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Abstract 

 

The secondary structure of proline rich surfactant-like peptides is examined for the first time and is 

found to be influenced by charged end groups in peptides P6K, P6E, KP6E and an equimolar mixture of 

P6K and P6E. The peptides exhibit a conformational transition from unordered to polyproline II (PPII) 

above a critical concentration, detected from circular dichroism (CD) measurements and unexpectedly 

from fluorescence dye probe measurements. Isothermal titration calorimetry (ITC) measurements 

provided the Gibbs energies of hydration of P6K and P6E, which correspond essentially to the 

hydration energies of the terminal charged residues. A detailed analysis of peptide conformation 

for these peptides was performed using density functional theory calculations, and this was used as 

a basis for hybrid quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) 

simulations. Quantum mechanics simulations in implicit water show both peptides (and their 1:1 

mixture) exhibit PPII conformations. However, hybrid QM/MM MD simulations suggest that some  

deviations from this conformation are present for P6K and P6E in peptide bonds close to the 

charged residue, whereas in the 1:1 mixture a PPII structure is observed. Finally, aggregation of 

the peptides was investigated using Replica Exchange Molecular Dynamics simulations. These 

reveal a tendency for the average aggregate size (as measured by the radius of gyration) to increase 

with increasing temperature, which is especially marked for P6K, although the fraction of the most 

populated clusters is larger for P6E.
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Introduction 

 

Surfactant-like peptides (SLPs) are remarkable self-assembling molecules in which the 

aggregation properties (micelle, nanotube, vesicle formation, etc) arising from amphiphilicity 

are combined with the bioactivity of peptide units. Zhang and his group performed pioneering 

work on model SLPs such as A6D, V6D, V6D2 and L6D2.
1-2 To our knowledge, similar SLPs 

with oligo-proline chains have not, as yet, been examined. We expect that such peptides will 

have interesting self-assembly properties due to the constrained conformation of the oliogo-

proline chain, when combined with an ionic amino acid “headgroup”. Having recently 

elucidated several remarkable aspects of the self-assembly of alanine-rich SLPs with cationic 

headgroups such as A6K
3-4 and A6R,5 we set out to examine the solution self-assembly of 

peptides P6E (Pro6Glu) and P6K (Pro6Lys) with proline “tails” rather than alanine ones. 

Proline is the only amino acid with a secondary amine, leading to a highly constrained 

conformational space. This is expected to lead to a distinct backbone conformation compared 

to oligo-alanine repeats. In fact “polyproline” backbone structures are observed for proline-

rich peptides, including the polyproline II (PPII) conformation. Actually, PPII is observed not 

only for peptides containing proline, for instance AAKLVF(F) peptides exhibit this 

conformation (A denotes 2-alanine).6 

 

The polyproline II (PPII) structure is a left-handed helix with 3 residues per turn and a pitch 

of 9.3-9.4 Å.7-8 The peptide bonds are all trans. The PPII structure is a significant  backbone 

conformation for unfolded proteins.9-10 It is involved in important biological processes11 such 

as the molecular recognition of peptides,12 and is observed for natural proteins such as 

elastin13. The structure of collagen (which is proline-rich) comprises a triple helical structure, 

each of which has a conformation close to that of PPII.8 In addition to being observed for 
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proline-rich peptides, it also commonly occurs for short alanine-rich peptides.6, 9, 14-15  Despite 

this, we did not observe it for the short alanine-rich peptides A6K
3 or A6R

16. It has also been 

suggested that PPII may be a significant component in the formation of toxic amyloid pre-

fibrillar structures, based on a study of pre-fibrillar structures formed by human lysozyme.17 

 

In the present paper we examine the influence of charge on the secondary structure of model 

proline-rich peptides comprising a hydrophobic hexa-proline sequence and terminal charged 

residues, either cationic (lysine, K) or anionic (glutamic acid, E). Model peptides with single 

charged termini P6K and P6E are studied as is a di-telechelic peptide KP6E along with 

equimolar mixtures of P6K and P6E. These peptides are analogues of the alanine or valine-

rich SLPs mentioned above, but with proline residues substituted as hydrophobic residues. 

Very recently the crystal structure has been obtained for a P6 derivative p-Br-C6H4-P6-OH, 

providing a detailed molecular conformation for the PPII helix.18 This work highlights the 

significant importance of understanding the conformation of polyproline peptides and 

proteins with important roles in biological processes. Here, the secondary structure of P6 

peptides with charged terminal residues is eludicated for the first time using circular 

dichroism (CD) and FTIR spectroscopies along with fluorescence probe measurements which 

reveal the existence of critical aggregation concentrations. Electrostatic interactions between 

terminal residues are found to influence the content of PPII. This is also modulated by 

temperature – an increase in temperature favouring reduction in PPII content at the expense 

of random coil and -sheet structure. While the secondary structure of short poly(L-proline) 

oligomers (extending down to PPPPP and PPPPPP etc) has been extensively studied,19-26 by 

CD and other techniques, we are not aware of prior studies on conformational properties of 

proline-rich surfactant-like peptides. A conformational transition from PPI to PPII upon 

heating (also thermoreversible) has been observed for a P12 peptide in n-propanol by CD and 
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it was associated to the cis-trans isomerization of amide bonds.27 The transition kinetics and 

thermodynamics were also investigated.  The conformation of proline oligopeptides capped at 

the termini with different aromatic residues (tryptophan, W, or tyrosine, Y) WPnY (n = 0-5)  

has been investigated via NMR and computer modelling, with a particular focus on cis-trans 

isomerization.28 

 

The observation of large vesicle-like structures at high temperature (80 oC)  was recently 

reported for PBS buffer solutions of P6E and P6E.29 This reversible transition was 

accompanied by a conformational transition from PPII to unordered. Here, we investigate the 

conformation of these peptides in water not buffer, which is expected to reduce the screening 

of the charged residues and hence may significantly influence conformation and aggregation. 

The conformation is probed via spectroscopic and x-ray scattering methods including 

measurements as a function of both concentration and temperature. We also report 

measurements of the thermodynamics of hydration of P6E and P6K via isothermal titration 

calorimetry (ITC) measurements. Finally, a comprehensive suite of computer simulations are 

performed to analyse the peptide conformation (QM/MM methods) for comparison to the 

experimental data and also replica exchange molecular dynamics (REMD) simulations of 

aggregation, with a particular focus on temperature-driven aggregation, again for comparison 

with the experimental results. 

 

Results 

 

Spectroscopic and X-ray Diffraction Analysis of Peptide Conformation 
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CD was used to probe the secondary structure of peptides P6K, P6E, KP6E and 1:1 mixtures 

of P6K and P6K. Figure 1 shows CD spectra obtained for P6E measured for a range of 

concentrations. Spectra for P6K, KP6E and 1:1 P6K: P6E are presented in Fig.S2 (ESI). The 

presence of a deep minimum in a CD spectrum at around 200-205 nm, along with a broad 

positive maximum at around 225 nm is a signature of PPII secondary structure.10-11, 21, 30-35 

Spectra with a negative band centered at about 195-200 nm with no positive band at about 

215-225 nm secondary maximum are characteristic of those of unordered peptide,21, 32 

lacking secondary structure. The spectra in Fig.1 and Fig.S2 (ESI) show that all peptides 

adopt unordered conformation at low concentration but at high concentration they form PPII 

structures. In fact, by plotting the intensity of the positive maximum at 227 nm versus 

concentration we find that, unexpectedly, there is a discontinuity indicating a critical 

concentration for the ordering transition. As evident from Fig.2, this occurs at (0.35 ± 0.03) 

wt% for all four of our peptides. 

 

 

The temperature dependence of the CD spectra at fixed concentration (1 wt% of each 

peptide) was examined in the range 5 – 80 oC. The corresponding spectra are shown in Fig.S3 

(ESI). Increasing temperature led to a reduction in molar ellipticity at the negative minimum 

and the positive band at about 202 nm, indicating increased unordered structure at the 

expense of PPII content with increasing temperature. This was further highlighted by plotting 

difference spectra with respect to the lowest temperature (5 oC) spectra, as shown in Fig.S4 

(ESI). This highlights the reduction in the minimum at 200-205 nm and the development of a 

minimum near 220 nm. An isodichroic (isosbestic) point is observed for all peptides at 214-

216 nm. A high degree of reversibility in the CD spectra was observed on cooling back to 20 

oC, with recovery of the PPII secondary structure component. The temperature-dependent CD 
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spectra thus point to a decrease in PPII conformation on heating, with the development of 

random coil formation. This is a reversible process with no evidence for a discontinuous 

thermal transition in contrast to the critical point observed as a function of concentration. The 

thermoreversible transition from PPII to disorder is in agreement with previous results for 

these peptides in PBS buffer29 and suggests that charge screening in this buffer does not 

influence this thermal conformational transition. 

 

FTIR spectra were obtained for samples at concentrations above the critical concentration 

(Fig. S5, ESI shows the amide I´ region). A broad peak at around 1635 cm-1 is observed for 

all peptides examined. This peak is in the range observed for PPII, structures.22-23, 26, 36 The 

additional peak observed for all concentrations at 1672 cm-1 is dominated by a contribution 

from TFA (trifluoro acetate) counterions.37-39 For this reason, and also because solution FTIR 

cannot be performed for low concentration samples, the FTIR spectra are much less 

informative than CD spectra in regard to probing PPII conformation. 

 

Fibre XRD was used to provide more detailed information on peptide conformation. Fig.S6 

(ESI) shows representative one-dimensional intensity profiles obtained by integration of the 

2D patterns measured for P6K. In both the XRD profiles (measured for stalks prepared from 

two different concentrations of peptide), strong broad peaks are observed at (4.6 ± 0.05) Å. 

This corresponds to half the pitch period of a PPII structure.7 The broad shoulder at lower 

wavenumber q seems to be associated with the full pitch (9.2 Å). The sharp peaks with d = 

3.14 Å observed for both samples correspond closely to the expected translation per residue 

in a PPII structure (side peaks with d = 3.08 Å are also observed for the 0.5 wt% P6K 

sample). The peak associated with the pitch is broad, as expected for such as short peptide 
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since for the heptapeptide only just over two turns of a PPII structure will be present. The 

fibre XRD thus directly confirms the presence of PPII structure. 

 

Peptide Aggregation Studies 

 

We hypothesized that this type of peptide may have surfacant-like properties. We therefore 

used the fluorescent probe ANS (8-anilonapthalane-1-sulfonic acid) which is sensitive to the 

the formation of hydrophobic environments40-44 and performed fluorescence assays. The 

resulting plots of fluorescence intensity versus peptide concentration are shown in Fig.3. (the 

original fluorescence spectra are plotted in Figure S7, ESI). The data shows that all samples 

exhibit critical concentrations similar to those corresponding to the conformational transition 

located by CD (Figure 2). The values for peptides containing single charged residues (P6K 

and P6E) seem slightly lower, reflecting the electrostatic repulsion between the charged 

termini. This is the first time that a conformational transiton in a peptide has been correlated 

to a discontinuity in fluorescence probe assay. It indicates that the transition to PPII is 

accompanied by a change in the fluorescence dye ANS, indicating a change in local 

hydrophobicity. 

 

We then examined whether the transition corresponds to the onset of aggregation at high 

concentration. Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) were 

used to examine the presence of possible aggregates (at room temperature). In fact, SAXS 

showed the presence of unaggregated peptide even at 1 wt% (i.e. above the critical 

concentration) as exemplified by the data for P6E in Fig.S8 (ESI). SAXS intensity profiles 

were found to be dominated by contributions from coil-like structures as shown. The SAXS 

profiles measured for all peptides and P6E:P6K mixtures studied in fact have a very similar 
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shape (Fig.S9, ESI). The SAXS data for P6E could be fitted to the form factor of a Gaussian 

coil, or alternatively using the software MultiFoXS45 to a compact conformation based on a 

pdb file generated for a helical conformation (Fig.S8b, ESI). As expected, the Gaussian coil 

form factor fit leads to a radius of gyration corresponding to single molecule coils rather than 

extended nanostructures. Table S1 (ESI) contains parameters obtains from fits to all of the the 

SAXS data shown in Fig.S9. DLS also showed the presence of mainly monomeric peptide, 

irrespective of whether the peptide concentration was above or below the critical 

concentration detected by CD and ANS fluorescence probe assays. Representative DLS size 

distributions (number average) for P6E and P6K are shown in Fig.S10 (ESI).  

 

 

Thermodynamic Measurements 

 

The enthalpy of hydration, a well-defined quantity that gives properly defined values of G 

of hydration of amino acids46 can be determined from isothermal titration calorimetry (ITC). 

In a classical ITC experiment47-48 changes in the heat flow are measured during peptide 

titration. These results for P6K, as well as the reaction enthalpy and its derivative as a 

function of concentration are presented in Figure 4, and for the other peptides P6E, KP6E and 

their mixtures (P6K:P6E 1:1 and 10:1) in Figs. S11 and S12. The thermodynamic parameters 

calculated from these measurements are summarized in Tables S2 and S3. All ITC 

measurements were performed on samples with a concentration 0.2 wt%, which is below the 

critical aggregation concentration values. 

 

The Gibbs free energy, G, of hydration calculated for P6K is -6.16 kcal/mol, compared to 

that for lysine (-4.38 kcal mol-1).46 Further, G = -6.98 kcal mol-1 found here for P6E is in 
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excellent agreement with the value for E (glutamic acid) -6.47 kcal mol-1.46 This indicates 

that E dominates the hydration free energy of P6E. Although the experimental value of the 

Gibbs free energy of hydration cannot be directly compared with the interaction energy, Eint, 

between the peptide and the solvent derived from theoretical calculations because of the 

omission of different contributions in the latter (e.g. entropic contribution and peptide 

concentration contribution), both thermodynamic parameters follow the same tendency. More 

specifically, Eint was 183.3 kcal mol-1 more favorable for P6E than for P6K (details are given 

in the Supporting Information). 

 

 

Computer Simulations 

Quantum Mechanics Simulations 

Backbone conformations of the minimum energy structures were analysed. The results are 

summarized in Table 1. Conformations are denoted using the nomenclature introduced by 

Perczel et al.,49 that categorizes the potential energy surface E = E(φ,ψ) of α-amino acids in 

nine different  regions: γD, δD, αD, εD, εDL, εL, αL, δL, and γL. In the case of Pro or proline-like 

residues, only the γL (γ-turn), αL (α-helix), and εL (polyproline II) conformations are 

accessible because φ is confined to values around -60°. The results show that there is no 

difference between secondary structures of charged and neutralized systems (P6E and P6K 

versus 1:1 P6E: P6K systems). All of them present a PPII secondary structure (εL, using 

Perczel nomenclature). No differences were noted on the backbone dihedral angles beyond to 

those corresponding to an expected polyproline peptide. Classical MD also shows similar 

behaviour (not shown). Classical molecular dynamics (MD) simulations also show similar 

behaviour (not shown).  
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Hybrid QM/MM - MD simulations 

 

A conformational study of peptide bond dihedral angles of P6E and P6K was performed 

during the last 5 ps of QM/MM-MD simulations. SI Fig.S13 and Fig.S14 show snapshots 

illustrating typical conformations of P6E and P6K respectively, whilst Fig.S15 shows a 

corresponding image for 1: 1 P6E: P6K. Average conformational parameters are listed in 

Table 2. This shows that the central proline residues have a PPII conformation (as in the QM 

calculations). Accordingly, results from hybrid QM/MM MD simulations, where the solvent 

in included explicitly and the peptide is polarized at the electronic density level, show 

secondary structures that are in good agreement with experimental data. However, for 

charged P6E and P6K there are some backbone gamma-turns conformations (γL) at the 

position next to charged residues (Table 2). This feature suggests that the interactions 

between the charged residue and solvent molecules, as well as the repulsive 

carboxylate···carboxylate interactions in the case of P6E, lead to some secondary structure 

differences. It should be mentioned that, due to their enormous computational cost, the length 

of QM/MM MD trajectories is very limited and, therefore, the γL state of the charged residues 

should not be considered as the most stable conformation but as a metastable state, which 

probably would evolve towards another conformational state in time. In any case, QM/MM 

MD simulations, which include a better description of intra- and inter-molecular interactions 

than both classical MD polarization and QM simulations with implicit solvent, clearly 

indicate that the PPII conformation is lost at the position of the charged residue. In contrast, 

for the neutralized system 1: 1 P6E: P6K presents a PPII conformation for all peptide bonds 

(εL), proving that the conformational preferences of peptides containing charged residues, i.e. 

P6E and P6K, are affected by the interactions mentioned above.  
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Results from QM/MM MD simulations have also been used to study peptide···solvent 

interactions. For this purpose, radial distribution function (RDF) pairs involving the oxygen 

atoms from the peptide and the hydrogen atoms of water (gCO···H) and the amide hydrogen 

atoms and the oxygen atom of water (gNH···O) were calculated using the snapshots saved from 

simulations on P6E and P6K and 1:1 P6E: P6K systems. The resulting profiles, which are 

displayed in SI Fig. S15, show a sharp peak centred at 1.7-1.8 Å. This is characteristic of the 

first hydration shell and contains water molecules bonded through specific H-bonds with the 

amide and both charged carboxylate and ammonium groups from peptide molecule. 

Comparison of the RDFs indicates that CO···H(water) H-bonds are more abundant than 

NH···O(water) H-bonds for all examined systems. Furthermore, CO···H(water) interactions 

are more abundant for P6E than for P6K and 1: 1 P6E : P6K, while P6K is the peptide with the 

highest amount of NH···O(water) interactions. 

 

To provide a deeper characterization of the first solvation shell, both the gCO···H and gNH···O 

RDFs were calculated for the Pro, Glu and Lys residues of each peptide separately. The 

resulting profiles (not shown) were used to estimate the hydration number (NW), which 

refers to the number of water molecules residing in the nearest neighbour shell and bonded to 

the peptide through CO···H(water) or NH···O(water) H-bonds, for each residue. More 

specifically, integration of the first peak with a maximum below a distance of 2.5 Å from the 

gCO···H and gNH…O RDF gave rise to the NWCO and NWNH hydration humber, respectively. It 

is worth noting that NWCO refers to number of water molecules H-bonded to both the 

C=O(amide) and carboxylate groups (if available) of the residue, while NWNH involves water 

molecules interacting with the NH(amide) and ammonium (if available) groups of the 

residue. The global hydration number (GNW) for a given residue corresponds to the sum of 
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NWCO and NWNH. Table 3 lists the position of the first hydration peak in the corresponding 

RDFs, NWCO, NWNH and GNW for the Pro, Glu and Lys residues of each examined system. 

 

The results indicate that, on average, the amount of specific Pro···water interactions is 

significantly more favourable for P6E (GNW= 3.3) than for P6K (GNW= 2.0) and 1: 1 P6E: 

P6K (GNW= 2.3). This should be attributed not only to the fact that Pro residues from the 

former peptide are involved in more CO···H(water) H-bonds than those from the other ones 

but also to the characteristic N-terminal Pro residue, which is the only one able to form 

specific NH···O(water) interactions. For P6E this residue interacts on average with 1.2 water 

molecules, this value decreasing to 0.3 for P6K and 1: 1 P6E : P6K. Considering that each 

studied peptide molecule contains six Pro residues and only one charged residue, the GNW 

values listed in Table 3 reflect that the latter is much better hydrated than the former. This is 

due not only to the charged side group of Glu and Lys but also to the particular chemical 

structure of Pro. Thus, the distinctive cyclic structure of Pro is incompatible with the 

formation of N–H···O(water) (with the obvious exception of the residue located at the N-

terminus position) and also affects the hydration of the carbonyl group. Thus, NWCO is lower 

for Pro than for Glu and Lys in all cases.  

 

On the other hand, Table 3 indicates the lack of specific (Glu)NH···O(water) hydrogen bonds 

in P6E. Thus, the first peak in the corresponding gNH···O RDF appears at a distance higher than 

3 Å, indicating that water molecules located around the N–H(amide) moiety are not forming 

specific interactions. This feature is less pronounced in 1: 1 P6E : P6K with a NWNH value of 

0.6, even though the first peak in the corresponding gNH…O profile is centred at a distance 

0.4 Å less than those typically observed for CO···H RDFs (Table 3). Finally, Lys is the 

most prone to the formation of specific interactions with neighbouring water molecules. In 
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particular, the NWCO values calculated for Lys, which are the largest ones, indicate that the 

terminal carboxylate group in P6K and 1:1 P6E: P6K interacts with almost three water 

molecules simultaneously. This is a remarkable result since the Glu residue in P6E and 1 : 1 

P6E: P6K only forms CO···H hydrogen bonds with about 2.5 water molecules, even though 

the concentration of negative charge in P6E is higher due to the proximity of the carboxylate 

side group. However, detailed inspection of saved snapshots indicates that the tendency to 

form peptide···peptide interactions is higher for Glu than for Lys, which explains the 

favoured hydration of the latter with respect to the former. Also, Table 3 indicates that, in 

average, the ammonium side group of Lys interacts with almost one water molecule, which 

represents another contribution to the high hydration degree of this residue. 

 

Replica Exchange Molecular Dynamics (REMD) Simulations of Peptide aggregation 

 

The initial stages of the aggregation phenomenon were investigated using REMD 

simulations, considering systems formed by eight P6E or eight P6K molecules (denoted 8P6E 

and 8PEK, respectively). For each system, 24 replicas were performed in the temperature 

interval between 274 K up to 453 K that represented 180 ns of trajectory. Structures 

generated from these simulations were analysed following a density-based algorithm for 

discovering clusters in large spatial databases with noise (DBSCAN algorithm)50 to 

characterize aggregation structure similarities. The results, which are summarized in Table 4, 

show that the cluster named 0 is the predominant one at all temperatures for the two peptides, 

even though terminal charges affect significantly its population (i.e. the population of cluster 

0 ranges from 39.0% to 45.6% and from 6.7% to 15.2% for 8P6E and 8P6K, respectively). In 

any case, the charged residue of uncapped peptides is playing an important role favouring the 

aggregate formation. Figure 5 shows representatives of the most populated cluster of 8P6E 
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and 8P6K aggregates at 300 K. The figure shows the existence of regions of ionic 

stabilization among the charged termini and residues. This feature is particularly relevant for 

8P6E, in which the all chain form NH3
+···-OOC electrostatic interactions, while in the case of 

8P6K some molecules interact through conventional hydrogen bond between the amide 

bonds.  

 

Figure 6 shows the temperature dependence of the averaged Rg plotted against the REMD 

temperature. A small increase in aggregation for the 8P6E system is observed when the 

temperature increases, even though there is a small decrease on the radius of gyration, Rg, at 

intermediate temperatures. This tendency is even more evident for the 8P6K system. 

However, the fractional occupation of the most populated cluster is much higher for the 8P6E 

aggregate (39-45 %, Table 4) with a broader Rg than the 8P6K aggregate with a more 

compact structure but with only about 6-15 % occupation. It is emphasized that due to the 

constraint on the size of the simulation system, these results only represent tendencies at the 

initial stages of the aggregation process. It is not possible to simulate 300 – 600 nm peptide 

vesicles, as observed experimentally for P6E and P6K in PBS buffer solution at high 

temperature,29 because of the huge number of involved molecules. 

 

 

Summary and Conclusions 

 

In summary, model proline rich peptides adopt polyproline II structures above a critical 

concentration which is uniquely identified both from changes in CD spectra and from a 

fluorescence probe assay.  To the best of our knowledge, this type of transition has not been 

reported for oligo-proline peptides. This suggests that it is due to the presence of the terminal 
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charged residues, in particular their aggregation propensity.  This is supported by our 

demonstration that this type of surfactant-like peptide exhibits a critical aggregation 

concentration. We further show that this is not suppressed by electrostatic interactions in 

either the 1:1 mixture or the peptide KP6E containing oppositely charged terminal residues. 

Heating leads to a reversible partial “unfolding” process.  

 

Isothermal titration calorimetry (ITC) provides measures of the Gibbs energies of hydration 

for P6E and P6K, which are close to those measured independently for the charged E and K 

residues. This shows that solvation of these peptides is dominated by the charged terminal 

groups. 

 

A comprehensive set of simulations provided insight into the conformation of the peptides 

(hybrid QM/MM MD simulations) which reveals mainly polyproline II structure, although 

there are backbone -turns of the bonds at the charged residues. The simulated PPII structures 

are in agreement with the CD experiments. Replica exchange molecular dynamics 

simulations provide information on temperature-dependent aggregation in the initial stage. 

The radius of gyration increases significantly with temperature for P6K, but less so for P6E. 

On the other hand, the fraction of clusters formed by P6E at a given temperature is 

substantially larger. 

 

The surfactant-like proline-rich peptides serve as valuable models for investigation of the 

tuning of PPII structures via electrostatic interactions. It is hoped that our work stimulates 

further investigation of these effects via theoretical methods.20  Further applications of 

proline-rich surfactant-like peptides in elastin or collagen- mimetic biomaterials are 
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envisaged and our work provides insight into material design parameters through secondary 

structure tuning. 
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Tables 

 

Table 1. Conformational parameters (torsion angles Φ and Ψ in degrees, and backbone 

conformation, Cf) from P6E, P6K and 1:1 P6E: P6K of the minimum energy structure derived 

at the M06L/6-31+G(d) level. 

Peptide 

Bond 

(Pro)6Glu  (Pro)6Lys 

Φ Ψ Cf  Φ Ψ Cf 

 P6E 

0 - 177.8      

1 -59.5 152.3 εL     

2 -55.1 149.5 εL     

3 -54.0 142.9 εL     

4 -57.6 146.6 εL     

5 -55.6 148.0 εL     

6 -59.4 -      

 P6K 

0     - 176.2  

1     -62.9 163.5 εL 

2     -60.1 161.4 εL 

3     -53.8 147.4 εL 

4     -55.4 147.8 εL 

5     -53.5 145.9 εL 

6     -62.2 -  

 P6EP6K 

0 - 177.8   - 175.6  

1 -59.5 152.3 εL  -59.7 146.9 εL 

2 -55.0 145.0 εL  -55.1 143.0 εL 

3 -56.6 147.4 εL  -58.4 147.1 εL 

4 -54.8 145.5 εL  -54.5 145.3 εL 

5 -54.2 145.0 εL  -56.1 145.2 εL 

6 -59.7 -   -62.9 -  
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Table 2. Averaged conformational parameters (torsion angles Φ and Ψ in degrees, and 

backbone conformation, Cf) from P6E, P6K and 1:1 P6E: P6K simulations using the QM/MM 

MD approach. Standard deviations are also shown. 

Peptide 

Bond 

(Pro)6Glu  (Pro)6Lys 

Φ Ψ Cf  Φ Ψ Cf 

        

 P6E 

0 - 150.2±20.8      

1 -71.8±24.4 112.3±10.7 γL     

2 -86.7±17.3 167.6±9.6 εL     

3 -63.2±8.0 169.0±8.0 εL     

4 -57.7±7.0 154.2±6.2 εL     

5 -84.8±7.8 59.3±14.8 γL     

6 -172.1±16.2 -      

        

 P6K 

0      87.4±12.6   

1     -61.0±10.5 158.9±8.0 εL 

2     -63.3±7.4 170.2±7.7 εL 

3     -61.2±8.8 141.2±10.4 εL 

4     -58.2±7.4 161.6±7.4 εL 

5     -81.0±7.7 67.6±7.3 γL 

6     -85.2±19.4   

        

 P6EP6K 

0  146.1±10.0 a    158.5±11.7  

1 -69.8±8.5a 155.3±7.2 a εL  -75.4±11.3 167.7±9.7 εL 

2 -62.9±6.8 a 138.9±12.5  a εL  -74.4±11.3 172.1±9.8 εL 

3 -67.5±7.8 a 161.0±8.2 a εL  -57.4±10.7 140.2±15.3 εL 

4 -56.3±9.8 a 164.1±6.7 a εL  -70.0±11.8 166.6±8.1 εL 

5 -58.8±8.0 a 148.0±8.3 a εL  -58.0±10.3 154.0±8.6 εL 

6 -65.8±10.7 a    -177.5±10.3   
a Dihedral angles derived from MM atoms of QM/MM MD simulation 
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Table 3. Data from the gCO···H and gNH···O RDFs calculated for the Pro, Glu and Lys residues 

of each studied system: position of the peak associated to the first hydration shell (dO···H and 

dH···O
; in Å), hydration number associated to the CO and NH moieties of the peptide (NWCO 

and NWNH, respectively), global hydration number (GNW= NWCO + NWNH). Results derived 

from quantum regions of P6E, P6K and P6E: P6K simulations using the QM/MM MD 

approach. 

 

 

 

System 

Pro Glu Lys 

dO···H / 

dH···O 

NWCO / 

NWNH 

GNW dO···H / 

dH···O 

NWCO / 

NWNH 

GNW dO···H / 

dH···O 

NWCO / 

NWNH 

GNW 

P6E 1.81 / 

1.78 

2.1 / 1.2 3.3 1.73 / 

- a 

2.3 / - a 2.3 - - - 

P6K 1.75 / 

1.85 

1.7 / 0.3 2.0 - - - 1.77 / 

1.83 

2.9 / 0.9 3.8 

P6EP6K 1.77 / 

1.88 

1.9 / 0.3 2.2 1.71 / 

2.13 

2.6 / 0.6 3.2 1.72 / 

1.83 

2.7 / 0.7 3.4 

a The first peak in the gNH…O RDF is centered at a distance higher than 3 Å. 
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Table 4. Fractional occupation, number of hydrogen bonds and radius of gyration of the most 

populated clusters of 8P6E and 8P6K aggregates at different temperatures. 

Temperature #a 
Fractional 

Occupationb 

Averaged 

distancec 
HBd Rg(Å)e Rg

max(Å)f
 

8P6E 

280.42 0 0.390 3.874 ± 1.185 14 23.4 ± 4.3 40.9 ± 8.7 

       

300.00 0 0.456 4.240 ± 1.352 17 23.3 ± 4.3 40.6 ± 8.2 

       

321.25 0 0.435 3.964 ± 1.229 17 23.0 ± 4.4 40.2 ± 8.2 

       

350.86 0 0.420 3.959 ± 1.240 11 22.4 ± 4.0 39.2 ± 7.3 

       

8P6K 

280.42 0 0.152 3.584 ± 1.032 3 18.5 ± 3.3 35.5 ± 6.6 

 1 0.098 2.220 ± 0.599 3 21.0 ± 0.8 40.6 ± 2.4 

       

300.00 0 0.099 3.573 ± 1.069 3 17.0 ± 2.2 32.3 ± 4.4 

       

321.25 0 0.066 3.220 ± 0.897 2 16.4 ± 1.5 31.3 ± 2.7 

       

350.86 0 0.067 3.109 ± 0.731 2 16.3 ± 1.5 31.6 ± 2.9 

       
a Cluster number with an occupational fraction of trajectory higher than 5% 
b Size of cluster as fraction of total trajectory 
c Average distance between points in the cluster. Standard deviation of points in the cluster is also shown 
d Number of intermolecular hydrogen bonds with and occupation higher than 2% 
e Radius of Gyration derived from the representative frame of the cluster 
f Maximum Radius of Gyration derived from the representative frame of the cluster 
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Figures 

 

 

 

Figure 1. CD spectra from solutions of P6E, at the concentrations indicated. 
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Figure 2. Concentration dependence of the CD signal at 227 nm for (a) P6E, (b) P6K, (c) 

KP6E, (d) 1:1 P6E: P6K.  
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Figure 3. Fluorescence intensity assays using ANS to determine critical concentrations (a) 

P6E, (b) P6K, (c) KP6E, (d) 1:1 P6K: P6E.  
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Figure 4. Isothermal Titration calorimetry data for titration of P6K (0.2 wt%) into water. (a) 

Calorimetric titration trace, (b) Integrated heat data providing the enthalpy as a function of 

P6K concentration (indicated), (c) Derivative of enthalpy with respect to concentration.  
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Figure 5. Representative frames of the most populated clusters of (a) 8P6E and (b) 8P6K at 

300 K. The last ionic peptide residue is highlighted from the main backbone chain.   

 

 

 

 

Figure 6. Temperature dependence of averaged radius of gyration of (a) 8P6E (red) and (b) 

8P6K systems (blue). Values derived from the most populated cluster (#0) at each REMD 

temperature. 
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