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Abstract Variational approaches to data assimilation, and weakly constrained
four dimensional variation (WC-4DVar) in particular, are important in the geo-
sciences but also in other communities (often under different names). The cost
functions and the resulting optimal trajectories may have a probabilistic interpre-
tation, for instance by linking data assimilation with Maximum Aposteriori (MAP)
estimation. This is possible in particular if the unknown trajectory is modelled as
the solution of a stochastic differential equation (SDE), as is increasingly the case
in weather forecasting and climate modelling. In this case, the MAP estimator
(or “most probable path” of the SDE) is obtained by minimising the Onsager–
Machlup functional. Although this fact is well known, there seems to be some
confusion in the literature, with the energy (or “least squares”) functional some-
times been claimed to yield the most probable path. The first aim of this paper is
to address this confusion and show that the energy functional does not, in general,
provide the most probable path. The second aim is to discuss the implications in
practice. Although the mentioned results pertain to stochastic models in contin-
uous time, they do have consequences in practice where SDE’s are approximated
by discrete time schemes. It turns out that using an approximation to the SDE
and calculating its most probable path does not necessarily yield a good approx-
imation to the most probable path of the SDE proper. This suggest that even in
discrete time, a version of the Onsager–Machlup functional should be used, rather
than the energy functional, at least if the solution is to be interpreted as a MAP
estimator.
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1 Introduction

In the geosciences, the term data assimilation refers to a variety of mathemat-
ical and numerical techniques whereby time series of observations are employed
to estimate states or trajectories of relevant dynamical models. In other words,
plausible states or orbits are determined which, on the one hand, are consistent
with a given dynamical model and, on the other hand, are consistent with a given
set of observations. Many different approaches to data assimilation exist, based on
very different philosophies and premises, see for instance Ide et al. (1997); Kalnay
(2001); Evensen (2007), but this list is by no means complete.

Both within the atmospheric sciences, but also in other branches of physics and
engineering, variational approaches have gained widespread attention (although
the nomenclature may differ considerably). A particular instance of this idea is
known as weakly constrained four dimensional variation (WC-4DVar) in atmo-
spheric sciences; basically, a series of model states is found that minimises a cost
functional which quantifies both the deviations from the observed data as well as
the misfit with the given model. An early paper on discrete time WC-4DVar in
atmospheric sciences is Derber (1989), see also Kalnay (2001). The cost function
is almost invariably some form of quadratic error, and for this reason, the tech-
nique is known as the minimum energy estimator in the engineering community,
see for instance Jazwinski (1970) or Mortensen (1968) (in the latter publication,
the authors go further and derive an incremental version).

In the atmospheric sciences and in particular in climate modelling, stochastic
models are becoming ever more important, despite having a long and distinguished
history already (see for instance Imkeller and von Storch 2001; Franzke et al. 2015,
and references therein). Mathematically speaking, climate models increasingly take
the form of stochastic differential equations (SDE’s). Consequently, data assimi-
lation into such models needs well understood foundations. In particular, if vari-
ational data assimilation into SDE’s is envisaged, the question arises as to what
cost function should be used, and in particular whether the cost functions and
the resulting optimal trajectories have any probabilistic interpretation. A possible
avenue is to link variational data assimilation with Maximum Aposteriori (MAP)
estimation. The MAP estimator of a random variable given some observations is
essentially the maximiser of the posterior, that is, of the conditional density of the
unknown random variable given the observations. In some sense, the MAP esti-
mator can be interpreted as the “most probable value” of the unknown random
variable given the observation. The concept of density generalises to situations
where the unknown random variable is an entire function, given by the solution
of a stochastic differential equation (SDE), and the MAP estimator becomes the
“most probable path” of the SDE (see e.g. Zeitouni and Dembo (1987), Zeitouni
and Dembo (1988); for MAP estimation in classical inverse problems but with
random observations see Cotter et al. (2009); see also Apte et al. (2007); Stuart
(2010) for applications to Bayesian estimation in stochastic dynamical systems).
Contrary to what is sometimes claimed in the literature, the most probable path
of an SDE is not a minimiser of the energy functional but rather of the Onsager–
Machlup functional, which differs from the energy functional in that the latter
contains extra terms. In other words, to find MAP estimators or most probable
paths for SDE’s, the Onsager–Machlup functional has to be minimised, rather
than the energy functional.
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The first aim of this paper is to illustrate this well known fact. The reader
is referred to Zeitouni and Dembo (1987), Zeitouni and Dembo (1988) for a rig-
orous derivation of the Onsager–Machlup functional and discussion of the MAP
estimator in the context of SDE’s. The second aim is to show that although this
is a result pertaining to stochastic models in continuous time, it does have con-
sequences in discrete time. In practice, SDE’s are approximated by discrete time
schemes, for instance the Euler scheme which results in discrete time stochastic
dynamical system with additive Gaussian errors. The (negative logarithm of the)
density of solutions to this discrete time system is given by the energy functional.
But we will argue that the appropriate functional in this situation should still be
the Onsager–Machlup functional or a discrete time version thereof, at least if the
solution is to be interpreted as a MAP estimator. The reason is that the MAP
estimator (or most probable path) of an approximation to the SDE is not nec-
essarily a good approximation to the most probable path of the SDE proper, as
we will see. It is worth noting that this point involves the dynamics only and is
entirely independent of whether observations are considered discrete or continuous
in time.

In Section 2, we revisit the concepts of densities for random variables and the
MAP estimator. In Section 3, we specialise to the situation were the unknown
random variable is a trajectory of a stochastic differential equation, and demon-
strate that the energy functional cannot be the correct functional to determine
the MAP estimator. An expression for the Onsager–Machlup functional will also
be provided. The findings will be supported by numerical simulations in Section 4.
Further, these simulations illustrate that the Onsager–Machlup functional essen-
tially provides the correct density for paths of SDE’s even though the simulations
are not truly continuous in time but rather use an approximation scheme that
is discrete in time. Section 5 provides the Onsager–Machlup functional for more
general SDE’s that are not used in the present paper but which are relevant for the
climate sciences, namely SDE’s with multiplicative noise (see e.g. Franzke et al.
2015)1. Section 6 concludes with a discussion as to how our findings bear on dis-
crete time simulations of SDE’s. An informal derivation of the Onsager–Machlup
functional is provided in Appendix A.

2 Definition of the Maximum Aposteriori (MAP) estimator

A fundamental concept in statistics in general and data assimilation in particular
is the Maximum Aposteriori or MAP estimator. Let X,Y be random variables,
where we interprete X as the unknown quantity (to be estimated) and Y as the
observation. Let p(x|y) denote the conditional probability density function of X

given that Y assumes the value y. A MAP estimator of X given Y is a maximiser
over x of the density p(x|y). That is, the MAP estimator is a function x̂(y) so that
for any y we have

p(x̂(y)|y) = sup
x

p(x|y).

MAP estimators need not exist in general, nor are they unique.
Since the observations Y play the role of parameters in this problem, they will

mostly suppressed in the notation for the sake of simplicity. That is, if X is a

1 We are grateful to referee Stéphàne Vannitsem for stressing this point.
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random variable with density pX , we understand that pX might in fact be the
conditional density of X given some observations or parameters.

The presented definition of the MAP estimator will be referred to as the de facto
definition (following Dutra et al. (2014)); there is an alternative definition which
not only provides an intuitive interpretation but is more generally applicable.
Roughly speaking, the MAP estimator of a random variable X is the center of a
small ball positioned so as to have greatest possible probability of containing X,
in the limit of the diameter of that ball going to zero. More formally, suppose that
X is a random variable with values in some vector space V with norm ‖.‖. Then
the MAP estimator is a point x̂ so that for any other point x

lim sup
ǫ→0

P(‖X − x‖ ≤ ǫ)

P(‖X − x̂‖ ≤ ǫ)
≤ 1. (1)

If observations are present, then these probabilities are conditional probabilities
given those observations.

If a random variable X with values in R
d has a density p which is everywhere

positive, then a MAP estimator according to the alternative definition (1) is a
MAP estimator according to the de facto definition and vice versa. Indeed, if X

has a positive density p, then for all x ∈ R
d the relation

p(x) = lim
ǫ→0

P(‖X − x‖ ≤ ǫ)

vol{z ∈ Rn; ‖z‖ ≤ ǫ} (2)

holds (except perhaps if x is in some exceptional set which has however volume
zero; we will ignore this technical point). Here, vol denotes the standard volume
on R

d. Hence, if y is so that p(y) > 0, then for any x we have

p(x)

p(y)
= lim

ǫ→0

P(‖X − x‖ ≤ ǫ)

vol{z ∈ Rd; ‖z‖ ≤ ǫ} lim
ǫ→0

vol{z ∈ R
d; ‖z‖ ≤ ǫ}

P(‖X − y‖ ≤ ǫ)

= lim
ǫ→0

P(‖X − x‖ ≤ ǫ)

P(‖X − y‖ ≤ ǫ)
.

(3)

The relation (3) shows that any point x̂ ∈ R
d which satisfies the de facto definition

of a MAP estimator will also satisfy the alternative definition and vice versa.
A strong point of the de facto definition is that it provides a means to find a

MAP estimator through an optimisation problem. An important insight from the
alternative definition though is that it is not quite necessary to have a probability
density function as in Equation (2) in order to define the MAP estimator. In
particular the normalisation in Equation (2) need not be the standard volume;
normalising in a different way would give a different density, but as long as the
normalisation is the same for all reference points x and the resulting density is
still everywhere positive, we would obtain the same MAP estimators, since the
relation (3) would still be valid. For instance, if W is another random variable, we
could normalise as follows

p(W )(x) = lim
ǫ→0

P(‖X − x‖ ≤ ǫ)

P(‖W‖ ≤ ǫ)
(4)

if the limit exists for every x; if p(W ) is everywhere positive, p(W ) can be used to
calculate the MAP just as well.
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It turns out that generalised densities as in Equation (4) might still be well
defined even if X has values in some infinite dimensional space with norm ‖.‖ for
which there exists no generalisation of the standard volume.2 This is precisely the
situation when trying to find MAP estimators for trajectories of continuous time
stochastic dynamical models; such a trajectory is a function (of time) and hence an
infinite dimensional object. Hence the Definition (3) of a density does not apply in
this situation but Definition (4) does, provided we find a suitable random variable
W to normalise with.

3 MAP estimators for stochastic difference and differential equations

The link between MAP estimators and data assimilation in discrete time can be
described as follows. The dynamics underlying the observations is modelled as a
stochastic difference equation of the form

Xn = F (Xn−1) +Rn, n = 1, 2, . . . , N (5)

where F is some mapping on a vector space E (called the state space), and the
Rn, n = 1, 2, . . . are taken as independent and identically distributed random vari-
ables with values in E. For simplicity’s sake, we assume throughout that E is
one dimensional (see however Sec. 5). Further, the Rn, n = 1, 2, . . . are assumed to
be normal with mean zero and variance γ. We further set X0 = ξ, where ξ ∈ E is
known.

The observations are assumed to be functions of the X1, . . . , Xn further cor-
rupted by noise. But as said earlier, they will enter the densities as parameters
in some way which is not relevant for our purposes. It is then a simple matter to
show that

lim
ǫ→0

P(maxn |Xn − xn| ≤ ǫ)

P(maxn |Rn| ≤ ǫ)
=

pX1,...,XN
(x1, . . . , xN )

pR1,...,RN
(0, . . . , 0)

= exp

(

− 1

2γ

N
∑

n=1

(xn − F (xn−1))
2

)

,

(6)

where we understand that x0 = ξ. Since (X1, . . . , XN ) is a random variable in EN ,
we can interprete the right hand side of Equation (6) as a density of (X1, . . . , XN )
according to Definition (4) with V = EN and norm ‖(x1, . . . , xN )‖ = maxn |xn|.

Atmospheric and ocean dynamics are, however, continuous in time, as are
many other processes in science and engineering where data assimilation is rel-
evant. Considering data assimilation in discrete time is merely a concession to
practical constraints. Indeed, there are several different processess that introduce
time stepping in operational practice, for instance the integration of the model or
the batch processing of the observations, but the relevant time steps can be very
different. Accounting for “model error” with additive noise after discretising mod-
els in time will result in the solutions for different time stepping having different

2 The problem is the translation invariance of the standard volume. In an infinite dimensional
normed space, a ball of unit radius may contain infinitely many disjoint balls of sufficiently
small but nonzero radius. By translation invariance, these balls must have the same volume.
But this means that either the volume of the unit ball is infinity or the volume of a sufficiently
small ball is zero.
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statistical properties. Although this is to some extent inevitable, we still ought
to have a formalism for comparing these different solutions, as they ultimately
represent the same thing.

A convenient way to enable comparison of different discretisations (with noise
added) is to formulate a stochastic model in continuous time, that is, a stochastic
differential equation (SDE), and consider any discretisation as an approximation of
that model. The question then arising is what is the MAP estimator, or more gen-
erally the density, for trajectories of an SDE? To put this question more precisely,
let I = [0, T ] be an interval of the real line, and consider the SDE

Ẋt = f(Xt) + ρrt, t ∈ I (7)

where f is a vector field on E, ρ > 0, and rt, t ∈ I is white noise with zero mean
and unit intensity (i.e. the correlation function is δ(t − s) with δ the Dirac delta
function). Again, we set X0 = ξ, where ξ ∈ E is known.

Whatever the precise interpretation of the SDE (7), the solution is a random
continuous function {Xt, t ∈ I}, and the density of it at some given reference
trajectory {zt, t ∈ I} is defined as

p({zt}) = lim
ǫ→0

P(supt∈I |Xt − zt| ≤ ǫ)

P(supt∈I ρ|Wt| ≤ ǫ)
(8)

where {Wt, t ∈ I} is the Wiener process, which can be seen as the time integral of
white noise, that is

Wt =

∫ t

0

rsds.

We will learn more about the Wiener process later. Normalisation with the Wiener
process in the Definition (8) of the density will turn out to be convenient.

It is worth stressing that the density in Definition (8) is a special case of the
Definition (4) if we use the norm ‖z‖ := supt∈I |zt| for trajectories over I. We
also note that the density is zero for trajectories which do not start at the initial
condition z0 = ξ. For later use, we introduce the ǫ–weight

α(ǫ, {zt}) =
P(supt∈I |Xt − zt| ≤ ǫ)

P(supt∈I ρ|Wt| ≤ ǫ)

of a trajectory {zt, t ∈ I}. The ǫ–weight is the probability that the solution {Xt, t ∈
I} of the SDE (7) falls entirely into a small strip or “sausage” of width ǫ around
{zt, t ∈ I}, relative to the probability that the Wiener process {Wt} falls entirely
into a “sausage” of width ǫ/ρ around zero. Figure 1 illustrates the situation. The
density p according to Definition (8) is given by p({zt}) = limǫ→0 α(ǫ, {zt}).

The density p can be written in the form

p({zt}) = exp(−A({zt})), (9)

and several publications seem to imply that A({zt}) should be equal to the energy

functional

AE({zt}) =
1

2ρ2

∫

I

(żt − f(zt))
2dt, (10)
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Fig. 1 The plot shows the event that the solution {Xt, t ∈ I} of the SDE (7) (thin solid line)
falls entirely into a small strip of width ǫ around the reference trajectory {zt, t ∈ I} (thick
solid line). The strip is indicated with dashed lines. (Note that this is a schematic sketch rather
than an actual simulation.)

or at least that the MAP estimator should be a minimiser of AE (sometimes with-
out clear reference to the concept of densities). In case observations are present,
the energy estimator would carry another term pertaining to the observations.

As mentioned in the introduction already, the correct expression for the func-
tional A in Equation (9) is not the energy functional but the Onsager–Machlup

functional

AOM ({zt}) = AE({zt}) +
1

2

∫

I

f ′(zt)dt. (11)

An informal derivation of this expression will be given in Appendix A. Note how-
ever that for very small noise amplitudes, the energy functional AE becomes the
dominant term in the Onsager–Machlup functional, as this term scales inversely
proportional with the noise, while the additional term does not depend on the
noise at all. This suggests that data assimilation employing the energy functional
does have a rigorous interpretation in the small noise limit. This is indeed the
case, as discussed for instance in Vanden-Eijnden and Weare (2013), where the
energy functional emerges from a large deviation principle. Furthermore, there are
clearly other cases where the additional term in Equation (11) does not matter for
the purposes of data assimilation, for instance if the dynamics is linear, as then
the second term in Equation (11) is constant. In higher dimensions, the additional
term is the integral over divf(zt) (see Section 5) so that for systems with constant
divergence, minimising the energy functional gives the same results as minimising
the Onsager–Machlup functional.

In the remainder of this section, we will provide evidence that the expression (9)
with the energy functional is not the correct density, and discuss possible reasons
for this misconception. We write the SDE (7), somewhat more rigorously, as an
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integral equation

Xt = ξ +

∫ t

0

f(Xs)ds+ ρWt, t ∈ I

where Wt, t ∈ I is the standard Wiener process, which as we have seen can heuris-
tically be interpreted as the integral of the white noise process rt. In fact, from
these heuristics, one can derive that the Wiener process ought to have the following
properties:

1. W0 = 0,
2. for 0 ≤ t1 < t2 the increment Wt2 − Wt1 is a normally distributed random

variable with mean zero and covariance t2 − t1,
3. increments for nonoverlapping intervals are independent,

It is well known (see for instance Breiman (1973), Mörters and Peres (2010)) that a
process {Wt, t ∈ I} with the properties listed above exists and can be realised as a
random continuous function of time. In view of this, the Equation (7) is a classical
integral equation perturbed by a randomly selected function that is continuous in
time.

Discretisation schemes for Equation (7) can be derived by observing that

Xtn = Xtn−1 +

∫ tn

tn−1

f(Xs)ds+ ρ · (Wtn −Wtn−1) (12)

and approximating the integral in an appropriate way. For instance, using the
approximation

∫ tn
tn−1

f(Xs)ds ∼= f(Xtn−1)(tn − tn−1) and assuming for simplicity a

constant time step (tn − tn−1) = ∆ results in the Euler scheme (also known as the
Euler–Maruyama scheme, Milstein 1995)

X
(∆)
tn

= X
(∆)
tn−1

+ f(X
(∆)
tn−1

)∆+ ρ · (Wtn −Wtn−1). (13)

(The superscript ∆ indicates that this solution is obtained with the Euler scheme
and time discretisation ∆). If we set Rn = ρ · (Wtn −Wtn−1), then Equation (13) is
precisely in the form of Equation (5) with F (x) = x+ f(x)∆ and γ = ∆ρ2. Hence

the density (6) for the solution (X
(∆)
t1

, . . . , X
(∆)
tN

) of Equation (13) reads as

p
X

(∆)
t1

,...,X
(∆)
tN

(x1, . . . , xN )

pR1,...,RN
(0, . . . , 0)

= exp

[

− ∆

2ρ2

N
∑

n=1

(
xn − xn−1

∆
− f(xn−1))

2

]

.

(14)

It now seems tempting to take the “limit” ∆ → 0 here. In fact, assuming that
the x1, . . . , xn in Equation (14) are the values of some reference trajectory {zt, t ∈
I} at the points t1, . . . , tn, we would by formally taking this limit indeed obtain
Equation (9) for the density with the energy functional as in Equation (10).

If we retrace the steps in our calculation though, we realise that we have not
quite taken them in the order we should according to Definition (8) of the density.
To discuss this, we introduce the ǫ–weight of a trajectory {zt, t ∈ I}, but now with
respect to the Euler approximation:

α∆(ǫ, {zt}) =
P(supn |X(∆)

tn
− ztn | ≤ ǫ)

P(supn ρ|Wtn | ≤ ǫ)
.
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What we have done to arrive at the Equations (9,10) for the density is to take the
limit ǫ → 0, then use Equation (6) in the special case of the Euler system (13),
and finally take the limit ∆ → 0. That is, we have proved

lim
∆→0

lim
ǫ→0

α∆(ǫ, {zt}) = exp(−AE({zt})). (15)

However, Definition (8) basically requires to take these limits the other way round:

p({zt, t ∈ I}) = lim
ǫ→0

lim
∆→0

α∆(ǫ, {zt}). (16)

A simple example (following Dutra et al. (2014)) will show that interchanging
these two limits will, in general, give different results. It is evident that the density
should be independent of what scheme we use to approximate solutions of SDE’s,
and the Euler scheme is not the only scheme. To arrive at another scheme for
numerically solving SDE’s, we consider other approximations of the integral in
Equation (12), for instance

∫ tn

tn−1

f(Xs)ds ∼= (λf(Xtn−1) + (1− λ)f(Xtn))∆

for some λ ∈ [0, 1], leading to the implicit scheme

X
(∆)
tn

= X
(∆)
tn−1

+ (λf(X
(∆)
tn−1

) + (1− λ)f(X
(∆)
tn

))∆+ ρ · (Wtn −Wtn−1). (17)

This is an equally valid approximation scheme for SDE’s, see for instance Kloeden

and Platen (1992), Chapter 12. Note however thatX
(∆)
tn

is now a nonlinear function
of the noise (Wtn −Wtn−1). Using the same logic as before (see Appendix B) one
arrives at the conclusion that the functional A in Equation (9) of the density
should be

Aλ = exp

[

− 1

2ρ2

∫

I

(żt − f(zt))
2 dt− (1− λ)

∫

I

f ′(zt) dt

]

. (18)

So not only does another term −(1 − λ)
∫

I
f ′(zt) dt appear in the exponent, but

we can generate an entire spectrum of candidate functionals by varying λ. This
result evidently draws the entire methodology into question.

We note that λ = 1/2 gives the Onsager–Machlup functional, that is, A1/2 =
AOM . This however does not prove that AOM is indeed the correct functional. So
far, we do not have any reason to believe that λ = 1/2 is in any way special.

4 Numerical experiment

It was already mentioned in the last section (and will be discussed further in the
Appendix) that AOM is the appropriate density functional for paths of a stochastic
differential equation. In particular, this implies that the minimiser of AOM can
be interpreted as the MAP estimator or “most probable” path of the stochastic
differential equation. We have also considered discrete time approximations to the
stochastic differential equations, for instance the Euler scheme, and it emerged that
the densities derived from these approximations do not, in general, agree with the
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Fig. 2 Around 20 simulations of the SDE (7) with f(x) = 2
π
arctan(ax) and a = 6 and

ρ = 0.3 are shown in grey, obtained with an Euler scheme with ∆ = 1.14 · 10−4. The two solid
lines represent the most probable trajectories according to the Onsager–Machlup functional,
and the dashed line represents the most probable trajectory according to the energy functional.
It is evident that simulations are more likely to accumulate around the former.

Onsager–Machlup functional even approximately. This raises questions as to what
the right functional should be in practice, since apart from the rare situation where
explicit solutions are available, stochastic differential equations inevitably have to
be approximated by numerical schemes which are discrete in time. But suppose
we approximate a stochastic differential equation of the form (7) with the Euler
scheme (13). We know that in this situation, Equation (14) is the correct density
of solutions, so what is the link between solutions of the Euler scheme and the
functional AOM , and why should we care about it?

We will examine the situation with a numerical example. We consider a stochas-
tic differential equation of the form (7) with approximation by the Euler scheme
(Equ. 13). Here f(x) = 2

π arctan(ax), with a = 6 and ρ = 0.3. All solutions start
from the fixed initial condition ξ = 0. Figure 2 shows 20 independent approxi-
mate solutions of Equation (7); “approximate” because these are solutions of the
Euler scheme (13). The density of these solutions is given by Equation (14), and
according to this expression the most probable solution is equal to zero for all
times. The picture though we see in Figure 2 seems to contradict this. It is evident
that very few solutions seem to be concentrating around the abscissa. This is easy
to understand qualitatively. For small times, the variability of the solution grows
exponentially as the origin is an unstable fixed point for this dynamics. Sooner
or later, the solution will enter regions where the arctan is flat and the drift is
essentially either +1 or −1. The solution might from time to time transit between
these two regimes, but these transits become progressively rarer until it behaves
essentially like a random walk with constant drift.
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The solid lines in Figure 2 represent the optimal paths of the Onsager–Machlup
functional AOM . These have been calculated numerically by solving the Euler
Lagrange equations associated with the Onsager–Machlup functional AOM (the
functional displays a symmetry whence there are two solutions symmetric about
the abscissa). These solutions seem to capture much better the “big picture”,
indicating where solutions of our simulations tend to be. So it seems that the
Onsager–Machlup functional provides a better description of the density, even
though the solutions have been obtained with a discrete time system and thus
strictly speaking Equation (14) provides the correct density.

To resolve this apparent paradox, we remember that the density at some ref-
erence path {zt} is the probability that the solution of our dynamics lies in a thin
sausage of width ǫ around that reference path, relative to the probability that
the driving Wiener process lies in a thin sausage of width ǫ around zero. These
probabilities, or rather the ǫ–weight α∆(ǫ, {zt}) can be estimated using a Monte
Carlo approach in order to study the dependence on ǫ and ∆. For simplicity, the
reference path was taken to be zero. Note that this is the most probable path
according to AE . In Figure 3, α∆(ǫ, {zt}) is shown as a function of ǫ (on the ab-
scissa), with different curves (different marker symbols) corresponding to different
values of ∆ (curves corresponding to smaller values of ∆ tend to be more to the
left in the plot). Two time windows of different length were considered; the solid
lines correspond to T = 0.2, while the dashed lines correspond to an experiment
with T = 0.4.

The discussion in Section 3 revealed that taking the limits limǫ→0 and lim∆→0

of α∆(ǫ, {zt}) in different order gives different results, see Equations (15,16). Along
the particular path considered here, AE = 0 (independent of the value of ∆),
meaning that

lim
∆→0

lim
ǫ→0

α∆(ǫ, {zt}) = exp(−AE) = 1,

while interchanging these limits gives the values exp(−AOM ) = 0.68 for T =
0.2 and exp(−AOM ) = 0.47 for T = 0.4 (obtained by simply evaluating AOM

along our reference path). The fact that interchanging the limits gives different
results manifests itself in the plot in Figure 3 which shows an interesting crossover
behaviour. With ǫ decreasing, α first approaches the value given by the Onsager–
Machlup functional. If ǫ reaches a sufficiently small value though (depending on
∆), the curves start to diverge from this value and approach one, consistent with
the energy functional. The smaller ∆, the longer α stays close to the Onsager–
Machlup value for decreasing ǫ, or in other words, for smaller ∆ a smaller ǫ has to
be chosen in order for exp(−AE) to become a relevant approximation for α.

For a rough estimate on how small ǫ has to be in order for the crossover to
take place, we observe that for a reference path z,

X
(∆)
tn+1

− ztn+1 = X
(∆)
tn

− ztn +

(

f(X
(∆)
tn

)− ztn+1 − ztn
∆

)

∆+ ρ(Wtn+1 −Wtn). (19)

Hence for fixed ∆, the increments of X
(∆)
tn

− ztn in Equation (19) have a charac-
teristic size (at time tn), namely

|X(∆)
tn+1

− ztn+1 − (X
(∆)
tn

− ztn)| ∼= |f(ztn)− żtn |∆+ ρ
√
∆,
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Fig. 3 The ǫ–weight α(ǫ,∆) as a function of ǫ for several values of ∆. The abscissa shows
log(( ǫ

ρ
)2). (See text for the reason for this scaling.) The values for log(∆) are -13.7 (▽),

-10.5 (△), -9.1 (♦), -5.9 (�), -4.5 (©). The solid lines represent results for a shorter time
window T = 0.2, while the dashed lines represent results for T = 0.4.

It seems plausible that α starts to approach the energy functional as soon as ǫ

becomes smaller than the typical increment of X
(∆)
tn

− ztn , which means

ǫ ∼= |f(ztn)− żtn |∆+ ρ
√
∆,

which is just ǫ ∼= ρ
√
∆ in our case, or log(( ǫρ )

2) = log(∆). For the experiments

shown in Figure 3, we used the following values of log(∆): -13.7 (▽), -10.5 (△),
-9.1 (♦), -5.9 (�), -4.5 (©). This appears to be roughly consistent with the values
of of log(( ǫρ )

2) at which the crossover takes place.

5 The Onsager–Machlup functional in higher dimensions and for

multiplicative noise

In this section we will provide additional (and well known) results regarding the
Onsager–Machlup functional in higher dimensions and with multiplicative noise.
We will see that in the case of multiplicative noise, further terms appear in the
Onsager–Machlup functional; the effect of these terms in data assimilation appli-
cations remains to be investigated. We consider a general SDE

Ẋt = f(Xt) + ρ(Xt) · rt, t ∈ [0, T ] (20)

where the state space E is the d–dimensional Euclidean space, f is a vector field on
E and ρ is a state dependent d–by–d matrix. For SDE’s with multiplicative noise as
in Equation (20), different mathematical interpretations are possible, most promi-
nently the Itô and the Stratonovič interpretation (see e.g. Øksendal 1998; Ikeda
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and Watanabe 1989). We will interprete the SDE (20) in the sense of Stratonovič;
and Itô equation can always be converted to a Stratonovič equation. The expres-
sion for the Onsager–Machlup functional given in Equation (22) below is valid if
the noise is nondegenerate, that is ρ(x)ρT (x) ≥ α1 for some α > 0. In this sit-
uation, the matrix g(x) = (ρ(x)ρT (x))−1 defines a Riemannian metric. For any
vector field f , the divergence divf will be understood with respect to this metric,
that is

divf =
1
√

|g|

d
∑

k=1

∂k(
√

|g|f (k))

Further, let R(x) be the scalar (Ricci) curvature andm(x, y) the (geodesic) distance
between points x, y ∈ E. These concepts are defined with respect to the metric g

as well (see Gallot et al. 2004, for an introduction to Riemannian geometry). Then
the Onsager–Machlup functional is defined as

exp(−AOM({zt})) = lim
ǫ→0

P(supt∈I m(Xt, zt) ≤ ǫ)

P(supt∈I |Wt| ≤ ǫ)
, (21)

and as is proved for instance in Ikeda and Watanabe (1989); Zeitouni and Dembo
(1987), it has the expression

AOM({zt}) =
1

2

∫

I

(żt − f(zt))
Tg(zt)(żt − f(zt)) dt

+
1

2

∫

I

divf(zt)dt−
1

12

∫

I

R(zt) dt.

(22)

As was already discussed in Section 4 (in the context of a one–dimensional
example), the effect of the second term (containing divf) is to discourage the
most probable path from staying in regions where the dynamics is unstable, as
this causes strong amplification of the noise and thus typical solutions of the SDE
quickly escape from such regions. The effect of the second term involving the Ricci
curvature is not so clear at this point and is subject to future investigation.

In the remainder of this section we discuss what terms need adding to the
Onsager–Machlup functional if observations are present. Let the observations be
a discrete time series {Yn, n = 1, . . . , N}. The Onsager–Machlup functional is now
defined as

exp(−FOM({zt}, {Yn})) = lim
ǫ→0

P(supt∈I m(Xt, zt) ≤ ǫ|{Yn, n = 1, . . . , N})
P(supt∈I |Wt| ≤ ǫ)

.

(We will use the notation FOM to designate the Onsager–Machlup functional with
observations; AOM still defined as in Eq. 21.) A commonly made assumption is that
the observations are conditionally independent given the underlying trajectory
{Xt, t ∈ [0, T ]}, and that the distribution of Yn depends on Xtn only for n =
1, . . . , N and a series of sampling times t1, . . . , tN . Let qn(y, x) be the density of Yn
given Xtn . In this case, the full Onsager–Machlup functional reads as

FOM({zt}; {Yn}) = AOM({zt})−
N
∑

n=1

log(qn(Yn, ztn))

If for instance Yn given Xtn is Gaussian with mean h(Xtn) and variance γ (where
h and γ are often called the observation function and observation error covariance,
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respectively), then the additional term in the Onsager–Machlup functional reads
as

−
N
∑

n=1

log(qn(Yn, ztn)) =
1

2

N
∑

n=1

(yn − h(ztn))
T γ−1(yn − h(ztn)).

6 Conclusions for discrete time simulations and data assimilation

When modelling a dynamical process with a stochastic differential equation, then
any practical implementation will use a discrete time approximation of one form
or another. If (as part of a data assimilation experiment for instance) one is inter-
ested in a most probable path of that dynamical process, then our considerations
imply that the appropriate functional is the Onsager–Machlup functional (or a
discrete time approximation thereof), even though the density of discrete time
approximations might differ from the Onsager–Machlup functional. The Onsager–
Machlup functional provides results which are robust with respect to the par-
ticular approximation scheme, and in particular with respect to the chosen time
discretisation, which does not have any intrinsic meaning in terms of the problem
specification. More specifically, the Onsager–Machlup functional gives approxi-
mately the ǫ-weight of a reference path, that is the probability that the solutions
of the stochastic differential equation stay in an ǫ sausage around the reference
path, and a discrete time approximation of the SDE will assign approximately
the same ǫ-weight to that path, unless ǫ reaches the scale of typical increments in
that approximation. In other words, the Onsager–Machlup functional provides an
approximation to the ǫ-weight of a path with respect to the stochastic differential
equation and approximations thereof, save approximations that employ increments
which are typically larger than ǫ. Such approximations do not appropriately rep-
resent the fast fluctuations of the Wiener process that are still relevant for the
dynamics, even when the amplitude of Wiener process is constrained to be small.

For these reasons, most probable paths should be determined using the Onsager–
Machlup functional, since such paths carry the largest possible ǫ-weight, no mat-
ter if this weight is calculated from the stochastic differential equation or any
reasonable approximation, as long as that approximation uses increments which
are smaller than ǫ. Paths which are minimisers of the energy functional or any
other functional do not possess this universality property. The implication for
data assimilation is that minimising paths of the Onsager–Machlup functional are
more typical for the dynamics and in fact carry a rigorous interpretation as MAP
estimators, different from maximum energy paths which do not.

These arguments do not apply though if the process under consideration is
intrinsically discrete in time. In this situation, it does not make sense to consider
the limit ∆ → 0 which brings about the extra term in the Onsager–Machlup
functional. Systems like this might appear in the context of seasonal or diurnal
cycles, or more generally systems with an internal clocking mechanism.
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Appendix

A Derivation of the correct functional

We will attempt a more careful calculation of the ǫ–weight of a path which will not only
allow us to take the limits in the right order and obtain the correct expression for the density,
but also to identify the reason why interchanging these limits gives a different result. We will
later restrict our attention to linear dynamics. It should be said that for linear dynamics, the
additional term in the Onsager–Machlup functional (11) does not depend on the reference
trajectory and hence minimising AOM or AE gives the same results in this case. However, the
functionals are still different and only the Onsager–Machlup functional provides the correct
density.

First we note the following simple but important fact. Let Z(1), Z(2) be random variables
with values in R

N with densities p1, p2 respectively, and p2(z) > 0 for all z ∈ R
N . Further, let

φ be a function on R
N . Then the identity

E(φ(Z(1))) = E(φ(Z(2))
p1(Z(2))

p2(Z(2))
)

holds, since

E(φ(Z(1))) =

∫

Rn

φ(z)p1(z)dz =

∫

Rn

φ(z)
p1(z)

p2(z)
p2(z)dz = E(φ(Z(2))

p1(Z(2))

p2(Z(2))
). (23)

On the other hand, note that

P(max
k

|Xtk − ztk | ≤ ǫ) = E(H(
maxk |Xtk − ztk |

ǫ
− 1)), (24)

where H is the Heaviside function. We might use Equation (23) in (24) with

φ(z) = H(
maxk |zk|

ǫ
− 1),

Z(1) = (X
(∆)
t1

− zt1 , . . . , X
(∆)
tN

− ztN ),

Z(2) = (Wt1 , . . . ,WtN ),

where (X
(∆)
t1

, . . . , X
(∆)
tN

) is a solution to the Euler approximation (13). Note that (X
(∆)
t1

−
zt1 , . . . , X

(∆)
tN

− ztN ) is then a solution of the system (19). We therefore obtain

P(max
k

|Xtk − ztk | ≤ ǫ) = E

[

H(
maxk |Wtk |

ǫ
− 1) exp(A+B + C)

]

(25)

with

A = − ∆

2ρ2

N
∑

n=1

(
ztn − ztn−1

∆
− f(ztn−1 + ρWtn−1))

2

B = −1

ρ

N
∑

n=1

(
ztn − ztn−1

∆
)(Wtn −Wtn−1)

C =
1

ρ

N
∑

n=1

(f(ztn−1 + ρWtn−1))(Wtn −Wtn−1)

(26)

In terms of the limits ∆ → 0 and ǫ → 0, the first two terms A and B will converge to

lim
ǫ→0

lim
∆→0

A = − 1

2ρ2

∫ T

0
(żt − f(zt))

2dt (27)
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and zero, respectively, no matter in which order the limits are taken. The third term however
shows different behaviour depending on whether ∆ → 0 or ǫ → 0 first. If we take ∆ → 0 first,
it can be shown that a well defined random variable obtains3 which can be written as an Ito
integral

lim
∆→0

C =
1

ρ

∫ T

0
f(zt + ρWt)dWt.

We do not expect the reader to be familiar with the theory of Ito integrals – relevant here is
that the limit of this expression for ǫ → 0 will not be zero but

lim
ǫ→0

lim
∆→0

C = −1

2

∫ T

0
f ′(zt)dt. (28)

A demonstration of this fact4 for the case where f is linear is given here for illustration. If
f(x) = ax for some a ∈ R, then

C =
a

ρ

N
∑

n=1

(ztn−1 + ρWtn−1)(Wtn −Wtn−1)

=
a

ρ

N
∑

n=1

ztn−1(Wtn −Wtn−1) + a
N
∑

n=1

Wtn−1(Wtn −Wtn−1)

=
a

ρ
C1 + aC2.

(29)

It is easy to see that C1 → 0 if ∆ → 0 and ǫ → 0, no matter in which order these limits are
taken. After some algebra, we can write C2 as

C2 =
N
∑

n=1

Wtn−1(Wtn −Wtn−1)

=
1

2
W 2

T − 1

2

N
∑

n=1

(Wtn −Wtn−1)
2

Considering the mean and the variance of the second term, we obtain 1
2
T and 1

2
T∆, respec-

tively, implying that (at least in a mean square sense) the second term converges to its mean
1
2
T if ∆ → 0. Hence

lim
∆→0

C2 =
1

2
W 2

T − 1

2
T (30)

Therefore, taking the limits ∆ → 0 and then ǫ → 0 in Equation (29) and using Equation (30)
we obtain

lim
ǫ→0

lim
∆→0

C = −a

2
T

which is the same as Equation (28) for this special case.
Using Equation (28) and the expression in Equation (27) in (25) we obtain that for small

ǫ

P(sup
t

|Xt − zt| ≤ ǫ) ∼= E(H(
supt |Wt|

ǫ
− 1)

· exp
[

− 1

2ρ2

∫ T

0
(żt − f(zt))

2dt− 1

2

∫ T

0
f ′(zt)dt.

]

3 The limit is in fact in the L2 sense.
4 Strictly speaking this “fact” is only correct in a much weaker sense but still sufficient to

derive the Onsager–Machlup functional; The correct statement is that

E

[

exp

(∫ T

0
f(zt +Wt)dWt +

1

2

∫ T

0
f ′(zt)dt

)

∣

∣

∣
sup
t

|Wt| ≤ ǫ
]

→ 1

for ǫ → 0, see Ikeda and Watanabe (1989).
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so that we can conclude

lim
ǫ→0

P(supt |Xt − zt| ≤ ǫ)

P(supt |Wt| ≤ ǫ)

= exp
[

− 1

2ρ2

∫ T

0
(żt − f(zt))

2dt− 1

2

∫ T

0
f ′(zt)dt.

]

= exp(−AOM ).

Note that if we used Equations (25,26) as a starting point but subsequently took the limits in
the wrong order, that is, first ǫ → 0 and then ∆ → 0, we would have B,C → 0, so we would
obtain the energy estimator AE .

As a final remark, by looking back at the calculations the reader will see that the only
term that does not permit interchange of the limits is a second order or “quadratic” term
∑N

n=1(Wtn −Wtn−1)
2 which would vanish with ∆ → 0 if W were a differentiable function but

converges to T in case of the Wiener process. Roughly speaking, this is because Wtn −Wtn−1

is of order
√
∆, which more generally gives rise to the extra terms in the Ito calculus.

B Derivation of Equation (18)

In this section, we will derive the Equation (18), that is, we follow same steps as for the Euler
scheme and take the limits as in Equation (15), but starting with the implicit scheme (17)
instead of the Euler scheme. If we set Rn = ρ(Wtn − Wtn−1), then the implicit scheme (17)
can be written in the form

Xtn = Xtn−1 + F1(Xtn ) + F2(Xtn−1) +Rn

which can be expressed as (R1, . . . , RN ) = Ψ(Xt1 , . . . , XtN ) with

Ψn(x1, . . . , xN ) = xn − xn−1 − F1(xn)− F2(xn−1) for n = 1, . . . , N.

According to basic probability calculus, we have for the densities

pXt1
,...,XtN

(x1, . . . , xN ) = pR1,...,RN
(Ψ(x1, . . . , xN )) ·

∣

∣

∣

∣

∂Ψ

∂x
(x1, . . . , xN )

∣

∣

∣

∣

(31)

Since ∂Ψk

∂xl

= 0 for k < l, the Jacobi matrix of Ψ is lower left triangular and hence

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

(x1, . . . , xN ) =
N
∏

n=1

∂Ψk

∂xk

(x1, . . . , xN )

=

N
∏

n=1

1− F ′

1(xk)

=
N
∏

n=1

1− (1− λ)∆f ′(xk)

= exp

(

N
∑

n=1

log(1− (1− λ)∆f ′(xk))

)

.

We evaluate this expression with xk = ztk for k = 1, . . . , N where {zt} is some trajectory on
the interval I = [0, T ] and N = T/∆. Since log(1 + w) ∼= w for small w, we can write the
exponent approximately as

N
∑

n=1

log(1− (1− λ)∆f ′(ztn ))
∼= −(1− λ)∆

N
∑

n=1

f ′(ztn )
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which is a Riemann sum converging to −(1−λ)
∫

I
f ′(zt) dt. The first factor in Equation (31),

after normalisation and when evaluated along a trajectory, reads as

pR1,...,RN
(Ψ(zt1 , . . . , ztN ))

pR1,...,RN
(0, . . . , 0)

= exp

(

− ∆

2ρ2

N
∑

n=1

(

ztn − ztn−1

∆
− (1− λ)f(ztn )− λf(ztn−1)

)2
)

.

Again, the exponent is a Riemann sum which converges to − 1
2ρ2

∫

I
(żt − f(zt))2dt for ∆ → 0.

In summary, we get Equation (18).
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