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Abstract 

This research deals with the assessment of drought over Iraq, a country which has been affected 

by recurrent droughts of medium to long duration, with serious socio-economic consequences. 

The overarching aim of this work is to identify reliable large-scale drought monitoring and 

assessment methods, using a range of freely available meteorological and remote sensing data, 

as well as model simulations of the water balance.  The thesis starts with an overview of Iraq’s 

climate, soil, land use and socioeconomic issues, as well as an inventory of commonly used 

methods to assess and express drought.  

Historical droughts in Iraq have been studied between 2001 and 2013, using a combination of 

meteorological drought indices, remote sensing products, and water balance estimates by the 

SWAP model and ERA-Interim reanalysis. Drought is assessed for a number of key land 

surface types (desert, rangeland, agricultural land, and marshland), with the first three 

representative of the different climatic zones in Iraq. Their evolutions of drought have been 

compared and contrasted. 

The research uses Standardised Precipitation Index (SPI) and Standardised Precipitation 

Evaporation Index (SPEI) drought indices, derived from ERA-Interim/in-situ data of rainfall 

and temperature, that are applied to evaluate meteorological droughts in Iraq. The effect of the 

meteorological droughts has also been analysed using land surface temperature (LST), 

Normalised Difference Vegetation Index (NDVI) and near-surface soil moisture content 

(SMC), derived from remote sensing data, in isolation and together with SPI/SPEI, for the years 

2001 to 2015. NDVI has been used widely to detect changes in vegetation extent; LST was 

employed as a proxy of land surface evapotranspiration. NDVI was obtained from MOD13A2 

products (16-Day L3 Global 1km SIN Grid VI datasets), which were designed for vegetation. 

LST was obtained through MOD11A2 products available at a spatial resolution of 1km and a 

temporal resolution of 8 days. SMC was derived from the Soil Moisture and Ocean Salinity 

(SMOS) product at a resolution of 40 × 40 km. 

The evolution NDVI and SMC overall followed that of the drought indices, but the interannual 

variations of seasonal LST courses were not deemed useful for drought assessment.   

Furthermore, regression analyses were conducted between SPI3/SPEI3 and NDVI as well as 

LST to investigate the potential of drought inference from the sign and strength of the 
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correlation coefficient of the slope. This approach appeared promising for the marshlands, but 

less so for desert, rangeland, and agricultural regions. 

Finally, the soil water balance Assessment (SWAP) model was used, driven by in-situ and 

ERA-Interim data. Water balance components for each land surface type were studied over 

time, to determine the effect of meteorological droughts on the variation of predicted ecosystem 

and agricultural system’s hydrological behaviour. Comparisons were also made between the 

various land surface types, and between SWAP and ERA-Interim actual evapotranspiration 

estimates. The outcomes showed that the lowest mean actual evapotranspiration and water 

storage was found between 2008-2010, and 2012, as a result of lack in rainfall, whereas the 

monthly averages of actual evapotranspiration and water storage were the highest in 2013 and 

2014. The data of the surface latent heat flux (ERA-Interim), actual evapotranspiration 

(SWAP), and soil moisture corresponded well for the desert and rangelands but not for the 

agricultural region. This is the result of the fact that ERA-Interim does not cater for (irrigated) 

crops whereas SWAP does.  

The thesis concludes with recommendations with regards to the usefulness of the various 

(meteorological and remote sensing-based) drought indices, and combinations thereof, for 

assessment of drought in Iraq and similar climatological conditions.  
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Rn Net radiation  

SWAP Soil, water, atmosphere and plant  

ERDAS Earth resource development assessment system  
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1. Chapter one: Introduction 

Drought is a reoccurring worldwide environmental disaster. Increased water demands, climate 

variability (in particular variability in rainfall intensity and duration) and climate change, 

salinization and contamination of water supplies all together play a significant role in the 

occurrence of drought and its impacts. A natural hazard is recognized as a threat of a naturally 

occurring event that has a negative impact on both people and the environment.   Drought as a 

natural hazard is a topic of great interest to physical and social scientists, as they are attempting 

to understand the causes of drought to help improve advice for practitioners to manage drought, 

and policy makers to mitigate drought impacts.  

Drought presents a large number of negative impacts, which influence the environmental, 

social and economic standard of living. In environmental terms, drought not only reduces crop 

and forest productivity, surface and groundwater stores, and increases fire hazard, but also can 

cause an increase in desertification  (Wilhite, Svoboda et al. 2007, EDEN 2012). 

When studying drought, one needs to understand the difference between aridity and drought. 

Permanent drought (aridity) can be defined in meteorology and climatology, as "the degree to 

which a climate lacks effective, life-promoting moisture" (Glossary of Meteorology, American 

Meteorological Society). Aridity can be estimated by comparing long-term averages of 

precipitation to long-term averages of evapotranspiration. The climate is arid when 

evapotranspiration is higher than precipitation, on average. While a temporary drought is "a 

period of abnormally dry weather sufficiently long enough to cause a serious hydrological 

imbalance". A temporary drought refers to a moisture imbalance that occurs on a month-to-

month or more frequent basis. Therefore, when the precipitation is less than evapotranspiration 

for a given month, and the month is abnormally dry; a drought occurs accompanied by at times 

serious hydrological impact if the drought is persistent in time and space 

(https://www.ncdc.noaa.gov/monitoring-references/dyk/drought-aridity). 

Because of the fact that drought depends on many variables, predicting the start and end of 

temporary drought is quite difficult. Furthermore, typical characteristics of drought, such as 

frequency and intensity, vary from one climate regime to another (Solomon 2007). 

https://www.ncdc.noaa.gov/monitoring-references/dyk/drought-aridity
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The spatiotemporal occurrence of drought is a complex problem, because dry spells are tightly 

coupled to atmospheric and hydrological processes; in dry areas of a large extent, the moisture 

in the upper soil layers will be depleted, thus decreasing evapotranspiration rates, which in turn 

leads to a decrease in atmospheric relative humidity, which will have implications for rain-

forming processes (Shrestha 2012), (Bierkens, Dolman et al. 2008).  

Mesopotamia was recently affected by an intense and long-term drought episode during the 

four hydrological years from 2007 to 2010.  Due to very low precipitation amounts, a steep 

decline in agricultural productivity occurred in the rain-fed Tigris and Euphrates drainage 

basins (Kaniewski, Van Campo et al. 2012).  The worst drought affected regions in the Middle 

East were Iraq, Syria, and Iran. Consequently, this recent drought caused major socioeconomic 

issues, which clearly challenged the common belief that agricultural societies, by technological 

innovation and societal adjustment, can adaptively protect themselves from variability in 

natural precipitation’’ (Wright Jr, McAndrews et al. 1967).  The large arid and semi-arid zones 

of the Middle East generally rely on fragile systems of rain-fed or irrigated cultivation and are 

especially vulnerable to periodic fluctuations in climate and, most of all, to changes in the 

hydrological cycle.  Anticipated repetitive drought episodes may exacerbate the vulnerability 

of communities unprepared to mitigate their adverse effects (Sowers, Vengosh et al. 2011). 

During the last 40 years, many Middle eastern dryland countries (Iran, inland Israel, Jordan, 

Turkey) have experienced warming and precipitation declines (Kafle and Bruins 2009), 

(Tayanç, İm et al. 2009), (Al-Qinna, Hammouri et al. 2011), (Soltani, Saboohi et al. 2012). 

Droughts occurred in an irregular and non- uniform manner, with highest severity, magnitude, 

and duration over the last decade (Bronk Ramsey 2009).  Throughout the recent crisis and its 

aftermath (Weiss, Courty et al. 1993), eastern Syria reveals the same environmental 

vulnerability as in antiquity that may severely impact farming communities  (Chen, Zhao et al. 

2006) 

Drought in Iraq has been increasing in occurrence and severity over the past decade. The 

principle cause of this is appears to be climate variability (Jouhari Nadiah 2012). Consequently, 

drought impacts, drought monitoring, and management in Iraq should be investigated. 
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1.1.  Types of drought  

Drought in Iraq has been earmarked as an important issue and as a potentially serious disaster 

facing Iraq, according to the High-Level Committee for Disaster Risk Reduction (HLCDRR) 

report. The occurrence and severity of droughts have been increasing since 1969, causing a 

reduction in surface and ground water stores, and an increase in soil salinization, water salinity 

and desertification of large areas of land  (Jouhari Nadiah 2012). 

The principal factors causing drought in Iraq are climate variability and associated global 

warming, growing water demand, reduction in water release from dams in riparian areas, and 

dust storms.  

Drought events, including those in Iraq, can be classified into 3 different categories: 

- Meteorological drought: is defined on the basis of the degree of dryness or 

precipitation deficiency over a pre determined time and period, in comparison to a 

normal or average amount, and the duration of the dry period (Mishra and Singh 2010). 

 

- Agricultural drought:  crops do not receive adequate levels of soil moisture, as caused 

by meteorological or groundwater drought. In other words, it is caused by the lack of 

availability of soil moisture that is needed to support forage and crop growth. 

 

 

- Hydrological drought:  water reserves in rivers, streams, lakes, aquifers and reservoirs 

fall below statistical averages; caused by meteorological droughts, but also by increased 

human water demand and consumption, changes in land use, land degradation(Jouhari 

Nadiah 2012). 
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1.2.  Impacts of drought  

Impacts of drought in Iraq are widespread, including serious erosion of both farm and non-

farm incomes, increased poverty, increased workloads (both on and off-farm), the need to seek 

alternative livelihoods, health and welfare issues, problematic access to basic services, 

overload on service providers, and increased risks of conflict (Jouhari Nadiah 2012).  

1.2.1. Social impacts 

Severe droughts in Iraq forced people to migrate, often to cities, in search of alternative 

livelihoods, in turn also adversely affecting labour market conditions in urban areas.  For 

example, the excess supply of unskilled and semi-skilled labour as a result of rural-to-urban 

migration can negatively affect wage and other employment conditions for both migrants and 

host communities. Drought in Iraq has contributed to population displacement; from 2004 to 

2009 approximately 100,000 people have been displaced as a result of drought according to 

United Nations Educational, Scientific and Cultural Organization (UNESCO) observations. 

Furthermore, the International Organization for Migration (IOM) estimated that more than 500 

families were displaced from Kirkuk, Salah al-Din and Ninewa provinces alone during 2009 – 

2010  due to continued drought conditions and water scarcity as the principle factor which 

encouraged the increasing rural to urban migration. (Jouhari Nadiah 2012). 

In Iraq, drought has not only led to decreasing Iraqi strategic reservoir levels, but also caused 

increasing levels of water (surface/groundwater) and soil salinity. Furthermore, a number of 

shallow surface wells have now fully dried up due to drought conditions. Consequently, these 

environmental impacts affect humans in terms of good-quality water available for consumption 

(Jouhari Nadiah 2012). 

1.2.2. Economic impacts 

Droughts affect a range of economic sectors such agriculture, tourism, construction, and 

energy. FAO reported that the contribution of agriculture to the Gross Domestic Product (GDP) 

has dropped from about 9% in 2002 to 4% in 2009, due to drought and desertification occurring 

throughout the country. In addition, drought caused a decrease of almost 40% in cropland 

coverage throughout Iraq. Consequently, forcing the country to significantly increase their food 

imports, at a great cost to the Iraqi Economy.  
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Furthermore, the livestock population greatly dropped in 2007-2008 due to drought impacts, 

which caused increasing poverty, unemployment and reduction of family income, as was 

documented by IOM. This also meant a continuing rise in food prices. Ultimately, economic 

drought caused a strain on the income of the average Iraqi household; approximately 3.1 % of 

the Iraqi population currently has no guaranteed access to a sufficient and secure amount of 

food, while 9.4% is close to slipping into this state according to a FAO report (Jouhari Nadiah 

2012). 

1.2.3. Environmental impacts 

Recent droughts, in particular due to decreases in annual rainfall, have also resulted in a 

decrease in vegetation cover.  The removal of the land vegetation cover has contributed to wind 

erosion and related degradation of agricultural lands in Iraq. Consequently, large areas of 

agricultural land have changed to drylands and are no longer suitable for agriculture. Fig. 1.1 

illustrates the effect of drought on agriculture area; 46-56% of cropland area has been affected 

by drought in the northern part, and less so in the western and southern parts.  
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Figure 1.1 Impacts of drought on agricultural land area in Iraq during 2007-2009 ((FAO 2009)) 

Crop yields in Iraq today are low by any international comparison (FAO 2012). This is due, in 

part, to the effects of droughts, a serious water shortage problem (Al-Ansari 2013).  However, 

consecutive years of severe drought and inadequate availability of agricultural inputs during 

1999 to 2001 have negatively affected the Iraqi agriculture sector, as reflected by a substantial 

reduction in planting and yields. In 1999, total cereal production was estimated at 1.6 million 

tons, which was nearly 40 percent below the previous five-year average. Winter crops in this 

year were represented by approximately 1.2 million hectares under cereals; equivalent to 46 % 

of the total cultivated area was affected by severe droughts. In 2000, crop yields were 

substantially below the  poor harvest of 1999. Central and southern regions were affected most 

severely with regards to reduction in land cover of natural vegetation and cropped area. 

Roughly 75% of barley and wheat crop areas were damaged by the drought and were mostly 

grazed by livestock instead. In 2000, yields had decreased to all time low levels.  
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Drought conditions dramatically affected water resources in rivers, lakes, dams, and canals, 

and resulted in the drying up of some of these water resources, thus creating unfavourable 

conditions for the upcoming irrigated summer crops. 

It was not only drought that affected cereal production but also the lack of other agricultural 

inputs, such the serious shortages of fertilizers, and spare parts for agricultural machinery. 

Production of cereals (mainly barley and wheat) in 2001 was estimated at 1.8 million tons, 

which was 12% below average.  

Basically, most farming in Iraq entails planting and harvesting a single crop per year. In the 

rainfed areas the winter crops, primarily small grains, are planted in the fall and harvested in 

late spring or early summer. In the irrigated areas of central and southern Iraq, summer crops 

predominate.   

Even with some double or triple cropping, the intensity of cultivation is usually on the order of 

50 percent because of the practice of leaving about half the arable land fallow each year. In the 

rainfed regions, land is left fallow so that it can accumulate moisture. The fertility of fallow 

land is also increased by ploughing in weeds and other plant materials that grow during the 

fallow period. On irrigated land, fallow periods also contribute some humus to the soil (Jaradat 

2003). 

Drought in the rainfed areas is a recurrent annual event, and a number of farming methods have 

evolved to deal with it in various ways such as: storing grain to feed animals during the dry 

periods, selling failed crops for grazing, using all of the crop residues for animal feed; using 

fallow, having more than one source of income, and being flexible enough to move to find 

employment or grazing.  

At the same time, the drought problem has increased with increasing water demands for 

agricultural, domestic and industrial uses. Droughts do not only affect agricultural crops or 

rangelands (used for grazing).  Due to recurrent drought events in 2008-2009, Iraq’s recently 

restored marshlands’ extent (see Section 2.9) started shrinking again, and only very slightly 

recovered during the winter months of 2009/2010 (Initiative 2010). In 2008, the marshlands 

were covering approximately 4950 km2 which was reduced to 3420 km2 in April 2009, and to 
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2313km2 in July 2009 (Dempster 2010). The recovery rate from January 2010 to January 

2011was similar.   

1.3. Agricultural drought background and its effect on vegetation over 

Iraq 

Agricultural drought is a disaster that affects vegetation in general and cropland specifically in 

Iraq. In recent years, arable lands in Iraq experienced increasing land degradation that led to 

desertification (Almamalachy 2017). Although drought has no universal definition, it can be 

simply described as “deficiency in precipitation over an extended period, usually a season or 

more, resulting in a water shortage which adversely affects agriculture on vegetation” (NOAA 

2008). Van Loon 2015 described the impacts of the different stages of drought development, 

where a drought event starts with a prolonged shortage in precipitation rate, called a 

meteorological drought, and usually leads to a reduced water availability in root-zone soil 

moisture, ultimately resulting in decreased vegetation cover; this is known as an agricultural 

drought. 

Trigo, Gouveia et al. 2010 state that hydrological drought emerges after the development of 

meteorological and agricultural droughts, and that it can be defined as the long-term below-

normal amount of water available in the terrestrial part of the hydrological system including 

surface water, and ground water. The historical region of Northern Mesopotamia recently 

experienced an intense and prolonged drought episode during the four hydrological years 

between 2007 and 2010, that generated a steep decline in agricultural productivity in the rain-

fed Euphrates and Tigris drainage basins.  

Iraq was also subjected to a number of drought events in the period of 2003-2012, where 

different factors contributed to the occurrence of these events including shortage of rainfall 

rates and above-average temperatures. These meteorological factors resulted in a range of 

different environmental impacts over this region such as a lower discharge of the Tigris and 

Euphrates, inducing a hydrological drought, and agricultural degradation (UNESCO 2014). 

Crop production levels in rain-fed and irrigated areas over Iraq were low due to the combination 

of both climatological and hydrological drought. Al Qatrani 2012 was that cultivated areas 

reduced by 60% during the agricultural season of 2008/2009, causing a reduction in agricultural 

production. It  was also reported that a major decline in vegetation cover occurred between 

2009 and 2012  where the land cover vegetation loss was estimated at 65%, 47%, and 41%, 
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respectively (UNESCO 2014). Eklund and Seaquist 2015 studied drought in the northern part 

of Iraq using Enhanced Vegetation Index (EVI) to assess agricultural drought between 2000 

and 2011. They concluded that the study area experienced agricultural drought between 2007 

and 2009. Likewise, Atyah, Abbas et al. 2012 used NDVI to monitor areal variation in 

vegetation cover over Babylon governorate in 1976, 1986, 1992, 2003, and 2010. The results 

of that study showed that a decrease in vegetation cover referred to that vegetation cover 

decreasing over time.   
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1.4.  Study area  

1.4.1. Location 

As discussed in Chapter 1, this study focusses on drought in Iraq.  Fig. 1.2 shows that Iraq 

shares borders with six countries. It is located in the Middle East, in southwest Asia, between 

latitudes 29° and 37° N. It has a total area of 437065 km2. Drought indices and related remote 

sensing indices, together with SVAT model runs, have been calculated and conducted for all 

climatic zones (with specific land use (see Section, 2.6, and 2.8)), as well as for the marshlands 

area (see Section 2.9 apart from the SWAP runs as the model is not equipped to deal with water 

bodies). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Map of Iraq (Malinowski 200) 
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1.4.2. The climate of Iraq  

Generally, total rainfall and temperature are the most important climatic variables in Iraq, 

through their control on the main components of the water balance. Over the last three decades, 

total rainfall rates have decreased, and temperatures have been higher than average. This, 

combined with recurring dust storms, have caused many agricultural areas to turn into barren 

land. 

However, a high contrast among the values of meteorological variables for Iraq is clearly 

observed; between the northern and southern regions and between summer and winter seasons.  

The northern region of Iraq has high values of rainfall compared with the southern and central 

regions, in January. The total rainfall rates tend to increase from the southern to the northern 

parts. For July, rainfall is rare over the entire region. In the western regions in Iraq, there are 

very small amounts of rainfall throughout whole year, which are considered not significant. 

For these reasons, the northern parts of Iraq are almost always characterised by permanently 

vegetated areas, while the southern and central parts are suffering from a lack in vegetation.  

The central and the southern regions are warmer than the northern region of Iraq, with the 

temperatures in the south and south-east being the highest in Iraq. 

The low precipitation amounts and high temperatures in the south gradually turn into wet, cool 

weather in the north. For total actual evaporation, values in winter are 22.19 and 109.2mm in 

the north and the south, respectively.  

The distinct climatic zones in Iraq has led to the development of three different regions, as 

explained below, Figs. 1.3, 1.4, see also Fig 1.5. 

Mediterranean climatic region: This climate is cool and wet in winter, and hot and dry in 

summer. It is found in the mountainous areas; therefore, snowfall often occurs. The amount of 

rainfall varies; around 400 mm yr-1 at lower altitudes, and nearly 1000 mm yr-1 at higher 

altitudes. In summer, the average temperature is less than 35 ℃ on the lower slopes, and much 

lower on higher slopes. 

Semiarid climate region: This climate type is characterised as a transitional climate between 

the Mediterranean type in the north and the desert or arid climate type in the south. It has small 
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amounts of rainfall and high temperatures. Annual rainfall is between 200 mm to 400 mm yr-

1; it falls during the cool period of the year when the evaporation rate is the lowest. 

Arid climatic region: Typically, the climate of the lowlands of Iraq is a desert climate. This is 

an area of high shortwave and longwave radiation and clear skies in summer; air temperature 

rises to a maximum of 45-50℃, with a large diurnal temperature amplitude (Tday-Tnight), 

whereas nights are relatively cool. In winter, the prevailing weather is warm and sunny, and 

temperature very rarely drops below freezing point, (Jaradat 2003). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Annual mean temperature (℃) map of Iraq 



13 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Annual mean precipitation (𝑚𝑚 𝑦𝑟−1) map of Iraq 

 

 

 

 

 

 

 

 

 

Figure 1.5 Map of climatic zones of Iraq (FAO 2011). 
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1.4.3.  Physiography  

All regions are shown in Fig. 1.6 and discussed separately below. 

1.4.3.1. Zagros region 

An area composed of valleys and high mountains, reaching to 1000 to 4000 m.  A limestone 

ridge is the main component for this region, varying from soft chalk to very hard dolomitic 

limestone. There are less steep slopes on the northeastern part of the ridge Soils. 

1.4.3.2. Foothills region 

The foothills region comprises hills at the foot of the Zagros Mountains, with altitudes ranging 

from 500 to 1000𝑚𝑚. It mainly consists of sandstone, beds of gravel and conglomerate. The 

conglomerate and gravel are alternated with thin layers of clay and reddish loam. These red 

loam and clay layers are severely eroded at the top in some places, forming gullied land, so 

called ‘bad lands’. This region is mostly covered by grasses during spring and winter seasons. 

The vegetation cover gradually decreases in summer, because it is extremely hot and dry. Hills 

are generally rounded, and have thin soil. The level areas within the valleys commonly consist 

of three different terraces; the lowest terrace being the most extensive, and the most important 

from a cultivation point of view, because it has good soils (Buringh 1960), (Omer 2011). 

1.4.3.3. Jazeerah region 

The Jazeera Region is an uplands region (Library of Congress, 1988), a steppe and desert 

plateau, which comprises the remnants of an old inland sea where mainly gypsum was 

deposited. This relatively flat area has low mountain ridges and hills, which are an extension 

of the mountain ridges to the east. These mountain ridges follow an east-west direction. 

Gypsum is the main rock in the east part, while the limestone and sandstone dominate in the 

east and north of the region. Lime and gypsum crusts cover large areas, which are exposed at 

the surface. The wadi Tharthar is the main source of drainage in this region, running into the 

large Tharthar Depression. Jazeera is considered a grazing area, due to the presence of natural 

vegetation in this area, particularly in the southwest and steppe in the northeast.  Recently, in 

the north of the region, some areas have been ploughed to grow barley and wheat (Jaradat 

2003). 
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1.4.3.4. Desert region 

In this region, we find a different kind of limestone, which was deposited on the old shelf. The 

northwestern part is the highest, gradually sloping down to east. The vegetation is of Irano-

Turanian type in the northern part and of Sahara-Sindian type in the south. The desert in the 

northern part, and the northern part of the southern desert, are rock plains, which developed on 

limestone crust.  

The western deserts are intersected by numerous wadis, they are mostly dry riverbeds that 

direct occasional rainfall east towards the Euphrates (Held 2000). Water erosion affects large 

parts of the desert; in some places, wadis or deep gullies have been shaped. There is some 

vegetation in the wadis, particularly in northern parts that have an average rainfall of around 

150 mm, and sparse vegetation is present in parts with average rainfall up to 70 mm (see map 

1.4) (Buringh 1960), (Jaradat 2003). 

1.4.3.5. Mesopotamian plain region 

The Mesopotamian Plain is a geological depression, a plain of the Tigris and Euphrates rivers 

that is generally low and flat.  It is mostly filled by river sediments, occupying land that is 

located in central and southern parts of Iraq within semi-arid climate zone. Geographically, the 

northern part, which extends between Samarra and Deltwa, consists of three distinct river 

terraces, which are higher than the present river level. These old river terraces thus form high 

plains, which are never flooded by the river. The lowest terrace is the most important for 

agricultural irrigation. It is situated on both sides of the Adhaim River. The plains in central 

Iraq are nearly level; it is for this reason that large areas are flooded every year, almost always 

during spring. 

In the southern parts, the plain can be divided into the delta plain, the marshes region and the 

estuary region. In the delta plain, that starts from the south of Kut and Hilla, the rivers split up 

into many branches. It is relatively flat land, with high ground water levels, and the natural 

drainage is quite poor. In the south of the Delta. The main natural vegetation in the marshes is 

composed of reeds. Close to the coast, there is the estuary region, where the sedimentation is 

in the form of extensive saline soils. There are narrow strips of well-drained land along the 

river (Jaradat 2003). 
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Figure 1.6 Physiographic regions of Iraq (Copyright © 2014 IJAIR) 

 

1.4.3.6.  Marshlands region 

A number of marshes exist in the centre of Iraq, as shown in Fig. 1.7.  As a result, the water 

source nourishing the marshes is almost entirely dependent on the surface run-off, generated 

in the humid Anatolian highlands and Zagros Mountains (> 1,000 mm in rainfall) in the north 

and east, respectively. The extent of the marshes is highly variable, expanding and contracting 

with seasonal flooding and annual changes in water flows. Prior to dam construction, 

discharges into the Tigris and Euphrates peaked in April and May, with flow volumes lowest 

in August and September. This oscillation, generated by snowmelt flood pulses during the 

spring and gradual water recession over the summer months, plays a critical role in the 

dynamics of marshland ecology (Al-Ansari and Knutsson 2011). 
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Drought-related investigations were performed as part of this thesis in the form of a case study 

on the marshlands in the south of Iraq, which is located in the Mesopotamian plain that has an 

arid to semi-arid climate. In these areas, vegetation is affected by high diurnal and seasonal 

variations of temperature, low amounts of precipitation and high potential evaporation 

(Dehghan 2011). The wetland area lies between 29°55'N and 32°45'N to 45°25'E and 48°30'E, 

covering an area of approximately 15000-20000 km2 in the lower part of the Mesopotamian 

basin where the Tigris and Euphrates Rivers flow (Al-Ansari and Knutsson 2011). The 

marshland consists of three main areas: Hammar, Chibyish and Haweezah marshes are shown 

in Fig. 1.7. Further details are given below. 

1.4.3.6.1. Hammar marshes 

The Hammar Marshland is situated south of the Euphrates, extending from near Nasiriyah in 

the west to the outskirts of Basrah on the Persian Gulf Sea in the east. During the 1970s, 

Hammar marsh covered an area of approximately 2800 km2 of permanent marsh and lake 

(approximately 120 km long and 25 km wide). The maximum water levels in this marshland 

were ranging from 1.8 to 3 meters in time and space.   Large parts of the lake’s shoreline dry 

out during summer, and banks and islands emerge. They receive an influx of water mainly from 

tributaries of the Euphrates River, from groundwater recharge, as well as a considerable amount 

of water originating from the Tigris River, overflowing from the Chibyish Marshlands (Al-

Ansari and Knutsson 2011). 

1.4.3.6.2. Chibyish marshes 

The Chibyish marshes are bordered by the Tigris River to the east, and by the Euphrates River 

to the south. They cover an area of approximately 3000 km2. This marsh area is fed primarily 

from Tigris distributaries branching southward from the Mayssan province. It is densely 

covered by tall reed beds, interspersed with several large water-filled depressions (Al-Ansari 

and Knutsson 2011). 

1.4.3.6.3. Haweezah marshes 

The Haweezah marshes lie to the east of the Tigris River, straddling the Iran-Iraq border. In 

the west, they are largely fed by three main distributaries departing from the Tigris River near 

Mayssan; the Musharah, Kahlah and Majriyah. An important water influx also comes from the 

Karkheh River in Iran. Historically, the Haweezah covered an approximate area of at least 

3,000 km2, expanding to over 5,000 km2 before draining. The northern and central parts of the 
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marshes are permanent but the lower southern sections are mostly seasonal. Large permanent 

lakes up to six meters deep are still found in the northern part of the marshes. The Haweezah 

marshes represent the most intact part of the original Mesopotamian wetland complex and are 

of major importance as a biodiversity store (Al-Ansari and Knutsson 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Major Iraqi Marshlands (Source: CIA World Factbook, 2001 in IRAQ geography)* 

Note: Qurnah refers to Chibyish marshes, and Hawizah refer to Haweezah. 
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1.5.  Research questions 

The following research questions will be addressed in this thesis 

- What has been the recent evolution of droughts over Iraq, for a range of land surface 

types, namely desert, rangeland and agricultural lands, as well as marshlands?  

- Has the occurence of drought increased over time?  

- Which parts of Iraq are most prone to drought? 

-  How can the severity of agricultural drought stress on vegetation, water balance, 

energy balance, land surface temperature and soil moisture best be estimated? 

- Which drought indices are best suited for analysing the extent and severity of drought 

in Iraq and similar areas?  

- Can the change in vegetation cover over time be explained by variation in drought 

indices? 

- How can remote sensing help to assess drought in Iraq? 

- To what extent can SPI and SPEI, and remote sensing detect drought? 

- What is the most suitable meteorological drought index for Iraq? 

- How can land surface modelling be used to further our understanding of droughts in 

Iraq? 

- How will the findings inform water resources management in Iraq? 

 

1.6.  Research design  

The methods employed for this study include three main steps: 

• Chapter 2, Literature review: Literature study on the hydrological balance and related 

meteorological, land surface and plant processes that ultimately link to hydro-

meteorological drought indices (e.g. SPI-3) and related vegetation indices derived from 

remote sensing. Further literature studies on drought and drought indices; how to use 

remote sensing techniques in drought assessment; and evapotranspiration and methods 

to estimate it.  

 

• Chapter 3, Methodology Time series of normalised difference vegetation index 

(NDVI) MODIS (MOD13A2) products and land surface temperature MODIS 
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(MOD11A2) with 1 km resolution were used for 2001-2015; SMOS near-surface soil 

moisture data were also extracted for Iraq, spanning the period 2010-2015. Detailed 

long-term meteorological data for Iraq were obtained from the Iraqi Meteorological 

Office; these data were checked and gap-filled where necessary. ERA interim data were 

downloaded from ECMWF as an alternative driving data set for the SWAP model (see 

below). ERA interim output data (surface latent heat flux) were also obtained for SWAP 

model verification.  

 

• Drought assessment: The first step involved processing and filtering of the satellite 

and meteorological data obtained during data collection. Next, various drought indices 

were compared and their interannual variability and trends were interpreted in the 

context of the meteorological input data. Subsequently, remote sensing (RS) indices 

that relate to vegetation density and greenness, and hence implicitly to drought, were 

calculated. Time series of NDVI and LST and its relation with SPI and SPEI were 

analysed. Finally, runs were conducted with a Soil-Vegetation-Atmosphere-Transfer 

model (SWAP) to help explain the differences in NDVI observed, e.g. through 

differences in soil type, vegetation type, management etc. 
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2. Chapter two: Theoretical background 

The first chapter of the thesis provided an introduction to the concept of drought, and an 

overview of the research project in context of the research objectives. This chapter will present 

the literature on drought indices, vegetation monitoring using remote sensing technologies, and 

hydrological models. 

2.1.  The hydrological cycle 

The global hydrological cycle describes the continuous movement of water, at its three phases: 

liquid, solid, and gas, between and within Earth’s continents, oceans, and atmosphere 

(Bierkens, Dolman et al. 2008). 

The total mass of water is fairly constant on Earth, but there are variations within the reservoirs 

of saline water, ice, and fresh water, mainly depending on climate variability. Water moves 

from continents to oceans and from oceans to the atmosphere; these movements are driven by 

the physical processes of runoff, precipitation, evaporation, infiltration, and condensation. 

Water flows to the oceans from land via rivers, in this case, the precipitation must be more than 

evaporation over land. The nature of the Earth surface (e.g. vegetation type, cover, and status, 

as well as soil type and soil moisture status) is a major factor, which strongly influences the 

hydrological cycle. Hydrological processes can operate at different time scales over land and 

ocean.  

Ecologically, the water balance affects the functioning and survival of ecosystems on planet 

Earth, and can influence the climate via heat exchanges. For example, evaporation causing 

cooling of the environment. On the other hand, energy will be released, thereby warming the 

environment, through condensation processes. (Trenberth, Smith et al. 2007). 

Fig. 2.1 summarises the annual average global hydrological cycle. Oceans evaporate around 

413×103 km3 yr-1 of water, i.e. nearly 1200 mm per year, although on average about 90% of 

this is returned as precipitation to ocean. Precipitation over land occurs due to the transfer of 

evaporated water from ocean to land, apart from landlocked areas where re-cycling of 

terrestrial evaporation also plays a role. Approximately 65% of terrestrial precipitation is re-

evaporated. Nearly 35% of the terrestrial precipitation returns to the oceans as surface runoff 

(Bierkens, Dolman et al. 2008). 
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Figure 2.1 The global annual average hydrological cycle including estimates of the main water 

reservoirs (in plain font in unit of 103𝑘𝑚3𝑦𝑟−1), and the flow of moisture between stores (in 

Italic in units of 103𝑘𝑚3𝑦𝑟−1), Copy right 2007 American Meteorological Society (AMS). 

 

Eq. 2.1 uses the principle of mass conservation in a closed system. The movement of water 

throughout an ecosystem system can be represented by water entering this system via 

precipitation, which is then transferred into either evaporation, surface runoff (eventually 

leaving in the form of river discharge), or stored in the ground.  A water balance can be used 

to predict where there might be water shortages, and help to manage water supply (Fish 2011). 

It is crucial in the context of drought prediction and management. 

The water balance is calculated as follows from field-or catchment scale inputs and outputs.   

∆𝑆 =  𝑃 +  𝐺𝑖𝑛 − (𝑄 + 𝐸𝑇 +  𝐺𝑜𝑢𝑡)                    2.1

   

where 𝑃 is the precipitation, 𝐺𝑖𝑛 groundwater inflow, 𝑄 surface water runoff, 𝐸𝑇 

evapotranspiration, 𝐺𝑜𝑢𝑡 groundwater outflow, and ∆𝑆 change in water storage. 
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2.2.  General overview of drought indices  

Drought indices have been developed to detect, assess and monitor drought. Widely used 

drought indices include Crop Moisture Index (CMI), Palmer Drought Severity Index (PDSI), 

Surface Water Supply Index (SWSI), Standardized Precipitation Index (SPI), Standardized 

Precipitation Evapotranspiration Index (SPEI) and Standardised Vegetation Index (SVI). 

(Hayes, Svoboda et al. 1999).  Some indices are more suitable for certain applications than 

others. For instance, the U.S. Department of Agriculture has widely used the PSDI to decide 

when to grant emergency drought assistance. However, the PSDI works better for large areas 

of uniform topography. Water resources planning authorities in Western states of the USA, 

with mountainous terrain and resulting complex regional microclimates, find it useful to 

supplement PSDI values with other indices such as the SWSI that is based on snow pack. 

Meanwhile, the National Drought Mitigation Centre is using SPI to assess soil moisture supply 

conditions. Features that distinguish this index are that it identifies emerging droughts months 

sooner than the PSDI and that it can be computed on various time scales.  Most water supply 

planners find it useful to consult one or more indices before making a decision related to water 

management.  

Using SPI may help scientists and planners to develop a climatology of the intensity and spatial 

extension of droughts, which will provide a wider understanding of its characteristics and an 

indication of the probability of recurrence of drought at different levels of severity. (Ji and 

Peters 2003) assessed vegetation response to drought in the northern Great Plains by using 

drought indices and estimates of land cover of vegetation. They studied the relationship 

between SPI and NDVI at different time and spatial scales. They concluded that the SPI-3 had 

the highest correlation to NDVI, and that SPI-3 was the best for determining drought severity 

and duration. In addition, it was found that seasonality has a very significant effect on the 

relationship between NDVI and SPI-3.  

Drought indices can be split into several categories: meteorological, hydrological, agricultural 

and groundwater indices.  In the sections below the various drought indices will be discussed 

briefly 
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2.2.1.  Standardized Precipitation Index (SPI) 

SPI is commonly based on the long-term precipitation record that includes the period of 

interest. It can be calculated for different time scales; this versatility offers the possibility to 

express the drought in terms that are relevant for long term water resources, such as stream 

flow, groundwater supplies, lake and reservoir levels; and short-term water supplies, such as 

soil moisture which is a useful indicator of agricultural production. Therefore, it is considered 

a powerful, flexible index that is simple to calculate due to the fact that precipitation is the only 

required input variable that can be computed for different time scales, thereby providing early 

warning of drought and helping to assess drought severity. The long term precipitation record 

is fitted to a gamma probability distribution, then transformed into a standardized normal 

distribution (z-distribution), so that the mean of the SPI is zero for the desired period (Lloyd‐

Hughes and Saunders 2002). The gamma probability density function performs well over Iraq, 

and has been tested for a wide range of locations and at different time scales (Al-Timimi and 

Al-Jiboori 2013). 

SPI values should have similar and consistent results, even if they are computed from different 

lengths of records as long as they have a comparable gamma distribution over different periods 

of time. However, there will be a significant difference in SPI values when the distributions 

are different. Because precipitation is seasonal in nature there will be many zero precipitation 

values. Therefore, SPI will not be the index of choice in arid to semi-arid climatic zones 

because of the limitation of the fitted gamma distribution and the highly skewed underlying 

precipitation distribution. This may cause large errors when simulating precipitation 

distributions in dry climates from small data samples (Mishra and Singh 2010). 

Table 2.1 shows a classification system used to define drought intensities based on the SPI (as 

well as SPEI, see Section 2.2.2) values, where positive SPI values refer to values greater than 

median precipitation while negative values indicate less than median precipitation. Because the 

SPI is normalized, wetter and drier climates can be monitored using the same index. A drought 

event occurrence might happen any time, once the SPI is continuously negative and also 

reaches a value of -1.0 or less. The end of the drought event is represented by SPI returning to 

positive values (McKee, Doesken et al. 1993).  
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Table 2.1 Drought category according to SPI and SPEI value (McKee, Doesken et al. 1993) 

 

 

 

 

 

 

 

 

SPI was proposed by McKee et al. (1993) to provide early warning of drought and to help 

assess drought severity for multiple time scales (Naresh Kumar, Murthy et al. 2009). It is 

widely used by a range of national Meteorological and Hydrological Services throughout the 

world, as a part of drought assessments and early warning efforts (Svoboda, Hayes et al. 2012). 

Using SPI approach allows the user to plot a time series of interannual SPI variation, which 

offers a good indication of the drought history for a given station or area. SPI was originally 

calculated for 3, 6, 12, 24 and 48-month timescales by McKee and others (1993). These 

timescales reflect the impact of drought on the availability of different water resources. 

Groundwater, stream flow and reservoir storage reflect long-term precipitation anomalies. Soil 

moisture conditions typically respond to precipitation anomalies on a relatively short-term 

timescale (e.g. 3 months or less).  

The SPI is generally calculated using the following formula:  

SPI = 
𝑃𝑖− 𝑃̅𝑖

σ
                        2.2    

where, 𝑃𝑖 is the seasonal precipitation, 𝑃̅𝑖 is the long term seasonal mean, and σ is the 

standard deviation.  

SPI and SPEI Category 

2.0 and more Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 and less Extremely dry 
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2.2.2.  Standardised Precipitation Evapotranspiration Index (SPEI)  

The use of drought indices that include temperature data in their formulation (such as the SPEI) 

is preferred to the use of SPI, especially for arid and semi-arid areas where drought is strongly 

affected both by high potential evapotranspiration and lack of rain. Therefore, an alternative 

drought index, the Standardized Precipitation Evapotranspiration Index (SPEI), has recently 

been formulated that is based on precipitation and potential evapotranspiration, PET. The SPEI 

combines the sensitivity of PDSI to changes in evaporation demand (which is mainly caused 

by temperature fluctuations and trends) with the simplicity of calculation and the multi-

temporal nature of the SPI. The new index is particularly suited to monitoring, detecting, and 

exploring the impacts of global warming on drought conditions (Vicente-Serrano, Lopez-

Moreno et al. 2011), (Vicente-Serrano, Beguería et al. 2010).  

SPEI was developed by (Vicente-Serrano, Beguería et al. 2010) to assess drought in terms of 

duration, onset, severity, extent and end. Recently, most studies related to drought analysis and 

monitoring systems have been conducted using SPEI. 

The approach is similar to that of the SPI drought index and the values are also expressed on 

the basis of different timescales. The SPEI is based on a monthly water balance (the difference 

between precipitation (𝑃𝑖 ) and potential evapotranspiratio (𝑃𝐸𝑇𝑖) for the month), 

adjusted using a three-parameter log-logistic distribution to take into consideration common 

negative values.  

𝐷𝑖 =  𝑃𝑖 −  𝑃𝐸𝑇𝑖                          2.3 

A key step in the quantification of SPEI is the determination of evapotranspiration, which can 

be calculated using a number of equations, covering a range of complexity and with varying 

input requirements. Considered the most reliable equation, the Penman-Monteith equation 

calculates evapotranspiration based on solar radiation, air temperature, wind speed and relative 

humidity(Allen, Pereira et al. 1998).  

In general, SPEI is based on a simple climatic water balance, which is calculated at different 

time scales. PET in this thesis is calculated based on Thornthwaite’s (1948) equation, which 

only requires monthly average temperature data to calculate SPEI. Among a number of 

methods for calculation of the water balance, the Thornthwaite (1984) model is considered as 
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one of the most appropriate methods for arid and semi-arid regions, and has been adopted 

widely over these areas, in particular over Iraq (Saud, Said et al. 2016), (Henderson 2012), 

(Ibrahim 2012), (Anderson, Jin et al. 2012), (Djaman, Balde et al. 2015), (Saud, Said et al. 

2016). 

A number of studies examined the most appropriate methods to estimate PET in semi-arid parts 

of Iraq; these methods included the Thornthwaite, Blaney-Criddle, Kharufa and Ivanov 

methods. These equations have been employed to estimate and identify the spatiotemporal 

variations of PET over certain parts of Iraq. Calculated PET was compared with the average 

actual pan-evaporation in the meteorological stations to establish the accuracy of the PET 

estimation. Thornthwaite equation provided a relatively low value in comparison with the other 

methods (Ali 2008), (Mohammad 2008), (Ibrahim 2012), (Al-Shamaa and Ali 2011), (Al-

Maliki 2005). 

Other studies compared the Blaney- Criddle, Thornthwaite, and Penman-Monteith methods in 

the central part of Iraq and found that these methods gave different results with regards to 

consumptive water use. It was concluded that these three methods exhibit the similar temporal 

evolution and tendency. The Penman Monteith was not found to be the most suitable method 

in this region compared with observed data  (Obid, Khaleel et al. 2013). 

The main objective of using SPI and SPEI in this thesis is to enable comparison of historical 

drought assessment based only on assessment of precipitation with that based on the combined 

effects of precipitation and potential evapotranspiration. Both drought indices are obtained 

using the same log-logistic probability distribution that shows a very close fit to the series of 

differences between precipitation and evapotranspiration (Vicente-Serrano, Beguería et al. 

2010), and also to the monthly precipitation records.  

Using the same probability distribution will allow for reliable comparisons among the series of 

these two drought indices, to ensure that any differences between the series are only related to 

the impact of temperature on drought conditions, and not from the calculation method. These 

two indices have therefore been selected for this study, together with NDVI as a measure of 

vegetation vigour. 
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Several studies have shown that the 3-month time scale is the most appropriate for determining 

drought severity. Therefore, this particular time scale was used throughout the thesis 

(Otgonjargal 2012). 

2.3.  Monitoring land surface hydrological status from space 

Obtaining hydrological information from ground-based measurements can pose serious 

difficulties, in particular for less developed regions, or those situated in areas that are 

considered unsafe for political reasons. Furthermore, there is the issue of scale, as a large 

amount of information is required to obtain a reliable water budget and related drought 

assessments. Remote sensing (RS) can play a substantial role in observing weather, climate 

and land surface processes and properties. As already explained above it also has the potential 

to provide useful data for drought monitoring (see Section 3.1.3 in Chapter 3). Via sensors 

mounted on satellites, remote sensing allows us to quantify, directly and indirectly, the 

components of the hydrological cycle and watershed water balances (river and lake levels, 

precipitations, soil moisture, evaporation and total water storage). Furthermore, useful 

information can also be derived on the variations of vegetation condition, such as plant health 

and productivity, from a moving platform such as a satellite or an aircraft. Because of its 

generally widespread nature, monitoring of drought requires a large spatial scale approach, 

therefore satellite remote sensing is particularly useful for drought observation. In addition, it 

can provide information at a high temporal and spatial resolution to provide a comprehensive 

insight of the drought development. In recent years, RS data have quickly become the preferred 

choice when observing the large-scale energy and water cycles of the land and atmosphere. 

The challenge of using RS techniques for monitoring drought is that there is a disconnection 

between what is required for quantification of drought via pertinent vegetation or hydrological 

indices, and what satellites actually measure (Sheffield and Wood 2012). 

In general, radiation is measured from satellite borne sensors over one band or more across the 

electromagnetic spectrum. These radiances need to be converted into quantities and surface 

parameters that are associated to the hydrological variables, to next provide a quantitative 

description of drought. In practical terms, the emitted, reflected or backscattered radiation from 

the earth’s surface (soil, water bodies and vegetation) need to be related to the state of the land 

surface, in particular that of the vegetation.  The retrievals of remote sensing variables are often 

restricted to certain so-called atmospheric windows, which are ‘transparent’ and allow sensors 

to observe the land surface. These windows are the result of the scattering of radiation and 
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strong absorption of oxygen, water vapor, aerosols and CO2 over certain electromagnetic 

bands.  

RS bands are divided into visible, infrared, short wave, thermal and microwave. There exists a 

multitude of data products from recent satellite missions that can help estimate the components 

of the water budget, at various time and space scales (Sheffield, Andreadis et al. 2009). For 

example, precipitation can be retrieved by multi sensor microwave data, and from infrared data, 

using a variety of techniques (Huffman, Bolvin et al. 2007). Vegetative health has been 

quantified from visible and near infrared data for several years now (Petach, Toomey et al. 

2014). Evapotranspiration can be evaluated from analyses of the surface energy balance, given 

remote sensing inputs of net radiation and surface meteorology (Su, McCabe et al. 2005) and 

large scale products are  progressively becoming available (Liou and Kar 2014). Changes in 

the total water surface and subsurface storage can be derived from gravity, e.g. the recent 

GRACE mission (Forootan, Safari et al. 2017). Stream flow and surface water storage can be 

estimated by using laser altimetry technologies (Alsdorf and Lettenmaier 2003).  

2.3.1. Normalised difference vegetation index (NDVI) 

Monitoring land cover vegetation changes over time is necessary to inform regulatory actions 

and policy decisions related to water management, and possible subsequent (changes in) land 

use activities. Traditionally, weather station observations have been used to help monitor the 

water balance, and drought, but the drawback is the lack in continuous spatial coverage needed 

to monitor and characterise the detailed spatial pattern of drought and its impacts (Huffman, 

Bolvin et al. 2007).  

The normalized difference vegetation index (NDVI) is a simple indicator that can be obtained 

using the normalised reflectance difference between the near infrared (NIR) and visible red 

bands (Tucker 1979). NDVI records the changes in chlorophyll content via absorption of 

visible red radiation (VIS), and in spongy mesophyll via reflected NIR radiation within the 

vegetation canopy.  

The NDVI for each pixel is calculated according to the normalised difference between the red 

and near infrared bands from an image. NDVI can be derived from data collected by the 

Moderate Resolution Image Spectrometer (http://earthexplorer.usgs.gov/). 

http://earthexplorer.usgs.gov/
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Since the MODIS sensor is carried on both the Terra and Aqua satellites, it is generally possible 

to obtain images in the morning (Terra) and the afternoon (Aqua) for any particular location. 

The MODIS instrument on the Terra satellite was launched in December 1999 with 36 spectral 

bands ranging between 0.405-14-385 µm, which is more sensitive than AVHRR. MODIS 

presents NDVI imagery at three different resolutions: 250m, 500m, and 1000m. (Gallo, Ji et 

al. 2004). The NDVI is generally calculated as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅− 𝑅𝐸𝐷

𝑁𝐼𝑅+  𝑅𝐸𝐷
                                                                  2.4 

where 𝑁𝐼𝑅 and 𝑅𝐸𝐷 are the reflectance in the near infrared (𝑁𝐼𝑅) and red bands, respectively. 

The values commonly range from -1 to 1, positive values indicate that the vegetation is 

healthier than those with negative values (Boken, Cracknell et al. 2005). The long-term 

deviation of NDVI is useful to determine droughts and to characterise the health of vegetation, 

in most regions. Low NDVI can be caused by cool temperatures or by low radiation due to 

heavy cloud cover. 

2.3.2. Land surface temperature (LST) 

The land surface temperature (LST) derived from the thermal bands of satellite images provides 

implicit information on the spatiotemporal changes of the surface energy balance and is of 

basic importance in many applications (Kerr, Lagouarde et al. 2004). 

LST is important for environmental studies and is widely used in formulating the land surface 

water budget, because the water and energy balances are related via the evapotranspiration 

(latent heat flux), see Section 4.6. It is a major factor in determining the partition of the 

available energy into sensible and latent heat fluxes (see section 2.4). In this context, LST is a 

useful variable to determine evapotranspiration, soil moisture, vegetation water stress, and 

thermal inertia  (Jang, Viau et al. 2006), (Anderson, Norman et al. 2007).  Vegetation 

abundance and condition is also known to influence LSTs and drought conditions through the 

process of evapotranspiration. Therefore, investigations into the relationship between NDVI 

and LST can be informative in the context of drought, especially where this phenomenon is 

more pronounced, and where mitigation measures are needed (Patel, Parida et al. 2012). 
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2.3.3.  Soil moisture  

Knowledge on soil moisture over large scales can provide powerful information for monitoring 

of drought. Soil moisture estimates from microwave remote sensing are usually obtained from 

model-data fusion, where microwave radiation emitted from soil through the vegetation 

canopy, atmosphere and then to the satellite sensor is simulated using a microwave emission 

model. The rationale of this type of model is based on the large contrast between the dielectric 

properties of liquid water and dry soil. Microwave radiation is the most appropriate wavelength 

to measure soil moisture, regardless of its restrictions. It also has the potential to quantitatively 

determine soil moisture under a variety of vegetation types, cover densities and conditions, and 

topography. However, the main challenge is that  the microwave signal is restricted to the top 

centimetres of the soil. This is because the penetration depth depends on the signal frequency. 

The signal is attenuated in densely vegetated regions and so retrievals are limited to sparsely 

vegetated regions at biomass  values of less than 5 kg/m2 (Sheffield and Wood 2012). Passive 

microwave sensors use frequencies of 6 GHz or  higher, although L band is deemed optimal 

and more suitable for soil moisture monitoring in terms of the relative strength of the vegetation 

and soil signals.  

However, the relatively high spatial variability of soil moisture in the field makes interpretation 

of data obtained at 25 km (e.g. using SMOS) problematic (Sheffield and Wood 2012). 

Therefore, the most recent missions have merged active and passive products in order to 

overcome these limitations, and to improve the coverage and resolution. The European Space 

Agency Soil Moisture Ocean Salinity (SMOS) mission has been launched relatively recently, 

but it uses passive microwave only. However, the NASA Soil Moisture Active and Passive 

(SMAP) mission uses L band passive microwave instruments that should improve accuracy 

and penetration depth into the soil, as well as active microwave to improve the spatial 

resolution. Unfortunately, the active sensor failed approximately 6 months after launch. 
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2.4.  The energy balance 

2.4.1. Determination of surface latent heat flux from energy balance form part of land 

surface models 

The Surface Energy Balance (SEB) is closely linked to the water balance, via the 

evapotranspiration (ET), see Fig. 2.2.  Hence the SEB is often used to determine ET, once the 

other terms (often easier to determine directly) are known, either from in-situ measurements or 

via RS. The SEB is given by 

𝑅𝑛 =  𝜆𝐸 +  𝐺 +  𝐻                                           2.5 

where 𝑅𝑛 is the net radiation, 𝐺 the soil heat flux and 𝐻 the sensible heat flux, all in W m-2.  

The net all-wave radiation flux density depends on incoming and outgoing radiation at the land 

surface. The net radiation equation may be written as: 

𝑅𝑛𝑠 = ((1 − 𝑎)𝑅𝑠) + (𝑅𝐼 ↓ −𝑅𝐼  ↑)                                         2.6 

where 𝑅𝑠 is the total downward solar radiation flux density (W m-2), 𝑎 the surface albedo, and 

𝑅𝐼 the longwave radiation flux density (W m-2). Upward and downward arrows represent 

upwelling and downwelling fluxes, respectively. All fluxes represent radiation through a 

horizontal plane.  
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Figure 2.2 Schematic diagram of the global mean energy balance of the earth. Numbers 

indicate best estimates for the magnitudes of the globally averaged energy balance components 

(W m-2) together with their uncertainty ranges, representing present day climate conditions at 

the beginning of the 2121 (Wild, Folini et al. 2015). 

 

For the radiation balance, we need the flux density of atmospheric longwave radiation through 

a horizontal plane at the surface, 𝑅𝐼 ↓. If we assume the atmosphere is a grey radiator at air 

temperature, the sky has an apparent emissivity, ɛ𝑎.  The following formula, i.e. the modified 

Stefan Boltzmann’s law, can be derived for longwave radiation reaching a horizontal surface. 

𝑅𝐼 ↓ =  ɛ𝑎 Ơ 𝑇𝑎
4                                 2.7 

where ɛ𝑎 is the mean apparent atmospheric emissivity, Ơ is the Stefan-Boltzmann constant and 

𝑇𝑎 the temperature of the atmosphere (in K).  

Sky emissivity, ɛ𝑎, is usually found from a combination of a formula describing clear sky 

emissivity, ɛ𝑎(0), and a correction for the occurrence of clouds. Different parameterizations 

have been proposed to find a value of ɛ𝑎(0), mainly depending on the atmospheric conditions 
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under which they were developed (Wang, Wan et al. 2005) Most of them are a function of air 

temperature, Ta, and/or vapour pressure, ea. Both variables are usually taken at screen height 

for convenience. The formula of is widely used and will be applied in this thesis for calculations 

of ɛ𝑎(0): 

ɛ𝑎(0) = 1.24(𝑒𝑎/𝑇𝑎 )1/7                                           2.8 

Surface temperature sets the boundary condition for latent and sensible heat transport through 

vegetation, soil and atmosphere. Therefore, it is an important parameter in the SEB. Together 

with surface emissivity, it determines the outgoing longwave radiation. The modified (ɛ𝑠 < 1.0) 

Stefan-Boltzmann law is a good estimator of 𝑅𝐼 ↑. The Earth, being a grey radiator, emits 

longwave radiation according to the following equation: 

𝑅𝐼 ↑ =  ɛ𝑠 Ơ 𝑇𝑠
4 + ( 1 −  ɛ𝑠)𝑅𝐼 ↓                               2.9 

where ɛ𝑠 is the surface emissivity, Ơ the Stefan-Boltzmann constant and 𝑇𝑠  the surface 

temperature (in K). The second term on the right-hand side of Eq. 2.10 presents the re-emitted 

incoming longwave radiation.  

2.4.2. Determination of surface latent heat flux from energy balance closure and LST 

data  

The equations under Section 2.4.1 form part of land surface models such as H-Tessel (LSM 

used for ERA-Interim) and combined with so-called bulk transfer equations they are used to 

calculate the sensible and latent heat fluxes. 

In this thesis, the SEB has also been used separately to calculate the SHLF for the marsh lands. 

The issue here is that ERA-Interim’s spatial resolution is too coarse to resolve for the marshes 

explicitly: the large grid boxes would contain water bodies as well as vegetated/bare soil land 

surface types. 

To solve this problem separate LST timeseries for the three marshes were used to calculate 

sensible heat flux using the equation employed in (Verhoef, Allen et al. 1999) 

𝐻 = 𝑐(𝑇𝑠.1400 −  𝑇𝑎.𝑚𝑎𝑥)                                                                                                       2.10 
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Where: 𝑇𝑠.1400 is the surface temperature at 1400 GTM, and 𝑇𝑎.𝑚𝑎𝑥 is the maximum daily air 

temperature. 

Finally, SHLF was determined as the residual of the SEB, with knowledge of net radiation and 

assuming soil heat flux zero. These values of SHLF determined from LST, 𝑇𝑎.𝑚𝑎𝑥 and Rn were 

plotted together with NDVI and shown in Section 4.3.8, Figs 4.15. 

2.5.  Modelling drought 

Apart from in-situ hydrometeorologial data and drought estimates based on remote sensing, 

computer models of the water-and/or energy balance can provide data, which have the potential 

to allow for drought estimation for a range of climate systems and land-surface types. Models 

have a number of advantages, such as providing temporally and spatially consistent and 

continuous fields of key variables at a range of scales (from field to global). These models can 

also present reasonably realistic depictions of climate and hydrology at timescale of decades to 

centuries. On the other hand, models, and hence their simulations or predictions of drought, are 

imperfect and are subject to biases in their outputs, resulting from uncertainties in their driving 

data and model parameters. Drought analyses can be derived from hydrological models (field 

(e.g. SWAP) to catchment (e.g. SPHY model) or global scale (HadGem family of GCMs) or 

land surface models (LSMs, e.g. JULES) that can be used on their own at field scale, or be 

embedded in regional climate models (RCMs) or global climate models (GCMs). 

Hydrological models and land surface models have originally been derived by different 

research communities, but there is now a considerable overlap between them. These models 

can simulate the physical processes of the land hydrological cycle (and energy- and carbon 

balance in the case of LSMs), when driven by surface climate observations (air temperature 

and relative humidity, radiation, wind speed and precipitation). In addition, most regional to 

global scale models now simulate stream flow as well as the other hydrological variables, 

which makes them highly suitable for drought assessment.  

GCMs, in coupled mode, can simulate the atmospheric processes and their interactions with 

the land and ocean from seasonal to decadal time scales. Furthermore, they can simulate the 

observed global distribution of climate and its variation over different time scales, when given 

time series of external forcing (atmospheric and sea surface temperatures (SSTs)) and initial 

conditions such as atmospheric humidity profiles or soil moisture content. However, due to 
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their coarse spatial resolution and the fact that they use parameterizations for finer scale 

processes, errors and biases can occur. Some of these climate models have resolutions as high 

as 10 – 50 km, a change which has made the simulation of fine scale, more complex, processes, 

such as tropical storms, possible (Knutson, Sirutis et al. 2007). RCMs have generally higher 

spatial resolutions than GCMs, and are applied over regional scales and driven by atmospheric 

boundary conditions taken from GCMs. Until not that long ago, the land component of GCMs 

was represented by a simple form of the hydrological water budget model. Recently, land 

surface and hydrological models have increased in accuracy, but also in complexity, due to the 

increasingly recognised importance of the role of land surface processes (Orth, Dutra et al. 

2016).  

Now, the attention is moving towards Earth system models (ESMs) because of the recognised 

need to incorporate as many of the complex feedbacks between all Earth system components 

as possible,  which include detailed ecosystem dynamics and ocean biogeochemistry (Evensen 

2003).  

Another relatively recent development is the merging of observations, generally consistent and 

continuous fields of hydrological or atmospheric variables (from in-situ observations or RS), 

with models in a process that is called data assimilation). This provides a number of advantages, 

most importantly guiding the simulation by the available observations. This development has 

resulted in a number of widely used ‘model reanalyses’ than can be defined as historic 

simulations of the global atmosphere – land system at multiple decades through using a climate 

model, which ingests the observations from ground, satellites, balloons, buoys etc. The most 

widely used examples of reanalyses are the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011), the US National Centre for 

Environmental Prediction/National Centre for Atmosphere Research ((Kalnay, Kanamitsu et 

al. 1996) reanalysis and the NCEP North American Regional Reanalysis (NARR) (Mesinger, 

DiMego et al. 2006). These models are used for diagnosing the physical mechanisms of the 

hydrology and climate variation, including those that lead to drought by analysing the 

connection between different parts of the coupled physical system that they represent (Sheffield 

and Wood 2012). For instance, Atmosphere Only (AO) GCMs can provide general insights for 

forecasting mechanisms of historical drought events, such as the influences of patterns of cool 

or warm SSTs (Hoerling and Kumar 2003). Because of the lack of observational data about the 
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variability and occurrence of drought, much of recent research focussing on large-scale drought 

has favoured model based approaches, thereby providing opportunities to gain further insight 

into the mechanisms that manage and control drought persistence and development. Apart from 

the coupled ocean atmosphere mechanisms mentioned there are land surface-atmosphere 

feedbacks, which contribute to the persistence of droughts (Sheffield and Wood 2012). 

The land surface has gained acceptance in the climate system, therefore the use and 

development of land surface modelling schemes has increased in recent years (Entekhabi, 

Rodriguez-Iturbe et al. 1996). The state of the art schemes can simulate the energy and water 

cycles at the land surface and physical processes including those related to soil water dynamics, 

evapotranspiration and snow, and interaction with wetlands, lakes and rivers. Current 

investigations are looking to simulate the effects of vegetation dynamics (overgrazing, 

deforestation, growth, die off, species competition and disturbance such as fire), biochemistry, 

which includes the nitrogen and carbon cycle, and human activities (river diversion, reservoirs, 

land use change and irrigation) on drought. These schemes use a variety of advanced 

techniques, including multi-layer soil models with full energy and water accounting and sub 

grid variability of the hydrological processes (Sheffield and Wood 2012). Modelling the 

storage and transport of water in detail, all of these schemes are deemed highly suited to the 

analysis of the intensity and occurrence of drought. With the ever increasing advent of 

observational data (in-situ and remotely sensed) combined with advances relating to increased 

computational speed and telemetry, as well as the availability of state-of-the-art global datasets 

(e.g. reanalyses), it is now possible to hydrological historical and prognostic data products at 

large scales (Mitchell, Lohmann et al. 2004). Historical model simulations can provide reliable 

estimates of the variation of the terrestrial water cycle and its extremes, including drought over 

the last 50 – 100 years, when observational data were available (Sheffield and Wood 2012) 

This thesis will make use of historical and current model simulations to describe and discuss 

drought in Iraq using a range of model (products) and in-situ and remote sensing data to drive 

or verify the models. 

Finally, Soil-vegetation-transfer models (SVATs) are very similar to land surface models, but 

they are not part of RCMs or GCMs. They are sometimes described as a 1-dimensional 

hydrological model.  They can be used to calculate the water balance for surfaces representing 

different combinations of vegetation, soil and management under a range of climate conditions. 
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An example of such as SVAT model is the SWAP Model (Van Dam et al 2008), that will be 

used in this thesis to assess the water balance over Iraq, through focussing on different climatic 

zones (Sections 3.2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

2.6.  Agricultural systems in Iraq 

Over 90% of Iraq’s rainfall occurs during the November-April period. However, precipitation 

may vary greatly from one year to the next in intensity, timing, and frequency. Generally, 

precipitation levels increase from lower to higher elevations (Fig. 2.3). During the dry period 

from May to October, extremely high temperatures and a dry north-westerly wind lead to very 

high evaporation rates from water surfaces, irrigated land, and plants. This exacerbates summer 

water shortages and soil salinization in irrigated areas (Schnepf 2004). The hill country of 

northern Iraq has sufficient precipitation to support rain-fed agriculture.  From the foothills of 

north-central Iraq, a broad, arid rolling plain (used primarily for desert grazing and marginal 

agriculture) sweeps downward to the fertile valleys of the Tigris and Euphrates rivers where 

irrigated agriculture predominates. South-western and western Iraq is mostly desert, extending 

into Syria, Jordan, and Saudi Arabia. 
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Figure 2.3 Agro-climatic Zones in Iraq, with rainfall isohyets indicated (Kamil 2002a). 

 

The total area of Iraq is approximately 440 000 km2. Land potentially suitable for agricultural 

production however is not more than 120 000 km2, or 27% of the total area of the country. The 

rest includes deserts with extremely low rainfall and rocky/steep mountains which are the 

natural grazing grounds for the million sheep and goats in the country. The total area of 

agricultural production is about 8 million ha (80 000 km2) which is almost 67% of the 

potentially cultivable area. However, due to certain limitations such as soil salinity, drought, 

shortage of irrigation water in summer, and  fallowing,  it is estimated that the average area 

actually cropped each year ranges from 3 to 4 million ha (Omer 2011). 

Historically the most significant types of land use and food production in Iraq have been 

irrigated agriculture, which requires substantial investment and is an intensive form of land 

use, and pastoralism, which requires relatively little investment and is extensive. These have 

been combined with dry land farming in the semi-arid areas of northern Iraq. Although these 

basic types are technologically very different, they have been closely interrelated, socially and 
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economically, for thousands of years. Environmental problems generally derive not from basic 

technologies such as types of irrigation or grazing, but from the scale of the productive activity 

in relation to the resource. Before the first attempt to develop irrigation in modern-day Iraq, 

irrigation had already served as the basis of vast agricultural projects, and had environmental 

effects which reduced productivity seriously. Perennial irrigation in Iraq, which requires 

storage and gradual release of the water through the period of minimum flow, was largely 

introduced during the twentieth century. This kind of irrigation has allowed major increases in 

areas under cultivation and intensification of cropping but it also magnified the adverse effects 

of irrigation: soil salinity and water logging develop faster and some of the adverse effects are 

more difficult to reverse. Water resources in Iraq are controlled by the Twin Rivers, the Tigris 

and the Euphrates. Both are international rivers with their source in Turkey. The Tigris river 

basin in Iraq has a total area of 253 000 km², or 54% of the total river basin area. The history 

of irrigation started 7 500 years ago in the land between the Tigris and the Euphrates when the 

Sumerians built a canal to irrigate wheat and barley. Irrigation was estimated in 2006 at over 

5.15 million ha, of which 60% is in the Tigris basin, 37% in the Euphrates basin, and 3% in the 

Shatt Al-Arab basin. Considering the soil resources, it is estimated that about 6 million ha are 

classified as excellent, good or moderately suitable for flood irrigation. With the development 

of water storage facilities, the regulated flow has increased and changed the irrigation potential 

significantly, since it was estimated at 4.05 million ha only in 2007. However, irrigation 

development depends to a large extent on the volume of water released by the upstream 

countries. The relative area of land used for the major crops in Iraq may be summarized as 

below in Figs. 2.4, and 2.5. 
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Figure 2.4 Area (ha) under various crops in Iraq (FAO Statistics 2011). 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Land use in Iraq. Source: (CIA Atlas of the Middle East, 1993) 
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2.6.1. Agriculture sector 

Iraq has great agricultural potential and it was once one of the breadbaskets of the Middle East, 

but today the yield gaps, defined as the differences between actual or observed yields and 

simulated potential yields in a given area (Nin-Pratt et al. 2011), are very significant (Schnepf 

2004). 

Iraq’s agricultural sector plays a vital role in Iraq’s economy sector. In 1976, agriculture 

contributed about 8% of Iraq’s GDP.  During the period 1971 to 1990, the population in Iraq 

had grown at an annual rate of 3.2% as compared with only 1.2% growth rate for Iraq’s cereal 

production. Hence, food demand has risen faster than food production and created a growing 

reliance on agricultural imports to close the gap between food demand and availability.  

However, the agricultural sector has a long track record of government intervention, and 

mismanagement of agricultural policies.  ‘Investment in the sector has been discouraged by a 

history of shifting land and water property rights that has ebbed and flowed with the 

government’s changing role’ (Schnepf 2004). 

In general, the most important crops in Iraq include barley, wheat, rice, dates, vegetables, and 

cotton. In the late 1980s, crop production accounted for about two-thirds of revenues in the 

agricultural sector. Winter crops, such as wheat, are normally planted in the second half of 

October. Planting is occasionally delayed due to inadequate rainfall early in the season. In 

addition, the production is also likely to be limited by the serious shortages of essential 

agricultural inputs. Crop production in Iraq is reported to be low especially in relation to the 

nation’s food demand (FAO 2009), (FAO 2012), (Bishay 2003), (Schnepf 2004).  

An assessment was carried out in 2003 by the World Bank and the United Nations 

Development Group; they concluded that Iraq’s agricultural sector has been in decline since 

the 1980s. It was found that the agricultural production between 1988–2003 declined by 

approximately 1.1 percent annually, and the per capita agricultural production by about 3.9 

percent annually (Bank 2003). The assessment also mentioned the production of key cereal 

crops such as barley and wheat; it was noted that cereal crops in particular suffered dramatically 

during this period.  

The Food and Agriculture Organization of the United Nations (FAO 2009) stated that average 

wheat crop yields decreased by 11 percent between 2002 and 2007, and average barley crop 
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yields declined by 21 percent during the same period.  More recent FAO statistics (FAOSTAT 

2013) show that although these crops’ yields have experienced significant and frequent 

degradation recently, overall, yields for both barley and wheat have followed something of an 

upward path since the beginning of the century. Wheat and barley are the most important crops 

in Iraq; Table 2.2 shows that wheat and barley represent almost half of the total cultivated 

cereal area in Iraq, which is 31.4 percent and 15.7 percent, respectively, of all cultivated cereal 

crops.  

Most of the rain-fed harvested land areas in the central and northern are used for barley wheat 

production. Vegetables and fruits covers up 15.2 percent of the total land of cultivated area, 

and about one third of cultivated land to other crops.  

 

Table 2.2 Yields of main crops in Iraq during 2000-2009, (FAO Statistics 2011). 

Yields of main crop in Iraq 

Crop Area harvested (hectares) Total area harvested (%) 

Cereals 2015790 52.7 

Vegetables and fruit 581070 15.2 

Other crops 1224766 32 

Total area 3821626 100 

 

Several studies provide a comparison of wheat and barley yields for Iraq with yields in nearby 

Syria and Turkey, from 1961 to 2012. It shows that wheat yields are higher overall in Turkey; 

there has been a steady and consistent increase in yields since 1961. Iraq, on the other hand 

witnessed an increase in yield rates only since 2001. Syria outperformed Iraq in the mid-1970s, 

and has experienced the most erratic history in wheat crop yields, with frequent declines and 

surges along the country’s overall trend towards increased yields.  

In terms of barley yields, there is a difference in performance between Iraq and the other two 

countries. Since the 1960s, Iraq has performed slightly better than Syria. However, barley 

yields in both countries show a trend over the past half century, where yields have been far less 
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erratic at compared with those recorded in Syria. Turkey, however, remains the dominant 

barley producer among the three countries; it is outperforming Iraq and Syria in both wheat 

and barley yields, and it has also achieved a steady growth in barley crop yields (Al-Haboby, 

Breisinger et al. 2014). 

Given the comparable agro-ecological conditions found in Iraq, Syria, and Turkey, these 

differences in yield suggest large room for improvement in agricultural productivity in Iraq. 

While there is not much literature on estimated yield gaps in Iraq, it is known that significant 

gaps exist in the dry areas that stretch across the Middle East and North Africa (MENA). A 

2011 assessment carried out by the International Center for Agricultural Research in the Dry 

Areas (ICARDA) on wheat yield gaps in Morocco, Syria, and Turkey indicates that there is 

significant potential to increase wheat yields in the West Asia and North Africa (WANA) 

region, which includes Iraq. ICARDA’s research finds that wheat yields can be increased by 

1.6–2.5 times in Morocco, 1.7–2.0 times in Syria, and 1.5–3.0 times in Turkey (Pala, Oweis et 

al. 2011). 

2.6.2. Cropping patterns-farming systems in rainfed regions 

Cereal-fallow and continuous cereals (mainly wheat and maize) are the main two farming 

systems in Iraq. The cereal-fallow system leaves the stubble of the previous year’s crop and 

relies on volunteer plants based on seeds from the previous crop. The fallow fields are normally 

ploughed in March-April before the plants have produced seed and before the last spring rains. 

Farmers tend to use this system because it allows for conservation of soil moisture, control of 

weeds, and build-up and release of mineral nitrogen.  

The production of livestock (for meat and milk) plays a vital role in the present farming system. 

In the northern part of Iraq, there are over 5.8 million goats and sheep and also 1 million cattle, 

horses, and buffaloes. These animals need supplementary feeding during some part of the year 

with grains and roughage of some kind.  In addition, to feed the poultry, it was estimated that 

the requirement is about 12 000 Mtonnes of legume grains and 60 000 Mtonnes of cereal grains.  

The exceptions to the pattern of settled agriculture are the migratory goat and sheep herds. 

Because of the fact that herders have to supplement the grazed feed of their livestock with feed 

grains bought from local farmers, they move from the south of Iraq and the plains in the centre 

to the north for grazing and conversely, whenever there is a sufficient supply of feed. A 
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proportion of farmers in the north move down from the mountains during winter to avoid the 

feed deficiency.  

Historically, the cereal–fallow system has been used for thousands of years, while the cropping 

system of continuous wheat is more recent. With this system (cereal-fallow) only the stubble 

can be used by livestock - for the remainder of the year, the livestock are fed by barley grains 

along with wheat/barley straw. Before sowing, the stubble is ploughed in, then tilled while soil 

is in dry state and the crop is sown at the preferred time or soon after the first autumn rains. 

2.6.3. Zones of crop production in Iraq 

With respect to crop production, the agricultural sector in Iraq can be divided into two regions, 

the predominantly rain-fed North and the predominantly irrigated Center-South.  Generally 

agricultural production occurs on smallholdings, although the rainfed farms of the North are 

relatively large, approximately 10 to 30 hectares compared to the irrigated farms in the Center-

South that average 1 to 2.5 hectares (Schnepf 2004). 

2.6.4. Rain-fed agriculture  

Winter wheat and barley account for about one-third of cereal production that predominantly 

is produced under rainfed conditions in the northern foothills region. This region can be 

classified into three rainfall regimes: high (700-1100 mm), medium (400-700 mm), and low 

(under 400 mm).  Barley is the main crop in the low-rainfall zone, wheat occupies most of the 

medium-rainfall zone, Fruit orchards and vegetable productions dominate in the high-rainfall 

zone in the northern parts.  Winter wheat and barley are planted in the fall (October-November) 

and harvested in the late spring (April-June) in accordance with the rainfall pattern. 

In the rain-fed crops regions, yields are generally poor and vary significantly dependent on 

rainfall amounts.  A biennial fallow system is predominantly used in these areas in order to 

regenerate the depleted soils and also to provide protection against diseases and pests. A winter 

crop of barley or wheat is grown once every two years under this system, and alternate halves 

of the field are left fallow for successive years.  The crop rotations are selected carefully; very 

low inputs in terms of fertilizers, herbicides, and pesticides, and generally poor crop 

management practices prevail.  Farmers have been rotating previously mono-cropped cereals 

with leguminous forage crops such as alfalfa since the early 1990s.  This was done to partially 
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offset the sharp decline in imported feed grains and to break a slump in productivity due to 

declining soil fertility. 

2.6.5. Irrigated agriculture 

The irrigated production zone runs along and between the Euphrates and Tigris rivers, 

extending from the central region southeast heading to the marshlands of the Euphrates-Tigris 

Delta. Agriculture in this region is mostly based on irrigation because relatively little rain falls 

in the center-south zone. Approximately two-thirds of the irrigated region is occupied by cereal 

production. This includes both summer rice and corn crops and winter wheat and barley 

production.  Vegetables and cotton are other main irrigated summer crops in the irrigated areas.  

Biennial fallow is the traditional system in the irrigated zone.  Farmers tend to use this system 

to prevent salinization, because the fallow period allows the water table to drop sufficiently to 

allow the salt accumulation in the topsoil to be leached downwards.  

However, the use of the biennial fallow system has recently declined; this is because during 

the 1990s, the government policies encouraged more intensive land cultivation, and a land 

tenure system, which encourages short term exploitation over long term investment in soil 

health. In recent decades, a single crop has been planted each year; a cycle of mono-culture has 

encouraged plant pests and disease in many cases. Occasionally, some double cropping, either 

wheat and maize and multiple cropping of vegetables has been practised when and where 

irrigation water is available.  Irrigated summer crops are planted in April-May and harvested 

in September-October, although this may vary by crop. (Qureshi and Al-Falahi 2015). 
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2.7.  Irrigation approaches in Iraq 

2.7.1. Irrigation governance 

There are regulatory policies and laws relating to various aspects of water resources in Iraq. In 

the case of irrigated agriculture areas, the law provides that all farmers benefiting from a 

scheme in which the state has invested must comply with the agricultural programme (that 

include laws and rules) set by government. The current bulk water distribution network 

includes 45 main regulators to regulate the main irrigation channels and divert water to branch 

canals. There are about 27,000 km of canals for water distribution. About two thirds of Iraq’s 

irrigation system is gravity fed, through major canal systems controlled either by river intakes, 

diversion weirs, or off-takes directly from reservoirs. About a third of off-takes are pumped 

from rivers and major channels, with about 100 major pumping stations. The responsibilities 

of the Ministry of Water Resources (MoWR) include irrigation management through its offices 

at the districts and sub-districts. At the level of distributary canals, typically commanding 900-

1250 ha, an official, called the “irrigation foreman”, is responsible for water distribution. Water 

service charges were instituted by Law 112 of 1986, which was intended to create more farmer 

responsibility for operation and maintenance. The operation and maintenance expenditure of 

MoWR is financed by the central government budget. Although this allows services to 

continue, such subsidies have strong disadvantages: irrigation becomes dependent on fiscal and 

political factors unrelated to the needs of the irrigation sector, decisions on allocation of the 

budget are taken administratively by officials independent of any local voice, service levels are 

unrelated to farmer contribution, and agencies are not accountable to farmers for water service 

delivery. Moreover, it is also responsible for the water allocation, water planning, the 

construction, operation and maintenance of facilities for bulk water supply, flood prediction 

and mitigation. In addition, MoWR also operates dams, irrigation and drainage pumping 

stations (275 irrigation pumping stations serving almost the entire irrigated area), hydropower 

stations reservoirs, barrages and regulators (Water 2006). 

On the other hand, the Ministry of Agriculture (MoA) is the other key institution related to 

water in Iraq including water conveyance to on-farm irrigated agricultural production. It is 

entrusted with providing farmers with small size booster pumps to lift the rationed surface 

irrigation water from nearby canals and rivers or open surface wells onto their flood irrigated 

fields.   Furthermore, it is responsible for assigning cropping patterns to the farmers to produce 

“strategic crops”, for distributing input rations at subsidized prices, and for marketing outputs 
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at controlled prices. The MoA exercised control through Agricultural Directorates in each 

province. In addition, there were 12 state boards and companies for various purposes that 

worked under MoA. The tasks of the MOA such as: managing land tenure, especially lease 

contracts, which govern tenure of lands redistributed under land reform; secure production 

contracts with farmers, which specify what is to be grown, the related entitlements to 

subsidized inputs and output prices to be received from the state marketing monopolies; market 

inputs and outputs, including the provision of agriculture inputs to all farmers and organizing 

the purchase of outputs by the state monopolies; and distribute subsidized equipment such as 

tractors and water saving equipment. At the local level, the various rules and regulations on 

irrigation and agriculture were determined and supervised by the local Agricultural Committee 

comprising of relevant government officers in the sub-district. This committee included 

representatives of both MoWR and MoA (Water 2006). 

2.7.2. Irrigation extent in Iraq 

In Iraq, the areas irrigated by surface water are estimated at 3.3 million ha, of which 105,000 

ha (3 %) are in the Shatt Al-Arab river basin, 2.2 million ha (67%) in the Tigris river basin, 

and 1million ha (30%) in the Euphrates river basin’ (Jaradat 2003). However, it should be noted 

that most of these areas are not completely irrigated, because a large part of these lands has 

been abandoned as a result of salinity and waterlogging. In 1993, the actual irrigated areas were 

estimated at about 1,936,000 ha. In 1990, nearly 220,000 ha were irrigated from groundwater, 

with some 18,000 wells. About 8,000 ha were under micro irrigation. 

Based on available soil resources it was estimated that approximately 6 million hectares can be 

classified as excellent, good or moderately suitable for flood irrigation (Jaradat 2003). 

Irrigation systems in Iraq have faced severe problems such as widespread discontinuation of 

maintenance of most of the agricultural amenities, especially the extensive network of 

irrigation and drainage infrastructure. In 2008, over 500 drainage and irrigation pumps were 

evaluated as in critically bad condition and not suitable for use. There was also substantial 

damage to the canal network due to lack of maintenance and repair. The cost of making the 

water available depends on the frequency of irrigation, the agricultural area (regardless of the 

consumed quantity of water), and the crop types. 
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However, the main irrigation method in Iraq is flood irrigation, a traditional method commonly 

used by most farmers, since it overcomes the unevenness of the land, and does not need costly 

grading or furrowing. Iraqi farmers still widely use this method of irrigation, despite its 

disadvantages.  It causes waterlogging, increasing salinization, and has a very low efficiency 

on average; not more than 40 percent of the applied irrigation water is used by the plant.  

The quality of land is poor due to soil degradation (including diminishing fertility) often as a 

result of overuse, and wind and water erosion. Wind erosion affects about 35% of the total area, 

while water erosion affects 17%. Approximately, 70% of the cultivable land suffers from 

salinity that leads to as much as 20 to 30% of the irrigated area not being farmed because of 

the high salinity. Salinity has always been a major issue; in 1970, it was estimated that about 

half of the irrigated areas in southern and central Iraq were degraded as a result of water logging 

and salinity. 

Over the last decade, water stored in rivers has declined because of the long periods of droughts. 

Moreover, the contamination levels of river waters have steadily increased by discharges of 

untreated domestic wastewater directly into the rivers. Industrial wastewater has also caused 

increased sedimentation in reservoirs. Consequently, increased water pollution due to high 

temperatures and sub-standard water treatments caused eutrophication, which contributed to 

further water scarcity through reducing the water usability downstream (FAO 2012). 

2.7.3. Irrigation system constraints in Iraq 

According to FAO, the total irrigation area in Iraq was estimated at about 3.4 million hectares. 

Flood irrigation represented about 97%, about 3.1 million hectares are provided from rivers’ 

diversions, and 300,000 hectares from direct river pumping. Well-based water systems 

irrigated 220,000 hectares in 1990.  However, often less than 30% of annual irrigation water is 

used by crops. Furthermore, irrigation is often supplied in sub-optimal amounts or at the wrong 

time. Inefficient management of irrigation system has led to poor distribution of irrigation 

water, also due to inadequate levelling of the ground (causing lack of water in certain parts of 

the field and waterlogging in others) and other poor water management practices (e.g. poor 

maintenance of the irrigation canals) 

In many cases, farmers invest the least amount possible in their crops to avoid the economic 

risks, which in turn reduces crop productivity.   
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2.7.4. Salinity caused by irrigation  

Most of the irrigated agriculture in Iraq takes place in a very flat alluvial plain (Mesopotamian 

plain), that is poorly drained, and contains much salt in the soil and groundwater. The leakage 

of water from the associated irrigation network, the application of irrigation water, storage, 

distribution, and drainage channels have all caused a rise in ground water levels and even 

caused inundation in some areas. This process mobilises the stored salt and when the water 

table comes close to the soil surface, soil salinization and waterlogging result, which negatively 

affects the agricultural production.  

Increased salinity in irrigation water and soil has reduced plant growth and crop yields due to 

the reducing ability of plants to take up moisture from saline soils. Large areas of agricultural 

land have been planted with more salt tolerant plants or the land has fallen out of irrigated 

production due to increasing salinisation over time. This adversely affects crop choices, crop 

yields, and under such circumstances, farmers may be only able to use the land for halophytic 

forages production.  

2.7.5. Irrigated cropping  

Crop intensity varies temporally and spatially in the winter season, approximately 80–90% of 

lands are used along the irrigation canals, and on the present levees of the Tigris and Euphrates 

rivers. Further away from the central canals, the soil salinity increases, and the cropping 

intensity decreases, falling to almost zero in saline basins. In summer, the intensity of 

cultivation is approximately 50%. The agricultural economy in Iraq is essentially based on the 

irrigation water that is supplied by the Euphrates and Tigris River. Traditionally, flood 

irrigation techniques are mostly used by farmers, planting on the slopes of furrows. This is 

attributed to the fact that most farmers are not very familiar with modern irrigation techniques 

or can’t afford them. Drip and spray of irrigation systems are still in the first stages of adoption. 

The 9% of the land that is associated with irrigated agriculture represents about 2.5 million ha. 

In 1990.  

Fig. 2.6 shows the irrigated area is spread out in central and southern Iraq, in the area adjacent 

to and between the Tigris and Euphrates rivers, known as the Mesopotamian plain.  

The rivers deposit a large volume of sediments in large, irregular floods that spread across the 

plain. The plain itself has a very arid climate, with less than 200 𝑚𝑚 annual rainfall. Hardly 
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any river water entering the floodplain leaves by surface flow. Major aquifers systems drain 

into the plain from the north, west, and east, and groundwater drains slowly from the plain to 

the Persian Gulf to the south. The aquifers of the floodplain are also connected to the surface 

water in the rivers and exchange depending on the relative hydraulic gradients. The low rainfall 

and the very shallow topographic gradient to the coast mean that there has been little 

opportunity for flushing of salts from this landscape. The high salinity manifests itself as widely 

distributed gypsiferous and saline soils. 

 

 

Figure 2.6 A map of Iraq showing the Mesopotamian plain, where irrigated agriculture is 

conducted (dark green are most irrigated areas in the plain), (ICARDA 2012). 
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2.8.  Rangeland and grazing resources  

Rangelands play a major role in determining the size and number of the national herds due to 

its contribution to livestock feed. In the past, these rangelands were deemed as one of the vital 

sources to meet livestock feed requirements. The main supplemental feeds for livestock in these 

rangeland areas are wheat and barley grains. Livestock used to contribute an appreciable 

proportion to the total earnings of the farming communities. In the low rainfall areas of Iraq, 

some ruminants, such as goats and sheep represented a principal economic output and 

contributed a large proportion of the income of herders and farmers.  

Prior to 1990, the government encouraged livestock producers to increase their herd sizes 

because of the increasing demand for animal products coupled with favourable price ratios 

between livestock products and barley. Feed subsidies and other measures intended to mitigate 

the effects of feed shortages, especially in drought years, have provided further incentives to 

retain greater numbers of animals.    

In the past, the rangeland vegetation provided sufficient feed to the large proportion of small 

ruminant population. Unfortunately, the majority of the rangelands have now been 

substantially degraded: both in the southern and northern rangelands more than 70% of pastoral 

lands are degraded. It has become no longer possible to meet the current feed demand, and also 

the absolute levels of feed sources have decreased. The contribution of natural grazing to the 

total feed needs has declined from 70% in the 1950s to about 10-25% at present.   

Rangeland productivity declined massively, mainly due to changes in the climate, rapid 

exhaustion of cultivated lands, loss of water e.g. through evaporation, desert encroachment, 

semi desert area overgrazing, expansion of cultivation at the expense of rangelands, uprooting 

of shrubs for fuel wood, ploughing of some sites, desertification, overexploitation to supply the 

urban centres with animal products, lack of management of grazing resources, and due to the 

migration of large numbers of livestock from other different neighbouring countries to exploit 

the available forage in grazing seasons (Omer 2011). Overgrazing and barley cultivation in the 

semi-desert and steppe in years of above average rainfall contributed to degradation process of 

the rangeland in Iraq. Rangelands provided about 60-80% of the small ruminant’s diet in the 

last four decades, nowadays, barley can only produce 5 to 10 percent of these requirements. 
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Consequently, the country faces a serious shortage of livestock feed and hence of animal 

products, particularly during dry periods.  

2.9.  Marshlands area 

The Mesopotamian marshlands constitute the largest wetland ecosystem in the Middle East 

and Western Eurasia and support a rich biota (Al-Ansari and Knutsson 2011), (UNEP . Nairobi 

2010). These wetlands cover 20,000 km2 of open water, and include both permanent and 

seasonal marshes. Three major areas are the Chibyish, Hammar, and Haweezah Marshes, that 

together form the core of the marsh lands of southern Iraq. These wetlands in the southern part 

of Iraq play a vital role in the maintenance of biodiversity in the Middle East, due to their large 

size, their richness of aquatic vegetation and their isolation from other comparable systems 

(Bedair et al. 2006). The historical marshlands were part of the largest and most valuable 

habitats for different aquatic species and wildlife in the Middle East; and served as an important 

stopover site for migrating birds (Scott 1995). Reed (Pharagmites communis, Typha augustata) 

covers large areas of the marshes. The vegetation in the mud flats is usually Carex and Juncus 

spp., Scripus brachyceras. In the fresh water lakes aquatic herbaceous vegetation dominates 

like hornwort (Ceratophyllum demersum), eel grass (Vallisneria sp.) and pondweed 

(Potamogeton lucens spp.), as well as bottom vegetation such as stonewart (Chara spp.). In the 

smaller lakes and back swamps, floating vegetation such as waterlilies (Nymphaea and Nuphar 

spp) can be found (Fitzpatrick 2004), (Richardson et al. 2005), (Mahamed 2008), (Sama et al. 

2012). 

Over the past decades, this extensive Iraqi wetland system has been heavily affected by both 

climate and anthropogenic factors.  Desiccation was one of the most dramatic environmental 

disasters that occurred to the marshlands area (Garstecki and Amr 2011). The marshes were 

drained during the early 1990s for political reasons; and the negative impact of and feedbacks 

resulting from this desiccation converted approximately 90% of the wetlands into deserts 

(UNEP 2001). This prolonged drainage was sustained from 1990 to 2003 and has caused severe 

damage to these aquatic systems (Sama et al. 2012), (Beaumont 1998). Large parts of the 

drained wetland area were re-flooded again in April 2003, which encouraged the remainder of 

the aquatic habitat to re-establish thus giving hope to the local communities that the ecological 

values of the Mesopotamian marshlands could be restored (Douabul, Al-Saad et al. 2012). In 
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2008-09, the marshlands were heavily impacted by a drought event, causing their extent to 

decline again; a brief recovery was observed in the winter of 2009/10 (Victoria 2010a). 

2.9.1. Draining of the Mesopotamian marshes 

The draining of the marshes since the 1990s has severely disrupted the hydrological regime of 

the Marshes. These marshlands have been affected by the construction of tributary 

canalisations and embankments. A Turkish Dam in the upper reaches of the Tigris and 

Euphrates impacted the water distribution throughout the basin, and continues to strongly affect 

downstream water availability (Beaumont 1998). Flood control structures changed the hydro-

period of the downstream rivers, diverting peak floods into depressions and thereby creating 

reservoirs. The marshes have been also affected by Turkey’s development project that includes 

22l dams and 19 hydropower plants, as well as by Iran’s large-scale water management projects 

on the Karun and Karkeh Rivers (the latter a key tributary feeding the Haweezah Marshes), 

that started in the mid-1990s.  Due to upstream dams, the discharge and hydro-period of the 

Tigris and Euphrates were significantly reduced after 1990. Furthermore, a large-scale hydro-

engineering programme was initiated by a previous   hydrological regime to drain the 

Marshlands after the second Gulf War 1991 for politician reasons, thus a large part of the 

Euphrates was diverted into the Main Outfall Drain (Partow 2001), (Naff and Hanna 2003).  

Originally, both the Chibyish and Hammar marshes were covering more than 4000 km². In 

2000, ~98 km² of the Chibyish Marshes remained, around 3% percent of the surface area of the 

original marshes (Vinez and Leanard 2010). Moreover, the approximately 120 km long Lake 

of Hammar marsh practically disappeared between 1992 and 1994 (Munro and Touron 1997, 

Mitchell 2002), leaving Hammar marsh with only 6% of its original marsh land area. Al-

Haweezah is the least affected marsh; in 2000, it had a third of its original marshland remaining. 

Overall, the re-channelization of the Tigris and Euphrates river flow had destroyed more than 

9000 km² of marshland and eliminated entire habitats (UNEP 2001). 

‘The overall area of permanent marshland shrunk - according to one typical estimate - by 84% 

and the area of open water by 90%, while the area of seasonal marshes increased by 48% 

(Brasington 2002). Another estimate put the figures at 87% and 66% loss of permanent marshes 

and lakes, respectively, with another 87% loss in seasonal shallow lakes’ (UNEP 2001).  
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The marshlands had shrunk to less than 7% of their 1973 extent and a new phase of active and 

widespread restoration started in March 2003, after the collapse of the former Iraqi regime. 

Local communities immediately tried to reclaim the marshland, but this was initially often 

conducted in an uncontrolled and haphazard fashion by breaching embankments and dikes, 

dismantle drainage structures, opening flood gates and sealing diversions (Lawler 2005). 

Because of the breaching of levees and dams, and coincidental plentiful rain in the following 

two years, the marshlands superficially recovered and regained about 50-60% of their former 

extent by 2005 (Initiative 2010). The year 2003 was also the end of a three-year drought period 

(2000-2003), and combined by good precipitation levels in the Euphrates and Tigris headwater 

catchment, the effect of re-flooding was further increased, causing a significant and rapid 

environmental change in the Iraqi marshlands during 2003-2005. By March 2004, more than 

20 per cent of marshland area had been inundated; more than 50% of the former marshes had 

been re-flooded by May 2005. At the same time, wetland vegetation rapidly increased, at the 

significant rate of over 800-900 km2 per annum. Since 2003, there has been an increase in 

wetland area and vegetation by about 50 to 60%. In November 2005, the flooded area gradually 

decreased to approximately 41% during this period due to the high evapotranspiration rates in 

the preceding hot summer months (Partow et al. 2005).
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3. Chapter three: Materials and methods  

This chapter describes the methodology used to achieve the research objectives.  The first 

section of this chapter describes the study area, summarising the climatic zones of Iraq and the 

marshlands region, as well as the soils. The second section describes the methods used to obtain 

the meteorological and remote sensing data. The third section describes the methodology used 

for land use/land cover mapping. The fourth part describes how the meteorological drought 

indices were calculated over the study period. This is followed by a description of the 

methodology used to study changes in vegetation productivity and land surface temperature 

over the study period. The fifth part of this chapter describes the methodology used for the 

simulations with the SWAP model. Finally, the last section of the chapter discusses the 

methodology used for drought assessment based on meteorological and remote sensing data. It 

also describes the different remote sensing indices that are evaluated to see whether they can 

reliably indicate the occurrence, degree and duration of drought. 
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3.1.  Data collection  

3.1.1. In situ meteorological data 

Historical records of daily and monthly rainfall (𝑃), maximum (𝑇𝑚𝑎𝑥) and minimum 

temperature (𝑇𝑚𝑖𝑛), relative humidity (𝑅𝐻), wind speed (𝑊𝑆), and sunshine hour (𝑆𝐻) 

datasets were acquired for Iraq, for a period of 33 years, from 1980-2013, for 14 stations 

distributed throughout Iraq, see Fig. 3.1. The data were collected from the Iraqi Meteorological 

and Seismology Organisation and the stations are shown in Table 3.1. Meteorological data have 

been used to calculate drought indices, to drive the SWAP model (to give water balance 

components), and to help explain remote sensing time series/patterns of NDVI, LST, and 

energy balance. More detail on the meteorological data is presented in Table 3.2.  

The Weather Observing Department is responsible for preparing basic data on weather 

variables needed by the Iraqi Meteorological Organisation (IMO) technical and related 

departments. Surface observing stations are distributed in different Iraqi provinces. At every 

station operators visually observe changes in weather variables (such as cloud cover and type, 

range of visibility, occurrence of thunderstorms, and other weather phenomena), in addition to 

using meteorological instruments, together with automatically recording devices, for 

determination of weather data such as temperature, air pressure, humidity, surface wind, solar 

incoming radiation, rain, and potential evaporation. These data are sent to the weather 

forecasting center in Baghdad, every 3 hours, which means eight times daily, by phone. All 

these stations operate around the clock. In addition, there are two main weather observing 

stations in each of Baghdad’s international airports, and a meteorological station in Basrah 

international airport. IMO is responsible for collecting, checking and analysing the data 

originating from the weather observing stations. They issue the Iraqi climate atlas yearly, as 

well as publish monthly bulletins containing climate elements averages. In terms of data 

quality, the ISO 9001-2008 has been awarded to IMO and the related organisation of 

seismology (http://www.meteoseism.gov.iq). 

 

 

http://www.meteoseism.gov.iq/


 

59 

 

 

Table 3.1 The meteorological stations over Iraq selected for this study (based on data quality 

and length of climatic records). The location of the stations/site (through their capital letter 

ID) is shown in Fig. 3.1 

 

 

 

 

 

 

Station ID in the map WMO code 

Ramadi A 642 

Karbala B 656 

Najaf C 670 

Samawa-Muthana D 674 

Basrah E 689 

Nasiriya F 676 

Dywania G 672 

Kut-AlHay H 665 

Babil I 657 

Baghdad G 650 

Biji-Tikrit K 631 

Kirkuk L 621 

Mosul M 608 

Rabiaa-Nainvah N 602 
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3.1.2. ERA-Interim meteorological data 

ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF). ERA-Interim reanalysis daily data were 

obtained from the ECMWF website (https://www.ecmwf.int) for the period 1 January 1980 to 

31 December 2015. In this study, precipitation, minimum and maximum temperature at a 

height of 2 m, solar radiation, 10 metre wind speed, 2 metre dewpoint temperature to calculate 

relative humidity, net shortwave and longwave radiation, sensible heat flux, and latent heat 

flux were extracted at a resolution of 0.125 ° x 0.125°. The data were provided in netcdf format. 

For instantaneous variables such as temperature, wind speed, and dewpoint temperature data 

were extracted as a daily average. In order to obtain accumulated daily totals for precipitation 

and radiation variables, a start time was selected of 00:00 (midnight) and 12:00 (midday), so 

that daily totals were obtained by summing these values. After extraction, the model variables 

were compared with observed data for all study sites, mainly for quality assurance (Section. 

4.5). The meteorological data (in-situ and ERA-Interim) were used for water balance 

simulations with the SWAP model. These data were also used to derive the 

hydrometeorological drought indices.  

3.1.3. Satellite data 

Several MODIS Terra multi temporal data products were acquired over the study area. MODIS 

data were downloaded from NASA’s website for the period 2001 to 2015. MODIS acquires 

earth observation in 36 spectral bands crossing the equator at approximately 11:00 AM.  The 

acquired data include Normalised Difference Vegetation Index (NDVI), and land surface 

temperature (LST).  These data were obtained in HDF format.  

3.1.3.1. NDVI data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data of Iraq were used 

for this study. MODIS data were obtained from the USGS Earth Explorer (EE) 

(http://earthexplorer.usgs.gov/). NDVI was obtained from MOD13A2 products (16-Day L3 

Global 1km SIN Grid VI datasets), which were designed for vegetation, in Geographic lat/long 

(WGS 84) projection. With all of the recent MODIS products available in different formats and 

resolutions, it is important to learn from previous research, i.e. which MODIS wavebands, 

vegetation indices, spatial resolutions, radiometric calibration methods, and temporally 

https://www.ecmwf.int/
http://earthexplorer.usgs.gov/
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processed products have been successful in detecting vegetation disturbances at the regional 

scale. 

3.1.3.2. LST data 

Land Surface Temperature (LST) data were obtained from MOD11A2 products available at a 

spatial resolution of 1km and a temporal resolution of 8 days. MODIS Land Surface 

Temperature and Emissivity (LST/E) products provide per-pixel temperature and emissivity 

values. These level-3 MODIS global Land Surface Temperature (LST) and Emissivity data are 

composed from the daily 1-kilometer LST product (MOD11A2) with a spatial resolution of 

1km and temporal resolution of 8 days in sinusoidal projection represented as the average 

values of clear-sky LST during 8-day period. The MODIS products were calibrated by using 

the relevant scale factors for MODIS products; the scale factor of NDVI and LST is 0.0001 

and 0.02 respectively. 

3.1.3.3. Soil moisture data (SMOS) 

Soil moisture (SMC) over the period 2010-2015 was obtained from the ESA soil moisture and 

ocean salinity (SMOS) mission. Soil moisture data were extracted from the SMOS archive onto 

a 40km×40km grid. Data were averaged to monthly values over the study sites for each of the 

years from 2010 to 2015. 
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Table 3.2 List of meteorological data from measured data and remote sensing 

Data available Description Spatial resolution Temporal resolution 

In Situ data 

Maximum temperature (℃) 

The data (01 Jan 1980 to 

31 Dec 2013)  derive 

from climate 

observations made at 14 

meteorological stations 

over Iraq 

Point Daily 

Minimum temperature (℃) Point Daily 

Rainfall (𝑚𝑚) Point Daily 

Relative humidity (%) Point Daily 

Wind speed (𝑚/𝑠) Point Daily 

Sun shine hours (hr) Point Daily 

 

ERA Interim 

data 

Maximum temperature (𝐾) 

This is a global 

atmospheric reanalysis. 

The data were obtained 

for 35 years (01 Jan 

1980 to 31 Dec 2015). 

0.125˚ × 0.125˚ Daily 

Minimum temperature (𝐾) 0.125˚ × 0.125˚ Daily 

Rainfall (𝑚) 0.125˚ × 0.125˚ Daily 

Dew point temperature (𝐾) 0.125˚ × 0.125˚ Daily 

Wind speed (𝑚/𝑠) 0.125˚ × 0.125˚ Daily 

Surface shortwave radiation 

downward (𝑊 𝑚-2 𝑠) 

0.125˚ × 0.125˚ Daily 

0.125˚ × 0.125˚ Daily 

Net longwave radiation 

(𝑊 𝑚-2 𝑠) 
0.125˚ × 0.125˚ Daily 

Net shortwave radiation 

(𝑊 𝑚-2 𝑠) 
0.125˚ × 0.125˚ Daily 

Latent heat flux  (𝑊 𝑚-2 𝑠) 0.125˚ × 0.125˚ Daily 

 

Remote 

sensing data 

NDVI The monthly NDVI 

(MOD13A2) product 

and LST (MOD11A2) 

product 

1 km 16 days 

LST (𝐾) 1 km 8 days 

SMC (m3/m3) SMOS (2010-2015) 40  × 40 km Daily 
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3.2.  Methodology 

3.2.1. Land cover classes 

Land use/cover mapping using remote sensing data is commonly performed by digital image 

classification (Campbell 2002).  The MODIS land cover classes (MCD12Q1) 2007 were 

downloaded from NASA LP DAAC website (https://lpdaac.usgs.gov/data access). The 

MODIS land cover type products have a 0.5 km spatial resolution that provided broad 

information on Iraq’s land cover classes. A supervised classification (Schowengerdt 2006) was 

carried out to create the MODIS land cover types involving high quality land cover training 

sites. This approach was developed by utilizing a combination of ground reference data and 

fine spatial resolution imagery to increase the accuracy of the product (Muchoney, Strahler et 

al. 1999). The seven land cover types included water, shrub lands, grass lands, crop lands, 

urban, natural vegetated, and barren lands as shown in the map (Fig. 3.1) showing MODIS land 

cover types in 2007 over Iraq. The map indicates that land cover is dominated by barren land, 

but marshlands and shrublands also make up a significant part of the study area. Note that this 

map also shows the sites of the meteorological stations, and the nearby sites selected for the 

remote sensing studies, labelled by their numbers given in Table 3.1. 
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Figure 3.1 Maps of MODIS land cover classes with a spatial resolution of 250m for 2007 

(https://lpdaac.usgs.gov/dataaccess). 

https://lpdaac.usgs.gov/dataaccess


 

65 

 

3.2.2. Estimation of potential evapotranspiration (PET) 

There are various empirical equations serving to convert the climatic data into PET.  

The Penman-Monteith equation is the most commonly used method for estimating reference 

crop evapotranspiration (ETo). Using this method requires a considerable number of 

meteorological data, yet few stations with adequate meteorological data may exist in a region. 

Reference evapotranspiration, ETo (mm/day), is given by: 

𝐸𝑇0 =  
0.408∆ (𝑅𝑛− 𝐺)+𝛾

900

𝑇+273
 𝑢2 (𝑒𝑠− 𝑒𝑎)

∆+ 𝛾(1+0.34 𝑢2)
                                                                                       3.1 

where Δ is the slope of saturation vapor pressure vs. air temperature curve (kPa ℃−1), Rn = net 

radiation received at the crop surface (MJ m−2d−1), G = soil heat flux density at the soil surface 

(MJ m−2d−1), T = mean daily air temperature at 1.5 – 2.5 m height (◦C), u2= mean daily wind 

speed at 2 m height (m s−1), es = the saturation vapor pressure (kPa), ea = actual vapor pressure 

(kPa), es − ea = saturation vapor pressure deficit (kPa). All parameters and variables necessary 

for computing ETo were computed according to the procedure described in FAO irrigation and 

drainage manual 56, by Allen et al.(1998). 

The Hargreaves (Hargreaves and Samani 1985) equation is an empirical radiation-based 

method, which is extensively used when limited weather data are available.  

It is expressed as:  

𝐸𝑇0 = 0.0023 (𝑇𝑚𝑒𝑎𝑛 + 17.8) (𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛)0.5 𝑅𝑎                                                        3.2 

where, Ra: extraterrestrial radiation (mm day−1); Tmean: mean air temperature (◦C);Tmax: 

daily maximum air temperature (◦C); Tmin: daily minimum air temperature (◦C). 

 

Setting up a station that records the required data for Penman-Monteith equation is expensive 

and maintenance of the instruments is labour-intensive. Alternatively, the Thornthwaite 

(Thornthwaite 1948) equation is a simpler method for estimating ETo since it is a temperature-

based method: 
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𝑃𝐸𝑇 = 𝐶 (
10 𝑇𝑚𝑒𝑎𝑛

𝐼
)

𝑎

 (
𝑑

12
) (

𝑁

30
)                                                                                                   3.3 

in which PET is the adjusted monthly potential evapotranspiration (mm); C = 16 (a constant), 

𝑇𝑚𝑒𝑎𝑛is the monthly average temperature; d is the duration of average monthly daylight (hr); 

and N is the number of days in a given month, a = 67.5 × 10-8 I3 – 77.1 × 10-6 I2 + 0.0179I + 

0.492; in which I is the annual heat index. 
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3.2.3. Meteorological drought indices 

A time scale of 3-months was selected to calculate the various drought indices as it is the most 

appropriate for determining drought severity (Ji and Peters 2003). Therefore, this particular 

time scale was used throughout the thesis.  It was computed on a monthly data so that drought 

characteristics can be more readily identified. The 3-month time scale is based on the 

precipitation total for 3 months, which includes the month against which the SPI value is 

plotted. For instance, the 3-month time scale SPI for March, 2001 is based on the precipitation 

total for January, February, and March 2001.  Meteorological data between 1980 to 2015 were 

used to get a long-term assessment of drought in Iraq. This period is long enough to perform 

statistically reliable drought magnitude analyses (Otgonjargal 2012). 

3.2.3.1. Drought assessment using standardised precipitation index (SPI) 

The temporal occurrence of meteorological drought based on SPI was examined, where the 

monthly precipitation data were used as main parameter of interest. The program was 

downloaded from the http://drought.unl.edu website.  Drought was identified according to the 

outputs, positive values indicates wetter than normal conditions, and negative values refer to 

drought conditions as categorised in Table (2.1).  

3.2.3.2. Drought assessment using standardised precipitation evapotranspiration index (SPEI) 

The standardized precipitation evaporation Index (SPEI) was calculated from spatially 

interpolated monthly values of precipitation and temperature data (to calculate PET, using the 

Thornthwaite equation, also at timescales of 3 months. To investigate the performance of this 

drought index, correlation analyses were conducted with simulated soil moisture and SMOS 

and NDVI. A comparison with SPI, a drought index that does not incorporate temperature (i.e. 

ignores the effect of changes in potential evapotranspiration), was also conducted. 

3.2.4. MODIS images processing   

MODIS satellites images have been processed in ERDAS (2013) and ArcMap (10.2).  From 

the global dataset, the images for the study area were selected and NDVI data were derived and 

analysed. MODIS NDVI values range from -1999 to 10000, 2000 is the fill value. After 

multiplying with the scale factor (= 0.0001. Thus, time-series of NDVI over Iraq were derived 

for the years 2001 to 2015. The following steps were carried out in consecutive order: 1. 
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Importing MODIS satellite images into ERDAS IMAGINE 2013, data are already projected to 

latitude/longitude geographic co-ordinates and WGS84 datum; 2. Extraction of the Study Area 

using a polygon file of the outline of the study sites from the land cover map; 3. Extraction of 

NDVI and LST seasonal monthly average.  The NDVI and LST values were converted from 

IMG to ASCII format. The result of this pre-processing is a spreadsheet containing NDVI and 

LST values of the study area, only covering the period 2001 to 2015 (because suitable remote 

sensing data were not available before then). LST values of the study area between the years 

2001 and 2015 were calculated, and averaged monthly. Temperatures were extracted in Kelvin 

then converted to centigrade. The digital numbers (DN) of LST data were converted to degree 

Celsius using:  

𝐿𝑆𝑇 = (𝐷𝑁 × 0.02) − 273.15 °𝐶                                          3.4 

3.2.5. Soil water balance model simulations  

SWAP can simulate transport of solutes, water, and heat in the vadose zone in interaction with 

vegetation development (see Fig. 3.2). SWAP’s scale in the horizontal direction is the field 

scale, whereas in the vertical direction the model domain reaches from a plane above the 

canopy to a lower boundary which is situated below the root zone. In well-drained soils (with 

‘free drainage’ occurring at the bottom boundary) this level could represent unsaturated soil 

layers, whereas for poorly drained soil the lower boundary could be below the groundwater 

level. In this soil-plant-atmosphere system the transport processes are predominantly vertical; 

it is therefore SWAP is a one dimensional, vertically directed model.  

The main input data consist of crop growth, meteorological, and drainage data. SWAP can be 

used to analyse water management options, through calculations of the water balance.  

The model employs standard soil physical theory to simulate soil moisture and heat movement 

in variably saturated soils, including root water extraction. It can also account for macroporous 

flow and water repellency (Kroes, Van Dam et al. 2008). SWAP simulates soil heat flow taking 

into account heat capacities and thermal conductivities. The generic crop growth module 

WOFOST is incorporated to simulate leaf photosynthesis and crop growth. The soil moisture, 

heat and solute modules exchange status information for each time step to account for all kind 

of interactions. Crop growth is affected by the actual soil moisture and salinity status on a daily 
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basis. The model is considered as very flexible with regards to its intake of input data at the 

bottom and top of the soil column (Kroes, Van Dam et al. 2008). 

The main input file includes information regarding the simulation input and output data (e.g. 

time step and numerical considerations), soil water flow, meteorology, irrigation, crop rotation 

scheme, heat flow and solute transport. For the meteorological data files, daily time steps are 

commonly used. The meteorological data required to run SWAP, are daily maximum 

temperature, minimum temperature, humidity, wind speed, rain, and solar radiation. 

 

 

Figure 3.2 A schematization of the hydrological processes incorporated in SWAP (van Dam 

2000). 

 

SWAP model applies the Richards equation via a finite difference scheme adapted from those 

described by (Haverkamp, Vauclin et al. 1977) and (Belmans, Wesseling et al. 1983). The wide 
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range of lower and upper boundary conditions being offered in SWAP is one of the key 

advantages of SWAP. The soil profile is modelled as a sequence of layers, each layer has its 

own hydraulic characteristics. The layers are divided into smaller compartments adopted in the 

finite differences solution scheme. Soil retention curves θ (h) and unsaturated hydraulic 

conductivity K(θ) of these layers are also described by the analytic equations of  (Mualem 

1976), (Van Genuchten 1980)respectively. With regards to the crop development, SWAP 

includes a relatively simple module that needs the time series of soil cover fraction (CF) or leaf 

area index (LAI), root depth and distribution, crop height, or alternatively, a detailed crop 

growth model (Hijmans, Guiking-Lens et al. 1994) can be used. Interception is modelled by 

the analytical model that was proposed by (Braden 1985). The potential evapotranspiration 

 𝐸𝑇𝑝𝑜𝑡(𝑐𝑚 𝑑−1) was calculated by the Penman-Monteith equation (Allen et al., 1998). 𝐸𝑇𝑝𝑜𝑡 

is divided into potential soil evaporation rate Epot (cm d-1) and potential transpiration rate 

𝑇𝑝𝑜𝑡(𝑐𝑚 𝑑−1) based either on the leaf area index LAI 𝑚2/𝑚2or the soil cover fraction SC (-), 

both as a function of crop development. Reduction of the potential soil evaporation rate into 

actual soil evaporation rate, 𝐸𝑎𝑐𝑡(𝑐𝑚 𝑑−1)depends on the maximum soil water flux in the top 

soil according to Darcy’s law or is calculated by an empirical function following either 

(Boesten and Stroosnijder 1986).The actual evaporation 𝐸𝑎𝑐𝑡(𝑐𝑚 𝑑−1)  depends on the 

capacity of the soil to transport water to the soil surface, while the actual transpiration 

𝑇𝑎𝑐𝑡(𝑐𝑚 𝑑−1) is derived from the potential accounting for soil cover, moisture and salinity 

conditions in the root zone (weighted by the root density). Regarding irrigation, it may be 

prescribed at fixed times or scheduled according to a number of criteria. The scheduling options 

allow for the evaluation of alternative application strategies. 
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3.2.5.1. SWAP model theory 

According to SWAP the water balance (cm) of a vertical soil column with vegetation during a 

certain period can be written as: 

∆𝑊 = 𝑃 + 𝐼 − 𝑅 − 𝑃𝑖 − 𝑇𝑎 − 𝐸𝑎 − 𝐸𝑤 + 𝑄𝑏𝑜𝑡                                                         3.5 

where ∆𝑊 is the change in soil water storage, 𝑃is precipitation, I is irrigation, 𝑅 is surface 

runoff, 𝑃𝑖is interception by vegetation, 𝑇𝑎 is actual transpiration, 𝐸𝑎 is actual soil evaporation, 

𝐸𝑤 is evaporation of ponding water and 𝑄𝑝𝑜𝑡is water percolation at the soil column bottom (+ 

upwards). 

 

3.2.5.2. Soil water flow 

Soil water movement is governed by the gradient of the hydraulic head, H (cm) which be 

written as: 

𝐻 = ℎ + 𝑧                       3.6 

where h is the soil water pressure head (cm) and z is the vertical coordinate (+upward). In 

unsaturated soils water flow is predominantly vertical. Using Darcy’s law, the water flux 

density q (cm d-1) can be expressed as (+ upward): 

𝑞 = −𝐾(ℎ)
𝜕(ℎ+𝑧)

𝜕𝑧
+ 1                     3.7 

where K is the unsaturated hydraulic conductivity (cm d-1) as function of soil water pressure 

head. The law of mass conservation of a soil column with root water extraction Sa (d
-1) gives: 

𝜕𝜃

𝜕𝑡
= −

𝜕𝑞

𝜕𝑧
− 𝑆𝑎(𝑧)                     3.8 

where θ is the volumetric soil water content (cm3 cm-3) and t is time (d). Combination of Eqs. 

3.7 and 3.8 yield the general soil water flow equation, which is known as Richards’ equation: 

𝐶(ℎ)
𝜕ℎ

𝜕𝑡
=  

𝜕

𝜕𝑧
[𝑘(ℎ) (

𝜕ℎ

𝜕𝑧
+ 1)] − 𝑆𝑎(𝑧)                             3.9 

where C(h) = 𝜕𝜃/𝜕ℎ  is differential water capacity (cm-1). SWAP solves the Richards’ equation 

numerically for specified boundary conditions and with known relations between the soil 
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variables θ, h and K. The relation between θ and h (retention function) might be described with 

the analytical equation proposed by Van Genuchten 

(1980): 

𝜃(ℎ) = 𝜃𝑟𝑒𝑠 +
𝜃𝑠𝑎𝑡− 𝜃𝑟𝑒𝑠

[1+|𝛼ℎ|𝑛]
𝑛−1

𝑛

                                      3.10 

where 𝜃𝑟𝑒𝑠 is residual water content (cm3 cm-3), θsat is saturated water content (cm3 cm3), and 

𝛼 (cm-1) and n (-) are empirical shape factors. Equation 3.10 in combination with the theory of 

Mualem (1976) provides a versatile relation between θ and K: 

𝐾(𝜃) = 𝐾𝑠𝑎𝑡𝑆𝑒
𝜆 [1 − (1 − 𝑆𝑒

𝑛 𝑛−1⁄
)

𝑛−1

𝑛 ]
2

                                                       3.11 

where 𝐾𝑠𝑎𝑡 is the saturated hydraulic conductivity (cm d-1), ⅄ is an empirical coefficient (-), 

and 𝑆𝑒 is the relative saturation (𝜃 −  𝜃𝑟𝑒𝑠) / (𝜃𝑠𝑎𝑡 - 𝜃𝑟𝑒𝑠). 

3.2.5.3. Top boundary condition 

The top boundary condition is determined by the potential evapotranspiration, irrigation and 

precipitation fluxes. The potential evapotranspiration can be estimated by the Penman-

Monteith equation (Allen, Pereira et al. 1998): 

𝐸𝑇𝑝 =

∆𝑣
 𝜆𝑤

(𝑅𝑛−𝐺)+
𝑝1𝜌𝑎𝑖𝑟𝐶𝑎𝑖𝑟

𝜆𝑤

𝑒𝑠𝑎𝑡−𝑒𝑎
𝑟𝑎𝑖𝑟

𝛥𝑣+𝛾𝑎𝑖𝑟(1+
𝑟𝑐𝑟𝑜𝑝

𝑟𝑎𝑖𝑟
)

                  3.12 

where 𝐸𝑇𝑝 is the potential transpiration rate of the canopy (mm d−1), ∆𝑣 is the slope of the 

vapour pressure curve (kPa °C−1), 𝜆𝑤 is the latent heat of vaporization (J kg−1) , 𝑅𝑛 is the net 

radiation flux at the canopy surface (J m−2 d−1) , 𝐺 is the soil heat flux (J m−2 d−1) , 𝑝1 

accounts for unit conversion (=86400 s d−1), 𝜌𝑎𝑖𝑟 is the air density (kg m−3) , 𝐶𝑎𝑖𝑟 is the heat 

capacity of moist air (J kg−1 °C−1) , 𝑒𝑠𝑎𝑡 is the saturation vapour pressure (kPa), 𝑒𝑎 is the actual 

vapour pressure (kPa), 𝛾𝑎𝑖𝑟 is the psychrometric constant (kPa °C-1), 𝑟𝑐𝑟𝑜𝑝 is the crop resistance 

(s m−1) and 𝑟𝑎𝑖𝑟 is the aerodynamic resistance (s m−1).  
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The potential evaporation is given by:  

𝐸𝑝 = 𝐸𝑇𝑝𝑒−𝑘𝑔𝑟𝐿𝐴𝐼                    3.13 

where 𝑘𝑔𝑟 (-) is the extinction coefficient for global solar radiation. In wet soil conditions, the 

actual soil evaporation rate Ea (cm d-1) will be equal to Ep. In dry soils conditions, 𝐸𝑝 is 

governed by maximum soil water flux, 𝐸𝑚𝑎𝑥  (cm d-1) in top soils, which can be determined by 

Darcy’s law as: 

𝐸𝑚𝑎𝑥 = 𝑘1 2⁄ (
ℎ𝑎𝑡𝑚−ℎ1−𝑧1

𝑧1
)                                         3.14 

where 𝑘𝑔𝑟 (LT-1) is mean hydraulic conductivity between the soil surface and first node, 

ℎ𝑎𝑡𝑚 (𝑐𝑚) is soil water pressure head in equilibrium with the air humidity, h1 (𝑐𝑚) is the soil 

water pressure head of first node, and 𝑧1 (𝑐𝑚) is the soil depth of the first node. In our 

experience, the Darcy flux of Eq. (3.14) overestimates the actual soil evaporation flux. 

Therefore, in addition to Eq. (3.14) was used the empirical function of (Black, Gardner et al. 

1969) to limit the soil evaporation flux to 𝐸𝑒𝑚𝑝. In our analysis SWAP determined actual 

evaporation rate by taking the minimum value of 𝐸𝑝, 𝐸𝑚𝑎𝑥 and 𝐸𝑒𝑚𝑝. The potential 

transpiration rate, 𝑇𝑝 (LT-1), follows from the balance: 

𝑇𝑝 = (1 −
𝑃𝑖

𝐸𝑇𝑝0
) 𝐸𝑇𝑝 − 𝐸𝑝                                      3.15 

where 𝑃𝑖  (cm d-1) is the water intercepted by vegetation and 𝐸𝑇𝑝0 is the potential 

evapotranspiration of a wet crop, which can be estimated by the Penman-Monteith equation 

assuming zero crop resistance. The ratio 𝑃𝑖 / 𝐸𝑇𝑝0 denotes the day fraction during which 

interception water evaporates and transpiration is negligible. Bottom boundary condition 

In case of deep groundwater levels (< 3 m below soil surface) we will assume free drainage 

conditions. In that case the percolation flux at the bottom of the soil column will be calculated 

from: 

𝑞 = −𝐾(ℎ) (
𝛿ℎ

𝛿𝑧
+ 1) = −𝑘(ℎ)(0 + 1) = −𝑘(ℎ)                                     3.16 
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In case of shallow groundwater levels (within 3 m of soil surface) the measured groundwater 

levels were specified as bottom boundary condition.  

3.2.5.4. Model driving variables 

Weather variables required for SWAP model runs are solar radiation (𝐾𝐽 𝑚−2 𝑑𝑎𝑦−1), 

minimum (℃) and maximum temperature (℃), rainfall amount (𝑚𝑚), wind speed and actual 

(𝑚 𝑠 −1), vapour pressure (kpa). Table (3.2) shows the weather data during the simulation 

period. The solar radiation (derived from extyra-terrestrial radiation and the difference between 

the maximum and minimum temperature) and actual vapour pressure (derived from air relative 

humidity and average air temperature) were calculated based on standard equations (Allen, 

Pereira et al. 1998). 

3.2.5.5. Crop parameters 

Detailed data on vegetation parameters (crops and rangeland) were required for the SWAP 

simulations, as detailed mostly in the. crp files. The ‘simple’ crop files, supplied with each 

SWAP release, for wheat and maize, natural grass, and bare soil were chosen for agriculture, 

rangeland, and desert simulations, respectively. Data for wheat and maize crops, such as 

rooting depth, sowing date, harvest date, typical application rates of irrigation water and soil 

cover values as a function of crop development stage were derived from previous published 

work. Leaf area index (LAI) for rangeland areas NDVI were used to estimate LAI (Fan, Gao 

et al. 2009): 

𝐿𝐴𝐼 = 0.128 × exp (
𝑁𝐷𝑉𝐼 

0.311
)                              3.17 

In terms of agricultural sites, SWAP was simulated twice according to the source of LAI. The 

standard LAI was retrieved from a previous literature review (Qureshi et al. (2013)), and also 

calculated as equation shown below (Gigante, Iacobellis et al. 2009): 

𝐿𝐴𝐼 =  −0.39 + 6 ×  𝑁𝐷𝑉𝐼                                                              3.18 
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3.2.5.6. Soil layers and parameters 

In SWAP, the maximum number of soil layers allowed is ten (with the present setting) but each 

layer can be divided into smaller compartments to ensure stability in the numerical 

computations. In this research study, five layers were considered. The layers were divided into 

compartments; their thicknesses were varied for each site due to the differences in the land 

surface types as shown in the map 3.1. This was done to ensure that the water table depth was 

within the limits of the soil profile. 

Soil hydraulic properties were described by the Van Genuchten-Mualem (VGM) parameters 

(Mualem 1976), (van Genuchten 1987). These parameters are saturated soil moisture content 

(𝜃𝑠𝑎𝑡), residual soil moisture content (𝜃𝑟𝑒𝑠), saturated hydraulic conductivity (𝐾𝑠𝑎𝑡), empirical 

shape parameters (𝑟, 𝑎, 𝑛). These parameters were derived from pedo-transfer functions 

(Wösten, Lilly et al. 1998) as a function of texture.  

3.2.5.7. Bottom boundary condition 

The selected bottom boundary condition was that of a flux determined by the groundwater 

level. This is option based on calculation the bottom flux as a function of groundwater level 

using an exponential relation. 

3.2.5.8. Model spin-up 

A number of 30-year SWAP simulations were conducted with the first years serving as model 

spin up years, for soil moisture to reach steady state. The water balance simulations SWAP 

model was used to simulate the historical water balance components for the various study 

regions, as defined by climate zones and related land use, include potential soil evaporation 

and transpiration, actual soil evaporation transpiration., and soil water storage changes for 

desert, rangeland, and agricultural areas. The simulations were conducted from January 1990 

to December 2013, driven by daily meteorological data. The simulated soil water contents at 

different climatic zones will be compared with the NDVI, hydro-meteorological drought 

indices, and measured soil moisture (SMOS).  
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3.2.5.9. Running SWAP model 

SWAP was simulated for desert, rangelands, agricultural regions that is located in an arid, semi-

arid, and mediterranean climatic zones based on measured and ERA interim data. For 

agricultural region, the simulation was also carried out with calculated LAI (see equation 3.17 

and 3.18) and standard LAI. (see table 3.3). 
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Table 3.3 Overall simulation framework to estimate water balance for desert, rangeland, and 

agricultural regions, using measured and ERA interim data 

 

 

 

 

Simulation set: Desert-In situ data 

Land cover 

type 

Site 

(See map 3.7 ) 

Climate 

zone 
Weather data Soil properties LAI 

Desert areas 

Site (1) Arid 

Same data Same data 

Different data 

Site (2) Arid Different data 

Site (3) Arid Different data 

Site (4) Arid Different data Different data Different data 

Site (5) Arid Different data Different data Different data 

Site (10) Arid Different data Different data Different data 

Simulation set: Desert-ERA interim data 

Land cover type Site Climate zone Weather data Soil properties LAI 

Desert areas 

Site (1) Arid Different data 

Same data Same data Site (2) Arid Different data 

Site (3) Arid Different data 

Site (4) Arid Different data Different data Same data 

Site (5) Arid Different data Different data Same data 

Site (10) Arid Different data Different data Same data 

Simulation set: Rangelands-In situ data-Calculated LAI 

Land cover type Site Climate zone Weather data Soil properties LAI 

Rangelands 

Site (16) Semi-arid 

Same data Same data 

Different data 

Site (20) Semi-arid Different data 

Site (21) Semi-arid Different data 

Site (14) Semi-arid Different data Different data Different data 

Site (23) Mediterranean Different data Different data Different data 
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Simulation set: Rangelands-ERA interim data- Calculated LAI 

Land cover type Site Climate zone Weather data Soil properties LAI 

Rangelands 

Site (16) Semi-arid Different data 

Same data Same data Site (20) Semi-arid Different data 

Site (21) Semi-arid Different data 

Site (14) Semi-arid Different data Different data Same data 

Site (23) Mediterranean Different data Different data Same data 

Simulation set: Agricultural- In situ data-Calculated LAI 

Land cover 

type 
Site Climate zone Weather data Soil properties LAI 

 

Agricultural 

areas 

Site (17) Semi-arid 

Same data Same data 

Different data 

Site (18) Semi-arid Different data 

Site (19) Semi-arid Different data 

Site (22) Semi-arid Different data 

Site (6) Semi-arid 

Same data 
Same data 

Different data 

Site (7) Semi-arid Different data 

Site (8) Semi-arid Different data 

Site (9) Semi-arid Different data Different data 

Site (15) Semi-arid Different data Different data Different data 

Simulation set: Agricultural- ERA Interim data-Calculated LAI 

Land cover 

type 
Site Climate zone Weather data Soil properties LAI 

Agricultural 

areas 

Site (17) Semi-arid 

Same data Same data 

Different data 

Site (18) Semi-arid Different data 

Site (19) Semi-arid Different data 

Site (22) Semi-arid Different data 

Site (6) Semi-arid 

Same data Same data 

Different data 

Site (7) Semi-arid Different data 

Site (8) Semi-arid Different data 

Site (9) Semi-arid Different data Different data Different data 

Site (15) Semi-arid Different data Different data Different data 
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Note: ‘Same data’ represents sites that have same observed weather, soil texture properties, 

and LAI data, and ‘Different data’ represents sites that have different observed weather, soil 

texture properties, and LAI data, as obtained from NDVI (see Eqs 3.17 and 3.18). 

 

Simulation set: Agricultural- In situ data-Standard LAI 

Land cover 

type 
Site Climate zone Weather data Soil properties LAI 

 

Agricultural 

areas 

 

Site (17) Semi-arid 

Same data Same data Same data 
Site (18) Semi-arid 

Site (19) Semi-arid 

Site (22) Semi-arid 

Site (6) Semi-arid 

Same data 
Same data 

Same data 
Site (7) Semi-arid 

Site (8) Semi-arid 

Site (9) Semi-arid Different data 

Site (15) Semi-arid Different data Different data Different data 

Simulation set: Agricultural- ERA interim data-Standard LAI 

Land cover 

type 
Site Climate zone Weather data Soil properties LAI 

Agricultural 

areas 

Site (17) Semi-arid 

Same data Same data Same data 
Site (18) Semi-arid 

Site (19) Semi-arid 

Site (22) Semi-arid 

Site (6) Semi-arid 

Same data Same data Same data Site (7) Semi-arid 

Site (8) Semi-arid 

Site (9) Semi-arid Different data Different data Different data 

Site (15) Semi-arid Different data Different data Different data 
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3.3.  Drought assessment 

Analysing and assessing drought is essential in planning and managing water resources. 

Drought can be assessed in different ways, based on hydrological, socio-economic, 

meteorological, and agriculture aspects (Nagarajan 2009). Assessment of drought depends on 

the impacts of drought and factors that caused the drought.  An improved understanding of 

historical droughts, and related impacts, is required for reliable drought assessment (McKee 

2000). Historic drought data are a valuable source in quantifying current drought conditions; 

this is because it allows for comparison and thereby an objective assessment of the relative 

severity of drought. Necessarily, a long series of data must be available for addressing current 

conditions in the framework of previous events. Moreover, improving of drought prediction 

relies upon a sound knowledge of factors that cause drought, their impacts on human and 

ecological systems, and propagation of hydrological drought to agricultural drought (Boken, 

Cracknell et al. 2005). 

Severity and intensity of drought are the main parameters used for drought assessment, often 

combined into drought indices (Rossi, Benedini et al. 1992) There are various drought indices 

used throughout the world, such as Standarised Precipitation Index (SPI), Crop Moisture Index 

(CMI), Evaporation Deficit Index (ETDI), Palmer Drought Severity Index (PDSI), and (Mishra 

and Singh 2010). 

In the past, assessment of drought was based on ground observations only. Recently, models 

and remote sensing techniques have started to play a substantial role in the observation of 

weather, climate and land surface variables and processes; they are increasingly being used to 

provide data for drought monitoring. Fig. 3.3 shows the methodology of drought assessment in 

current study 

3.3.1. Water balance and drought assessment  

In the current study, the water balance study and drought assessment was carried out in Iraq to 

analyse the water balance components and their seasonal and temporal variations during 

drought and non-drought years. 
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3.3.2. Comparison between SPI and SPEI 

A key objective of computing SPI and SPEI was to enable a comparison of historical drought 

assessment based only on precipitation with that based on the combined effects of precipitation 

and potential evapotranspiration. Both drought indices were obtained using the same log-

logistic probability distribution that shows a very close fit to the series of differences between 

precipitation and evapotranspiration, and also to the monthly precipitation records.  

The same probability distribution was used for both indices to allow for reliable comparisons 

among the series of these two drought indices, to ensure that any differences between the series 

are only related to the impact of temperature on drought conditions, and not from the 

calculation method.  

3.3.3. Comparison of water balance and drought indices from measured and ERA 

interim data 

This study compares ERA interim data with the measured data to evaluate the quality. The 

quality of ERA-Interim data. These datasets were used to drive the water balance and drought 

assessment. The quality of ERA-Interim was assessed by comparing with satellite-based and 

ground-based observations. In particular, estimates of drought indices (SPI3 and SPEI3), water 

balance components, and latent heat fluxes (the response of latent heat flux to NDVI) 

3.3.4. Monitoring drought based on drought indices and remote sensing 

A continuous yearly time series analysis has been carried out in order to study the seasonal, 

and in terannual course and detect the presence of statistically significant trends in the time 

series of NDVI, LST and SPI/SPEI.  In the present study, LST and NDVI were retrieved to 

estimate the spatiotemporal distribution of desert, rangeland, agricultural, and marshlands land 

surface temperature and vegetation status from 2001 and 2015. The remote sensing products 

together (LST versus NDVI) as drought indicators and also have compared the meteorological 

drought indices with the remote sensing-based indicators. 

The relationship between commonly used meteorological drought indices and soil moisture (a 

more direct indicator of drought) was also examined, using soil moisture data derived from 

SMOS. Since the vegetation (NDVI) is significantly associated with drought, soil moisture 

(SMOS) was used to evaluate the effect of variations in soil moisture on vegetation density. 
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Monthly and yearly soil moisture (SMOS) was derived, then related to LST, NDVI, and 

SPI/SPEI to evaluate the link between meteorological drought indices and the soil moisture 

contents. 

3.3.5. The relationship between LST and NDVI 

The current study focusses on assessing the evolution of the hydrological state of desert, 

rangelands, agricultural, and during re-flooding (restoration) and natural drought periods, 

based on data on vegetation cover, drought indices derived from meteorological variables, and 

land surface temperature (LST). Different types of vegetation indices are available to estimate 

the vegetation cover, but the Normalized Difference Vegetation Index (NDVI) is the most 

efficient, and most commonly used one (Liu and Huete 1995). There exists a strong correlation 

between LST and NDVI. LST is a good indicator of the relative effects of evapotranspiration 

and warming of the lower atmosphere by the land surface which can provide important 

information about the surface biophysical properties and state, as also affected by the local 

climate. Therefore, this study assesses the temporal evolution of the Iraqi regions state, as 

affected by natural or human-induced changes to the local hydrology, using MODIS derived 

multi temporal data of NDVI and LST.  

Assessing desert, rangelands, agricultural, and wetland ecological function is important in 

order to evaluate how the recovery processes and the restoration methods that have been used 

are achieving their goals; by understanding the past and current land cover vegetation, 

combined with information on marshland ecosystem functioning as is implicit in variables such 

as land surface temperature.  
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Figure 3.3 Framework of drought assessment 
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Where: 𝑇𝑚𝑖𝑛: Minimum temperature, 𝑇𝑚𝑎𝑥: Maximum temperature, 𝑇𝑝: Total precipitation, 

𝑊. 𝑆: Wind speed, 𝑑2𝑚: Dewpoint temperature, 𝐻𝑈𝑀: Humidity, 𝑆. 𝐻: Sunshine hours, 𝑆𝑆𝑅𝐷: 

Surface solar radiation downward, 𝑆𝑇𝑅: Net longwave radiation, 𝑆𝑆𝑅: Net shortwave 

radiation, 𝑆𝐿𝐻𝐹: Surface sensible heat flux, 𝑇𝑝𝑜𝑡: Potential evapotranspiration, 𝐸𝑝𝑜𝑡: Potential 

evaporation, 𝐸𝑇𝑝𝑜𝑡: Potential evapotranspiration, 𝑇𝑎𝑐𝑡: Actual transpiration, 𝐸𝑎𝑐𝑡: Actual 

evaporation, 𝐸𝑇𝑎𝑐𝑡: Actual evapotranspiration, 𝐺𝑊𝐿: Ground water level, 𝑆𝑀𝑂𝑆 Soil Moisture 

and Ocean Salinity, 𝐿𝑆𝑇: Land surface temperature, 𝑁𝐷𝑉𝐼: Normalised difference vegetation 

index, 𝑆𝑃𝐼: Standardised precipitation index, 𝑆𝑃𝐸𝐼: Standardised precipitation 

evapotranspiration index, 𝑆𝑊𝐴𝑃: Water balance model simulation, 𝑅. 𝑆: Remote sensing data. 
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4. Chapter four: Results chapter 

4.1.  Introduction 

This chapter presents the results obtained from data collection (meteorological and remote 

sensing data), data generation (e.g. from models) and analysis.  The results are arranged 

following the order of the specific objectives of the research (see Section 1.5). In relation to 

the first objective, an analysis of historical drought using meteorological drought indices over 

the study area is provided. These indices are then evaluated together with remote sensing and 

reanalyses data, i.e. NDVI, LST, SMOS, and latent heat flux from ERA-Interim, for the second 

objective. The latter part of the chapter presents the results of objective three; i.e. assessment 

of the water balance through SWAP model simulations and comparison of the water balance 

between surfaces.  

Note that a number of sites were available for reach region, each with their own time series of 

in-situ and ERA-Interim derived meteorological data. However, in the sections below only one 

representative site is shown for each region, as typified by its main land cover/use (desert (site 

4), rangeland (site 23), agricultural area (site 19)). This was done to reduce the number of plots, 

so that repetition was avoided and the story line remained clear. The other plots, and related 

discussion are presented in Appendices. 
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4.2. Estimation methods for potential evapotranspiration (PET) 

Fig. 4.1 shows that the three methods used to calculate PET (see Section 3.2.2) exhibit the same 

temporal behaviour and tendency, as expected for site 23 (based on Penman-Monteith), that 

showed ET0 slightly decreased from 2005 to 2012. The average values of daily weather 

variables for the period 2001–2013 are employed in the FAO P–M equation for the calculation 

of monthly averages of ET0 for representative sites for each of the three main sites; Fig. 4.1 

shows that ET0 values derived from the FAO P–M values are higher than those generated by 

the Hargreaves and Thornthwaite method. Thornthwaite’s equation produces lower values 

when compared to the other equations, but many researchers use this equation to estimate the 

water balance of watersheds in semi-arid areas, such as Iraq. (Saud, Said et al. 2014).  
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Figure 4.1 A Comparison of methods for the calculation of potential evapotranspiration (PET) 

for three typical surface types, and marshlands area in Iraq during 2001-2013. 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

1200

2

4

6

8

10

12

14

16

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

Ja
n

Ju
l

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

R
ai

n
 (

m
m

)

P
ET

 (
m

m
/d

ay
)

PET-Site 20-Marshes

Nassyria-Rain  Thornthwaite  Hargreaves  Penman-Monteith



89 

 

4.3.  Assessment of spatiotemporal drought in the Iraqi area during the 

period 2001-2015 

4.3.1. The standardised precipitation drought index (SPI-3) 

The yearly SPI-3 values (Fig 4.2), as derived from the measured datasets, showed that most 

years were representative of near normal to slightly wet conditions; 2013 was the wettest year 

during the study period for all study regions. SPI-3 values derived from the ERA interim dataset 

indicated that the drought conditions for the study period could be classified as near normal, 

with the highest SPI-3 values (hence the wettest conditions) observed from 2013 to 2015 for 

all regions. 

4.3.2. The standardised precipitation evapotranspiration drought index (SPEI-3) 

Based on measured meteorological data, Fig 4.2 shows that SPEI-3 values indicated normal to 

moderate drought conditions during the study period. It appeared that all sites in the desert, 

agricultural, and rangelands areas experienced near normal to moderate drought conditions 

from 2001 to 2009. However, in general, there were more drought occurrences between 2006 

and 2010; between these years SPEI-3 values were much more negative compared with drought 

years during the period of 2001 to 2005 (≥ -1). Also, 2010 can be classed as a severe drought 

year for nearly all sites (SPEI-3 nearly -2). Furthermore, 2014 was classified as the wettest year 

in the study period; SPEI-3 was positive for all sites. Compared to the other regions, Site (23) 

was least affected by drought, for example 2010 was classified as a moderate rather than severe 

drought year (SPEI-3 roughly ~ -1). 

According to SPEI values calculated using the ERA interim dataset, near normal (-1.00 ≤ SPEI-

3 < -1.00) to moderate drought conditions were observed from 2001 to 2009 throughout the 

country. ERA-based SPEI-3 values also indicated an increased drought occurrence from 2006 

to 2010 over the three climatic zones. Mostly, moderate drought conditions occurred between 

2007 to 2009 in the desert region, while values were near normal for agricultural and rangelands 

areas.  

This study also investigated the frequency and severity of drought for the marshlands region in 

Iraq; (Fig. 4.2) show values are typically near to normal at most of years based on SPI-3. It 

shows that SPEI-3 values calculated for the marshes indicated that the period from 2001 to 

2007 could be considered wet (near normal). In contrast, during the period 2008 to 2012 the 
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marshlands experienced drought most frequently in the entire time series (almost always near 

normal to moderate drought, except for 2010 which was a severe drought year). 

 

Fig 4.2 also shows that severe drought conditions occurred in 2010 for desert sites. (-2.00 ≤ 

SPEI < -1.50), while drought was moderate for the other land use types. The years 2013 to 

2015 were the wettest during the period 2001–2015. 
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Figure 4.2 Yearly averaged SPI-3 and SPEI-3 values over the period 2001–2015, calculated 

using measured and ERA interim dataset for different land covers (desert, rangeland, 

agriculture and marshlands, see Appendix A for other sites). Also shown are NDVI values in 

green (to be discussed in Section 4.3.3). 

 

4.3.3. Spatiotemporal variability of NDVI 

To demonstrate the spatiotemporal variation of NDVI, an indicator of vegetation greenness, 

and hence an implicit indicator of drought, the monthly NDVI evolutions (green lines) for 

typical sites selected for the desert, agricultural, and rangelands regions are shown in Fig 4.3 

and Appendix B, again between 2001-2015. Overall, NDVI ranged between 0.10-0.5. For the 

desert site, NDVI varied between 0.10 to 0.17, for the agricultural site values ranged from 0.10 

to 0.50, while values between 0.10 to 0.25 were found for the rangelands site. This figure also 

highlights a clear peak in vegetation in 2004. Overall, the values decreased somewhat from 

2006 to 2010. The vegetation condition returned to that before 2006 between 2013 and 2014.  

The NDVI plot for the rangeland shows a similar evolution; there was also a tendency of a 

decreasing NDVI during the years 2006-2010, and 2015. The vegetation was at its greenest 

between 2013 and 2014. However, this recovery period was followed by heavily reduced 

values of NDVI in 2015. For the agricultural site (in the semi-arid region), NDVI was reduced 

from the beginning of the year 2007 to 2010. In general, the vegetation greenness between 

2001 to 2012 was lower than that found for 2013 and 2014. For Site 9 in particular (NDVI 

decreased sharply and fell to the lowest point between 2007 to 2013, to return to more normal 

values in 2014. NDVI values showed more intra- and inter-annual variations for the rangeland 
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and agricultural sites (in particular site 19, see Fig. 4.3). This was most likely caused by larger 

(compared to desert region), and more variable, rainfall events (rangeland) and supplemental 

irrigation of cultivated crops (mainly wheat in winter season and maize in summer season) in 

the agricultural region. 
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Figure 4.3 Spatiotemporal seasonal and interannual variation in the NDVI for three typical 

surface types in Iraq during 2001–2015. 
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Figure 4.4, showing the average NDVI evolution for each surface types, indicates that there 

are clear differences between the three land cover types, even when all sites in each region are 

averaged, in desert (6 sites), rangelands (5 sites), and agricultural (9 sites) regions during 2001-

2015. 

 

particular with regards to their NDVI range; 0.10-0.15 for deserts, 0.10-0.25 for rangelands 

and 0.20-0.40 for agricultural areas. The years from mid-2012 to mid-2015 stands out as a 

period of more lush vegetation for the agricultural and rangeland sites. For the desert, a flush 

of vegetation was only implied in 2004 and in particular in 2014. For some years, desert and 

rangeland NDVI values are at their lowest and very similar to each other (Fig, 4.4); these are 

the dry years between 2007-2012, when agricultural NDVI went down and SPEI-3 values were 

largely negative (see Fig. 4.2).  

For marshlands, Fig 4.5 shows that NDVI values vary from 0.10 to 0.50 for the overall 

marshland area. Chibyish marsh had the lowest NDVI values in particular during drainage 

years (2001-2003, see Section 2.9 for more background on the marshland and their 

anthropogenic influences), when NDVI values stayed between 0.15-0.22. NDVI started to 

increase significantly after 2003, and reached its maximum values in 2007 (around 0.40).  

Hereafter, it decreased sharply reaching values between 2008 and 2010 to values that were 

nearly as low as during the drainage years. The temporal evolution of NDVI for Hammar marsh 
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was very similar to that of Chibyish marsh; on average, NDVI reached maximum values 

between 2004 to 2008, with values as high as 0.45 (year 2007) during the peak of the rainy 

seasons. In years before 2003, NDVI was relatively low (< 0.20) and the difference between 

rainy and dry season peaks was much less pronounced. Similarly, low values were also found 

for the years 2009 and 2010. NDVI reached peak values in 2006 and 2008, then it began to 

decrease gradually until 2010, picking up again between 2010-2015, when NDVI ranged from 

0.20 to 0.35.  

Finally, NDVI values of Haweezah marsh showed a much less pronounced periodical variation 

compared to the other two marshlands.  NDVI values vary between 0.25 and 0.40. Maximum 

values were calculated for years 2006, 2007, and 2012. In 2008 and 2009, NDVI values 

declined to about 0.25, after which they varied approximately between 0.30-0.35. 
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Figure 4.5 The monthly average (between 2001 to 2015) of normalized difference vegetation 

index (NDVI) for the 3 marshland areas.  
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4.3.4. The relationship between NDVI and drought indices  

Time series analysis of NDVI suggests that vegetation in the study area was stressed during 

the period 2006 to 2010. A more obvious decrease was observed from 2008 to 2010, this 

indicates low vegetation cover and is most likely to be a result of the severe drought during this 

period. NDVI values recovered to more normal levels in all regions of the study area in 2011, 

2013, and 2014.  The ERA interim data showed a similar trend to the SPEI-3 that is based on 

measured data. It also showed that the wettest years were in 2013 and 2014, when the NDVI 

values were the highest. 

For marshlands, Fig 4.2 shows the NDVI together with both drought indices between 2001 and 

2013, for the three main marshes. As already indicated in Fig. 4.5, the NDVI varies 

considerably, and appears related to the drought indices. The vegetation condition returned to 

normal after the restoration period, roughly from late 2003 onwards. The NDVI evolution 

shows that growth was even better than normal during restoration period at all marshes. The 

vegetation greens up and increases its density from 2004 to 2007 due to increased availability 

of water, as indicated by SPI-3 values that were continuously larger than zero, and SPEI-3 that 

had values that are typically classified as near to normal. However, there was a series of drought 

years after 2008. SPEI-3 was lower than normal in 2009 and a very severe drought was 

observed in 2010 for Chibyish and Hammar, whereas SPEI values were near to normal at 

Haweezah. The year 2010 was the most serious drought year; it caused NDVI to decrease 

sharply so that it reached its lowest point in the timeseries. For that year the SPEI-3 was nearly 

–2, indicating that there was a severe deficit in the precipitation (SPI-3 was nearly zero), 

whereas potential evapotranspiration reached its maximum. SPEI-3 was considered as it 

represents the monthly water balance (the difference between precipitation and PET) which 

was deemed give a better result for identifying drought sensitivity. The NDVI values were 

compared to SPEI-3 during draining and drought periods (2001 to 2003), drought years (2008 

to 2010), and relatively wet years (2005 to 2008); a peak of NDVI is observed during 2007. 

The results shown in Figure 4.2 indicates that there was clear difference between the SPEI-3 

values of these years. The values remained less than -1 for the drought years (2008 to 2010) 

and values remained around zero indicating wet conditions for non-drought years (2005 

to2007).  
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The link between drought and changes in vegetation cover is also illustrated by the relatively 

high correlation coefficients between NDVI and the meteorological drought indices, SPI-3 in 

particular (see Table 4.1). Values for R (NDVI versus SPI-3 regressions) range between 0.22 

(in-situ) and 0.55 (ERA-Interim) for deserts, between 0.57 and 0.75 for rangeland, between 

0.48 and 0.58 for agricultural sites and 0.69 and 0.57 for Chibyish and Hammar marshes 

respectively. Values for NDVI versus SPEI-3 correlation coefficients are generally smaller 

(0.23 to 0.58), because water supply is more important in determining greenness than 

atmospheric demand. The results demonstrated the advantage of using SPEI over SPI due to 

its capability in identifying and exploring the role of evapotranspiration variability, largely via 

temperature variability. 
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Table 4.1 Correlation coefficients between SPI-3 and SPEI-3, and NDVI based on measured 

and ERA interim meteorological data over Iraq. Maximum values per region are shown in bold, 

minimum values in red. Average values per region are also given. 

 

 

 

Region Site 
SPI-NDVI 

(In Situ) 

SPEI-NDVI 

(In Situ) 
SPI-NDVI (ERA) 

SPEI-NDVI 
(ERA) 

D
es

e
rt

 

1 0.02 0.18 0.65 0.37 

2 0.006 0.17 0.54 0.29 

3 0.25 0.19 0.13 0.22 

4 0.12 0.30 0.58 0.36 

5 0.50 0.26 0.65 0.35 

10 0.45 0.37 0.74 0.18 

Average 0.22 0.25 0.55 0.30 

R
an

ge
la

n
d

 16 0.65 0.52 0.78 0.60 

20 0.55 0.60 0.80 0.64 

21 0.79 0.69 0.84 0.74 

14 0.67 0.67 0.69 0.33 

23 0.17 0.26 0.62 0.57 

Average 0.57 0.55 0.75 0.58 

A
gr

ic
u

lt
u

ra
l 

15 0.39 0.52 0.64 0.61 

17 0.33 0.34 0.64 0.37 

18 0.28 0.43 0.67 0.50 

19 0.45 0.51 0.75 0.61 

22 0.38 0.53 0.76 0.66 

6 0.74 0.55 0.67 0.01 

7 0.66 0.43 0.48 0.07 

8 0.64 0.43 0.50 0.006 

9 0.45 0.21 0.12 0.18 

Average 0.48 0.44 0.58 0.34 

M
ar

sh
la

n
d

s 

Chibyish 
(11) 

0.69 0.31 ----- ---- 

Hammar 
(12) 

0.57 0.14 ---- ---- 

Haweezah 

(13) 
---- ---- 0.63 0.02 

Average 0.63 0.23 0.63 0.02 
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4.3.5. Variation of land surface temperature 

Fig. 4.6 and Appendix C shows the land surface temperatures derived from MODIS for three 

locations representing the three land surface types. It shows that the highest temperature is 

between 50℃ and 60℃ in the summer, whereas the minimum temperature in the winter dips 

below 20℃. Fig 4.6 shows that winter minima vary more in time than summer maxima, and 

that maxima are considerably lower for the agricultural sites (see also Appendix C. Drought 

years, nor the period 2008-2010, do not have LSTs that stand out. Rangelands seem to have 

two summer peaks, or rather a brief and small dip during the period when LST were highest, 

for the dry years in particular. This phenomenon could potentially be related to pasture 

phenology.  
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Figure 4.6 Spatiotemporal seasonal variation in the LST (̊C) for typical desert, rangeland, and 

agriculture sites during 2001–2015. 
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The multi-site averages of land surface temperature for the desert, rangeland, and agricultural 

regions are shown in Fig 4.7. As per Fig. 4.6, desert and rangeland averages are virtually  

 

 

Figure 4.7 Spatially averaged evolution of LST throughout desert, rangelands, and agricultural 

regions during 2001-2015. Each line is based on 6, 5 and 9 sites for desert, rangeland and 

agricultural regions, respectively. 

 

indistinguishable, whereas the average for the agricultural areas is up to 8 degrees or so lower 

in summer, although these differences are much less pronounced for the years 2011-2015 

(wetter years). During winter differences are small, although rangeland is often slightly higher. 

In more recent years, winter LSTs for the desert zone have been found to be lower than that of 

the other zones. 

Fig 4.8 shows that LST values vary from 10 to 60 ̊C for the overall marshland area. LST of 

Chibyish marsh had the highest values, in particular during drainage years (2001-2003). LST 

started to decrease after 2003, and reached its minimum values in 2005 to 2007. Hereafter, it 

increased sharply reaching values between 2008 and 2010 that were nearly as high as during 

the drainage years. 
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The temporal evolution of LST for Hammar marsh was very similar to that of Chybyish marsh; 

on average, LST reached its lowest values between 2004 to 2008, during the peak of the rainy 

seasons. In the years before 2003, LST was relatively high. Similarly, high values were also 

found for the years 2009 and 2010. LST was relatively low in 2006 and 2008, then it began to 

increase gradually until 2010, after which it settled at lower values between 2010-2015.  

LST values of Haweezah marsh showed a much less pronounced periodical variation compared 

to the other two marshlands.  Maximum and minimum values of LST were almost constant 

throughout 2001-2015, and lower than the values observed for Chibyish and Hammar marshes.  
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Figure 4.8 Spatiotemporal seasonal variation in the LST (℃) throughout marshes during 2001–

2015. 
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Section 4.3.6 investigates the generality of the NDVI and LST relationship over a wide range 

of climatic regimes encountered over Iraq. Standard precipitation index (SPI) and standardised 

precipitation evapotranspiration index (SPEI), which are measures of drought and assessed 

from meteorological data, were used to verify the remote sensing results. 

4.3.6. Relationship between Vegetation-indices and LST  

By computing the values of NDVI and LST of the marshland sites for each month for the years 

between 2001 and 2015 and plotting them against each other, separately for each year, it was 

found that there is a strong relationship between NDVI and LST over Chibyish marshes area 

for most years (Fig 4.9). The spatiotemporal variations of surface temperature are affected by 

the considerable changes in vegetation cover between 2001 to 2015 in the marshes. For the 

years when the marshes were drained or affected by drought, NDVI has an inverse relation 

with LST; this strong inverse relationship is evident for Chibyish and Hammar (see Appendix 

D) marshes from 2001 to 2003. NDVI-LST correlation coefficient (R) was -0.94 and -0.93 for 

2001, -0.78 and -0.95 for 2002, and -0.86 and -0.54 for 2003 and 2004, for Chibyish and 

Hammar marshes, respectively, and have statistically significant positive correlations (p-value 

< 0.05). In contrast, an increasing NDVI was accompanied by an increase in surface 

temperature during the marsh restoration periods (e.g. 2004); the correlation converted to 

positive in this period. The highest positive correlation was observed in 2007 for Chibyish (R= 

0.75, P-value < 0.05), and in 2012 for Hammar marshes (R=0.89, P-value < 0.05). Haweezah 

had much lower, albeit still positive, correlations for this period. As a result of reduced 

vegetation density due to drought in 2009 to 2010, a strong inverse relationship between surface 

temperature and NDVI value was found again for Chibyish marshes; R-values of -0.60 and -

0.85, respectively,  were recorded for these years, (which showed a significant increase (p-

value < 0.05) in surface temperature over Chibyish marshes).  Haweezah had R- values of -

0.34 and -0.46 for 2009, and 2010, respectively, while correlation was weaker for Hammar 

marshes (-0.21 in 2009, and in fact positive (0.33) for 2010). Draining of the marshes between 

2001 to 2003, and droughts events in 2009-2010 caused a decrease in vegetation cover resulting 

in decreasing NDVI values of the marshes.  
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Figure 4.9 Mean values of LST and NDVI over Chibyish marshes 
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A joint plot of NDVI and LST over the three regions is shown in Fig 4.10. It was observed that 

NDVI and minimum LST both decreased between 2008 to 2010 for all regions. Conversely, a 

different scenario was apparent for the period from 2011 to 2015, where NDVI increased while the 

minimum LST decreased at the same time. From an evapotranspiration perspective, the second 

type of behaviour makes more sense as more vigorously growing vegetation cover implies higher 

transpiration values and therefore lower LSTs. Nevertheless, LST is also influenced by the other 

fluxes in the energy balance (see section 2.4.2) and by the air temperature, so it is often hard to 

point at the exact reason why LST is going up or down during a certain period. 

For the desert region, the relationship between LST and NDVI was found to be positive after 

2008 at many sites in this region, while high negative R values were seen at sites 1, 10) and 5 

during 2002 and 2003. For rangelands and the sites in the agricultural region, the highest 

negative R values were found during 2001 to 2004, and 2008 to 2009 for sites 14, 21, and 23, 

(see appendix D). This links well with SPEI-3 values, see Figs. 4.2. 
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Figure 4.10 Spatiotemporal seasonal variation in the LST (℃) and NDVI throughout desert, 

rangeland, and agricultural during 2001–2015. 
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4.3.7. Soil moisture from SMOS data and comparison with NDVI 

Fig. 4.11 shows the values of SMOS-retrieved surface soil moisture content (SMC) between 

2010 to 2015 over all study-sites, averaged per zone, in Iraq. SMOS data were not available 

prior to this period. The results show a similar temporal evolution of SMC for all zones, but 

with Mediterranean (rangelands) and semi-arid (agricultural, most of these irrigated, although 

not during war years) zones having a more pronounced seasonal and interannual variation than 

that observed for the arid (desert) zone. Overall, all years exhibit a relatively dry period 

extending from May to September, and higher SMC values in January, February, November, 

and December; March, April and October have intermediate SMC values. The years 2010-2012 

overall exhibited lower SMC values than years 2013-2015. 

 

Figure 4.11 Monthly mean area-averaged soil moisture content (derived from SMOS data) 

over the period 2010–2015 for the three regions (desert (arid zone), rangeland (semi-arid and 

Mediterranean zone), and agricultural (semi-arid)) considered in this study. 
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Fig 4.12 shows the SMC separately for a typical desert, rangeland and agricultural site, together 

with their NDVI. The SMOS data indicate overall much drier soil conditions in 2010, when 

soil moisture content was the lowest during the study period as a result of reduced rainfall 

content (see Figs. 4.16 and 4.17). There are also notable differences for the wet months 

(November to February) of 2013 and 2014 when soil moisture status improved considerably 

for all study regions. 

These results indicate a switch to higher than average SMCs for all regions in 2013 and 2014, 

following relatively dry values in 2010 and 2012 (2011 less so). Although there is considerable 

variability over the whole period, it is hypothesized that this split is caused in part by droughts 

years when rainfall is decreased (see Fig. 4.2) and increase evapotranspiration (see Fig. 4.2) 

and therefore cause the occurrence of soil moisture drought.  

The NDVI also clearly illustrates a divide of ‘less vigorous (lower SMC)’ and ‘more vigorous 

(higher SMC)’ vegetation periods: NDVI improved in 2013 and 2014, when SMC was the 

highest. This is evident particularly for the rangeland and agricultural areas, as expected. The 

SMOS data for the desert site appear to fluctuate much more than the corresponding NDVI. 

This simply relates to the fact that although SMC varied and caused variations in soil 

evaporation, the lack of vegetation in the desert did not cause any changes in NDVI (apart from 

during the first half of 2014). 
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Figure 4.12 Spatiotemporal variability in soil moisture contents (SMOS) and NDVI in Iraq 

during 2010-2015, for a typical desert, rangeland and agricultural site.  SMOS 1 represents the 

pixel located most closely to the sites, whereas SMOS 2 represents a large number of pixels 

covering an area inclusive of, and around, the site. For other sites see Appendix E. 
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4.3.8. The relationship between NDVI and surface latent heat flux (SLHF) 

The sections above described the potential of meteorological drought indices (SPI/SPEI) and 

RS-indices (NDVI) or variables (LST, SMOS) to capture drought (strength and duration) for 

Iraq. In this section, we move to model products as tools to indicate drought.   The seasonal 

surface latent heat fluxes (SLHF) or evapotranspiration rates for all three regions are shown in 

Fig 4.13, which give monthly spatial temporal means over each site per land cover type, derived 

from ERA-Interim output data for the period between 2001 to 2015. There are relatively large 

values of latent heat fluxes at the beginning and end of the year during winter (wet season), 

and much smaller values during the summer months (dry season). Particularly high values of 

SLHF were found for 2001 and 2007 over all three regions. Values rapidly decreased during 

the period between 2008 and 2010. Throughout 2012 the (SLHF) was very low for all regions. 

The highest values were observed from 2013 to 2015. There are differences between the three 

land cover types in particular with regards to their SLHF range; 0-3.5 MJ m-2 day-1 for deserts, 

0-5 MJ m-2 day-1   for rangelands and 0-4 MJ m-2 day-1 for agricultural areas. NDVI has been 

plotted together with SLHF (Fig 4.14). It is shown that NDVI increases concurrently with 

SLHF, e.g. during the years 2013 and 2014 in particular for the following sites 4, 23, and 19. 

 

Figure 4.13 Interannual and seasonal variation in the SLHF as obtained from ERA-Interim 

throughout desert, rangeland, and agricultural sites (each line represents the average of 6 sites 

for desert, 5 sites for rangelands, and 9 sites for agriculture) during 2001-2015. 
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Fig 4.15 shows the evolution of the marshes’ surface latent heat flux as calculated from in-situ 

net radiation and Eq. 2.10 that employs the remotely sensed LST and maximum monthly air 

temperatures. It has been plotted together with NDVI.  

Although the absolute values of SLHF are at times nonsensical (i.e. negative values during 

drought conditions), their relative values follow NDVI fluctuations very closely, in particular 

for Chibiyish and Hammar. It shows again that while LST on its own may not be that useful 

for drought assessment, when incorporated into a more relevant product, using a combination 

of in-situ and RS data, it is able to provide some powerful information on land surface moisture 

status. 

Surface latent heat flux values for Haweezah marsh follow those for the other two marshes 

closely, but the correspondence with NDVI is poor. In fact, annual peak value of NDVI 

correspond to low values of SLHF, which is counter-intuitive. It is not clear what the reason 

for this is. It could be related to the spatial resolution of the different RS (LST & NDVI) 

products or due to the fact that the method described in e.g. Verhoef et al. (1997), is not suitable 

for (near) permanently wet land. 
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Figure 4.14 Seasonal and interannual and variation in the SLHF (blue lines), as derived from 

ERA-Interim outputs, for a typical desert, rangeland and agricultural site during 2001-2015. 
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Figure 4.15  Seasonal and interannual and variation in the SLHF (blue lines), as derived from 

measured data outputs, for a Chibyish, Hammar, and Haweezah marshes during 2001-2015. 
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4.4. Assessment of water balance components from SWAP runs 

Whereas Section 4.9 only described the evapotranspiration (as denoted by the surface latent 

heat flux, SHLF) as obtained from the standard low-resolution ERA-Interim product, Section 

4.4 gives the results for the entire water balance, this time obtained using the field-scale SWAP 

model with bespoke soil hydraulic and vegetation data (development stage and LAI), as well 

as with standard LAI data. This section describes the water balance components as calculated 

by the SWAP model (see Section 3.2.5 in Chapter 3) per vegetation cover/climate zone; other 

sites can be found in Appendix G for desert, H for rangeland, and I for agricultural sites. 

Before the water balance fluxes are discussed, first the driving data are presented for the 

different regions, as it is their absolute values and variation that will largely determine the 

relative size and fluctuation of the fluxes and soil water storage. 
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4.5.  Driving variables 

4.5.1. Meteorological driving data  

Figs 4.16-4.17 below show the interannual variations of the seasonal courses (expressed as 

monthly sums for rainfall and radiation and averages for the other variables) of the in-situ and 

ERA-Interim meteorological driving variables, together with their spatial variability, per 

region. 

4.5.1.1. In-situ data 

When comparing the three regions, the largest differences are found in rainfall, in size and 

timing. ERA-Interim has the largest rainfall event occurring in late 2013 (72, 92 and 105 mm 

day-1 for desert, rangeland and agricultural region, respectively. The in-situ rainfall maxima 

occur at different times, e.g. in 2011 (110 mm day-1), for the desert. For all regions air 

temperature have their lowest values in January 2008, between 7 (desert) to 9 (rangeland) deg. 

C. Maximum values range from 37 (desert) to 39 (rangeland); agricultural region reached 38.3 

maximum. 

The range in minimum and maximum incoming shortwave radiation is also very similar, with 

lowest winter values found for the rangeland and agricultural region (~ 9.6-9.8 MJ m-2 day-1). 

Maximum values in summer are all around 28 MJ m-2 day-1 or so. 

Actual vapour pressure is a little more variable, with lowest values of 0.6, 0.9 and 0.75 kPa for 

D, R and A, respectively. Maximum values are 1.6, 2, and 2 kPa, respectively. With air 

temperatures fairly similar (and saturated vapour pressure depending on Ta), vapour pressure 

deficits would have been largest for the desert.  

Finally, monthly averaged windspeed is overall the lowest for the desert region (which seems 

a little strange seeing roughness length would have been low and displacement height zero), 

with a minimum of 1 m/s and a maximum of 5 m/s as compared to 2/6.5 and 2/5.3 m/s for the 

rangeland and agricultural regions, respectively. 
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4.5.1.2. ERA-Interim data 

ERA-Interim data courses of driving data are mostly very similar, but the largest differences 

are observed for rainfall (size and timing), vapour pressure (ERA-Intermin about 0.5 kPa lower 

on average) and windspeed (higher minima). Radiation amounts and air temperatures are very 

similar so potential evaporation will be very similar. 
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Figure 4.16 The interannual variations of the seasonal courses of the measured meteorological 

driving variables, expressed as monthly sums for rainfall and radiation and averages for the 

other variables during 2001-2013.  
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Figure 4.17 The interannual variations of the seasonal courses of the ERA interim 

meteorological driving variables, expressed as monthly sums for rainfall and radiation and 

averages for the other variables during 2001-2013.  
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4.5.2. Desert region 

4.5.2.1. Potential transpiration (𝐓𝐩𝐨𝐭) 

Values for the desert 𝑇𝑝𝑜𝑡 are not presented as bare soil only was assumed in the model runs. 

4.5.2.2. Potential evaporation (𝐄𝐩𝐨𝐭) 

Based on measured in-situ driving data, Fig. 4.18 shows that the dry season 𝐸𝑝𝑜𝑡over the desert 

area initially had relatively low values at site 4 which varied from 6 to 8𝑚𝑚 𝑑−1. 𝐸𝑝𝑜𝑡 for site 

4 started to increase around 2004 and its peak values remained constant with a further slight 

increase between 2006 to 2008.  𝐸𝑝𝑜𝑡 derived from ERA interim data was almost identical for 

all desert sites (only site 4 is show here as an example, for brevity). 𝐸𝑝𝑜𝑡 (ERA) was larger 

than 𝐸𝑝𝑜𝑡 (in-situ) by up to 2.5 mm day-1 (i.e. year 2001) for most years, apart from 2003, 

when values were very similar. 

 

Figure 4.18  Temporal variations in 𝐸𝑝𝑜𝑡for a representative desert site over Iraq during the 

period 2001-2013, using measured meteorological driving data and driving data from the ERA 

interim dataset. 
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4.5.2.3. Potential evapotranspiration (𝐄𝐓𝐩𝐨𝐭) 

𝐸𝑇𝑝𝑜𝑡 is the sum of 𝐸𝑝𝑜𝑡 and 𝑇𝑝𝑜𝑡. No results are shown for the desert, because 𝐸𝑇𝑝𝑜𝑡 = 

𝐸𝑝𝑜𝑡 (see Fig. 4.18). 

4.5.2.4. Actual evaporation (𝐄𝐚𝐜𝐭) 

Actual evaporation (𝐸𝑎𝑐𝑡) occurs for all land surface cover types and while its potential rate 

largely depends on the LAI (rangeland and crops only), its actual rate also depends on near-

surface soil moisture content (see section 3.2.5 in Chapter 3 and the hydraulic properties of the 

soil type. Top-soil soil moisture content shows considerable seasonal, interannual and spatial 

differences (see section 4.3.7 and Appendix E) and hence 𝐸𝑎𝑐𝑡  is expected to vary in a similar 

fashion. 

Fig. 4.19 presents the evolution of 𝐸𝑎𝑐𝑡 for the desert region (again using site 4 as an example) 

over the study period. Based on SWAP runs driven by measured data, generally, for each year, 

apart from 2012, two peaks were observed, relating to an increased rainfall during wet seasons. 

The results for site 4 illustrate that dry season 𝐸𝑎𝑐𝑡 varied from 0.4 to 0.6 𝑚𝑚 𝑑−1 over the 

period 2001 to 2004, i.e. only a fraction of what is potentially possible (𝐸𝑝𝑜𝑡, see Fig. 4.18), 

while  𝐸𝑎𝑐𝑡 was very low for sites 1, 2, and 3). Highest values occurred in 2006, 2009, and 

2013. From 2005 to 2006, the maximum 𝐸𝑎𝑐𝑡 increased, ranging between 0.6 to 0.8 𝑚𝑚 𝑑−1, 

whereas values were notably decreased in 2007 and 2008 (around 0.5 𝑚𝑚 𝑑−1).  
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SWAP runs driven with ERA interim data as weather input show that 𝐸𝑎𝑐𝑡 had low dry season 

values compared with the period 2008 to 2010, site 1 excepted, where 𝐸𝑎𝑐𝑡 for year 2011 was 

quite high (see Appendix G). The results also showed that 𝐸𝑎𝑐𝑡 was high in 2013 in the desert 

region, especially compared to 2008 to 2010; in 2013, a peak close to 0.9 mm day-1 was 

observed. Fig. 4.19 shows that there is a considerable difference between both time-series of 

𝐸𝑎𝑐𝑡, in particular for 2004, 2006, 2009.  

 

Figure 4.19 The temporal changes in seasonal 𝐸𝑎𝑐𝑡for site (4) over Iraq during 2001-2013 

using measured and ERA interim dataset to drive the SWAP model. 
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4.5.2.5. Changes in soil water storage 

For all surface types changes in soil water storage are the result of the balance between 

incoming terms (precipitation, irrigation where applicable) and outgoing terms (𝐸𝑇𝑎𝑐𝑡, and 

surface- and subsurface runoff). Negative values mean a temporary loss of water from the soil 

profile, positive values denote the opposite. Changes in the total soil profile water storage as 

calculated by SWAP for the desert area site 4 are shown in Fig 4.20.  When SWAP was driven 

by measured meteorological data, the year 2011 had a very wet season for this site (∆𝑆 = 130 

mm). The year 2013 also had a high soil moisture storage value (~ 60 𝑚𝑚).  

SWAP results based on ERA interim driving data show that the evolutions of ∆𝑆 were overall 

similar to those found with in-situ driving data.  

 

Figure 4.20 The temporal changes in seasonal ∆𝑆 for a typical desert region site (4: Najaf) over 

Iraq during 2001-2013 using measured and ERA interim dataset. 
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Generally, the profile soil water storage was highest for the years where most rain was received. 

This is illustrated by the rainfall as indicated by the bars in each of the figures below (Figs. 

4.21 and 4.22). The large purple bars for May 2011 and November 2013 in Fig.4.21, and their 

effect on ∆𝑆 are apparent. The ERA rainfall driving data also indicate a peak for November 

2017, but not for May 2011. Instead, they have comparatively large values for January 2005 

and December 2006. These figures also summarise the other water balance components, as 

already discussed above. 

 

Figure 4.21 SWAP Water balance components over site 4 during 2001-2015, based on 

measured data, (QBottom, Drainage, Runoff, Runon, Tact, and Interc fluxes equal to zero). 
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Figure 4.22 SWAP water balance components over site 4 during 2001-2015, based on ERA 

interim driving data, (QBottom, Drainage, Runoff,  Runon, Tact, and Interc fluxes equal to 

zero). 
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4.5.3. Rangelands region 

4.5.3.1. Potential transpiration (𝐓𝐩𝐨𝐭) 

The monthly 𝑇𝑝𝑜𝑡 (𝑚𝑚 𝑑−1)  values for the rangelands region over 13 years (2001 to 2013) 

are presented in Fig. 4.23. Based on the SWAP results for the observed meteorological data, 

for site 23, the highest value was observed in 2001 (above 5𝑚𝑚 𝑑−1), and raised values were 

also found for 2002. Generally, there was a small increase of 𝑇𝑝𝑜𝑡 from 2007 to 2009, whereas 

during 2010 and 2012 SWAP predicted a significant decrease.  𝑇𝑝𝑜𝑡 slowly increased again in 

2013.  

𝑇𝑝𝑜𝑡 was almost constant from 2001 to 2006 (ranging from 5 to 7 𝑚𝑚 𝑑−1) when SWAP was 

driven by ERA interim data. Compared to the period 2001 to 2006, 𝑇𝑝𝑜𝑡 was somewhat lower 

(peak values of approximately 5𝑚𝑚 𝑑−1) during the dry seasons between 2007 to 2010, 

although there was a slight increase during winter seasons. 𝑇𝑝𝑜𝑡 values were the lowest in 2011 

and 2012, and increased again in 2013 when ERA-Interim precipitation increased, similar to 

the in-situ values. 𝑇𝑝𝑜𝑡 values simulated with both driving datasets overall compared well, apart 

from for years 2004, 2010-2012 when ERA Interim 𝑇𝑝𝑜𝑡 was considerably higher. The year 

2003 was the only year when in-situ 𝑇𝑝𝑜𝑡 > ERA 𝑇𝑝𝑜𝑡. 

Figure 4.23 Seasonal and interannual and variations in 𝑇𝑝𝑜𝑡as calculated by the SWAP model 

for the site 23 during 2001-2013 using measured and ERA interim driving datasets. 
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4.5.3.2. Potential evaporation (𝐄𝐩𝐨𝐭) 

The evolution in seasonal 𝐸𝑝𝑜𝑡 for the rangeland region based on measured meteorological 

driving data is shown in Fig. 4.24. Dry season 𝐸𝑝𝑜𝑡 over the whole rangeland region exhibited 

a modestly decreasing trend from 2009 to 2012 compared with the period from 2001 to 2008. 

However, dry season 𝐸𝑝𝑜𝑡 witnessed an increase in 2013 for all sites (see Appendix H). 

Fig. 4.24 also shows 𝐸𝑝𝑜𝑡 based on SWAP simulations driven by ERA interim data. The data 

sequence shows some periods of relatively constant maximum and minimum values of 𝐸𝑝𝑜𝑡 

throughout the period of 2001 to 2006, and a slight decrease between 2007 to 2013; during 

2013 values increased somewhat again.  

 

Figure 4.24 Interannual variations in seasonal 𝐸𝑝𝑜𝑡 predicted by SWAP for site 23during 2001-

2013 using measured and ERA interim driving data. 

 

Differences between the two 𝐸𝑝𝑜𝑡 timeseries are small, but note that in-situ data generated slightly 

higher values of 𝐸𝑝𝑜𝑡 between 2001-2005, whereas the reverse was true from 2010-2013.  
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4.5.3.3. Potential evapotranspiration (𝐄𝐓𝐩𝐨𝐭) 

Driven by measured meteorological data, SWAP predicted gradually decreasing dry season  

𝐸𝑇𝑝𝑜𝑡 values from 2001 to 2013 (Fig. 4.25). 𝐸𝑇𝑝𝑜𝑡had the highest rate (between 12 to 14 

𝑚𝑚 𝑑−1) between 2001 to 2004 for all study sites in this region (see Appendix H), after which 

a decrease was observed between 2005 to 2009 (average values around 12 𝑚𝑚 𝑑−1). 𝐸𝑇𝑝𝑜𝑡 

decreased further between 2010 to 2012, so that peak values were < 12 𝑚𝑚 𝑑−1; a slight 

increase was observed in 2013. 

The typical 𝐸𝑇𝑝𝑜𝑡 evolution can be clearly observed at site 23. For this site, 𝐸𝑇𝑝𝑜𝑡 ranged from 

2 to 14 𝑚𝑚 𝑑−1, stayed in this range from 2001 to 2006, and then decreased gradually to peak 

values of approximately 12 𝑚𝑚 𝑑−1 from 2007 to 2009. It slowly decreased again down to 

peak values of 8 𝑚𝑚 𝑑−1 in 2012. In 2013, a dramatic increase to peak values of 14 𝑚𝑚 𝑑−1 

was observed. 

The results for 𝐸𝑇𝑝𝑜𝑡 when SWAP was driven by ERA interim driving data showed 𝐸𝑇𝑝𝑜𝑡 to 

have decreased during the study period for all sites in this region. For site 23 peak values were 

at between ~ 14 to 16 𝑚𝑚 𝑑−1  between 2001 to 2006. It fluctuated much more strongly during 

the years 2010 to 2012 than between 2001 and 2009, and 𝐸𝑇𝑝𝑜𝑡  increased in 2013. Biggest 

differences between the runs driven with the two datasets were observed for 2010-2012. 
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Figure 4.25 Interannual variation of seasonal 𝐸𝑇𝑝𝑜𝑡for rangelands region (Site 23 as a typical 

example) over Iraq during 2001-2013 using measured and ERA interim datasets to drive 

SWAP. 

 

4.5.3.4. Actual transpiration (𝐓𝐚𝐜𝐭) 

The interannual variation of seasonal actual transpiration (𝑇𝑎𝑐𝑡) obtained by using measured 

meteorological data to drive SWAP is presented in Fig. 4.26. 𝑇𝑎𝑐𝑡 for the dry season was very 

low in 2001, mainly because of low LAI and precipitation values, see Figs. 4.27 and 4.16 

increased to ~ 0.3 𝑚𝑚 𝑑−1 in 2002, then dropped down to less than 0.1 𝑚𝑚 𝑑−1 in 2003, and 

increased again to values around 0.5 𝑚𝑚 𝑑−1 in 2004. In general, a strongly decreasing trend 

in 𝑇𝑎𝑐𝑡 was present between 2005 to 2012, 𝑇𝑎𝑐𝑡 was approximately 0.6 𝑚𝑚 𝑑−1 in 2005, and 

reached values of around 0.5 and 0.2 𝑚𝑚 𝑑−1 in 2006 and 2007, respectively, after which 𝑇𝑎𝑐𝑡 

was the lowest from late 2007 to 2010 and 2012, with near-zero values. Finally, the rates of 

𝑇𝑎𝑐𝑡 during the dry season of 2013 were the highest during the study period, with values up to 

1.0 𝑚𝑚 𝑑−1. For site 23 𝑇𝑎𝑐𝑡 values were comparable to those calculated for the other 

rangeland sites, albeit with slightly higher overall than the values found for other sites in this 

region. 
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SWAP output obtained with ERA interim driving data indicated that in 2001 and 2002 𝑇𝑎𝑐𝑡 

was comparatively high, and ranged from 0.8 to 1.2 𝑚𝑚 𝑑−1. 𝑇𝑎𝑐𝑡 values underwent a sudden 

decrease during 2003 (values just above 0.2 𝑚𝑚 𝑑−1). A slightly increasing trend was observed 

for 𝑇𝑎𝑐𝑡 during 2003 to 2005; from 0.6 to 0.8 𝑚𝑚 𝑑−1. Generally, a small decreasing trend in 

𝑇𝑎𝑐𝑡 was apparent from 2005 to 2012, with the lowest values occurring between 2008 to 2010, 

and 2012. 𝑇𝑎𝑐𝑡 experienced a large increase in 2013 (reaching values of approximately 0.9 

𝑚𝑚 𝑑−1). The overall evolution for site 23 was very similar to the one described above for in-

situ data, but with higher values of 𝑇𝑎𝑐𝑡. Fig. 4.27 shows the rangeland LAI derived from 

NDVI (see Eq. 3.17) for site 23. Values are low, ranging between 0.18-0.30, but these values 

are typical for sparse rangelands in dry climates.  

 

Figure 4.26 Variation in seasonal 𝑇𝑎𝑐𝑡for rangeland region over Iraq during 2001-2013 using 

measured and ERA interim dataset to drive SWAP. 
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Figure 4.27 Estimation LAI of site 23 based on NDVI during 2001-2015. 

 

4.5.3.5. Actual evaporation (𝐄𝐚𝐜𝐭) 

Fig. 4.28 shows 𝐸𝑎𝑐𝑡 for the rangeland region, obtained with SWAP. When using in-situ data, 

dry season 𝐸𝑎𝑐𝑡 increased gradually from 2010 to 2013 for all sites in this region. However, 

late in 2002 and at the beginning of 2003 at site 14, 𝐸𝑎𝑐𝑡 was very low, and 2011 and 2012 

had a similar scenario (see Appendix H). SWAP driven by ERA-Interim data results in relatively 

similar spatiotemporal 𝐸𝑎𝑐𝑡 variations, with large differences in 2002, 2003, and 2012. 

Overall, values for rangeland are slightly larger than those for desert. Note that these land 

surface types occur in different climatic zones (see Fig. 2.3), with atmospheric variables 

affecting 𝐸𝑝𝑜𝑡 and hence 𝐸𝑎𝑐𝑡. Furthermore, 𝐸𝑎𝑐𝑡 and Tact are affected by near-surface and 

root-zone available SMC, respectively, so that 𝐸𝑎𝑐𝑡 and Tact are considerably lower than their 

potential counterparts. 
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Figure 4.28 Interannual variations in seasonal 𝐸𝑎𝑐𝑡for the rangeland region (as illustrated using 

site 23) over Iraq during 2001-2013 using measured and ERA interim driving dataset. 

 

4.5.3.6. Actual evapotranspiration (𝐄𝐓𝐚𝐜𝐭) 

Actual evapotranspiration is the sum of 𝐸𝑇𝑎𝑐𝑡 and Tact, hence is only shown for rangeland 

and agricultural sites. 

Fig. 4.29 and Appendix H show the variations in 𝐸𝑇𝑎𝑐𝑡 predicted by SWAP for rangeland 

regions, from 2001 to 2013. Based on measured driving data, the evolution of 𝐸𝑇𝑎𝑐𝑡 for site 

23 was very similar, but values were lower than for most other sites. Between 2005 and 2007 

values slightly decreased; they were around 0.85𝑚𝑚 𝑑−1 on average. The values of 𝐸𝑇𝑎𝑐𝑡 

from 2008 to 2012 were low compared with other periods; values increased again in 2013. 

Based on ERA interim data, 𝐸𝑇𝑎𝑐𝑡 for site 23 follows a similar evolution as discussed above 

for in situ data except that values were higher compared with the SWAP output obtained with 

the measured data, in particular for years 2001-2003 and 2012.  
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Figure 4.29 Interannual variations in seasonal 𝐸𝑇𝑎𝑐𝑡for rangeland region (Site 23) over Iraq 

during 2001-2013 using measured and ERA interim driving datasets. 

 

4.5.3.7. Changes in soil water storage 

SWAP results based on measured driving data showed that the seasonal fluctuations in water 

storage for sites 16, 20, and 21 were very low during 2008 to 2010 (see Appendix H). During 

the wet season, ∆𝑆 of was highest in 2013, which was about 131 𝑚𝑚 for all 3 Bahgdad sites. 

The timeseries of soil water storage change were different for sites 14 and 23 (the latter shown 

Fig. 4.30). During the period 2003 to 2007 there are a number of extreme peaks during the wet 

seasons at site 14, see Appendix H, and peaks continue to occur for the remainder of the study 

period, except for in 2001, 2002, and 2012. The highest(∆𝑆) was found in 2007 (59 𝑚𝑚) for 

site 14, and in 2009 (41𝑚𝑚) for site 23, see Fig. 4.30.  

ERA interim driven SWAP runs showed similar results, and the highest value was observed in 

2013 for all sites (88.5 mm day-1). 
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Figure 4.30 Interannual variations in seasonal ∆𝑆 for rangeland region over Iraq (site 23 shown 

as a typical example) during 2001-2013 using measured and ERA interim driving datasets. 

Based on measured data, water storage was very low during part of 2001 and 2012, this is 

because of rain fall shortages, see Figs. 4.31 and 4.32, where the entire water balance for the 

rangelands is summarised. These figures show that 𝐸𝑎𝑐𝑡 > Tact, in particular for the in-situ 

data driven runs. For the ERA-Interim runs, Tact is larger and regularly exceeds 𝐸𝑎𝑐t values, 

as a result of the considerably larger rainfall inputs. Other loss terms are small or negligible, 

apart from some interception, in particular in Fig. 4.32. 
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Figure 4.31 Water balance components over site 23 during 2001-2015, based on measured 

data, and calculated LAI, (QBottom, Drainage, Runoff, and Runon fluxes equal to zero). 

 

 

Figure 4.32 Water balance components over site (23) during 2001-2015, based on ERA interim 

data, and calculated LAI, (QBottom, Drainage, Runoff, and Runon fluxes equal to zero). 
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4.5.4. Agricultural region 

4.5.4.1. Potential transpiration (𝐓𝐩𝐨𝐭) 

 𝑇𝑝𝑜𝑡 strongly depends on LAI. Fig. 4.33 shows the evolution of 𝑇𝑝𝑜𝑡 between 2001 and 2015, 

as simulated by SWAP using both in-situ and ERA-Interim driving data (see section 4.5), and 

calculated and standard LAI values (Fig. 4.34). Firstly, note that for each year there are two 

peaks in 𝑇𝑝𝑜𝑡 for all sites. This is caused by the fact that SWAP simulations were conducted 

for a rotation of two crops (wheat and maize growing between 15 December to 30 April and 

15 July to 01 October, respectively, followed by bare soil). The wheat peak in 𝑇𝑝𝑜𝑡 is smaller 

than the maize one and reaches peak values of around 4 mm day-1 or 8 mm day-1, depending 

on whether calculated or standard LAI values are used. The second peak in 𝑇𝑝𝑜𝑡 is much higher 

and attains values of up to 16 mm day-1. In this case the choice of driving variables plays a 

much larger role than the selection of LAI approach for a considerable number of years, but 

particularly for 2001-2002. For some years, differences in wheat peaks between the runs are 

negligible, e.g. for 2003, 2004 and 2013. The size of both peaks varies somewhat between 

years, but no real trends are apparent. 

 

Figure 4.33 Interannual variations in seasonal 𝑇𝑝𝑜𝑡for agricultural region (represented by site 

19) over Iraq during 2001-2013 using measured and ERA interim dataset as driving variables, 

and LAI of the crops based on NDVI (CALC) and standard LAI (STD).  
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Figure 4.34 LAI of the crops based on calculated LAI (based on NDVI) and standard LAI 

during 2001-2015. 

 

4.5.4.2. Potential evaporation (𝐄𝐩𝐨𝐭) 

Fig. 4.35 shows the seasonal and interannual changes of 𝐸𝑝𝑜𝑡 for the agricultural region (with 

site 19 selected as a typical example) during the study period, again for both sets of driving 

data and both LAI choices. 𝐸𝑝𝑜𝑡 ranged between 0 and 10 mm day-1 and has two peaks, one 

larger followed by a smaller one, as a result of the fact that the simulations are set up to grow 

two crops in succession. This means that when LAI is lowest, i.e. in between wheat and maize 

crop cycles and after the wheat growth during the fallow period (when 𝑇𝑝𝑜𝑡 is highest, i.e. 

around May and at end of autumn; see Fig. 4.33), 𝐸𝑝𝑜𝑡 peaks. Also, for the standard LAI we 

see a pronounced period of zero 𝐸𝑝𝑜𝑡 values before the start of the maize cycle. Again, choice 

of LAI method appears to be more important that choice of driving data, for most years. SWAP 

runs for both sets of driving data show that 𝐸𝑝𝑜𝑡 peaks were higher between 2005 to 2008 

compared with the period between 2009 to 2012. Dry season 𝐸𝑝𝑜𝑡 decreased between 2009 and 

2010, then slightly increased again in 2013 for most sites. 
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Figure 4.35 Interannual variations in seasonal 𝐸𝑝𝑜𝑡for agricultural region (site 19 as a typical 

example) over Iraq during 2001-2013 using measured and ERA interim dataset, and LAI of the 

crops based on NDVI (CALC) and standard LAI (STD). 
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4.5.4.3. Potential evapotranspiration (𝐄𝐓𝐩𝐨𝐭) 

ETpot values are overall higher for the agricultural sites than for the rangeland sites, because 

of the larger LAI values, leading to particularly large 𝑇𝑝𝑜𝑡 values. Fig. 4.36 shows the 

seasonally varying 𝐸𝑇𝑝𝑜𝑡 for site 19 from 2001 to 2013 based on measured and ERA-Interim 

driving data and LAI derived from NDVI, as well as for standard LAI values as used per default 

in SWAP. The seasonal 𝐸𝑇𝑝𝑜𝑡 values over this site, as well as for the other agricultural sites, 

vary from 0 to 20  𝑚𝑚 𝑑−1. The occurrence of the lowest and highest peak (dry season) values 

depended on the choice of driving data and LAI, but interannual differences were generally 

within 10% of the maximum 𝐸𝑇𝑝𝑜𝑡 value. The use of ERA-Interim driving data predominantly 

resulted in higher values of 𝐸𝑇𝑝𝑜𝑡, in particular for years 2001, 2002, 2006, 2011 and 2012. 

For 2003, differences between the 4 models runs were negligible. 

 

Figure 4.36 Interannual variations in seasonal 𝐸𝑇𝑝𝑜𝑡for agricultural region (site 19) over Iraq 

during 2001-2013 using measured and ERA interim dataset to drive SWAP, and LAI of the 

crops based on NDVI (CALC) and standard LAI (STD). 
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4.5.4.4. Actual transpiration (𝐓𝐚𝐜𝐭) 

The multi-year courses of seasonally varying SWAP simulations of actual transpiration  

(𝑇𝑎𝑐𝑡), based on measured meteorological data and ERA-Interim, and with NDVI-based and 

standard LAI, for the agricultural sites (example site 19) is shown in Fig. 4.37. Each year has 

two peaks, the largest peaks always occurs in the dry season (irrigated maize crop). For site 19 

maximum 𝑇𝑎𝑐𝑡 values reached around 12 mm day-1 throughout the study period. The first peak 

(irrigated wheat during rainy season) attained much lower values, generally between 2-3 mm 

day-1, although some exceptionally high values were found between 2008-2010. Differences 

between the first peaks in Tact for the 4 model runs were particularly large during those years. 

When driven with ERA-Interim data the highest dry season 𝑇𝑎𝑐𝑡 values were identified in 

2001 and 2002.  When using in-situ driving data, SWAP yielded particularly low values of dry 

season Tact for 2001; differences in Tact between both driving data sets were nearly a factor 

2. For other years, in particular 2003/2004, differences were much smaller. 

 

Figure 4.37 Spatiotemporal variations in seasonal 𝑇𝑎𝑐𝑡for site 19 over Iraq during 2001-2013 

using measured and ERA interim dataset to drive the SWAP model, and LAI of the crops based 

on NDVI (CALC) and standard LAI (STD). 
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4.5.4.5. Actual evaporation (𝐄𝐚𝐜𝐭) 

Fig 4.38 shows 𝐸𝑎𝑐𝑡 for the agricultural regions (represented by site 19) for 2001 to 2013, with 

LAI values derived from NDVI or standard, and with in-situ and ERA-Interim driving data 

being used.  

The simulated courses of 𝐸𝑎𝑐𝑡 represented by the red & blue lines (both driving datasets, with 

LAI derived from NDVI), like those for Tact in Fig. 4.37, also show two peaks per year, again 

in relation to the two growing seasons of the modelled crop rotation. The results indicate that 

the values of 𝐸𝑎𝑐𝑡 for the first peak are up to 2 mm day-1 and are in fact comparable in size to 

those for 𝑇𝑎𝑐𝑡. The values for the second peak are larger (maximum of ~ 4 mm day, about 30-

50% of the size of maximum 𝑇𝑎𝑐𝑡). Interestingly, when standard LAI is used the first peak 

occurs in January and is very small, virtually negligible. During the rest of the winter-spring 

period, 𝐸𝑎𝑐𝑡 values are near zero because of the relatively large standard LAI values (see Fig. 

4.34). 

 

Figure 4.38 Spatiotemporal variations in seasonal 𝐸𝑎𝑐𝑡for agricultural region (site 19) over 

Iraq during 2001-2013 using measured and ERA interim dataset. 
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4.5.4.6. Actual evapotranspiration (𝐄𝐓𝐚𝐜𝐭) 

The multi-year evolution of 𝐸𝑇𝑎𝑐𝑡, i.e. the sum of 𝐸𝑎𝑐𝑡 and Tact is shown in Fig. 4.39, again 

for the 4 simulation runs. The smaller first peak (values up to ~ 7 mm day-1 in 2008-2009 (ERA-

driven, standard LAI), but mostly around 3 mm day-1) and larger second peak (maximum 

values ranging between ~8 mm day-1 (2012; in-situ driving data, NDVI-derived LAI) and 16 

mm day-1 (2002; ERA driven, both LAIs) are again evident as per Figs. 4.37-4.38. As was the 

case for Fig. 4.37, the largest differences in the first peak of 𝐸𝑇𝑎𝑐𝑡 between the simulations 

are found for the years 2009-2010. For the second peak, the most prominent differences are for 

years 2001-2002 and 2011-2012. Differences are very small for 2003- 2004.   

 

Figure 4.39 Spatiotemporal changes in seasonal 𝐸𝑇𝑎𝑐𝑡for agricultural region over Iraq during 

2001-2013 using measured and ERA interim dataset. 
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4.5.4.7. Changes in soil water storage 

The results in Fig. 4.40 present a diagnostic dataset of seasonal variations in water storage for 

the agricultural region (from 2001-2013) based on measured and ERA-Interim derived driving 

data and LAI values calculated from NDVI and taken as standard from SWAP (Fig 4.40). ∆𝑆 

values varied considerably among wet seasons for site 19, that was selected as representative 

for the agricultural region. Storage of water will depend on the amounts of rainfall during the 

wet season (when irrigated wheat was grown, causing the first smaller peak in 𝐸𝑇𝑎𝑐𝑡) and the 

amount of irrigation supplied during the dry season (during maize growth, the larger second 

peak in 𝐸𝑇𝑎𝑐𝑡), as well as on the values of 𝐸𝑇𝑎𝑐𝑡 itself. Other water balance components 

appear negligible (see Figs 4.41-4.42). Water storage simulated by SWAP varies between ~ 

+170 mm (year 2011, wet season, ERA driven) and -160 mm, 2005, dry season (but note that 

irrigation was supplied). The large Tpot for the ERA driven/standard LAI run caused rather 

negative ∆𝑆  values for 2009-2010, compared to the other 3 runs. Considerable differences 

between the simulations are also visible for the dry seasons of 2001 and 2002 and the end of 

dry season 2012/ start of wet season of 2013. 

  

Figure 4.40 The temporal changes in seasonal ∆𝑆 for irrigated agricultural region (site 19) over 

Iraq during 2001-2013 using measured and ERA interim dataset. 
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Low water storage in 2008 to 2010 is more likely because of lack in the precipitation in these 

years, see Figs 4.41 and 4.42. 

 

Figure 4.41 Water balance components over site 19 during 2001-2015, based on measured 

data, and calculated LAI (Drainage and QBottom fluxes equal to zero). 

 

Figure 4.42 Water balance components over site 19 during 2001-2015, based on ERA interim 

data, and calculated LAI, (Drainage and QBottom fluxes equal to zero). 
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4.6.  Comparison of SWAP for different land surface types 

Figs. 4.43-4.49 shows a comparison of all water balance fluxes for the three regions, with the 

top-plot in each figure representing the SWAP runs driven by in-situ data and the bottom one 

for the ERA-Interim driving data.  

Fig. 4.43 for 𝑇𝑝𝑜𝑡 illustrates the large differences in absolute values (a factor of about 1.5) 

between the rangeland and the agricultural sites (note that 𝑇𝑝𝑜𝑡 is zero for the desert sites), as 

well as a difference in timing of the peaks. This is mainly caused by differences in LAI (see 

Figs. 4.21 and 4.34), rather than the values of the driving variables that determine 𝑇𝑝𝑜𝑡. 

Fig. 4.44 shows that values of 𝐸𝑝𝑜𝑡 are in fact pretty similar, and values peak between 8-10 

mm day-1 for all surface and for both driving sets. 

As a result of the considerable differences in the evolution of 𝑇𝑝𝑜𝑡 between rangeland and 

agricultural sites and the fact that desert has 𝐸𝑝𝑜𝑡 only, values for 𝐸𝑇𝑝𝑜𝑡 are very different for 

the three surface types (Fig. 4.45). Peak values are lowest for the desert (between 7-9 mm day-

1 or so), followed by the rangeland (up to 15 mm day-1) and agricultural site (peak values > 20 

mm day-1 for ERA-Interim). 

Peak values also occur at different times during the season, with the (semi-)natural desert and 

rangeland sites exhibiting a peak around July, whereas the main agricultural peak is around 

September. This is the result of the supplementary irrigation for the second crop. 

Looking at Tact (Fig. 4.46), large differences are observed between the agricultural and 

rangeland sites, both in size and timing. Rangeland Tact peaks during the rainy season that 

occurs during the first 4 months or so of each year. However, the agricultural region exhibits a 

much larger second peak because SWAP has been given a crop file with an irrigated maize 

(total irrigation depth = 1000mm) crop being grown after the irrigated wheat (total irrigation 

depth = 600). As atmospheric conditions (see Figs. 4.16, 4.17) favour high transpiration rates 

during the maize crop growth season, Tact is particularly high as enough water is available due 

to the irrigation being added to the SWAP rainfall data. 

Whereas 𝐸𝑝𝑜𝑡 peaked roughly at the same time for all three surface types (as dictated largely 

by the atmospheric conditions), Fig. 4.47 shows that 𝐸𝑎𝑐𝑡 shows a very different behaviour. 
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Although the values of 𝐸𝑎𝑐𝑡 are very small (maximum around 0.80 (desert) and (rangeland) 

mm day-1) for the (semi-) natural surfaces, the values for the agricultural site reach values up 

to 4.5 mm day-1. The peaks for the maize crop occur around the same time as 𝑇𝑎𝑐𝑡 (with values 

double those of 𝑇𝑎𝑐𝑡) indicating that the crop was still relatively sparse at that time and that 

𝐸𝑎𝑐𝑡 contributed considerably to 𝐸𝑇𝑎𝑐𝑡 (see Fig. 4.48). As expected from the previous plots 

the timing in peak and minimum values differed greatly between the regions. 

Finally, with regards to, desert values were lowest, as expected. However, for rangeland peak 

values for certain years were as large as values of 𝐸𝑇𝑎𝑐𝑡 for the agricultural region, albeit at 

very different times. 

Based on the discussion above it should come as no surprise that values of ∆𝑆 (Fig. 4.49) for 

the agricultural sites are much larger (positive and negative values) than for the other two sites, 

and have two pronounced peaks. 
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Figure 4.43 The spatiotemporal changes in seasonal 𝑇𝑝𝑜𝑡 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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Figure 4.44 The spatiotemporal changes in seasonal 𝐸𝑝𝑜𝑡 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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Figure 4.45 The spatiotemporal changes in seasonal 𝐸𝑇𝑝𝑜𝑡 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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Figure 4.46 The spatiotemporal changes in seasonal 𝑇𝑎𝑐𝑡 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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Figure 4.47 The spatiotemporal changes in seasonal 𝐸𝑎𝑐𝑡 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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Figure 4.48 The spatiotemporal changes in seasonal 𝐸𝑇𝑎𝑐𝑡 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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Figure 4.49 The spatiotemporal changes in seasonal ∆𝑆 over Iraq during 2001-2013 using 

measured and ERA interim dataset. 
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4.7.  Comparison of seasonal evolution of regionally-averaged SWAP 

fluxes 

Figs. 4.50-4.52 compare, side by side (i.e. in-situ versus ERA-Interim driven), the regionally 

(i.e. per surface-type) averaged multi-year average seasonal courses of the SWAP fluxes. Also 

shown are the standard deviations for each month (15 years, 6 sites for desert, 5 sites for 

rangeland, and 9 sites for agricultural). For the desert site (Fig. 4.50) both driving data sets 

show very similar courses although error bars vary throughout the season and between driving 

data sets. Although 𝐸𝑝𝑜𝑡 peaks around May-August, Eact values are in fact the lowest during 

that period, due to lack of rainfall (see Figs. 4.16 and 4.17). ∆𝑆 has negative values during this 

period. ERA 𝐸𝑝𝑜𝑡 values have much smaller error bars, yet those for Eact are very similar. 

For the rangeland (Fig. 4.51), 𝑇𝑝𝑜𝑡_ERA values peak at a somewhat larger value than 

𝑇𝑝𝑜𝑡_in-situ. Epot shows a very similar peak, whereas 𝐸𝑇𝑝𝑜𝑡 for ERA-runs is ~ 10% larger. 

Again, ERA error bars are lower, indicating that the driving data are less variable in space and 

time. The 𝑇𝑎𝑐𝑡 values peak around March, but show large uncertainties, in this in particular 

for ERA-Interim. The large uncertainties indicate that for both datasets, the timing and 

occurrence of rainfall in very variable so that peaks in Tact may occur anywhere between 

February and April. The same goes for 𝐸𝑎𝑐𝑡 and 𝐸𝑇𝑎𝑐𝑡. 

Finally, both datasets show negative ∆𝑆 throughout most of the months and with the largest 

uncertainties for November. Based on this, it appears that SWAP is predicting a very slow 

depletion of soil water stores in the rangeland region. Fig. 4.52 shows the monthly water 

balance flux values representative of the agricultural region. We see the dual-peak shape of 

𝑇𝑝𝑜𝑡 and the single-peaked 𝐸𝑝𝑜𝑡, with the peak in between the 𝑇𝑝𝑜𝑡 peaks during the fallow 

period. When the two curves are combined, 𝐸𝑇𝑝𝑜𝑡 peaks in September, after which a steep 

drop occurs. The shape of 𝑇𝑎𝑐𝑡 mimics that of 𝑇𝑝𝑜𝑡, but its maximum values are only 60-70% 

or so of that of 𝑇𝑝𝑜𝑡, indicating that some water stress occurred during the SWAP model runs. 

𝐸𝑎𝑐𝑡 did not follow the shape of 𝐸𝑝𝑜𝑡 because Epot’s peak occured at the end of the winter 

crop season during the fallow period and start of maize growing season when irrigation 

amounts were relatively small and the small amounts of water were used by the crop.  ∆𝑆 for 

the agricultural region shows a considerable amount of water storage during January-February. 
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∆𝑆 values indicating soil storage depletion occur during April and September-October, around 

the time of the peak crop transpiration. 
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Figure 4.50 The changes in seasonal water balance components for desert region over Iraq 

during 2001-2013 using measured and ERA interim dataset. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ea
ct

 (
m

m
/d

ay
)

Desert-Eact-In situ

0.0

2.0

4.0

6.0

8.0

10.0

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ep
o

t 
(m

m
/d

ay
)

Desert-Epot-In situ

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

W
at

er
 s

to
ra

ge
 (

m
m

)

Desert-ΔS-In situ

0.0

2.0

4.0

6.0

8.0

10.0

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ep
o

t 
(m

m
/d

ay
)

Desert-Epot-ERA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ea
ct

 (
m

m
/d

ay
)

Desert-Eact-ERA

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

W
at

er
 s

to
ra

ge
 (

m
m

)

Desert-ΔS-ERA



170 

 

 

0.00

2.00

4.00

6.00

8.00

10.00

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ep
o

t 
(m

m
/d

ay
)

Rangeland-Epot-In situ

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

ET
p

o
t 

(m
m

/d
ay

)

Rangeland-ETpot-In situ

-0.20

0.00

0.20

0.40

0.60

0.80

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ta
ct

 (
m

m
/d

ay
)

Rangeland-Tact-In situ

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Tp
o

t 
(m

m
/d

ay
)

Rangeland-Tpot-ERA

0.00

2.00

4.00

6.00

8.00

10.00

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ep
o

t 
(m

m
/d

ay
)

Rangeland-Epot-ERA

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

ET
p

o
t 

(m
m

/d
ay

)

Rangeland-ETpot-ERA

-0.20

0.00

0.20

0.40

0.60

0.80

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Ta
ct

 (
m

m
/d

ay
)

Rangeland-Tact-ERA

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Ja
n

Fe
b

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Tp
o

t 
(m

m
/d

ay
)

Rangeland-Tpot-In situ



171 

 

 

Figure 4.51 The changes in seasonal water balance components for rangeland region over Iraq 

during 2001-2013 using measured and ERA interim dataset. 
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Figure 4.52 The changes in seasonal water balance components for agricultural region over 

Iraq during 2001-2013 using measured and ERA interim dataset. 
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4.8. Assessment of energy balance from ERA interim driving data. 

Fig. 4.53 shows the full energy balance obtained from ERA-Interim outputs. Annual courses 

are as expected, i.e. Rn and SSHF are low in winter months and high in summer months (due 

to the variations in incoming shortwave and longwave, and surface temperatures, respectively.   

Ground heat flux (or rather skin layer heat flux, as per the Tessel nomenclature) reaches a 

positive peak in summer (maximum heat storage and a negative peak in winter (largest heat 

loss).   

Surface latent heat flux peaks before surface sensible heat flux, as a result of the rainy season 

occulting in the winter/spring months.  

In all cases, net radiation is the largest flux, followed by sensible heat flux. For the rangeland 

and agricultural sites, the next largest flux is the latent heat flux, and the smallest the skin layer 

heat flux (calculated as the residual of the ERA-Interim energy balance), as expected for 

vegetated surfaces.  

For the desert, latent heat flux and skin layer heat flux are approximately of similar size. Skin 

layer heat flux seems on the low site, but with high desert albedos, high surface temperatures 

and low moisture contents (causing low soil thermal conductivity), these values are not 

implausible. This also caused net radiation in the desert to be lower than those of rangeland 

and agriculture sites. 

Compared to drought years, obvious increases in latent heat flux were observed over the period 

2010-2015 and 2013-2015 for agricultural and rangeland sites, respectively. Meanwhile, 

sensible heat flux decreased for the same period, despite increases in net radiation. 

These ERA-Interim reanalyses results fit nicely with the increasing NDVI (see Fig. 4.14), and 

thus evapotranspiration, when the total precipitation and soil moisture (see Fig. 4.12) were at a 

high during 2011-2015 (Figs. 4.16 and 4.17). 
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Figure 4.53 Spatiotemporal in energy balance components (SSHF, SLHF, Rn, and GHF) for a 

reprehensive desert, rangeland, and agricultural sites over Iraq during 2001-2015, using ERA 

interim driving data.  
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4.9.  Comparison of ERA interim latent heat fluxes and SWAP 𝑬𝑻𝒂𝒄𝒕. 

Figs. 4.54 show the ERA-Interim surface latent heat flux, together with the SWAP actual 

evapotranspiration and the evolution of SMC from SMOS for the years 2010-2013. Starting 

with the desert site we see that both ET fluxes follow each other, in particular when the ERA-

Interim driving data are being used to run SWAP. This is encouraging seeing there are 

considerable differences in scale (field versus degree-scale), underlying model equations (e.g. 

how to calculate evaporation), bottom boundary conditions etc. Most peaks in the SMOS time 

series roughly coincide with those in ET, although less so during 2010, which may be due to 

SMOS teething problems. 

Similar observations can be made for the rangeland site, i.e. a remarkably good correspondence 

between both models, especially when atmospheric data coincide. This also indicates that 

ERA-Interim’s treatment of grass and its assumptions about LAI etc. are comparable to those 

of SWAP, despite the fact that ERA Interim’s land cover data are based on 1 year of AVHHR 

data only. 

Finally, the ET fluxes for the agricultural site are very different. This is not surprising since 

ERA-Interim does not have dedicated crop routines, nor did it take into account irrigation. 

Values for ERA-Interim SHLF (i.e. ET) are very low, as if ECMWF assumed desert soils here. 

The SMOS-based evolutions of SMC generally reach their highest values during the first peak 

in SWAP 𝐸𝑇𝑎𝑐𝑡 (related to the assumed irrigated wheat crop). The second peak SWAP 

𝐸𝑇𝑎𝑐𝑡 (irrigated maize) generally coincides with the lowest values of 𝐸𝑇𝑎𝑐𝑡. This indicates 

that in reality a second crop was never grown, at least not for these agricultural regions, despite 

the literature indicating that this is common practice. 
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Figure 4.54 The ERA-Interim surface latent heat flux together with the SWAP actual 

evapotranspiration and the evolution of SMC from SMOS for the years 2010-2013.
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5. Chapter five: Discussion 

5.1.  Monitoring drought based on SPI/SPEI3 

Based on in situ data, the spatiotemporal pattern of SPI-3 (see Chapter 4 and Appendix A) 

shows that there was a prolonged period where drought conditions were near normal to 

moderately dry during the study period. The SPI values ranged from 0 to 1, indicating the 

presence of near normal wet conditions during 2001 to 2012, and moderately wet conditions in 

2013 and 2014 over regions. The annual SPI-3, which assesses the overall dryness and wetness 

of the year, shows that 2013 and 2014 were the wettest years experienced in the period 

according to ERA interim and measured dataset. 

Based SPEI-3 it was identified that moderate to severe droughts frequently occurred after 2006. 

Between 2001-2015, droughts were most extreme during the years 2001, 2008 to 2010, and 

2012, with drought conditions the most severe in 2010. The results indicated that the droughts 

were generally regional phenomena: the moderate 2010 drought in the Mediterranean zone 

(where the rangeland region is situated), was classified as severe drought in the arid (desert) 

and semi-arid climate zones (agricultural and marshlands region). The average SPEI-3 value 

of all regions was found to be less negative in 2011 compared with the period 2008 to 2010, 

while 2013 was the wettest year during the study period.  

The ERA interim data based SPEI-3 showed a similar evolution to that the SPEI-3 that is based 

on measured data, although the 2010 drought event for the Mediterranean region was more 

moderate due to the ERA-Interim higher precipitation compared with measured data. It also 

showed that the wettest years were in 2013 and 2014, when the NDVI values were indeed the 

highest. Section 4.3 showed that SPEI-3 was a better descriptor of drought than SPI-3 for all 3 

surfaces. 

The present work agrees with (Mathbout, Lopez-Bustins et al. 2017) in that they analysed the 

observed spatiotemporal characteristics of drought phenomena in Syria using the Standardised 

Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI). 

Temporal variability of drought is calculated over the 1961–2012 period for 20 weather station 

locations. The results revealed the existence of three spatially well-defined regions with 

different temporal evolution of droughts: Northeastern (inland desert), Southern (mountainous 

landscape), and Northwestern (Mediterranean coast) regions. The evolutionary characteristics 
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of drought during 1961-2012 were analysed including spatial and temporal variability of SPI 

and SPEI, their frequency distribution, and the drought duration. Both drought indices have 

been correlated both on spatial and temporal scales and they are highly comparable.  

They concluded that the spatiotemporal characteristics of SPI and SPEI can be used for 

developing a drought that assesses the variability of regional droughts in Syria. The analysis of 

both indices suggests that all three regions experienced the driest period in 2007 to 2010, 

coinciding with the onset of the recent conflict in Syria. 

The temporal evolution of spatially averaged SPI and SPEI during the last five decades showed 

an increase in drought frequency, severity and duration. These results showed that the longest 

and most intensely dry drought period was between 2008 to 2012. On a regional scale, there is 

a clear evidence of a statistically significant increase in the severity and intensity of drought 

during the last decade (1999-2012). The most recent and severe 2008 to 2012 drought had 

societal impacts, contributing, according to previous studies, to agricultural failure, rapid 

economic decline, growing poverty, population displacement and political unrest in the 

country. The drought in 2008-2012 was particularly long and intense in Syria, it is found that 

during the last 15–20 years, the droughts have also been longer and more intense than in the 

past and this is probably due to the temperature rise and precipitation decrease in Syria because 

of recent evidence of climate change in this area (IPCC 2013),  (Evans 2009).   

Bussay, Szinell et al. 1998 and Szalai and Szinell 2000 discussed the utility of the precipitation 

based drought index (SPI) for describing drought in Hungary. This study concluded that SPI 

was suitable for quantifying agricultural drought, and most successfully when applying SPI on 

a 3-month time scale. (Hayes, Svoboda et al. 1999) evaluated the advantages and disadvantages 

of using SPI to assess drought severity. The primary disadvantage is that SPI is not capable to 

identify drought in regions that may frequently suffer from droughts. In these cases, 

misleadingly large negative or positive SPI values may result.  

Nevertheless, a number of studies have shown that SPI is a useful index when considering 

droughts that are controlled mainly by the temporal variability in precipitation, while other 

variables that influence droughts, such evapotranspiration, and its determining variables, such 

as temperature and relativity, are of negligible importance. Thus, SPI is a useful drought index 
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in regions where precipitation is much higher than potential evapotranspiration (PET) (Vicente-

Serrano, Beguería et al. 2010). 

Several studies have explicitly explored the role of temperature on drought conditions. (Hu and 

Willson 2000) assessed the relative effects of precipitation and temperature on drought 

conditions; they found that the SPEI index responded equally to changes of similar relative 

magnitude in both variables. Only where the temperature fluctuation is less than that of 

precipitation is variability controlled by precipitation. 

 

 

 

 

 

 

 

 

 

 

 

 



183 

 

5.2.  The relationship between NDVI and drought indices  

Analysis of the evolution of NDVI suggests that vegetation in the study area was stressed 

during the period 2006 to 2010, the period when drought was more extreme based on the 

meteorological drought indices. A more obvious decrease in NDVI was observed from 2008 

to 2010; this indicates low vegetation cover and is most likely the result of the severe drought 

during this period. NDVI values recovered to more normal levels in all regions of the study 

area in 2011, 2013, and 2014, when drought indices were > 0.  

For the marshlands region, the NDVI data indicate that vegetation condition returned to normal 

after the restoration period, roughly from late 2003 onwards. The NDVI time series shows that 

growth was even more vigorous than the long-term average during the restoration period in all 

marshes.  The vegetation greened up and increased its coverage and vigour from 2004 to 2007 

due to increased availability of water. However, there was a series of drought years in the 

marshlands after 2008. SPEI3 was lower than zero in 2009 and a very severe drought was 

observed in 2010 for Chibyish and Hammar marshes, whereas SPEI-3 values were near to 

normal (0.99 to -0.99) at Haweezah. The year 2010 was the most serious drought year; it caused 

NDVI to decrease sharply so that it reached its lowest point in the time series. For that year the 

SPEI-3 was nearly –2, indicating that there was a severe deficit in the precipitation and potential 

evapotranspiration reached its maximum causing the marshes to dry out substantially. 

The correlation between NDVI and both drought indices (SPI & SPEI), based on measured 

data and on ERA interim dataset between 2001 and 2015 (Section 4.3.4. and (Figs. 4.2)) 

showed that NDVI over Iraq was overall mildly to well correlated with changes in SPI-3 

and SPEI-3. It appeared that the strength and sign of their correlation revealed the degree 

and type of drought, this worked best for rangeland, agricultural and marshland regions 

but not for the desert sites.  NDVI for desert was highly correlated to SPI-3 based on ERA 

interim data, and less correlation was found based on measured data, this is most likely 

due to the fact that the desert area was under the control of dissident groups for much of the 

study period, so that some of the in situ data are not sufficiently reliable.   
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Other studies have addressed the performance of meteorological drought indices via their 

correlation with vegetation indices; a positive correlation between a vegetation index and 

drought index carries important information about the drought index’ capability of assessing 

the agricultural response to drought (Ji and Peters 2003),  (Quiring and Ganesh 2010), (Vicente-

Serrano, Beguería et al. 2012). In this context, NDVI is one of the most used VIs. 

The relationship between NDVI and SPI was analysed in Iran during the growing season 

(Khosravi, Haydari et al. 2017). It was found that NDVI and precipitation index have a 

strong correlation where water is a major limiting factor for plant growth.  

The occurrence of rainfed as opposed to irrigated agriculture affects the relationship between 

remote sensing indices and meteorological drought indices in arid/semi-arid regions. 

Compared to positive correlations between SPI and NDVI over rainfed areas, negative 

correlations were determined over irrigated agricultural areas.  

5.3.  Drought assessment via remotely-sensed soil moisture content 

The results presented in Section 4.3.7 (note: for year 2010-2015 only as SMOS data were not 

available before then) indicate a switch to a wetting trend in soil moisture for all regions in 

2013 and 2014, despite consistent drying trends in 2010, 2012, and 2015. However, there is 

considerable variability over the whole period. These findings overall fit with the 

determinations of drought occurrence based on the meteorological drought indices and NDVI. 

Note that SMOS-derived SMC represents the soil moisture of the top few cms of soil only. The 

exact thickness of the near-surface soil layer is unknown as the effective depth observed by the 

passive microwave instruments depends in fact on the soil moisture status itself, with the depth 

increasing for drier soils. For the desert and rangeland region the near-surface moisture content 

is a reasonable indicator of drought as evaporation and relatively shallow-rooting grasses will 

mostly deplete that layer, and small to medium-rainfall contents will not replenish the soil down 

to more than 10-20 cm or so. For the agricultural zone, deeper rooting crops, and the addition 

of irrigation water will cause significant soil moisture changes in the first 50 cm or so. This 

means that while SMOS data are still useful, they are less representative of the overall soil 

moisture status of the rootzone. 
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The relationship between vegetation condition (NDVI) and soil moisture content (from SMOS) 

are evaluated in this study for the period of 2010 to October 2015. The NDVI data are very 

effective in indicating ‘thinner’ versus ‘denser’ vegetation periods. For example, the NDVI 

improved in 2013 and 2014, when the soil moisture was the highest.  

In contrast, the increases in soil moisture during rainy periods were most obvious in the 

Mediterranean regions as a result of sufficient precipitation. Overall, the SMC comparison 

shows that the semi-arid zone, where most agriculture is practised, also had relatively high 

SMC, which had a very similar evolution (and magnitude) to that found in the Mediterranean 

region (rangeland). This is potentially because this region is dominated by agriculture, where 

irrigation as well as rainfall can cause an increase in soil moisture. However, seeing the time 

series for both types of land use are so similar, it is more likely that there are issues related to 

resolution, where the relatively coarse resolution of SMOS (40 by 40 km) is unable to pick up 

on the small pockets of agriculture within larger semi-urban areas that are in part rangeland or 

fallow. 

SMC was the lowest in the arid zone compared to the semi-arid and Mediterranean regions, 

because of the lack of rainfall and the high PET. 

Other studies have also used SMOS to assess drought. For example, soil moisture product 

(SMOS) was used to determine drought conditions by taking advantage of its spatial and 

temporal resolutions. The study investigated the potential relationships between soil moisture 

two drought indices, the Standardized Precipitation Index (SPI) and the Standardized 

Precipitation Evapotranspiration Index (SPEI), (Scaini, Sánchez et al. 2015).  
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5.4.   Spatiotemporal variation of latent heat flux (ERA-Interim) changes 

and NDVI  

The changes in latent heat flux (obtained from ERA-Interim outputs) together with vegetation 

density (NDVI) among the desert, rangeland, and agricultural regions were studied for the years 

2001 to 2015. Over all three regions surface latent heat flux showed a downward trend during 

2008 to 2010, while NDVI decreased. In other years, both presented upward trends, particularly 

in 2013 and 2014, when the NDVI was the highest. Although changes in vegetation density (as 

represented by NDVI) caused by drought resulted in a decreasing in SLHF, this was not the 

result of a change in (drought-induced) model vegetation density, as land coverage is kept 

constant over time in the ERA-Interim re-analyses runs.  

5.5.  Relationship between vegetation-indices, LST, and drought indices 

In the present study, land surface temperature (LST) and normalised difference vegetation 

(NDVI) were studied separately as well as jointly (i.e. by regressing them against each other), 

to assess their suitability as drought indicators. 

The generality of the NDVI and LST relationship over a wide range of climatic regimes 

encountered over Iraq was studied. For the marshlands region, it was found that the sign and 

strength of correlations between LST and NDVI vary interannually. For non-drought years, the 

correlation coefficients for the regression between NDVI and LST are positive. A strong 

negative correlation between LST and NDVI is only found for drought years (2008 to 2010), 

when a decrease in vegetation leads to LST increase. Hence, using LST for drought monitoring 

is feasible, but only when regressed against NDVI. LST time series alone were not useful for 

inference of drought conditions. Overall differences in LST between regions were apparent 

(with desert and rangeland having similar LS temperatures that were 4-5 degrees higher than 

LSTs for the agricultural region), but inter-annual differences were not pronounced enough to 

warrant using LST data separately as a drought monitoring tool. This is caused by the fact that 

LST plays a role in all 4 fluxes of the energy balance, and hence in the water balance, via latent 

heat flux.  

A number of studies discuss the strong negative correlations between NDVI and LST resulting 

from the cooling effects of vegetation transpiration (Goward, Xue et al. 2002). It was also found 

that a negative slope exists for sparse vegetation cover, whereas the slope of a closed vegetation 
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canopy is insignificant (Goetz 1997) observed that the slope varies with respect to climatic 

conditions; steeper slopes are associated with drier situations. It was revealed that the slope is 

inversely correlated to a crop moisture index (Nemani, Pierce et al. 1993). Other studies 

concluded that the slope is related to the evapotranspiration rate from the surface (Prihodko 

and Goward 1997),(Boegh, Soegaard et al. 1999).  

The inverse relation between NDVI and LST has also been employed for explicit drought 

monitoring. ‘During drought periods, NDVI at a given pixel will typically be relatively low, 

whereas LST is expected to be relatively high because of both vegetation deterioration (and 

hence reduced transpiration, combined with lower soil evaporation) and higher contribution of 

a ‘soil signal’ (Kogan 2000).  

5.6.  Assessment of the water balance 

This study investigated the water balance for desert, rangeland, and agricultural regions using 

the SWAP model for three climatically different zones over Iraq. It provided evidence of 

significant differences in the water balance between these land surface types/regions under 

drought and non-drought conditions. 

5.6.1. Potential evapotranspiration 

Values for 𝐸𝑝𝑜𝑡 for all regions vary between ~1 and 10 mm day-1.  The annual course for the 

agricultural site average exhibits two peaks, a smaller one (wheat) followed by larger one 

(maize), as shown in Fig 4.44. These peaks are sharper than the ones for desert and rangeland. 

𝐸𝑝𝑜𝑡_Agriculture falls below that of desert and agricultural regions during the months of 

January-April when wheat was grown. When driven with in-situ meteorological data, the 

differences between the surface types are more pronounced. 

The results clearly indicate that the 𝑇𝑝𝑜𝑡 values in the agriculture-dominated semi-arid region 

are generally higher than those in Mediterranean for rangeland region. Also, it shows that the 

𝑇𝑝𝑜𝑡 values for irrigated crop lands are high during growing season. Despite the higher 

precipitation and soil moisture availability, the rangeland areas generally have lower 𝑇𝑝𝑜𝑡 

values because of their lower vegetation density. 

These results indicate that the spatial distribution of 𝐸𝑇𝑝𝑜𝑡 for the semi-arid region, particularly 

irrigated area had the highest values of  𝐸𝑇𝑝𝑜𝑡. Meanwhile, the highest peaks were found in 



188 

 

September, as a result of the high transpiration for summer maize crops. In contrast, the 𝐸𝑇𝑝𝑜𝑡 

was found lower for rangelands that are situated Mediterranean regions, and the lowest in the 

desert region, which is located in the arid region, due to the sparse vegetation in the rangeland 

and desert regions. 

5.6.2.  Actual evapotranspiration 

In general, the agricultural region has higher average 𝑇𝑎𝑐𝑡 values than the rangeland region. 

The values of 𝑇𝑎𝑐𝑡 show a rapid decrease between 2008 to 2010, and during 2012 based on 

measured and ERA interim data. This could be mainly due to the fact that the NDVI (used to 

determine LAI) was affected by drought as shown by SPEI-3 (as a result of increasing 

evapotranspiration) and lack of precipitation (SPI-3) during rainy seasons. 𝑇𝑎𝑐𝑡 values 

obtained using ERA interim driving data are higher than those predicted by the measured data, 

due higher precipitation values compared with measured data. Higher P resulted in generally 

less water-stress vegetation and hence higher Tact. 

𝐸𝑇𝑎𝑐𝑡 peaks were detected over rangeland and desert regions during the rainy seasons. At the 

beginning (January-April) and the end of the year (November-December), where the vegetation 

activity was strongly linked to the precipitation. Likewise, the temporal variations of 𝐸𝑇𝑎𝑐𝑡 

were strongly linked with the occurrence of drought and non-drought years. 𝐸𝑇𝑎𝑐𝑡 was found 

to be very low for the rangeland region during the years that vegetation that was affected by 

drought (2008-2010), and was relatively high in 2006; this is more likely due to the increased 

rainfall in this year. However, the relation between drought and the 𝐸𝑇𝑎𝑐𝑡 for the region of 

irrigated crops did not show any relationship.  The transpiration based on standard LAI of 

agricultural region showed lower values in the rainy season compared with calculated LAI. On 

the contrary, evaporation under the maize crop was consistently higher with standard LAI than 

calculated LAI based on NDVI.  In general, all water balance components based on ERA 

interim data had slightly higher 𝐸𝑇𝑎𝑐𝑡 than those obtained with the measured driving data, 

because they were characterized by higher rainfall levels. 

Leaf area index (LAI) is a key factor determining the size of the evapotranspiration flux; 

however, it is a difficult and labor-intensive variable to measure, making its measurement 

impractical for large-scale and long-term studies. In general, calculated LAI (derived from 

NDVI) exhibited a similar course compared with standard LAI despite the slight differences in 
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their influence on the water balance fluxes. Using MODIS LAI resulted in estimated 

evapotranspiration fluxes that had a more realistic evolution. In addition, ET obtained using 

satellite-derived estimates of LAI also appeared to respond more realistically to environmental 

variations than those derived from standard LAI standard,  for all regions. 

5.6.3.  Water storage 

Based on both measured and ERA interim data, water storage, (𝛥𝑆), was found to be low during 

the drought years (2008 to 2010) for all regions in their entirety. (𝛥𝑆)  was increased in the wet 

years of 2011, and 2013 to 2014 in particular. More positive peaks were seen in the southern 

region in the arid zone (e.g. site 10) compared with those sites in the western region (Site 1, 2, 

3, 4).  

The positive 𝛥𝑆 values of the agricultural region were higher than those calculated for the 

rangeland and desert regions, this is because irrigation was one of the major recharge sources 

to water storage for the agricultural region. More pronounced variations in 𝛥𝑆 for SWAP runs 

based on ERA interim driving data were for all regions, as caused by higher ERA precipitation 

values compared with in situ data.  

5.7.  The comparison between SLHF, SWAP ETact, and soil moisture 

Fig. 4.54 plots the evolution of the SMOS SMC between 2010-2015, together with ERA-

interim’s evapotranspiration (SHLF) and that predicted by SWAP, driven by ERA-Interim 

data. For the rangeland and agricultural areas SMOS overall tracks very well with the time 

series of SHLF and 𝐸𝑇𝑎𝑐𝑡. While for the desert sites the correspondence between variations in 

SMOS SMC and ET is reasonable for the last 3 years of the 2010-2015 period, it is quite poor 

for the first two years, when overall relatively high SMC levels do not seem to coincide with 

higher ET values. The potential reasons for this are not immediately apparent, but it could have 

to do with SMOS post-processing algorithms or radio-signal interference.
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6. Chapter six: Conclusions 

6.1. Research key findings 

This study set out to determine the following: 

- What has been the recent evolution of droughts over Iraq, for a range of land surface types, 

namely desert, rangeland, agricultural, and marshlands.  

- Which drought indices are best suited for analysing the extent and severity of drought in 

Iraq and similar areas? 

- How can remote sensing help to assess drought in Iraq? 

- How can land surface modelling be used to further our understanding of droughts in Iraq? 

- How will the findings inform water resources management in Iraq? 

 

 

The key findings of this research are: 

- The findings based on the meteorological drought indices indicated that major droughts 

occured for/between the following years, for the following regions; desert (arid climate): 

2008, and 2010; rangeland (mediterranean climate): 2001, 2008, and 2010; agricultural 

region (semi-arid climate, often irrigated): 2008, and 2010 

- SPEI was more useful in indicating drought than SPI, in particular for the agricultural 

region region(s), based on measured data. 

- There is a considerable difference between the droughts depicted by the temperature (as 

well as precpitation) influenced SPEI and the precipitation-only based SPI, primarily 

because of the high variability of the temperature and precipitation. SPEI also captures the 

influence of potential evaporation (via temperature) and it depicted more severe and longer 

duration droughts in the study area. These results provide support for the notion that the 

SPEI is a relatively better index for evaluating droughts in Iraq than SPI because it 

incorporates the influence of temperature on multi-temporal droughts.  

- Near-surface soil moisture estimates obtained from SMOS satellite data corresponds fairly 

well with the drought indices, the modelled latent heat flux (ERA-Interim output and 

SWAP output, the latter model both driven with ERA-Interim and in-situ data), and NDVI 

in the study area, for the desert and rangelands region, but not for the agriculture regions. 
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- Frequent drought from 2006 to 2010 affected vegetation vigour and hence NDVI 

negatively (NDVI decreased). The vegetation being more water-stressed and sparse would 

result in an increase in LST, largely due to reduced transpiration and a larger percentage 

of exposed bare soil.  This increase in LST was picked up by satellite imagery, but the LST 

data became more powerful as drought predictors  when regressed against NDVI, see 

below. 

- The relationship between LST and NDVI data varies between different land surface types. 

The analysis shows a negative relationship between LST and NDVI during drought years 

within the marshlands region, but this was not the same for other land surface types. 

According to the results, the LST and NDVI relationship can make an effective tool in 

evaluating drought with remote sensing and geographical information systems. 

- As well as the occurrence of temporal drought variability; there is also a strong spatial 

gradient across the study area. The Mediterranean climate zone experienced higher 

precipitation totals and less negative meteorological drought indices compared to arid and 

semi-arid zones; this is reflected in the spatial distribution of soil moisture (from SMOS) 

and NDVI data of the study area.  

- The SWAP model was found to be useful for predicting the water balance over the different 

climatic regions in Iraq and it was able to pick out the key drought periods via reduced 

evapotranspiration and stored soil moisture content, partly as a result of driving data, but 

also because of reduced NDVI-dependent LAI values. 

- A comparison SWAP 𝐸𝑇𝑎𝑐𝑡 and ERA-Interim SHLF shows that for the desert and 

rangeland regions these fluxes compare very well, especially when using ERA-Interim 

driving data. This illustrates that the ERA-Interim land-cover map used was reliable, as 

well as the other vegetation properties, such as height, LAI etc. For the agricultural 

simulation runs the biggest differences were found, especially for the high peak (irrigated 

wheat) in 𝐸𝑇𝑎𝑐𝑡. This could be because the ECMWF Tessel model is not able to simulate 

crops, including rotations. There is also the fact that SWAP rainfall driving data were 

supplemented with irrigation. 

- The effect of re-flooding was further increased, causing a significant and rapid 

environmental change in the Iraqi marshlands during 2003-2005. In November 2005, 

marshlands extent decreased due to the high evapotranspiration rates in the preceding hot 

summer months. Due to drought events in 2008-2009, marshlands extent started shrinking 
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again. And only very slightly recovered during the winter months of 2009/2010. The 

recovery rate from January 2010 to January 2011 was highest and positively reflected on 

NDVI and LST.  

- Drought can be identified by estimating NDVI and land surface temperature together. This 

paper explored the spatial and temporal relationship between NDVI and LST. It was found 

that in the marshes a combination of a decrease in vegetation cover caused a direct increase 

in surface temperature. By comparing three different periods: 2001 to 2003, 2004 to 2007, 

and 2008 to 2010, it was concluded that the average land surface temperature of the 

marshes has risen during drought, and draining periods. Considering the impacts of 

vegetation cover decrease on the increase in surface temperature, the role of human 

activities becomes more and more evident. According to the results, simultaneous analysis 

of NDVI and LST is ideal for the study of marshland environment how it is affected by 

anthropogenic interventions and climate variations. The correlation between LST and 

NDVI is negative during draining and drought periods. Hereby LST, when correlated with 

a vegetation index, can be used to detect drought of marshland areas. 

- As demonstrated in this work, NDVI can be used successfully as a tool to analyse drought 

and non-drought conditions. This strongly supports the feasibility of a drought assessment 

tool based on NDVI and SPI/SPEI in these regions. The NDVI values of non-drought years 

were higher when compared to that of the drought years indicating healthy growth of 

vegetation during the non-drought year when compared to the drought years. This indicates 

that the real time NDVI data extracted can be a good indicator of vegetation health and 

ultimately drought. 
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6.2.  Research implications and future directions 

This project has presented a methodology for integrating remote sensing and in situ data with 

land surface models and re-analysis data for the monitoring and assessment of droughts in areas 

with spatiotemporally variable climatic conditions. This approach has worked well for Iraq, 

but the same methodology could be adapted for other regions too, particularly in dryland 

regions and in Developing countries, where there is a paucity of previous research, and in situ 

data are unreliable or absent (e.g. due to remote conditions, lack of funding or the political 

situation. Most of the data used in this study are freely available from global archives and the 

models are widely used in the research literature. Land surface models are particularly useful 

to improve our understanding of biophysical systems, and so the methodology used here holds 

great potential for less-studied parts of the world. 

Furthermore, land surface models are increasingly being used to explore the potential impacts 

of future climate change scenarios. These data could be invaluable for decision makers to 

propose adaptation strategies and improve preparedness and sustainability of agriculture in the 

Middle East, and elsewhere. There is a great deal of scope for further research on this topic. 

 

 

 

 

 

 

 

 

 



194 

 

6.3.  Research limitations 

It is recognised that there are several limitations of this study: 

- In situ meteorological data were missing in 2003 and 2004 because of the political conflict 

and instability at that time. This is a common problem for researchers in many parts of the 

world, but this study has explored the extent to which other data (such as ERA-Interim or 

RS data) can be used in these circumstances 

- A significant part of the study area, in particular the western desert close to the borders of 

Jordan and Syria, was under the control of dissident groups for much of the study period, 

so some of the in situ data are not sufficiently reliable. This may explain why the 

relationships between NDVI and SPI/SPEI were higher with ERA interim data compared 

to in situ data in these circumstances 

- The confounding effect of irrigation systems, which are widespread in the Tigris Euphrates 

basin, complicates determining the relationship between NDVI and drought in the study 

area. Irrigated agricultural systems are common, especially in drylands, so further research 

is needed to find a robust solution to this problem. Water losses in irrigation schemes, 

throughout Iraq, are a major issue. By and large, water is transferred to farmers’ fields 

through very poorly maintained distribution systems made of earth canals and ditches due 

to widespread deterioration of irrigation infrastructure which suffer significant water 

losses because of seepage or leakage, and infiltration. Likewise, most of the pump stations 

are severely run down, and some can no longer be repaired, which in turn affects the crops. 

Moreover, on-farm field application efficiency using the traditional surface gravity 

systems is assumed to be between 30–40 percent but is probably near 20 percent or less 

(Lucani 2012), (Water 2006). The SWAP analyses presented in Chapter 4 does not take 

account of these losses. 

- Land use change is often rapid in countries like Iraq, and can confound the use of land 

cover maps over the exended periods of time required for hydrometeorological studies of 

this kind. Note that the ERA-Interim reanalysis uses the same land cover for each year, 

and for the SWAP runs, the same crop rotation was used for each year. In real life, there 

would be much more inter-annual variability, which would have affected the model water 

balance calculations. Some agricultural areas were lost due to urban expansion, and 
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conflict and instability in the region has led to some abandonment of farmland in some 

areas. 

- Suitable in situ soil moisture and land surface temperature data were unavailable to attempt 

a calibration of the SMOS and remote LST retrievals. The same goes for verification of 

NDVI and water balance or energy balance fluxes. For example, there are no FLUXNET 

sites in Iraq.  

- Different spatial resolutions are used for all the data sources used in this study, ranging 

from 30m pixels in the case of Landsat data, to degree squares for some meteorological 

data. There is a mismatch between the requirements for modelling agricultural systems 

and the data provided by climate models. There are geostatistical considerations when 

combining data at different spatial resolutions in models. Further research is required, 

firstly to identify the optimum spatial resolution for modelling these types of 

environmental systems (especially in the light of massive improvements in computer 

processing power and data storage), and secondly to develop robust downscaling methods 

to retrieve climate parameters at the appropriate resolutions.  
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APPENDIX A: Yearly averaged SPI-3 and SPEI-3 values over the period 2001–2015, and 

NDVI 
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APPENDIX B: Spatiotemporal seasonal and interannual variation in the NDVI for three 

surface types in Iraq during 2001–2015. 
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APPENDIX C: Spatiotemporal seasonal variation in the LST (C̊) throughout desert, rangeland, 

agriculture during 2001–2015. 
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APPENDIX D: The spatial correlation analyses between LST and NDVI over Iraq. 
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P-Values between NDVI and LST in Chibyish, Hammar and Haweezah marshes from 2001 

to 2003 

 

Year P-Value (Chibyish) P-Value (Hammar) P-Value (Haweezah) 

2001 0.000 0.000 0.195 

2002 0.002 0.000 0.637 

2003 0.000 0.063 0.312 

2004 0.103 0.151 0.882 

2005 0.015 0.126 0.920 

2006 0.140 0.103 0.503 

2007 0.003 0.011 0.691 

2008 0.666 0.002 0.260 

2009 0.032 0.498 0.120 

2010 0.000 0.282 0.323 

2011 0.368 0.001 0.155 

2012 0.855 0.000 0.673 

2013 0.727 0.001 0.934 

2014 0.435 0.011 0.308 

2015 0.661 0.569 0.317 
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A spatial correlation analyses between NDVI and LST over desert region 

 

 

 

A spatial correlation analyses between NDVI and LST over rangeland region 

 

 

 

 

 

Year Site (1) Site (2) Site (3) Site (4) Site (5) Site (10) 

2001 -0.39 -0.28 -0.51 -0.43 -0.74 -0.54 

2002 -0.85 -0.10 -0.53 -0.20 -0.62 -0.49 

2003 -0.74 -0.59 0.09 0.14 -0.30 -0.68 

2004 0.10 0.16 -0.38 -0.49 -0.59 -0.31 

2005 -0.45 0.33 -0.02 -0.10 -0.51 -0.35 

2006 -0.07 0.17 -0.46 -0.06 -0.51 -0.47 

2007 -0.36 0.61 0.15 0.32 -0.13 -0.47 

2008 0.04 0.86 0.78 0.52 -0.04 -0.08 

2009 0.59 0.70 0.71 0.88 0.69 -0.41 

2010 0.63 0.72 0.72 0.87 0.73 -0.66 

2011 0.33 0.42 0.64 0.77 0.76 0.02 

2012 0.82 0.73 0.87 0.94 0.73 0.53 

2013 0.68 0.73 0.46 0.94 -0.68 -0.37 

2014 0.50 -0.16 -0.43 -0.33 -0.61 -0.61 

2015 -0.04 -0.68 -0.27 -0.52 -0.67 -0.86 

Year Site (16) Site (20) Site (21) Site (14) Site (23) 

2001 -0.71 -0.62 -0.70 -0.91 -0.58 

2002 -0.71 -0.58 -0.95 -0.92 -0.71 

2003 -0.64 -0.89 -0.88 -0.77 -0.84 

2004 -0.10 -0.76 -0.88 -0.74 -0.84 

2005 0.04 -0.18 -0.71 -0.69 -0.66 

2006 0.43 -0.43 -0.51 -0.76 -0.57 

2007 0.22 -0.84 -0.71 -0.49 -0.63 

2008 -0.44 -0.71 -0.56 -0.67 -0.82 

2009 -0.29 -0.52 -0.55 -0.76 -0.84 

2010 -0.21 -0.24 -0.61 -0.66 -0.71 

2011 0.12 -0.60 -0.10 -0.60 -0.46 

2012 -0.51 -0.58 -0.84 -0.73 -0.83 

2013 0.49 -0.72 -0.29 -0.86 --- 

2014 -0.09 -0.65 -0.64 -0.51 -0.71 

2015 0.10 -0.83 -0.83 -0.73 -0.84 
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A spatial correlation analyses between NDVI and LST over agricultural region 

 

 

 

 

 

 

 

 

 

 

 

Year Site (15) Site (17) Site (18) Site (19) Site (22) Site (6) Site (7) Site (8) Site (9) 

2001 -0.66 -0.02 -0.69 -0.71 -0.81 -0.82 -0.27 -0.58 0.41 

2002 -0.91 0.35 -0.65 -0.94 -0.95 -0.87 0.38 -0.20 0.76 

2003 -0.83 -0.25 -0.90 -0.84 -0.92 -0.61 -0.03 -0.28 0.79 

2004 -0.73 0.45 -0.29 -0.78 -0.74 -0.51 0.46 0.34 0.73 

2005 -0.80 0.35 -0.36 -0.60 -0.72 -0.46 0.23 0.10 0.83 

2006 -0.90 0.50 -0.41 -0.49 -0.60 -0.16 0.49 0.34 0.73 

2007 -0.69 -0.07 -0.45 -0.57 -0.64 -0.37 0.14 0.04 0.81 

2008 -0.93 0.12 -0.59 -0.38 -0.69 -0.64 -0.32 -0.26 0.63 

2009 -0.79 -0.03 -0.54 -0.49 -0.62 -0.84 -0.81 -0.76 -0.90 

2010 -0.74 0.04 -0.71 -0.75 -0.83 -0.68 -0.33 -0.40 -0.04 

2011 -0.68 -0.11 -0.44 -0.71 -0.70 -0.80 -0.73 -0.67 -0.49 

2012 -0.82 -0.23 -0.68 -0.84 -0.81 -0.47 -0.34 -0.37 0.44 

2013 -0.70 0.01 -0.66 -0.53 -0.75 -0.70 -0.42 -0.34 0.70 

2014 -0.74 0.16 -0.70 -0.66 -0.87 -0.83 -0.24 -0.12 0.60 

2015 -0.76 -0.09 -0.85 -0.86 -0.94 -0.73 -0.43 -0.55 0.28 
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APPENDIX E: Spatiotemporal variability in soil moisture contents (SMOS) and NDVI in Iraq 

during (2010-2015). 
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APPENDIX F: Interannual and seasonal variation in the SLHF as obtained from ERA-Interim 

and measured data, with NDVI throughout desert, rangeland, agricultural, and marshes 

sites 
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APPENDIX G: Assessment of water balance components from SWAP runs during 

(2001-2015) for the desert region. 
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APPENDIX H: Assessment of water balance components from SWAP runs during 

(2001-2015) for the rangeland region. 
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APPENDIX I: Assessment of water balance components from SWAP runs during (2001-

2015) for the agricultural region.  
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