
A max-plus approach to incomplete
Cholesky factorization preconditioners
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Hook, J., Scott, J. ORCID: https://orcid.org/0000-0003-2130-
1091, Tisseur, F. and Hogg, J. (2018) A max-plus approach to
incomplete Cholesky factorization preconditioners. SIAM
Journal on Scientific Computing, 40 (4). A1987-A2004. ISSN
1095-7197 doi: https://doi.org/10.1137/16M1107735 Available
at https://centaur.reading.ac.uk/76701/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1137/16M1107735

Publisher: Society for Industrial and Applied Mathematics

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

SIAM J. SCI. COMPUT. c© 2018 SIAM. Published by SIAM under the terms
Vol. 40, No. 4, pp. A1987–A2004 of the Creative Commons 4.0 license

A MAX-PLUS APPROACH TO INCOMPLETE CHOLESKY
FACTORIZATION PRECONDITIONERS∗

JAMES HOOK† , JENNIFER SCOTT‡ , FRANÇOISE TISSEUR§ , AND JONATHAN HOGG‡

Abstract. We present a new method for constructing incomplete Cholesky factorization precon-
ditioners for use in solving large sparse symmetric positive-definite linear systems. This method uses
max-plus algebra to predict the positions of the largest entries in the Cholesky factor and then uses
these positions as the sparsity pattern for the preconditioner. Our method builds on the max-plus
incomplete LU factorization preconditioner recently proposed in [J. Hook and F. Tisseur, SIAM J.
Matrix Anal. Appl., 38 (2017), pp. 1160–1189] but is applied to symmetric positive-definite matri-
ces, which comprise an important special case for the method and its application. An attractive
feature of our approach is that the sparsity pattern of each column of the preconditioner can be com-
puted in parallel. Numerical comparisons are made with other incomplete Cholesky factorization
preconditioners using problems from a range of practical applications. We demonstrate that the new
preconditioner can outperform traditional level-based preconditioners and offer a parallel alternative
to a serial limited-memory–based approach.

Key words. sparse symmetric linear systems, incomplete factorizations, preconditioners, Hun-
garian scaling, max-plus algebra, sparsity pattern

AMS subject classifications. 65F08, 65F30, 65F50, 15A80

DOI. 10.1137/16M1107735

1. Introduction. Incomplete Cholesky (IC) factorizations are an important tool
in the solution of large sparse symmetric positive-definite linear systems of equations
Ax = b. Preconditioners based on an incomplete factorization of A (that is, a factor-
ization in which some of the fill entries that would occur in a complete factorization
and possibly some of the entries of A are ignored) have been in widespread use for
more than 50 years (see, for example, [34] for a brief historical overview that high-
lights some of the most significant developments). For general nonsymmetric systems,
incomplete LU (ILU) factorization preconditioners are frequently used as they work
well for a wide range of problems, and, again, many variants have been proposed (see
[31] for an introduction). The basic idea is to compute a factorization A ≈ LU (or
A ≈ LLT in the positive-definite case) with L and U sparse triangular matrices with
the fill-in (that is, the entries in L and U that lie outside the sparsity pattern of A) re-
stricted to some sparsity pattern S. Recently, Hook and Tisseur [20] have shown how
max-plus algebra can be used to approximate the order of magnitude of the moduli of
the entries in the LU factors of A and have used this to construct the sparsity pattern
of ILU preconditioners. Max-plus algebra is the analogue of linear algebra developed

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section December
13, 2016; accepted for publication (in revised form) April 16, 2018; published electronically July 3,
2018.

http://www.siam.org/journals/sisc/40-4/M110773.html
Funding: The second author’s work was supported by EPSRC grant EP/M025179/1. The third

author’s work was supported by EPSRC grant EP/I005293 and by a Royal Society-Wolfson Research
Merit Award.
†Institute for Mathematical Innovation, University of Bath, Claverton Down, Bath, BA2 7AY,

UK (j.l.hook@bath.ac.uk.)
‡STFC Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, OX11 0QX, UK (jennifer.

scott@stfc.ac.uk, Jonathan.Hogg@stfc.ac.uk).
§School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK (Francoise.

Tisseur@manchester.ac.uk).

A1987

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

http://www.siam.org/journals/sisc/40-4/M110773.html
mailto:j.l.hook@bath.ac.uk
mailto:jennifer.scott@stfc.ac.uk
mailto:jennifer.scott@stfc.ac.uk
mailto:Jonathan.Hogg@stfc.ac.uk
mailto:Francoise.Tisseur@manchester.ac.uk
mailto:Francoise.Tisseur@manchester.ac.uk

A1988 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

for the binary operations max and plus over the real numbers together with −∞,
the latter playing the role of additive identity; an introduction and a large number
of references to the literature may be found in [16, Chap. 35]. In the past few years,
max-plus algebra has been used to examine a number of numerical linear algebra
problems [2, 12, 15, 28]. While the numerical experiments reported on in [20] were
limited to modest-sized sparse problems (of order up to 103), they did indicate the
potential of the approach to compute ILU preconditioners that can outperform the
traditional level of fill methods and be competitive with a threshold-based method.

One drawback of the max-plus method is that the sparsity pattern S cannot be
updated to account for any pivoting during the factorization of A, so that the pattern
chosen by the max-plus analysis is only useful when the factorization does not require
row or column interchanges. An attractive feature of symmetric positive-definite ma-
trices is that they will always (in exact precision) admit a Cholesky factorization
without pivoting. However, if A is close to being indefinite or if an incomplete fac-
torization is computed, then breakdown can occur (that is, a zero or negative pivot is
encountered). In this case, we follow Manteuffel [27] and add a small multiple of the
identity; that is, we factorize DAD+αI for some shift α > 0 and diagonal scaling D.
This avoids the need for pivoting and preserves the chosen sparsity structure S of the
factors, and, as shown recently by Scott and Tůma [35, 36], the resulting IC factors
generally still provide an effective preconditioner for A. We observe that prescaling
of A is essential to limit the size of the shift; preordering is also normally needed to
limit fill in the factors (and hence the number of entries that are dropped during the
incomplete factorization).

The aim of this paper is to present an algorithm for constructing IC precondi-
tioners for large sparse positive-definite problems using max-plus algebra to predict
the positions of the largest entries in the Cholesky factor. The sparsity pattern Sj of
each column j can be determined in parallel. Once Sj is found, the IC factorization
can be computed using a conventional serial procedure or using the novel approach
of Chow and Patel [3], who propose using an iterative method to compute the entries
of the factors. All the nonzero entries in the incomplete factors can be computed in
parallel and asynchronously, using a number of sweeps of an iterative method. A key
issue with their approach is that the pattern S must be chosen a priori.

The remainder of this paper is organized as follows. In section 2, we briefly
recall max-plus incomplete LU factorizations, and then, in section 3, we focus on
positive-definite matrices. We present algorithms for computing each column of the
max-plus factor independently. Results for a wide range of problems are presented in
section 4, and comparisons are made between our new max-plus IC preconditioner and
both level-based and memory-based IC preconditioners used with the preconditioned
conjugate gradient method. Finally, some concluding remarks and possible future
directions are given in section 5. Note that we do not assume that the reader is
familiar with the use of max-plus algebra but define the concepts that we need as
necessary.

Throughout this paper, matrices are denoted by capital letters with their entries
given by the corresponding lower case letter in the usual way, that is, A = (aij) ∈
Rn×n. Max-plus matrices are denoted by calligraphic capital letters and their entries
by the corresponding lower case calligraphic letter, that is, A = (aij) ∈ Rn×nmax , where
Rmax = R ∪ {−∞}.

2. Max-plus approximation of LU factorization. In [20], the authors use
max-plus algebra to introduce the following method for approximating the moduli of

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A1989

the entries of the L and U factors of sparse matrices.
Consider the map V defined as

(2.1)
V : R→ Rmax,

x 7→ log |x|,

with the convention that log 0 = −∞. For x, y ∈ R, V(xy) = V(x) + V(y), and
when |x| � |y| or |x| � |y|, V(x + y) ≈ max{V(x),V(y)}, which suggests using the
operations max and plus in place of the classical addition and multiplication once we
have applied the map V. The set Rmax endowed with the addition x⊕ y = max{x, y}
and the multiplication x ⊗ y = x + y is called the max-plus semiring. It is not a
ring as there is no additive inverse and hence there is no max-plus subtraction. The
identity elements are −∞ for the addition and 0 for the multiplication. When applied
componentwise to a matrix, the map (2.1) allows us to transform the matrix A ∈ Rn×n
into a max-plus matrix ; i.e., V(A) = A is a matrix with entries aij = log |aij | in Rmax.
The max-plus matrix V(A) is termed the valuation of A.

For A ∈ Rn×nmax , define the max-plus permanent

(2.2) perm(A) = max
π∈Π(n)

n∑
i=1

ai,π(i) ∈ Rmax,

where Π(n) is the set of all permutations on {1, . . . , n}. In [20], Hook and Tisseur make
repeated use of the heuristic that V

(
det(A)

)
≈ perm

(
V(A)

)
. This approximation can

be intuitively justified by expressing the determinant as a sum of terms coming from
each permutation and the permanent as the maximum of those terms. If the matrix A
is sparse and has a wide range of entry sizes, then the heuristic approximation should
be more accurate. It is well known that the entries in the lower triangle of L and the
upper triangle of U of an LU factorization of A ∈ Rn×n can be expressed explicitly
in terms of determinants of submatrices A (see [11, p. 35]) by

lik = det
(
A([1 : k − 1, i], 1: k)

)
/det

(
A(1 : k, 1: k)

)
, i ≥ k,(2.3)

ukj = det
(
A(1 : k, [1 : k − 1, j])

)
/ det

(
A(1 : k − 1, 1: k − 1)

)
, j ≥ k.(2.4)

Here the notation [1 : k−1, i] means the indices 1, 2, . . . , k−1, i. If both the numerator
and denominator in either (2.3) or (2.4) are zero, then the convention 0/0 = 0 is used.
Using this fact and heuristic (2.2), Hook and Tisseur [20] define the max-plus LU
factors of A ∈ Rn×nmax as the lower triangular max-plus matrix L and upper triangular
max-plus matrix U with entries

lik = perm
(
A([1 : k − 1, i], 1: k)

)
− perm

(
A(1 : k, 1: k)

)
, i ≥ k,(2.5)

ukj = perm
(
A(1 : k, [1 : k − 1, j])

)
− perm

(
A(1 : k − 1, 1: k − 1)

)
, j ≥ k,(2.6)

and lik = ukj = −∞ if i, j < k. If the two terms on the right-hand side of either (2.5)
or (2.6) are −∞, then the convention −∞− (−∞) = −∞ is used. If the second term
is −∞ but the first is not, then A does not admit max-plus LU factors. Hook and
Tisseur show that L and U are such that

(2.7) V(L) ≈ L, V(U) ≈ U ,

where the symbol “≈” should be interpreted componentwise as “offers an order of
magnitude approximation.”

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A1990 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

Example 2.1. Consider

A =

 −10 10 −103

0 1 −1
103 1 10−2

 , V(A) =

 1 1 3
−∞ 0 0

3 0 −2

 = A.

We compute the max-plus LU factors of V(A) using (2.5) and (2.6). For such a small
example, we can evaluate the permanent of a matrix or submatrix by simply evaluating
all possible permutations and recording the maximum. Note that the permanent can
also be expanded along a row or a column in a similar way to the Leibniz formula
for determinants but with no sign function, and the sum replaced by a maximum and
the product by a sum (see [19, Prop. 1.2]). For example,

u33 = perm
(
A([1 : 3], [1 : 3])

)
− perm

(
A(1 : 2, 1: 2)

)
= max

(
1 + max(−2, 0), 3 + max(1, 3)

)
−max(1,−∞) = 5.

We obtain

L =

 0 −∞ −∞
−∞ 0 −∞

2 3 0

 , U =

 1 1 3
−∞ 0 0
−∞ −∞ 5

 ,
which provides a good approximation of the order of magnitude of the moduli of the
entries in the LU factors of A,

L =

 1 0 0
0 1 0
−100 1001 1

 , U =

 −10 10 −1000
0 1 −1
0 0 −98999

 ,
where u33 is only provided to five significant digits.

2.1. Hungarian matrices. A matrix H ∈ Rn×n is said to be Hungarian if its
entries satisfy |hij | ≤ 1 and |hii| = 1 for all i, j = 1, . . . , n. It is well known that
for any matrix A ∈ Rn×n of full structural rank there exists a permutation matrix
P and diagonal matrices D1, D2 such that PD1AD2 is a Hungarian matrix and that
such a scaling is a highly effective preprocessing step both for sparse direct solvers
and for incomplete factorizations. The idea was originally introduced by Olschowka
and Neumaier [29] in the mid 1990s. They proposed using the solution to an optimal
assignment problem as an ordering and scaling to reduce the need for pivoting within
Gaussian elimination; their work was further developed by Duff and Koster [8] (see
also Gupta and Ying [13]). The idea was subsequently extended to symmetric systems
[7, 9] and over the last 15 years or so, it has been adopted by the sparse linear
algebra community for both nonsymmetric and symmetric problems (see, for example,
[1, 14, 17, 18, 25, 32, 33]).

A max-plus matrix H ∈ Rn×nmax is said to be Hungarian if its entries satisfy hij ≤ 0
and hii = 0 for all i, j = 1, . . . , n. Note that H ∈ Rn×n is Hungarian if and only if
V(H) is Hungarian.

Proposition 2.2. Let H ∈ Rn×nmax be Hungarian; then H admits max-plus LU
factors.

Proof. From (2.5) and (2.6) we have that perm
(
H(1 : k, 1: k)

)
6= −∞ for all k

is a sufficient condition for H to admit max-plus LU factors. But since hij ≤ 0 and
hii = 0 for all i, j, we have perm

(
H(1 : k, 1: k)

)
= 0 for all k.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A1991

3. The max-plus IC factorization. We now focus on symmetric positive-
definite matrices A ∈ Rn×n. For such matrices, there exists a unique lower triangular
matrix L ∈ Rn×n such that A = LLT ; this is the Cholesky factorization of A. The
following result is from Olschowka and Neumaier [29].

Lemma 3.1. Let A ∈ Rn×n be a symmetric positive-definite matrix, and let D ∈
Rn×n be the diagonal matrix with diagonal entries dii = 1/

√
aii, i = 1, . . . , n. Then

H = DAD

is a symmetric positive-definite Hungarian matrix.

Thus given a symmetric positive-definite matrix A ∈ Rn×n, we can easily scale
it to obtain a symmetric positive-definite Hungarian matrix H ∈ Rn×n. Since the
Hungarian property is very beneficial to our max-plus IC algorithm, in the remainder
of the paper we assume that the matrix A has been scaled so that the scaled matrix
H = DAD is symmetric positive-definite Hungarian.

Proposition 3.2. Let H ∈ Rn×n be a symmetric positive-definite Hungarian
matrix, and let H = V(H) ∈ Rn×nmax . Then the max-plus LU factors L and U of H
satisfy U = LT and

(3.1) lik =

{
perm

(
H([1 : k − 1, i], 1: k)

)
, i ≥ k,

−∞, i < k.

Proof. It follows from (2.5)–(2.6) and the proof of Proposition 2.2 that lik =
perm

(
H([1 : k− 1, i], 1: k)

)
for i ≥ k, and uki = perm

(
H(1 : k, [1 : k− 1, i])

)
for i ≥ k.

Since H is symmetric, lik = uki for all i and k, i.e., U = LT .

We say that L as defined in (3.1) is the max-plus lower Cholesky factor of H. In
the special case of a symmetric positive-definite Hungarian matrix, the heuristic order
of magnitude approximation in (2.7) can be rewritten as follows.

Heuristic 3.3 (max-plus approximation of Cholesky factors). Let H ∈ Rn×n be
a symmetric positive-definite Hungarian matrix, let L ∈ Rn×n be the lower Cholesky
factor of H, and let H = V(H). Then

V(L) ≈ L,

where L is the max-plus lower Cholesky factor of H.

3.1. Precedence graphs and fill paths. Hook and Tisseur [20] present several
algorithms for computing max-plus LU factors for nonsymmetric matrices. Their
algorithms all work on a directed bipartite graph, with a pair of vertices for each row
in the matrix. In the special case of a symmetric Hungarian matrix, we are able to
simplify their algorithm so that it works on an undirected graph with a single vertex
for each row.

Let H ∈ Rn×nmax be a symmetric Hungarian matrix, and let G(H) be the precedence
graph ofH, that is, the graph with vertices {1, . . . , n} and an undirected edge e : i↔ j
of weight hij whenever hij 6= −∞. A path σ of length ` from i to j in G(H) is
a sequence of ` + 1 distinct vertices σ =

(
σ(1), σ(2), . . . , σ(`), σ(` + 1)

)
such that

σ(1) = i, σ = (` + 1) = j and hσ(k),σ(k+1) 6= −∞ for all k = 1, . . . , `. The weight of
a path W (σ) is given by the sum of its edge weights. We allow paths of zero length
that consist of a single vertex and have zero weight, but we do not allow paths to visit

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A1992 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

the same vertex more than once. Let Σ(i, j,H) be the set of all paths in G(H) from
i to j. A path σ of length ` from i to j is a fill path if σ(1) = i, σ(k) < min{i, j} for
k = 2, . . . , ` and σ(`+ 1) = j. Let ΣF (i, j,H) be the set of all fill paths from i to j in
the graph G(H). Clearly, ΣF (i, j,H) ⊆ Σ(i, j,H).

Theorem 3.4. Let H ∈ Rn×n be a symmetric positive-definite Hungarian matrix,
and let H = V(H). Then the max-plus Cholesky lower factor L of H is given by

(3.2) lik =

{
maxσ∈ΣF (i,k,H)W (σ), i ≥ k,
−∞, i < k.

Proof. From Proposition 3.2 and (2.2) we have that for i ≥ k,

(3.3) lik = perm
(
H([1 : k − 1, i], 1: k)

)
= max

φ∈Φ

∑
j∈{1,2,...,k−1,i}

hjφ(j),

where Φ denotes the set of bijections from {1, 2, . . . , k − 1, i} to {1, 2, . . . , k}.
If i = k, then lkk = perm

(
H(1 : k, 1: k)

)
= 0 and maxσ∈ΣF (k,k,H)W (σ) = 0 since

we allow paths of zero length that consist of a single vertex and have zero weight. So
(3.3) holds when i = k.

Assume now that i > k. Define the map ` : Φ 7→ N by φ`(φ)(i) = k, where
φt(i) means that the map φ is applied t times to the vertex i. Also define the map
P : Φ 7→ ΣF (i, k,H) by P (φ) = σ, where σ =

(
i, φ(i), φ2(i), . . . , φ`(φ)(i)

)
. To see

that the maps ` and P are well defined, consider the sequence σ =
(
i, φ(i), φ2(i), . . .

)
.

By injectivity of φ and the fact that i has no φ preimage when i > k, the sequence
σ = P (φ) can never repeat itself and must therefore terminate at vertex k after at
most k steps.

We show that the map P is a surjection, i.e., every fill path σ ∈ ΣF (i, k,H) has a
preimage Q(σ) ∈ Φ. Indeed, let σ =

(
i, σ(2), . . . , σ(`− 1), k

)
, and set Q(σ) = φ with,

for j ∈ {1, 2, . . . , k − 1, i},

φ(j) =

{
σ(t+ 1) if j = σ(t) for some t ∈ {1, . . . , `},
j otherwise.

Then P
(
Q(σ)

)
= σ by construction.

Next, we show that for any φ ∈ Φ, the bijection ψ = Q
(
P (φ)

)
∈ Φ satisfies∑

j∈{1,2,...,k−1,i}

hjφ(j) ≤
∑

j∈{1,2,...,k−1,i}

hjψ(j) = W
(
P (φ)

)
.

To see this, let V ⊆ {1, . . . , k − 1, i} be the set of vertices in G(H) visited by the
sequence σ = P (φ), and let U = {1, . . . , k − 1, i} \ V be the complement of V . Then∑

j∈{1,2,...,k−1,i}

hjφ(j) =
∑
j∈V

hjφ(j) +
∑
j∈U

hjφ(j) ≤
∑
j∈V

hjφ(j)

since hij ≤ 0 for all i, j. Now for ψ we have∑
j∈{1,2,...,k−1,i}

hjψ(j) =
∑
j∈V

hjφ(j) +
∑
j∈U

hjψ(j) =
∑
j∈V

hjφ(j)

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A1993

1 2 3 4
−0.5

−1

−2

−3

-1

Fig. 3.1. Precedence graph G(H) for the matrix of Example 3.5.

1 2 3 4
−0.5

−1

−2

−3

Fig. 3.2. Precedence graph G
(
H(2)

)
for the matrix of Example 3.5.

since hii = 0 for all i. Hence

(3.4)
∑

j∈{1,2,...,k−1,i}

hjψ(j) =
∑
j∈V

hjφ(j) =

`(φ)∑
t=1

w
(
σ(t), σ(t+ 1)

)
= W (σ).

Finally, the permanent in (3.3) is given by the maximum weight of a bijection
φ ∈ Φ. From the construction of P : Φ 7→ ΣF (i, k,H), we know that each of these
bijections can be mapped to a fill path P (φ) from k to i. Moreover, we know that for
every bijection φ ∈ Φ, there is a bijection ψ = Q

(
P (φ)

)
∈ Φ whose weight, greater

than or equal to the weight of φ, is equal to the weight of the fill path P (φ). Therefore,
since P is a surjection, the maximum weight of a bijection is equal to the maximum
weight of a fill path.

lik = max
φ∈Φ

∑
j∈{1,2,...,k−1,i}

hjφ(j) = max
ψ∈Q(P (Φ))

∑
j∈{1,2,...,k−1,i}

hjψ(j) = max
σ∈ΣF (i,k,H)

W (σ).

Example 3.5. Consider

H =


1 10−0.5 10−1 0

10−0.5 1 10−2 10−3

10−1 10−2 1 10−1

0 10−3 10−1 1

 , H = V(H) =


0 −0.5 −1 −∞
−0.5 0 −2 −3
−1 −2 0 −1
−∞ −3 −1 0

 ,
where H is Hungarian and symmetric positive-definite.

Figure 3.1 displays the precedence graph G(H). Suppose that we want to com-
pute the second column of L. From (3.2) we have l12 = −∞, l22 = 0, l32 =
maxσ∈ΣF (3,2,H)W (σ), where ΣF (3, 2,H) = {(3, 2), (3, 1, 2)}. Since W (3, 2) = −2
and W (3, 1, 2) = −1.5, we have l32 = −1.5. Similarly, l42 = maxσ∈ΣF (4,2,H)W (σ),

where ΣF (4, 2,H) = {(4, 2)}, and since W (4, 2) = −3, we have l42 = −3. Note that
Σ(4, 2,H) also contains the paths (4, 3, 2) and (4, 3, 1, 2). Note also that W (4, 3, 1, 2) =
−2.5, which is greater than W (4, 2), but we do not count the weight of the path
(4, 3, 1, 2) as it is not a fill path.

The remaining columns of L can be computed in the same way to give the max-

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A1994 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

plus Cholesky factor of H,

L =


0 ∞ ∞ −∞
−0.5 0 ∞ ∞
−1 −1.5 0 ∞
−∞ −3 −1 0

 .
This provides a good approximation of the order of magnitude of the moduli of the
entries in the Cholesky factor of H

L =


1 0 0 0

0.316 0.949 0 0
0.1 −0.023 0.995 0
0 0.001 0.101 0.995

 , V(L) =


0 −∞ −∞ −∞
−0.5 −0.023 −∞ −∞
−1 −1.642 −0.002 −∞
−∞ −2.977 −0.998 −0.002

 .
We now define H(k) ∈ Rn×nmax , 1 ≤ k ≤ n, to be the matrix with entries given by

h(k)ij =

{
hij for i ≤ k,

−∞ otherwise.

Thus G
(
H(k)

)
is the graph with vertices {1, . . . , n} that contains all edges from

{1, . . . , k} to itself and all edges from {1, . . . , k} to {k + 1, . . . , n} but no edges from
{k + 1, . . . , n} to itself or from {k + 1, . . . , n} to {1, . . . , k}. This construction is
illustrated for the matrix of Example 3.5 and k = 2 in Figure 3.2.

Lemma 3.6. Let H ∈ Rn×nmax be the valuation of a symmetric positive-definite Hun-
garian matrix; then

ΣF (k, i,H) = Σ
(
k, i,H(k)

)
for k = 1, . . . , n and i = k, . . . , n.

Proof. The set ΣF (k, i,H) contains the zero length path σ = (k) if and only if
i = k. Likewise for Σ

(
k, i,H(k)

)
. Now suppose that σ ∈ ΣF (k, i,H) is a path of

length ` > 0. Since σ is a fill path from k to i, it must satisfy σ(1) = k, σ(j) < k
for j = 2, . . . , ` and σ(` + 1) = i. Therefore, σ traverses ` − 1 edges between the
vertices {1, . . . , k} and then traverses an edge from {1, . . . , k} to i; since all of these
edges are also contained in G

(
H(k)

)
we have σ ∈ Σ

(
k, i,H(k)

)
. Conversely, suppose

that σ ∈ Σ
(
k, i,H(k)

)
is a path of length ` > 0. Since σ is a path from k to i it

must satisfy σ(1) = k and σ(` + 1) = i. However, since there are no edges from
vertices {k + 1, . . . , n} to {1, . . . , n} in G

(
H(k)

)
, the path σ can only visit a vertex

in {k + 1, . . . , n} as its final vertex so that σ(j) ≤ k for j = 2, . . . , `. Moreover, since
σ(1) = k and σ is a path and, as such, must consist of a sequence of distinct vertices,
we have σ(j) < k for j = 2, . . . , ` and therefore σ ∈ ΣF (k, i,H).

Corollary 3.7. Let H ∈ Rn×nmax be symmetric and Hungarian, and let L be the
Cholesky factor of H. Then for i ≥ k,

lik = max
σ∈ΣF (i,k,H)

W (σ) = max
σ∈ΣF (k,i,H)

W (σ) = max
σ∈Σ(k,i,H(k))

W (σ).

To compute the kth column of L it is therefore sufficient to compute the weight
of the maximally weighted path from k to i for all i = k + 1, . . . , n in H(k). Since
the entries of H are nonpositive, this can be done using Dijkstra’s algorithm [5] with

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A1995

worst-case cost O
(
Ek +n log(n)

)
, where Ek is the number of nonzero entries in H(k).

The algorithm is given as Algorithm 1. For efficiency it uses a priority heap data
structure that stores indices with an associated priority. The operation push(heap,
index, priority) adds or updates an index-priority pair in the heap, while the operation
(index, priority) = pop max(heap) returns and removes the index-priority pair with
maximum priority.

Algorithm 1 Given the valuation H ∈ Rn×nmax of a real symmetric positive-definite
Hungarian matrix and an integer k, 1 ≤ k ≤ n, this algorithm computes the kth
column of the max-plus Cholesky factor L of H.

1: set di = −∞ and checkedi = false, 1 ≤ i ≤ n,
2: initialize heap; push(heap, k, 0)
3: while heap is nonempty do
4: (i, di) = pop max(heap)
5: set checkedi =true
6: if i ≤ k then
7: for all j such that hij 6= −∞ and checkedj = false do
8: dcand = di + hij
9: if dcand > dj then

10: set dj = dcand
11: push(heap, j, dcand)
12: end if
13: end for
14: end if
15: if i ≥ k then
16: lik = di
17: end if
18: end while

3.2. Max-plus IC preconditioner pattern. We can use the max-plus Cholesky
factor L ∈ Rn×nmax of V(H) to construct a sparsity pattern for an IC preconditioner for
a symmetric positive-definite Hungarian matrix H ∈ Rn×n as follows. If we want the
IC pattern to include the positions of all of the entries in the exact Cholesky factor L
of H that are greater in modulus than some drop tolerance ε > 0, then Heuristic 3.3
suggests using the pattern S ∈ {0, 1}n×n given by

(3.5) sij =

{
1 if lij ≥ log ε,

0 otherwise.

The total number of nonzero entries per column can also be restricted to an integer m,
by setting sij = 1 for the m largest positions in the jth column only, as predicted by
Heuristic 3.3. Once we have a suitable pattern matrix, we can compute an IC factor
with that pattern using standard algorithms from the level of fill IC(k) approach.
Specifically, we compute one column of the preconditioner at a time using a left-
looking algorithm; details are given in [34].

If we are computing the max-plus Cholesky factor of H to predict the positions
of large entries in the Cholesky factor L of H, then we can speed up Algorithm 1
by terminating it early. Algorithm 2 calculates the positions of the m largest entries
in the kth column of L. If there are fewer than m entries greater than some chosen

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A1996 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

threshold log ε, then it will instead return the positions of the r < m entries that are
greater than log ε. The worst-case cost of this algorithm is O

(
Ek,m,ε + Vk,m,ε log(n)

)
,

where Ek,m,ε is the total number of edges explored in line 6 of Algorithm 2 and Vk,m,ε
is the number of times the algorithm passes around the while loop that begins on line
3. A possible approximation of these quantities for the case ε = 0 is given by

Ek,m,0 = Ek
m

n− k
, Vk,m,0 =

km

n− k
+m.

Here the assumption is that vertices are examined and checked in a uniform random
order and that the number of nonzero entries per row in H is constant.

It is interesting to compare the max-plus pattern (3.5) with the level of fill IC(k)
pattern. The IC(k) pattern P ∈ {0, 1}n×n can be expressed as

pij =

{
1 if there is a fill path of length ≤ k from i to j through G(H),

0 otherwise,

whereas, using (3.2), the max-plus IC pattern S ∈ {0, 1}n×n in (3.5) can be expressed
as

sij =

{
1 if there is a fill path of weight ≥ log ε from i to j through G(H),

0 otherwise.

The level of fill approach drops entries that correspond to longer paths, while the max-
plus approach drops entries that correspond to paths with less weight. By taking this
extra information into account, the max-plus approach has the ability to produce
more effective preconditioners by dropping some smaller entries with lower levels of
fill and including some larger entries with higher levels of fill. Note that in the special
case that H ∈ Rn×n has hii = 1, 1 ≤ i ≤ n, and hij = γ < 1 for all other nonzero
positions, then the IC(k) pattern will be identical to the max-plus pattern chosen
using ε = γk+1. Note also that Scott and Tůma [34] explored IC factorizations with
variable levels of fill, allowing large entries to contribute to more levels of fill than
small entries. Their numerical results illustrated the potential effectiveness of such an
approach.

4. Numerical results. We present numerical results for problems taken from
the University of Florida Sparse Matrix Collection [4]. We select all symmetric
positive-definite matrices of order n > 5000 except those that are diagonal or rep-
resent minor variations on other matrices. This gives a set of 132 problems. In each
test, the matrix A is reordered, scaled, and, if necessary, shifted to avoid breakdown
of the factorization so that the incomplete factorization of

Â = DQTAQD + αI

is computed, where Q is a permutation matrix, D is a diagonal scaling matrix with
entries dii = 1/

√
(QTAQ)ii, and α is a nonnegative shift. The permutation matrix

Q is computed using the Sloan profile reduction ordering algorithm [30, 37, 38]. This
ordering is used since, in our experience, it frequently leads to a reduction in the
number of conjugate gradient iterations [35, 36]. Preconditioned conjugate gradient
(PCG) is applied to the original matrix A (so that the incomplete preconditioner is

(L̂L̂T)−1 with L̂ = QD−1L). The strategy for choosing α is as described in [35] (see
also [26]). The max-plus IC factorization is started with α = 0, but if a zero (or

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A1997

Algorithm 2 Given the valuation H ∈ Rn×nmax of a real symmetric positive-definite
Hungarian matrix, a tolerance ε > 0, and two integers m, k, 1 ≤ m, k ≤ n, this
algorithm computes the kth column of a pattern matrix with 0 and 1 entries such
that there are 1’s in the r ≤ m entries corresponding to the largest entries in the kth
column of the max-plus Cholesky factor L of H that are greater than log ε.

1: for i = 1, . . . , n set di = −∞ and checkedi = false
2: initialize heap; push(heap, k, 0)
3: set pik = 0 for i = 1, 2, . . . , n; set r = 0
4: while r < m do
5: (i, di) = pop max(heap)
6: if di < log ε then exit
7: set checkedi = true
8: if i ≤ k then
9: for all j such that hij 6= −∞ and checkedj = false do

10: dcand = di + hij
11: if dcand > dj then
12: set dj = dcand
13: push(heap, j, dcand)
14: end if
15: end for
16: end if
17: if i ≥ k then
18: pik = 1
19: r = r + 1
20: end if
21: end while

negative) pivot is encountered, a nonzero α is employed (the initial value used in our
experiments is 0.001) and the factorization is restarted. This process may need to be
repeated more than once, with α increased (normally by a factor of 2) each time the
factorization breaks down. For our test set, we found that the largest shift needed by
the max-plus IC factorization was 0.064.

We use the implementation MI21 of PCG provided by the HSL Mathematical
Software Library [21]. For each problem, we terminate the computation if a limit of
either 10,000 iterations or 10 minutes is reached. The PCG algorithm is considered
to have converged on the ith step if

‖ri‖2
‖r0‖2

≤ 10−10,

where ri is the current residual vector and r0 = b− Ax0 is the initial residual. In all
our experiments, we take the initial solution guess to be x0 = 0 and choose the right-
hand side b so that the solution is the vector of 1’s. If PCG fails to converge within
our chosen limits, the result is recorded as a failure. All runs are performed on a dual
socket E5-2695 v3 machine using the Intel Compiler Suite v16.0.1. We use the Intel
MKL sparse triangular solve and matrix-vector routines to apply the preconditioner
and calculate matrix-vector products Ax.

To measure the performance of PCG, we use the following statistics:
nitr is the number of iterations required for PCG to converge.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A1998 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

mapcg is the total number of memory accesses to perform PCG, given by

(4.1) mapcg = nitr × (nnz(A) + 2 nnz(L)),

where nnz(A) and nnz(L) are the number of entries in the lower triangle of
A and in the (incomplete) Cholesky factor, respectively. This represents a
matrix-vector multiplication, and a forward and a backward solve with L at
each iteration. In an ideal implementation, runtime would be proportional to
mapcg.

We compare the new max-plus IC preconditioner with the following precondition-
ers.
Diagonal: Equivalent (in exact arithmetic) to no preconditioning as our prescaling

results in all diagonal entries being 1.0.
IC(0): Incomplete Cholesky based on the sparsity pattern of A. A drop tolerance

δ = 10−3 is applied in a postfactorization filtering step (so that all entries in
the computed factor that are of absolute value less than δ are discarded).

IC(1): Incomplete Cholesky based on the pattern of A plus one level of fill. A drop
tolerance δ = 10−3 is applied in a postfactorization filtering step.

HSL MI28: A limited memory IC preconditioner developed by Scott and Tůma [35, 36].
We use the default drop tolerances of 10−3 and 10−4 and allow up to 10
fill entries in each column of the incomplete factor (that is, the HSL MA28

parameters lsize and rsize that control the memory usage and sparsity of
the factor are both set to 10).

Note that, for each problem and each algorithm, a different shift α may be needed.
A nonzero value is only used if, during the construction of the preconditioner, a zero
or negative pivot is encountered. We apply postfactorization filtering to the IC(0)
and IC(1) patterns so as to be consistent with HSL MI28. In practice, we find that
dropping small entries can improve the sparsity of the factors without significantly
affecting the quality of the preconditioner. See, e.g., [34].

We do not report detailed times to form the preconditioner as the purpose of
this study is to evaluate the numerical quality of the preconditioner rather than to
develop an efficient implementation. However, to give an indication of runtimes for our
current code, we comment that for each of our test problems, our basic max-plus serial
implementation takes less than 7 minutes to construct the preconditioner. The slowest
max-plus time that gives a preconditioner that leads to PCG converging within our
chosen limits is for problem Janna/Bump 2911. In this case, our prototype code takes
approximately 260 seconds to construct the preconditioner, followed by 58 seconds to
run PCG, which compares to around 14 seconds for constructing IC(0), followed by 90
seconds to run PCG. For IC(1) (respectively, HSL MI28) the corresponding times are 30
seconds (respectively, 55 seconds) for constructing the preconditioner and 95 seconds
(respectively, 35 seconds) to run PCG. The max-plus implementation can potentially
be accelerated through the use of parallel processing as the pattern of each column
can be calculated independently, but implementing this efficiently is nontrivial and
outside our current study. We observe that the patterns of the columns of IC(1) (and,
more generally, IC(k)) can also be computed in parallel [22], but HSL MI28 is a serial
approach.

4.1. Max-plus parameters. Our algorithm for determining the incomplete
max-plus pattern has three parameters: m, the maximum number of entries per
column, ε, the max-plus drop tolerance, and δ, a tolerance that is applied to filter the
final L factor. To be consistent with the IC(0) and IC(1) preconditioners, the latter

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A1999

Table 4.1
Breakdown of timings for problem Janna/Bump 2911.

Time taken Max-plus IC(0) IC(1) MI28

computing pattern a a a -
computing numeric values a a a -
total preconditioner set up 260 14 30 55

PCG solve 58 90 95 35
total 318 104 125 90

is set to 10−3.
To establish suitable settings for m and ε, we perform experiments on a subset of

15 matrices. This subset was chosen by ordering the test set in order of nnz(A) and
then choosing (approximately) every 10th example. We present results in Table 4.2
for m = 10 and 20 with ε = 10−4, 10−5, and 10−6. For comparison, the results for the
other IC approaches are shown in Table 4.3. As m increases and ε decreases, more
entries are included in the factors. The results show that typically the relaxation of ε
has little effect on the size of the factors, although for some problems using ε ≤ 10−5

can significantly decrease the number of iterations required (e.g., AMD/G2 circuit,
ND/nd6k, Janna/Bump 2911). We therefore choose to use ε = 10−6 in the rest of this
paper. We observe that we also experimented with using ε = 0.0. For a small number
of examples, this can further reduce the number of iterations (e.g., for Williams/cant,
the count is cut from 2016 to 1617), but the time to compute the preconditioner
increases significantly (for many of our tests, compared to using ε = 10−6, the time
for ε = 0.0 increases by more than 50 percent, and this is not fully offset by the
reduction in the iteration count).

The effect of m is much more dramatic, both in terms of increased factor size
and decreased number of iterations. When we consider the balance of these qualities
in the number of memory accesses mapcg, the best result can go in either direction.
As m = 10 always gives the sparsest factors, we choose m = 10 for the remainder of
this paper. The combination m = 10, ε = 10−6 has the property that (on these 15
matrices) the size of the factors is always smaller than or commensurate with those
produced by HSL MI28 with the selected settings for its input parameters.

4.2. Comparison with other IC preconditioners. To assess the perfor-
mance of the different preconditioners on our test set of 132 problems, we employ
performance profiles [6]. The performance ratio for an algorithm on a particular prob-
lem is the performance measure for that algorithm divided by the best performance
measure for the same problem over all the algorithms being tested (here we are assum-
ing that the performance measure is one for which smaller is better—for example, the
iteration count). The performance profile is the set of functions {pi(f) : f ∈ [1,∞)},
where pi(f) is the fraction of problems where the performance ratio of the ith algo-
rithm is at most f . Thus pi(f) is a monotonically increasing function taking values
in the interval [0, 1]. In particular, pi(1) gives the fraction of the examples for which
algorithm i is the winner (that is, the best according to the performance measure),
while if we assume failure to solve a problem (for example, through the maximum
iteration count or time limit being exceeded) is signaled by a performance measure of
infinity, p∗i := limf→∞ pi(f) gives the fraction for which algorithm i is successful.

Figures 4.1 and 4.2 present performance profiles for the iteration counts nitr and
memory accesses mapcg, respectively. We use a logarithmic scale in order to observe
the performance of the algorithms over a large range of f while still being able to

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A2000 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

Table 4.2
Results for various values of the max-plus parameters m and ε for a subset of 15 matrices.

Entries in bold are within 10% of the best.

Problem nnz(L)× 106 nitr mapcg × 109

ε = 10−4 10−5 10−6 10−4 10−5 10−6 10−4 10−5 10−6

Pothen/bodyy5 m = 10 0.08 0.08 0.08 6 5 5 0.001 0.001 0.001
m = 20 0.08 0.08 0.08 6 5 5 0.001 0.001 0.001

HB/bcsstk18 m = 10 0.11 0.11 0.11 80 80 80 0.025 0.025 0.025
m = 20 0.13 0.13 0.13 63 54 53 0.021 0.019 0.018

GHS psdef/minsurfo m = 10 0.27 0.30 0.32 9 7 6 0.006 0.005 0.005
m = 20 0.27 0.30 0.32 9 7 6 0.006 0.005 0.005

GHS psdef/apache1 m = 10 0.82 0.82 0.83 140 141 140 0.274 0.276 0.277
m = 20 0.96 0.99 1.03 126 127 117 0.281 0.292 0.277

AMD/G2 circuit m = 10 1.26 1.49 1.61 123 89 84 0.364 0.304 0.308
m = 20 1.28 1.56 1.78 123 89 70 0.370 0.317 0.280

Rothberg/cfd2 m = 10 2.78 2.78 2.78 598 599 599 4.29 4.30 4.30
m = 20 3.83 3.83 3.83 526 525 527 4.88 4.87 4.88

Williams/cant m = 10 2.52 2.52 2.52 1899 1902 1899 13.4 13.5 13.4
m = 20 3.05 3.05 3.05 2115 2130 2106 17.2 17.3 17.1

DNVS/shipsec5 m = 10 3.89 3.90 3.90 171 168 168 2.21 2.17 2.17
m = 20 4.61 4.66 4.67 189 189 189 2.72 2.74 2.74

Williams/consph m = 10 3.26 3.26 3.26 182 183 182 1.74 1.75 1.74
m = 20 3.95 3.95 3.95 158 157 158 1.73 1.72 1.73

ND/nd6k m = 10 0.67 0.70 0.71 218 178 176 1.05 0.863 0.860
m = 20 0.67 0.70 0.73 218 179 156 1.05 0.868 0.766

Boeing/pwtk m = 10 7.13 7.13 7.13 3058 3258 3244 61.7 65.8 65.5
m = 20 8.56 8.56 8.56 2109 2103 2104 48.6 48.5 48.5

Schenk AFE/af shell3 m = 10 13.6 13.6 13.6 434 434 434 15.8 15.8 15.8
m = 20 18.3 18.3 18.3 327 325 325 14.9 14.8 14.8

Oberwolfach/bone010 m = 10 43.8 43.8 43.8 2054 2040 2039 255. 253. 253.
m = 20 52.3 52.3 52.3 1862 1853 1890 262. 261. 266.

GHS psdef/audikw 1 m = 10 47.1 47.1 47.1 952 958 956 127. 128. 128.
m = 20 55.1 55.1 55.1 899 896 896 134. 134. 134.

Janna/Bump 2911 m = 10 70.7 70.9 70.9 190 189 189 39.3 39.2 39.2
m = 20 82.0 82.8 83.0 213 170 170 48.9 39.3 39.3

Table 4.3
Results for other IC preconditioner for our subset of 15 matrices. - indicates failure to converge

within our set limits.

Problem nnz(L)× 106 nitr mapcg × 109

Diag. IC(0) IC(1) MI28 diag IC(0) IC(1) MI28 Diag. IC(0) IC(1) MI28

Pothen/bodyy5 0.02 0.06 0.08 0.08 186 67 29 5 0.021 0.014 0.007 0.001
HB/bcsstk18 0.01 0.07 0.11 0.13 1343 332 153 35 0.140 0.073 0.046 0.012
GHS psdef/minsurfo 0.04 0.12 0.16 0.32 103 31 20 6 0.021 0.011 0.009 0.005
GHS psdef/apache1 0.08 0.29 0.45 0.92 479 285 286 127 0.227 0.255 0.348 0.274
AMD/G2 circuit 0.15 0.44 0.58 1.77 1524 471 274 66 1.13 0.619 0.438 0.262
Rothberg/cfd2 0.12 1.60 3.45 2.84 5824 539 390 430 10.8 2.60 3.32 3.13
Williams/cant 0.06 2.03 4.37 2.66 4133 2703 1561 1279 8.93 16.5 16.8 9.40
DNVS/shipsec5 0.18 3.39 5.12 5.15 3259 511 279 72 17.9 6.09 4.29 1.11
Williams/consph 0.08 2.85 5.86 3.84 1307 242 134 103 4.20 2.12 1.98 1.11
ND/nd6k 0.02 1.16 2.26 0.69 - 551 100 194 - 3.18 0.798 0.938
Boeing/pwtk 0.22 5.77 8.37 8.00 - 6276 2249 1195 - 110. 51.0 26.2
Schenk AFE/af shell3 0.50 9.04 11.5 14.1 3330 872 561 323 33.5 23.7 18.0 12.0
Oberwolfach/bone010 0.99 36.3 77.2 46.1 9978 1847 1186 1438 382. 201. 226. 185.
GHS psdef/audikw 1 0.94 39.2 76.5 48.7 7009 1317 541 475 289. 155. 104. 64.9
Janna/Bump 2911 2.91 62.8 101. 78.4 8821 357 247 114 628. 68.2 66.2 25.3

discern in some detail what happens for small f . The highest number of failures (a
third of the examples) results from using diagonal preconditioning, while HSL MI28 has
only three failures. In terms of both iteration counts and memory accesses, HSL MI28

has the best performance, but the max-plus preconditioner also performs well and
outperforms the level-based preconditioners.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A2001

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

log(f)

fr
a
ct

io
n

fo
r

w
h
ic

h
so

lv
er

w
it

h
in
f

of
b

es
t

Diagonal (44 failures)

IC(0) (11 failures)

IC(1) (6 failures)

HSL MI28 (3 failures)

max-plus (8 failures)

Fig. 4.1. Performance profile comparing nitr across various preconditioners.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

log(f)

fr
ac

ti
on

fo
r

w
h

ic
h

so
lv

er
w

it
h

in
f

of
b

es
t

Diagonal (44 failures)

IC(0) (11 failures)

IC(1) (6 failures)

HSL MI28 (3 failures)

max-plus (8 failures)

Fig. 4.2. Performance profile comparing mapcg in (4.1) across various preconditioners.

5. Concluding remarks. We have described a novel approach to computing
the sparsity pattern of an IC preconditioner, which makes use of max-plus algebra.
Our numerical results demonstrate that this approach is able to produce effective
preconditioners for use with the PCG method. It is outside the scope of the present
study to develop an efficient implementation, and more work is needed to obtain a
high-quality efficient parallel implementation that, in terms of the total solution time,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

A2002 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

can compete with simpler established IC preconditioners. The max-plus IC problem
has some nice features that might lead one to think that this is possible. Importantly,
each column can be computed independently using Algorithm 1, and having computed
the max-plus preconditioner sparsity pattern, the parallel approach of Chow and
Patel [3] can be used to (approximately) perform the incomplete factorization.

The process of computing the max-plus preconditioner sparsity pattern is remark-
ably similar to the process of computing a level of fill IC(k) preconditioner sparsity
pattern. The level of fill sparsity pattern is computed using an unweighted graph
G, such that the level of fill of the (i, j) entry in the Cholesky factor is equal to
the length (counted in number of steps) of the shortest fill path through G from i
to j. Just like in the max-plus case, the sparsity pattern for each column can be
computed independently using a shortest path algorithm. The difference between the
max-plus method and the level of fill method is that in the max-plus case the graph
has weighted edges, and we seek the maximally weighted path rather than simply
the path with the fewest steps. This extra flexibility allows the max-plus method
to take into account the different-sized entries in the problem matrix and as a result
produce better preconditioners. However, using a weighted graph means that we have
to use Dijkstra’s algorithm instead of a breadth first search (the algorithm typically
used for the level of fill method). A breadth first search is generally a little faster
than Dijkstra’s algorithm as the data structure required to store the integer depths it
requires is simpler. The exact costs of applying both methods depend strongly on the
structure of the problem matrix and the parameters chosen for the preconditioner.
For example, using smaller thresholds in the max-plus method allows Dijkstra’s algo-
rithm to be terminated early, which speeds up the computation of the preconditioner.
If we can develop an implementation of Algorithm 1 that is not significantly slower
than the symbolic phase of IC(1), then this should result in an overall faster method
for solving sparse positive-definite linear systems.

Finally, we note that the Factorized Sparse Approximate Inverse (FSAI) pre-
conditioner that was introduced more than 20 years by Kolotilina and Yeremin [24]
requires a pattern for the nonzero entries of the factors. Originally, this had to be
set statically by the user (typically using small powers of A), although, more recently,
dynamic schemes have been proposed (see, for example, [10, 23] for further details
and references). Theory would suggest that the positions of the largest entries of
L−1 would be the ideal choice for the sparsity pattern; it remains an open question
whether we can use max-plus algebra in this case.

Acknowledgment. We would like to thank the reviewers for their constructive
feedback.

REFERENCES

[1] M. Benzi, J. C. Haws, and M. Tůma, Preconditioning highly indefinite and nonsymmet-
ric matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353, https://doi.org/10.1137/
S1064827599361308.

[2] D. A. Bini and V. Noferini, Solving polynomial eigenvalue problems by means of the Ehrlich-
Aberth method, Linear Algebra Appl., 439 (2013), pp. 1130–1149.

[3] E. Chow and A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J. Sci.
Comput., 37 (2015), pp. C169–C193, https://doi.org/10.1137/140968896.

[4] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Software, 38 (2011), 1.

[5] E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math., 1 (1959),
pp. 269–271.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1137/S1064827599361308
https://doi.org/10.1137/S1064827599361308
https://doi.org/10.1137/140968896

MAX-PLUS INCOMPLETE CHOLESKY FACTORIZATION A2003

[6] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

[7] I. S. Duff and J. R. Gilbert, Maximum-weighted matching and block pivoting for symmetric
indefinite systems, in Abstract Book of Householder Symposium XV, Peebles, Scotland,
2002, pp. 73–75.

[8] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996, https://doi.org/10.
1137/S0895479899358443.

[9] I. S. Duff and S. Pralet, Strategies for scaling and pivoting for sparse symmetric indefinite
problems, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 313–340, https://doi.org/10.1137/
04061043X.

[10] FSAIPACK, User’s Guide, 2013; available online at http://www.dmsa.unipd.it/∼janna/
FSAIPACK/FSAIPACK UG.pdf.

[11] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
[12] S. Gaubert and M. Sharify, Tropical scaling of polynomial matrices, in Positive Systems,

Lecture Notes in Control and Inform. Sci. 389, Springer-Verlag, Berlin, 2009, pp. 291–303.
[13] A. Gupta and L. Ying, On Algorithms for Finding Maximum Matchings in Bipartite Graphs,

Tech. Report RC 21576, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1999.
[14] M. Hagemann and O. Schenk, Weighted matchings for preconditioning symmetric indefinite

linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 403–420, https://doi.org/10.1137/
040615614.

[15] S. Hammarling, C. J. Munro, and F. Tisseur, An algorithm for the complete solution of
quadratic eigenvalue problems, ACM Trans. Math. Software, 39 (2013), 18, https://doi.
org/10.1145/2450153.2450156.

[16] L. Hogben, ed., Handbook of Linear Algebra, 2nd ed., CRC Press, Boca Raton, FL, 2014.
[17] J. D. Hogg and J. A. Scott, Optimal weighted matchings for rank-deficient sparse ma-

trices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1431–1447, https://doi.org/10.1137/
120884262.

[18] J. D. Hogg and J. A. Scott, Pivoting strategies for tough sparse indefinite systems, ACM
Trans. Math. Software, 40 (2013), 4.

[19] J. Hook, Max-plus algebraic statistical leverage scores, SIAM J. Matrix Anal. Appl., 38 (2017),
pp. 1410–1433, https://doi.org/10.1137/16M1097596.

[20] J. Hook and F. Tisseur, Incomplete LU preconditioner based on max-plus approximation of
LU factorization, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1160–1189, https://doi.org/
10.1137/16M1094579.

[21] HSL Mathematical Software Library, A Collection of Fortran Codes for Large-Scale Sci-
entific Computation, 2016, http://www.hsl.rl.ac.uk/.

[22] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor precon-
ditioning, SIAM J. Sci. Comput., 22 (2001), pp. 2194–2215, https://doi.org/10.1137/
S1064827500376193.

[23] C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati, FSAIPACK: A software
package for high performance factored sparse approximate inverse preconditioning, ACM
Trans. Math. Software, 41 (2015), 10.

[24] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditionings
I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58, https://doi.org/10.1137/
0614004.

[25] X. S. Li and J. W. Demmel, Making sparse Gaussian elimination scalable by static pivoting,
in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, IEEE Computer
Society, Washington, DC, 1998, pp. 1–17.

[26] C.-J. Lin and J. J. Moré, Incomplete Cholesky factorizations with limited memory, SIAM J.
Sci. Comput., 21 (1999), pp. 24–45, https://doi.org/10.1137/S1064827597327334.

[27] T. A. Manteuffel, An incomplete factorization technique for positive definite linear systems,
Math. Comput., 34 (1980), pp. 473–497.

[28] V. Noferini, M. Sharify, and F. Tisseur, Tropical roots as approximations to eigenvalues
of matrix polynomials, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 138–157, https://doi.
org/10.1137/14096637X.

[29] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear
Algebra Appl., 240 (1996), pp. 131–151.

[30] J. K. Reid and J. A. Scott, Ordering symmetric sparse matrices for small profile and wave-
front, Internat. J. Numer. Methods Engrg., 45 (1999), pp. 1737–1755.

[31] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston, 1996.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1137/S0895479899358443
https://doi.org/10.1137/S0895479899358443
https://doi.org/10.1137/04061043X
https://doi.org/10.1137/04061043X
http://www.dmsa.unipd.it/~janna/FSAIPACK/FSAIPACK_UG.pdf
http://www.dmsa.unipd.it/~janna/FSAIPACK/FSAIPACK_UG.pdf
https://doi.org/10.1137/040615614
https://doi.org/10.1137/040615614
https://doi.org/10.1145/2450153.2450156
https://doi.org/10.1145/2450153.2450156
https://doi.org/10.1137/120884262
https://doi.org/10.1137/120884262
https://doi.org/10.1137/16M1097596
https://doi.org/10.1137/16M1094579
https://doi.org/10.1137/16M1094579
http://www.hsl.rl.ac.uk/
https://doi.org/10.1137/S1064827500376193
https://doi.org/10.1137/S1064827500376193
https://doi.org/10.1137/0614004
https://doi.org/10.1137/0614004
https://doi.org/10.1137/S1064827597327334
https://doi.org/10.1137/14096637X
https://doi.org/10.1137/14096637X

A2004 J. HOOK, J. SCOTT, F. TISSEUR, AND J. HOGG

[32] O. Schenk, S. Röllin, and A. Gupta, The effects of unsymmetric matrix permutations and
scalings in semiconductor device and circuit simulation, IEEE Trans. Computer-Aided
Design Integrated Circuits Syst., 23 (2004), pp. 400–411.

[33] O. Schenk, A. Wächter, and M. Hagemann, Matching-based preprocessing algorithms to
the solution of saddle-point problems in saddle-point problems in large-scale nonconvex
interior-point optimization, Comput. Optim. Appl., 36 (2007), pp. 321–341.

[34] J. A. Scott and M. Tůma, The importance of structure in incomplete factorization precon-
ditioners, BIT, 51 (2011), pp. 385–404.

[35] J. A. Scott and M. Tůma, HSL MI28: An efficient and robust limited-memory incomplete
Cholesky factorization code, ACM Trans. Math. Software, 40 (2014), 24.

[36] J. A. Scott and M. Tůma, On positive semidefinite modification schemes for incomplete
Cholesky factorization, SIAM J. Sci. Comput., 36 (2014), pp. A609–A633, https://doi.
org/10.1137/130917582.

[37] S. W. Sloan, An algorithm for profile and wavefront reduction of sparse matrices, Internat.
J. Numer. Methods Engrg., 23 (1986), pp. 239–251.

[38] S. W. Sloan, A Fortran program for profile and wavefront reduction, Internat. J. Numer.
Methods Engrg., 28 (1989), pp. 2651–2679.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/0

1/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

C
C

B
Y

 li
ce

ns
e

https://doi.org/10.1137/130917582
https://doi.org/10.1137/130917582

	Introduction
	Max-plus approximation of LU factorization
	Hungarian matrices

	The max-plus IC factorization
	Precedence graphs and fill paths
	Max-plus IC preconditioner pattern

	Numerical results
	Max-plus parameters
	Comparison with other IC preconditioners

	Concluding remarks
	References

