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ABSTRACT: Monolayers of hexagonal boron nitride (h-BN) can in principle be identified by a Raman 

signature, consisting of an upshift in the frequency of the E2g vibrational mode with respect to the bulk 

value, but the origin of this shift (intrinsic or support-induced) is still debated. Herein we use density 

functional theory calculations to investigate whether there is an intrinsic Raman shift in the h-BN monolayer 

in comparison with the bulk. There is universal agreement among all tested functionals in predicting the 

magnitude of the frequency shift upon a variation in the in-plane cell parameter. It is clear that a small in-

plane contraction can explain the Raman peak upshift from bulk to monolayer. However, we show that the 

larger in-plane parameter in the bulk (compared to the monolayer) results from non-local correlation effects, 

which cannot be accounted for by local functionals or those with empirical dispersion corrections. Using a 

non-local-correlation functional, we then investigate the effect of finite temperatures on the Raman 
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signature. We demonstrate that bulk h-BN thermally expands in the direction perpendicular to the layers, 

while the intralayer distances slightly contract, in agreement with observed experimental behavior. 

Interestingly, the difference in in-plane cell parameter between bulk and monolayer decreases with 

temperature, and becomes very small at room temperature. We conclude that the different thermal 

expansion of bulk and monolayer partially “erases” the intrinsic Raman signature, accounting for its small 

magnitude in recent experiments on suspended samples.  

Keywords: boron nitride, Raman, density functional theory, negative thermal expansion  

1. INTRODUCTION 

Hexagonal boron nitride (h-BN) is a layered material with structure similar to that of graphite, 

but with alternating B and N atoms, instead of C atoms, forming honeycomb-like networks.1 Its 

properties have been attracting a great deal of interest over the last years2 since the availability of 

h-BN samples with an atomically flat surface3 facilitates studies of thin films applications based 

on h-BN. For instance, flakes of h-BN have been used as a thin dielectric to top-gate graphene in 

electronic devices,4 as well as an inert substrate for graphene.5 Song et al.6 demonstrated that h-

BN films consisting of two to five atomic layers can be synthetized via epitaxial growth on copper 

and then transferred onto a chosen substrate, opening up new opportunities to exploit its properties 

and potential applications in electronics, especially as an interesting two-dimensional defect-free 

dielectric material when sandwiched between conducting materials.7  

The identification of the number of layers in mono-, bi- and few- layers of graphene is often 

done via either optical contrast8 or Raman signatures.9 The same two strategies have been 

discussed by Gorbachev and co-workers to identify mono- and few-layers h-BN.10 However, 

because of its large bandgap (above 5 eV)10–12 h-BN has zero opacity, i.e. it exhibits very weak 



 
 

3 
 

optical contrast.10 Raman spectroscopy seems to be a better route, particularly to avoid 

misidentification of mono- and bi-layers of h-BN as they look very similar under the microscope. 

Experimentally, bulk h-BN exhibits a characteristic Raman peak occurring at 1366 cm-1 

corresponding to an E2g phonon mode. Gorbachev et al.10 observed that mono- and bilayers h-BN 

exhibited maximum upshifts of 4 cm-1 and 1 cm-1, respectively, which could serve as Raman 

signatures of these systems.  

A previous theoretical study13 based on density functional theory (DFT) calculations with the 

local density approximation (LDA), suggested that the difference between frequencies of Raman 

peaks in bulk h-BN and a single sheet is due to slightly elongated B-N bonds in the former, causing 

a softening of E2g phonon mode. However, as we will discuss in more detail below, the LDA 

functional employed in their work is unable to account correctly for the interlayer interactions in 

h-BN, in particular the dominant dispersion component, so a more sophisticated theoretical 

analysis is needed.  

Recent experiments by Cai et al.14 on suspended h-BN samples revealed much smaller upshifts 

(up to ~1 cm-1) in the Raman frequency from bulk to monolayer. These authors suggested that the 

larger upshifts of ~4 cm-1 observed in supported samples are actually due to the interaction with 

the support. According to this interpretation, the higher flexibility of the monolayer allows it to 

follow the uneven surface of the substrate more closely and gain more compressive strain; the 

intrinsic shift may be very small or non-existent.  

Here we present a complete theoretical analysis, using DFT functionals that are able to describe 

correctly the dispersion interactions between layers, in an attempt to clarify whether there is an 

intrinsic upshift in the Raman frequency of the h-BN monolayer. We discuss the role of interlayer 
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dispersion interactions in determining the relative cell parameters and Raman frequencies of bulk 

and monolayer, and calculate the effect of thermal expansion on the Raman signature of BN-

monolayer. 

2. COMPUTATIONAL METHODS 

We performed density functional theory (DFT) calculations using planewave basis sets as 

implemented in VASP.15,16 The projected augmented wave (PAW)17,18 method was used to 

describe the interaction between the valence electrons and the core, keeping the 1s orbitals of both 

B and N frozen in the atomic reference configurations. As we will discuss below, the change in 

lattice parameter from bulk to monolayer is in the order of a fraction of picometer; therefore, we 

have used high precision parameters in our simulations to capture these subtle effects. In particular, 

we have employed the “hard” frozen-core potentials provided in VASP. Using the “normal” 

potential leads to the same trends described here, but introduces an error (in the order of 0.1 pm, 

which is small but significant for this study) in the relative values of the cell parameters of bulk 

vs. single-layer, compared to the results obtained with the hard potentials. Plane wave basis was 

truncated at a kinetic energy cutoff of 1050 eV (set at 50% above the default value for the 

potentials, in order to minimize Pulay errors).19  In order to reduce the noise in the calculated 

forces, we use an additional support grid, with 8 times more points than the standard fine grid, for 

the evaluation of the augmentation charges. The maximum force on ions for geometry relaxations 

was set up to a very low threshold of 10-4 eV/Å (we checked that decreasing this value even more 

to 10-5 eV/Å, had no effect on the calculated geometries to the precisions reported here). 

Monkhorst-Pack grids20 with a maximum separation of 0.35 Å-1 between k-points were used in 

sampling the Brillouin-zone for integrations. This grid density corresponds to a 9×9×3 grid of k-
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points in the bulk h-BN. To keep interactions between periodic images small, a relatively large 

vacuum space of 15 Å was used between layers in the simulation of single-layer BN. Vibrational 

frequencies were obtained using a finite-differences method, where symmetry was employed to 

reduce the number of displacements.   

We compared results obtained from calculations with various functionals including those based 

on the local density approximation (LDA)21 and on the generalized gradient approximation (GGA) 

in the formulation by Perdew-Burke-Ernzerhof (PBE)22, as well as their empirical corrections by 

Grimme’s method (D2 and D3).23,24 We also consider a set of functionals where dispersion is 

treated with explicit non-local correlation: the original vdW-DF method25 (referred to as revPBE-

vdW herein), the modified version vdW-DF226 (referred to as rPW86-vdW2 herein) and three of 

the “opt” series (optB88-vdW, optB86b-vdW and optPBE-vdW) where the exchange functionals 

were optimized for the correlation part,27 as developed and implemented in VASP by Klimeš et 

al.28 Interlayer binding energies Eb for bulk h-BN were calculated as the energy difference (per 

atom) between bound and separated layers: 

𝐸b =
𝐸bulk − 2𝐸ML

4
                                                                        (1) 

where EML and Ebulk and are the energies of the monolayer cell (containing 2 atoms) and of the 

bulk cell (containing 2 layers and 4 atoms).  

We have calculated the equilibrium structure of h-BN at finite temperatures by minimizing the 

vibrational free energy: 

𝐹({𝑎𝑖}, 𝑇) = 𝐸({𝑎𝑖}) + 𝐹vib(𝜔𝐪,𝑗({𝑎𝑖}), 𝑇) 
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= 𝐸({𝑎𝑖}) + ∑
ℎ𝑐𝜔𝐪,𝑗({𝑎𝑖})

2
𝐪,𝑗

+ 𝑘B𝑇 ∑ ln [1 − exp (−
ℎ𝑐𝜔𝒒,𝑗({𝑎𝑖})

𝑘B𝑇
)]

𝐪,𝑗

            (2) 

with respect to the cell parameters {ai}. In this equation, E({ai}) corresponds to the ground-state 

energy of the structure at a given set of lattice parameters, ωq,j({ai})  is the frequency in cm-1 of 

the jth phonon band at the point q in the Brillouin zone, h is Planck’s constant, c is the speed of 

light, kB is Boltzmann’s constant, and T is the absolute temperature. This is called the 

quasiharmonic approximation (QHA), because the dependence of the phonon frequencies on the 

structural parameters introduces anharmonic effects in the calculation and permits the prediction 

of thermal expansion. Since the frequency of each mode in the Brillouin zone varies linearly with 

the cell parameters to a good approximation within the region of interest, we performed phonon 

calculations at a small grid of cell parameters and fit linear equations for all modes, as previously 

done by Mounet and Marzari in the simulation of the thermal behavior of graphene and graphite.29 

Combined with a polynomial expansion of the energies around the equilibrium point, this 

procedure allows us to define an analytical expression for the free energy, which can be then 

minimized at any given temperature.  

3. RESULTS AND DISCUSSION 

3.1. Variation of Raman frequency with in-plane cell parameter 

The E2g is a doubly-degenerate Raman-active mode which involves the in-plane vibration of B 

and N atoms in opposite directions, as represented in the inset of Figure 1. As a starting point, we 

have calculated the E2g Raman frequencies of a single layer as a function of cell parameter, with 

each of the functionals. The results are summarized in Figure 1. The absolute value of the 
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frequency predicted at a given cell parameter (say at the experimental room temperature cell 

parameter of the bulk a=2.5047 Å),30 varies with the functional. However, results from all 

functionals are quite similar in the magnitude of the rate of frequency change with lattice 

parameter, which is approximately 22 cm-1/pm. The Raman frequencies increase with the decrease 

in cell parameter, which is expected since a lattice contraction means shortening and stiffening of 

the B–N bond, producing a hardening of the E2g mode.  

 

Figure 1. Relationship between Raman frequencies and cell parameters of single-layer boron nitride, as 

calculated with different density functionals. The behavior of the bulk is identical, except for small constant 

shifts (given in brackets in the legend).  

We now present results of analogous calculations for the bulk, keeping the c parameter initially 

fixed (we used here the experimental value extrapolated to zero temperature, c=6.60002 Å, in Ref. 

30; the results of full geometry relaxations will be discussed next). For any of the functionals used 

here, there is very little variation of frequency between the bulk and the single layer at a given cell 
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parameter. In fact, the frequency vs. cell parameter lines calculated for the bulk cannot be 

distinguished in a plot from those calculated for the single layer, and we have not plotted them 

separately. There is only a small shift from single layer to bulk (values given in brackets in Figure 

1), which is negative for all functionals (except for LDA), and below 1 cm-1 for most functionals 

(except the original vdW-DF functionals, for which the shifts are only slightly larger). This result, 

which is not surprising as E2g is an in-plane mode, makes it clear that the experimental frequency 

difference between single layer and bulk cannot be attributed directly to the interlayer interactions: 

it must be the result of the difference in cell parameter between the two systems.   

The frequency of E2g mode of the bulk calculated at the experimental cell parameter is slightly 

below its experimental value for the bulk (1366 cm-1)10 for all functionals (only the rPW86-vdW2 

exhibits a relative large deviation of 24 cm-1). However, we are not interested here in predicting 

the absolute values (which in any case are very sensitive to cell parameter variations due to thermal 

effects not included in our calculations), but on understanding the relative values between the bulk 

and the few-layer systems.  

3.2. Variation of equilibrium lattice parameter from monolayer to bulk 

The analysis above suggests that the experimentally observed upshifts in the Raman frequency 

from bulk to monolayer could be due to a small contraction of the lattice parameter of the latter 

with respect to the former, which would be in agreement with the conclusion reached in references 

10 and 13. However, the contraction required to explain the even the largest experimental signature 

reported for the monolayer (4 cm-1) is quite small, of 0.2 pm. We will now consider whether DFT 

simulations reproduce this small lattice contraction based on equilibrium geometry calculations 

via energy minimizations.  
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The comparison between the equilibrium geometries of bulk and single layer obviously requires 

a correct description of the bulk interlayer attraction, which, like in graphite, has two main 

components: 1) the dispersion interaction, and 2) the electronic kinetic energy reduction due to an 

increased delocalization of the 2pz orbitals between adjacent layers.31 In the case of h-BN the atoms 

are slightly charged due to the polarity of the B-N bond, so there is also a small contribution from 

direct Coulombic interactions between layers. It is well known for graphite that GGA functionals 

like PBE cannot account for the interlayer attraction, whereas the LDA does give a reasonable 

interlayer potential with a minimum close to the experimental value.31,32 Figure 2 shows the 

comparison between the LDA, PBE and optB88-vdW interlayer potentials at constant lateral cell 

parameter for h-BN. As for graphite, the LDA interlayer potential for h-BN exhibits a well-defined 

minimum close to the experimental value of the interlayer distance. This “success” of the LDA 

masks its actual inability to properly describe the physics of the interlayer interaction. In fact, 

neither the GGA nor the LDA are able to account for long-range dispersion interactions, which are 

non-local correlation effects. In the LDA, however, the kinetic energy reduction effect is 

exaggerated by the tendency of this functional to overdelocalize the charge density. Because of the 

cancellation of these errors, the LDA interlayer potential mimics the correct one, albeit with a 

smaller binding energy and a too fast falloff at long distances, compared to functionals including 

non-local correlations.  
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Figure 2. Interlayer binding energy (per atom) of bulk h-BN as a function of interlayer distance (c/2) calculated 

by LDA, PBE and optB88-vdW. In all these calculations, the lattice constant a was fixed to the bulk zero-

Kelvin experimental value (2.5059 Å).  

Table 1. Calculated equilibrium lattice parameters (ignoring vibrational effects), Raman-active (E2g) 

frequencies, and interlayer binding energies of bulk h-BN using different functionals, and comparison with 

room-temperature experimental values.  

Functional a (Å) c (Å)  

Deviation from 

experiment ω[E2g] 

(cm-1) 

Eb 

(meV/atom) Δa/aexp 

(%) 

Δc/cexp 

(%) 

Experiment 2.505930 6.600030 - - 136610 
 

LDA 2.4911 6.4886 -0.6 -1.7 1383.8 -27.1 

PBE 2.5119 8.5022 0.2 28.8 1342.2 -1.6 

PBE-D2 2.5082 6.1716 0.1 -6.5 1350.5 -76.9 

PBE-D3 2.5086 6.7793 0.1 2.7 1349.0 -49.0 

optB86b-vdW 2.5120 6.5170 0.2 -1.3 1344.8 -69.8 

optB88-vdW 2.5108 6.5896 0.2 -0.2 1339.8 -69.5 

optPBE-vdW 2.5168 6.7884 0.4 2.9 1331.0 -63.4 

revPBE-vdW 2.5235 7.1011 0.7 7.6 1315.2 -52.4 

rPW86-vdW2 2.5217 6.9814 0.6 5.8 1303.6 -50.4 
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Table 1 summarizes the relaxed cell parameters of bulk h-BN as obtained from several 

functionals considered here. In all cases, the a lattice parameter is reasonably well described. 

However, the performances of these functionals in predicting the c lattice parameter are quite 

different. In the case of GGA-PBE, the very weak interlayer interaction leads to too large a value 

of c. The empirically-corrected versions show an interesting behavior: PBE-D2 underestimates the 

interlayer distance by 7.3% whereas its redefined version, PBE-D3, overestimates it by only 1.8% 

which marks a significant improvement in the description of interlayer interactions. Among the 

non-local-correlation (NLC) functionals, the optB88-vdW gives the most accurate value of c lattice 

parameter, which corresponds to a deviation of -1.1%. 

We also report in Table 1 the interlayer binding energies calculated with each functional at the 

corresponding equilibrium geometries. There are no experimental values for the binding energy of 

h-BN. Our calculations are in good agreement with those previously reported by Graziano et al. 

using a similar list of functionals.33 Based on the comparison with graphite calculations, these 

authors concluded that the interlayer binding energy from non-local-correlation functionals were 

the most sensible, whereas other empirically corrected functionals, like PBE-D2 and also the 

Tkatchenko-Scheffler-corrected PBE, slightly overestimated the binding energies.  

We now analyze the geometry of an isolated layer after relaxation, in comparison with the bulk. 

Table 2 lists the a lattice parameters obtained from calculations with each functional, and the 

relative values with respect to the bulk. All the NLC functionals (and the LDA) predict small 

contractions (between 0.1 and 0.2 pm) with respect to the bulk, which is the expected trend if the 

experimental Raman signature is interpreted as resulting from a lattice contraction. Interestingly, 

the Grimme functionals PBE-D2 and PBE-D3 predict instead a small expansion with respect to 

bulk values. The GGA-PBE frequencies are almost identical for bulk and single layer, since the 
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optimization of the bulk geometry with this functional leads to a very large (unrealistic) interlayer 

separation. Table 2 also shows the absolute values of the Raman frequencies calculated at the 

equilibrium geometries in both bulk and single-layer h-BN. The small contractions from bulk to 

single layer predicted by the non-local-correlation functionals can in principle account for the 

experimental upshift in Raman frequency. The magnitude of the variations in Raman frequencies 

predicted by the “opt” series of functionals, from 3.7 to 4.5 cm-1, is in agreement with the values 

obtained from experiments in supported samples, although significantly higher than the 

experimental upshifts in suspended samples (up to ~1 cm-1).14 In contrast, PBE-D2 and PBE-D3 

predict a downshift in frequency from bulk to single layer, in disagreement will all experiments. 

Table 2. Calculated equilibrium lattice parameter (ignoring vibrational effects) and Raman active (E2g) 

frequencies of single-layer h-BN using different functionals, and comparison with corresponding values for 

the bulk. 

 Lattice parameter ω[E2g] (cm-1) 

Functional a (Å) 
Change from 

bulk (pm) 
1L 

Change 

from bulk 

Experiment10 - - 1370 4 

LDA 2.4897 -0.14 1387.1 3.3 

PBE 2.5119 -0.01 1342.3 0.1 

PBE-D2 2.5121 0.39 1344.2 -6.4 

PBE-D3 2.5108 0.22 1344.8 -4.2 

optB86b-vdW 2.5102 -0.18 1349.3 4.5 

optB88-vdW 2.5091 -0.17 1344.2 4.4 

optPBE-vdW 2.5154 -0.14 1334.7 3.7 

revPBE-vdW 2.5225 -0.10 1318.1 2.9 

rPW86-vdW2 2.5207 -0.10 1306.4 2.8 
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3.3. Role of non-local correlation in the lattice expansion from monolayer to bulk 

In order to understand the different prediction of the monolayer-to-bulk cell variation from 

Grimme-corrected and NLC functionals, we have analyzed the variation in the energy of the bulk, 

calculated with either the PBE-D3 or the optPB88-vdW functional, upon contraction/expansion of 

the layer plane, at a fixed c parameter. It is possible to decompose that energy variation into 

monolayer contributions (i.e. twice the energy variation obtained in the calculation of the isolated 

layer) and interlayer interaction effects (i.e. contributions to the binding energy Eb). An energy 

decomposition analysis (see Supplementary Information for details) reveals that, in the PBE-D3 

calculations, the dispersion component (given by the Grimme term) is the dominant contribution 

to the inter-layer energy variation (the magnitude of the contributions from the other, non-

dispersive interactions is only ~10% of the dominant contribution). On the other hand, in the 

optB88-vdW calculations, the dominant contribution to the inter-layer energy variation is the non-

local correlation term (in this case the other contributions represent ~30% of the dominant one).  

Figure 3 shows the energy variation with a for bulk and monolayer, as well as the contribution 

of the dispersion or NLC terms to the interlayer interactions. The difference in behavior between 

the inter-layer dispersion interaction term in the Grimme-corrected functional and the inter-layer 

non-local correlation term in the NLC functionals can explain the different output from the two 

types of functional.  
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Figure 3.  Variation of the monolayer and bulk energies around the equilibrium in-plane lattice parameter. The 

reference for the energies are the values of the given energy component at the cell parameter at which the 

monolayer is in equilibrium (for each functional). 

In the case of PBE-D3, one can expect that the inter-layer dispersion interaction, given the 

simple mathematical definition of the Grimme correction as an attractive force, will tend to 

contract the layers, and this is indeed our observation. However, in the optB88-vdW, the non-local 

correlation does not behave in the same way, and it tends to expand the layers. The fact that the 

description of the in-plane expansion in the bulk requires a proper treatment of non-local electron 
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correlation is interesting. Our analysis indicates that this expansion cannot be accounted for by 

invoking a simple picture of intra-plane bond weakening due to the interaction of pz electrons. The 

effect is more complex and requires the consideration of non-local (inter-plane) correlation effects.  

 Considering that the calculation of the relevant interactions is more sophisticated and accurate 

in the NLC functionals than in the Grimme-corrected GGA ones, we believe that the small lattice 

expansion of the bulk (in comparison with the monolayer) predicted by the former type of 

functional is reliable, at least in the low-temperature limit (the effect of finite temperatures will be 

discussed in section 3.5). The LDA is able to mimic the correct behavior, but based on the wrong 

physics as explained above.  

3.4. Variation of Raman frequency with the number of layers 

Using the optB88-vdW functional, we now consider the behavior of N-layer h-BN structures, 

with N up to 5. Figure 4 shows the calculated frequency shifts with respect to the bulk, in 

comparison with the experimental data by Cai et al.14  on both supported and suspended samples. 

In bilayers, we predict an upshift of 2.4 cm-1 in the Raman frequency because of the contraction in 

the a parameter by 0.10 pm with respect to bulk. That value is in the middle of the range measured 

by Cai et al. on supported samples (between 1.8 and 3.2 cm-1), but significantly above the values 

measured for suspended samples (~0.5 cm-1). In an earlier experiment, Gorbachev et al. had 

measured a range of downshifts and upshifts for supported bilayers with respect to bulk,10 but 

interpreted the maximum upshift of ~1 cm-1 as the intrinsic value for the bilayer, with the other 

values arising from downshifts due to the interaction with the support. The calculated upshift for 

the trilayer 1.4 cm-1 (contraction of 0.06 pm with respect to bulk) is close to the maximum value 

obtained for supported samples in Ref. 14, but again above the values measured in suspended 
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samples. In the case of 4L and 5L, we have found upshifts of 1.1 cm-1 (0.05 pm) and 1.0 cm-1 (0.04 

pm), respectively, i.e. the differences with respect to the bulk decrease with the increase in the 

number of layers N, as expected. The relative peak position ∆ω is found to be proportional to 1/N 

(correlation R2=0.997), with a proportionality constant of 4.5 cm-1 (Figure 4 inset). 

 

Figure 4.  Relative positions of the Raman peaks for few-layer h-BN, with respect to the bulk, as obtained 

from optB88-vdW calculations ignoring vibrational contributions (solid circles). The red line is the fitting of a 

1/N law (see inset); the open circles and open blue triangles are the experimental values reported by Cai et al. 

in Ref. 14 for supported and suspended samples, respectively.  

3.5. Vibrational effects: finite-temperature calculations 

All the results presented above were obtained ignoring vibrational contributions and therefore 

any thermal expansion effects. However, due to the small magnitude of the changes in cell 

parameters between bulk and monolayer involved in the present discussion, thermal effects are 

likely to be important. To account for these, we have performed temperature-dependent 

optimizations of the bulk and monolayer cell parameters, using the QHA.  
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The results are shown in Figure 5. Similarly to what was reported for graphite in Ref. 29, in h-

BN the out-of-plane parameter (c) expands significantly with temperature (~5.60 pm from zero to 

room temperature), while the in-plane parameter a contracts, but only a little (~0.16 pm from zero 

to room temperature). Our results agree very well with the experimentally measured variation of 

bulk h-BN cell parameters with temperatures between 0 and 300 K as reported by Paszkowicz et 

al. in Ref. 30  (discounting the discrepancies in absolute values). The in-plane lattice contraction 

of bulk h-BN with temperature was first reported by Pease in Ref. 34. The physics behind this 

effect (in bulk and monolayer h-BN) can be expected to be the same as in graphite/graphene, i.e. 

to be caused primarily by low-frequency flexural phonons (acoustic out-of-plane modes).35 

However, the contraction of monolayer h-BN between 0 and 300 K is less than half of that in 

graphene over the same temperature range, which can be explained by the more negative 

Grüneisen parameters of the flexural modes of the latter29 compared to the former.14     

 

Figure 5. Relative dependence of bulk h-BN lattice parameters on temperature. The solid lines represent 

polynomial fittings to the experimental data as given in Ref. 30.  
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Figure 6. Predicted temperature variation of a) the in-plane lattice parameter and b) the Raman peak position 

of both bulk and monolayer h-BN, from DFT+QHA calculations. 

There is a noticeable difference between the variation of the cell parameter with temperature 

for the bulk and the monolayer of h-BN. The thermal contraction in the monolayer is smaller, less 

than 0.1 pm from zero to 300 K. In the bulk, most of the in-plane contraction from zero to 300 K 

happens above 100 K, when the negative rate of variation in cell parameter with temperature 

increases. This effect can be interpreted as resulting from the expansion of the c parameter in the 

bulk: as c expands, the atomic layers in the bulk become more like the isolated layers (in terms of 
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electrostatic/vdW environment), so the pace of in-plane contraction in the bulk has to increase to 

tend towards the a parameter value in the isolated layer. 

This observation is important to our understanding of the experimentally observed Raman 

signatures of the BN monolayer. It is clear that at room temperature, a significant part of the 

difference in a cell parameter (and therefore the difference in Raman frequency, as shown in figure 

6b) between bulk and single layer disappears as the results of thermal effects. This could be a 

possible explanation for the small difference in Raman frequency between bulk and monolayer 

(i.e. weak monolayer Raman signature) in the experiment with suspended samples by Cai et al.14 

Although our prediction for the intrinsic Raman signature of the monolayer at 300 K (~2 cm-1) is 

still higher than the values of up to 1cm-1 measured in suspended samples, our calculations 

including thermal effects do tend to support the conclusion by these authors of a weak intrinsic 

Raman signature. This interpretation also implies that the stronger Raman signature (4 cm-1) 

observed previously in supported samples is not intrinsic and is probably due to support effects. 

Thus, the agreement between our calculations without thermal expansion and the experimental 

measurements on the supported samples (shown in Figure 4) is likely to be fortuitous: the absence 

of finite-temperature effects in that model made the Raman signature stronger, bringing it into 

agreement with the support-induced value. 

4. CONCLUSIONS 

In summary, we have gained new insights into the origin of the Raman signature of h-BN 

monolayer (difference in Raman frequency with respect to the bulk). First, we demonstrate that 

the origin of the Raman signature is clearly related to a difference in in-plane cell parameter 

between the bulk and the monolayer. We prefer this statement over the conclusion (e.g., in Ref. 
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14) that the Raman frequencies are determined by the level of strain. The bulk and the single layer 

have slightly different equilibrium cell parameters, which means that both systems will have 

different Raman frequencies in the absence of strain. Our calculations show that the “direct” effect 

of inter-layer interactions on Raman frequency (i.e. the effect arising without considering the 

difference in cell parameter) is very small; most of the effect arises from the lattice contraction.  

We have shown that the best dispersion-corrected functionals (those with explicit non-local 

correlation) indeed predict, in a zero-temperature calculation, a contraction of lattice parameter 

from bulk to monolayer that can quantitatively explain the Raman shift observed in supported 

samples. While this could be at first interpreted as a confirmation of the existence of an intrinsic 

Raman shift, the simulation of the behavior at finite temperatures add a caveat: we show that the 

different thermal expansion of bulk and monolayer partially “erases” the intrinsic Raman 

signature. Our final conclusion of a weak intrinsic Raman signature is in agreement with the most 

recent experimental results using suspended samples by Cai et al.14, and tend to support the 

conclusion by these authors that the stronger Raman signature in supported samples is 

predominantly a substrate-induced effect.   
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SUPPLEMENTARY INFORMATION 

We provide here the details of the variation of the interlayer energy in the h-BN bulk, 

calculated with either the PBE-D3 or the optPB88-vdW functional, upon contraction/expansion 

of the layer plane, at a fixed c parameter. The purpose is to demonstrate that the most important 

contribution to variations in the interlayer energy comes from dispersion interactions.  

As described in the article, the variation of bulk energy with a can be decomposed into 

monolayer contributions (i.e. twice the energy variation obtained in the calculation of the 

isolated layer) and interlayer interaction effects (i.e. contributions to the binding energy). The 

interlayer energy can in turn  be decomposed into dispersion  contributions (from Grimme’s  

term in PBE-D3 or from non-linear correlation term in optB88-vdW) and other contributions. 

Table 1S shows that, in the PBE-D3 calculations, the dispersion component (given by the 

Grimme term) is the dominant contribution to the inter-layer energy variation (the magnitude 

of the contributions from the other, non-dispersive interactions, is only ~10% of the dominant 

contribution).  Analogously, in the optB88-vdW calculations, the dominant contribution to the 

inter-layer energy variation is the non-local correlation term (in this case the other contributions 

represent ~30% of the dominant one).  
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Table 1S. Variation of the interlayer energy (∆Einter) in bulk h-BN with in-plane lattice parameter as calculated 

with the PBE-D3 functional. ∆Einter is decomposed into two terms: ∆Edisp is the dispersion contribution and ∆Erest 

contains the rest of the contributions. Here a0 = 2.5086 Å is the equilibrium cell parameter of single-layer h-BN 

with this functional, and |∆a|=0.0022 Å is the absolute value of the difference in equilibrium cell parameter 

between bulk and monolayer. The interlayer energies per formula unit are given relative to their values at cell 

parameter a0.  

 Cell parameter  ∆Einter (meV) ∆Edisp (meV) ∆Erest (meV) 

a0 – 2|∆a| -0.35 -0.38 0.03 

a0 - |∆a| -0.18 -0.19 0.02 

a0 0.00 0.00 0.00 

a0 + |∆a| 0.18 0.19 -0.01 

a0 + |∆a| 0.35 0.38 -0.03 

 

Table 2S. Variation of the interlayer energy (∆Einter) in bulk h-BN with in-plane lattice parameter as calculated 

with the PBE-D3 functional. ∆Einter is decomposed into two terms: ∆Enlc is the non-linear correlation 

contribution and ∆Erest contains the rest of the contributions. Here a0 = 2.5108 Å is the equilibrium cell 

parameter of single-layer h-BN with this functional, and |∆a|=0.0017 Å is the absolute value of the difference 

in equilibrium cell parameter between bulk and monolayer. The bulk energies per formula unit are given 

relative to their values at cell parameter a0.  

Cell parameter  ∆Einter (meV) ∆Enlc (meV) ∆Erest (meV) 

a0 – 2|∆a| 0.24 0.34 -0.10 

a0 - |∆a| 0.12 0.17 -0.05 

a0 0.00 0.00 0.00 

a0 + |∆a| -0.12 -0.17 0.05 

a0 + |∆a| -0.24 -0.34 0.10 

 


