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Measuring the Impact of Extreme Weather 
Phenomena on Total Factor Productivity 
of General Cropping Farms in East Anglia
Yiorgos Gadanakis, University of Reading, Reading, UK

Francisco Jose Areal, University of Reading, Reading, UK

ABSTRACT

One of the main challenges of climate change on agriculture in UK is how to adapt 
to the potential changes to the availability of water. Changes in rainfall distribution 
may potentially lead to an increase in drought frequency, magnitude and duration. In 
this research a Data Envelopment Analysis (DEA) and a Malmquist Index (MI) are 
combined with a double bootstrap methodology to measure changes in Total Factor 
Productivity of general cropping farms in East Anglia. More specifically, the DEA 
technique was used to measure the year by year efficiency score for the farms in the 
sample and the MI and its components used to derive information on productivity over 
time. Data for the input – output models was obtained from the Farm Business Survey. 
Climate change is taken into consideration by using data for water cost as a proxy 
indicator of water consumption per farm. Results reveal changes in total, technical 
and scale efficiency and provide information on how the 2011 drought affect the TFP 
of the farms in the sample.

Keywords
Agriculture, Bootstrapped Malmquist Index, Climate Change, DEA, Farm Business Survey, Malmquist 
Index, Sustainable Intensification, Technical Efficiency Change, Total Factor Productivity
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INTRODUCTION

Measurements of Total Factor Productivity (TFP) growth have been widely used in 
agriculture as a quantitative economic instrument to evaluate production performance 
of farming systems in subsequent periods (Melfou, Theocharopoulos, & Papanagiotou, 
2013). The decomposition of TFP into the efficiency and technical index components 
and the observation of the trends in consecutive years contribute to the design 
of targeted policies aiming to improve agricultural productivity and sustainable 
development.

Two of the most important challenges for the future growth of agricultural systems 
globally are climate change and increased food demand. Global food demand is likely 
to increase by 70% by 2050 due to both population growth and changes in consumption 
patterns (Foresight Report, 2011). On the other hand, the impacts of climate change 
may vary globally and at a national level both in magnitude and nature (positive and 
negative effects) (Falloon & Betts, 2010).

Changes in rainfall and temperature may have a significant impact on agricultural 
production for the UK and hence they may influence the way that crops develop, grow 
and yield (Knox, Morris, & Hess, 2010; Murphy et al., 2009). Furthermore, there may 
also be indirect impacts such as the increased risk and spread of pests and diseases and 
the suitability of land for agricultural production, especially in parts of East Anglia 
due to saltwater intrusion and flooding from sea level rise (Knox et al., 2010).

Recent extreme weather phenomena in the UK during the period of 2007-2013, 
such as the floods of 2007, the drought periods of 2010 and 2011, and the subsequent 
floods of 2012 and 2013, had an impact on TFP recorded by the Department for the 
Environment, Food and Rural Affairs (Defra). Specifically, TFP in 2007 was at its 
lowest level during the aforementioned period (98.2) and fell by 2.9% for the period 
2011-2012 (98.7) reaching the levels of 2007. According to Defra (2013), the main 
reasons for the variation in TFP estimates between years are factors outside the control 
of farmers such as extreme weather phenomena and disease outbreaks.

In the case of the East Anglian River Basin Catchment (EARBC), increased 
temperatures and reduced precipitation have direct impacts on the hydrological 
structure of the area (Defra, 2009; Environment Agency, 2008, 2011) due to increased 
water abstraction rates for agriculture and decreased water availability. Consequently, 
both climate change and the reduction in hydrological resources may affect the growth 
of TFP in the EARBC. Any desire for a secure food supply, efficient management of 
natural resources, and resilience to more frequent extreme weather phenomena requires 
the development of adaptation strategies for farmers and for prioritising the need 
for the sustainable intensification (SI) of agriculture (FAO, 2011; Foresight Report, 
2011). Firbank, Elliott, Drake, Cao, and Gooday (2013) define SI at farm level as the 
process of increasing agricultural production per unit of input whilst at the same time 
ensuring that environmental pressures generated at a farm level are minimised. Thus, 
the main priority under the framework of SI is the increase in productivity of farming 
systems. In addition, according to Gadanakis, Bennett, Park, and Areal (2015), SI 
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can be perceived as the trade-off between production efficiency and environmental 
efficiency and hence evaluated with the use of an eco-efficiency indicator.

Agricultural productivity depends on the ability of the farmer to take actions 
and develop strategies that contribute to the development of the farming system’s 
adaptive capacity towards extreme weather phenomena and long-term adverse climatic 
conditions (Campbell, Thornton, Zougmoré, van Asten, & Lipper, 2014). This is 
required for responding effectively to climatic changes and to agricultural risks 
associated with increased variability of weather patterns (rainfall, temperature). Thus, 
the aim of the analysis here is to explore the impact of extreme weather phenomena in 
agricultural productivity for the most productive region in England (EARBC). Inward 
shifts of the production possibilities frontier will define undesirable changes in the 
global technology of the farming systems and therefore will direct policy makers 
and service providers to enhance actions towards building ecosystem services in 
agricultural systems that enhance resilience. In the framework of SI, this is translated 
as the development of management and farming practices that aim to the improvement 
of soil health to guarantee adequate nutrient and water resources for plant development. 
Moreover, it requires the adoption of technologies and crops that are more tolerant of 
heat, droughts, floods and salinity (Campbell et al., 2014) and to realise the advantages 
of the synergies between mixed crop and livestock systems. The analysis measures 
changes in agricultural productivity (TFP) for a period of 5 years using a Malmquist 
Index in the EARBC.

BACKGROUND

Productivity is defined as a measure of the rate of output produced given a unit of 
input used in the production process (partial productivity). However, TFP is a more 
comprehensive measure relying on the ratio of an index of aggregated outputs to 
an index of aggregated inputs. According to production theory, the determinants of 
the rate of output are based on the technology used, the quantity and quality of the 
production factors and the efficiency with which these factors are employed in the 
production function (Melfou et al., 2013). Thus, any divergence in TFP growth is the 
result of the net effect of changes in efficiency, shifts in the production frontier and 
the scale of production (Färe, Grosskopf, Lindgren, & Roos, 1992).

A series of studies have explored the TFP of the agricultural industry in the UK and 
are presented in Table 1. Defra releases an annual report on TFP of the UK agricultural 
industry based on the estimation of an ideal Fisher index, which is the geometric mean 
of the Laspeyres and Paache indices. Thirtle, Piesse, and Schimmelpfennig (2008) 
provided a TFP in UK agriculture from 1995-2005 based on a Tornqvist-Theil TFP 
index (Thirtle, Lin Lin, Holding, Jenkins, & Piesse, 2004) in an effort to explain 
the decline in TFP as a function of the lag in research and development (public and 
private) and to returns to scale. This index reveals almost 2% growth in TFP per year 
up until 1983; for the remaining 18 years studied this fell to 0.2%. Moreover, the level 
of TFP for the UK post-1983 had fallen behind the EU leading countries (Thirtle et 
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al., 2008). The Tornqvist-Theil TFP index was also used by (Barnes, 2002) and was 
modified to include the environmental and social costs of agricultural productivity for 
the construction of a social TFP index. Furthermore, (Amadi, Piesse, & Thirtle, 2004) 
extended the work of (Thirtle, 1999) by constructing and measuring Tornqvist-Theil 
TFP indices for potatoes, oilseed rape, winter wheat and spring barley, as well as sugar 
for the East counties of the UK using data from 1970 to 1997. Renwick, Revoredo-
Giha, and Reader (2005) also used the Tornqvist-Theil TFP index to measure changes 
in the productivity of farms in different regions of the UK due to reform of the sugar 
beet regime. This analysis showed a slight decrease in the productivity of individual 
farms during 1994-2002.

In addition, Hadley (2006) used farm level data for the estimation of stochastic 
frontier functions to measure differences in the relative efficiency of 8 different farm 
types in the UK for the period 1982-2002. The results illustrate that most of the farms 
are operating close to the technical efficiency frontier and that technical change has 
played a key role in the increase of efficiency over this 20-year period, especially in 
the most specialised arable farms. In a similar manner, Barnes, Revoredo, Sauer, and 
Jones (2010) made comparisons of technical efficiency for different farming systems 
across England and Wales, reporting a general upward trend in technical efficiency 
throughout the period. English and Welsh general cropping farms have a reported 
mean of technical efficiency of 0.74 although with considerable variation around 
the mean (Hadley, 2006). Earlier studies on technical efficiency include research by 
Dawson (1985), Wilson, Hadley, Ramsden, and Kaltsas (1998), and Wilson, Hadley, 
and Asby (2001).

The above-mentioned literature has not paid attention to the impact of extreme 
weather phenomena on farm level productivity in the way it is done in this analysis. 
Hence, this analysis contributes in the area by demonstrating how the decomposition 
of a TFP index such as the MI can be used to associate shifts of the frontier to 
extreme weather phenomena, and hence allow for future research in the area of spatial 
heterogeneity and agricultural productivity.

DATA AND METHODS
Data
Data for the empirical application of the model come from a representative sample of 
41 General Cropping Farms (GCFs) over the period 2007-2011. The data have been 
obtained from the Farm Business Survey (FBS), which is a comprehensive and detailed 
database that provides information on the physical and economic performance of farm 
businesses in England. The selection of this subset of GCFs ensures that the sample 
is homogenous in terms of crop mix and environmental conditions and thus makes 
it possible to compare performances over time. The 41 GCFs selected over a 5-year 
period yield a panel dataset with 205 observations available for efficiency assessment. 
For the evaluation of the MI of TFP this provides 164 observations (since the analysis 
utilises data from two adjacent years at a time).
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The production technology for the estimation of the MI of TFP was defined by the 
area farmed, crop costs (including fertiliser, crop protection, seed and other agricultural 
costs), other machinery costs, total labour input (hours per year), and water cost per 
farm including water for irrigation and water used for all agricultural purposes. The 
selection of inputs was based on the structure of the production system. Cash crop 
production systems demand heavy machinery as well as labour. Furthermore, since 
cash crops are sensitive to pests and diseases outbreaks, crop protection costs and 
fertilisers are having a significant impact to the total production cost expressed by 
the production technology. The outputs identified in the analysis are cash crop and 
cereal yield. Cash crop production is calculated through the FBS and is equal to the 
sum of potato and sugar beet production.

Table 1. Summary of Total Factor Productivity studies in the UK agricultural sector

Author Year 
published

Title Productivity Index Period 
considered

Department of 
Environment Food 
and Rural Affairs

Annual report Total Factor Productivity 
of the UK agricultural 
industry

Laspeyers and Paache 
indices: Annual statistics 
giving an indicator of the 
long-term performance 
of the UK agricultural 
industry.

Since 1973

Barnes, Revoredo, 
Sauer et al.

2010 A report on technical 
efficiency at the farm level 
1989 to 2008

Stochastic Frontier 
Analysis

1989 - 2002

Thirtle, Piesse & 
Schimmelpfennig

2008 Modelling the length and 
shape of the R&D lag: 
an application to UK 
agricultural productivity

Tornqvist-Theil 1995 - 2005

Hadley 2006 Patterns in Technical 
Efficiency and Technical 
Change at the Farm‐level 
in England and Wales, 
1982–2002.

Stochastic Frontier 
Analysis

1982 - 2002

Renwick, Revoredo-
Giha & Reader

2005 UK Sugar Beet Farm 
Productivity Under 
Different Reform 
Scenarios: A Farm Level 
Analysis

Tornqvist-Theil 1994 - 2002

Amadi, Piesse & 
Thirtle

2004 Crop Level Productivity 
in the Eastern Counties of 
England, 1970-97

Tornqvist-Theil 1970 - 1997

Thirtle, Lin, 
Holding, et al.

2004 Explaining the Decline 
in UK Agricultural 
Productivity Growth

Tornqvist-Theil 1953 - 2000

Barnes 2002 Publicly-funded UK 
agricultural R&D and 
‘social’ total factor 
productivity.

Tornqvist-Theil 1948 - 1995
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All inputs expressed in £/ha for the period 2007-2011 have been deflated, using 
indices based on 2005 published by the Department for Environment, Food and Rural 
Affairs (DEFRA) (API – Index of the purchase prices of the means of agricultural 
production – dataset (2005=100)). Specifically, the following indexes have been used: 
fertilisers and soil improvement index, seeds index, plant protection products index, 
farm machinery and installation index, and other costs index. The indexes have been 
selected according to the relevance of the data aggregated at a farm level through the 
FBS.

Table 2 presents a description of the sample used to build the input and output 
DEA models for the estimation of the MI of TFP. The final row provides information 
on the average percentage change in volumes of inputs and outputs for the 5-year 
period. The mean output for both cash crops and cereals grew by 11.33% and by 
2.6% respectively. However, it is interesting to note that between 2010 and 2011, 
cereal yield dropped by 9% while the cash crop yield increased by 22%. The latter 
is related to the warmer conditions in 2011 which favour sugar beet and potato yield 
(when irrigation is available). Low yields have been observed for both cash crops and 
cereal yields during the harvest year of 2007 while during the 2009 harvest year yields 
reached the maximum value. Farmed area and the annual labour hours have a small 
variation across the 5-year period recording a 0.4% and 1.1% increase respectively. 
The input with the highest average increase in £/ha over the years is water; however, 
there is no difference in the variation during the years. The same conclusion can be 
drawn for machinery and crop costs that recorded an average increase of 5.9% and 
3.8% over the years.

East Anglian River Basin Catchment (EARBC)
The climate in East Anglia is characterised by an annual rainfall around 620mm per 
year and includes some of the driest areas in the UK. Furthermore, the EARBC has 
been characterised as one of the most vulnerable areas in the UK in terms of climate 
change (Defra, 2009; Environment Agency, 2008, 2011). This mainly impacts both 
land suitability and productivity (yield and crop quality). In addition, projected reduced 

Table 2. Descriptive statistics of the inputs and outputs used in the DEA linear programming model for the estimation 
of efficiency and the MI of TFP

Farmed 
area (ha)

Labour 
(annual 
hours)

Water 
cost (£/

ha)

Machinery 
cost (£/ha)

Crop 
costs (£/

ha)

Cash crops 
(tonnes/

ha)

Cereal 
(tonnes/

ha)

Mean 331 8364 9 70 378 57 8

St. Deviation 467 13868 9 51 136 15 2

Minimum 23 960 0 5 203 20 3

Maximum 2204 67381 35 216 840 92 10

Average % change in 
mean per year

1.1 0.4 7.7 5.9 3.8 11.3 2.6
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levels of rainfall and evapotranspiration would increase demand for supplemental 
irrigation, particularly in high value crops such as potatoes and sugar beet, and hence 
would increase the demand for water resources in an already over-abstracted catchment.

Methods: The Malmquist Index of Total Factor Productivity
A Malmquist Index (MI) of TFP is used to measure changes in productivity for 
the period 2007-2011. Focusing only on technical efficiency estimates and their 
distribution over the study period is not a sufficient method to provide complete 
information on changes in performance over years (Odeck, 2009; Simar & Wilson, 
1999). The estimation of the Malmquist Index (MI) is more appropriate since it enables 
the explanation of changes in distance functions over years due to movements within 
the input or output space (efficiency change) and progress or backward movement of 
the production set over time (technological change). Specifically, attention is drawn to 
the periods 2007-2008 and 2010-2011 where floods occur in parts of the county and 
lower-than-average levels of rainfall were recorded, respectively. The decomposition 
of the MI into its components and especially the Technical Efficiency change index 
allows the estimation of the impact of drought in the EARBC (Piesse, Thirtle, & van 
Zyl, 1996). The MI is more complete than the Tornqvist-Theil method used in previous 
studies in the UK since it is possible to separate technical (the movement of the best 
practice frontier) and efficiency change (the distance of farms from the frontier). 
Thus, it is possible to identify if exogenous factors such as research and development 
or weather phenomena have an impact on the frontier or if technical changes were 
followed up by similar or not efficiency changes (Piesse & Thirtle, 2010). For example, 
it allows estimation of whether an outward shift of the technological frontier was 
followed up by farms, improving their efficiency and hence reducing their distance 
to the new frontier. Moreover, the MI offers the advantage that multi-input and multi-
output technologies can be estimated even in the absence of price data. In addition, we 
use the methodology proposed by Simar and Wilson (1998b, 1999, 2000) to estimate 
and bootstrap Malmquist Indices in order to determine whether differences between 
two or more estimates are statistically significant.

The TFP measures were calculated using a Malmquist DEA TFP methodology 
which enables the decomposition of the MI into technical change, technical efficiency 
change, scale efficiency changes and a further decomposition of technical change 
proposed by Simar and Wilson (1999). The MI of TFP is further decomposed into 
technical and efficiency change as proposed by Färe et al. (1992). In addition, the 
index of efficiency change is disaggregated into pure efficiency and scale efficiency 
change which allows discussion of the importance of farm size and returns to scale 
over time. Moreover, Simar and Wilson (1998) have proposed the decomposition of the 
technical efficiency component of the MI into the pure technical and scale efficiency 
change that also allows the consideration of returns to scale when shifts of the best 
performing frontier are accounted for.

The Malmquist index (MI) of total factor productivity (TFP), introduced by Caves, 
Christensen, and Diewert (1982) and further developed by Färe et al. (1992), is based 
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on the estimation of distance functions. For the purposes of the analysis an input 
orientation Malmquist index is adopted since farmers have more control over the 
adjustment and efficient use of inputs rather than the expansion of output (Kelvin 
Balcombe, Davidova, & Latruffe, 2008). Specifically, the MI between period t  and 
t +1  is defined as the ratio of the distance function for each period relative to a 
common technology. Therefore, the MI based on an input distance function is defined 
as:

M
D x y

D x y
I
t I

t t t

I
t t t

=
( )
( )

+ +1 1,

,
	 (1)

Equation (1) is expressing the ratio between the input-distance function for a farm 
observed at period t +1  and t , respectively, and measured against the technology at 
period t . Values of the M

I
< 1  indicate negative changes in TFP, values of the M

I
> 1  

indicate positive changes in TFP while values of M
I
= 1  indicate no change in 

productivity.
However, since the choice of period t  or t +1  as the base year is arbitrary (i.e. 

the base year can be either period t  or period t +1 ), Färe et al. (1992) defined the 
MI of TFP as the geometric mean of the t  and t +1  Malmquist indices. Therefore, 
for each farm the input orientation Malmquist index is expressed as follows:

M
D x y

D x y

D x y

D x
I
t t I

t t t
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t t t

I
t t t
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,
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,

,
+
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
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	 (2)

where M
I
t t, +1 refers to the MI of TFP from period t to period t +1 ; x yt t,( )  is the farm 

input-output vector in the tth  period; D x y max x P
I
t t t t+ + +( ) = > ( )∈{ }1 1 1

0, :θ
θ

 is the 

input distance from the observation in the t+1 period to the technology frontier of the 
tth  period with P yt+( )1 �the input set at the t +1  period and θ  is a scalar equal to the 
efficiency score. The indices are calculated with the use of the non-parametric DEA 
method in order to construct a piecewise frontier that envelopes the data points 
(Charnes, Cooper, & Rhodes, 1978). The technology assumption made to estimate 
the MI of TFP is CRS. Otherwise, the presence of non-CRS does not accurately 
measure productivity change (Grifell-Tatjé & Lovell, 1995). The main advantage of 
the DEA method is that it avoids misspecification errors and it enables the investigation 
of changes in productivity in a multi-output, multi-input case simultaneously (K. 
Balcombe, Fraser, Latruffe, Rahman, & Smith, 2008). Furthermore, the use of the 
DEA method for the estimation of the MI of TFP makes it easy to compute since DEA 
does not require information on prices.
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In addition, the index in equation (2) can be decomposed into two components: 
efficiency change and technological change:

M
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D x y

D x y

D
I
t t I

t t t
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t t t

I
t
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+
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∗
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
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



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1 1 1

1
2

,
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,

hh
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The first part of equation (3) is an index of relative technical efficiency change 
(∆Eff) showing how much closer (or farther) a farm gets to the best practice frontier. 
It measures the “catch up” effect (Färe et al., 1992). The second component is an 
index of technical change (∆Tech) which measures how much the frontier shifts. Both 
components take values more, less or equal to unity as is the case of the MI of TFP 
indicating improvement, deterioration and stagnation respectively.

Statistical Inference for MI of TFP and Their Components
The TFP measures were calculated using a Malmquist DEA TFP methodology which 
enables the decomposition of the MI into technical change, technical efficiency change, 
scale efficiency change and a further decomposition of technical change proposed by 
Simar and Wilson (1999). Despite the significant advantages of DEA for the calculation 
of the MI of TFP we need to consider the fact that the estimates of productivity may 
be affected by sampling variation. In other words, it is possible to underestimate the 
distance functions to the frontier if the best performing farms in the population are 
excluded from the sample (K. Balcombe et al., 2008; Simar & Wilson, 1999). To 
overcome this shortcoming Simar and Wilson (1998, 1999) proposed a bootstrapping 
method for the construction of confidence intervals for the DEA efficiency estimates 
relying on smoothing the empirical distribution. The rationale behind bootstrapping 
is to simulate the true sampling distribution by mimicking the data generation process 
(DGP) (K. Balcombe et al., 2008). Through the DGP a pseudo-data set is constructed 
which is then used for the re-estimation of the DEA distance functions. Increasing 
the bootstrapped replicates (more than 2000 (Simar and Wilson, 1998b)) allows for 
a good approximation of the true distribution of the sampling.

Simar and Wilson (1999) adapted the bootstrapped procedure for the estimation 
of the MI of TFP in order to account for possible temporal correlation arising from 
the panel data characteristics (Balcombe et al., 2008a). Specifically, they proposed 
a consistent method using a bivariate kernel density estimate that accounts for the 
temporal correlation via the covariance matrix of data from adjustment years. The 
bootstrapped estimates of the distance functions allow the calculation of a set of MI 
of TFP which accounts for the bias and enables the estimation of confidence intervals. 
The latter are used for statistical inference of the MI of the TFP and its components. 
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A detailed presentation for the estimation and bootstrapping of MI is available in 
Simar and Wilson (1999).

Non-parametric tests such as the Kruskal Wallis and Mann-Whitney U tests were 
used to determine statistical difference between MI years and farm sizes.

Results
Changes in Productivity and Efficiency Over Time and Farm and its 
Decomposition into Pure Technical and Scale Efficiency Change
Table 4 reports the mean and standard deviation of the MI of Total Factor Productivity 
(TFP) per farm size between 2007 and 2011. In Table 3, values of the MI above unity 
indicate improvement in productivity, while values below unity indicate deterioration 
in productivity. In addition, the significance of these changes is reported for each 
farm in Table 31.

The MI results in Table 3 show that farm productivity was affected in periods 
with adverse climatic conditions (2007-08 and 2010-11). Only farm ID 6 improved 
productivity for the period 2007 and 2008 and only 3 farms (7%), farms ID 9, 22 
and 23, have consistently been improving their performance between 2008 and 2011 
(p-value < 0.10). The most important positive shift in MI is recorded between 2008 
and 2009 where 71% of the farms in the sample significantly improved productivity 
followed by the period 2009-10 with 56% of farms improving their performance. In 
the period between 2010 and 2011, only 27% of farms improved their productivity, 
with the average MI of TFP being below unity indicating this general drop in farm 
productivity.

The effect of adverse climatic conditions affected the productivity of all farms in a 
similar way. Table 4 provides further information in relation to the TFP change per farm 
size and time. To explore any statistically significant differences between farm size 
and productivity changes, the Kruskall-Wallis (one-way analysis of variance by ranks) 
test was used. The null hypothesis of samples originating from the same distribution 
was not rejected for any period. This indicates that no significant differences exist 
between different farm sizes in each of the periods studied in relation to changes in 
productivity. However, statistically significant differences in TFP were found between 
all years with the exception of years 2008/09 and 2009/102. Hence, it should be noted 
that during the two periods of extreme weather phenomena, the 2007/2008 floods (Pitt 
and Britain, 2008) and the 2010/2011 drought, productivity significantly deteriorated.

Productivity over the whole period of the study has slightly deteriorated for all 
farm sizes. The average MI for the 5-year period for the large, medium and small 
farms is 0.99, 0.97 and 0.96 respectively. Year 2007 is considered the base year for 
the calculation of the MI. All averages are reported as geometric means. During the 
periods 2007 and 2008 the TFP deteriorated (MI<1) for all farm sizes. On the other 
hand, significant improvement (MI>1) is recorded for the 2008/2009 and 2009/2010 
periods for both medium and large farms while for the period between 2010 and 
2011 where drought conditions were prevailing the MI is less than unity, identifying 
deterioration in TFP for the two farm sizes. The farm size most affected from the 
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weather conditions in 2010 and 2011 is the small size farm with an average of MI=0.96 
for the 2010/2011 period. In addition, the MI for the small size farms is below unity 
for all paired years with an exception for the period 2009/2010 where a significant 
improvement in productivity is indicated. This large increase in the MI for the small 

Table 3. Statistical significance of the MI of TFP per farm per period

Farm ID Malmquist total factor productivity index

2007-2008 2008-2009 2009-2010 2010-2011

1 0.796*** 1.186*** 1.249*** 0.898

2 0.695*** 1.547*** 0.880*** 1.069**

3 0.679*** 0.848*** 1.724*** 0.769***

4 0.867*** 1.205*** 0.893*** 0.994

5 0.834*** 1.608*** 1.546*** 0.599***

6 1.063*** 1.003 1.408*** 0.644***

7 0.801*** 1.096* 0.983 0.984

8 0.698*** 0.543*** 1.579* 0.764***

9 0.665*** 1.185*** 1.071*** 1.096***

10 0.819*** 2.242 0.497*** 0.819***

11 0.840*** 0.935*** 0.928*** 1.008

12 0.669*** 1.343*** 1.525*** 0.859***

13 0.791*** 1.235*** 0.915 0.696***

14 0.757*** 1.278*** 0.791*** 1.650***

15 0.733*** 1.416*** 0.924** 1.056**

16 0.796*** 1.362*** 0.630*** 1.156***

17 0.785*** 0.560*** 1.630** 1.174***

18 0.872*** 1.270*** 0.946 0.871***

19 0.856*** 0.664*** 1.547*** 0.669***

20 0.743*** 0.285*** 5.227** 0.934

21 0.631*** 1.091*** 1.121 1.035

22 0.691*** 1.048*** 1.117* 1.081***

23 0.871*** 1.193*** 1.044*** 1.111***

24 0.719*** 1.452*** 1.154*** 0.712***

25 0.618*** 1.446*** 1.062 0.958*

26 0.789*** 1.159*** 1.175*** 0.966

27 0.829*** 0.978 1.130** 0.961

28 0.939* 1.098*** 1.074*** 0.978

29 0.945*** 1.034*** 1.133*** 1.013

30 0.872*** 1.115** 0.959*** 1.124

31 0.919*** 0.938 1.142*** 1.007

32 0.930* 1.089* 0.973 0.935**

33 0.689*** 0.981 1.226*** 0.858***

34 0.560*** 1.322*** 0.976** 0.988

35 0.728*** 1.106** 1.116 0.985

36 0.809*** 1.279*** 1.104*** 1.035

37 0.946 0.920 1.530** 1.157***

38 0.761*** 1.444*** 0.953 1.202**

39 0.647*** 1.144*** 0.945 1.320

40 0.782*** 1.037* 1.212*** 0.779***

41 0.765*** 1.271*** 0.936*** 1.072***

* Significantly different from unity at 0.1 level,
** Significantly different from unity at 0.05 level
*** Significantly different from unity at 0.01 level
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size farms is mainly due to a single farm (farm 20) which in the period 2009/2010 had 
MI=5.227, identifying a large improvement in technical efficiency when decomposing 
the MI into technical and efficiency change. If this farm is excluded from the sample 
then the curve becomes smoother with an average of MI=1.188.

The MI consists of two components: a) Efficiency Change (e.g. management 
change) and b) Technical change (production technology). Detailed presentations of 
the efficiency and technical change estimates are presented in Table A.1 and Table 
A.2 in Appendix A. Färe et al. (1994) decomposed efficiency change further into 
two more components: a) Pure efficiency (under the assumption of variable returns 
to scale) and b) Scale efficiency.

Table 5 provides further information on the decomposition of the MI for the sample 
presenting information for the geometric means of the farms for the 5-year period. 
The efficiency change component of the MI of TFP is related to distance functions 
measuring shifts of the farms in the sample towards the frontier. It estimates whether 
a farm is getting closer (catching up effect) or farther from the frontier (Färe et al., 
1994) and is therefore a measure of technical efficiency change. On the other hand, 
the technical change index provides a representation of the shifts to the frontier of 
the sample based on each farm’s observed input mix during the study period. It is 
therefore possible with this decomposition to isolate the effect of technical efficiency 
(catching up to the frontier) from outward or inward shifts of the frontier. In addition, 
the product of efficiency and technical change should by definition be equal to the MI 
of the period and it is possible that these components are moving in opposite directions. 
For instance, farm 1 had the capacity to improve productivity over the 5-year period 
and its geometric mean of MI was 1.015. The index of efficiency change (1.082) 
indicates an improvement of efficiency, and therefore, indicates an improvement in 
input savings by 8.2% while the index of technological change (0.937) implies that the 
farm failed to maintain input saving technology. However, this lagging performance 
in technological change did not outweigh significantly the improvement in efficiency 
change and thus the overall productivity was improved by 1.5% in the observed period. 
It is therefore concluded for farm 1 that the improvement in productivity is mainly due 
to efficiency improvements rather than technological changes. The same is concluded 
for the majority of the farms in the sample when the geometric means for the MI and 
its components of efficiency and technical change are considered. Specifically, the 

Table 4. The MI of TFP per year and per farm size

Farm Size Malmquist Index1

2007/2008 2008/2009 2009/2010 2010/2011

Mean SD Mean SD Mean SD Mean SD

Large 0.78 0.12 1.16 0.37 1.11 0.32 0.95 0.23

Medium 0.78 0.07 1.14 0.19 1.02 0.19 0.97 0.15

Small 0.73 0.02 0.81 0.40 1.53 1.66 0.94 0.19
1Since the Malmquist index is multiplicative, these averages are also multiplicative (i.e. geometric means)
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geometric mean of the MI of TFP for the 5-year period is 0.98, while for efficiency 
change it is 1.03 and 0.96 for the technical change. Hence, the deterioration in estimated 
productivity was mainly due to fall back of the frontier rather than a reduction in 
technical efficiency of the farms. In other words, although farms have improved 
their management performance in order to shift efficiency upwards, other exogenous 
factors such as extreme weather phenomena (2007/2008 floods, 2010/2011 drought) 

Table 5. Geometric mean of MI components per farm and farm ranking with respect to MI

Farm ID MI Efficiency Change Technical 
Change

Pure Efficiency 
Change

Scale Efficiency 
Change

Ranking with respect 
to MI1

1 1.015 1.082 0.937 1.000 1.082 10

2 1.003 1.006 0.997 0.994 1.012 15

3 0.935 0.950 0.984 1.000 0.950 34

4 0.981 0.986 0.995 0.991 0.995 19

5 1.056 1.139 0.927 1.098 1.037 4

6 0.992 1.048 0.946 1.052 0.997 18

7 0.960 1.000 0.960 1.000 1.000 29

8 0.822 0.889 0.925 0.921 0.965 41

9 0.981 1.000 0.981 1.000 1.000 20

10 0.930 1.000 0.930 1.000 1.000 35

11 0.926 0.985 0.940 0.939 1.048 36

12 1.041 1.077 0.967 1.015 1.061 7

13 0.888 1.000 0.888 1.000 1.000 39

14 1.060 1.118 0.948 1.051 1.063 2

15 1.003 1.002 1.001 0.988 1.015 14

16 0.943 0.956 0.986 0.962 0.994 32

17 0.958 1.000 0.958 1.000 1.000 30

18 0.978 1.008 0.969 1.077 0.936 23

19 0.876 1.000 0.876 1.000 1.000 40

20 1.008 1.000 1.008 1.000 1.000 13

21 0.945 1.000 0.945 1.000 1.000 31

22 0.967 0.943 1.025 0.892 1.058 27

23 1.048 1.022 1.025 1.000 1.022 5

24 0.962 1.065 0.903 1.051 1.013 28

25 0.976 0.977 1.000 1.034 0.945 24

26 1.009 1.055 0.957 1.006 1.048 12

27 0.969 1.000 0.969 1.000 1.000 26

28 1.020 1.139 0.895 1.091 1.044 9

29 1.029 1.096 0.939 1.035 1.058 8

30 1.012 1.045 0.968 1.030 1.015 11

31 0.998 1.050 0.950 1.041 1.009 16

32 0.980 1.000 0.980 1.000 1.000 22

33 0.918 0.967 0.950 0.969 0.997 38

34 0.919 0.928 0.991 0.923 1.005 37

35 0.970 0.980 0.990 0.986 0.994 25

36 1.043 1.129 0.924 1.096 1.030 6

37 1.114 1.100 1.013 1.104 0.996 1

38 1.059 1.139 0.930 1.085 1.050 3

39 0.981 1.006 0.975 0.992 1.014 21

40 0.936 1.000 0.936 1.000 1.000 33

41 0.994 1.027 0.968 0.991 1.037 17

MI: Malmquist Index, Note: All indices are geometric means
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and increased input market prices (fertilisers and soil improvements in 2009) resulted 
in less technological change.

Table 6 provides further information of the geometric means for the efficiency 
and technical change per year and per farm size. No significant differences are found 
between farm sizes. However, it is rather significant that the deterioration of the MI as 
it has been observed in Table 3 and Table 4 for the 2007-2008 and 2010 – 2011 periods 
is mainly driven from technical change rather than efficiency change. Specifically, 
the reduction in MI for the 2007 – 2008 period was on average 20% as a result of the 
extreme flood events and on average by 6% during the drought of 2011.

In addition, the component distance functions in the technical change index of the 
MI of TFP are used to identify farms responsible for the frontier shift (Färe, Grosskopf, 
Norris, & Zhang, 1994). During the period between 2007/2008 no farm caused any 
shift to the frontier since technical change was less than unity for all farms. The farms 
that caused the frontier to shift in the remaining three pairs of years were farm 13 
in the 2008/2009 period, farms 32 and 33 in the 2009/2010 period and farms 4, 16 
and 35 in the 2010/2011 period. According to Färe et al. (1994) these farms can be 
identified as the “innovators” of the sample.

The efficiency change index can be further decomposed into pure efficiency and 
scale efficiency change isolating in that way the impact of farm scale to efficiency 
change. Table 7 reports the distribution of pure and scale efficiency estimates for the 
consecutive years. Estimates of pure and scale efficiency per farm are presented in 
Table B.1 and Table B.2 in Appendix B. The results for 2009/2010 indicate that the 
scale efficiency index has improved for more than 71% of the farms; however the pure 
efficiency index deteriorates for 51% of the farms in the sample. This adjustment in 
scale might be the reason for the deterioration in efficiency since farms need to adapt 
their management requirements into the new conditions and scale of operation. Figure 
1 illustrates these changes, in which scale efficiency deteriorates after the 2008/2009 
period. In addition, the improvement in efficiency for the 2007/2008 period is mainly 
due to improvements in pure efficiency while it has an adverse impact to the next 
period causing efficiency to deteriorate. However, pure efficiency is the main factor 
in the improvement of the efficiency change index for the 2010/2011 period.

Factors affecting the frontier such as the extreme weather phenomena observed in 
the 2007/2008 and 2010/2011 periods have a significant impact on technical change 
and consequently on productivity for the GCFs in the EARBC. The decomposition of 

Table 6. Efficiency and technical change per farm size and per period

Farm Size 2007-2008 2008-2009 2009-2010 2010-2011

Efficiency 
change

Technical 
change

Efficiency 
change

Technical 
change

Efficiency 
change

Technical 
change

Efficiency 
change

Technical 
change

Large 1.02 0.76 0.99 1.17 1.10 1.01 1.02 0.93

Medium 0.98 0.79 1.11 1.03 0.93 1.10 0.98 0.99

Small 1.00 0.73 1.01 0.81 1.05 1.46 1.02 0.93
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Table 7. Distribution of the efficiency change decomposition

Distribution 2007/2008 2008/2009 2009/2010 2010/2011

Pure Scale Pure Scale Pure Scale Pure Scale

<0.6 0 0 0 0 0 1 1 0

0.6≤ Eff <0.8 2 1 3 1 5 2 0 2

0.8≤ Eff <1 11 14 7 14 16 4 8 20

Eff=1 16 7 13 2 12 5 15 3

1< Eff <1.2 9 17 11 21 6 20 14 15

1.2≤ Eff <1.4 2 1 6 2 0 5 2 1

Eff>1.4 1 1 1 1 2 4 1 0

Improvement 29% 46% 44% 58.5% 19.5% 71% 41% 39%

Deterioration 32% 36.5% 24% 36.5% 51% 17% 22% 54%

Geometric Mean 1.04 1.02 1.01 1.02 1.03 1.01 1.05 0.98

Figure 1. Changes in efficiency change index and its components



International Journal of Food and Beverage Manufacturing and Business Models
Volume 3 • Issue 1 • January-June 2018

16

technical change proposed by Simar and Wilson (1999) was used in order to isolate 
the impact of farm scale in the technical change component of the MI of TFP. Tables 
C.1 and C.2 in Appendix C provide a detailed presentation of the pure technical, scale 
technical changes and the product of the latter with the scale efficiency component 
of efficiency change3. Figure 2 illustrates the technical change index. Shifts in the 
frontier are mainly driven by the pure technical efficiency index rather than the scale 
of operation of the farms in the sample. Thus, Table 8 shows the distribution of the 
two components of technical change, pure and scale, during the 5-year period.

Considering both pure technical and pure efficiency change in the 2008/2009 
period, GCFs in the EARBC have successfully improved their management performance 
and were able to maintain this input-saving technology during the remaining periods 
(2009/2010, 2010/2011) (Figure 2) while pure technical efficiency drops significantly 
in the 2010/2011 period, pushing productivity below unity.

DISCUSSION

Comparison of the results obtained from the MI of TFP revealed deterioration in 
productivity for the GCFs in the EARBC over the study period 2007-2011 for all farm 
sizes. Furthermore, the decomposition of the MI of TFP into its components enabled 
a disaggregation of the effects of technical efficiency (catching up to the frontier) and 
outward or inward shifts of the frontier. Hence, deterioration in productivity is mainly 
due to fall back of the frontier rather than reduction in technical efficiency of the farms. 
Farms on the efficient frontier are becoming more efficient due to improvements in 
the pure efficiency index rather than technical change. Specifically, productivity falls 
for the 2007/2008 and 2010/2011 periods due to a fall in the technical change index 
which reflects the impact of the extreme weather phenomena for 2007 (floods) and 
2011 (drought). The more frequent these extreme weather phenomena occur, the more 

Table 8. Distribution of the technical change decomposition

Distribution 2007/2008 2008/2009 2009/2010 2010/2011

Pure Scale Pure Scale Pure Scale Pure Scale

<0.6 1 0 1 2 0 0 2 2

0.6≤ Eff <0.8 7 0 2 0 0 3 5 14

0.8≤ Eff <1 7 11 4 10 8 23 18 11

1< Eff <1.2 0 3 21 24 21 9 6 5

1.2≤ Eff <1.4 0 0 7 1 3 1 2 2

Eff>1.4 0 1 2 0 4 0 1 0

Not feasible to compute 26 26 4 4 5 5 7 7

Improvement 0% 10% 73% 61% 68% 63% 61% 25%

Deterioration 37% 27% 17% 29% 20% 24% 22% 17%

Geometric Mean 0.75 1.00 1.10 0.98 1.13 0.95 0.91 1.05
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the need for adapting to these changes is. Farm performance is very sensitive to such 
changes in weather conditions leading to underperformance. All farms’ productivity, 
regardless of their size, are affected by weather. Hadley (2006) has similarly showed 
that technical change is the factor with the most significant role in the increase of 
efficiency in a period of 20 years (1998-2002). Furthermore, in a more recent study 
by Barnes et al. (2010), a general upward trend in technical efficiency was also 
reported throughout the period. On the other hand, the most important improvement 
in MI is recorded between 2008 and 2009 where 73% of the farms are indicated with 
a significant improvement in TFP. Generally, 15% of the farms have been consistently 
improving TFP over the study period while the remainder of the sample has been 
fluctuating above and below unity, thus improving efficiency in some years and 
decreasing in others.

In addition, scale efficiency change (Figure 2) for the years between 2008 and 
2009 drops below unity. This is mainly explained by the change in the proportion 
between large, medium and small farms in the sample compared with previous years. 
The average farm size in 2011 is lower than 2009 (medium and small size farms have 
doubled). However, the technical scale efficiency change is increasing for the same 
period, implying that farms operate closer to the point of a technically optimal scale 
under the VRS assumption. According to (Coelli, Perelman, & Van Lierde, 2006) the 
fall in scale efficiency might be caused from the faster rate that larger farms improve 
productivity when compared to medium and small farms. Therefore, the performance 
gap between the different sizes of farms is widening and is depicted by the technical 
scale efficiency.

Figure 2. Changes in technical change index and its components
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CONCLUSION

The challenge of sustainable intensification of agricultural production and the need to 
meet increasing food demand requires farming systems to improve their productivity. 
In the case of GCFs in the EARBC, the potential risk of increasing summer droughts 
and temperatures due to climate change is also a challenge that should be considered. 
We have shown the effects of weather conditions on farm productivity.

The analysis of TFP of the GCFs in the EARBC, based on the measurement 
of the MI and its components, has shown that extreme weather phenomena have a 
negative impact on productivity. During the 5-year study period, both efficiency and 
productivity fell due to the floods in 2007 and the drought period between 2010 and 
2011. However, pure efficiency change has been positive, indicating that farmers are 
improving their management skills and are adopting input-saving technologies. On 
the other hand, pure technical efficiency deteriorates and is the main reason for the 
lowering of productivity of the GCFs in the EARBC. In addition, the bootstrap of 
the MI of TFP and its components provides a correction for the inherent bias in non-
parametric distance functions and allows statistical inference for the results. Hence, it 
is possible not only to indicate changes in the MI of TFP but also to indicate if these 
changes are statistically significant.

Finally, the analysis of returns to scale and scale efficiency change allows the 
identification of farms operating closer to the point of the technically optimal scale 
as well as the identification of the optimal scale for farms in the sample. Furthermore, 
distinguishing between PTE and OTE permits the development of strategies for 
reducing inputs or scale adjustment in the short and long run respectively.
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ENDNOTES
1 	 Confidence intervals (CIs) were calculated for 10%, 5% and 1% levels of 

significance. The majority of the MI estimates are significantly different from 
unity at the 99% or 95% level. Hence, a farm is reported to have experienced 
significant progress between the two time periods if its confidence interval lower 
bound is greater than unity, it has significantly regressed during the period if its 
upper bound is less than unity and there is no statistically significant change if 
unity is included in its confidence interval.

2 	 Mann-Whitney U test was used to test for TFP difference between periods.
3 	 It should be noted that in some cases the computation of pure technical change 

or scale efficiency based on distance functions between the two time periods is 
not feasible to compute due to the linear programme constraints.
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