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Abstract. In order to exploit the full-earth viewing potential
of satellite instruments to globally characterise aerosols, new
algorithms are required to deduce key microphysical param-
eters like the particle size distribution and optical parameters
associated with scattering and absorption from space remote
sensing data. Here, a methodology based on neural networks
is developed to retrieve such parameters from satellite inputs
and to validate them with ground-based remote sensing data.
For key combinations of input variables available from the
MODerate resolution Imaging Spectro-radiometer (MODIS)
and the Ozone Measuring Instrument (OMI) Level 3 data
sets, a grid of 100 feed-forward neural network architectures
is produced, each having a different number of neurons and
training proportion. The networks are trained with principal
components accounting for 98 % of the variance of the inputs
together with principal components formed from 38 AErosol
RObotic NETwork (AERONET) Level 2.0 (Version 2) re-
trieved parameters as outputs. Daily averaged, co-located and
synchronous data drawn from a cluster of AERONET sites
centred on the peak of dust extinction in Northern Africa
is used for network training and validation, and the optimal
network architecture for each input parameter combination
is identified with reference to the lowest mean squared er-
ror. The trained networks are then fed with unseen data at
the coastal dust site Dakar to test their simulation perfor-
mance. A neural network (NN), trained with co-located and
synchronous satellite inputs comprising three aerosol optical

depth measurements at 470, 550 and 660 nm, plus the colum-
nar water vapour (from MODIS) and the modelled absorp-
tion aerosol optical depth at 500 nm (from OMI), was able to
simultaneously retrieve the daily averaged size distribution,
the coarse mode volume, the imaginary part of the complex
refractive index, and the spectral single scattering albedo –
with moderate precision: correlation coefficients in the range
0.368≤ R ≤ 0.514. The network failed to recover the spec-
tral behaviour of the real part of the complex refractive index.
This new methodological approach appears to offer some po-
tential for moderately accurate daily retrieval of the total vol-
ume concentration of the coarse mode of aerosol at the Saha-
ran dust peak in the area of Northern Africa.

1 Introduction

Aerosol particles reflect and absorb solar radiation in the at-
mosphere shading the earth’s surface. They also reduce visi-
bility and can have a direct effect on human health (Samet et
al., 2000). Moreover, they are used to determine the earth’s
hydrological cycle (Remer et al., 2005). However, because
of inadequate quantitative knowledge of the global spatial
and temporal variation of aerosol optical properties (Hansen
et al., 2005), there is uncertainty in the magnitude of their
contribution to the earth’s climate and planetary radiative-
forcing (IPCC, 2007, 2013). With the expansion of the global
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AErosol RObotic NETwork (AERONET) of high-quality re-
mote sensing measurement instruments (Holben et al., 1998)
and the development of advanced and robust inversion algo-
rithms for the retrieval of aerosol parameters (Dubovik and
King, 2000), our understanding of aerosol microphysics and
optical properties has improved greatly. However, the size
of the uncertainty associated with the aerosol contribution
is known to be unacceptably large, and must be reduced by
at least a factor of 3 (Schwartz, 2004). An attempt to ad-
dress this uncertainty has been outlined in a recent report
of Mishchenko et al. (2007), which provides the aerosol pa-
rameter retrieval accuracy requirements for climate studies.
Retrieval of aerosol microphysical properties from inversion
of direct sun and sky radiance measurements is provided by
AERONET (Dubovik and King, 2000; Dubovik et al., 2002).
Unfortunately, these retrievals have low and inhomogeneous
spatial resolution (AERONET’s ground-based remote sens-
ing instruments are densely situated in and around cities
and sparsely located elsewhere). Furthermore, AERONET
stations are largely absent from vast uninhabited areas like
deserts, oceans and the ice-caps which are the largest sources
of planetary aerosol. Marine aerosol retrievals, in particu-
lar, are only available at island sites or in coastal regions.
In contrast, space-bound satellite instruments like the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) in-
strument on board the satellites Terra and Aqua, sample the
vertical atmospheric column of the whole earth, but their
retrieval algorithms are not currently able to provide reli-
able proxies containing information on the mean particle
size of fine and coarse aerosol, the complex refractive index
and particle shape – all necessary for a full understanding
of aerosol microphysics (Remer et al., 2005) and for glob-
ally characterizing different types of aerosols and sources
(Tanré et al., 1996). Importantly, a statistically optimized in-
version algorithm applied to multi-angle photo-polarimetric
measurements has recently demonstrated that aerosol prop-
erties are obtainable from the POLarization and Directional-
ity of the Earth’s Reflectances (POLDER) instrument on the
platforms Advanced Earth Observing Satellite-1 (ADEOS-
1) (Deuzé et al., 2000, 2001) and Polarization & Anisotropy
of Reflectances for Atmospheric Sciences coupled with Ob-
servations from a Lidar (PARASOL) (Dubovik et al., 2011;
Hasekamp et al., 2011; Waquet et al., 2014) satellites, but
these methods have not yet been independently validated
with long data records. In this work, gridded (1× 1 de-
gree) data from operational MODerate resolution Imaging
Spectro-radiometer (MODIS) and the Ozone Measuring In-
strument (OMI) instruments was used in order to exploit a
long 9-year period of data overlap with AERONET measure-
ments.

1.1 Motivation

This paper focuses on the question of how to retrieve
daily estimates of all aerosol parameters from satellite

measurements. We assess the potential for achieving this
by constructing neural network (NN) models and applying
them to data from the region of Northern Africa – where the
dust’s global aerosol optical depth (AOD) peaks (Chin et al.,
2002). This work is motivated then by the potential offered
by capitalizing on the full-earth coverage of AOD, H2O and
absorption aerosol optical depth AAOD provided by satel-
lite remote sensing instruments together with AERONET-
quality retrievals of the aerosol volume size distribution
(AVSD), complex refractive index (CRI), single scattering
albedo (SSA) and the particle asymmetry factor (ASYM).
The key to building the required bridge between ground and
satellite retrievals is to train NNs on AERONET ground-truth
data so as to learn the relationship between combinations of
satellite AOD, H2O and AAOD inputs and AERONET mi-
crophysical and optical parameters as outputs. The potential
of the NNs to extrapolate is then tested by feeding them with
unseen satellite inputs and comparing the outputs against co-
located and synchronous ground-based AERONET data. In
our study, we use the latest AERONET Level 2.0 Version
2 inversion products that are cloud-screened and quality as-
sured (AERONET, 2012).

1.2 Contemporary studies

In the last 5 years or so, multivariate fitting techniques
including function-approximating NNs have been brought
to bear on problems in the field of aerosol science. Of
paramount importance is the finding that a characteristic
aerosol fine mode volume and effective radius can be derived
from measurements of the AOD, the Ångström Exponent (å)
and its curvature using a multi-functional approach (Gobbi et
al., 2007). A further study constructed a multiple-input single
output NN that took radiances, solar viewing angles, and ter-
rain elevation from MODIS as input, and predicted the values
of co-located AERONET AOD values as output (Radosavl-
jevic et al., 2010). The study used data from 221 AERONET
sites and demonstrated that AERONET AOD could be suc-
cessfully estimated from satellite inputs. Taking this further,
Ristovski et al. (2012) trained an NN-based estimator of re-
trieval accuracy which was globally validated on a large sam-
ple of co-located MODIS and AERONET AOD retrievals.
Complementing this work, Albayrak et al. (2013) used an
NN-based approach to perform a global bias adjustment of
the MODIS-retrieved AOD relative to co-located AERONET
data. NN models were also applied in a very recent study
designed to detect and retrieve volcanic-ash-cloud proper-
ties from multi-spectral infrared MODIS measurements over
Mount Etna during recent volcanic eruptions (Picchiani et al.,
2011). In the context of the retrieval of vertical aerosol pro-
files, Sellitto et al. (2012) used an NN to invert SCanning
Imaging Absorption SpectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) data and demonstrated that in-
clusion of visual radiation could reduce biases and increase
the accuracy of ozone profiles at tropospheric levels. These

Atmos. Meas. Tech., 7, 3151–3175, 2014 www.atmos-meas-tech.net/7/3151/2014/



M. Taylor et al.: Satellite retrieval of aerosol microphysical and optical parameters 3153

studies are a sign that the aerosol community is starting to
embrace such methods.

AERONET’s latest Level 2.0 Version 2 inversion algo-
rithm retrieves all of the aforementioned aerosol microphys-
ical and optical parameters from ground-based sensors by
performing a numerical inversion of the observations, which
must be performed for each case. On the contrary, the NNs
are potentially able to simultaneously retrieve the AVSD,
CRI, SSA, and ASYM for the entire data sample in a single
step. NN retrieval schemes therefore (potentially) have the
capacity to produce real-time retrievals for large data sets. To
be more specific, the NN calculates a nonlinear regression
function yielding an estimate for the atmospheric state given
by the measurement vector (applying to all cases covered by
the training space), whereas other methods (like look-up ta-
ble and optimal estimator methods) match aerosol properties
to the corresponding measurement vector. The calculation of
this function may require considerable time since, depending
on the size of the training data set, NN training can be long,
but, once complete, the retrieval using the trained optimal
NN is instantaneous. The theoretical basis underpinning the
NN function approximation scheme is presented in Sect. 3.1.

1.3 Objectives

Motivated by the need to develop a methodology to produce
global satellite retrievals of aerosol microphysical and optical
parameters, and inspired by the success of recent NN models,
this paper reports on the initial phase of AEROMAP (http:
apcg.meteo.noa.gr/aeromap) a 2-year EU-funded project that
began in March 2012. This, our first major study, has the fol-
lowing main objectives:

1. to assess the potential of performing aerosol typing by
using Global Ozone Chemistry Aerosol Radiation and
Transport (GOCART) model outputs to select suitable
desert dust sites at the peak of dust extinction in North-
ern Africa,

2. to see if it is possible to standardize and optimize NN ar-
chitectures capable of learning the relationship between
the inputs and outputs for this region (i.e. for this aerosol
type),

3. to validate the trained NNs with unseen data at a distant
geolocation in the same region (i.e. aerosol type) and to
assess their performance using statistical regression and
timescale analysis.

1.4 Structure of the paper

The data used and an outline of the NN model are presented
in Sect. 2. Section 3 then presents the theory involved in
training and validating such NNs. In Sect. 4, the results of
NN training and testing for different input configurations are
presented and key findings, major impacts, as well as pros
and cons of the method are noted and analyzed in Sect. 5.

Finally, we conclude in Sect. 6 by assessing the overall po-
tential offered by the NN methodology for retrieving aerosol
microphysical and optical parameters from space.

2 Methodology

Aerosol particles from different sources have different sizes,
absorption properties, and shape. They are typically classi-
fied into a small number of types (≈ 5–10) including for ex-
ample: desert or soil dust, smoke or organic and black carbon
from biomass burning, urban sulphates, marine sea salt, vol-
canic ash as well as their mixtures. Researchers in the field
have found that different aerosol types correlate strongly with
pairs of different aerosol parameters, but no consensus has
yet been reached on a single method to disambiguate and uni-
versally distinguish them. Therefore, in this work, in order to
avoid as much as possible such potential sources of data in-
homogeneity or inconsistency, we adopted an independent
qualitative approach to aerosol typing which is described in
Sect. 2.1.3.

2.1 Data selection

This work draws on 4 different data sources: satellite in-
puts from MODIS and the OMI, ground-based remote sens-
ing data from AERONET, and global chemical model output
data from the Georgia Institute of Technology’s GOCART
model (Chin et al., 2000, 2002; Ginoux et al., 2001). MODIS
and OMI provide satellite inputs and co-located and syn-
chronous values of these inputs as well as output parame-
ters at the ground are provided by AERONET. The GOCART
data is used for aerosol typing.

2.1.1 Satellite inputs

MODIS on board the Terra Earth Observation Satellite
(EOS) (EOS-AM) and Aqua (EOS-PM) satellites has been
capturing data in 36 spectral bands from 400 to 1440 nm
since 1999 with a spatial resolution ranging from 250 m–
1 km. Collectively, the instruments image the entire earth’s
surface every 1–2 days. Daily averaged data was down-
loaded in hierarchical data format from the MODIS Level
3 Collection 5.1 Product (MODIS, 2012). From these files,
AOD(470), AOD(550), AOD(660) time series provided at
1× 1 degree spatial resolution were extracted. In addition,
co-located and synchronous, Level 2, near-infrared, mean
total columnar water vapour (H2O) from the Aqua satel-
lite (data set MYD05_L2) was also downloaded. Finally,
the daily estimate of near-ultraviolet (UV) AAOD(500) was
downloaded from the OMI Level 3 Near-UV Aerosol Data
Product (OMAERUV) Product (OMI, 2012) for co-located
and synchronous data (with MODIS) to test the impact of
absorption on NN retrieval quality. As a result, daily aver-
ages of these parameters were obtained for the entire global

www.atmos-meas-tech.net/7/3151/2014/ Atmos. Meas. Tech., 7, 3151–3175, 2014

http:apcg.meteo.noa.gr/aeromap
http:apcg.meteo.noa.gr/aeromap


3154 M. Taylor et al.: Satellite retrieval of aerosol microphysical and optical parameters

Figure 1. Schematic showing(a) the Northern African (NAF) AERONET sites used for NN training (red) and the coastal AERONET site at
Dakar (green) used for simulation with data set A,(b) the NAF study region in the context of the global distribution of TOMS dust sources
(Prospero et al., 2002),(c) an overlay of the AERONET sites on the peak of dust AOD extinction for the study region extracted from the
mean global GOCART model output in shown in(d) (Chin et al., 2000, 2002).

domain, spanning the full temporal record of available data:
4 July 2002 to 4 July 2012.

2.1.2 AERONET products

The AERONET Level 2.0 Version 2 inversion products con-
tain retrievals for 116 different aerosol parameters including
the AVSD: dV (r)/dlnr (in µm3µm−2) retrieved in 22 loga-
rithmically equidistant radial bins spanning the range of par-
ticle radii: 0.05 µm≤ r ≤ 15 µm, the real and imaginary parts
of the refractive index: CRI-R(λ), CRI-I(λ), and the opti-
cal parameters: AOD(λ), SSA(λ), and ASYM(λ) centered
at 4 wavelengths:λ = 440, 675, 870 and 1020 nm. Daily
averaged retrievals were downloaded for the entire global
AERONET record (comprising 809 sites) and spanning the
period: 1 March 1996 to 7 April 2012. For each site, its el-
evation (height above sea level in metres), its Eastern longi-
tude and Northern latitude were extracted. In addition, al-
though AERONET’s Level 2.0 Version 2 inversion prod-
ucts also provide the mean geometric radii of the fine and
coarse modesr(f ) andr(c), their standard deviationsσ(f )

andσ(c), and their volume concentrationsV (f ) andV (c);
the fine fractionη which is not provided was also calcu-
lated and appended to the AERONET data record. All of
these parameters are calculated from the AVSD by spec-
ifying a mode separation pointrs, and, in what follows,
we will refer to them collectively as secondary microphys-
ical parameters. Their calculation (required for comparing

satellite-driven NN simulated outputs with AERONET) is
described briefly in Appendix A. Furthermore, it has been
found that there is a (small) difference between AODs ob-
tained by MODIS and AERONET which is important and
non-negligible (Remer et al., 2005; Albayrak et al., 2013)
Hence, the Ångström Exponent å (675 nm/440 nm) was cal-
culated and used to extrapolate AERONET AODs to match
those available from space at MODIS wavelengths with the
following rearrangement:

AOD(λ2) = AOD(λ1)

(
λ2

λ1

)−å(λ2,λ1)

. (1)

These interpolated AERONET AOD(470), AOD(550),
AOD(660) values were also appended to the AERONET data
set. This data set therefore contains both ground retrievals of
the satellite inputs (aligned to the central wavelengths pro-
vided by MODIS) plus the output parameters which the NN
model is built to retrieve.

2.1.3 Aerosol typing

In order to isolate suitable desert dust data for this study,
we developed a qualitative two-step approach. In the first
step, the AERONET data set was ranked by the number of
complete records available at each site (without data gaps
in the input parameters AODs, H2O, AAOD, and the out-
put parameters AVSD, CRI-R, CRI-I, SSA and ASYM). The
requirement for records to be complete caused the number
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of sites to drop from 807 to 623 sites. It was found, for ex-
ample, that the top-ranked site in the study region (Northern
Africa) is Banizoumbou (Niger) which contains 2283 com-
plete data records. The second step of our approach aims
to answer the question: how many of these daily averaged
records are dust dominated? For this, the GOCART model
AOD extinction per aerosol type was used. GOCART pro-
vides 3-hourly measurements of the total extinction AOD as
well as the contribution to total extinction AOD of sulphate
(SO2), organic carbon (OC), black carbon (BC), desert (min-
eral) dust and sea salt. GOCART data was downloaded for
the first 155 AERONET sites ranked in step 1 by the number
of complete records. This list accounts for 75 % of all avail-
able Level 2.0 Version 2 inversions. GOCART provides eight
3-hourly measurements per day, which were averaged to pro-
duce daily averages and expressed as a percentage of the total
extinction AOD for each aerosol type. The percentage of dust
was then used as a basis for re-ranking the list of high data
volume sites. Table 1 shows the AERONET complete-record
ranked-sites, ranked by dust contribution (according to GO-
CART data) for the study region (Northern Africa).

In Table 1, data set A comprises AERONET sites that op-
erate the older CIMEL model I sun photometers which lie
on the peak of dust AOD extinction as extracted from the
mean global GOCART model output, and which are verified
via cross reference with the strongest TOMS dust sources
(shown in Fig. 1). Data set B comprises those sites that op-
erate the newer CIMEL model II sun photometers which, in
addition, also contribute measurements of near-UV AOD at
380 and 500 nm. This separation of the Northern Africa data
was made so as to investigate the possible effect of UV AOD
inputs on NN model performance. Dakar was selected as the
testing site since: (i) it has the largest number of days of co-
located synchronous satellite measurements, (ii) it is also lo-
cated on the peak of dust AOD extinction, and (iii) it operates
the newer model II CIMEL sun photometer.

2.1.4 Handling of outliers

While it is generally not good practice to remove outliers
since they often correspond to interesting phenomena, in re-
lation to NNs, it is important that infrequently occurring, ex-
treme data that can significantly bias the data-fitting proce-
dure is removed. This led us to investigate various methods
of outlier detection and to study the distribution of the data
for each of the input and output parameters. Histograms were
produced that partitioned the data into 20 bins and it was
found that many of the parameters presented near-normal
distributions in quantile–quantile plots (the H2O, the vol-
ume concentration in each radial bin, the CRI-R and the
ASYM), but that AODs and the CRI-I presented positive
skew-normal distributions, and the SSA presented negative
skew-normal distributions. We elected to apply the Grubbs’
test (Grubbs, 1969) to remove outliers. Grubb’s Test consists
of testing one data point at a time and finding and removing

the value furthest from the sample mean (usually applied to
normally distributed data). Since the median is more sta-
tistically robust when analyzing data that is skew-normal,
Grubb’s Test was applied with reference to the sample me-
dian rather than the sample mean. This procedure was ap-
plied iteratively to data sets A and B (used to train the NNs)
until outliers were removed at the 68 % confidence level of
the entire two-tailed data distribution. Outliers were delib-
erately not removed from the inputs used in testing the NN
so that the ability of the NNs to extrapolate on raw, unseen
data could be properly tested. The data selection scheme pro-
duced dust-typed input output data that (a) is homogeneous
(does not contain parameter data gaps), (b) is wavelength-
matched and (c) is free of biasing values (at the 68 % level of
confidence).

2.2 The NN model

Feed-forward NNs having at least one layer of hidden neu-
rons whose activation functions, are nonlinear hyperbolic
tangent (Tanh) functions (or other general nonlinear sig-
moidal functions), are able to operate as universal function
approximators (Cybenko, 1989; Hornik et al., 1989). This
means that, given enough hidden neurons and training data,
such networks are capable, in principle, of learning the math-
ematical relation between inputs and outputs. The input and
output parameters used in this work were connected via two
network layers – the first layer containing hidden neurons
with Tanh activation functions and the second layer contain-
ing output neurons having linear activation functions. We
also tested three-layer models that used two layers of hid-
den neurons but the results were worse than those obtained
here. The relation between input and output parameters for
the type of NN used in this study is presented in Sect. 3.1,
together with details of the methodology adopted for eval-
uating network training (Sect. 3.2) and network validation
(Sect. 3.3). Here, we describe the operation of the NN model
which was coded using MATLAB’s object-oriented script-
ing language in conjunction with its neural network toolbox
(Demuth and Beale, 2004).

NN models require specification of (1) how the perfor-
mance error associated with the network model is to be mea-
sured and (2) the architecture used. We measure the per-
formance error of the network using the mean squared er-
ror (MSE) calculated from the difference between its outputs
and target output data. The details of the macro-statistical ap-
proach we adopt are presented in Sect. 3.2 in the context of
NN training. The NN architecture is a more complex entity. It
involves not only the number of hidden neurons and their ac-
tivation functions, but also the proportion of data used to train
and validate the NN as well as the learning algorithm used.
The perception that NN models are somewhat subjective is
due to what is often seen as an arbitrary choice of some or
all of these elements. In order to try to make the choice of ar-
chitecture more objective, we developed a new procedure to
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Table 1. Selection of desert-dust dominated AERONET sites for this work.N is the number of complete AERONET daily averaged Level
2.0 Version 2 inversion records available (up to 7 April 2012). For each site, the total mean extinction AOD and the percentage composition
of the total is given for GOCART-modelled aerosol types.

AEROSOL SITE N GOCART Mean AOD & aerosol composition

TYPING < AOD > % SO2 % OC % BC % Sea Salt % Dust

TRAINING Tamanrasset INM 407 0.793 4.54 % 1.39 % 0.63 % 0.13 % 93.44 %

(Data set A) Agoufou 1028 0.973 3.70 % 2.47 % 0.82 % 0.10 % 92.91 %
Banizoumbou 2283 0.920 4.57 % 3.48 % 1.09 % 0.11 % 90.76 %
DMN Maine Soroa 680 0.967 5.27 % 3.52 % 1.14 % 0.10 % 90.07 %
IER Cinzana 1469 0.823 4.86 % 4.62 % 1.22 % 0.12 % 89.19 %
Ouagadougou 966 0.776 6.06 % 7.47 % 1.93 % 0.13 % 84.41 %

TRAINING Niamey 310 0.920 4.57 % 3.48 % 1.09 % 0.11 % 90.76 %
(Data set B) IER Cinzana 1469 0.823 4.86 % 4.62 % 1.22 % 0.12 % 89.19 %

Dahkla 299 0.629 8.43 % 1.91 % 0.79 % 0.95 % 88.08 %
Santa Cruz Tenerife 660 0.405 15.06 % 2.96 % 1.23 % 4.20 % 76.79 %
Izana 563 0.358 17.32 % 3.07 % 1.40 % 5.59 % 72.63 %

SIMULATION Dakar 1583 0.705 7.38 % 5.53 % 1.42 % 0.71 % 84.82 %

detect optimal NN architectures. We began by creating a list
of candidate input–output combinations (see below). Then,
we trained the corresponding NNs by following these four
steps:

1. normalize all input and output variables,

2. apply principal components analysis (PCA) to inputs
and outputs separately so as to exclude redundant vari-
ability (it is required that the PCs account for 98 % of
the total variance),

3. loop through a grid of 100 NNs of varying numbers of
hidden neurons (4–24 in steps of 2) and proportions of
training data (40–90 % in steps of 5 %),

4. select the NN that has the minimum total training and
validation MSE.

This procedure can be automated and was found to avoid
the bias and underfitting that can result from having too few
neurons on the one hand, and the high variance and over-
fitting that can result from having too many on the other
(see Sect. 3.2). It also avoids arbitrary partitioning of the
data into training and validation proportions, and the use
of PCA helps exclude redundant variability which can ad-
versely affect training efficiency (Jolliffe, 2002). Normaliza-
tion of the input and output variables was achieved as fol-
lows. For each input and output variable data vectorX, we
calculated the meanµX and standard deviationσX. The vec-
tor means and standard deviations were then used to map
(or shift and scale) the input and output data vectors onto
their z score values:zX = (X − µX)/σX (i.e. standard nor-
mal values having a mean= 0 and a standard deviation= 1).
In this study, we consider the min–max values to be those

available in our training data set, and as characteristic of dust
in the Northern Africa region. The application of PCA in our
study was done to reduce the redundancy in the input and
output variables. PCA is an effective procedure for remov-
ing this redundancy and has two effects: it orthogonalizes
the components of the data vectors (so that they are uncor-
related with each other), and it orders the resulting orthogo-
nal components (principal components or PCs) so that those
with the largest variation come first – allowing us to elimi-
nate the components that contribute the least to the variation
in the data set. The application of PCA requires normaliza-
tion of the variables prior to application of the method due
to the fact that different variables have very different value
ranges and bias the measurement of the variance (Abdi and
Williams, 2010). PCA was applied separately to the input and
output variables and the extracted PCs were ordered. Best re-
sults were obtained by retaining the top ranked PCs that ac-
counted for 98 % of the total variation in the input and output
data. The components calculated from PCA are a mixture of
the original variables. We also did some trials applying PCA
on groups of variables of the same type (e.g. AVSD bins
and spectral parameters separately) so as to retain physical
characteristics within variable clusters – but the results were
worse than those presented here. We wish to emphasize that
the methodology presented here is a first attempt at objec-
tivizing the choice of NN architecture, and is not ideal. For
example, the discrete steps in (neuron, proportion of train-
ing data [%]) space could be made finer (i.e. instead of steps
of 5 % in the training proportion (in what follows, we de-
note the proportion of training and validation data used as
“training %” and “validation %”, respectively) we could have
used a 1 % step size). In addition, a bootstrapping approach
could be adopted that would allow several different instances
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Figure 2. Schematic of the NN model used in this work. Principal components obtained from PCA applied to the case 1–4 data are formed
and used to train the central engine NN shown in the centre. The training cycle is repeated for the grid of NNs and the optimal trained NN is
found. The outputs of the trained NN are then transformed back to the full parameter space using the reverse principal components (un-PCA).
The outputs from the trained NN are used to validate the interpolation potential of the optimal NN. Principal components obtained during the
data pre-processing step of network training are used to transform new case 1–4 inputs at Dakar which are fed to the trained NN to simulate
case 1–4 outputs at Dakar.

at the same training %/ validation % ratio to be evaluated. It
should also be noted that it is customary to optimize an NN
on the validation data rather than the training data (Bishop,
1995). This was also our initial approach. However we found
that the performance of the resultant NN on unseen data at
the test site (see Sect. 4) was maximized when we coupled
the training and validation MSE. We recognize that the NN
is not built to work in the general case (i.e. to retrieve dust
properties worldwide), but it works well for the Northern
Africa region where we performed our study. We hope to ad-
dress the generalization problem in a future publication. For
a thorough description of data handling in the context of con-
structing and testing function approximating NNs, we refer
the reader to Bishop (1995).

Aiming to perform an empirical sensitivity analysis with
respect to candidate input combinations, we drew up a list of
aerosol parameters which are provided by the two satellites
globally at 1×1 degree spatial resolution, leading to the fol-
lowing set: AOD(470), AOD(550), AOD(660) and H2O from
MODIS, and AOD(380), AOD(500) and AAOD (500) from
OMI. Since it has been suggested that there is high sensitiv-
ity to particle absorption in the near-UV (Torres et al., 2002),

it was decided that this effect would be studied separately by
constructing an input combination that depended on the near-
UV AOD at 380 and 500 nm – which are provided by the new
CIMEL (model II) AERONET sun photometers comprising
data set B. Note that the AAOD(500) provided by OMI is
a modelled parameter obtained by using a look-up table of
expected SSA values that depend on the aerosol type and
the geographical location (Torres et al., 2007). Conversely,
in the case of AERONET, the value of AAOD (at the cen-
tral wavelengths: 440, 675, 870 and 1020 nm) is calculated
from retrieved aerosol microphysical properties (Dubovik et
al., 2000). In all, the following four distinct scenarios were
identified and used in this study:

– Case 1 inputs= AERONET: AOD(470), AOD(550),
AOD(660)

– Case 2 inputs= AERONET: AOD(470), AOD(550),
AOD(660)+ H2O

– Case 3 inputs= AERONET: AOD(470), AOD(550),
AOD(660)+ H2O+ AOD(380), AOD(500)
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Figure 3. Schematic showing the neural connectivity between input and output parameters.

– Case 4 inputs= MODIS: AOD(470), AOD(550),
AOD(660)+ H2O and OMI: AAOD(500).

This approach is essentially a form of empirical sensitiv-
ity analysis applied to the input data. In each case, the set
of output variables comprises: the AERONET microphysical
AVSD (calculated at 22 equidistant logarithmic radial bins
spanning the range 0.05 to 15 µm), the spectral refractive in-
dex and the optical parameters SSA and ASYM centred at
440, 675, 870 and 1020 nm. Cases 1 and 2 use daily aver-
aged records drawn from data set A, case 3 uses daily av-
eraged records drawn from data set B and case 4 uses co-
located satellite data synchronous with data set A (see Ta-
ble 1). The NN model then proceeds as follows. PCA is ap-
plied to the input and output data separately for each of the
cases 1–4 and a grid of 100 NNs of differing (hidden neuron,
training %) architecture is produced, trained and validated.
The optimal NN is then identified using the minimum total
training and validation MSE between the NN outputs and tar-
get AERONET data. The PCA is inverted back to parameter
space and comparative (linear regression) statistics are cal-
culated for the outputs of the optimal trained NN in relation
to the AERONET training output data. In order to test each
optimally trained NN, new and unseen case 1–4 data at the
coastal dust site Dakar is transformed into PCA space and fed
to the corresponding NNs. In each case, the network’s out-
put is transformed back from PCA space to parameter space
where comparative statistics are again applied to the NN out-
puts in relation to AERONET ground-truth data.

A schematic of the overall NN model is shown in Fig. 2.
In Sect. 3, the functional relation between network outputs
and inputs is presented together with details of the methods
used to train and validate the performance of the NNs.

3 Theory

3.1 The NN input–output function approximation

As we discussed in Sect. 2.2, the motor behind the NN model
is the multiple input, multiple output two-layer feed-forward
NN at the centre of Fig. 2. The NN has the following input–
hidden layer–output layer connectivity shown in detail in
Fig. 3.

The NN has a vectorX of R-input PCs and a vectorY of
s2-output PCs (grey circles). For case 4 for example, PCA
applied to the inputs generatedR = 3 PCs, and PCA applied
to the outputs produceds2

= 7 PCs (see Sect. 2.2 for details).
The NN has 2 layers of neurons connecting the inputs to
the outputs. The first layer (the hidden layer) hass1 neu-
rons with nonlinear activation functionsf 1

= Tanh and the
output layer hass2 neurons with linear activation functions
f 2. Each neuron has a single bias[0,1] and so the hidden
layer has a vectorb1 of s1 biases while the output layer has
a vectorb2 of s2 biases. The vector ofR-inputsX is con-
nected to thes1-neurons of the hidden layer via a matrix of
[s1xR] input weightsIW 1,1 while the vectora1 of s1-outputs
is connected to thes2-output neurons via a matrix of [s2xs1]
layer weightsLW 2,1. Finally, the vectora2 of s2-outputs is
the vectorY of NN outputs. The exact mathematical equation
relating the NN outputs to the NN inputs is then the matrix
equation:

Y = f 2
(
LW 2,1f 1

(
IW 1,1X + b1

)
+ b2

)
. (2)

The multiplication of the matrixIW 1,1 and the vectorX is
a dot product equivalent to the summation of all input con-
nections to each neuron in the hidden layer. Equation (2)
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above is the nonlinear functional approximationN that re-
lates the output parameters to the input parameters:

Y = N(X). (3)

As we described in Sect. 2.2, the input vectorX contains a
combination of the satellite input parameters while the output
vectorY contains the sought-after retrievals. Traditionally, an
NN is assessed by dividing available data into 3 proportions:
a training set, a validation set, and a testing set. However,
since the data reduction scheme described in Sect. 2 led to a
substantial loss of available data records, it was decided that
all available data should be put to use in NN training and
validation, with none reserved for testing. During the testing
phase, the NNs therefore are presented with unseen (not used
for the NN training) input data at a new site (Dakar) in the
same region (Northern Africa), and used to simulate the out-
puts – i.e. they are blind to the expected outputs. In this way,
all available aerosol-typed data for the region of interest is
used (apart from Dakar) in the training and validation pro-
cess and testing is able to shine light on the potential of the
trained and validated NNs to work properly with unseen data.
The results of the NN training and validation phase are pre-
sented below. In Sect. 4 the results of the NN testing phase
are presented.

3.2 NN training

In the training phase batch runs are performed on a grid
of 100 NNs permuting through a range of architectures
such that the number of hidden neurons ranged from 4–24
(in steps of 2) and so that the training proportion ranged
from 40 to 90 % (in steps of 5 %). The NN connection
weights and biases are updated (i.e. trained) using an op-
timization learning algorithm. Initial tests were made with
both a single layer of hidden neurons and also with two
layers of hidden neurons. For each of these tests, 4 dif-
ferent optimization learning algorithms were also investi-
gated: (i) the Levenberg–Marquardt (LM) back-propagation
optimisation learning algorithm (Levenberg, 1944; Mar-
quardt, 1963) (MATLAB flag “trainlm”), (ii) Bayesian reg-
ularization (MATLAB flag “trainbr”), (iii) resilient back-
propagation (MATLAB flag “trainrp”), and (iv) scaled
conjugate-gradient back-propagation (MATLAB flag “train-
scg”). The best results were obtained with the LM algorithm
applied to a single layer of hidden Tanh neurons. During each
iteration of the learning process, the weights and biases are
tuned so as to minimize the MSE cost function:

MSE=
1

N

∑N

i=1
(t i − yi)

2 . (4)

Note that the MSE is calculated fromN output vectors
yi againstN AERONET target vectorst i . Training proceeds
through a number of epochs until the MSE between NN out-
puts and AERONET targets (expected outputs) is minimised.
In particular, the MSE obtained from the training data and

the MSE obtained from the validation data were summed for
each NN in the grid. The optimal NN was identified as the
one whose architecture had the smallest total MSE.

Table 2 shows the results of applying this optimisation pro-
cess to cases 1–4. One thing to note from Table 2 is that the
training error in cases 1–4 is substantially larger than the val-
idation error (having percentage fractional errors of+15.8,
+17.2,+27.8 and+12.1 %, respectively). This can be due
to outliers in the data set, although we attempted to imple-
ment a strict quality filter via aerosol typing and the exclu-
sion of outliers at the 68 % level of confidence with Grubb’s
Test. While the percentage fractional error does not appear
to depend on the size of the sample (the case 1–4 NNs have
N = 3808, 3808, 353 and 213 training data records, respec-
tively), we cannot exclude the possibility (even in cases 2–
4) that there may be data vectors that are associated with
input–output values that occur less frequently and which are
therefore not learned well by the NN. The second thing to
note is that for the case 1 NN, convergence was achieved
very rapidly (2 epochs), suggesting, as expected, that the in-
put vector is clearly not containing the information needed to
recover the target vector.

The optimal case 4 NN, trained with data from satellite
inputs and outputs from the AERONET stations comprising
data set A, has 22 neurons in the hidden layer, 7 neurons
in the output layer, and used 90 % of data set A for train-
ing and 10 % for validation. This NN has three inputs: the
three principal components (PCs) of AOD(470), AOD(550),
AOD(660), H2O and AAOD(500). It also has seven outputs:
7 PCs of the 22 logarithmically equidistant radial bins of the
AVSD and the CRI-R, CRI-I, SSA and ASYM spectral pa-
rameters centred at 440, 675, 870 and 1020 nm. The evolu-
tion of the optimization process as well as the statistics asso-
ciated with this optimal case 4 NN found are shown in Fig. 4.

Figure 4a shows, as expected, that the training MSE tends
to decrease as the number of hidden neurons is increased.
Furthermore, it shows that as the number of neurons in-
creases, a positive gradient emerges in the training MSE with
training % (most clearly visible in the lower panel of Fig. 4a
when the number of neurons is greater than about 12 neu-
rons) – i.e. for a fixed number of neurons the training MSE
is increasing with training %. While this may be somewhat
counter-intuitive, it is possible that by increasing the training
data sample, we increase the likelihood of including a couple
of records from the long tail of the parameter distributions
which are not easily retrieved, resulting in larger MSEs. Fig-
ure 4b shows that the validation MSE increases slowly with
the number of hidden Tanh neurons. Figure 4b shows that
the validation MSE increases slowly with the number of hid-
den Tanh neurons. Two sharp peaks at (10, 60 %) and (20,
45 %) are probably due to the fact that over-fitting is occur-
ring at these points due to the small size of the data set. The
total training time is seen in Fig. 4c to increase sharply and
non-linearly when the number of neurons is> 22. In relation
to the evolution of NN performance with epoch in Fig. 4d,
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Figure 4. Optimization of the NN for case 4. The upper panels show the training MSE surface (left), the validation MSE surface (middle),
and the total training time surface [s] (right) for the grid of 100 NNs. The MSE of the training data and validation data (100-training %)
with back-propagation iteration (epoch) is shown for the optimal NN (22, 90 %) in the lower left panel, while the errors calculated from the
difference between the NN PC outputs and the AERONET PC outputs for the same NN together with the value of their regression coefficient
R, is shown in the lower right panel.

convergence has clearly been reached after 10 epochs (itera-
tions) at the horizontal asymptote where the best validation
MSE= 0.719. For all NNs, the goal for the back-propagation
cost function is set to 1/100th of the variance of the targets
(for the optimal case 4 NN this is equal to 0.12). In this case,
the goal is very stringent and is unlikely to be reached with
an increase in the number of iterations – suggesting that a
much larger and uniform training data set is required to im-
prove the training performance further. We base our inter-
pretations in this work mostly on macro-scale statistics so as
not to distract from the main goal of the study. We will con-
sider intrinsic NN errors and uncertainty in more detail in a
future paper. The Pearson product–moment correlation coef-
ficient calculated from NN PC outputs and AERONET train-
ing PC targets for the optimal case 4 NN isR = 0.992 (see
Fig. 4e) and is suggestive of an excellent NN fit. This is fur-
ther backed up by the histogram of the differences between
NN PC outputs and AERONET training PC targets (Fig. 4e)
which presents a sharply peaked Gaussian having a near-zero
mean error= 0.0006 and a standard deviation (SD)= 0.0627.
These macro-statistics suggest that the optimal NN is gener-
ally well trained and properly performs the function approx-
imation between inputs and outputs. More transparency can
be gained by performing comparative macro-statistics on the
output parameters separately, as described in the next section.

3.3 NN validation

The results of NN training along with the training data size
for each of the cases 1–4, are shown in Table 3. The columns
“Target” and “NN output” present the mean value of each
parameter. In Table 3, the daily averaged coarse mode peak
is measured by the volume concentration in “Radial Bin
15” (≈ 2.241 µm), the entry< AVSD > is the mean value
of all correlations between the NN-derived AVSD and the
AERONET target AVSD, and AAOD(440 V 500) represents
the regression of the satellite (from OMI) AAOD at 500 nm
against the AERONET AAOD at 440 nm.

3.3.1 Microphysical outputs

The training of all NN cases showed that only the AVSD
related to the coarse mode of dust is accurately retrieved
from the AOD information. In particular, cases 1–3 retrieved
the daily averaged coarse volume concentrationV (c) and its
modal peak (“Radial bin 15”) to a very high level of pre-
cision: 0.967≤ R(d) ≤ 0.970 and 0.956≤ R(d) ≤ 0.983, re-
spectively. The satellite input case 4 also retrieved the daily
averaged coarse volume concentrationV (c) and its modal
peak, but withR(d) = 0.365 andR(d) = 0.375, respectively.
Only case 4 was able to retrieve the coarse mode geometric
radiusr(c) with R(d) = 0.346. The AERONET input cases
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Table 3.Training results obtained for the optimal NN found for each of the cases 1–4. The mean AERONET “Target” values are presented
along with the mean NN outputs and the Pearson product–moment correlation coefficient obtained at the daily timescaleR(d). The outputs
are divided into microphysical parameters derived from the AVSD and the CRI, and the optical parameters SSA and ASYM.

Training AERONET Satellite

Case 1 Case 2 Case 3 Case 4

Target NN output R(d) Target NN output R(d) Target NN output R(d) Target NN output R(d)

N (samples) 2099 1985 353 134
AOD(470) 0.721 0.695 0.624 0.609
AOD(550) 0.704 0.678 0.604 0.583
AOD(660) 0.684 0.659 0.582 0.556
H2O 2.265 2.357 2.289
AAOD(440 V 500) 0.061
AOD(380) 0.621
AOD(500) 0.650

Microphysics V (f ) 0.022 0.022 −0.119 0.022 0.023 0.177 0.023 0.026 0.290 0.029 0.030 0.461
V (c) 0.434 0.432 0.969 0.420 0.417 0.967 0.328 0.320 0.970 0.383 0.342 0.365
η 0.058 0.058 0.473 0.059 0.061 0.520 0.079 0.087 0.387 0.090 0.085 0.404
r(f ) 0.109 0.109 0.031 0.109 0.110 0.209 0.118 0.120 0.288 0.111 0.112 0.243
r(c) 2.051 2.028 0.007 2.055 2.046 0.114 1.855 1.871 0.255 2.018 1.994 0.385
var(f ) 1.139 1.135 −0.007 1.139 1.136 0.053 1.153 1.178 0.046 1.137 1.135−0.194
var(c) 1.560 1.562 0.158 1.563 1.569 0.166 1.584 1.572 0.346 1.534 1.560 0.268
Radial Bin 15 0.982 0.983 0.956 0.375
< AVSD > 0.958 0.961 0.964 0.944
CRI-R(440) 1.472 1.466 0.068 1.472 1.467 0.447 1.475 1.472 0.476 1.448 1.446 0.532
CRI-R(675) 1.487 1.482 0.204 1.488 1.484 0.512 1.492 1.490 0.480 1.472 1.472 0.528
CRI-R(870) 1.471 1.467 0.276 1.473 1.470 0.546 1.481 1.481 0.484 1.464 1.465 0.521
CRI-R(1020) 1.458 1.453 0.326 1.459 1.457 0.565 1.469 1.469 0.493 1.452 1.454 0.521
CRI-I(440) 0.005 0.005 0.426 0.005 0.005 0.437 0.006 0.007 0.292 0.006 0.006 0.338
CRI-I(675) 0.003 0.003 0.450 0.003 0.003 0.461 0.004 0.006 0.258 0.004 0.004 0.354
CRI-I(870) 0.003 0.003 0.461 0.003 0.003 0.465 0.003 0.006 0.230 0.003 0.004 0.346
CRI-I(1020) 0.003 0.003 0.473 0.003 0.003 0.473 0.003 0.006 0.220 0.003 0.004 0.331

Optics SSA(440) 0.900 0.900 0.404 0.899 0.898 0.409 0.898 0.895 0.363 0.900 0.896 0.262
SSA(675) 0.948 0.945 0.509 0.947 0.944 0.511 0.939 0.931 0.387 0.938 0.934 0.347
SSA(870) 0.954 0.951 0.508 0.953 0.950 0.508 0.950 0.940 0.381 0.949 0.945 0.354
SSA(1020) 0.957 0.954 0.512 0.956 0.952 0.510 0.953 0.942 0.379 0.952 0.948 0.351
ASYM(440) 0.770 0.770 0.435 0.769 0.768 0.643 0.761 0.756 0.530 0.763 0.761 0.322
ASYM(675) 0.742 0.742 0.456 0.741 0.740 0.657 0.735 0.726 0.422 0.736 0.733 0.335
ASYM(870) 0.743 0.743 0.399 0.743 0.741 0.630 0.733 0.723 0.382 0.736 0.733 0.370
ASYM(1020) 0.748 0.748 0.386 0.747 0.746 0.627 0.737 0.727 0.384 0.742 0.739 0.410

1–3 failed here. As described in Appendix A, this is most
likely due to the fact that the AVSD of desert dust does not
have a clearly defined minimum to separate the coarse and
fine modes. This leads to a lot of variation in the location of
the mode separation pointrs. A lack of correlation inrs then
translates into a lack of correlation in the secondary micro-
physical parameters like the modal geometric radii and vari-
ances that depend sensitively on it. For AVSD outputs related
to the fine mode, the NN performances were moderately ac-
curate with a maximumR(d) = 0.461 for the daily averaged
fine mode volumeV (f ) (case 4 NN). The lack of correlation
with the AERONET targets for bothr(f ) and var(f ) for all
NNs is due to the fact that for desert dust AVSDs,V (f ) is a
small proportion of the total volume concentration (≤ 9 %).
The pre-dominance of the coarse mode in this region meant
that all four models retrieved the fine fraction (η) to a similar
(poor to moderate) degree: 0.404≤ R(d) ≤ 0.560. The vari-
ation ofR(d) across the entire AVSD (not just at radial bin
15) and the daily averaged time series of the retrievedV (c)

in case 4 are presented in Fig. 5.

The NN trained with satellite inputs in case 4, re-
trieved CRI-R with 0.521≤ R(d) ≤ 0.532, excelling over the
AERONET-input NNs. This is likely to be due to the inclu-
sion of the modelled AAOD from OMI in the NN inputs.

3.3.2 Optical outputs

In case 1, all optical parameters (SSA and ASYM) are re-
trieved with regression coefficients in the range: 0.386≤

R(d) ≤ 0.512, with the best result being obtained for
SSA(1020). The addition of columnar water vapour (H2O)
in case 2, while hardly impacting on the retrieval accuracy of
the SSA, led to a significant improvement in the retrieval of
the asymmetry factor (ASYM) at all wavelengths: 0.630≤

R(d) ≤ 0.657. Once again, the case 3 training results, de-
spite having four inputs in common with case 2 underper-
forms even the case 1 optics outputs (with the exception of
ASYM at 440 nm which is slightly better than the case 1 re-
sult but still worse than the case 2 retrieval). The addition
of the 2 UV AODs in case 3 does not appear then to offer
an improvement for dust in Northern Africa. The optical pa-
rameter retrievals of SSA and ASYM from the case 4 NN
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Figure 5. Aerosol microphysical parameter training results ob-
tained for case 4:(a) regression per radial bin of the AVSD (inset:
Radial bin 15) and(b) daily averaged time series for the volume
concentration of the coarse modeV (c).

are, in general in the range: 0.322≤ R(d) ≤ 0.410 (with the
exception of SSA(440) whereR(d) = 0.262). There appears
to be a play-off between the ability of the NN to recover all
microphysical parameters and simultaneously all optical pa-
rameters. This is expected, since the information content of
the input parameters is low for retrieval of the complete set
of aerosol parameters. The best training and validation re-
sults are associated with case 2 NN. In the next section we
report on the performance of the case 1–4 trained NNs by
feeding them with unseen input data, i.e. NN testing.

4 Results

The performance of the trained NNs was tested by feeding
them with unseen case 1–4 input data at the coastal dust
site Dakar in Northern Africa (or in the pixel containing
the site in the case of satellite inputs). The test outputs are
compared with the daily averaged target AERONET micro-
physical AVSD, the CRI and the optical parameters SSA and
ASYM at 440, 675, 870 and 1020 nm. The test results are
collected in Table 4 following the same general format as the
training results of Table 3.

In addition to the regression coefficient for daily averages
R(d), regression coefficients are also calculated for weekly
averagesR(w) and monthly averagesR(m) so as to assess

the behaviour of the NN results at other timescales. It is im-
portant, at this point, to make a comment about NN gener-
alization and the potential for extrapolation. While Dakar
has a distinct spatial geolocation with respect to the train-
ing sites used in the Northern Africa region, Fig. S1 of the
Supplement, shows clearly that the range of values of the
AERONET targets at Dakar (with the exception of the min-
imum value of the spectral SSA) can be seen to fall within
the range of values of the AERONET targets used to train
the NN. As such, the trained case 4 NN is not expected to
be able to extrapolate outside this range and to have general
extrapolation potential.

4.1 Inputs

As for the training inputs described in Sect. 3.3, for cases
1–2 the number of AERONET Level 2.0 Version 2 inver-
sion products daily averages at Dakar is substantially larger
(862–942 records) than the 149 records available in case 3,
and the 167 records obtained in case 4 due to the co-location
and synchronization (the same day) of AERONET data with
the satellite data. The fewer records for case 3 is due to the
fact that relatively fewer UV measurements of AOD(380)
and AOD(500) exist at Dakar. Another thing to be noted
about the input data for case 1–4 is that outliers were de-
liberately not removed in the testing data sets so as to pro-
vide a more stringent test of the NN retrieval. In particu-
lar, it is important to compare the CASE 4 satellite inputs
with their co-located and synchronous AERONET counter-
parts. This is especially important for the AAOD which is
modelled from OMI, whereas from AERONET is calculated
(see discussion in Sect. 3.3.2). With reference to Table 4, the
regression of satellite values for AOD(470), AOD(550) and
AOD(660) on their AERONET co-located and synchronous
counterparts spans the narrow range: 0.421≤ R(d) ≤ 0.442.
A similar level of correlation is found for the AAOD(500):
R(d) = 0.450. However a strong positive correlation is evi-
dent in the case of columnar H2O: R(d) = 0.834. Figure 6
shows the daily averaged time series of AOD(660) (as a rep-
resentative measure of the aerosol optical thickness), H2O
and AAOD(500) satellite inputs overlaid on the time se-
ries of co-located and synchronous AERONET counterparts
(note that the AERONET AAOD used for comparison is at
440 nm).

The MODIS and OMI data appear to be systematically
lower than AERONET, particularly at higher values. This
is explainable by the difference in the way AERONET’s
ground-based and MODIS’s space-based remote sensing in-
struments measure the AOD. AERONET’s sun photometers
perform almucantar scans of light radiation based around
the pointing direction to the sun (zenith angle) whereas
MODIS’s spectro-radiometers measure the intensity of solar
radiation reflected vertically by the earth’s system (the plan-
etary surface and the atmosphere). As a result, the light paths
are usually different and sample different angular variations
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Table 4.Test results obtained from the optimised trained NNs for cases 1–4 using inputs from the Dakar AERONET site and satellite inputs
from MODIS and OMI over Dakar.

Testing (Dakar) AERONET

Case 1 Case 2 Case 3

Target NN output R(d) R(w) R(m) Target NN output R(d) R(w) R(m) Target NN output R(d) R(w) R(m)

N (samples) 942 931 149
AOD(470) 0.649 0.640 0.674
AOD(550) 0.626 0.618 0.650
AOD(660) 0.603 0.594 0.626
H2O 2.698 2.244
AAOD(440 V 500)
AOD(380) 0.710
AOD(500) 0.669

MICROPHYSICS V (f ) 0.026 0.026 0.115 0.279 0.581 0.026 0.026 0.209 0.290 0.504 0.033 0.027−0.016 0.063 0.390
V (c) 0.357 0.360 0.965 0.950 0.959 0.353 0.355 0.967 0.950 0.961 0.344 0.361 0.969 0.940 0.949
η 0.092 0.079 0.474 0.599 0.762 0.093 0.085 0.491 0.600 0.812 0.115 0.082 0.400 0.446 0.706
r(f ) 0.115 0.118 0.043 0.227 0.344 0.115 0.117 0.029 0.152−0.048 0.127 0.115 −0.060 −0.237 −0.703
r(c) 1.928 1.909 −0.028 −0.257 0.000 1.929 1.923 0.009 0.103 0.098 1.934 1.888−0.035 −0.151 0.151
var(f ) 1.529 1.514 −0.041 0.065 0.067 1.142 1.171−0.065 0.018 −0.146 1.165 1.175 0.227 0.248 0.601
var(c) 3.056 2.650 0.239 0.312 0.049 1.529 1.530 0.176 0.273 0.125 1.514 1.501 0.102 0.460 0.466
Radial Bin 15 0.956 0.943 0.963
< AVSD > 0.912 0.913 0.906
CRI-R(440) 1.472 1.457 0.209 0.235 0.375 1.457 1.458 0.374 0.370 0.542 1.462 1.463 0.307 0.289 0.368
CRI-R(675) 1.488 1.479 0.048 −0.058 −0.240 1.480 1.481 0.335 0.347 0.473 1.482 1.482 0.318 0.337 0.303
CRI-R(870) 1.472 1.471 0.175 0.120 0.034 1.471 1.473 0.383 0.396 0.491 1.471 1.471 0.350 0.396 0.300
CRI-R(1020) 1.459 1.460 0.244 0.220 0.176 1.460 1.461 0.410 0.432 0.529 1.457 1.457 0.379 0.390 0.264
CRI-I(440) 0.005 0.006 0.406 0.437 0.651 0.006 0.006 0.395 0.427 0.585 0.007 0.007 0.208 0.214−0.048
CRI-I(675) 0.003 0.003 0.436 0.464 0.675 0.003 0.003 0.427 0.458 0.617 0.004 0.004 0.169 0.207−0.004
CRI-I(870) 0.003 0.003 0.445 0.466 0.665 0.003 0.003 0.433 0.461 0.613 0.004 0.003 0.154 0.199−0.001
CRI-I(1020) 0.003 0.003 0.453 0.473 0.661 0.003 0.003 0.439 0.465 0.608 0.004 0.003 0.147 0.195−0.005

OPTICS SSA(440) 0.901 0.897 0.336 0.360 0.559 0.896 0.895 0.314 0.291 0.462 0.883 0.885 0.203 0.233−0.105
SSA(675) 0.948 0.947 0.472 0.519 0.708 0.947 0.946 0.463 0.506 0.665 0.938 0.941 0.263 0.282 0.035
SSA(870) 0.954 0.957 0.477 0.509 0.698 0.956 0.956 0.464 0.499 0.655 0.948 0.951 0.275 0.280 0.024
SSA(1020) 0.956 0.959 0.481 0.507 0.692 0.959 0.958 0.466 0.493 0.643 0.952 0.955 0.277 0.276 0.004
ASYM(440) 0.769 0.764 0.425 0.555 0.734 0.764 0.763 0.504 0.525 0.489 0.763 0.764 0.544 0.547 0.557
ASYM(675) 0.742 0.731 0.440 0.507 0.680 0.731 0.730 0.512 0.479 0.452 0.731 0.732 0.451 0.496 0.399
ASYM(870) 0.744 0.731 0.405 0.471 0.648 0.731 0.730 0.504 0.454 0.425 0.732 0.733 0.395 0.453 0.305
ASYM(1020) 0.748 0.736 0.393 0.445 0.610 0.736 0.736 0.516 0.446 0.409 0.738 0.740 0.382 0.446 0.276

of aerosol (this effect is likely to be minimized when the
sun is overhead but tends to increase close to sunrise and
sunset). Furthermore, in the case of measurements from or-
bit, the separation of the effect of surface reflectance and
the effect of aerosol extinction on the total measured radi-
ance is a much more difficult task, especially over deserts
which can have bright surface pixels. AOD data from 132
global AERONET stations over a two-year period were re-
gressed against MODIS-derived AOD values, and revealed
MODIS values to be systematically lower than AERONET
values (Remer et al., 2005).

4.2 Microphysical outputs

For AVSD outputs related to the coarse mode, the
AERONET input cases 1–3 were able to retrieve the daily av-
eraged coarse volume concentrationV (c) at Dakar to a very
high level of precision: 0.965≤ R(d) ≤ 0.969, and also the
location of the coarse mode peak (“Radial bin 15”): 0.943≤

R(d) ≤ 0.963. This level of accuracy is also maintained at the
weekly and monthly timescales. The case 4 NN with satel-
lite inputs was able to retrieve the daily averaged coarse vol-
ume concentrationV (c) and its modal peak with the degree
of correlation:R(d) = 0.514 andR(d) = 0.486 respectively.
The other aerosol parameters are not retrieved accurately
enough, as shown also in the NN training/validation perfor-
mance. More specifically, none of the NNs could retrieve

the daily averaged coarse mode geometric radiusr(c) or
its variance var(c) for reasons described in Sect. 3.3.1 re-
garding the problematic determination of the mode separa-
tion point for dust AVSDs. The same is true for the daily
averaged fine mode volumeV (f ). The satellite case 4 NN
could only retrieveV (f ) with R(d) = 0.261 (with some im-
provement at the monthly timescale:R(m) = 0.388). Cases
1–4 present unacceptable correlations forr(f ) and var(f )

which, as described in Sect. 3.3.2, is explained by the fact
that for desert dust fine particles contribute only a small pro-
portion to the total volume concentration. Future work will
present results of an NN retrieval scheme for regions dom-
inated by other aerosol types such as urban pollution or the
products of biomass burning that have a more clearly defined
fine mode. With respect to the fine fraction (η), the domi-
nance of the coarse mode meant that cases 1–4 were able
to retrieve this daily averaged parameter with an accuracy:
0.400≤ R(d) ≤ 0.491 with the satellite case 4 NN retrieving
η with R(d) = 0.413. Much stronger correlations for this pa-
rameter are evident at the monthly timescale:R(m) ≥ 0.541.
Satellite retrievals forV (c), its peak at radial bin 15 andη
all show some correlation with co-located and synchronous
AERONET outputs at the daily timescale:R(d) = 0.514,
0.486 and 0.413, respectively. Finally, with respect to the
AVSD, in this section the effect of increasing aerosol load
(using AOD(470) as a proxy), on the AVSD regression is
also briefly investigated. Low values of AOD correspond to
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Table 4.Continued.

TESTING (Dakar) Satellite

Case 4

Target NN output R(d) R(w) R(m)

N (samples) 167 167
AOD(470) 0.590 0.357 0.421
AOD(550) 0.562 0.316 0.442
AOD(660) 0.532 0.301 0.439
H2O 2.419 2.779 0.834
AAOD(440 V 500) 0.067 0.048 0.450
AOD(380)
AOD(500)

MICROPHYSICS V (f ) 0.030 0.030 0.261 0.214 0.388
V (c) 0.305 0.315 0.514 0.438 0.487
η 0.112 0.093 0.413 0.329 0.541
r(f ) 0.115 0.112 −0.117 −0.296 −0.117
r(c) 1.906 1.891 0.105 −0.060 0.042
var(f ) 1.137 1.134 −0.115 −0.076 −0.096
var(c) 1.529 1.525 0.114 0.092 0.000
Radial Bin 15 0.486
< AVSD > 0.918
CRI-R(440) 1.449 1.450 0.344 0.228 0.294
CRI-R(675) 1.474 1.475 0.228 0.104 0.162
CRI-R(870) 1.469 1.470 0.153 0.057 0.179
CRI-R(1020) 1.460 1.461 0.139 0.036 0.162
CRI-I(440) 0.007 0.007 0.381 0.347 0.550
CRI-I(675) 0.004 0.004 0.372 0.288 0.482
CRI-I(870) 0.004 0.004 0.373 0.274 0.486
CRI-I(1020) 0.004 0.004 0.368 0.249 0.469

OPTICS SSA(440) 0.887 0.887 0.440 0.506 0.710
SSA(675) 0.936 0.935 0.395 0.347 0.562
SSA(870) 0.947 0.947 0.383 0.314 0.546
SSA(1020) 0.951 0.950 0.373 0.283 0.521
ASYM(440) 0.757 0.756 0.159 0.120 0.331
ASYM(675) 0.725 0.723 0.149 0.084 0.348
ASYM(870) 0.726 0.724 0.094 0.010 0.304
ASYM(1020) 0.732 0.731 0.067 −0.031 0.261

small volume concentrations and are important to inspect due
to the fact that spurious retrieval effects are known to ex-
ist at low number densities (Dubovik and King, 2000). The
reason for this is that AERONET’s Level 2.0 Version 2 in-
version products are obtained following certain constraints:
(i) aerosol loads should be moderate (AOD> 0.4), (ii) the
sky should not have strong cloud contamination, (iii) solar
zenith angles should be high (> 50 degrees) so that the air
mass factor is high, and (iv) simultaneous measurements of
AOD(440), AOD(675), AOD(870) and AOD(1020) should
be available within±15 min of the almucantar measurement.
When these conditions are not satisfied, inversions are less
reliable or absent from the AERONET data record. Assess-
ment of the dependence of AVSD on AOD(470) is done as
follows: (1) the NN-derived AVSDs were individually re-
gressed on co-located and synchronous AERONET AVSD
targets for days sorted by AOD(470), and (2) the 20 % quan-
tiles of AOD(470) were identified and used to calculate the
mean AVSD from a sample of AVSDs corresponding to days
where the AOD(470) is 10 % above and below the quantile
point. Figure 7 looks into this behaviour in more analytical
detail.

In the left panel of Fig. 7 showing the variation of the
regression coefficient (R) with AOD(470), it is clear that
the variation in the value ofRdecreases with increasing
AOD(470). There is much greater variance in the value of
R when AOD(470)≤ 0.4. This is expected since, as men-
tioned above, AERONET retrievals are not as reliable for low
aerosol loads. In the right panels of Fig. 7, the mean AVSD
is calculated at 20, 40, 60 and 80 % of the min–max range
(0.01 to 1.43) of AOD(470) values. The mean NN-derived
and AERONET AVSD at each quantile is calculated from a
20 % sample (10 % above and below) in the AOD(470) do-
main. It can be seen that for the satellite NN of case 4, a
substantial difference is observable at the 60 % quantile level
where AOD(470)= 0.865 and also at the 80 % level where
AOD(470)= 1.15. However, the number of AVSDs used to
calculate the mean AVSD at these quantile points is small
(N = 7 andN = 3, respectively) and are not likely to be sta-
tistically representative. There is a strong resemblance be-
tween the mean AVSD obtained at the more populated 20
and 40 % AOD(470) quantiles. Figure 8 shows a visual com-
parison of the entire record of daily averaged NN versus
AERONET retrievals at Dakar.
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Figure 6. Comparison of representative case 4 satellite inputs with co-located and synchronous AERONET values for the representative
parameters: AOD(660), H2O and AAOD(500). Mean values and standard deviations are shown for each time series together with the results
of performing a linear regression.

Figure 7. Test results for the dependence of the AVSD regression on aerosol load using AOD(470) as a proxy are shown for the satellite
inputs NN of case 4. (Left panel): each point is the regression of the 22 radial bins of the AERONET AVSD on the NN AVSD. Also shown
is the AOD= 0.4 suggested limit for the validity of the results of the AERONET Level 2.0 Version 2 inversion products. (Right panels): the
median AVSD at 20, 40, 60 and 80 % quantile values of AOD(470).
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Figure 8. Test results for the daily averaged AVSD at Dakar. The panels at left show the AERONET target distributions (upper) and their
corresponding contour plot (lower). The panels at right show the NN output distributions (upper) with their corresponding contour plot
(lower).

For more detail, we refer the reader to Sect. S2 of the
Supplement where the NN retrieval of the daily averaged
AVSD is compared with the AERONET AVSD for each of
the test days at Dakar individually. The results suggest that
for the most cases, the case 4 NN appears to return an AVSD
close to the climatological mean of the training data set. With
regard to the complex refractive index, Table 4 shows that
none of the NNs were able to retrieve the CRI-R. The re-
sults for CRI-I from the case 1 NN are improved substan-
tially at the monthly timescale: 0.651≤ R(m) ≤ 0.675 (with
CRI-R(440) having the valueR(m) = 0.375). As described
in Sect. 3.3, the addition of H2O (i.e. the case 2 simula-
tion) improves the regression for CRI-R: 0.335≤ R(d) ≤

0.410 (with even more pronounced positive correlations at
the monthly timescale). The retrieval of CRI-I is relatively
unaffected by the addition of H2O to the inputs. These test re-
sults validate our claim that H2O is indeed an important input
parameter and should be added to the base set: AOD(470),
AOD(550) and AOD(660) for satellite-based retrievals. In
particular, H2O is required for moderate retrieval of CRI-R.
This effect is shown in Fig. 9.

The further addition of UV AOD inputs in case 3 did
not lead to an increase in the ability of the NN to retrieve
the complex refractive index. To the contrary, the correla-
tions were systematically worse. For the satellite inputs case
4 NN, the retrievals of the absorption-related CRI-I are in
the range: 0.368≤ R(d) ≤ 0.381. The correlation strength-
ens substantially at the monthly timescale and especially at

shorter wavelengths: 0.469≤ R(m) ≤ 0.550. The maximum
correlation observed for CRI-R(440) at the daily timescale is
R(d) = 0.344.

4.3 Optical outputs

Referring to Table 4, for the absorption-related parame-
ter SSA (as noted above for the CRI-I), the retrieval im-
proves with increasing wavelength and also substantially
at the monthly timescale: 0.559≤ R(m) ≤ 0.734. The ad-
dition of H2O (i.e. the case 2 simulation) leads to a mi-
nor improvement in the retrieval of the asymmetry fac-
tor (ASYM): 0.504≤ R(d) ≤ 0.516. The correlations for
SSA are relatively unaffected by the addition of H2O. Once
again, the further addition of UV AOD inputs in case 3
muddied the waters and failed to improve the retrieval of
the optical parameters (with the exception of ASYM(440)
which showed a slight improvement over the case 1–2 NNs
at the daily timescale. For the case 4 NN (satellite in-
puts), the retrievals of the absorption-related SSA are in
the range: 0.373≤ R(d) ≤ 0.440. The correlation strength-
ens substantially at the monthly timescale and especially at
shorter wavelengths: 0.521≤ R(m) ≤ 0.710. A positive cor-
relation is also observed for ASYM (440–870) at the monthly
timescale: 0.304≤ R(m) ≤ 0.348. A visual overview of the
retrieval performance of the spectrally dependent microphys-
ical (CRI) and optical parameters (SSA and ASYM) at the
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Figure 9. Test results for the daily averaged CRI-R illustrating the effect of adding columnar water vapour (H2O [cm]) as a input (case
1→ case 2).

Figure 10.Test results obtained for all spectrally dependant micro-
physical and optical parameters with the satellite input case 4 NN
at the daily, weekly and monthly timescale.

daily, weekly and monthly timescale for the satellite case 4
is shown in Fig. 10.

When tabulated in this micro-array format, one can see
at a glance that the satellite input trained NN of case 4 re-
trieves the spectral behaviour of the absorption-related SSA
and CRI-I parameters better than the shape-related CRI-R
and ASYM parameters at all timescales. More detail is re-
vealed by looking at the time series of the daily averaged
retrievals. For example, in Fig. 11, daily averaged retrievals
of SSA(440) at Dakar are shown for the case 4 NN.

Figure 11 shows that the satellite retrieval at Dakar, while
insufficiently fitting the magnitude of peaks and troughs in
the SSA(440) time series, does echo them to some degree.

4.4 Evaluation of the results with respect to AERONET
data variability and errors

In this section, we investigate the ability of the NN to capture
the variability of the target data. Also, we evaluate the infor-
mation content of the NN results taking into account the un-
certainties in the AERONET data. Figure 12 shows the case 4
NN retrieval of the coarse mode volume concentrationV (c)

at the daily and seasonal (3-monthly) timescales compared
with AERONET data at Dakar.

While the mean values are almost indistinguishable, the
standard deviation of the NN retrieval is approximately 50 %
of the standard deviation of the AERONET data at both
timescales. This suggests that, while the input information
used to train the NN is enough for retrieval of the climatolog-
ically expected value, it is not sufficient to fully retrieve the
variability in the target data at the daily timescale. In order
to test this, we checked to see whether or not the median
absolute error (MAE) for each NN output (NN-AERONET)
is significantly lower than the MAE of the difference
between the AERONET target values of that parameter
and their mean value over the training set (AERONET-
mean) at Dakar. The percentage fractional error (PFE)
between the two MAEs was found to be negative but small
for the majority of the parameters (−9.2 %≤ PFE(CRI-
R)≤ −17.0 %, −8.3 %≤ PFE(SSA)≤ −13.2 % and
−10.4 %≤ PFE(ASYM)≤ −12.3 %). Two exceptions
to this were the coarse mode volume which was strongly
negative (−321.9 %) and the CRI-I(440) which was very
weakly positive (+1.0 %). This tends to support the view
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Figure 11.Test results at Dakar for SSA(440) with the case 4 NN.

Figure 12.Test results at Dakar for the volume concentration of the coarse modeV (c) at the seasonal (3-monthly) timescale (upper panels)
and the daily timescale (lower panels). Note that while the mean value of the NN retrieval and the AERONET target data are almost equal,
the standard deviation of the NN retrieval is approximately half of that associated with the AERONET target data.

that the NN is capturing only the daily variability for the
coarse mode. For all other output parameters, the NNs only
learn to return the average value of the parameter over the
training set or, in other words, the climatological mean. This
can be seen for the case 4 NN in Figs. S3.1 and S3.2 of the
Supplement.

Finally, in this section, in Table 5 we present the values of
the MAE and the MARE (the median absolute relative error
expressed as a percentage) forV (c) as a proxy for the AVSD,
the spectral CRI and the spectral optical parameters SSA and
ASYM at the daily, weekly and monthly timescales.

Figures S4.1–S4.4 of the Supplement show the trend in the
MAE as a function of timescale for case 4 NN at Dakar over
the range of scales: 1-dy to 1-yr. It should be borne in mind
that, while the MAE and the MARE are a measure of the
NN retrieval with respect to the AERONET target values, the

AERONET values themselves are not error-free. AERONET
aerosol parameters themselves also often have non-negligible
uncertainties (Dubovik et al., 2000). A formal evaluation of
the uncertainty of the NN with respect to true values is be-
yond the scope of this paper and we refer the reader to recent
work on NN uncertainty in the retrieval of AOD by Ristovski
et al. (2012). It is hoped that further validation studies using a
cohort of larger data sets will be able to provide a more clear
assessment of NN performance.

5 Discussion

A new methodology has been developed, based on an NN
model, with the aim of retrieving aerosol microphysical and
optical parameters from satellite remote sensing data at the
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Table 5.Test results at Dakar obtained for cases 1–4 for the median absolute difference (MAE) and median absolute relative error (MARE)
of output parameters at the daily, weekly and monthly timescale.V (c) is the volume concentration of the coarse mode calculated from the
AVSD.

Timescale Case 1 Case 2

Analysis Daily (d) Weekly (w) Monthly (m) Daily (d) Weekly (w) Monthly (m)

MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE %

V (c) 0.081 11.6 0.093 15.6 0.072 11.5 0.079 11.6 0.090 15.2 0.062 12.0
CRI-R(440) 0.022 1.5 0.022 1.6 0.021 1.5 0.021 1.4 0.020 1.4 0.018 1.2
CRI-R(675) 0.018 1.2 0.019 1.3 0.017 1.1 0.018 1.2 0.016 1.1 0.013 0.9
CRI-R(870) 0.018 1.2 0.018 1.3 0.018 1.2 0.016 1.1 0.017 1.1 0.013 0.9
CRI-R(1020) 0.018 1.3 0.017 1.2 0.015 1.1 0.017 1.1 0.017 1.2 0.014 0.9
CRI-I(440) 0.002 34.4 0.002 35.1 0.002 36.7 0.002 42.2 0.002 42.2 0.002 40.6
CRI-I(675) 0.001 53.2 0.001 49.4 0.001 50.4 0.002 67.7 0.002 55.5 0.001 50.9
CRI-I(870) 0.001 49.1 0.001 45.5 0.001 46.9 0.001 62.9 0.001 50.2 0.001 47.7
CRI-I(1020) 0.001 47.0 0.001 44.2 0.001 39.8 0.001 59.2 0.001 49.9 0.001 44.8
SSA(440) 0.014 1.6 0.022 2.4 0.019 2.1 0.017 1.9 0.023 2.6 0.023 2.6
SSA(675) 0.014 1.5 0.017 1.8 0.017 1.8 0.017 1.8 0.020 2.0 0.019 2.0
SSA(870) 0.012 1.3 0.014 1.5 0.015 1.5 0.016 1.6 0.017 1.7 0.016 1.6
SSA(1020) 0.012 1.2 0.013 1.4 0.015 1.5 0.015 1.6 0.016 1.6 0.015 1.5
ASYM(440) 0.011 1.4 0.010 1.3 0.007 1.0 0.011 1.4 0.012 1.5 0.010 1.3
ASYM(675) 0.013 1.8 0.011 1.5 0.008 1.0 0.013 1.8 0.012 1.7 0.010 1.4
ASYM(870) 0.013 1.8 0.011 1.5 0.008 1.1 0.013 1.7 0.012 1.7 0.010 1.4
ASYM(1020) 0.012 1.6 0.011 1.5 0.007 1.0 0.011 1.5 0.011 1.5 0.010 1.3

Timescale Case 3 Case 4

Analysis Daily (d) Weekly (w) Monthly (m) Daily (d) Weekly (w) Monthly (m)

MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE %

V (c) 0.131 13.4 0.165 23.8 0.127 11.6 0.268 27.6 0.265 32.5 0.255 24.8
CRI-R(440) 0.022 1.5 0.026 1.8 0.024 1.7 0.031 2.2 0.028 2.0 0.028 1.9
CRI-R(675) 0.017 1.2 0.024 1.6 0.018 1.2 0.022 1.5 0.022 1.5 0.023 1.5
CRI-R(870) 0.019 1.3 0.027 1.8 0.020 1.3 0.022 1.5 0.024 1.7 0.022 1.5
CRI-R(1020) 0.019 1.4 0.027 1.9 0.021 1.4 0.024 1.6 0.024 1.6 0.022 1.5
CRI-I(440) 0.002 38.7 0.002 28.0 0.003 41.9 0.002 40.8 0.002 42.1 0.002 34.6
CRI-I(675) 0.002 52.8 0.002 46.1 0.002 55.4 0.002 60.0 0.002 63.3 0.002 52.9
CRI-I(870) 0.001 42.9 0.001 44.4 0.002 52.6 0.002 60.2 0.002 63.7 0.001 59.5
CRI-I(1020) 0.001 40.8 0.001 48.8 0.002 54.5 0.002 57.0 0.002 64.1 0.001 58.2
SSA(440) 0.013 1.4 0.018 2.1 0.022 2.4 0.018 2.0 0.020 2.2 0.021 2.3
SSA(675) 0.017 1.8 0.019 1.9 0.033 3.4 0.021 2.2 0.022 2.3 0.023 2.4
SSA(870) 0.017 1.8 0.017 1.7 0.024 2.7 0.020 2.1 0.018 1.9 0.021 2.2
SSA(1020) 0.018 1.8 0.015 1.5 0.023 2.4 0.020 2.1 0.018 1.9 0.017 1.8
ASYM(440) 0.013 1.7 0.017 2.2 0.011 1.5 0.020 2.6 0.017 2.3 0.017 2.2
ASYM(675) 0.016 2.2 0.016 2.2 0.013 1.8 0.024 3.2 0.021 2.8 0.020 2.7
ASYM(870) 0.016 2.1 0.017 2.3 0.013 1.8 0.022 3.0 0.022 3.0 0.019 2.6
ASYM(1020) 0.013 1.7 0.016 2.2 0.013 1.7 0.020 2.6 0.020 2.8 0.016 2.2

daily timescale and to an acceptable degree of accuracy.
Through the use of different input scenarios we performed
an empirical sensitivity analysis of the available measure-
ments from satellite sensors for retrieving the properties of
dust aerosol in the Northern Africa region. The NNs were
regularised and trained with AERONET Level 2.0 Version 2
inversion products at sites centred on the peak of dust extinc-
tion (according to the GOCART model averaged over a 10-
year period) in Northern Africa, and have been shown to be
capable to some degree of learning the relationship between
satellite inputs and the desired output parameters. The trained
NNs have the added benefit that they retrieve the entire time
series of all output parameters simultaneously. We were also
able to demonstrate a technique for objectively deducing op-
timal NN architectures by minimizing the back-propagation

cost function over a grid of runs. While such an approach is
well established in the scientific literature (Gorr et al., 1994;
Lawrence et al., 1996; Curry and Morgan, 2006; Stathakis,
2009), this is the first time it has been applied in the devel-
opment of an atmospheric measurement technique. Since, in
regression schemes like NN models, possible redundancies
in both the data and the NN model space can lead to ill-posed
problems, we have tried to eliminate these problems by care-
fully selecting data of the same aerosol type (predominantly
dust as flagged up by the GOCART model global average),
by constructing representative test scenarios, and by remov-
ing missing values and outliers. Furthermore, PCA was used
to extract components from the variables in the NN model
space, to eliminate redundancies and to increase the perfor-
mance of the NN-based retrievals.
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Table 6.Overall assessment of the simulation performance of trained NNs fed with AERONET inputs (cases 1–3) and satellite inputs (case
4) at the daily timescale.

ASSESSMENT AERONET SATELLITE

Case 1 Case 2 Case 3 Case 4

V (f ) Very Poor Poor Very Poor Poor
V (c) Very Good Very Good Very Good Moderate
η Moderate Moderate Moderate Moderate
Radial Bin 15 Very Good Very Good Very Good Moderate
CRI-R(440) Poor Poor Poor Poor
CRI-R(675) Very Poor Poor Poor Poor
CRI-R(870) Very Poor Poor Poor Very Poor
CRI-R(1020) Poor Moderate Poor Very Poor
CRI-I(440) Moderate Poor Poor Poor
CRI-I(675) Moderate Moderate Very Poor Poor
CRI-I(870) Moderate Moderate Very Poor Poor
CRI-I(1020) Moderate Moderate Very Poor Poor
SSA(440) Poor Poor Poor Moderate
SSA(675) Moderate Moderate Poor Poor
SSA(870) Moderate Moderate Poor Poor
SSA(1020) Moderate Moderate Poor Poor
ASYM(440) Moderate Moderate Moderate Very Poor
ASYM(675) Moderate Moderate Moderate Very Poor
ASYM(870) Moderate Moderate Poor Very Poor
ASYM(1020) Poor Moderate Poor Very Poor

Very Poor R(d) < 0.2
Poor 0.2≤ R(d) < 0.4
Moderate 0.4≤ R(d) < 0.6
Good 0.6≤ R(d) < 0.8
Very Good R(d) ≥ 0.8

With regard to testing the ability of the NNs to perform
well on unseen data at Dakar, it is important to bear in mind
that while an estimate of output uncertainties is provided
with reference to known a priori target values, the test re-
sults presented in Sect. 4 incorporate also a network-induced
error and are therefore only approximate. Having said this,
the histogram of the differences between NN PC outputs and
PC targets at the training stage was found to present a sharply
peaked Gaussian having a near-zero mean error. The NN test
results at the daily timescale are presented in a qualitative
way in Table 6 with a categorization based on a linear scale
of values of the regression coefficient.

More specifically, assessing the performance of NNs
trained on different combinations of inputs in the context of
Northern African desert dust data revealed the following.

1. AERONET-measured AOD inputs (470, 550 and
600 nm) alone (case 1) are insufficient to retrieve the
daily spectral behaviour of the CRI-R simultaneously
with the AVSD, CRI-I and secondary microphysical pa-
rameters, together with the optical parameters SSA and
ASYM.

2. The inclusion of AERONET H2O in the inputs im-
proves the retrieval potential of the NN, especially with
respect to the daily spectral behaviour of CRI-R and
ASYM.

3. The further inclusion of AERONET UV AOD (380
and 500 nm) in the inputs led to a deterioration
in the performance particularly with respect to the
absorption-related parameters SSA and CRI-I at the
daily timescale.

4. The NN trained with MODIS AOD (470, 550 and
660 nm) and H2O, and OMI-modelled AAOD(500 nm)
was able to retrieve with a good to very good degree of
accuracy the daily averaged coarse mode of the AVSD
at the daily timescale.

6 Conclusions

The results show that it is possible to deduce an optimal NN
architecture and to train it to retrieve the daily averaged vol-
ume concentration of the coarse mode of dust aerosol to a
high degree of accuracy from satellite inputs. The potential
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of the NN for retrieving size distribution information is inter-
esting as this may open up the possibly of adding size distri-
bution data to the arsenal of satellite products currently avail-
able. The climatological mean retrieval of the complex re-
fractive index and the optical parameters, although unable to
provide information regarding daily variability, nevertheless
can provide important information on these key parameters
over regions where no ground-truth data exists. In essence,
the NN model applied to satellite inputs, may allow for the
creation of a virtual space-based AERONET climatology
centred at 1×1 degree resolution grid points over the earth’s
surface.

The results presented here are appropriate to dust-
dominated data over Northern Africa and further studies will
assess whether or not the same methodology can be applied
to other dust regions, as well as to regions dominated by other
key aerosol types such as marine aerosol and the products of
biomass burning and urban pollution. The NN model devel-
oped appears to offer some potential for obtaining daily re-
trievals from satellite data, and it is hoped, will contribute to
efforts currently under way for globally monitoring aerosols
from space and hence improving assessments of global cli-
mate forcing.
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Appendix A: Calculation of secondary microphysical
parameters from the AVSD

As mentioned in Sect. 2.1.2, the secondary microphysical pa-
rameters:r(f ), r(c), var(f ), var(c), V (f ) andV (c) need to
be calculated so as to compare NN outputs with AERONET
outputs. In AERONET’s retrieval algorithm, all of these pa-
rameters are calculated from the AVSD by specifying a mode
separation pointrs that divides the distribution into 2 volume
concentrationsV (f ) and V (c). From the retrieved AVSD:
dV (r)/dlnr, the volume concentrationV occupied by parti-
cles spanning the range of radial sizes [r1, r2] is then calcu-
lated by integrating over the distribution,

V =

r2∫
r1

dV (r)

dlnr
dlnr. (A1)

In principle, the aerosol number size distribution (ANSD):
dN(r)/dlnr or dN(r)/dr, could equally well be used instead
of the AVSD (King et al., 1978), since the conversion be-
tween the AVSD and ANSD parameters is straight-forward
(see for example Appendix A of Sayer et al., 2012). Note
that the AVSD is preferable to the ANSD as it is more accu-
rate when inverting scattering properties that are more sensi-
tive to aerosol particle volume, than number (Dubovik et al.,
2011). The AERONET inversion algorithm estimatesV inte-
gration by means of the trapezium rule (Dubovik and King,
2000), and the same approach was adopted in this work. The
volume concentration of the fine modeV (f ) is obtained by
settingr1 = 0.05 µm andr2 = rs while the volume concentra-
tion of the coarse modeV (c) is obtained by settingr1 = rs
and r2 = 15 µm. The ratio of the area of the AVSD con-
tributed to by the fine mode to the total area over the whole
distribution constitutes the fine fractionη. The logarithmic
volume geometric radius (mean logarithm of radius) mea-
sures the characteristic size of typical aerosol particles in the

Table A1. Acronyms.

AERONET aerosol robotic network
AAOD absorption aerosol optical depth
AOD aerosol optical depth
ASYM asymmetry factor
AVSD aerosol volume size distribution
CRI-R complex refractive index-real part
CRI-I complex refractive index-imaginary part
GOCART global ozone chemistry aerosol radiation and transport model
MAE median absolute error
MARE median absolute relative error
MODIS moderate-resolution imaging spectro-radiometer
MSE mean squared error
NN neural network
OMI ozone measuring instrument
PCA principal components analysis
SSA single scattering albedo

atmospheric column sampled, and is given by the following:

lnrV =

∫ r2
r1

lnr
dV (r)
dlnr

dlnr∫ r2
r1

dV (r)
dlnr

dlnr
. (A2)

The geometric radius of the fine moder(f ) is obtained
by settingr1 = 0.05 µm andr2 = rs in this expression and
then exponentiating, while the geometric radius of the coarse
moder(c) is obtained by settingr1 = rs andr2 = 15 µm and
then exponentiating. The geometric standard deviation which
measures the spread of particle modes is given by the follow-
ing:

σV =

√√√√∫ r2
r1

(lnr − lnrV )2 dV (r)
dlnr

dlnr∫ r2
r1

dV (r)
dlnr

dlnr
. (A3)

The geometric variance of the fine mode var(f ) is obtained
by settingr1 = 0.05 µm andr2 = rs in this expression and
then squaring, while the geometric variance of the coarse
mode var(c) is obtained by settingr1 = rs and r2 = 15 µm
and then squaring. From the above, it is clear that all sec-
ondary microphysical parameters depend on a precise deter-
mination of the fine mode/coarse mode separation pointrs.
At present, AERONET estimates this by finding the mini-
mum within the size interval 0.439≤ r ≤ 0.992 µm (Dubovik
et al., 2000). The same approach was used in this study al-
though there are signs (see Sects. 3.3.2 and 4) that this is
perhaps problematic for aerosol distributions like those for
desert dust that do not have clearly separated fine and coarse
modes.
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The Supplement related to this article is available online
at doi:10.5194/amt-7-3151-2014-supplement.
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