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__________________________________________________________________________

ABSTRACT  

 

Effects of pasteurisation (high-temperature-short-time; HTST), ultra-high-temperature 

(UHT), and high-pressure (HP) treatments on some physical and chemical properties of 

camel milk (CM), including whey protein denaturation, colour change, casein micelle size, 

and rennet coagulation time (RCT), was investigated. UHT treatment caused the biggest 

colour change and highest whey protein denaturation in CM; in contrast, the effects of HP 

treatments on these properties were considerably less. Casein micelle size decreased after all 

treatments. The RCT of CM was significantly delayed and coagulum strength (G') decreased 

after HTST. HP treatment at 200 and 400 MPa increased the RCT of CM and the G' value 

was the highest after treatment at 200 MPa. Processing at 600 and 800 MPa inhibited 

coagulation of CM. The effects of both thermal and non-thermal treatments on many 

constituents and properties of CM were different from those on constituents and properties of 

bovine milk. 

___________________________________________________________________________ 
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1.  Introduction  

 

Camels (Camelus dromedarius) have traditionally been the primary source of milk in 

many countries in Africa and Asia, particularly during dry seasons because camels are well 

adapted to harsh conditions in arid and semi-arid regions. Camel milk (CM) is mainly 

consumed in its raw state or as a fermented milk with varying degrees of sourness (Alhaj & 

AlKanhal, 2010).  

Heat treatments, such as high-temperature, short-time pasteurisation (HTST) and 

ultra-high-temperature (UHT) are typically applied to milk to ensure better microbiological 

quality and increase its shelf life for human consumption. It is well known that these 

treatments influence the physical and chemical properties of bovine milk (McSweeney & 

Fox, 2013).  

Recently, there has been an increase in consumer demand for low-fat dairy products, 

including skimmed milk. In addition, CM is becoming more popular due to its potential 

beneficial effects on human health such as anti-cancer, hypo-allergenic and anti-diabetic 

effects (Kaskous, 2016). It also has lower cholesterol, lower sugar, higher minerals (sodium, 

potassium, iron, copper, zinc and magnesium) and vitamin C than bovine milk (Jilo & 

Tegegne, 2016). Therefore, investigating the effects of heat treatments on skimmed CM is of 

great technological importance, as thermal treatment is an important step involved in the 

processing of milk and milk products. Nevertheless, very few studies have focused on the 

influence of heat treatments on CM and the results from published studies are contradictory 

and mostly in relation to whey proteins.  

Farah and Atkins, (1992) and Sagar, Mehta, Wadhwani, Darji, & Aparnathi (2016) 

reported that skimmed and whole CM had poor heat stability at high temperatures (100–140 

°C) compared with bovine and buffalo milk. Similarly, Alhaj, Metwalli, and Ismail (2011) 
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showed that heat treatment (121 °C for 15 min) of whole CM at its natural pH resulted in 

partial or complete protein precipitation indicating poor heat-stability; however, they 

demonstrated that the heat stability could be improved by increasing the milk pH to 7.0–7.2 

and addition of κ-casein, EDTA or sodium phosphate. Furthermore, CM whey proteins were 

also reported to be more sensitive to heat treatments, with denaturation rates faster than those 

of bovine milk (Felfoul, Lopez, Gaucheron, Attia, & Ayadi, 2015a). Benabdelkamel et al. 

(2017) indicated that heat treatment of CM whey at 98 °C for 60 min caused a significant 

denaturation of camel α-lactalbumin (α-la), lactoferrin (LF), and serum albumin (SA). 

Similarly, Felfoul, Jardin, Gaucheron, Attia, and Ayadi (2017) found that whey proteins in 

skimmed camel and bovine milk were significantly affected by heat treatment at 80 °C for 60 

min, whereas casein fractions remained intact under the same heat conditions for both types 

of milk.  

In contrast, several studies reported that CM whey proteins were more heat stable than 

bovine whey proteins. Elagamy (2000) reported that camel whey proteins were considerably 

more heat resistant than their counterparts in bovine milk after pasteurisation at 65, 75, 85, 

and 100 °C for 10, 20, and 30 min. Furthermore, camel α-la was found to be more heat stable 

than bovine α-la during pasteurisation due to the secondary structure of camel α-la being 

conserved better than that of bovine α-la during heat denaturation (Atri et al., 2010). Laleye, 

Jobe, and Wasesa (2008)  reported that there was no significant difference in the heat stability 

of liquid whey separated from camel or bovine milk during pasteurisation at 60, 70, 80, 90, 

and 100 °C.  

Preliminary work on dried whey in the same study suggests that camel whey proteins 

were slightly more sensitive to heat denaturation than bovine whey. Factors including stage 

of lactation, camel breeds, feeding conditions and geographical location might be responsible 

for the conflicting results reported regarding the heat stability of whey proteins in CM (Alhaj 
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& AlKanhal, 2010). Levieux, Levieux, El-Hatmi, and Rigaudie (2006) found that whey 

proteins in early CM (the first week lactation) were more sensitive to heat treatment than 

those in CM after three months. This difference in the heat denaturation was attributed to the 

high content of IgG, 12.6 mg mL-1 in early CM compared with 0.5 mg mL-1 in milk from 

camels during the later stages of lactation. 

High-pressure (HP) processing is an alternative preservation method to traditional 

heat treatments. Previous research has shown that HP processing can cause changes in milk 

including upsetting the mineral balance of the milk, denaturing whey proteins, inducing 

aggregation or disruption of casein micelles, changing the activity of native milk enzymes, 

changing the colour of the milk and altering the rennet coagulation properties (Huppertz, 

Smiddy, Upadhyay, & Kelly, 2006; López-Fandiño, 2006; Trujillo, Capellas, Saldo, Gervilla, 

& Guamis, 2002).  

The majority of studies focusing on the effect of HP on milk have been conducted 

using bovine, buffalo, ewe, or ovine milk (Gervilla, Ferragut, & Guamis, 2001; Huppertz et 

al., 2005; Moatsou et al., 2008a,b). However, the effects of HP on the physicochemical and 

functional properties of CM have not been studied to date. Therefore, the aim of this study 

was to investigate the effects of commonly used food-processing methods (HTST, UHT, and 

HP) on some components and properties of skimmed CM, including whey protein 

denaturation, casein micelle size, appearance, and rennet coagulation properties. In addition, 

the results obtained were compared with those from bovine milk. 

 

2.  Materials and methods  

 

 2.1.  Chemicals and reagents 
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Pure camel chymosin (FAR-M®) available in powder form (CAS: 9001-98-3) suitable 

for both camel and bovine milk was obtained from Chr. Hansen Laboratories A/S 

(Copenhagen, Denmark). Sodium dihydrogen orthophosphate monohydrate (NaH2PO4·H2O) 

was obtained from BDH Laboratory supplies (Poole, Dorset, UK). Protein standards (from 

bovine milk) β-lactoglobulin (β-lg) (purity ≥90%), serum albumin (BSA) (≥98%), α-

lactalbumin (α-la) (≥85%), and lactoferrin (LF) (≥85%) were obtained from Sigma-Aldrich 

(Poole, Dorset, UK). Propanediol oil was obtained from Sigma-Aldrich. All chemicals were 

high performance liquid chromatography grade (Sigma-Aldrich) and used without any further 

purification. 

 

2.2.  Milk samples  

 

Forty litres (80 bottles, 500 mL in size) of commercially available raw dromedary 

camel milk produced by Kamelenmelkerij Smits (Cromvoirt, The Netherlands) were 

purchased from the UK Camel Milk Ltd (Bolton, Lancashire, UK) in January (winter season). 

The CM was frozen and directly transported using ice boxes. For comparison, raw bovine 

milk of Holstein Friesian dairy cows was obtained from the University of Reading's farm. 

Upon arrival, the frozen milk samples were kept at -18 °C until further treatment. Prior to 

processing, milk samples were defrosted at 4 °C overnight (13 h) and then kept at room 

temperature (23 °C) for 30 min and gently mixed. The milk samples were then skimmed and 

directly subjected to industrial treatments. Each treatment was conducted once, and a large 

batch of processed milk was obtained. The processed milk samples were taken for analysis 

directly after each treatment. All the analyses were conducted in triplicate, and the results 

were expressed as mean values ± standard deviation. 
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2.3.  High-temperature, short-time pasteurisation 

 

Both camel and bovine milk were pasteurised using an APV HXP pasteuriser (APV 

UK Limited, Crawley, West Sussex, UK). The holding section of the pasteuriser consisted of 

a plate-and-frame heat exchanger system. The pasteuriser unit was sterilised by circulating 

water at 85 °C through the entire system prior to the treatment. The milk was then pasteurised 

at 72.5 °C and held for 15 s in a holding section. The pasteurised milk was cooled to 4 °C and 

collected in 500 mL sterile bottles (Ascott Ltd. Newton Abbot, UK).  

 

2.4.  Ultra-high-temperature processing  

 

A tubular UHT plant (UHTAC, Fareins, France) was used for the indirect UHT 

treatment of camel and bovine milk. Heating was obtained in two stages using two hot oil 

baths. The unit was sterilised by circulating pressurised hot water prior to the treatment. The 

temperature of the milk samples was raised from 4 to 90 °C in a preheating unit (oil bath 1). 

The temperature was raised from 90 to 144 °C (oil bath 2), and the milk was held for 5s at 

this temperature. The processed milk was cooled to 4 °C and collected in 500 mL sterile 

bottles. 

 

2.5.  High-pressure treatment 

 

High-pressure treatment of camel and bovine milk was performed as described by 

Huppertz, Fox, and Kelly (2004a) Camel and bovine milk samples (50 mL) were vacuum-

packed in polyethylene bags and HP-treated using a Stansted Iso-Lab 900 High Pressure 

Food Processor (Stansted Fluid Power, Stansted, Essex, UK), at pressures of 200, 400, 600, 
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and 800 MPa for 30 min. The temperature of the HP unit vessel was maintained at 20 °C. A 

mixture of water and 1,2-propanediol oil (70:30) was used as the pressurising fluid. 

 

2.6.  Proximate composition analysis   

 

The chemical composition of raw skimmed and processed skimmed camel and bovine 

milk including the percentage of fat, total protein and lactose was determined using a 

LactoScope Filter Auto (QuadraChem Laboratories Ltd, Forest Row, UK). The machine was 

calibrated for skimmed milk analysis, and the samples (100 mL) were homogenised prior to 

analysis. The analyses were conducted in triplicate and the results were expressed as g 100 

mL-1. 

 

2.7.  Determination of whey proteins denaturation 

 

Denaturation of whey proteins in camel and bovine milk samples was estimated by 

determining the level of residual native whey protein fractions: SA, α-la, β-lg, and LF in milk 

by capillary electrophoresis (CE) (Agilent, Palo Alto, CA, United States) following the 

method described by Omar, Harbourne and Oruna-Concha (2016). Briefly, the pH of the milk 

samples was adjusted to pH 4.3 by adding 1 M HCl. Then the samples were centrifuged at 

4000 × g at 4 °C for 15 min to separate the whey proteins from the precipitated casein. The 

supernatant, containing whey proteins was dialysed (dialysis sacks average flat width of 25 

mm, cut off 12,000 Da; Sigma-Aldrich) against distilled water and kept at –18 °C until 

analysis. Purified bovine milk proteins (BSA, β-lg, α-la, LF) at concentrations between 0.01 

and 2.5 mg mL-1 were used to identify and quantify the proteins present in the milk samples. 

The degree of protein denaturation was expressed as the percentage of protein not detected 
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compared with the untreated milk sample, which is stated to have a native protein percentage 

of 100% and thereby no denaturation. 

 

2.8.  Determination of average casein micelle Size 

 

The casein micelle sizes in milk were determined using a Malvern Zetasizer Nano ZS 

(Malvern instruments Ltd., Malvern, Worcestershire, UK), as described by Chen, Grandison, 

and Lewis (2011).  

 

2.9.  Determination of colour parameters 

 

Colour attributes were measured using the Hunter Lab Colour Quest (Hunter 

Associates Laboratory, Inc. Reston, VA, United States) according to Chugh et al. (2014). The 

colour values were expressed as L* (lightness), a* (redness to greenness), and b* (yellowness 

to blueness). To compare the total colour difference (∆E) between the colour properties of 

untreated milk samples and those obtained after subjecting raw skimmed milk to different 

treatments (HTST, UHT, and HPP), the following equation was used: 

 ∆E= √ ∆L*2 + ∆a*2+ ∆b*2                                          (1) 

where ∆L* = Lraw milk – Ltreated milk, ∆a* = araw milk – atreated milk, and ∆b* = braw milk – btreated milk. 

The whiteness (WI) of the milk samples was determined by converting Hunter Lab to 

CIE 1931 XYZ colour space values: 

Y= (L* /10)2                                                           (2) 

X= [Y+ (L* /10 X a* /17.5)]/1.02                                       (3) 

Z= [Y- (b* /7) X (L* /10)]/0.847                                            (4) 

WI= (3.388 X Z) - (3 X Y)                                                   (5) 
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Colour measurements were conducted in triplicate for each milk sample. 

 

2.10.  Determination of rennet coagulation time and rheological properties of milk 

 

The rheological assessment of the rennet-induced coagulation of milk was performed 

with a Bohlin Gemini HRnano rheometer (Malvern Instruments Ltd) using a cylinder cup (27 

mm inner diameter) and bob (25 mm outer diameter) system (Bohlin C-25; Malvern 

Instruments Ltd). The milk sample (13 mL) was pre-warmed in a water bath at 30 °C for 20 

min, then 0.013 mL of a 0.4% (v/v) liquid solution of rennet enzyme (Chr. Hansen) was 

added and the mixture was stirred for 1 min before being poured into the cup. The storage 

modulus, G', was measured at constant temperature of 30 °C for 60 min at an applied strain 

of 1% and a frequency of 0.1 Hz. The time point at which the storage modulus G' was ≥1 Pa 

was defined as the gelation time as described by Moynihan et al. (2014). 

 

2.11.  Statistical analysis 

 

Analyses were performed in triplicate and results were presented as the mean ± 

standard deviation. The analysis of variance (ANOVA) was used to compare the effects of 

the different treatments and the Tukey test was used to determine the differences between 

them at a 95% confidence level (XL Stat Version 2015.6.01.24797, Kovach Computing 

Services, Wales, UK). Principal component analysis (PCA, Pearson n-1; XL Stat) was 

performed to differentiate between milk samples subjected to different processing methods. 

 

3.  Results and discussion  
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3.1.  Composition of thermally and high-pressure treated camel and bovine milk  

 

The mean values of protein, lactose, and total solids in the raw skimmed bovine milk 

were 3.17±0.01, 4.50±0.01, and 7.68±0.01 g 100 mL-1, respectively. These values were in 

agreement with those in the literature (McSweeney & Fox, 2013). In CM, the protein, lactose, 

and total solids were lower (2.10±0.01, 3.59±0.01, and 5.86±0.03 g 100 mL-1, respectively) 

than in bovine milk. These compositional variations were consistent with previously reported 

interspecies differences between camels’ milk and cows’ milk (Alhaj & AlKanhal, 2010).  

The compositional analysis of the processed CM revealed that the protein, lactose, 

and solids content after HTST treatment were similar to those of raw milk (2.09±0.01, 

3.57±0.01 and 5.86±0.01 g 100 mL-1, respectively). However, a slight variation in the protein 

content (1.90±0.12 g 100 mL-1) of CM was observed after UHT treatment, which might be 

due a decrease in soluble proteins. Whereas the lactose and total solids were not affected 

(3.56±0.01, 5.67±0.04 g 100 mL-1, respectively). High-pressure treatments at 200–800 MPa 

did not alter the composition of CM.  

 

3.2.  Whey proteins denaturation of thermally and high-pressure treated camel and bovine 

milk  

 

 The levels of individual whey proteins in processed camel and bovine milk are 

presented in Table 1. The major identified whey protein in CM was α-la, followed by LF and 

SA. The highest level of denaturation in camel whey proteins occurred in the UHT-treated 

CM sample, which was consistent with the results of its compositional analysis. Among the 

camel whey proteins, α-la underwent the highest level of denaturation (65.55±0.29%), 
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followed by SA (12.58±0.88%) and LF (3.65±0.54%). In pasteurised CM, the amount of 

denatured α-la was 27.13±3.23%, considerably lower than that of UHT-treated CM, and only 

small denaturation in SA and LF was observed (2.97±0.65 and 1.13±0.51%, respectively).  

The results showed that α-la was the most sensitive whey protein to HTST 

pasteurisation and UHT treatments. Similar findings were reported by Felfoul et al. (2017) 

who found that α-la was the most heat-sensitive whey protein in CM heated at 80 °C for 60 

min. High-pressure treatment of CM at 200 MPa caused a lower level of denaturation of 

camel whey proteins compared with UHT treatment. However, increasing the pressure from 

400 to 800 MPa resulted in a significant increase in denatured α-la up to 32.50±2.05%, but 

this was still significantly lower than in the UHT treated samples. SA and LF were more 

resistant to pressure with lower denaturation levels of 3.94±0.07% and 2.93±0.38%, 

respectively. 

In contrast, β-lg was the primary whey protein in bovine milk, followed by α-la and 

BSA. The levels of heat-induced denaturation of α-la and BSA in bovine milk after HTST 

(4.23±1.37, and 2.70±0.31%, respectively) and UHT (51.06±2.11 and 5.37±1.46% 

respectively) treatments were considerably lower than those of their counterparts in heat-

treated CM. This finding is consistent with that observed by Felfoul et al. (2015a) and Sagar 

et al. (2016) who reported that camel α-la and SA were less heat stable and their temperatures 

of denaturation were lower than their bovine counterparts.  

Some studies have attributed the high heat sensitivity of camel whey proteins to the 

absence or deficiency of β-lg and κ-CN proteins in CM (Alhaj et al., 2011; Farah & Atkins, 

1992; Sagar et al., 2016). However, the variation in the thermal stability between the major 

whey protein in CM α-la and its bovine milk counterpart could be also due to differences in 

their conformational stabilities and structural features. The primary structure of the intact 
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camel α-la, as bovine α-la, consists of 123 amino acids, but with 39 positional differences 

compared with bovine α-la (Beg, Bahr‐Lindström, Zaidi, & Jörnvall, 1985).  

Camel α-la contains, 8 cysteine, 5 tryptophan, 4 phenylalanine, 3 methionine and 3 

tyrosine residues, while its bovine counterpart contains 8 cysteine, 4 tryptophan, 4 

phenylalanine, 1 methionine, and 4 tyrosine residues (Atri et al., 2010; Felfoul, Lopez, 

Gaucheron, Attia, & Ayadi, 2015b). Atri et al., (2010) found that the conformation of both 

camel and bovine α-la was sensitive to calcium removal. However, camel α-la showed 

greater change in exposure of buried hydrophobic areas upon calcium depletion than its 

bovine equivalent. Redington, Breydo, Almehdar, Redwan, and Uversky (2016) reported that 

purified camel α-la was more stable towards thermal denaturation than its bovine counterpart. 

However, it was less conformationally stable, aggregated faster and was more disordered than 

bovine α-la. 

Other factors such as pH and calcium concentration could also influence the stability 

of CM proteins (Levieux et al., 2006). Alhaj et al., (2011) reported that heat treatment of CM 

at high temperature (121 °C) induced precipitation of calcium phosphate, which led to casein 

micelle dissociation, and increased the calcium ion content with a decrease of milk pH, which 

lowered the stability of milk proteins. Increasing level of soluble Ca2+ may neutralise the net 

negative charge on unfolded whey proteins which increases their thermal denaturation 

(Huppertz, Fox, & Kelly, 2004b). Therefore, the higher level of thermal denaturation of whey 

proteins in CM, compared with bovine milk, might be also due to an increase Ca2+ level as 

result of heat-induced disintegration of camel casein micelles (Table 2). 

Unlike heat treatments, the stability of camel whey proteins was higher than that of 

their counterparts in bovine milk during HP processing. The level of denatured α-la 

(32.50±2.05%) after treatment at 800 MPa, was considerably lower than that of bovine milk 

(55.23±1.66%), buffalo milk (91.8±2.2%) (Huppertz et al., 2005) and ovine milk 
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(79.3±3.1%) (Moatsou et al., 2008b). HP treatments induced the disintegration of casein 

micelle in bovine milk through disruption of hydrophobic, electrostatic interactions and 

solubilisation of colloidal calcium phosphate, resulting in an increased level of soluble 

calcium which may enhances denaturation of whey proteins (Huppertz et al., 2004b). 

Therefore, the lower extent of HP-induced denaturation of α-la in CM compared with bovine 

milk might be explained by limited effect of HP treatments on casein micelle of CM (section 

3.3). Furthermore, camel SA was more stable (3.94±0.07%) at 800 MPa than BSA 

(16.17±1.85%), and LF was the most stable amongst camel whey proteins over both thermal 

and pressure treatments with only a small reduction in its concentration. 

 

3.3.  Casein micelle size distribution in thermally and high-pressure treated camel and 

bovine milk 

 

The size distribution of casein micelles in raw skimmed camel and bovine milk was 

measured and the results indicated that the distribution of casein micelles in raw CM was 

broader and contained a higher proportion of large particles than in bovine milk. The average 

diameter of casein micelles in CM was 171.23±4.18 nm; the corresponding value in bovine 

milk was 143.45±2.96 nm. These results are consistent with data reported by Farah and 

Rüegg (1989). The effects of thermal and pressure treatments on casein micelle size in 

processed camel and bovine milk are listed in Table 2. The results revealed that HTST and 

UHT treatments caused a significant decrease in casein micelles size in CM by 16.4 and 

19.5%, respectively, compared with untreated milk. Micelle size in bovine milk was not 

significantly affected after HTST, and it increased by 14% after UHT treatment. Similar 

observations with bovine casein micelles have been reported by Freeman and Mangino 

(1981). Heat treatment of bovine milk at temperature above 80 °C induces formation of β-
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lg/α-la complexes through sulphydryl-disulphide interchange reactions, which then associate 

with the micelles and lead to an increase in their size (Oldfield, Singh, Taylor, & Pearce, 

2000). However, structural differences and variation in proportions of individual caseins 

between bovine and dromedary milk have been reported (Kappeler, Farah, & Puhan, 1998). It 

has been established that a high content of β-CN and a low content of κ-CN adversely affect 

some of the processing characteristics of casein micelles such as stability towards ethanol and 

heat (Schmidt, 2009). In CM, β-CN is predominant while κ-CN is present in very small 

amount compared with the levels in bovine milk (Omar et al., 2016). Therefore, the 

significant decrease in the micelle size of heat-treated CM could possibly be due to the 

dissociation of κ-CN from micelles or the result of precipitation of calcium phosphate out of 

the casein micelles, which caused them to decrease in size (Anema & Li, 2003). 

After HP treatment, casein micelles in CM behaved differently than casein micelles in 

bovine milk. Treatment of CM at 200 MPa caused a significant (p < 0.05) decrease in the size 

of casein micelles by 21% compared with untreated milk. After increasing the pressure from 

400 to 800 MPa, a decrease of 25% in the size of micelle in CM was observed. Treatment of 

bovine milk at 200 MPa caused a small reduction (p < 0.05) in micelle size by 6% compared 

with untreated milk. However, casein micelles in bovine milk were more susceptible to 

disintegrate due to increasing pressure (400–800 MPa) during HP treatment than were casein 

micelles in CM. Treatment at pressure 400 to 800 MPa considerably reduced micelle size in 

bovine milk by 50% compared with controls. Similar observations of bovine casein micelles 

were reported by Huppertz et al. (2004a) and Needs et al. (2000).  

Studies on goat milk by Law et al. (1998) found that treatments at 200 MPa and 

temperatures between 20 and 45 °C had little effect on casein micelle size. Treatment at 300 

MPa caused an increase in micelle size due to the formation of insoluble aggregates of 

denatured β-lg with κ-CN. However, higher pressures (>350 MPa) at 45 °C caused a 
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reduction in the size of casein micelles in goat milk. Different observations of buffalo milk 

have been reported by Huppertz et al. (2005) who found that treatment of buffalo milk at 250 

MPa for 30min at 20 °C reduced micelle size slightly and that treatment at ≥400 up to 800 

MPa increased it by 35%. The reduction in casein micelle size in bovine milk is likely to be 

due to the HP-induced disintegration of casein micelles into smaller particles via the 

disruption of the intra-micellar van der Waals, hydrophobic and electrostatic interactions and 

changes in the solubilisation of micellar calcium phosphate (Huppertz et al., 2006; Needs et 

al., 2000).  

In contrast, the decrease in the size of casein micelles in CM was considerably smaller 

than that in bovine milk after HP treatments, which might be due to the differences in the 

primary structure of micelles between the two kinds of milk. The CM micelles have spherical 

shape, as do bovine milk micelles, but with relatively larger diameters and higher mineral 

content compared with bovine milk micelles (Hailu et al., 2016). Moreover, minerals such as 

magnesium, inorganic phosphorus and citrate are involved to a more important extent in the 

formation of the CM micelles, about 2/3, 2/3 and 1/3 respectively, than in bovine milk 

micelles (2/5, 3/5 and 1/10 respectively; Attia, Kherouatou, Nasri, & Khorchani, 2000). Thus, 

they are more mineralised and contain more saline bridges binding submicelles than bovine 

milk (Kherouatou, Nasri, & Attia, 2003). Nevertheless, further investigation is necessary to 

explain the reasons behind this phenomenon.    

 

3.4.  Changes in the colour values of thermally and high-pressure treated camel and 

bovine milk 

 

The values of the Hunter colour attributes L* , a*, b*, total colour difference ∆E, and 

WI of processed camel and bovine milk samples compared with untreated skimmed milk are 
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listed in Table 3. The HTST process caused a decrease in L* (p < 0.05) and an increase in a* 

(greenness) and b* (yellowness) (p < 0.05) in both camel and bovine milk. The lowest L* 

value (p < 0.05) was observed in UHT-treated CM, which indicates increased darkness for 

the highest positive yellowness value (b*). This reduction in the lightness of CM during the 

UHT treatment may be the result of disintegration of casein micelles into smaller particles 

(Table 2). On the other hand, L* and b* were the highest (p < 0.05) in UHT-treated bovine 

milk, which indicates an increase in the lightness and yellowness of the milk. Similar results 

for bovine milk have been reported by Rufian-Henares, Guerra-Hernandez, and Garcıa-

Villanova (2006). These authors found that after UHT treatment bovine milk had higher a* 

and b* values and that there was an increase in the lightness of milk by 11 units compared 

with the untreated samples. This increase in the lightness of UHT-treated bovine milk may be 

due to denaturation and association of whey proteins with casein micelles, in particular β-lg 

(Burton & Rowland, 1955). The values of WI and ∆E in CM were markedly higher than 

those in bovine milk after UHT treatment. 

High-pressure treatment of bovine milk at 200 MPa caused a significant (p < 0.05) 

decrease in L*  with an accompanying increase in ∆E and WI. Increasing the pressure up to 

800 MPa resulted in a further decrease in L*  and an increase in ∆E and WI. Devi, Buckow, 

Singh, Hemar, and Kasapis (2015) reported similar findings on the behaviour of bovine milk 

colour under HP treatments. This significant reduction in L* of bovine milk is mainly 

attributed to the destruction of casein micelles by pressure into smaller particles, which 

increases the translucence of the milk. In contrast, a small reduction in L* in HP-treated CM 

by up to 1.88 units was observed after treatment at 200 MPa. Treatment at higher pressures 

(≥400 up to 800 MPa) resulted in a further decrease (p < 0.05) in L* in CM by up to 3.35 

units. This slight reduction in L*  in CM compared with bovine milk during HP treatments is 

possibly the result of the limited HP-induced disruption of its casein micelles (Table 2). 
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Similar observations in buffalo milk have been reported by Huppertz et al. (2005) 

who found that treatments at 250 or 400 MPa reduced L* of buffalo milk slightly and that 

treatment at 600 or 800 MPa reduced L* significantly, by up to 17 units after treatment at 800 

MPa. The results revealed that ∆E and WI of CM significantly increased (p < 0.05) with 

increasing pressure (200, 400, 600, and 800 MPa). These parameters attained maximum 

values of 3.57 and 16.83, respectively, after treatment at 800 MPa. The degree of change of 

these values in CM was considerably less than that of bovine milk. Furthermore, the HP-

treated bovine milk had more yellow and green characteristics than CM after treatments at 

400, 600, and 800 MPa. Gervilla et al. (2001) reported a decrease in L*  and an increase in 

greenness and yellowness in ewes’ milk when the pressure was incrementally increased to 

200, 300, 400, and 500 MPa during HP treatment. These changes were due to HP-induced 

disruption of casein micelles in ewes’ milk. 

 

3.5.  Rennet coagulation properties of thermally and high-pressure treated camel and 

bovine milk 

 

The development of rennet-induced coagulum in camel and bovine milk was 

monitored using dynamic oscillatory rheology. The effect of thermal and HP treatments on 

the storage modulus G' of camel and bovine milk after renneting for 60 min at 30 °C is shown 

in Fig. 1. The initial pH of the CM samples prior to the addition of rennet (Table 4) varied 

between 6.71 and 6.51, consistent with the reported pH values of CM in the literature (Farah, 

1993). The final pH values of the gel formed after 60 min incubation were ranged from 6.32–

6.64, which was lower than those measured for the curd formed by the bovine milk. 

The RCT of the raw CM was much shorter than that of bovine milk. Camel chymosin 

initiates coagulation of milk by hydrolysing bovine κ-CN at the Phe105–Met106 scissile bond 
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and disconnecting the C-terminal part of 106–169 amino acids (Langholm Jensen et al., 

2013). Whereas, the chymosin cleavage site of camel κ-CN is at the Phe97–Ile98 bond and the 

enzyme cuts off a C-terminal glycomacropeptide of 65 amino acids residues (Hailu et al., 

2016). The coagulation of CM occurs only after hydrolysis of 95% of camel κ-CN by camel 

chymosin, while, the gelation of bovine milk starts at level of 60–70% of bovine κ-CN 

hydrolysis (Hailu et al., 2016). The HTST treatment of CM at 72.5 °C for 15s significantly (p 

< 0.05) delayed the RCT of the milk by 70.99% compared with untreated milk (Table 4) and 

the final G' value was considerably lower than that of the control (Fig. 1A). The RCT of 

bovine milk was also significantly delayed after HTST by14.36% and the G' value was 

decreased, but not statistically significant, compared with untreated milk. Similar results 

about the effects of heat treatment on the RCT of bovine (Singh & Waungana, 2001), ewe, 

and goat milk (Calvo & Balcones, 1998) clotted using bovine chymosin have been reported. 

Kethireddipalli and Hill (2015) noted that heat treatment at temperatures above 75 °C led to 

an increase in the RCT of milk and the formation of weak curds. Vasbinder, Rollema, and 

Kruif (2003) and Blecker, Habib-Jiwan, and Karoui (2012) reported that the decrease in the 

rate of gel development and final G' value in pasteurised milk could be the result of the 

association of denatured whey protein aggregates with casein micelle surfaces. The formation 

of whey protein-κ-casein complex affects the reactive sites on the micelles that are formed by 

the action of rennet, which leads to fewer and weaker bonds and therefore a weaker coagulum 

(Singh & Waungana, 2001).  

As expected, UHT-treated camel and bovine milk failed to coagulate. Similar 

observations have been found using bovine chymosin in bovine milk by Ham et al. (2013). 

These authors found that UHT treatment hindered the coagulation of milk compared with 

HTST treatment. This heat-induced inhibition of rennet coagulation is mainly attributed to 

effects arising during the secondary stage of rennet coagulation or micelle aggregation, the 
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decreased concentration of ionic calcium, and the association of denatured whey proteins 

with the casein micelles in heat-treated milk (Vasbinder et al., 2003). 

In HP treatment, the RCT of bovine milk treated at 200 MPa was shortened 

significantly (p < 0.05) by 26.91% (Table 3) and the G' value was the highest (Fig. 1B) 

compared with the control milk.  However, HP treatments at higher pressures (400, 600, and 

800 MPa) resulted in an increase of the RCT and the final G' value was similar to untreated 

milk. These results are consistent with previously reported observations for bovine milk 

coagulated with recombinant bovine chymosin by Needs et al. (2000) and  Zobrist, Huppertz, 

Uniacke, Fox, and Kelly (2005). The reduction in the RCT of bovine milk after HP treatment 

at 200 MPa is believed to be the result of the dissociation of micellar κ-casein and the 

disruption of casein micelles, which led to an increase in the surface area for intermicellar 

interactions with less κ-casein available to provide steric stabilisation (Huppertz et al., 2006;  

Needs et al., 2000).  

In contrast, the rheological properties of CM differed from that of bovine milk for HP 

treatments. The HP treatment at 200 and 400 MPa significantly (p < 0.05) delayed the RCT 

of CM by 55.90 and 109.39%, respectively, compared with untreated milk. The rate of gel 

formation in HP-treated CM at 200 MPa (Fig. 1A) was lower than that of untreated milk 

during the first 30 min, following the addition of rennet enzymes. However, after 40 min the 

rate of increase of G' was higher than that of control milk and the final value of G' after 60 

min of incubation was the highest. This increase in the RCT and strength of the rennet-

induced coagulum from CM treated at 200 MPa might be due to restricted effect of HP on 

disruption of casein micelles and whey protein denaturation in CM. In HP-treated CM at 400 

MPa, the rate of coagulum formation was considerably slower with a significantly lower final 

G' value than that of untreated milk. Meanwhile, no progress in the rennet-induced coagulum 

was observed in CM treated at 600 and 800 MPa. Similar observations regarding effect of HP 
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treatments on the RCT of buffalo milk coagulated with bovine chymosin (Maxiren 180) have 

been reported by Huppertz et al. (2005). These authors found that HP treatment at 100 MPa 

had no effect on the RCT of buffalo milk. On the other hand, the RCT of buffalo milk 

increased significantly by 50% after treatment at 200 MPa and continued to increase with 

pressure to a maximum of 100% after treatment at 800 MPa. In another study by López-

Fandiño and Olano (1998), the RCT of ovine milk, clotted using standard bovine chymosin, 

increased significantly after treatment at 200 and 300 MPa, but treatment at 400 MPa 

decreased the RCT. These authors also found that HP treatment of caprine milk at 200 MPa 

did not affect the RCT, and treatment at 300 and 400 MPa increased the RCT.  

To visualise the effects of the different treatments on CM properties, principal 

component analysis (PCA) was used (Fig. 2). The two principal components accounted for 

82% of the variation in the data. Processed CM samples were separated according to intensity 

of heat and high-pressure along PC1, which explains 62.20% of the total variance in the data. 

UHT CM was clearly separated from the raw and the pasteurised milk, while HP-treated CM 

samples at 600 and 800 MPa were clustered in the upper right tope of the PCA. These CM 

samples were correlated with the highest levels of denaturation of whey proteins and 

maximum colour difference (∆E). On the other hand, the PCA revealed a distinct separation 

between HP-treated CM samples and HTST and UHT milk samples along the second PC, 

which explains 20.11% of the variability. CM samples treated at 200 and 400 MPa were 

associated with the RCT, G' and WI. While, raw and pasteurised CM were correlated with the 

size of casein micelle. 

 

4.  Conclusions  
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Heat and pressure treatments considerably affected many constituents and properties 

of CM. In UHT CM the colour change, and level of whey proteins denaturation were 

markedly greater than those observed in pasteurised and HP-treated CM. While, casein 

micelles size was significantly decreased in both heated and HP-treated CM. The RCT of CM 

was significantly delayed and coagulum strength (G') decreased after HTST pasteurisation. 

HP treatment at 200 MPa increased the RCT and enhanced the G' value of CM. However, 

treatment at pressures higher than 400 MPa impaired the rennet coagulation properties of 

CM. These findings will be beneficial to the dairy processors in terms of design, evaluation 

and optimisation conditions of industrial operations such as pasteurisation and UHT for 

camel milk processing. They also can be helpful for evaluating the potential commercial use 

of HP treatment for CM preservation as an alternative to thermal methods, and in developing 

and manufacturing of various dairy products from CM. 
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Figure legends 1 

 2 

Fig. 1. Influence of incubation time at 30 °C following addition of rennet on the storage 3 

modulus, G', of processed camel (A) and bovine (B) milk, raw skimmed untreated milk (�), 4 

HTST (72 °C, 15 s) milk (�), UHT (140 °C, 5 s) milk (�), high-pressure at 200 (�), 400 5 

(�), 600 (�), 800 () MPa for 30 min at 20 °C. Values are means of data from experiments 6 

on three individual milk samples. 7 

 8 

Fig. 2. Principal component analysis of skimmed CM samples subjected to HTST (72 °C, 15 9 

s) and UHT (140 °C, 5 s) and high-pressure (HP) at 200, 400, 600, 800 MPa for 30 min at 20 10 

°C, and variables: final storage modulus (G'), whiteness (WI), rennet coagulation time (RCT), 11 

total colour difference (∆E), and denaturation of whey protein (%): serum albumin (SA), 12 

lactoferrin (LF), and α-lactalbumin (α-la). 13 
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Table 1 1 

Major whey proteins β-lactoglobulin (β-lg), α-lactalbumin (α-la), serum albumin (SA), and lactoferrin (LF) identified in raw and processed 2 

skimmed camel and bovine milk.a  3 

Treatment Whey protein content (mg mL-1) 

β-lg  α-la  SA  LF 

Camel Bovine Camel Bovine Camel Bovine Camel Bovine 

Raw skim milk - 5.59±0.26a  1.96±0.07a 1.08±0.01a  0.40±0.01a 0.43±0.07a  1.74±0.05a - 

HTST - 4.18±0.16a  1.43±0.12b 1.04±0.01ab  0.39±0.00b 0.41±0.01ab  1.72±0.00ab - 

UHT - 0.80±0.01c  0.68±0.03c 0.53±0.02d  0.35±0.01c 0.40±0.01b  1.68±0.00d - 

HP200 - 3.88±0.63ab  1.58±0.14b 1.02±0.00b  0.40±0.00ab 0.36±0.00cd  1.74±0.00a - 

HP400 - 1.98±0.18bc  1.39±0.04b 0.81±0.01c  0.40±0.00ab 0.37±0.00c  1.69±0.01c - 

HP600 - 1.14±0.06c  1.35±0.03b 0.53±0.01d  0.39±0.00b 0.36±0.00cd  1.69±0.00c - 

HP800 - 1.05±0.07c  1.32±0.01b 0.48±0.01d  0.39±0.00b 0.35±0.01d  1.69±0.00cd - 

  4 

a Processing parameters were: HTST 72 °C, 15sec; UHT, 140 °C, 5sec;  high-pressure (HP), 200, 400, 600, 800 MPa for 30 min at 20 °C. Values 5 

are means ± standard deviation (n = 3; -, not detected); means within a column with different superscript letters are significantly different (p < 6 

0.05). 7 

 8 
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Table 2 9 

The average diameter of casein micelle size in raw and processed skimmed camel and bovine 10 

milk. a 
11 

 
12 

 
13 

 
14 

 
15 

 
16 

 
17 

 
18 

a Processing parameters were: HTST 72 °C, 15sec; UHT, 140 °C, 5sec;  high-pressure (HP), 19 

200, 400, 600, 800 MPa for 30 min at 20 °C. Values are means ± standard deviation (n = 3); 20 

means within a column with different superscript letters are significantly different (p < 0.05). 21 

Treatment Casein micelle size (nm)  

Camel milk Bovine milk 
Raw skimmed milk 171.23±4.18a 143.45±2.96b 

HTST 143.18±2.34b   140.05±2.29b 

UHT 137.77±1.52c 163.60±3.70a 

HP200 135.22±2.68c 134.90±1.52c 

HP400 128.28±2.75d 73.13±0.54d 

HP600 127.57±1.76d 70.96±0.59d 

HP800 129.40±0.78d 71.52±0.81d 
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Table 3 22 

Changes of colour parameters, L* (lightness), a* (redness to greenness), b* (yellowness to blueness), total colour difference (∆E), and whiteness 23 

(WI) measured in raw and processed skimmed camel and bovine. a 
24 

Treatment L* a* b* ∆E WI 
Camel milk      

Raw skim milk 67.77±0.29a -1.99±0.37d -0.23±0.19b 0±0.0e 14.47±0.81b 

HTST 66.34±0.12b -1.97±0.11d -0.22±0.38b 1.48±0.10d 14.13±1.44b 

UHT 61.83±0.33d -1.19±0.12a 0.45±0.43a 6.05±0.34a 10.78±1.57c 

HP200 65.89±0.55b -2.46±0.16e -1.23±0.44c 2.26±0.35c 17.85±1.75a 

HP400 64.01±0.32c -1.44±0.12ab -1.13±0.10c 3.91±0.32b 16.93±0.31a 

HP600 64.43±0.46c -1.91±0.04cd -1.03±0.10c 3.44±0.45b 16.69±0.45a 

HP800 64.42±0.14c -1.63±1.33bc -1.07±0.14c 3.57±0.13b 16.84±0.56a 

 
Bovine milk 

Raw skim milk 66.81±0.05b -3.53±0.1b -0.25±0.08b 0±0.0e 14.33±0.33c 

HTST 66.77±0.17b -3.11±0.17ab -0.21±0.31b 0.61±0.15e 14.15±1.30c 

UHT 68.94±0.22a -2.98±0.22ab 1.51±0.79a 2.93±0.14d 7.83±3.16d 

HP200 59.99±0.46c -2.53±0.13a -1.27±1.45b 7.08±0.61c 16.34±4.90c 

HP400 49.51±0.42d -2. 30±0.71a -9.61±0.46c 19.72±0.43b 37.11±1.39a 

HP600 47.13±0.74e -3.01±0.95ab -9.85±0.29c 21.92±0.70a 35.97±0.96ab 

HP800 45.78±0.87f -2.67±0.63ab -8.95±0.29c 22.79±0.73a 32.60±1.31b 
 25 

a Processing parameters were: HTST 72 °C, 15sec; UHT, 140 °C, 5sec;  high-pressure (HP), 200, 400, 600, 800 MPa for 30 min at 20 °C. Values 26 

are means ± standard deviation (n = 3); means within a column with different superscript letters are significantly different (p < 0.05). 27 

 28 
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Table 4 29 

Rennet coagulation time (RCT), the final storage modulus G' after 60 min at 30 °C, and pH of raw and processed skimmed camel and bovine 30 

milk. a 
31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

              44 

 45 

a Processing parameters were: HTST 72 °C, 15sec; UHT, 140 °C, 5sec;  high-pressure (HP), 200, 400, 600, 800 MPa for 30 min at 20 °C. Values 46 

are means ± standard deviation (n = 3; -, milk failed to coagulate); means within a column with different superscript letters are significantly 47 

different (p < 0.05). 48 

Treatment RCT (min) Final G' value (Pa) Initial pH Final pH 
Camel milk     

Raw skim milk 16.16±1.86c 8.85±1.17 b 6.68±0.03 6.47±0.19 

HTST 27.64±1.46b 4.04±0.70c 6.64±0.01 6.64±0.01 

UHT - - 6.65±0.04 6.63±0.02 

HP200 25.20±1.41b 17.86±1.53a 6.53±0.13 6.35±0.01 

HP400 33.84±0.41a 3.68±6.37c 6.51±0.00 6.32±0.01 

HP600 - - 6.56±0.01 6.32±0.02 

HP800 - - 6.71±0.00 6.58±0.04 

 
Bovine milk 

Raw skim milk 31.18±1.07b 13.74±2.82 ab 6.73±0.14 6.64±0.15 

HTST 35.66±0.46a 7.44±2.24b 6.90±0.03 6.71±0.03 

UHT - - 6.70±0.01 6.69±0.01 

HP200 22.79±0.98c 22.72±6.92a 6.71±0.03 6.53±0.17 

HP400 30.92±1.86b 13.41±4.04ab 6.87±0.00 6.82±0.04 

HP600 30.92±1.86b 15.41±2.19ab 6.42±0.05 6.42±0.05 

HP800 32.09±2.15b 19.49±2.63a 6.83±0.01 6.66±0.13 
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Figure 1. 10 
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Figure 2. 19 
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