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This is anOp
Abstract – Context: Cosmogenic isotopes provide useful estimates of past solar magnetic activity,
constraining past space climate with reasonable uncertainty. Much less is known about past space weather
conditions. Recent advances in the analysis of 10Be by McCracken & Beer (2015, Sol Phys 290: 305–3069)
(MB15) suggest that annually resolved 10Be can be significantly affected by solar energetic particle (SEP)
fluxes. This poses a problem, and presents an opportunity, as the accurate quantification of past solar
magnetic activity requires the SEP effects to be determined and isolated, whilst doing so might provide a
valuable record of past SEP fluxes.
Aims: We compare the MB15 reconstruction of the heliospheric magnetic field (HMF), with two
independent estimates of the HMF derived from sunspot records and geomagnetic variability. We aim to
quantify the differences between the HMF reconstructions, and speculate on the origin of these differences.
We test whether the differences between the reconstructions appear to depend on known significant space
weather events.
Methods: We analyse the distributions of the differences between the HMF reconstructions. We consider
how the differences vary as a function of solar cycle phase, and, using a Kolmogorov-Smirnov test, we
compare the distributions under the two conditions of whether or not large space weather events were known
to have occurred.
Results: We find that the MB15 reconstructions are generally marginally smaller in magnitude than the
sunspot and geomagnetic HMF reconstructions. This bias varies as a function of solar cycle phase, and is
largest in the declining phase of the solar cycle. We find that MB15's excision of the years with very large
ground level enhancement (GLE) improves the agreement of the 10Be HMF estimate with the sunspot and
geomagnetic reconstructions. We find no statistical evidence that GLEs, in general, affect the MB15
reconstruction, but this analysis is limited by having too few samples. We do find evidence that the MB15
reconstructions appear statistically different in years with great geomagnetic storms.

Keywords: solar activity reconstructions / cosmogenic isotopes / solar energetic particles
1 Introduction

Records of solar magnetic activity are critical for further
developing our understanding of the Sun's magnetic field, as
well as of the resulting space weather and space climate
phenomena driven by solar magnetic activity. Past solar
magnetic activity can be estimated from a range of different
proxies, with varying reliability, temporal resolution, and
extent into the past. Three well established proxies are found in
sunspot observations, geomagnetic activity records, and the
concentrations of cosmogenic radionuclides stored in natural
archives (Owens et al., 2016a,b). These estimates of historical
ding author: l.a.barnard@reading.ac.uk
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solar variability are invaluable for placing the comprehensive
space-age solar observations in a proper context (Barnard
et al., 2017), and for investigating plausible scenarios of future
space climate change (Abreu et al., 2008; Barnard et al., 2011;
Steinhilber et al., 2012; Matthes et al., 2016).

Both the sunspot observations and geomagnetic activity
records rely on a network of human observers and so can
provide information on the Sun as far back as reliable
measurements have been recorded and preserved (Lockwood,
2013; Usoskin, 2013). In practice these sunspot and
geomagnetic activity records provide information on solar
variability extending back several centuries, albeit with
increasing uncertainty into the past, owing to changes in
instrumentation, and observing procedures, and problems of
intercalibrating the results of different observers.
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A different kind of proxy is available in the form of the
concentrations of cosmogenic radionuclides stored in natural
archives, such as 14C fixed in tree trunks, and 10Be stored in
polar ice sheets. These records do not rely on the past efforts of
an observer network, but instead require present day retrievals
of environmental samples which require significant levels of
expertise and expense to process and interpret. For example,
converting the deposited cosomogenic iosotope concentrations
into the cosmogenic isotope production rate throughout Earth's
atmosphere requires a detailed understanding of the transport
and deposition processes of that cosmogenic isotope through
the Earth system (McCracken, 2004; Heikkilä et al., 2007).
Additionally, the inversion procedure needed to understand the
implications for solar activity requires a model of galactic
cosmic ray (GCR) transport through the heliosphere, and
estimates of the local interstellar spectrum of GCRs. However,
using suitable inversion techniques with cosmogenic radio-
nuclides it is possible to infer solar variability over several
millenia. Although, due to the timescales of transport and
deposition of cosmogenic radionuclides through the Earth
system, this extended view into the past is at lower temporal
resolution and higher uncertainty than is achieved with the
sunspot and geomagnetic reconstructions (Lockwood, 2013;
Usoskin, 2013). Recently annual records of solar activity
extending back several centuries have been developed from
cosmogenic isotope records, for example, from 10Be by
McCracken & Beer (2015).

Given the complexity and independence of these different
proxy records, they each illustrate a remarkably consistent
picture of long-term space climate variability over the past few
centuries (Owens et al., 2016a,b). However, there is much
more uncertainty about the historical space weather environ-
ment. Geomagnetic observations provide a good quantitative
record of geomagnetic storms back to 1868 (Kilpua et al.,
2015; Lefèvre et al., 2016; Vennerstrom et al., 2016) and
increasingly sparse and qualitative information on geomag-
netic storms back to approximately 1845 (Lockwood, 2013).

Much less is known about the historic occurrence of solar
energetic particle (SEP) events and ground level enhancements
(GLEs), with the first observation of GLEs in ionisation
chambers in 1942 (Forbush, 1946). It was previously thought
that enhanced atmospheric nitrate production due to SEP
fluxes may leave a measurable increase in polar ice nitrate
concentrations, and that consequently impulsive enhance-
ments in polar ice nitrates could serve as a proxy for historic
SEP events (Dreschhoff & Zeller, 1990; Shea et al., 1999;
McCracken et al., 2001; Kepko et al., 2009). Subsequent
investigations questioned the reliability of this potential proxy
record (Wolff et al., 2012; Duderstadt et al., 2014), and
currently it is widely held that polar ice nitrate concentrations
are not a valid proxy for SEP fluxes.

It has also been argued, both through observations and
physical modelling, that extreme SEP events may measurably
perturb the 14C and 10Be cosmogenic isotope records (Usoskin
et al., 2006; Miyake et al., 2012, 2013; Usoskin et al., 2013;
Herbst et al., 2015; McCracken & Beer, 2015; Dee et al.,
2016). Therefore, cosmogenic isotopes may provide the only
viable proxy record for historic SEP fluxes. Such a proxy
would be of significant value, as the effective mitigation of
space weather hazards requires the development of relevant
extreme event scenarios, and it may be a poor approximation to
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extrapolate our experience of current space weather into the
future, when solar activity could be significantly different. In
addition, the detection, accurate quantification, and removal of
SEP-generated cosmogenic isotopes would generate a better
record of past variations in GCR fluxes.

We aim to assess if there is evidence for an SEP induced
bias in the annual 10Be reconstruction of McCracken & Beer
(2015) (hereafter MB15). MB15 provided two annual
reconstructions of the average heliospheric magnetic field
(HMF), based on the analysis of 10Be. The first assumed no
10Be production from SEP events, while the second suppressed
impulsive enhancements in 10Be thought to be due to GLEs
and atmospheric nuclear bomb tests. The motivation for this is
two fold; firstly, to develop a better understanding of
uncertainties in the MB15 reconstruction and assess how
effective the SEP excision from 10Be record was; secondly, if a
bias is present, can it be used to infer anything about historical
SEP fluxes, and does it motivate the pursuit of a next
generation of reconstructions with improved temporal resolu-
tion and/or sensitivity?
2 Data

2.1 Cosmogenic isotope HMF reconstruction

McCracken & Beer (2015) produced annually resolved
estimates of the near-Earth HMF magnitude from 1391–1983,
derived from the analysis of 10Be concentrations provided by
the Dye-3 ice-core and North Greenland Ice Core project
(NGRIP). Furthermore, MB15 presented evidence of impul-
sive enhancements in 10Be concentrations following known
GLE events (in 1942, 1949, and 1956), as well as after high-
altitude nuclear bomb tests (in 1962). By analysing the
magnitude of the impulsive 10Be enhancements associated
with the solar events, MB15 conceived an algorithm to identify
other years in the 10Be record which may have been affected by
extreme space weather, over the period 1800–1983. We note
that MB15 also analysed historic great geomagnetic storm
(GGMS) occurrence, which provided additional circumstantial
evidence that the years of impulsive 10Be enhancements were
associated with extreme space weather events. Consequently,
MB15 considered it prudent to provide two estimates of the
HMF; the first, Bc1, was based on the original 10Be record,
without further consideration of the impulsive enhancements
assumed to be associated with extreme space weather; the
second, Bc2, aimed to suppress the effect of the impulsive 10Be
enhancements by replacing the data in these years with
interpolated estimates based on surrounding years. Here we
use both the Bc1 and Bc2 records, over the period 1845–1983.

2.2 Geomagnetic HMF reconstruction

Over the last two decades, much progress has been made in
estimating the near-Earth solar wind and HMF conditions from
geomagnetic variability (Lockwood et al., 1999; Svalgaard &
Cliver, 2005, 2010; Lockwood, 2013; Lockwood et al.,
2013a,b, Lockwood et al., 2014a,b; Holappa et al., 2014a,b;
Svalgaard, 2014; Mursula et al., 2016). Typically these
techniques work by establishing a statistical relationship
between the observed geomagnetic variability indices and
f 18
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near-Earth solar wind conditions. These relationships are
calibrated over the space age, for which we generally have in-
situ spacecraft observations of the near-Earth solar wind. Then,
to estimate historic solar wind conditions, the statistical
relationships are extrapolated, applying them to geomagnetic
observations from before when in-situ observations are
available. For technical reasons, related mainly to factors
such as the short-term variability in the HMF orientation and
the variability of the spatial distribution of ionospheric
conductivities, it has so far only been possible to estimate
annual means of the HMF magnitude from geomagnetic
indices (Lockwood, 2013; Lockwood et al., 2016b). Focusing
on annual reconstructions of the HMF intensity, Owens et al.
(2016a) recently reviewed the progress in this area, and
published a consensus estimate of annual mean HMF
computed from geomagnetic indices. The consensus was
computed from a weighted mean of the estimates provided by
Lockwood et al. (2013b) and Svalgaard (2014), and spans the
period 1845–2013. We use the Owens et al. (2016a) consensus
geomagnetic reconstruction, Bg, in our comparison with the
Bc1 and Bc2 records.
2.3 Sunspot HMF reconstruction

The annual mean near-Earth HMF magnitude can also be
estimated from sunspot observations. One approach to this is
similar in nature to the geomagnetic reconstructions, which is
to establish a statistical relationship between the observed
HMF and sunspot number. For example, it has been shown that
an approximately linear relationship exists between the annual
mean HMF magnitude and the square root of the annual mean
sunspot number (Svalgaard & Cliver, 2005). Another approach
is to model the open solar magnetic flux (OSF), the source of
HMF, as a continuity equation (Vieira & Solanki, 2010; Owens
& Lockwood, 2012). For example, in the Owens & Lockwood
(2012) model, the source of the OSF is parameterised in terms
of the sunspot number, while the loss is parameterised in terms
of the heliospheric current sheet tilt. With an estimate of the
OSF, an empirical relationship between the OSF and HMF is
used to compute the HMF. An additional consideration with
these reconstructions is which sunspot record to use? Both the
international and group sunspot numbers have been signifi-
cantly revised recently, and multiple different methodologies
and corrections have been proposed, with varying degrees of
acceptance (Clette & Lefèvre, 2016; Cliver, 2016; Lockwood
et al., 2016a). Owens et al. (2016a) also produced a consensus
HMF reconstruction from sunspot observations, spanning the
period 1750–2013. Owens et al. (2016a) used both the
Svalgaard & Cliver (2005) and Owens & Lockwood (2012)
methodologies with four records of the sunspot number (2
international and 2 group numbers) to compute the consensus
HMF reconstruction, Br, which we use here. The aim of using
both reconstruction methods with multiple sunspot records
was to help compute the uncertainty in HMF estimate from
both the sunspot records and HMF reconstruction methods.

2.4 Ground level enhancement catalogue

We use a catalogue of GLEs provided by the National
Geophysical Data Center, available at https://goo.gl/ztktlZ.
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This list is compiled from both the world wide neutron monitor
network, whose spatial coverage varies in time, and also a
sparser network of neutron monitors and ionisation chambers
from before the development of the world wide network. Here
we use this record to determine years with and without GLEs,
over the period 1942–1983. We note that the sparsity of
neutron monitors both before and during the development of
the world wide network means that there is a chance,
particularly earlier in the catalogue, that GLEs were missed.
Note also that there is a>500-fold dynamic range between the
smallest (<10%) and largest (5000%) GLE in the catalogue,
and we may expect that the contributions of the smaller
(<200%) GLE will be proportionally smaller than those
considered by MB15.

2.5 AA geomagnetic index

We use the aa geomagnetic index to analyse the occurrence
of geomagnetic storms. We choose to use the aa-index as it is
the longest continuously available index that is also sensitive to
geomagnetic storms. The aa-index is a 3 h range index, which,
at any given time, is computed from geomagnetic variability
observed at two approximately antipodal observatories, one in
the UK and one in Australia. However, both the UK and
Australian observatories have moved twice over the duration
of the aa-index, and so in fact the aa-index is a composite index
formed from 6 pairings of cross-calibrated observatories. We
obtained the 3-hourly aa-index data for the period 1868-
present from http://isgi.unistra.fr/indices_aa.php.
3 Methods

3.1 Fractional differences

To compare the different HMF reconstructions we compute
the fractional differences of the form

Fxn ¼ Bcn � Bx

Bx
; ð1Þ

where Bx refers to either the geomagnetic or sunspot
reconstructions, Bg or Br, and Bcn refers to either Bc1 or Bc2,
the MB15 reconstructions that have not or have been modified
to account for impulsive 10Be enhancements.

3.2 Solar cycle phase and polarity cycle phase
calculations

We will compare how the differences between the HMF
reconstruction methods vary as a function of both the Schwabe
solar cycle phase, and also the polarity cycle phase. By polarity
cycle, we mean the cycle in the modulus of the dipole
component of the solar magnetic moment. The solar cycle
phase is computed according to

fs ¼ 2p � t � tstart
tstop � tstart

; ð2Þ

where t is time in years, and tstart and tstop are the start and end
dates of the Schwabe cycle, taken from https://en.wikipedia.
f 18
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Fig. 1. (A–D) Time series of the annual HMF reconstructions from 1845–1983, derived from; 10Be concentrations, Bc1 (with impulsive
enhancements), and Bc2 (with suppressed impulsive enhancements); geomagnetic observations, Bg; and sunspot observations, Br. Error bars
are 1s errors of the mean. The red squares in panel (A) mark years where Bc1≠Bc2. (E) Kernel density estimates of the distributions of four
different HMF reconstructions.
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org/wiki/List_of_solar_cycles. The polarity cycle phase is
computed according to

fp ¼ 2p � t � tn;max � 1

tnþ1;max � tnmax
; ð3Þ

where tn, max and tnþ1,max are the times of the sunpot maxima
in the Schwabe cycle, for the nth and the nthþ 1 cycles
respectively. The �1 in the numerator accounts for the fact
that, on average, the solar polar fields reverse approximately 1
year after sunspot maximum (Lockwood et al., 2012). Of
course, for the more recent cycles we could use magnetogram
data to estimate polarity cycle timings more accurately. But as
this is not possible for the entire record, we choose to use this
more approximate method, which we can apply to the whole
data sequence uniformly.

3.3 Geomagnetic storm definition

To define geomagnetic storms in the aa-index, we follow a
procedure similar to Kilpua et al. (2015). We define storms in
the aa-index as periods where aa exceeds 100 nT. Storm start
and end times are set to the times of the nearest 3-hourly value
above the 100 nT threshold (approximately the 99th percen-
tile of the full aa distribution). We also compute the peak aa-
index value in each storm, and integrated intensity. Secondary
storm maxima with no intermediate drop below the storm
threshold are not split into separate events, and there is also
no minimum time threshold between consecutive storms.
This procedure generates 1919 storms over the period 1868–
1983. Finally, we are interested particularly in a record of the
largest storms, so we select from this list only storms with
maximum intensities greater than the 90th percentile of storm
maximum intensities. This results in a list of 186 large
geomagnetic storms, which we hereafter refer to as GGMS.
The 90th percentile threshold is arbitrary, but the results we
later discuss based on this list of GGMS are robust to
moderate changes to this threshold (between the 85 and 95th
percentiles).
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4 Results

Panels A–D of Figure 1 show the time series of the four
HMF reconstructions, with Bc1, Bc2, Bg, and Br in panels A, B,
C and D, respectively. This window is restricted to the period
of overlap between the four reconstructions, 1845–1983. The
red squares mark the years in Bc1 that are affected by impulsive
10Be enhancements (McCracken & Beer, 2015). Some of these
points clearly appear to be outliers, being widely separated
from the local trend, more than uncertainty in the values would
appear to explain.

Each of the HMF reconstructions shows similar Schwabe
cycle variations, although these are better resolved, with
smaller uncertainties for Bg and Br. Note that this is not a
criticism of the Bc1 and Bc2 series; considering the very
different nature of the Bc1 and Bc2 series, we consider it
remarkable that they agree with Bg and Br so closely.

Panel E of Figure 1 shows kernel density estimates of the
distribution of each of the HMF reconstructions, using the
same color scheme as panels A–D. Kernel density estimation
provides an empirical estimate of a parameter's probability
distribution function by assigning a specified analytical
distribution function (e.g. Gaussian, top-hat, cosine etc.) to
each observation, and assuming that the normalised sum of
these individual distributions provides a fair representation of
the parameter's true distribution function (Wilks, 1995).

Overall, the distributions of these four reconstructions
appear quite similar, with similar modal values. Both the Bc1

and Bc2 series appear to be located at slightly smaller HMF
magnitudes (≈0.1 nT); the median values of Bc1 and Bc2 are
6.08 nT and 6.16 nT, while the median values of Br and Bg are
6.27 nT and 6.30 nT. The largest differences between Bc1 and
Bc2 and Bg and Br are found in the lower tail of the
distributions, where there is more probability at lower values in
the Bc1 and Bc2 series. Conversely, the upper tails of the four
distributions appear quite similar. The impact of the
modification applied to Bc2 to account for the 10Be impulsive
enhancements is apparent, with the low tail having less
probability at lower HMF values than for Bc1.
f 18
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Fig 2. Time series of the fractional differences between the Bc1 and Bc2 reconstructions with both Bg and Br. Computation of the fractional
differences is explained in Section 3.1: Fg1 is the fractional difference between Bc1 and Bg, Fg2 between Bc2 and Bg, Fr1 between Bc1 and Br, and
Fr2 between Bc2 and Br. Error bars are 1s errors of the mean.
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Figure 2 presents the time series of the fractional
differences between the HMF reconstructions, Fg1, Fg2, Fr1,
and Fr2 in panels A–D, respectively. Each time series appears
to show cyclic variations which correspond approximately
with Schwabe solar cycles, which will be analysed in more
detail in Section 4.1. Furthermore, we note the close
correspondence between Fg1 and Fr1 series, as well as the
Fg2 and Fr2 series, which arises due to the remarkable
agreement between Bg and Br. Finally, we note that, visually,
there does not appear to be any secular trend in the fractional
difference time series.

Kernel density estimates of the distributions of the
fractional differences are shown in Figure 3. The distributions
for Fg1 and Fg2, and Fr1 and Fr2 are shown in panels A and B,
respectively. The correspondingly colored dots mark the
values of fractional differences in the years of impulsive 10Be
enhancements, where the vertical coordinates are random
numbers, to make clear the spread of the values. For Fg2 and
Fr2, these points are clustered closer to the zero-difference line
than for Fg1 and Fr1, showing that in these years Bc2 is in
improved agreement with Br and Bg relative to Bc1. This
demonstrates the impact of the McCracken & Beer (2015)
procedure to suppress the effects of the impulsive 10Be
enhancements. The four distributions are approximately
centered on zero, with similar modal values of 0.01, 0.08,
0.00, and 0.07 for Fg1, Fr1, Fg2 and Fr2, respectively. The
distributions are moderately asymmetric, with each showing
more weight below the modal value than above. It is not clear
what causes this asymmetry, but it could possibly result from
extra 10Be production due to SEP fluxes. Were extra 10Be to be
produced by SEPs, that was assumed to be due to GCRs, it
would lead to a underestimate of the HMF magnitude in the
MB15 reconstructions. Such a negative bias would increase the
occurrence of negative fractional differences, and so might
explain the asymmetry shown in Figure 3.
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4.1 Differences with Schwabe cycle phase and
polarity cycle phase

Figure 2 revealed that the fractional differences between
10Be reconstructions with the geomagnetic and sunspot
reconstructions appear to show regular variations with the
solar cycle. Here we investigate this further by looking at
composites of the HMF and fractional differences over the
solar cycle. Each year of the reconstructions is assigned a solar
cycle phase, as described in Section 3.2. We divide the solar
cycle into 10 equally spaced and contiguous phase bins, and for
each bin, we compute the mean of each HMF reconstruction, as
well as the mean of the fractional differences Fg1, Fr1, Fg2 and
Fr2. The overlapping extent of the 4 reconstructions spans solar
cycles 9–21, although neither the beginning of cycle 9 nor the
end of 21 are fully sampled. Because of this, and because of the
variable length of the Schwabe cycle, each phase bin is not
equally sampled, and minimum number of samples is 11
annual values, the maximum is 16 values, while 6 of the 10
bins have 13 or 14 samples. However, although the phase
sampling is not equal, the differences are modest, and each bin
has a reasonable number of samples, so we assume that this
doesn't influence our subsequent analysis. Figure 4 presents the
results of the solar cycle composites, with the HMF, Fg1 and
Fr1, and Fg2 and Fr2, shown in panels A, B, and C, respectively.
In each panel, the error bars are 1s errors of the mean
computed in each phase bin. This confirms that there is cyclic
variability in the differences between the 10Be reconstruction
and the geomagnetic and sunspot reconstructions, which peaks
in the declining phase of the solar cycle, around ’s= 4 rads.
Furthermore, the close agreement between the independently
derived Bg and Br series (panel A), suggests to us that these
differences arise from the 10Be reconstruction. Additionally, as
they are present for both Bc1 and Bc2, with nearly identical
magnitudes, we conclude that these differences and are not
f 18



Fig. 3. (A) Kernel density estimates of the distributions of fractional differences between Bg with Bc1 and Bc2, Fg1 and Fg2, respectively. The
purple and orange dots show the fractional differences in years (McCracken & Beer, 2015) identified as being affected by SEP events (the
vertical coordinates of these points is randomised, which otherwise overlap). (B) The same as panel (A), except showing the fractional
differences of Br with Bc1 and Bc2.
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caused or resolved by the procedure to suppress the impulsive
10Be enhancements. This result is robust to changes in the
number of solar cycle phase bins, with qualitatively similar
results obtained with 8–12 phase bins.

The question then, is which processes could cause the
systematic disagreement between the 10Be reconstructions
with the geomagnetic and sunspot reconstructions in the
declining phase of the Schwabe cycle? One plausible candidate
is the modelling of the GCR heliospheric transport, results
from which are employed by McCracken & Beer (2015) to
estimate the HMF from the 10Be observations. GCRs
propagate diffusively through the turbulent HMF to near-
Earth space, but they also undergo systematic drift patterns due
to large scale structure and polarity of the HMF. Full details of
the MB15 inversion procedure and GCR transport model are
provided in McCracken & Beer (2015). However, to
summarise, in their description of the 10Be inversion
procedure, McCracken & Beer (2015) detail how the
systematic effects of the Hale cycle modulations remain in
the HMF series, as the inversion procedure necessarily
averaged over the positive and negative phases of the Hale
cycle. These polarity cycle effects are largest in the declining
phase of the Schwabe cycle, as the new polarity cycle
commences with the polarity reversal of the solar polar
magnetic field.

Compositing over Schwabe cycles aliases the effects of the
differing heliospheric GCR modulations with polarity cycle
phase (Thomas et al., 2015). This aliasing can be avoided by
instead compositing over both positive and negative polarity
cycles, which we do here following a similar procedure to
Owens et al. (2015). Following the standard nomenclature, we
here on refer to the positive and negative polarity cycles as
qA> 0 and qA< 0, respectively (where q is the charge polarity
of the GCR and A is the solar field polarity with A> 0 and
A< 0 describing field that is towards the solar poles in,
respectively, the southern and northern hemisphere). As with
the composite analysis presented in Figure 4, we split the
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positive and negative polarity cycles into 10 phase bins, and
compute the means of the HMF and the fractional differences
in each phase bin. Subdividing the data further into positive
and negative polarity cycles means that the sampling in each
phase bin is poorer than for the Schwabe cycle analysis, but
each phase bin still has between 6 and 9 samples. The results of
this compositing are shown in Figure 5, with the composites of
HMF, Fg1 and Fr1, and Fg2 and Fr2, shown in panels A, B, and
C, respectively. Here the largest systematic difference between
10Be reconstructions and the geomagnetic and sunspot
reconstructions appears in qA> 0 cycles.

Our interpretation of the systematic difference between the
MB15 reconstructions with the geomagnetic and sunspot
reconstructions is that this is primarily an artefact of the GCR
heliospheric transport modelling used in the MB15 10Be
inversion. Furthermore, this analysis shows that the systematic
difference doesn't persist over the whole solar cycle, but is
apparent in the declining phase of the Schwabe cycle, and can
lead to differences of approximately 10–20% relative to the
geomagnetic and sunspot reconstructions. Recent observations
of the Hale cycle modulation of the GCR intensity should
make it possible to use a GCR heliospheric transport model
that includes particle drift effects (e.g. Strauss & Effenberger
2017) to examine long term trends, possibly reducing the
differences seen in Figures 4 and 5.
4.2 HMF reconstructions differences conditional on
large space weather event occurrence

In this section we will analyse the distributions of the
reconstruction differences Fg1 and Fr1, conditional on whether
or not large space weather events were know to occur. As we
wish to assess the possible sensitivity of the 10Be record to
significant space weather events, we exclude Fg2 and Fr2 from
further analysis, as the Bc2 series was processed to minimise
the effects of known GLE events.
f 18



Fig. 4. (A) Composite of the HMF reconstructions with Schwabe solar cycle phase. (B) Composite of the fractional differences of Bg and Brwith
BC1. (C) Composite of the fractional differences of Bg and Brwith BC2. For each panel, the error bars are 1s errors of the mean. In panels B and C,
the black dashed line shows the zero fraction difference line.
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4.2.1 Historical space weather

As we look further into the past, particularly prior to the
space age, reliable records of space weather events become
harder to obtain (Barnard et al., 2017). Furthermore, the past
development of observatories and instrumentation often means
that it is not possible to obtain homogeneous quantitative
records of space weather occurrence over long time periods.
Here we will assess the historic occurrence of large space
weather events in terms of the occurrence of GLEs (Sect. 2.4)
and GGMS defined in the aa geomagnetic index (Sects. 2.5 and
3.3). Given the hypothesis that strong SEP events and GLEs
may bias the cosmogenic isotope reconstructions, we would,
ideally, only consider records of SEPs and GLEs. However, the
GLE record only extends back to 1942, having a short 41 year
overlap with the MB15 reconstructions, which end in 1983.
Therefore we will also consider GGMS, the record of which
extends back to 1868, having 115 years of overlap. In doing so
we make an assumption that in years where GGMS occur, it is
more likely that strong SEP events and GLEs will also occur.
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MB15 provided some circumstantial evidence that supports
this assumption, showing that the majority of the 3s increases
in 10Be before 1942 were associated with GGMS.

Figure 6 summarises these two metrics of historic space
weather. Panel A shows a time series of the 3-hourly aa index
(black), with the maxima of GGMS marked by red circles.
Furthermore, the timings of known GLEs are marked by the
vertical cyan lines. Panels B and C shows these same data, but
as a function of Schwabe cycle phase and polarity cycle phase.
Additionally, Figure 7 presents an alternative view of these
data. Panel A shows the annual count of GGMS and GLEs,
while panels B and C show the count of GGMS and GLESwith
both Schwabe cycle phase and polarity cycle phase. For the
later two, the Schwabe and polarity cycles were split in to 10
equal width phase bins, and the number of events in each bin
was counted. This figure is intended to show the general trend
of the occurrence of GGMS and GLE in time and with solar
cycle phase. Note that we do not take account of the slightly
uneven sampling of ’s and ’p, nor do we scale the counts to
account for the 115 year duration of the GGMS record relative
f 18



Fig. 5. Panels A–F show composites of the HMF reconstructions and the fractional differences Fg1, Fr1, Fg2, Fr2, with polarity cycle phase. The
composites are split according to solar magnetic polarity, with qA> 0 cycles in panels A–C, and qA< 0 cycles in panels D–F. For each panel, the
error bars are 1s errors of the mean.
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to the 41 year duration of the GLE record; the GGMS and GLE
counts should therefore be compared in waveform, but not in
amplitude. Taken together, Figures 6 and 7 reveal that there is
cycle-to-cycle variability in the occurrence of GGMS and
GLE, but that typically these events are more likely to occur
near the middle of the Schwabe cycle. A similar result was
found for the occurrence of gradual SEP events (Barnard &
Lockwood, 2011).

4.2.2 HMF reconstruction differences with GLEs

To discern whether GLEs, in general, measurably affect the
MB15 reconstruction we will use a statistical approach that
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compares the distributions of Fg1 and Fr1 in years with and
without GLE events. We are restricted to the 41 year overlap
period between the MB15 reconstructions and the GLE record,
for which 19 years contained a GLE and 22 years did not
contain a GLE. For both the GLE and no-GLE conditions, we
compute the empirical cumulative distribution function
(ECDF) of Fg1 and Fr1. Computation of ECDFs is discussed
in Appendix A.1. Furthermore, we compute 100 bootstrap
estimates of the ECDFs by drawing random samples from the
Fg1 and Fr1 series, with same number of years as the GLE and
no-GLE conditions, but irrespective of whether or not GLEs
occurred (more information on the bootstrap procedure, and
an example, are provided in Appendix A.2). If the ECDFs of
f 18



Fig. 6. (A) Time series of the aa geomagnetic index (black), from 1867–2014, with the maxima of great geomagnetic storms marked by red
circles. Also shown are the timings of known GLE events (cyan lines). Panel (B) Shows the same data as (A), except as a function of Schwabe
cycle phase. Panel (C) Shows the same data as (A), except as a function of polarity cycle phase. We note that, due to the availability of 10Be data,
we only use the geomagnetic and GLE observations up until 1983.
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Fg1 and Fr1 for the GLE and no-GLE conditions are markedly
different from the ECDFs of the 100 bootstrap samples, then
this is some evidence that years with and without GLEs affect
the MB15 reconstruction differently. Taken in conjunction
with a viable mechanism for GLEs affecting 10Be, such a
difference might suggest that GLEs do, in general, affect the
MB15 reconstruction. These ECDF data are presented in
Figure 8, with the Fg1 and Fr1 data analysed in the left and right
columns, and the no-GLE and GLE conditions given in the top
Page 9 o
and bottom rows. The observed ECDFs for the two conditions
are drawn in red and blue for Fg1 and Fr1, while the bootstrap
ECDFs are drawn in grey. In each case, the ECDFs of the GLE
and no-GLE conditions are located within the spread of the
bootstrap ECDFs, and this test provides no evidence that
GLEs, in general, affect the MB15 reconstruction. This may be
due to the limited sample of years. Additionally it may be that
only the largest GLE can significantly perturb the 10Be record.
For example, MB15 estimate that an individual GLE needs
f 18



Fig. 7. (A) Time series of the annual count of great geomagnetic storms (red), and GLE events (cyan). (B) The number of great geomagnetic
storms (red) and GLE events (cyan) as a function of Schwabe cycle phase. (C) The number of geomagnetic storms (red) and GLE events (cyan)
as a function of polarity cycle phase. In panels (B) and (C), phase bins 2p/10 wide were used. No account was taken of the uneven sampling of
solar cycle phase, or the fact the GLE record only spans 1937-present; these plots only show coarse trends with solar/polarity cycle phase, and the
absolute number of geomagnetic storms and GLE events should not be directly compared. We note that, due to the availability of 10Be data, we
only use the geomagnetic and GLE observations up until 1983.
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exhibit a >100% increase in Neutron Monitor count rate(s)
before it is likely to generate a quantity of 10Be large enough to
stand out from other sources of variability at annual resolution.
Only approximately 15% of recorded GLE have been
estimated to meet this criteria. However, we also note that
at annual resolution it is possible that an accumulation of
smaller GLE, and SEP events that do not register as GLE,
could plausibly deposit the same net fluence of 10Be producing
energetic charged particles. Ideally we would further subdivide
the data to assess the impact of GLE magnitude, but
Page 10
unfortunately there are too few samples for this to be
reasonable.

4.2.3 HMF reconstruction differences with GGMS

We will now assess whether the distribution of Fg1 and Fr1

values depends on the occurrence of GGMS. We do not
hypothesise that GGMS are directly affecting the production of
cosmogenic isotopes, but do assume that the GGMS record
serves as a proxy for the occurrence of large space weather
of 18



Fig. 8. (A) The ECDF of Fg1 is given in red, computed for only the 22 years without GLE events. The grey lines show 100 bootstrap estimates of
the Fg1 ECDF, computed by randomly sampling 22 years from the Fg1 series. Panel B has the same structure as panel A, but instead shows the
ECDF of Fr1 in blue. Panels (C) and (D) have the same structure as (A) and (B), but instead show the ECDFs of Fg1 and Fr1 from only those 19
years with GLE events.
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events which may in turn affect the 10Be record. There is an
overlap of 115 years, from 1868–1983, between the GGMS
record and the HMF reconstructions, of which 67 contained a
GGMS and 48 did not contain a GGMS. Figure 9 presents the
ECDF data with the Fg1 and Fr1 data analysed in the left and
right columns, and the no-GGMS and GGMS conditions given
in the top and bottom rows. In this instance, for both Fg1 and
Fr1, there is a clear shift in the location of the ECDFs for the
GGMS and no-GGMS conditions relative to the bootstrap
ECDFs. The ECDFS of Fg1 and Fr1 are shifted towards more
negative values in years with GGMS, as expected by the
increased 10Be production idea.

A two-sample two-tailed Kolmogorov-Smirnov (KS) test
was used to assess the hypothesis that the distributions of Fg1

under the GGMS and no-GGMS conditions were drawn from
the same underlying distribution (Wilks, 1995) (see Appendix
A.3). Essentially, this test computes the probability (p-value)
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that the differences between the observed distributions would
be this large due to drawing two random samples from the
same underlying distribution. The test cannot confirm that the
distributions are different, but does quantify how unusual it
would be to obtain these samples if they came from the same
underlying distribution.

In this instance, the KS test returns a p-value of 0.004,
meaning a 0.4% chance that differences this large would be
observed under the no-GGMS andGGMS samples if they were
in fact drawn from the same distribution. Therefore, this test
provides evidence that there are significant differences
between the distribution of Fg1 under the no-GGMS and
GGMS conditions. This analysis was repeated for Fr1, which
returned a p-value of 0.057, again showing that the differences
between the Fr1 distribution for the no-GGMS and GGMS
conditions are larger than we would expect due to random
sampling. These and further statistics are summarised in
of 18



Fig. 9. (A) The ECDF of Fg1 is given in red, computed for only the 48 years without GGMS events. The grey lines show 100 bootstrap estimates
of the Fg1 ECDF, computed by randomly sampling 48 years from the Fg1 series. Panel B has the same structure as panel A, but instead shows the
ECDF of Fr1 in blue. Panels (C) and (D) have the same structure as (A) and (B), but instead show the ECDFs of Fg1 and Fr1 from only those 67
years with GGMS events.

Table 1. Kolmogorov-Smirnov test statistics comparing GGMS and
No-GGMS conditions.

Case D p-val

All polarity phases
Fg1 0.33 0.004
Fr1 0.25 0.057
Active: ’p�p/2
and ’p≥ 3p/2
Fg1 0.31 0.231
Fr1 0.27 0.395
Quiet: p/2<’p< 3p/2
Fg1 0.31 0.120
Fr1 0.30 0.167
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Table 1. We cautiously interpret these results as evidence that
space weather events do bias the MB15 reconstruction towards
lower values of the HMF.

However, this analysis could be influenced by aliasing
between the Schwabe/polarity cycle variations in the fractional
differences Fg1 and Fr1 (Figs. 4 and 5) and the occurrence of
GGMS (Fig. 7); GGMS are more likely to occur in years where
the polarity phase composites show Fg1 and Fr1 are, on average,
more negative. Therefore, we investigate this further by splitting
the polarity cycle into active and quiet periods, where the
occurrence frequency of GGMS varies much less within these
periods. We define the active phases as ’p�p/2 and ’p≥ 3p/2
and quiet phases as p/2< ’p< 3p/2. There are 59 active years
(46 with GGMS and 13 with no-GGMS), and 56 quiet years (21
with GGMS and 35 with no-GGMS). Figure 10 repeats the
ECDF analysis for active years, and Figure 11 shows the results
for quiet years. Sub-sampling by polarity cycle phase means that
of 18



Fig. 10. (A) The ECDF of Fg1 is given in red, computed for only the 13 years without GGMS events, from polarity phases corresponding to high
solar activity (’p�p/2 and ’p≥ 3p/2). The grey lines show 100 bootstrap estimates of the Fg1 ECDF, computed by randomly sampling 13 years
from the Fg1 series. Panel B has the same structure as panel A, but instead shows the ECDF of Fr1 in blue. Panels (C) and (D) have the same
structure as (A) and (B), but instead show the ECDFs of Fg1 and Fr1 from only those 46 years with GGMS events.
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there are fewer samples in each category, and the results are less
clear, particularly for the no-GGMS condition in active years,
whichhasonly13samples.However, for both theactiveyears and
the quiet years the same trend is apparent; the GGMSdistribution
tends to be located atmore negative values, to the left hand side of
the bootstraps elements, than the no-GGMS condition, which
tends to be located to the right hand side of the bootstrapelements.
We also repeated the KS test procedure on these active and quiet
phase subsets, with the statistics included in Table 1. This reveals
that for the active and quiet samples there is a much higher
probability that differences between the GGMS and no-GGMS
conditions could be due to random sampling, and so we have low
confidence that these distributions are actually different.

5 Discussion and conclusions

We have compared the McCracken & Beer (2015) (MB15)
annual 10Be HMF reconstructions with two independent HMF
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reconstructions derived from sunspot records and geomagnetic
activity. The four series span different periods of time, and the
comparison is made only over the period of overlap, spanning
1845–1983. More restricted windows are also considered, in
our analysis of GGMS (1868–1983), and also GLEs (1940–
1983).

Comparing the distributions of yearly values of each HMF
reconstruction revealed that the MB15 reconstructions display
a modest negative bias relative to both the sunspot and
geomagnetic reconstructions (Fig. 1). However, this bias is
smaller than other sources of variability between the
reconstructions, as demonstrated by the distributions of the
fractional differences between the sunspot and geomagnetic
reconstructions with the MB15 series (Fig. 3); these
distributions were approximately centered on zero, and
displayed a small asymmetry, such that there was more
probability below the modal values than above. This
comparison also demonstrated that the MB15 procedure to
of 18



Fig. 11. (A) The ECDF of Fg1 is given in red, computed for only the 35 years without GGMS events, from polarity phases corresponding to low
solar activity (p/2�’p� 3p/2). The grey lines show 100 bootstrap estimates of the Fg1 ECDF, computed by randomly sampling 35 years from
the Fg1 series. Panel B has the same structure as panel A, but instead shows the ECDF of Fr1 in blue. Panels (C) and (D) have the same structure
as (A) and (B), but instead show the ECDFs of Fg1 and Fr1 from only those 21 years with GGMS events.
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mitigate the impact of impulsive 10Be enhancements on the
HMF reconstruction does improve the agreement with the
sunspot and geomagnetic HMF reconstructions; the fractional
differences between Bc2 with Bg and Br are smaller than the
differences computed with Bc1.

The time series of the fractional differences (Fig. 2) are
suggestive of a solar cycle trend. Compositing the fractional
differences as a function of solar cycle phase revealed a
systematic variation in the mean fractional differences over the
solar cycle. These variations are similar for each of the Fg1,
Fg2, Fr1, and Fr2 series. Given the independence of the sunspot
and geomagnetic reconstructions, this implies that the solar
cycle variation arises primarily from aspects of the MB15
reconstructions. We note that as the variations are similar for
both Bc1 and Bc2, they appear to be independent of the MB15
procedure to suppress impulsive 10Be enhancements. The most
likely explanation is that the solar cycle variation in the
reconstruction differences is due to limitations in the 10Be
inversion procedure, specifically with the GCR transport
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model. MB15 describe how it was necessary to employ GCR
transport coefficients which were an average over both solar
polarity cycle, while it is known that GCR transport to near-
Earth space varies significantly and systematically with
polarity cycle phase.

We considered whether there was statistical evidence that
GLEs and GGMS do, in general, affect the 10Be record, and
subsequent estimates of the HMF. The hypothesis for GLEs
affecting the 10Be record is simple, with the GLE acting as new
temporary source of energetic charged particles, increasing the
total population of particles capable of producing 10Be in the
upper atmosphere. MB15 presented evidence of an association
between some impulsive 10Be enhancements and known GLE
events, as well as upper atmospheric nuclear bomb tests. We
considered a larger set of GLE events, and investigated if
the differences between the reconstructions were signifi-
cantly different in years with and without GLE events. Using
a two-sample K-S test, we could not resolve statisti-
cally significant differences between the distributions of
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reconstruction differences conditional on whether or not GLE
occurred. This null result could arise from the limited sample
size available to us, with only 41 years of overlap between the
HMF record and GLE catalogue. Alternatively it could also
indicate that GLEs do not, in general, significantly perturb the
10Be record, which is consistent with modelling work
performed by (Herbst et al., 2015). For example, as previously
discussed, MB15 estimate that an individual GLE must exhibit
a >100% increase in neutron monitor count rate before it can
generate enough 10Be to stand out above background
variability and statistical uncertainty. Unfortunately we were
unable to further subdivide the GLE data to test for the effect of
GLEmagnitude as there are too few events to reasonably do so.
Given the limited extent of overlap between these records, and
the generally low occurrence of GLE events, it is likely that
that the question of if, and by how much, GLE affect the 10Be
record is best answered by physical modelling of 10Be
production and transport for different GLE scenarios. Such
modelling work has begun, for example Usoskin & Kovaltsov
(2012); Herbst et al. (2015) but will hopefully be extended to
include more detailed GCR transport modelling, for more GLE
scenarios and a wider range of solar activity states.

We also tested whether the differences between the
reconstructions were significantly different in years with and
without GGMS. In this instance, it was found that there was a
statistically significant difference between the distributions of
fractional differences in years with and without GGMS; the
fractional residuals tended to be more positive in years with
GGMS (consistent with an underestimate of the MB15 HMF
by additional production of 10Be by SEPs/GLEs). However,
the correlation between the occurrence frequency of GGMS
and polarity cycle phase means that this result may arise from
aliasing between the observed solar cycle trend in the
reconstruction differences and any effects due to space
weather events. To try and isolate this possibility, we further
divided the data into “active” and “quiet” phases, and repeated
the procedure to assess if the reconstruction differences were
significantly different in years with and without GGMS. The
same trend persists, with the distribution of reconstruction
differences typically being more positive in years with GGMS,
but this is less clear, being heavily impacted by the sample size
reduction from sub-sampling. Applying the same K-S testing
procedure, we could not resolve statistically significant
differences between the reconstruction differences in these
categories. Therefore we conclude there is some evidence that
the MB15 reconstructions do vary in response to GGMS, but
that this variation is small compared to other sources of
variability. There are several plausible hypothesis about why
we may expect the MB15 HMF reconstruction to depend on
the occurrence of GGMS. Most simply, it is reasonable to
assume that the occurrence of GGMS is a weak proxy for the
occurrence of SEP and GLE events, as the energetic CMEs that
drive GGMSmay also possibly generate significant SEP fluxes
and GLEs. Correspondingly, Figure 7 shows a weak
correlation between the annual count of GLE and GGMS.
However, there are also other possible mechanisms, which
may have a non-negligible impact. For example, magneto-
spheric dynamics during GGMS modifies the access of
energetic charged particles into the magnetosphere, and
consequently the upper atmosphere. Finally, we do not rule
out that changes in the global structure of the heliosphere over
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the solar cycle may have some role in explaining these
differences.

Recent research has shown that analysis of cosmogenic
isotopes may be the only available proxy for historic extreme
SEP events (Usoskin et al., 2006; Miyake et al., 2012, 2013;
Usoskin et al., 2013; Herbst et al., 2015; McCracken & Beer,
2015; Dee et al., 2016). This would be a hugely valuable data
source in constraining the limits of extreme SEP events, which
have quite poor statistics over the space age (Barnard &
Lockwood, 2011), and are critical for assessing the hazards and
risks to our continuing exploration and development of the
solar system (Cannon et al., 2013), especially for manned
missions. Furthermore, the accuracy of reconstructions of the
historic GCR environment and large scale solar magnetic
activity will improve if the impacts of SEP fluxes on these
records are resolved and removed.

As future technological advances facilitate cosmogenic
isotope records with higher temporal resolution and higher
precision it should be expected that limitations in the
cosmogenic isotope inversion procedures become increasingly
apparent. We consider the results of this study strong
motivation for investigating the role of more advanced
GCR transport models in the inversion of high resolution
cosmogenic isotope records, as well as developing robust
procedures to identify the possible impacts of space weather
events on cosmogenic isotope records.
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Appendix A: Statistical methods

Below we provide further details regarding some statistical
methods employed throughout the analysis in this article.
Further details on all of these techniques are described in detail
in Wilks (1995).

A.1 Empirical cumulative distribution
functions

The ECDF provides a non-parametric estimate of a
variables cumulative distribution. For a variable, x, the ECDF,
F(x), is calculated as

FðxÞ ¼ i

nþ 1
; ð4Þ

where i is the order statistic of x, and n is the total number of
samples.

A.2 Bootstrap re-sampling

In Section 4.2 we use bootstrap resampling to help assess
whether the ECDFs of the reconstruction differences show a
dependence on whether or not GLEs of GGMs occurred. Here
we illustrate this process by way of an artificial example. The
left panel of Figure 12 shows a scatter plot of the daily mean aa
index against the daily sunspot number, R, from 1868 to 2015.
All these data are shown with black dots, except those values
with R> 400. In this example we are interested in whether or
not the distribution of aa is different for R> 400, than for other
times. The right panel of Figure 12 shows the ECDF for all
daily mean aa values in black, and the ECDF for aa values
corresponding to R> 400 in red, for which there are 66 values.
Comparing only the black and red lines, it is difficult to assess
Fig. A.1. The left panel shows a scatter plot of the the daily mean aa inde
while those in red mark values with R> 400. The right hand panel shows
R> 400 in red, and for 100 bootstrap estimates of the aa distribution in
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whether there is evidence that the R> 400 condition
significantly affects the distribution of aa. However, the grey
lines are 100 bootstrap estimates of the aa ECDF, calculated by
randomly sampling 66 values without replacement from the
full aa distribution. Unsurprisingly these grey lines of the
bootstrap estimates all cluster around the full aa distribution.
However, the red line lies predominantly outside of the cluster
of bootstrap lines, suggesting that the R> 400 condition does
yield a sample which is unusual compared to a random sample
of the same size from the full distribution.

A.3 Two-sample Kolmogorov-Smirnov tests

The two-sample KS test is a statistical hypothesis test
which can be used to compare two observed distributions, and
assess the plausibility of the null-hypothesis that both observed
distributions are in fact random samples from the same
underlying distribution. As previously mentioned, the KS test
cannot confirm that the distributions are different, but does
quantify how unusual it would be to obtain two sets of samples
if they came from the same underlying distribution. This is a
non-parametric test, with the test statistic D being given by

D ¼ maxðjF1ðx1Þ � F2ðx2ÞjÞ; ð5Þ

where F1(x1) and F2(x2) are the ECDF's of the two observed
distributions, such that D is the maximum difference between
them. From the D statistic, a p-value can be calculated which
gives the probability of obtaining this maximum difference
between the two distributions, had they been randomly sampled
from the same underlying distribution. Consequently, small p-
values imply that the null hypothesis is not very plausible, and
the differences between F1(x1) and F2(x2) can probably not be
explained by random sampling. Of course, this does not mean
any alternative hypothesis are necessarily true, just that there is a
difference that likely merits further investigation.
x agaisnt the daily sunspot number, R. The black dots show all values,
the ECDF of all aa values in black, of the aa values corresponding to
grey.

of 18


	What can the annual 10Be solar activity reconstructions tell us about historic space weather?
	1 Introduction
	2 Data
	2.1 Cosmogenic isotope HMF reconstruction
	2.2 Geomagnetic HMF reconstruction
	2.3 Sunspot HMF reconstruction
	2.4 Ground level enhancement catalogue
	2.5 AA geomagnetic index

	3 Methods
	3.1 Fractional differences
	3.2 Solar cycle phase and polarity cycle phase calculations
	3.3 Geomagnetic storm definition

	4 Results
	4.1 Differences with Schwabe cycle phase and polarity cycle phase
	4.2 HMF reconstructions differences conditional on large space weather event occurrence
	4.2.1 Historical space weather
	4.2.2 HMF reconstruction differences with GLEs
	4.2.3 HMF reconstruction differences with GGMS


	5 Discussion and conclusions
	Acknowledgements
	References
	References
	References
	References
	References


