21.0 (SPSS Inc.). In the tables and text, data are expressed as mean ± SE or % 144 

changes. LSMeans ± SE are presented in the figures.  145 

 146 

Stepwise regression analysis was performed as an additional analysis to determine which 147 

independent CVD risk factors influenced numbers of EPC, EMP or PMP using pre-intervention 148 

baseline (V1) data. Independent factors included the DIVAS outcome measures (vascular 149 

function, 24 h ambulatory blood pressure, biochemical markers of CVD risk and anthropometric 150 

measures), dietary factors (macronutrient intakes (as %TE) and plasma phospholipid fatty acid 151 

composition), CVD risk scores (DIVAS scoring tool and QRISK), age, gender, menstrual status, 152 

family history of early onset type 2 diabetes mellitus or myocardial infarction, and ethnicity (15, 153 

16). To avoid multicollinearity, only the most clinically-relevant independent factor was included 154 

where a pair of independent variables were highly correlated (two-tailed Spearman’s correlation 155 

coefficients) and a variance inflation factor of <5 was set. Only related independent variables, 156 

where P<0.15 following an initial linear regression between the dependent (EPC, EMP or PMP) 157 

and independent variable, were used in the corresponding stepwise regression model. Stepwise 158 

selection of variables used entry and removal parameters of F<0.05 and F>0.10, respectively, and 159 

missing values were excluded listwise. Unstandardized β coefficients ± SE are presented, where 160 

P<0.05 (determined by t-tests) were considered significant.   161 
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Results 162 

Of the 202 subjects randomized to the intervention (the flow of participation is presented in 163 

Supplemental Figure 1), seven subjects withdrew from the study before completion and EPC 164 

and MP data was not available for five subjects (n=190). There were no differences in the 165 

baseline characteristics of the subjects between the diet groups (Table 1). The combined mean (± 166 

SE) age was 44 ± 1 y and BMI was 26.6 ± 0.3 kg/m2.  167 

  168 

Effect of replacement of SFA with MUFA or n-6 PUFA on EPC numbers 169 

There were no significant differences in baseline EPC numbers between the three intervention 170 

groups (Supplemental Table 1). When expressed as changes from baseline (V2-V1), there was a 171 

significant overall effect of diet for EPC (P=0.023). Post-hoc analysis showed that when 172 

compared with the SFA group, EPC numbers significantly increased by 28.4% in the MUFA 173 

group after 16 weeks (P=0.017) (Supplemental Table 1 and Figure 1A). No differences were 174 

observed between the n-6 PUFA group and the MUFA or SFA groups. Furthermore, within-175 

group analysis showed that the MUFA diet significantly increased EPC numbers by 27.3% 176 

compared with baseline (P≤0.001), but the SFA (-1.1%; P=0.846) and n-6 PUFA (+9.1%; 177 

P=0.130) diets had little impact on EPC numbers.  178 

Effect of replacement of SFA with MUFA or n-6 PUFA on MP numbers 179 

At baseline, EMP and PMP numbers were similar in the three intervention groups (Supplemental 180 

Table 1). There were significant overall diet effects for changes in EMP and PMP numbers (both 181 

P ≤0.001). When SFA was replaced by MUFA, numbers of EMP decreased by 47.3% (P ≤0.001) 182 

and PMP by 36.8% (P= 0.002) after 16 weeks (Figures 1B and 1C). Likewise, an exchange of 183 

SFA for n-6 PUFA reduced numbers of EMP (-44.9%; P ≤0.001) and PMP (-39.1%; P ≤0.001). 184 
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There were no differences between the MUFA and n-6 PUFA groups for EMP or PMP. Within-185 

group differences from baseline further revealed significant reductions in EMP (-30.1%; P 186 

≤0.001) and PMP (-22.4%; P ≤0.001) following the n-6 PUFA diet. The MUFA diet also resulted 187 

in reductions in EMP (-32.5%; P ≤0.001) and PMP (-20.1%; P= 0.002) relative to baseline. 188 

Finally, the SFA diet increased numbers of EMP (+14.7%; P= 0.010) and tended to increase PMP 189 

(+16.7%; P= 0.073) after 16 weeks.     190 

 191 

Influence of CVD risk factors on numbers of circulating EPCs and MPs at baseline 192 

To determine which CVD risk factors influence numbers of EPCs and MPs, stepwise regression 193 

analysis was performed using the pre-intervention data collected at baseline (V1). This defined 194 

the total variance explained by the independent predictors identified in the model (r2 adjusted) 195 

and the impact that 1 unit change of the independent variable had on EPC or MP numbers 196 

(unstandardized β). Three independent factors were identified that predicted higher EPC 197 

numbers: reduced arterial stiffness as measured by AIx (β= -18.0 (SE(β)= 4.6), P <0.001), a 198 

higher night-time diastolic blood pressure (DBP) (β= 18.7 (SE(β)= 7.7), P= 0.016) and a lower 199 

dietary total sugar intake (β= -19.5 (SE(β)= 9.4), P= 0.039) (Supplemental Table 2). However, 200 

this model only explained 11.0% of the variance for EPC. Four predictors were identified that 201 

predicted higher EMP, explaining 14.5% of the variance. These were increased arterial stiffness 202 

(AIx: β= 0.72 (SE(β)= 0.21), P= 0.001), higher plasma P-selectin (β= 0.55 (SE(β)= 0.20), P= 203 

0.007) and TNFα concentrations (β= 9.03 (SE(β)= 3.99), P= 0.025), and lower CRP (β= -1.95 204 

(SE(β)= 0.73), P= 0.008). For the final model (explaining only 5.2% of the variance), high PMP 205 

numbers were also predicted by higher AIx (β= 2.58 (SE(β)= 1.12), P= 0.023) as well as lower 206 

microvascular reactivity (measured by laser Doppler imaging with iontophoresis of 1% 207 

acetylcholine) (β= -0.04 (SE(β)= 0.02), P= 0.029).  208 
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Discussion 209 

This study demonstrates, for the first time, that substituting 9.5-9.6%TE of dietary SFA with 210 

MUFA in free-living adults for 16 weeks significantly increases numbers of EPC and substitution 211 

with either MUFA or n-6 PUFA decreases numbers of both EMP and PMP, suggesting 212 

favourable effects on the repair and maintenance of the endothelium when SFA is substituted for 213 

unsaturated fatty acids. Replacement of dietary SFA by MUFA or PUFA is widely believed to 214 

reduce the risk of CVD, more so than if SFA are replaced by carbohydrate (13). A recent review 215 

concluded that ‘the benefits of polyunsaturated fat appear strongest’, but this comment relates to 216 

both n-6 and n-3 PUFA (19), and the available data on MUFA interventions with hard endpoints 217 

is limited. One such study (PREDIMED) reported that greater intakes of MUFA-rich olive oil, 218 

particularly the extra-virgin varieties, significantly reduced CVD risk and mortality in individuals 219 

at high cardiovascular risk (20). Although the individual effects of MUFA and n-6 PUFA on 220 

CVD risk remain unclear, there is often active discouragement of high intakes of n-6 PUFA 221 

(>10%TE) and a preference for MUFA as a strategy to prevent CVD (21).  222 

To our knowledge, no other chronic study has determined the impact of replacing SFA 223 

with n-6 PUFA. In the current study, there was a reduction in MP when SFA were replaced with 224 

n-6 PUFA. In contrast, a n-6 PUFA-rich meal (sunflower oil) increased postprandial circulating 225 

CD144-EMP in healthy subjects relative to a SFA-rich meal (cream), although clearly this was an 226 

acute setting and the sample size was small (n=22) (22). While there are two published studies 227 

supporting a reduction in numbers of MPs and increase in numbers of EPCs following a MUFA-228 

rich diet (23, 24), the studies were small and technical issues regarding the EPC and MP analysis 229 

cast some doubt on the data. The first study, which replaced a SFA-rich diet (38%TE total fat, 230 

22%TE SFA (butter) and 12%TE MUFA) with a MUFA-rich Mediterranean diet (38%TE total 231 

fat, <10%TE SFA and 24%TE MUFA (virgin olive oil)) in 20 elderly subjects for 4 weeks, 232 
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reported higher circulating EPC numbers and lower numbers of total MP (23). In the second 233 

study, consumption of a 12-week hypocaloric Mediterranean diet rich in MUFA (30%TE total 234 

fat, 5%TE SFA, 20%TE MUFA (virgin olive oil), and 5%TE PUFA) increased EPC numbers 235 

relative to baseline in 45 patients with metabolic syndrome (24). However, neither study 236 

employed standardized beads to allow absolute counting of samples (23, 24). In addition, Marin 237 

et al. (23) failed to describe their gating strategies and presented their EPC data as a percentage, 238 

but did not specify what this referred to, making it difficult to assess the validity of the data. The 239 

DIVAS study used refined olive oil, being the first to show that increased MUFA intake in the 240 

absence of phenolic compounds had beneficial effects on EPC and MP numbers. Since the 241 

increase observed in EPC numbers was only significant when SFA was replaced by MUFA, 242 

further investigation to understand the different effects of MUFA and n-6 PUFA is warranted.    243 

Findings from the baseline regression analyses suggest that AIx, a measure of arterial 244 

stiffness, may influence EPC and MP numbers, since an increase in AIx was associated with 245 

lower EPC and higher MP numbers. Structural alterations to the arterial walls, such as changes to 246 

the elastin to collagen ratio that occur naturally with aging, reduce their elasticity. Increased 247 

stiffness puts stress on the arterial walls and increases the risk of plaque rupture, which both 248 

enhance the likelihood of CVD events (25). At present, very limited data suggests a link may 249 

exist between arterial stiffness and numbers of EPC or MP (26, 27). For example, greater arterial 250 

stiffness (as assessed by aortic pulse wave velocity) was reported in subjects with the lowest EPC 251 

and highest MP counts, even after controlling for the Framingham risk score (26). Since 252 

vasoactive drugs significantly improved AIx in healthy men (28), one could hypothesize that 253 

vasodilator drugs may indirectly improve EPC and MP numbers as a means of repairing and 254 

maintaining the endothelium, in part via their beneficial effect on AIx, thus lowering CVD risk. 255 

This potential relationship warrants further investigation. Higher circulating numbers of EMP 256 
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were also predicted by greater concentrations of P-selectin and TNFα (markers of endothelial 257 

activation and inflammation, respectively). Tan et al. reported a ‘modest’ correlation between 258 

PMP and P-selectin (r= 0.345, P <0.001), both of which were the only predictors of peripheral 259 

artery disease severity in multivariate analysis (29). Furthermore, greater concentrations of P-260 

selectin-positive PMP were reported in older adults with CVD compared with young healthy 261 

subjects (30), which may facilitate the recruitment of leukocytes and platelets to the endothelium 262 

during endothelial dysfunction.   263 

The primary outcome of the DIVAS study, FMD, measured macrovascular reactivity, but 264 

this was not identified as a predictor of EPC or MP numbers. In contrast, a reduction in 265 

microvascular reactivity, as measured by laser Doppler imaging in response to acetylcholine, did 266 

appear to have a detrimental impact on PMP numbers, suggesting a potential mechanism relating 267 

the regulation of the microcirculation to the release of PMP. However, blood pressure, which is 268 

closely related to microvascular reactivity (31), did not appear to impact numbers of PMP.     269 

Excessive body weight has previously been associated with decreased numbers of EPCs 270 

and increased numbers of MPs (32), and weight reduction is reported to restore EPC numbers 271 

(33). However, in the current analysis, which is significantly larger than previous studies, there 272 

was no influence of BMI or waist-to-hip ratio at baseline on numbers of EPCs or MPs. 273 

Furthermore, the beneficial effects of SFA substitution with unsaturated fats on EPC and MP 274 

numbers were not related to changes in weight as there were no differences in BMI or central 275 

adiposity between the diet groups after 16 weeks (16). In addition, EPC and MP numbers were 276 

not dependent on gender; to our knowledge, this is the first time the influence of gender on 277 

numbers of MPs in a large cohort has been investigated. Numbers of EPCs and MPs were also 278 

not dependent on age, ethnicity, baseline fasting blood lipids, glucose or insulin. Chronic 279 

exposure to CVD risk factors is thought to reduce the mobilization of EPC, thus reducing their 280 
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numbers in the circulation (34). The subjects recruited into this study were defined as having 281 

moderately elevated risk of CVD (≥50% above the population average). Therefore, it is likely 282 

that the lack of association with CVD risk factors at baseline was due to the small proportion of 283 

subjects identified as being ‘at risk’ as a result of any one parameter, which could be considered a 284 

limitation of the analyses. Further investigation in single ‘at risk’ populations, e.g. hypertensives 285 

or hypercholesterolemics, is required. The main purpose of the current investigation, however, 286 

was to determine the effects of the dietary intervention on numbers of EPC and MP and a key 287 

strength was that compared with other studies (23, 24), it was conducted using a much larger 288 

sample size (n=190 vs n=20-45) and as such is the first chronic dietary intervention investigating 289 

the effects of exchange of SFA with n-6 PUFA on the newly emerging CVD risk markers, EPC 290 

and MP. Finally, multiple treatment comparisons were corrected for using the Tukey adjustment, 291 

consistent with the approach taken for the primary outcome analysis of the DIVAS data. It could 292 

be suggested that multiple endpoint analysis requires more powerful techniques to control for 293 

type 1 errors, such as the false discovery rate, although the need to maintain consistency in our 294 

statistical approach with previously published data was considered important in this case (35).    295 

In conclusion, a 16-week replacement of 9.5%TE dietary SFA with MUFA increased 296 

numbers of EPC and decreased numbers of MP in a population at moderate risk of CVD. 297 

Replacement of 9.6%TE dietary SFA with n-6 PUFA did not significantly affect numbers of 298 

EPC, but decreased numbers of both EMP and PMP. Further studies investigating SFA 299 

replacement are warranted to determine the mechanisms underlying the favourable effects on 300 

EPC and MP numbers, and basis for the differential effects of MUFA and n-6 PUFA.     301 
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Table 1. Baseline characteristics of study subjects1 

 

 
SFA group MUFA group n-6 PUFA group 

 (n=64) (n=61) (n=65) 

Age, y 45 ± 1 43 ± 1 45 ± 1 

Sex, M/F 28 / 36 25 / 36 29 / 36 

BMI, kg/m2 26.5 ± 0.5 26.3 ± 0.5 27.0 ± 0.5 

Waist:hip ratio 0.87 ± 0.01 0.85 ± 0.01 0.88 ± 0.01 

24h SBP, mm Hg 120 ± 2  120 ± 1 124 ± 2 

24h DBP, mm Hg 75 ± 1 74 ± 1 76 ± 1 

Fasting serum biomarkers    

   Total cholesterol, mmol/L 5.4 ± 0.1 5.5 ± 0.1 5.6 ± 0.2 

   LDL cholesterol, mmol/L 3.7 ± 0.1 3.7 ± 0.1 3.8 ± 0.1 

   Triacylglycerol, mmol/L 1.3 ± 0.1 1.2 ± 0.1 1.3 ± 0.1 

   Glucose, mmol/L 5.1 ± 0.1 5.0 ± 0.1 5.1 ± 0.1 

CVD risk score1 3.3 ± 0.2 3.0 ± 0.2 3.4 ± 0.2 

Data are mean ± SEM. 1 No significant differences between the groups were identified 

for any of the baseline characteristics (one-way ANOVA except Chi-square for sex; 

P>0.05). 1 Determined using the DIVAS study screening tool (16). CVD: cardiovascular 

disease; DBP: diastolic blood pressure; SBP: systolic blood pressure.  
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Figure 1. Effect of replacement of dietary SFA with MUFA or n-6 PUFA on 

numbers of EPC (A), EMP (B) and PMP (C) expressed as change from baseline. 

Data are presented as LSMeans ± SE for n=59-65 subjects per group. There was a 

significant effect of diet after 16 weeks for EPC, EMP and PMP (overall diet effects: P 

≤0.05; general linear model), in which post-hoc analyses (using Tukey correction to 

adjust for multiple treatments) identified significant differences between the SFA diet and 

both MUFA and n-6 PUFA diets (*P <0.05; **P <0.01; ***P ≤0.001). Abbreviations: ∆: 

change from baseline, EPC: endothelial progenitor cells, EMP: endothelial 

microparticles, PMP: platelet microparticles. 


