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Pointing Errors in Non-Metric Virtual Environments 
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Abstract. There have been suggestions that human navigation may depend on 

representations that have no metric, Euclidean interpretation but that hypothesis 

remains contentious. An alternative is that observers build a consistent 3D 

representation of space. Using immersive virtual reality, we measured the ability 

of observers to point to targets in mazes that had zero, one or three ‘wormholes’ 

– regions where the maze changed in configuration (invisibly). In one model, we 

allowed the configuration of the maze to vary to best explain the pointing data; in 

a second model we also allowed the local reference frame to be rotated through 

90, 180 or 270 degrees. The latter model outperformed the former in the 

wormhole conditions, inconsistent with a Euclidean cognitive map. 

 

Keywords: Human Navigation, Spatial Representation, Virtual Reality, Metric model, 

Motion Parallax, Binocular Disparity, Topological Model, Labelled Graph, View-

Based. 

1 Introduction 

During active exploration of a 3D scene, an observer must build up some kind of 

representation about the layout of objects that will be useful from a different vantage 

point. One hypothesis is that the representation corresponds to a type of map with metric 

measures such as distances and angles conforming to a Euclidean geometry, even if 

these are not a faithful reproduction of the environment [1–3]. Such a metric cognitive 

map could be constructed, for instance, on the basis of path integration. It could provide 

a comprehensive description of the environment and underpin a wide variety of spatial 

tasks such as general navigation, finding shortcuts or detours and pointing to targets. 

Crucially, the structure of the data stored in such a map would be independent of the 

task. However, while there is a predominant view that metric representations may 

provide an adequate description of small open environments (vista spaces), there is good 

evidence that this hypothesis does not hold for a global representation of large complex 

environments [4]. Multiple experimental studies speak against global metric 

representations [4–9]. For instance, Warren et al [5] found that perceived locations of 

targets in a labyrinth may overlap, i.e. the perceived geometry of space is not metrically 

consistent (they report discontinuities in spatial representation, such as “rips” and 

“folds”). Typically, human participants can navigate efficiently through complicated 
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experimental environments which supports the notion of a global spatial representation. 

However, their perception of metric qualities is often distorted. For instance, the 

perceived length of a route depends on the number of turns and junctions it contains [9, 

10]. Angular and directional judgments are highly unreliable [7, 11–13] and perceived 

angles between junctions are biased towards 90 [9, 14]. 

An alternative type of representation of the environment is a topological one [5, 6, 

8, 9, 15–18]. A topological graph consists of a network of nodes and edges that connect 

them. The exact shape of the path between nodes is not defined because the edges 

simply represent the connectivity of the environment, e.g. the existence of the path 

between two locations. Nevertheless, topological knowledge of an environment is 

sufficient for general navigation and allows the observer to find alternative routes and 

detours. This type of representation has been used to account for both human and insect 

navigational behaviour and has been applied in robot navigation systems [16, 19]. 

Arguments against topological representation for navigation have been raised [20, 21] 

but, at least in these cases, not convincingly so [22, 23].  

Hybrid models, that include both topological information of space connectivity and 

metric information have also been proposed [5, 8, 15, 24, 25]. Metric information about 

scene layout is often assumed to be available in the region that is visible from one 

location, e.g. within a room, which Montello has described these as ‘vista spaces’ [26]. 

These representations are hierarchical in nature, such that metric representation is 

reliable locally while at the same time the global metric representation may be distorted 

to affect both the location of objects and the orientation of local ‘vista spaces’. Evidence 

compatible with representations of this type has been reported  on the basis of pointing, 

walking or other orientation judgements in environments that were known to the 

participant [4, 5, 9]. Another aspect of spatial behaviour that is not predicted by a metric 

map is that the retrieval of information may depend on the observer’s location [14], so 

that perception of the spatial layout of the scene is different when judged from point A 

and point B.  

In our experiments, we generated virtual environments that were impossible to 

recreate physically and tested participants’ ability to point to targets that they had 

encountered previously but could not currently see. The reason that such environments 
are informative is that they allow predictions to be tested that could not be distinguished 

in a normal environment. Non-Euclidean environments of this sort were used previously 

to test human cognitive maps, for example [5, 27–29]. Warren et al [5] created a virtual 

labyrinth with “wormholes” that teleported participants smoothly between locations. 

Vasylevska and Kaufmann [28] tested environments with spatially overlapping regions 

much like the environments in our experiments in order to simulate space compression 

for VR applications. Zetzsche [29] and Klus [27] developed impossible virtual 

environments that violate Euclidean metrics and planar topology. Surprisingly, in all 

these studies human participants showed remarkable insensitivity to metric 

inconsistencies of space. Warren [5] used ‘as-the-crow-flies’ walking as a measure of 

the perceived distance and direction of a previously-seen target. They concluded that 

participants in this task were using a distorted type of map which they called a ‘labelled 

graph’. The goal of our experiment was similar but, in our case, we compared explicitly 

a wide range of metric configurations, with and without non-metric variations in local 

orientation, to see which type of representation could best explain the pointing data. 
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2 Methods 

2.1 Participants 

The 8 participants (3 male and 5 female) were students or members of the School of 

Psychology and Clinical Language Sciences. All participants had normal or corrected 

to normal vision, one participant wore glasses during experiment, and all had good 

stereo-acuity (TNO stereo test, 60 arcsec or better). All participants were naïve to the 

purpose of the study. Participants were given a one hour practice session in VR to 

familiarize them with our set-up in a simplified virtual environment (open room with 

targets in boxes, but no inner walls) and metric versions of the mazes. 6 potential 

participants (in addition to the 8 who took part) either experienced motion sickness 

during the practice session or preferred not to continue at this stage. Altogether there 

were 7 sessions (including the practice) roughly 1 hour each, conducted on different 

days. Participants were advised not to stay in VR longer than 10 minutes between 

breaks. They received a reward of 12 pounds per hour. The study received approval of 

the Research Ethics Committee of the University of Reading. 

2.2 Experimental set-up 

The experiment took place in a 3 by 3m region of the laboratory equipped with Vicon 

tracking system (14 infrared cameras) that provides 6 d.o.f. information about the 

headset position and orientation with nominal accuracy 0.1 mm and 0.15 respectively. 

We used nVis SX111 head mounted display with 111 field of view and binocular 

overlap of 50. A video cable connected the HMD to a video control unit on the ceiling. 

The position and orientation of the HMD was tracked at 240Hz and passed to the 

graphics PC with a GTX 1080 video card. The stimuli were designed using Unity 3D 

system and rendered online at 60fps. Participants were allowed to walk freely and 

explore the virtual environment in a natural way. The virtual labyrinth was originally a 

5 by 5m  environment  with  corridors in  the maze 1m  wide.  In order to fit in the 3 by  

 

Fig. 1. Views of the labyrinth. A) View from above. B) First person view. The green target is 

visible inside a grey box. The target sequence is shown on top (Y-G-R-B) and the current target 

is highlighted (Yellow).  

A B
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3m lab space, the labyrinth was shrunk to 0.6 scale (e.g. 60cm wide corridors) which 

meant that the floor was displayed about 1m below eye height. Participants generally 

found this acceptable and did not notice that the room was not normal size, compatible 

with previous experiments [30]. During the experiment, participants wore a virtual 

wristband that provided information about the task (shown, for illustrative purposes 

only, at the top of Fig. 1b). Participants used a hand-held 3D tracked pointing device to 

point at targets during the pointing phase. In VR, the pointing device looked like as a 

small sphere (R=5cm) with an infinitely long ray emanating from it in both directions; 

the text was displayed next to the hand in VR providing instructions (e.g. ‘point to 

Red’). 

2.3 Stimuli  

We designed 2 general layouts of the virtual labyrinth. Scene 1 is shown in Fig 1 and 2. 

The virtual environment could be subdivided into 25 (5x5) elementary squares each 

having a size equal to the corridor’s width. A green cylinder (Fig. 1a) indicated the 

starting location. In order to start the experiment, the participant should stand at the start 

location and look along the corridor’s width. In order to start the experiment, the 

participant stood at the start location and looked along the direction indicated by the red 

arrow. Then green cylinder and red arrow disappeared, so that the starting location was 

not marked during the exploration phase. The labyrinth contained 4 target objects (red, 

green, blue and yellow spheres) hidden inside open grey boxes, so that they could be 

seen only from a short distance. Other empty grey boxes were added as distractors. Fig. 

1b shows a first-person view along a virtual corridor containing the green target inside 

a grey box. Participants wore a virtual wristband that displayed information about the 

current task, namely the sequence in which targets should be collected (e.g. Yellow-

Green-Red-Blue, see Fig. 1b, top) and then pointed to. See Supplementary Information 

for movies of the experiment and plan views of the scenes. 

For each labyrinth, we increased the complexity of the environment by extending 

the length of the corridors with non-metric ‘wormholes’, see Fig. 2b and c. There were 

3 conditions per scene: one metric, one containing 1-wormhole and one containing 3. 

Start is marked as ‘S’, colored circles indicate targets. The dashed lines acted as 

invisible triggers: when a participant crossed the trigger the environment changed as 

shown in the sub-plots. For instance, in the 1-wormhole condition shown in Fig. 2b, 

when a participant crossed the red trigger the environment changed to schematic W1(a); 

as the participant continued walking down the path through the wormhole (the 

accessible region inside a wormhole is marked by the dashed black line) and crosses the 

green trigger, the environment changed again to schematic W1(b), then as the 

participant crossed the blue trigger he or she would exit the wormhole and the 

environment change back to the general layout. Participants were not aware of the 

presence of the triggers because the local views of the environment did not change 

during the trigger crossing. 

For Scene 1, the same original or ‘base level’ layout applied in all three conditions 

(metric, 1-wormhole and 3-wormholes), as shown in Fig. 2a. Similar principles applied  
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Fig. 2. Schematics of the labyrinth. A) Metric condition. B) Non-metric 1-wormhole condition. 

The green target was placed inside the wormhole. C) Non-metric 3-wormholes condition. The 

general layout (containing Start, which is marked as ‘S’) remained constant between conditions. 

The wormholes are marked with letters W surrounded by red and blue triggers. As the participant 

crossed a trigger, the environment changed as shown in the sub-schematics. Inside a wormhole, 

the participant could only walk along the route marked by black dashed line. These are for Scene 

1. Equivalent set of maps were generated for Scene 2 (see layout in Fig. 10 and in Supplementary 

Information). 

to Scene 2 (which also had a metric, one-wormhole and three-wormhole version). The 

corridors through the wormholes did not have junctions, thus the topological 

connectivity of space was the same in all 3 conditions. The only difference between 

metric and non-metric conditions is the length and configuration of the corridors. The 

wormholes extended the corridors in a way that made a global metric representation 

impossible. For instance, the path through the wormhole in Fig. 2b has the shape of the 

figure of eight, i.e. it crosses itself, although there are no visible junctions along that 

path, which is physically impossible.  

2.4 Procedure 

Participants were asked to perform a navigational and pointing tasks in a virtual 

labyrinth (see Fig. 1) although we report here only on the results of the pointing task. A 

single experimental session that took about 1 hour during the three conditions were 

tested sequentially metric, 1-wormhole and 3-wormholes, all with the same general 

layout (i.e. all Scene 1 or Scene 2). This helped participants to cope with the more 

complex environments. The tasks and instructions were identical for all 3 conditions. 

For each condition, participants had to complete 8 rounds of walking and pointing. Each 

round started with a navigational task during which the participants were asked to 

collect all 4 target objects in a specified order in the most efficient way. The meaning 

of ‘efficient’ was left to participants to decide: it could mean choosing the shortest path, 

or the smallest number of turns or junctions (i.e. navigational decisions) but they were 

told not to hurry. After all targets were collected, the participants were instructed to stay 

at the location of the last target and to point to the Start location and then all other target 

locations twice, in a specified order (Start-R-G-B-Y and repeat), using a pointing 

Metric

w1

w1

w2

w3

w1(a) w1(b)

 1-wormhole, WH1A B 3-wormholes, WH3C
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device. Apart from the last sphere, the targets could not be seen from the pointing 

location, hence the participants had to rely on their spatial representation of the 

environment to complete the pointing task. Once the pointing task was complete, the 

next round of walking and pointing commenced. During all 8 rounds the target locations 

remained constant. The first 5 rounds were a ‘learning’ phase in which participants 

always began at the Start location and collected targets in the same sequence Start-Red-

Green-Blue-Yellow (S-R-G-B-Y) and finally pointed to all the targets from Yellow (i.e. 

from the last target). After pointing, the walls of the labyrinth disappeared and the 

participant went directly to the Start location and begin the next round. The purpose of 

the learning phase was to allow participants to build up a spatial representation of the 

labyrinth gradually through multiple repetitions of the same navigational task. During 

the test phase (the last 3 rounds) the navigational sequences were changed to three new 

sequences: Y-G-B-Y-R, R-B-R-Y-G and G-Y-G-R-B, so that during test the 

participants had to solve novel navigational tasks. They did not have to go to the Start 

locations at the beginning of a round but instead started at the point where the previous 

round ended. Importantly, the pointing locations at the ends of the sequences of the test 

rounds included all target locations except for Yellow, which was the pointing location 

during the learning phase. Thus, during test phase we collected pointing data from all 

target locations, except for Yellow. 

Excluding the practice session, each participant carried out 6 experimental sessions, 

each on a different day. We tested one Scene per session (Scene 1 or Scene 2) with three 

repetitions of each Scene. Across repetitions, the structure of the labyrinth and target 

locations were identical, but the colours of the targets were changed. This meant that 

while the instructions remained the same (e.g., in the learning phase, collect targets in 

sequence R-G-B-Y) the actual paths relating to those tasks were different on different 

repetitions. In the end, in Scene 1 we had 3 sets of pointing data in the test phase from 

the location marked as red in Fig. 2 and 2 sets of pointing data from green, blue and 

yellow locations (in scene 2: 3 sets from blue and 2 sets from the others). Altogether 

this constituted 72 pointing vectors per scene per condition per participant: 24 vectors 

from the red target and 16 vectors from green, blue and yellow. 

3 Results 

During the first couple of learning trials, while participants were not familiar with the 

structure of the labyrinth, their paths appeared relatively random, but closer to the end 

of the learning phase the participants could navigate more systematically. Here, we 

present the results of pointing in the test phase, after participants had completed the 5 

learning trials. Fig. 3 illustrates the paths that participants took through the maze during 

the test phase, after the learning phase of 5 rounds. In the cases shown in Fig. 3, 

participants were always navigating from the blue sphere to the yellow sphere, for a 

‘metric’ (normal) maze, a maze with one wormhole and a maze with three wormholes. 

There are 4 possible solutions to this task, assuming that participants did not double 

back on themselves and avoided ‘loops’ in their trajectory (returning to a junction) and, 

in fact, by the test phase participants did not do this, demonstrating learning during the  
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Fig. 3. Example of a participants’ paths during one subset of the task, “go from B to Y”. The full 

task for this round was: start at Yellow and go to targets in the order G-B-Y-R. The shortest path 

is marked in red, while green and blue lines represent alternative routes. Notice that in the 3-

wormhole condition paths are significantly longer.  

 

 

Fig. 4. Signed pointing errors for all participants (n=8) and all repetitions (3), for Scene 1. Data 

for the three conditions (metric, 1-wormhole and 3-wormhole) are shown in the top, middle and 

bottom rows. Pointing errors are shown individually with coloured symbols indicating the 

pointing target (Start, Red, Green, Blue and Yellow), the bar height indicating the mean error in 

each case. The plot background colour indicates the location from which the participant pointed 

(red, green, blue and yellow columns). Very similar data were obtained for Scene 2.  
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first phase. The shortest route is marked in red (in these cases, the shortest topological 

route is also the shortest metric route). Notice that in the 3-wormhole condition the 

participants’ paths are significantly longer and more complex than in the metric and 

one-wormhole conditions even when, topologically speaking, they take the same route 

as in the metric condition. Participants often did not notice the non-metric nature of 

WH1 condition although they sometimes reported that the Green target (inside the 

wormhole) was harder to find. In the three-wormhole (WH3) condition all participants 

were aware that the scene was geometrically impossible. 

Fig. 4 shows pointing data for the test phase in Scene 1 (8 participants, 3 conditions 

and 3 repetitions). The plot shows signed pointing errors, where positive errors are 

counter-clockwise relative to the true direction of the target from the centre of the hand-

held pointing device. Because of the order in which the pointing zones were visited, the 

number of ‘shots’ from each pointing zone was not identical: in scene 1 there were 48 

pointing data-points from the red location to each of the other targets, and 32 data-points 

from green, blue and yellow locations while in scene 2 (see Supplementary 

Information): there were 48 pointing data-points from the blue location and 32 data-

points from red, green and yellow locations. 

Fig. 4 clearly shows that the magnitude of pointing errors increases from metric to 

1-wormhole to 3-wormhole conditions. This is summarized in Fig. 5a which shows the 

standard deviation of all the pointing errors (across all participants, repetitions and 

scenes) for these conditions. However, it would be misleading to describe this as simply 

an increase in noise or non-specific variability. Fig. 5b illustrates one example of why 

this is not the case. The solid lines and dotted lines show pointing directions measured 

on two different days, demonstrating that the directions can be quite repeatable across 

days. This makes the errors in the wormhole condition all the more remarkable, since 
the errors are often close to 180 degrees. In this case, it appears that the participant 

might have been disoriented, but in exactly the same way on both days. However, the 

pointing vectors cannot be explained by rotation alone – there is a roughly 90o angle 

between the red and blue pointing vectors while in reality blue and red targets were 

located on the same line when viewed from green. We discuss some possible ways to 

model this behaviour in the model section. 

 

Fig. 5. Summary of pointing errors. A) The standard deviations of signed pointing errors across 

all participants and all conditions for both Scenes. B) Examples of pointing vectors in a metric 

(left) and non-metric condition (1-wormhole). In the non-metric case, the green target was inside 

the wormhole. C) A sketch drawn by a participant for the WH1 condition, scene 1. Notice that 

the participant is clearly much less confident about the path to the Green target, which is inside a 

wormhole. More sketches are included in the Supplementary Information. 
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Fig. 6. Example of systematic pointing errors in a non-metric condition with one wormhole. A) 

Pointing vectors to the green target from each of the other locations. The small circles show the 

hand location. The green target is inside the wormhole (see schematic in Fig. 10a). Most 

participants wrongly report that the green target is at the centre of the maze. B) Pointing vectors 

to the yellow target; these are reasonably accurate from the red and blue locations but there are 

systematic errors from the green location. These data are from Scene 2. 

Such distortions are not limited to a single participant. Fig. 6 shows pointing vectors 

of all participants to the green target from all pointing locations (left) and the same for 

the yellow target (right) in a one-wormhole condition (illustration from Scene 2, see 

Fig. 10 and Supplementary Information for schematics). Just like in Fig 5b, the green 

target was inside a wormhole, while the red, blue and yellow targets and the Start 

location were not, and hence it is no surprise that the pointing to and from the green 

target shows particularly large errors. For example, pointing from the green to the 

yellow target and from the yellow to the green target both had errors of about 180o. 

Despite these large errors, participants point accurately to the yellow target from both 

the red and blue locations which is understandable as neither are in a wormhole and 

they are connected by ‘metric’ (physically possible) routes. 

4 Model 

The systematic pointing errors that participants make in non-metric environments 

indicate that they are not basing their responses on a correct global spatial representation 

of the target locations. Note that ‘correct’ locations of each target can still be defined 

according to path integration, even in the wormhole conditions. Two qualitatively 

different kinds of distortions are possible: structural distortion and/or local orientational 

distortion where the orientation of local reference frames can be misestimated (Fig. 7). 

In order to separate these hypotheses, we estimated the optimal configuration of targets 

that could best explain the pointing data in the sense that it maximizes the following 

likelihood function: 

𝐿(𝑃𝑅 , 𝑃𝐺 , 𝑃𝐵 , 𝑃𝑌) = ∏
1

𝜎√2𝜋
𝑒−

1
2(

𝛼𝑖
𝜎 )

2
𝑁

𝑖
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Fig. 7. Possible distortions of spatial representations. A) Ground truth structure. B) A structural 

distortion compared to A). C) Here, in addition, there is orientational distortion so that local 

reference frames are oriented inconsistently. The insets on the right show the consequences of the 

local reference frame having a changing orientation, e.g. on pointing responses. 

where 𝑃𝑅, 𝑃𝐺, 𝑃𝐵 and 𝑃𝑌 are locations of the targets and 𝛼𝑖 is the pointing error with 

respect to the actual direction of the targets; the hand location for any given trial was 

rigidly translated with the pointing location. This function returns the largest value when 

angular errors, 𝛼𝑖  , are zero. 

Altogether, there were 𝑁 = 144 pointing vectors (48 from Blue, and 32 from Red, 

Green and Yellow) per participant per condition. We set the angular standard deviation, 

𝜎,  as 50 but repeating the analysis with different values showed that the locations 

returned were rather insensitive to the value of 𝜎. The Start location was treated as fixed 

in the optimization (it was, incidentally, always at a fixed location in the laboratory). 

The set of potential target locations was discrete and limited to the centers of a 5x5 grid 

with the same size as the labyrinth (see Fig. 8). We optimised locations of the targets 

(parameters 𝑃𝑅,𝐺,𝐵,𝑌) in order to maximize the likelihood 𝐿. The optimization was done  

 

Fig. 8. Example of a distorted spatial map explaining pointing data in a 1-wormhole condition. 

A) The original configuration of targets and the pointing vectors from 3 repetitions for a single 

participant. Taking ground truth as the ‘model’, the log likelihood, log(L), of these pointing data 

is  -105.3 (see text). B) The optimised (distorted) configuration of targets that best explains the 

pointing data. Now log(L) = -58.2 (see text). Notice that the locations of the green and yellow 

targets are swapped relative to their locations in (A). These data are for Scene 2. 
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per condition per participant and data from the 3 repetitions were combined together i.e. 

we assume that on different repetitions participants develop similar representations. 

Fig. 8a shows the original pointing vectors from a single participant in Scene 2. The 

log-likelihood of the pointing data for this configuration according to our model is 

log(L)=-105 whereas, when the configuration of the targets is optimised this improves 

to log(L) = -58 (see Fig 8b). Notice that the green and yellow targets have now (roughly) 

swapped places, consistent with the pointing directions shown in Fig 6. Finally, in order 

to capture the orientational distortions illustrated in Fig 5b, we additionally allowed a 

rigid rotation of the pointing vectors that a participant made from each pointing location. 

These rotational parameters, 𝜌𝑟 , 𝜌𝑔 , 𝜌𝑏 , 𝜌𝑦, describe the orientations of the local 

reference frames around the red, green, blue and yellow pointing locations respectively 

and could only take discrete values of 0, 90, 180 and 270 because these were the 

only directions that a participant could face while looking along a corridor. The 

rotational parameters were optimised at the same time as the positional ones. Separate 

optimisations were carried out per participant (n=8), per scene (n=2) and per condition 

(metric, one-wormhole and 3-wormhole). Each of the 4 locations was encoded by 2 

parameters (x, y) thus, altogether for the first model we had 8*2*4*2= 128 parameters 

per condition. In the second model, there were 8*2*4*3 = 192 parameters per condition 

since each location was now encoded by 3 parameters (x,y,) rather than just (x,y). The 

total likelihood of all the data under each of the two models was calculated by 

multiplying individual likelihoods per ‘shot’.  Adding more parameters to a model 

inevitably improves the  likelihood  of the best  fit of that model,  so in  order to  compare 

models  with  different numbers of parameters  we  calculate information criterion: 
𝐼𝐶 =  −2 log(𝐿) + 𝑘 𝑝 

 

 

Fig. 9. A) Akaike Information Criterion values are shown for each condition under 3 models: 

ground truth, optimised translation and optimised translation-and-rotation). B) Same for Bayesian 

Information Criterion. C-D) compare the AIC and BIC values for the translation and 

translation+rotation models. Different symbols for each participant and colours for each Scene. 
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where 𝐿 is the total likelihood of all data, 𝑝 is the number of parameters (0 for original 

data, 128 for the translation model and 192 for translation and rotational model) and 

𝑘=2 by definition for the Akiake Information criterion (AIC) and k=log(n) for the 

Bayesian Information Criterion (BIC). These are shown in Fig. 9a and b for the original 

(ground truth) configuration and for these two optimisation two models. In the ‘metric’ 

(normal) maze, assuming the ground truth location of the targets is the best model. 

However, in the one-wormhole condition the pattern for AIC is reversed and for the 

three-wormhole condition the reversal is present for both AIC and BIC values. In this 

case, the best explanation of the data is one that not only allows for a distortion of the 

location of the targets in the participant’s memory but also assumes that their reference 

frame for pointing may be rotated independently for different pointing locations.  

5 Discussion 

Our results show that adding wormholes to a labyrinth environment increases pointing 

errors (Fig. 5a) in a way that is partly explained by assuming that observers build a 

distorted model of the environment (Fig. 8) but more fully explained by assuming that 

observers also rotate their local reference frame when they are at certain locations (Fig. 

9). The latter explanation is not compatible with a single globally consistent 3D 

representation of the environment since that could not tolerate different rotations for 

different parts of the scene. 

The argument that ‘visual space’ is distorted is a familiar one, although much of the 

literature on this refers to the perception of an observer that is either stationary or only 

moving a few centimetres [31–34]. It is more unusual to try and find a distorted map of 

an environment to explain an observer’s behaviour when the observer is free to move 

around and explore all of that environment, partly because in this situation it is not 

immediately obvious what systematic distortions could apply. Nevertheless, in the 

peculiar wormhole environments that we have examined, systematic distortions of the 

scene layout do provide a better explanation of pointing behaviour than the ground truth 

layout (Fig. 9).    

The modelling we have done is agnostic about the causes of the distortions. One 

speculation is shown in Fig. 10. This illustrates the same maze layout as is shown in 

Fig. 6 and Fig. 8 where participants made large errors in pointing from the green to the 

yellow target and vice versa. The green target is located inside a wormhole next to the 

left wall and hence is, in reality, to the left of the yellow target. However, as Fig. 8b 

shows, the best explanation of participants’ pointing is that they believe the green target 

to be near the centre of the maze (i.e. to the right of yellow in these plan views). As 

Figure 10 shows, this would be the case if participants’ conception of the wormhole was 

that it was ‘squashed’ into a region between the entrance and exit of the wormhole in 

the rest of the maze. Participants might do this because they have learnt that the red, 

yellow and blue spheres are near the outer walls, forcing an interpretation in which the 

wormhole region is within the central part of the maze. 
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Fig. 10. A speculation about a possible cause of the bias shown in Figs 6 and 8. The corridors 

making up the wormhole are shown in the green panel on the right. These are shown ‘squashed’ 

into the location where the entrance and exit to the wormhole lie (left). This process leaves the 

green target to the right of the yellow target in the resulting map. This example is from Scene 2. 

 

Fig. 10 does not include any distortion of local orientation. When we add this in as 

a variable (Fig. 9), there is no longer a single, consistent metric representation that 

corresponds to the output of the model (i.e. x, y and  for each target location). This fits 

with the conclusion of a range of studies based on navigation or spatial knowledge of 

environments that find evidence against a single consistent representation of 3D space 

[7–9, 14, 24, 29, 35–37]. For example, Warren et al [5] claimed that there was no 

consistent representation of space that could account for their data (where the task was 

to walk directly to targets that had been experienced in a maze with wormholes, i.e. very 

like our pointing measure but with an indication of perceived distance as well as 

direction). Our experiment and analysis build on the conclusion of Warren et al (2017) 

who advocate the idea of a labelled graph. In particular, we make a direct comparison 

between three models (ground truth, a distorted map or a translation-plus-rotation 

model) and find that the translation-plus-rotation model fits best. This is compatible 

with the idea that in the real world, especially in complex environments, observers learn 

a topological structure first and then a progressively more accurate labelled graph as 

they become more familiar with the terrain until, eventually, the information about each 

edge of the graph is so accurate that the result is, at least in theory, impossible to 

distinguish from a consistent, metric map. This putative hierarchical calibration process 

for representing space is similar to hypotheses about observers’ representation of 

surface shape from binocular disparity [38–40]. 
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