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Abstract 

Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) 

formed during meat processing may pose health risk to the public. This project 

aimed to investigate the occurrence of HCAs and PAHs in highly consumed 

cooked meat products including ready-to-eat (RTE) meat, patties and 

meatballs, and their health risk was also assessed according to the dietary 

pattern. Different strategies including replacing fat with vegetable oils and 

adding spices were applied in order to reduce the formation of HCAs and 

PAHs in final meat products. In addition, inhibitory mechanism of antioxidants 

in oil and spices on the formation of HCAs and PAHs in meat system were 

also discussed. In this work, HCAs and PAHs were extracted by solid-phase 

extraction and analysed by HPLC- Diode array UV/ Fluorescence detector.  

For RTE meat in UK, chargrilled chicken had the highest level of HCAs 

(37.45±4.89ng/g) and PAHs (3.11±0.49ng/g), followed by roasted bacon 

(HCAs 15.24±1.31ng/g, PAHs 1.75±0.17ng/g) in selected RTE meat products. 

Increase intake of chargrilled chicken and ham could increase breast cancer 

and colorectal adenoma risk, but other types of meat had relatively lower 

health risk. 

Replacing pork back fat with vegetable oils including sunflower oil, olive oil 

and grape seed oil could not only improve fatty acids profile in cooked meat 

products, but also reduce HCAs, which could be attributed to the existence of 

tocopherols and polyphenol compounds in the vegetable oils. However, 

antioxidants in the oils could not reduce the total amount of PAHs effectively, 

while the complexity of oil decomposition and antioxidants performance at 

high temperature could partially explain the case.  

All 6 spices powder including garlic, onion, red chilli, paprika, black pepper 

and ginger reduced the formation of total HCAs, while ginger powder 

achieved the highest inhibition efficiency compared with all other spices. 

Antioxidant capacity of spices determined their efficiency in prohibiting 

formation of HCAs and PAHs in great extent, while meat type only affected 

the formation of HCAs (p<0.05), but not PAHs (p>0.05). Regression model 
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suggested that both diallyl disulfide and gallic acid contributed similar 

inhibitory efficiency on the formation of HCAs and PAHs. Synergistic effect 

between diallyl disulfide and gallic acid was observed on reducing HCAs 

(p<0.05), but not on PAHs (p>0.05). 
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 Introduction and Literature review 

1.1 Introduction 

Meat is a good source of protein, essential minerals such as iron and zinc, 

vitamin B and D in daily diet (Ferguson, 2010). Meat consumption increased 

from 23.1 kg per person per year to 42.20 kg per person per year in the world 

since 1961 (Sans & Combris, 2015). However, the World Cancer Research 

Fund (WCRF) report stated that there is a strong link between red meat/ 

processed meat intake and risk of colorectal cancer. A cohort study indicated 

that 17-18% increased risk of cancer when people consume 100g red meat or 

50g processed meat per day (Thompson, 2015). Cancer Research UK (2015) 

reported that approximately 21% of colorectal cancer in the UK is associated 

with consuming red and processed meat. This could be partially attributed to 

the high level of carcinogenic compounds produced during cooking process, 

such as heterocyclic amines (HCAs), polycyclic aromatic hydrocarbons (PAHs) 

and nitrosamines (McAfee et al., 2010). Due to the increase of meat 

consumption and associated incidence of cancer, the presence and hazard of 

heat-induced HCAs and PAHs in meat products has become a major concern 

for both consumers and researchers. Zheng and Lee (2009) indicated that 

high intake of well-done meat would increase the exposure to HCAs and 

consequently lead to incidence of colon cancer. Dietary exposure to PAHs 

from grilled meat has been found linked with elevating risk of lung, breast and 

gastrointestinal cancer (Jägerstad & Skog, 2005). Thus, it is essential to 

assess the presence of both HCAs and PAHs when evaluate the relationship 

between meat intake and cancer risk. 

1.2 Formation of HCAs and PAHs 

1.2.1 Classification of HCAs 

HCAs were firstly discovered in cooked meat products at 1970s, and they are 

usually generated in heated animal protein-rich foods (Sugimura et al., 2004). 

There are 2 main types of HCAs, aminoimidazoarenes (AIAs) and amino-

carbolines (ACs) (Rahman et al., 2014). ACs are generally formed by 

pyrolysis of amino acids when cooking temperature is over 300°C, including 

pyridoindoles such as 2-amino-9H-pyrido[2,3-b]indole (AαC), γ-amino-1,4-
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dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and other carbolines, e.g. 2-amino-

5-phenylpyridine (Phe-P-1).  

Table 1-1: Chemical structure and carcinogenicity classification of IQ, 
MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP  

Name Structure Carcinogenicity1 

2-amino-3-methylimidazo [4,5-
f]quinoline (IQ) 

  

Group 2A 

2-amino-3,4-dimethylimidazo[4,5-
f]quinoline (MeIQ) 

  

Group 2B 

2-amino-3,8-dimethylimidazo[4,5-
f]quinoxaline (MeIQx) 

 

Group 2B 

2-amino-3,4,8-trimethylimidazo[4,5-
f]quinoxaline (4,8-DiMeIQx) 

 

Group 2B 

2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine 
(PhIP) 

 

Group 2B 

1Classified by International Agency for Research on Cancer (IARC). 

 

AIAs have been reported generated mainly through Maillard reaction in meat 

cooked at 150-250°C, which is common temperature used in domestic 

cooking (Turesky, 2010; Zamora, Alcón, & Hidalgo, 2012). Common AIAs are 
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2-amino-3-methylimidazo [4,5-f]quinoline (IQ), 2-amino-3,4-

dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-

f]quinoxaline (MeIQx), 2-amino-3,4,8 trimethylimidazo[4,5-f]quinoxaline (4,8-

DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). With 

the accumulating evidence, IARC (1993) has classified IQ as Group 2A 

(probable human carcinogens), MeIQ, MeIQx, DiMeIQx and PhIP as Group 

2B (possible human carcinogens). These compounds are the major research 

concern because of their potential carcinogenicity. All these polar HCAs 

contain an imidazole ring with amino and methyl group attached (Table 1-1). 

1.2.2 Formation of HCAs 

Maillard reaction has been proposed as the main pathway of forming HCAs 

(Pearson et al., 1992; Turesky, 2010). Main precursors of HCAs are free 

amino acids, reducing sugar and creatine (Gibis, 2016). Figure 1-1 illustrates 

that pyrazines and pyridines are intermediates of imidazoquinoxaline and 

imidazoquinoline in Maillard reaction, respectively. At the early stage, 

unstable Schiff base could be formed through the reaction between free 

amino acids and sugar with the loss of water, and convert into N- substituted 

glycosylamine. At pH of 5.0-6.5 in meat, Schiff base could transform into 

Amadori rearrange product (ARP), namely, N-substituted-1-amino-1-deoxy-2-

ketose (glycol-aldehyde alklyimine, enol type) via Amadori rearrangement and 

two-carbon fragmentation. Subsequently, glycol-aldehyde alklyimine could 

undergo biomolecular ring formation to generate dialkyl-dihydro pyrazine and 

then become dialkyl-pyrazine radicals by losing electron. At the same time, 

glycolaldehyde alkylimine might also be molecularly rearranged and oxidized 

into glyoxal monoalkylimine which could further react with amino acids and 

generate glyoxal. Pyridine radicals are formed via condensation between 

glyoxal and glyoxal monoalkylimine. The original existing aldehydes and 

creatinine in meat system could react with pyridine radicals to form 

imidazoquinoline (IQ and MeIQ), while with dialkyl pyrazine radicals to form 

imidazoquinoxalines (MeIQx and DiMeIQx).  
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Figure 1-1: Proposed pathway of imidazoquinolines (IQ and MeIQ) and 
imidazoquinoxalines (MeIQx and 4, 8-DiMeIQx)1 

1Source from Vitaglione & Fogliano (2004). 
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PhIP can be formed by phenylalanine, creatine and reducing sugars 

(Murkovic, 2004; Zöchling & Murkovic, 2002). The suggested pathway was 

showed in Figure 1-2. Firstly, phenylalanine could undergo either thermal 

degradation or Strecker degradation to generate phenylacetaldehyde, which 

is a critical intermediate during formation of PhIP. Subsequently, aldol addition 

product (A in Figure 1-2) could be formed via aldolisation between 

phenylacetaldehyde and creatinine, and it could be quickly transformed into 

aldol condensation product with loss of water (B in Figure 1-2). At last, aldol 

condensation product could further react with amino moiety from 

phenylalanine or 2-phenylethylamine to generate PhIP. High temperature, 

prolonged heating time, high cooking loss and high content of creatine are 

considered as essential factors accelerating the formation of HCAs (Zöchling 

& Murkovic, 2002). 

 

Figure 1-2:  Proposed pathway of PhIP in meat products. (A) aldol 
addition product, (B) aldol condensation product1 

1Source from Murkovic (2004). 

 

Phenylacetaldehyde 

Phenylalanine 

Creatinine 

PhIP 
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1.2.3 Classification of PAHs 

PAHs are hydrocarbons containing two or more fused benzene rings, such as 

pyrene, anthracene and naphthalene. ‘Light PAHs’ is defined as structure of 

PAHs containing 2-4 benzene rings, while ‘heavy PAHs’ containing 5 or more 

fused benzene rings (Farhadian et al., 2010). There are hundreds PAHs 

existing in air, soil, water and foods. Some PAHs have been reported with 

potential carcinogenic activity by IARC, such as BaA and BaP have been 

recognized as probably carcinogenic to humans (2A), Ch and BbF as  

possibly carcinogenic to humans (2B) (Table 1-2). BaA, BaP and BbF also 

had sufficienct evidence of carcinogenicity in laboratory animalsb (IARC, 

2010). Human can be exposed to PAHs through inhalation, skin absorption 

and ingestion (PHE, 2008; Purcaro, Moret, & Conte, 2013). The structure, 

carcinogenicity and toxicity equivalency factor (TEF) of BaA, Ch, BaP and 

BbF have been summarized in Table 1-2. Except unavoidable occupational 

exposure to exhaust fume, fume from gas or metal factories, and major route 

of exposure to PAHs for general public are cigarette smoke and consumption 

of food containing PAHs. 

Table 1-2: Chemical structure, carcinogenicity classification and Toxicity 
Equivalency Factor of BaA, Ch, BaP and BbF 

Name Structure Carcinogenicity1 Toxicity 
equivalenc
y factor 
(TEF) 

Human2 Animal3 

Benz[a]anthracene 
(BaA) 

  

2A SE2 0.1 

Chrysene (Ch) 

  

2B LE3 0.1 

Benzo[a]pyrene (BaP) 

 

2A SE 1 
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Benzo[b]fluoranthene 
(BbF) 

 

2B SE 0.01 

1 Carcinogenicity of PAH4 classified by IARC (2010). 

2 IARC evaluation: 2A: probably carcinogenic to humans; 2B: possibly carcinogenic 
to humans. 

3 IARC classification on degree of evidence of carcinogenicity in laboratory animals: 
sufficient evidence; LE: limited evidence. 

1.2.4 Formation of PAHs 

The exact mechanism of forming PAHs in processed meat products has not 

been confirmed yet. However, 3 proposed pathways have been generally 

accepted. PAHs can be formed through the incomplete combustion or 

pyrolysis of organic components including fat, protein and carbohydrates at 

temperature over 200°C, especially above 400°C (Alomirah et al., 2011); they 

can be generated in the smoke when lipid dropping onto flame, consequently 

deposited on food surface. In addition, the incomplete combustion of charcoal 

also contributes to the development of PAHs (Farhadian et al., 2010; Singh, 

Varshney, & Agarwal, 2016). 

The whole process of forming PAHs contained a series of radical reactions 

(D'Anna & Violi, 1998; Wang & Frenklach, 1997; Wang, Raj, & Chung, 2013). 

At high temperature, small molecules such as propane and ethylene, are 

generated by fragmentation of large organic compounds (pyrolysis). Some 

key reactions during the formation of benzene ring are listed below, including 

propargyl recombination (a) and n-C4H3 with acetylene (b). The ring is 

enlarged by adding ethynyl side chain on benzene ring or ring-ring 

condensation (Figure 1-3). Combination reactions of hydrogen and larger 

aromatic radicals, including napthyl and phenanthryl radicals lead to grow 

mass of PAHs (Wang & Frenklach, 1997). Propargyl recombination has been 

reported as major route, as they are stabilized free radicals, while n-C4H3 

could easily transform into � -C4H3, which had less contribution to forming 

benzene ring (D'Anna & Violi, 1998). 
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Benzene formation: 

C3H3 + C3H3 → C6H5 + H     (a) 

n-C4H3 + C2H2 → C6H5     (b) 

 

Figure 1-3: proposed pathway of enlarging aromatic ring1 

1Source from D'Anna & Violi (1998). 

1.3 Cancer risk of HCAs and PAHs 

1.3.1 HCAs and cancer 

1.3.1.1 Animal trials 

The carcinogenicity of these AIAs on organs/tissues has been tested in long-

term animal trials. Rats and mice had been orally exposed to specific amount 

of IQ, MeIQ, MeIQx and PhIP over several months, and features of their target 

organs have been observed. Results showed that intake of these HCAs 

induced tumours in several organs, including liver, intestine, mammary gland 

and forestomach (Sugimura et al., 2004). Particularly, possibly carcinogen (2A) 

IQ could also cause hepatocellular adenomas and carcinomas, adenomas 

and adenocarcinomas of the lung and squamous-cell papilloma and 

carcinomas of the fore stomach in mice (IARC, 1993). However, results from 

experimental animal might be limited since amount of human intake of HCAs 

is not comparable with animal trials. Threshold dose 50 (TD50) is one of the 

key measurements (in mg/kg body weight/day) used in animal trials to show 

the dosage level of inducing tumour for half of test animals compared with 

those with zero dose. TD50 of HCAs ranged 0.1-2.2 mg/kg/day in rats and 8.4-



9 

 

64.6 mg/kg/day in mice (Sugimura et al., 2004). However, these carcinogenic 

dose data were much higher than human daily intake of HCAs with average 

50-1820 ng/ person/day (Layton et al., 1995; Sugimura et al., 2004; Wong et 

al., 2005). Therefore, animal trials may not be able to explain the risk 

accurately between HCAs and cancer in human. 

1.3.1.2 Epidemiological human studies 

Epidemiological studies revealed that there is a positive association between 

the risk of cancer and frequent consumption of red/processed meat, 

especially fried, grilled/roasted meat and fish products (Ferguson, 2010). The 

occurrence of carcinogens in these cooked meat might explain the 

association between meat intake and cancer risk (Chan et al., 2011; Gibis, 

2016). Le Marchand et al. (2002) found out that rectal cancer risk in male 

could increase 2-3 times with the increasing intake of HCAs (MeIQx, DiMeIQx 

and PhIP), especially MeIQx (p<0.05) from a population-based case-control 

study in Hawaii area. Consistent results were obtained from a cohort study in 

European Prospective Investigation into Cancer and Nutrition (EPIC)-

Heidelberg, which reported that increasing intake of MeIQx, DiMeIQx and 

PhIP could increase the risk of colorectal adenomas (p<0.05) (Barbir et al., 

2012). Similarly, Fu et al. (2011) concluded a significant positive association 

between high intake of HCAs (MeIQx, DiMeIQx and PhIP) and colorectal 

polyp (adenomas) (p<0.05).    

Increasing intake of HCAs is also associated with increasing risk of breast, 

lung and prostate cancer. Breast Cancer UK (2017) pointed out that breast 

cancer is the most common cancer in women in the UK, 1 in 8 women would 

be diagnosed breast cancer in lifetime. Stefani et al. (1997) conducted a 

hospital-based case-control study and found that intake of HCAs (IQ, MeIQx 

and PhIP) generated in cooked meat might be strongly related to the 

increasing risk of breast cancer. Lam et al. (2009) conducted a population-

based case-control study in Italy and stated that intake of MeIQx and PhIP 

was positively associated with the risk of lung cancer with the Odds Ratio (OR) 

1.4-1.5 (95% CI: 1.2-1.8 and 1.2-1.7) (p<0.001). 
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1.3.2 PAHs and cancer 

Although plenty of PAHs can be found in the environment (water, air and soil), 

food is another main source of exposure to PAHs. Dietary PAHs exposure 

from food, including grilled/ barbequed/smoked meat, cereal and vegetables 

grown in soil provides 90% of total PAHs exposure for non-smoking and non-

occupational exposure in general public (EPA, 2012). Intake of PAHs ranged 

from ng/person/day to mg/person/day (Alomirah et al., 2011; IARC, 2010; 

Purcaro et al., 2013). Although European Food Safety Authority (EFSA) 

reported that PAH4 (Sum of BaP, Ch, BaA and BbF) could be the marker for 

total PAHs, BaA and BaP are the PAHs with the most potent carcinogenicity 

(Group 2A) found in meat products (Table 1-2). The reactive metabolite of 

BaP, BaP-7, 8-diol-9, 10-epoxide, has the highest ability of inducing tumours 

by generating adducts with bio protein or DNAs (Purcaro et al., 2013). 

1.3.2.1 Animal trials 

IARC (2010) reported that there was sufficient evidence to show the 

carcinogenicity of BaA and BaP to experimental animals. Oral exposure to 

BaP increased the incidence of tumours at alimentary tract and forestomach 

in rats & mice with the dosage 0.2-10 mg/kg/day (EPA, 2012). Long-term 

inhale exposure to BaP (10mg/m3) in Syrian golden hamsters also induced 

respiratory tract cancer and gastrointestinal tract tumours (WHO, 2000). 

Exposure to BaP could also induce skin tumours in mice, rats, rabbits, and 

guinea pigs (EPA, 2012). The analysis has been focused on chronic 

carcinogenicity bioassays in several strains of mice following repeated dermal 

exposure (2- or 3-times/week exposure) to BaP during the animals’ lifetime. 

New-born mice obtaining intraperitoneal injections of β.8 μmol BaA for 6 

weeks (3 times/week) showed significantly increase incidence and number of 

pulmonary tumours per mouse comparing with the controls (Levin et al., 1984).  

1.3.2.2 Human studies 

Epidemiological studies in Germany and Sweden confirmed that occupational 

exposure to PAHs, such as from gasoline and coal tars industries, increased 

incidence of lung cancer and bladder cancer (Boffetta, Jourenkova, & 

Gustavsson, 1997). For non-occupational population, epidemiological studies 
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showed that high intake of barbequed/grilled meat products containing PAHs, 

had association with risk of stomach and esophagus cancer (Ward et al., 

1997) and pancreatic cancer (Norell et al., 1986). However, the relationship 

between dietary intake of PAHs and risk of cancer is still not conclusive, since 

there are other carcinogens such as HCAs and N-nitroso compounds 

presented in meat products, which could also contribute to the posing risks.  

1.3.2.3 Regulations 

Europe (Belgium and Spain), Asia (China and Malaysia), Canada and USA 

have regulated occupational exposure limit is 0.2-mg/m3 time-weighted 

average for the benzene-soluble fraction, including anthracene, BaP, Ch, 

phenanthrene and pyrene (IARC, 2010). 

Cereal/bread and cooked meat are main contributors of dietary PAH intake 

(IARC, 2010). European Commission (EC) regulated that the maximum of 

BaP in smoked meat and fish products is 2 ng/g and total PAH4 should be 

less than 12 ng/g (Regulation No. 1881/2006, from 01/09/2014). It is also 

regulated that BaP in heat treated meat and commercial meat products, such 

as grilled/barbequed meat should be less than 6 ng/g, and PAH4 should be 

lower than 35 ng/g (No. 835/2011) (Purcaro et al., 2013). 

1.4 HCAs/PAHs associated meat products in different 

countries 

A number of epidemiological studies have reported dietary intake of HCAs 

and PAHs from cooked meat worldwide, including USA, Europe and Asia. The 

amount of individual HCAs and estimated daily intake of HCAs in different 

countries were summarized in Table 1-3. The amount of HCAs and estimated 

dietary intake in the US (407-1820 ng/person/day) were much higher 

compared with other countries, which could be explained by high consumption 

of grilled or fried meat in the US (Gibis, 2016). The HCAs intake in Spain was 

663 ng/ person/ day and 554 ng/person/day in Malaysia. The difference in 

intake between the two countries could be due to cooking practice. Grilling 

and pan-frying are the popular cooking methods in Spain responsible of high 

amount of HCAs, compared with steaming and boiling, which are favorable in 

Malaysia. High frequency of meat consumption in these countries could also 
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contribute to the increase in HCAs intake (Busquets et al., 2004; Jahurul et al., 

2010). Relatively lower intake of total HCAs was found in Singapore (50 

ng/person/day) and Japan (64.5 ng/person/day). PhIP was the major 

contributor to dietary intake of HCAs, followed by MeQIx (Table 1-3).   

Table 1-4 showed the amount of BaP, other PAHs and total PAHs intake in 

different countries. Since BaP is the well-known PAH with high carcinogenic 

potential, the amount of BaP in meat products has been determined in all 

studies. BaP content in cooked meat and fish products was high in Estonia 

(<0.3-31.2 ng/g) and Denmark (0-24 ng/g), followed by in Malaysia (0-12.5 

ng/g) and China (0-10.5 ng/g). However, determination of other/ total PAHs 

was not consistent among studies. For example, some studies measured 

PAH4, while PAH8 or PAH16 were also determined in other studies. Aaslyng 

et al. (2013) determined PAH8 in barbequed beef, chicken and pork was 19.7-

229 ng/g in Denmark, while Alomirah et al. (2011) reported 0.7-42.9 ng/g 

PAH8 in grilled and smoked meat products in Kuwait. The amount of PAH12 

in meat and fish products was 0.59-11.34 ng/g in the UK (Dennis et al., 1983) 

and 5.7-20 ng/g in Estonia (Reinik et al., 2007). PAH16 (87.5-195.3ng/g) was 

estimated in commercial beef, chicken, pork and fish products in China (Xia et 

al., 2010). Due to difference in study design, it is difficult to compare dietary 

intake of PAHs accurately among countries. Since different meat products are 

consumed among countries, guideline about dietary intake of carcinogens 

from meat products should adapt factors including country and eating habit, in 

order to give more practical advice on intake of meat products for general 

public. 
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Table 1-3: The amount of HCAs in cooked meat and fish products and estimated dietary intake of HCAs (ng per person per 
day) reported in different countries 

1Intake Unit: ng per person per day 

 

 

Country MeIQx  4, 8-
DiMeIQx  PhIP  Other HCAs  Total 

HCAs  References 

 
Content 
(ng/g) Intake1 Content 

(ng/g) Intake Content  
(ng/g) Intake Content  

(ng/g) Intake Content 
(ng/g) Intake  

USA 0.6-11.0 182.7 0.1-5.4 56.7 1.5-69.0 1164.8 IQ: 0.04-2.1 IQ: 19.6 2.24-87.5 1820 Layton et al. 
(1995) 

USA 0-25.46 67.2 0-3.2 10.5 0.08-164.6 317.8 IQ: 0-33.1 IQ: 11.9 0.1-202.0 407.4 Keating and 
Bogen (2001) 

Switzerland 0-0.7 91 0-1.5 42 0-4.3 168 IQ: 0,  
MeIQ: 0-0.7 

IQ:42; 
MeIQ: 42 0-6.5 427 

Zimmerli, Rhyn, 
Zoller, and 
Schlatter (2001) 

Spain 0-2.9 11 0-1.8 5.2 0.6-46.9 307   1.3-51.6 663 Busquets et al. 
(2004) 

Malaysia 0-24.3 312 0-0.7 16 0-30.6 195 MeIQ: 0-3.8  0-38.7 554 Jahurul et al. 
(2010) 

Singapore 0-2.3 29 0.03-0.54 13 0-5.3 5.8   0-5.7 50 Wong et al. 
(2005) 

Japan 0.01-0.2 11 0-0.1 6.3 0.3-0.6 47   0.4-0.9 64.5 Kobayashi et al. 
(2002) 
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Table 1-4: The amount of PAHs in cooked meat & fish products and estimated dietary daily intake of PAHs (ng per person 
per day) reported in different countries 

Fl: Fluoranthene; PAH4: Sum of BaP, Ch, BaA and BbF; PAH8: Sum of BaP, Ch, BaA, BbF, BkF, BgP, DhA and IP 
PAH12: Sum of PAH8, Dibenzo[a,e]pyrene, Dibenzo[a,l]pyrene, 5-Methylchrysene, Benzo[g,h,i]perylene 
PAH16: Sum of PAH8, Naphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Antracene, Benzo[g,h,i]perylene, Benzo[g,h,i]perylene 
PAH25: Sum of PAH12, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Antracene, Fluoranthene, Pyrene, Cyclopenta[c,d]pyrene, 5-
methylchrysene, Anthanthrene, Coronene, 5-methylchrysene, Dibenzo[a,i]pyrene. 
1 Intake Unit: ng per person per day 
2 Intake of PAHs from Adult  
3 Through daily consumption of 100g 
4 Contribution of pork (10.45–12.49%) and fish (6.90–8.03%) to total PAHs (3543–8140 ng/d) 
5 Per capita consumption of poultry, beef and fish is respectively reported at 33.8, 5.8 & 60.5 kg

 BaP Other PAHs Total PAHs References 

Country Content (ng/g) Intake1 Content (ng/g) Intake Content (ng/g) Intake  

UK 0-0.13 0-5.1 BaA: 0.03-0.09 BaA: 0-8.8 PAH12: 0.59-11.34 PAH12: 0-370 Dennis et al. (1983) 

Estonia <0.3-31.2 15-1303 BaA: <0.7-5.6  PAH12: 5.7-20 PAH12: 320-
1600 Reinik et al. (2007) 

Latvia 0-6.0 23.1 BaA: 0.05-14.2  PAH4: 0.2-34.7 PAH4: 203.7 Rozentāle et al. (β015) 

Kuwait 0-5.8 0-37.1 Sum of BaP eq: 
0.04-6.0 

Sum of BaP 
eq: 0.7-89.9 PAH8: 0.7-42.9 PAH8: 2.6-641 Alomirah et al. (2011) 

Denmark 0-24 2.0-4.1 PAH4: 1.1-17.3  PAH8: 19.7-229 PAH25: 528-
1362 

Aaslyng et al. (2013); 
Duedahl-Olesen, White, 
and Binderup (2006)  

China4 0-10.5  
Sum of BaP eq: 
0.6-5.7  PAH16: 87.5-195.3 PAH16: 671 Xia et al. (2010) 

Malaysia5 0-12.5  
BbF: 0-9.67; Fl: 
3.5-106  Sum of BbF, BaP 

and Fl: 3.5-51.1 1541.8 Farhadian et al. (2010) 
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1.5 Factors affecting the formation of HCAs in cooked meat 

Factors affect the formation of HCAs are cooking process, meat composition 

and other ingredients in meat products (Jinap et al., 2013; Rahman et al., 

2014). A higher cooking temperature with prolonged time under direct heat 

source could lead to produce more carcinogens. However, adding ingredients 

with antioxidant capacity such as spices and vitamins, could inhibit the 

formation of HCAs (Gibis, 2016). 

1.5.1 Cooking methods 

The common thermal cooking methods of meat processing are 

grilling/barbecuing, frying, roasting/baking, smoking and boiling. They are all 

dry heat methods except from boiling (Fellows, 2002). Quantitation of HCAs 

has been reported in boiled meat (Skog & Solyakov, 2002a), microwaved 

meat (Oz, Kaban, & Kaya, 2010), pan-fried meat (Gibis, Kruwinnus, & Weiss, 

2015; Janoszka et al., 2009; Quelhas et al., 2010; Viegas et al., 2012), deep-

fried meat (Jinap et al., 2016), roasted meat (Zeng et al., 2014; Zeng et al., 

2016; Zeng et al., 2017) and grilled meat products (Gibis & Weiss, 2015; 

Hasnol, Jinap, & Sanny, 2014; Jinap, Iqbal, & Selvam, 2015). Cooking 

method has a great impact on the formation of HCAs. Previous research 

showed grilled/ barbequed meat products contained a higher level of HCAs 

compared with boiled meat (Gibis, 2016; Liao et al., 2010; Liao, Xu, & Zhou, 

2009; Skog & Solyakov, 2002b). 

1.5.1.1 Grilling/barbequing 

Grilling or barbequing is a thermal process with applying dry heat/flame 

directly over food surface (Fellows, 2002). This method could generate 

abundant amount of HCAs, since flame with high temperature was directly 

applied over the food surface and led to high moisture loss (Skog & Solyakov, 

2002b; Skog, Johansson, & Jaègerstad, 1998). Much higher total HCAs was 

found in barbequed chicken (50.82 ng/g), compared with pan-fried chicken 

(3.78 ng/g) with the same doneness level (Iwasaki et al., 2010). Similar result 

was also reported in beef. Grilled beef (140.68 ng/g) contained 10 times more 

total HCAs than in pan-fried samples (13.53 ng/g) (Jinap et al., 2013; 

Puangsombat, Jirapakkul, & Smith, 2011). Oz and Kotan (2016) showed 
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barbequed fish contained significantly higher amount of total HCAs (3.09 ng/g) 

than dry heated (1.20 ng/g), microwaved (1.12 ng/g) and oven roasted fish 

(0.79 ng/g) (p<0.05). Jinap et al. (2013) and Manar (2014) detected 14.37-

73.96 ng/g IQ in beef grilled at 270-320 oC, compared with none in boiled beef 

and 8.81 ng/g in fried beef.  

1.5.1.2 Frying 

Frying offers food a crust outer layer with a moist interior when food immersed 

in heated fat at high temperature (Fellows, 2002). During frying, internal 

moisture transports outwards when surface water evaporated, which brings 

water-soluble precursors (amino acids, creatine and sugars) of carcinogens to 

the surface of meat to generate medium level of HCAs (Balogh et al., 2000). 

The amount of total HCAs (IQ, MeIQx, 4,8-DiMeIQx and PhIP) was 2.16 ng/g 

in deep-fried chicken and 1.47 ng/g in duck, which were significantly lower 

than chargrilled ones, i.e. 31.06 ng/g in chicken and 11.80 ng/g in duck 

(p<0.05) (Liao et al., 2010). Similarly, Janoszka et al. (2009) found that pork 

chop, collar and mince chop fried at 170 oC had 7-15 ng/g total HCAs 

including MeIQ, MeIQx, DiMeIQx and PhIP. Ground beef fried at 175-225 oC 

patties contained up to 16.4 ng/g IQ, 12.3 ng/g MeIQ and 53.7 ng/g PhIP 

(Balogh et al., 2000). However, much higher total HCAs (4.7-17.8 ng/g) was 

detected in pan-residues instead of in beef (1.9-3.2 ng/g) fried with different 

frying fats, including margarine, butter, sunflower oil and rapeseed oil 

(Johansson et al., 1995). Inconsistent results of HCAs content might be 

attributed to different frying condition, fatty acids profile, depth of frying and 

water evaporation rate in the studies (Johansson et al., 1995).  

1.5.1.3 Roasting 

Roasting usually generates medium amount of carcinogens, as meat products 

were cooked under heated air (110-300 oC), which resulted in the crispy 

surface of cooked meat but with high internal moisture (Fellows, 2002; Skog & 

Solyakov, 2002b). There were less than 0.1 ng/g total HCAs in roasted 

chicken breast cooked at 175-240 oC for 25-40 min (Skog & Solyakov, 2002b). 

Liao et al. (2010) suggested that roasting produced the lowest amount of 

DiMeIQx in chicken, compared with other cooking methods including pan-
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frying and grilling when similar cooking temperature and time were used. IQ 

was not detected in chicken (Liao et al., 2010) and pork loin (Busquets et al., 

2004) roasted at 175-200 oC. 0.2-0.8ng/g of PhIP and 0.1-3.1 ng/g MeIQx 

were found in ham baked 225 oC for 10-20 minutes (Gibis & Weiss, 2012). 

1.5.1.4 Boiling/steaming 

Since boiling/steaming only involves moist heat, it results in high moisture in 

cooked meat (Fellows, 2002). Skog and Solyakov (2002a) reported that no 

HCAs (MeIQx, DiMeIQx and PhIP) detected in boiled chicken for 23-240 min. 

Lu, Kuhnle, and Cheng (2017a) reported 0.57-4.49 ng/g total HCAs (IQ, MeIQ, 

MeIQx, 4, 8-DiMeIQx and PhIP) in ready-to-eat (RTE) ham products. 

Commercial ham and smoked ham are usually cooked by placing the 

reformed ham in a hot water bath (80- 90 oC) or steam till the interior 

temperature reaches to 72 oC, which result in very high moisture content and 

low amount of HCAs (Turesky, 2010). Chen, Pearson, and Gray (1990) 

reported that high moisture content in the products might dilute the 

concentration of HCAs and led to low level of HCAs. 

1.5.2 Cooking temperature and time 

Heating temperature and time have major impact on the formation of HCAs. 

Cooking with higher temperature and longer time resulted in higher cooking 

loss, which might correspond to a high level of HCAs in meat products (Gibis, 

2016; Knize et al., 1994; Olsson & Pickova, 2005; Skog et al., 1998).  

Formation of HCAs initiates at 125 oC and significant amount of IQ, MeIQ, 

MeIQx, DiMeIQx and PhIP could be detected at temperature over 160 oC 

(Gibis, 2016). Jinap et al. (2013) reported that IQ increased by approximately 

3 times in beef and chicken when grilling temperature increased from 270-

300oC to 300-350 oC. The amount of MeIQx was also increased from 2-3 ng/g 

to15 ng/g in grilled chicken and nd to 7.3ng/g in fried beef patties when 

temperature increased from 190 oC to 320 oC and 150 oC to 230 oC 

respectively (Jinap et al., 2013; Knize et al., 1994). However, some HCAs 

such as DiMeIQx and PhIP, decreased at higher temperature (> 250 oC) 

(Jinap et al., 2013). Felton et al. (1994) reported that frying temperature 

increased from 200 oC to 250 oC could reduce the formation of DiMeIQx in 
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beef patties. This result was agreed with the finding obtained from a heated 

chemical model system, which noticed that 4, 8-DiMeIQx started degradation 

at temperature above 225 oC (Arvidsson et al., 1997). 

The prolonged cooking time could promote the accumulation of total HCAs. 

Total HCAs (IQ, MeIQ, MeIQx, DiMeIQx and PhIP) increased significantly in 

fried beef patties with cooking time extended from 12 min to 20 min (p<0.05). 

PhIP increased from 27ng/g to 480 ng/g in grilled chicken and 1.33ng/g to 

7.36ng/g in boiled pork with longer cooking time (Lan, Kao, & Che, 2004; 

Sinha et al., 1995). 

1.5.3 Composition of meat 

Amino acids, creatine and reducing sugars are the three main precursors 

involved in the formation of polar HCAs (IQ, MeIQ, MeIQx, DiMeIQx and 

PhIP). The amount and type of major precursors have significant effect on the 

level of HCAs (Felton et al., 1994; Hasnol et al., 2014; Puangsombat et al., 

2011). Chemical model system has been established to mimic the formation 

of HCAs and to investigate the effect of various compounds on the formation 

of HCAs (Arvidsson et al., 1997; Johansson & Jägerstad, 1996; Moon & Shin, 

2013; Shin, Strasburg, & Gray, 2002c; Zhu et al., 2016). 

1.5.3.1 Reducing sugar, creatine and free amino acids content 

Creatine is necessary for the formation of imidazole ring in the structure of 

imidazoquinoline and imidazoquinoxaline (Gibis, 2016). During heating, 

creatine is hydrolysed into creatinine, which can further react with glucose and 

amino acids into 2-methyl-pyridine or 2, 5-dimethyl-pyrazine. The 2-methyl-

pyridine could react with other amino acids in meat, such as glycine or alanine 

to form IQ and MeIQ, respectively (Puangsombat et al., 2012). PhIP usually 

could be generated from the mixture of creatinine, phenylalanine and glucose 

under heating, the amount may increase in glucose-abundant meat products 

(Felton et al., 1994). Khan et al. (2013) stated that there was a positive 

correlation (correlation coefficient r= 0.71, p<0.05) between the amount of 

PhIP and the content of glucose and amino acids in fried fish products. 

Puangsombat et al. (2011) further confirmed that greater level of PhIP was 



19 

 

found in salmon with higher glucose and creatine content, compared with that 

in cod under the same cooking condition.  

Amino acids other than creatine are also vital for the development of HCAs 

during cooking. In order to understand amino acids profile on the formation of 

different HCAs, heated chemical model system has been established 

including mixture of amino acids, reducing sugar such as glucose/ fructose 

and creatine (Bordas et al., 2004). It has been reported that amino acids such 

as glycine, alanine, lysine, threonine and phenylalanine are responsible for 

the formation of imidazoquinoline and imidazoquinoxaline (Bordas et al., 2004; 

Gibis, 2016). Particularly, glycine, threonine, alanine and lysine contributed to 

the formation of MeQIx, while threonine, alanine and lysine participated in the 

formation of 4, 8-DiMeIQx (Gibis, 2016), while phenylalanine is critical for 

generating PhIP (Zöchling & Murkovic, 2002). 

1.5.3.2 Fat content and lipid oxidation 

The source of fat in meat products could be either endogenous (fat content of 

raw meat) or exogenous (added fat or lipids during preparation/cooking 

process). High fat content could reduce HCAs owing to the dilution effect of 

substrates (Hwang & Ngadi, 2002; Knize et al., 1994), while fat could also 

accelerate heat penetration to meat system and lead to high level of HCAs 

formation (Knize et al., 1994). Johansson and Jagerstad (1994) stated that 

the formation of IQ had a positive correlation with fat content (r= 0.774, 

p<0.01) in well-done bacon. Jinap et al. (2013) found more MeIQ in cooked 

meat marinated with extra palm oil (10mL/kg) than samples without marinades. 

In addition, free radicals, aldehydes and ketones generated from lipid 

oxidation could interact with Maillard reaction to promote the formation of 

HCAs (Johansson & Jagerstad, 1994; Zamora & Hidalgo, 2007).   

The pathway of nonenzymatic lipid oxidation through free radical reaction 

includes 3 steps, initiation, propagation and termination (see below). In the 

step of initiation, a free radical (R∙) is produced from triglycerides or free fatty 

acids with the presence of oxygen/ metal ions/ metal-protein. Propagation 

starts when R∙ reacts with O2 to form peroxide radical ROO∙, which can react 

with fatty acids to generate another free radical R∙ and hydroperoxides 
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(ROOH). These unstable hydroperoxides are readily decomposed into 

aldehydes, ketones and hydrocarbons that could further react with amine 

groups of protein. The termination occurs when 2 radicals react or a stable 

substance formed (Guillen-Sans & Guzman-Chozas, 1998; Shahidi & 

Ambigaipalan, 2015). 

Initiation          RH →  R∙ + H 

Propagation    R∙ +  O2  →  ROO∙ 
                       ROO∙  +  RH  →  R∙ +  ROOH  

Termination    R∙  +  R∙ 
                       R∙  +  ROO∙ 
                       ROO∙  +  ROO∙ 
Lipids and lipid oxidation interacted with Maillard reaction through enhancing 

the formation of Maillard reaction intermediates. Johansson and Jagerstad 

(1994) reported that fat could improve the production of pyridine-containing 

intermediates, which resulted in accumulating HCAs. Furthermore, 

decomposed compounds from cleavage of hydroperoxides, such as 

aldehydes and ketones in lipid oxidation could react with amino acids, which 

might promote Maillard reaction (Zamora & Hidalgo, 2007). Zamora et al. 

(2012) reported that the presence of lipid oxidation products, such as 4-oxo-2-

nonenal significantly increased the amount of PhIP in chemical model system 

(p<0.05). However, antioxidants, i.e. polyphenols and tocopherols presented 

in lipids showed inhibitory effect on the formation of HCAs (Bordas et al., 2004; 

Johansson & Jagerstad, 1994; Lu, Kuhnle, & Cheng, 2017b). Thus, the effect 

of fat/lipids needs to be justified with the consideration of fatty acids profile 

and presence of antioxidants. 

1.5.4 Addition of antioxidants 

Since free radical mechanism has been proposed in the formation of HCAs, 

antioxidants with scavenging capacity have been applied into meat products 

and/or chemical model system to explore the effect on HCAs formation. 



21 

 

Previous research studied the effect of antioxidants on HCAs in meat 

products through 3 approaches, including adding single or mixture of chemical 

compound(s) (Cheng, Chen, & Wang, 2007a; Wong, Cheng, & Wang, 2012; 

Zeng et al., 2017), food extract (Cheng et al., 2007b; Gibis & Weiss, 2012) 

and whole food (Britt et al., 1998; Oz & Kaya, 2011a; Oz & Kaya, 2011b). 

Synthetic antioxidants, such as butylated hydroxyanisole (BHA), propyl gallate 

(PG) and tert-butylhydroquinon (TBHQ) have showed good inhibitory 

efficiency on the formation of HCAs (Vitaglione & Fogliano, 2004). However, 

natural antioxidants including phenolic/polyphenols and vitamins become 

more favourable to consumers because of the potential toxic hazard of 

synthetic antioxidants.  

1.5.4.1 Phenolic antioxidants 

Phenolic antioxidants, including phenolic acids and flavonoids, have showed 

antioxidant capacity owing to the reactivity of phenol moiety in the structure 

(Rice-Evans, Miller, & Paganga, 1997; Shahidi & Ambigaipalan, 2015). They 

could also scavenge pyridine and pyrazine radicals, so that prohibit further 

reactions with creatinine to prevent the formation of HCAs (Vitaglione & 

Fogliano, 2004). The mechanism of radical scavenging by phenolic 

compounds has been summarized by Shahidi and Ambigaipalan (2015). 

Phenolic antioxidants (AH) can donate hydrogen atom(s) to free radicals, 

such as alkoxys and hydroperoxides, in a result of forming stable compounds 

and antioxidant radicals, which can further react with other free radicals. 

R∙/RO∙/ROO∙ + AH →  A∙ + RH/ROH/ROOH 

RO∙/ROO∙ + A∙ → ROA/ROOA  

ROO∙ + RH → ROOH + R∙ 
Pure polyphenol compounds, such as quercetin and rutin (structure in Figure 

1-4) could significantly reduce total HCAs (MeIQx, 4, 8-DiMeIQx and PhIP) in 

fried beef patties (Cheng et al., 2007a; Zhu et al., 2016). Flavonoids such as 

naringenin also inhibited MeIQx, 4, 8-DiMeIQx and PhIP effectively in a 

heated chemical model system (Zeng et al., 2016). The efficiency of 

scavenging radical in antioxidants is dependent on structure of the 
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compounds and its thermal behaviour (Shahidi & Ambigaipalan, 2015; Zeng 

et al., 2016). Generally speaking, radical scavenging capacity (antioxidant 

capacity) increases with the number of hydroxyl groups and decreases with 

glycosylation. For example, rutin showed less antioxidant activity and thermal 

stability than quercetin due to the presence of rhamnoglucoside moiety in the 

structure (da Costa et al., 2002; Shahidi & Ambigaipalan, 2015). The basic 

structure of flavonoids is illustrated in Figure1-4, which consists of the fused A 

and C rings with the phenyl B ring. Polyphenols with strong antioxidant activity 

usually have the structure including (1) ortho γ’,4’- dihydroxyl groups on the B 

ring, (2) 3- hydroxyl on the C ring and (3) meta 5,7-dihydroxyl groups on the A 

ring and 2,3-double bond with the carbonyl group on the C ring (Rice-Evans et 

al., 1997). 

 

Figure 1-4: The basic structure of flavonoids, quercetin and rutin1 

1Source from Cheng et al. (2007a) and Rice-Evans et al. (1997). 

Adding plant/food extracts has showed reduction on HCAs in meat products. 

Grape seed extract (Cheng et al., 2007b; Gibis & Weiss, 2012), and dried 

apple peel extract (Sabally et al., 2016) showed 54-70% inhibition on total 

HCAs (MeIQx, 4, 8-DiMeIQx and PhIP) in cooked beef patties, which could be 

attributed to strong antioxidant capacity of epicatechin, proanthocycanidin and 

chlorogenic acid presented in these extracts. 

Effect of whole food on the formation of HCAs has also been widely studied. 

Britt et al. (1998) reported that flaked cherry tissue containing isoflavones and 

anthocyanins could reduce 87% total HCAs (IQ, MeIQ, MeIQx and DiMeIQx) 

in fried beef patties. Persson et al. (2003) stated that virgin olive oil containing 
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tocopherol and polyphenols could inhibit the formation of DiMeIQx, MeIQx 

and PhIP in fried beef burgers. Black pepper (1%, w/w) could reduce total 

HCAs by 11-33% in meatballs fried at 175 oC and 200 oC, especially by 100% 

in samples fried at 225 oC due to the presence of quercetin and piperine (Oz 

& Kaya, 2011a). Green tea infusion marinade (1g/125ml hot water) (Quelhas 

et al., 2010) and red pepper (Wong et al., 2012) could reduce up to 75% PhIP 

in pan-fried beef patties. They proposed that phenolic compounds could 

directly trap phenyl acetaldehyde, which is a major precursor of PhIP to inhibit 

PhIP formation. 

1.5.4.2 Vitamins 

Vitamins with antioxidant potency could inhibit the formation of HCAs. 

Addition of water-soluble ascorbic acid powder could reduce PhIP in fried beef 

compared with non-treated samples (Wong et al., 2012). Cheng et al. (2007) 

also reported that marinating with lemon juice could reduce about 30% MeIQx 

in grilled beef. Oz and Kaya (2011b) reported that red pepper containing 

abundant of ascorbic acid and provitamin A carotenoids could reduce 75%-

100% total HCAs (IQ, MeIQ, 4, 8-DiMeIQx and PhIP) in fried pork chop. 

Ascorbic acid could act as inhibitors to prevent HCAs formation, through 

radical quenching and free radical scavenging activity (Wong et al., 2012).  

Fat-soluble vitamin E also has antioxidant capacity due to the presence of 

tocopherols (Figure 1-5), which not only act as radical scavenger, but also as 

singlet oxygen quencher (Shahidi & Ambigaipalan, 2015). 

 

Figure 1-5: Chemical structure of α-tocopherol1 

1Source from Shahidi & Ambigaipalan (2015). 
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Tocopherols (T-OH) perform as antioxidant by donating hydrogen to peroxyl 

(ROO∙) or alkoxy (RO∙) radicals to form stable tocopherol radical (TO∙), which 

could obstruct the propagation of oxidation. The efficiency of hydrogen-

donating is α > ȕ > Ȗ > δ (Frankel, 1998; Shahidi & Ambigaipalan, β015). 

T-OH + ROO∙  →  TO∙  + ROOH 

T-OH + RO∙  →  TO∙  + ROH 

Liao et al. (2009) and Sugimura et al. (2004) proposed that vitamin E could 

prohibit the formation of HCAs through removing free radicals in Maillard 

reactions. Rounds et al. (2012) and Balogh et al. (2000) found that 1% vitamin 

E spray on the surface of beef patties could reduce the concentrations of IQ, 

MeIQ, MeIQx, DiMeIQx and PhIP significantly by 45% to 75%. Similar result 

was also reported by Lan et al. (2004), who found that 70% of total HCAs (IQ, 

MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP) was prohibited when 0.β% α-

tocopherol was added into ground pork 1h before cooking. 

1.5.4.3 Organosulfur compounds 

Organosulfur compounds, including cysteine, diallyl disulfide (DAD), diallyl 

sulphide (DAS), dipropyl disulfide (DPD), diallyl trisulfide, have also been 

reported with inhibitory effect on the formation of HCAs. Pure compounds, 

diallyl disulfide and dipropyl disulfide could prohibit 70-78% total HCAs 

(MeIQx, DiMeIQx and PhIP) in both fried beef patties (Shin et al., 2002b) and 

chemical model system (Shin et al., 2002c). 20-68% total HCAs (MeIQx, 

DiMeIQx, and PhIP) could also be inhibited by adding fresh garlic (Shin et al., 

2002a) and onion (Janoszka, 2010) in fried pork and beef patties. Reduction 

of HCAs might be via trapping intermediates in Maillard reactions 

(Puangsombat et al., 2011). DAD and DPD could also react with glucose in 

Maillard reaction, which resulted in less substrate available for the formation 

of HCAs (Shin et al., 2002c). 

1.6 Factors affecting the formation of PAHs in cooked meat 

1.6.1 Cooking process 

Determination of PAHs has been conducted in grilled/ barbequed meat 

(Alomirah et al., 2011; Chung et al., 2011; Farhadian et al., 2010; Park et al., 
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2017; Viegas et al., 2014; Wongmaneepratip & Vangnai, 2017), roasted meat 

(El-Badry, 2010; Lu et al., 2017b), fried meat (El-Badry, 2010; Janoszka, 2011; 

Rose et al., 2015) and smoked meat products (Alomirah et al., 2011; Djinovic, 

Popovic, & Jira, 2008; Lorenzo et al., 2011; Santos, Gomes, & Roseiro, 2011; 

Wretling et al., 2010). Most studies about PAHs have been focusing on grilled 

and barbequed meat products that are usually cooked above 250 oC, since 

PAHs with more rings are usually generated at 300-500 oC. 

1.6.1.1 Grilling 

High level of PAHs has been detected in grilled or barbequed meat products 

heated directly over flame with smoke generated from fat dripping (Kazerouni 

et al., 2001). The amount of PAHs varied from 0-130 ng/g and BaP ranged 0-

50 ng/g in grilled meat and fish (Chung et al., 2011; Farhadian et al., 2010; 

Viegas et al., 2012). Different types of grilling and source of heat also had 

effect on the formation of PAHs, such as gas grilling, charcoal grilling or oven 

grilling. Farhadian et al. (2010) found that charcoal grilled meat contained 

higher amount of PAHs (BaP, BbF and Fln) than those grilled by gas. Coconut 

charcoal is characterized as smokeless and flameless charcoal. Research 

showed grilling with this charcoal could significantly reduce PAHs (BaP, BaA, 

Ch, BbF, p<0.05) in salmon even with high fat content, compared with wood 

charcoal (Viegas et al., 2012). Other factors, such as distance to heat source 

and doneness could also affect the level of PAHs in grilled meat. Rose et al. 

(2015) found that beef burgers grilled at distance 7cm over charcoal had 3 

times less BaP and PAH4 than those grilled with distance 4cm. 

1.6.1.2 Smoking 

Smoking is a process used to extend shelf life, enhance colour and flavour of 

meat products. Traditionally, meat was hang and exposed to smoke produced 

from wood or charcoal with less O2 (Roseiro, Gomes, & Santos, 2011). 

Traditional smoking can be divided into two groups according to temperature 

of smoke: cold smoking and hot smoking (Ledesma, Rendueles, & Díaz, 

2016). Common meat products, such as salami and chorizo are produced by 

cold smoking (15-30oC), while commercial ham and sausages are produced 

by hot smoking (50-85 oC) (Toldrá, 2009). Meat products are contaminated by 
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PAHs during smoking via (1) incomplete combustion of fuel, (2) fat dripping on 

fuels and contacting with fire. Average 1.88-13.5 ng/g BaA and 0.6- 36.9 ng/g 

BaP were determined from a wide range of smoked products including 

smoked pork, chicken, beef and sausage products (Ledesma et al., 2016; 

Rozentāle et al., β015; Wretling et al., β010).  

Increasing smoking time could result in accumulating high level of BaP in 

smoked beef, ham and bacon (James & Dorcas, 1984). In addition, more 

PAHs were detected in meat products smoked with less heating distance 

(Roseiro et al., 2011). However, modern techniques of smoking, such as liquid 

smoke has been developed with short processing time and being more eco-

friendly. The concentration of smoke, humidity and temperature are controlled 

precisely during liquid smoking, and carcinogens such as PAHs can be 

filtered before exposed to meat products (Ledesma et al., β016; Škaljac et al., 

2014). 

1.6.1.3 Frying 

Common frying temperature applied in meat products is 160-240oC 

(Katragadda et al., 2010). PAHs were found in both heated meat and oils. El-

Badry (2010) reported that 3.8 ng/g BaP and 21 ng/g total carcinogenic PAHs 

were detected in fried chicken. Perelló et al. (2009) reported fried fish 

contained 0.38-1.17 ng/g BaA and 0.04 ng/g BaP, and had the highest total 

PAHs16 (13.3- 35.42 ng/g) compared with grilled and roasted fish. BaA with 

0.1-97 ng/g and BaP with 0.3-67 ng/g were determined in selected 

commercial oils, including coconut oil, palm oil and olive oil (Barranco et al., 

2003). In addition, fatty acids profile of frying medium could also affect the 

formation of PAHs. Min, Patra, and Shin (2017) reported that the formation of 

PAH increased with the degree of unsaturation of lipids, and the highest 

content of total PAHs was found in the model system with methyl linolenate 

(34.30 ng/g), followed by methyl linoleate (32.46 ng/g) and methyl stearate 

(29.64 ng/g). Unsaturated fatty acids in edible fats/oils are readily oxidized at 

high temperature and generate hydroperoxides, which could further initiate 

cyclic compounds through intramolecular reaction and accelerate the 
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formation of PAHs (Chen & Chen, 2001; Olatunji et al., 2014; Singh et al., 

2016). 

1.6.2 Fat content 

Fat content in meat also plays an important role in the formation of PAHs. 

Total amount of PAHs was positively related to fat content in meat and fish 

(Essumang, Dodoo, & Adjei, β01β). Dost and İdeli (β01β) indicated that no 

PAHs were detected in barbecued low fat trout or bass, while 1.66 ng/g BaP 

was determined in grilled salmon due to high fat content in salmon. Similarly, 

BaP increased from 0.28 to 1.37 ng/g in Frankfurter-type sausages when fat 

content increased from 10% to 39% (Pöhlmann et al., 2013). Fat/lipids might 

be involved with PAHs formation at high temperature cooking through lipid 

pyrolysis, which occurred in fat dripping on heating source and adhering on 

surface of meat products (El-Badry, 2010). In addition, free radicals generated 

during combustion of fuel could induce polymerization between hydrocarbons 

to form heavy PAHs (Singh et al., 2016). Accumulation of PAHs in the fat/lipid 

rich products might be owing to their lipophilic characters (El-Badry, 2010; 

Ledesma et al., 2016). 

1.6.3 Antioxidants 

The addition of antioxidants, such as spices and beer marinades is believed 

having inhibitory effect on the formation of PAHs (El-Badry, 2010; Farhadian 

et al., 2011; Viegas et al., 2014). Since free radicals promote the 

recombination of fragmented hydrocarbons to form stable heavy PAHs, 

marinating meat with ingredients containing antioxidants might reduce the 

formation of PAHs due to free radical scavenging property (Viegas et al., 

2014). Farhadian et al. (2012) studied the effect of different types of 

marinades on the formation of PAHs (BaP, BbF and Fl) in chargrilled beef, 

and they found out that basic marinade (sugar, water, onion, turmeric, lemon 

grass, salt, garlic, coriander, cinnamon), basic-lemon juice and basic-oil-

lemon juice significantly reduced total PAHs by 32%, 56% and 27%, 

respectively. Janoszka (2011) confirmed that chopped garlic (30g/100g pork) 

and onion (15g/100g pork) could reduce BaP by approximately 50%, 

compared with those without any marinades. Similar result was also reported 
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by El-Badry (2010), who found that spices (cumin, coriander, black pepper, 

and rosemary), marinades (tomato juice, garlic paste, onion, cumin, coriander, 

and black pepper) and garlic paste could reduce BaP from 5.30 ng/g to 0.02 

ng/g in chicken cooked by microwave oven, pan frying, direct and indirect 

grilling. 

1.7 Determination of HCAs and PAHs 

1.7.1 Determination of HCAs 

Multiple steps of extraction /separation are necessary for HCAs with low level 

(ppb/ppm) presented in complex meat matrices (Jonaszka et al., 2009). 

Liquid-liquid extraction (LLE) was used for isolating HCAs from meat matrix 

according to interaction between HCAs and solvents with different solubility 

(Puangsombat et al., 2011). However, large amount of solvent and longer 

time is required for LLE, thus, researchers have developed the method that 

combining alkali hydrolysis with solid phase extraction (SPE) by using propyl 

sulfonic acid (PRS) and C-18 cartridges to improve efficiency of extraction and 

purity of target compounds (Jonaszka et al., 2009; Gibis and Weiss, 2002; 

Damǎius et al., 2011). 

Table 1-5 shows that common techniques for determining HCAs are high 

performance liquid chromatography (HPLC) with UV detector and liquid 

chromatography-mass spectrometry (LC-MS). Jinap et al. (2013), Haskaraca 

et al. (2017), Viegas et al. (2015), Unal et al. (2017) and Oz and Kotan (2016) 

determined HCAs by using HPLC with diode array detection /UV. HCAs have 

been identified through retention time along with comfirmation of UV spectrum, 

and quantified from internal or external calibration curve (Gibis, 2016). Chen 

et al. (2017) and Zeng et al. (2017) used UPLC -MS to analyse HCAs in 

cooked meat products. Limit of detection and recovery rate were comparable 

with HCAs determined by using HPLC-DAD /UV.    
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Table 1-5: Prepration method, detection method, recovery rate, limit of detection, limit of quantification of polar HCAs in 
different meat products  

Meat products Sample 
preperartion  

Detection method Recovery 
rate (%) 

Limit of 
detection (LOD) 
(ng/g) 

Limit of 
quantification 
(LOQ) (ng/g) 

References 

Roast beef patties Acid 
hydrolysis 
and SPE 

UPLC-MS1/MS 57.6-92.4 0.01-0.05  0.03-0.16 Chen et al. (2017) 

Fried chicken 
breast 

SPE HPLC-UV/FLD2 46.4-83.1 0.02-14.3   Gibis (2009) 

Fried beef patties SPE HPLC-DAD 40-70  0.02 Gibis and Weiss 
(2012); Gibis (2007) 

Chicken burgers 
nuggets 

SPE HPLC-UV 36.2-82.2 0.01-0.02  0.03-0.08  Haskaraca et al. 
(2017) 

Chicken and beef 
satay 

SPE HPLC-DAD 43-72 0.48-1.55  1.24-5.42 Jinap et al. (2013) 

Roast beef patties SPE UPLC-MS 52.7-80.6 0.01-0.11 0.02-0.20 Zeng et al. (2017) 

Charcoal-grilled 
pork 

SPE HPLC-DAD  0.02-0.06  0.2-2.6 ng/g Viegas et al. (2015) 

Barbecued sucuk SPE HPLC-DAD 45.1-82.1 0.008-0.024  0.025-0.085  Unal et al. (2017)  
Roast beef patties SPE HPLC-DAD 61-72 0.15 0.5  Puangsombat et al. 

(2011) 
Cooked fish SPE HPLC-DAD 55.6-87.1 0.008-0.024  0.025-0.081  Oz and Kotan (2016) 
Pan-fried beef 
patties 

SPE HPLC-DAD 47-61 0.017-0.03   Natale et al. (2014) 

1 Mass selective detector  
2 Fluorescence detecto
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1.7.2 Determination of PAHs 

Similar to HCAs, the occourrence of PAHs in meat products is at low level 

(ppb/ppm), interference such as fat content could reduce the effiency of 

extraction, approporiate extraction should be selected (Purcaro et al., 2013).  

In the clean-up step, saponification with potassium hydroxide (Alomirah et al., 

2011) followed by toluene extraction (Dost and Ideli, 2012) was applied, to 

eliminate bias from fatty acids (Santo et al., 2011). SPE (Fardadian et al., 

2010; Janoszka, 2011), Soxhlet (Mohammadi and Valizadeh-kakhki, 2016) 

and solid-phase microextraction (Purcaro et al., 2007) have been used widely 

in previous research. Inconsistent results of recovery could be obtained due to 

the complexity of meat system. 

HPLC (Babaoglu et al., 2017; Farhadian et al., 2012; Oz and Yuzer, 2016; 

Viegas et al., 2012) and GC (Mohammadi and Valizadeh-kakhki, 2016; 

Olatunji et al., 2014; Park et al., 2017) are technologies frequenctly used in 

determing PAHs. Fluorescence detector can be used for detecting fluorescent 

PAHs (Babaoglu et al., 2017; Farhadian et al., 2012). In addition, PAHs can 

also be identified and quantified by mass spectrometer (MS) according to 

mass-to-charge ratio and molecular weight (Mohammadi and Valizadeh-

kakhki, 2016; Park et al., 2017). Jonaszka et al. (2009) suggested that LC–

MS was selective and efficient in quantifing PAHs.    
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Table 1-6: Prepration method, detection method, recovery rate, limit of detection, limit of quantification of PAHs in 
different meat products 

Meat products Sample 
preperartion  

Detection method Recovery 
rate (%) 

Limit of 
detection (LOD) 
(ng/g) 

Limit of 
quantification 
(LOQ) (ng/g) 

References 

beef and chicken 
kebab 

Soxhlet with 
column 
chromatography 

GC-MS 78-88 0.059-0.25 0.4-0.82 Mohammadi and 
Valizadeh-kakhki 
(2016) 

Beef and lamb 
kokorec 

SPE HPLC-FLD1 89.2-92.6 0.027-0.069  0.09-0.23 Babaoglu et al. 
(2017) 

Grilled beef SPE HPLC-FLD 75-89 0.01-0.03 0.04-0.10 Farhadian et al. 
(2012) 

Pan-fried pork SPE HPLC-FLD 51.9-60.9 0.0005 
ng/column  

 Jonoszka (2011) 

Smoked, grilled & 
boiled meats 

SPE GC-FID2 83.7-92.4 0.1-0.3 0.3-0.9 Olatunji et al. 
(2014) 

Barbecued beef 
steak 

SPE HPLC-DAD 89.2-92.3 0.027-0.069  0.09-0.23 Oz and Yuzer 
(2016) 

Grilled pork belly Alkali hydrolysis 
and SPE 

GC-MS 70.1-94.9 0.05  0.18  Park et al. (2017)  

Chargrilled pork SPE HPLC-DAD 15.4-145 0.07 0.22  Viegas et al. 
(2012) 

1 Fluorescence detector 
2 Flame ionization detector
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1.8 Research gaps 

Strong evidence from epidemiological studies provides that increasing red 

and processed meat intake could elevate the risk of cancer. The presence of 

HCAs, PAHs and Nitro-some compounds has been considered as one of the 

effective contributors. In general, food frequency questionnaires (FFQs) with 

interview has been one of the key approaches for assessing dietary HCAs 

and PAHs exposure by estimating the level of HCAs and PAHs from food 

diary. Since the level of HCAs and PAHs can be significantly affected by meat 

type, cooking methods, degree of doneness etc, it is useful to provide 

accurate measurement of HCAs and PAHs in more diverse range of meat 

products for accurate estimation of dietary exposure. Diet in the general public 

has dramatically changed in the last decades. Convenience food, such as 

RTE products/canned meat and recipe improved meat products are more 

favoured to comsumers because of increasing awareness of health and 

change of lifestyle (Singh et al., 2016). However, risk exposure to 

carcinogenic HCAs and PAHs in these commercial meat products has been 

received limited attention. 

It is also important to develop strategies to control the formation of 

carcinogenic HCAs and PAHs in meat products, in order to modify and 

minimize dietary exposure to HCAs and PAHs, which would be beneficial for 

public health. Intensive researches have been conducted on altering cooking 

process to reduce the formation of HCAs and PAHs, but the effects of meat 

composition and ingredients are still not consistent, which need further 

investigation. With the high demand of healthy meat products from consumers, 

developing low fat/sugar and high fibre meat products has been well 

addressed by food industry. Researchers have been focusing on manipulating 

original recipes with more sustainable and healthier ingredients while 

maintaining their acceptability. Replacing fat with oils (Rodr´ıguez-Carpena, 

Morcuende, & Est´evez, 2011), water/oil emulsion (Youssef & Barbut, 2011) 

and oil/fibre emulsion (Choi et al., 2010; Lorenzo et al., 2016) have been well 

established in meat products. However, the effect of fat replacement on the 

formation of HCAs and PAHs in cooked meat products has yet been validated. 
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Although using wide range of antioxidants to reduce HCAs and PAHs has 

been conducted in both meat products and chemical model system, 

inconclusive results are found because of the complexity of whole food 

vehicle and synergistic or supressing effects between functional compounds. 

With the intention of better understanding effect of antioxidants on the 

formation of carcinogenic HCAs and PAHs, standardized antioxidants model 

system should be used to understand their inhibitory efficiency and pathway. 

The results would provide useful information about food safety and quality for 

industry and dietary guideline for public health.       

Therefore, the objectives of this project are the following: 

 To determine the concentration of HCAs and PAHs in selected popular 

RTE meat products on UK’s market, to assess the dietary intake of 

carcinogens that RTE meat products contributed and provide useful 

guideline about dietary meat intake for general public. 

 To explore the effect of partially replacing pork back fat with vegetable 

oils at different cooking temperatures on the formation of HCAs and 

PAHs in pork patties. 

 To investigate the effect of common spices on the formation of HCAs 

and PAHs in two meat systems, beef and chicken in consideration of 

the heme iron level. 

 To establish regression model for predicting the efficiency of different 

pure antioxidant compounds from spices on the formation of HCAs and 

PAHs in meat products.   
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2.1 Abstract 

HCAs and PAHs, which are developed during meat processing, may play key 

roles in the imposing health risk. The consumption of RTE meat products has 

increased dramatically in recent years due to their convenience. Therefore, it 

is essential to evaluate its health risk and provide dietary intake guidance to 

the general public. 11 RTE meat products were selected from UK market 

including chicken, pork and fish to investigate their health risks in concern of 

HCAs and PAHs levels. HCAs and PAHs were extracted by solid-phase 

extraction and analysed by HPLC- Diode array UV/ FLD. Chargrilled chicken 

contained the highest amount of HCAs (37.45±4.89ng/g) and PAHs 

(3.11±0.49ng/g), followed by roasted bacon (HCAs 15.24±1.31ng/g, PAHs 

1.75±0.17ng/g) and honey roast salmon (HCAs 17.12±5.86ng/g, PAHs 

0.38±0.09ng/g). The high dietary intake of HCAs was from chargrilled chicken 

and ham, which could contribute to the increase risk in breast cancer and 

colorectal adenoma. While cancer risk associated with PAHs intake from RTE 

meat products was relatively low according to the Lifelong Average Daily 

Intake of UK consumers.  
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2.2 Introduction 

The average consumption of total red meat and processed meat was 70g per 

day for all adults in UK (NDNS, 2011). In processed meat products, the 

presence and hazard of HCAs and PAHs become a major concern for both 

consumers and researchers. HCAs represent a class of carcinogenic 

compounds that were identified from protein-rich food in the 1970s (Rahman 

et al., 2014). Five of them, including 2-amino-3-methylimidazo [4,5-f]quinoline 

(IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-

dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-

trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP) are reasonably regarded as human 

carcinogens (IARC, 1993). On the other hand, PAHs are hydrocarbons that 

contain two or more benzene rings, which could be produced in processed 

meat products through incomplete combustion or pyrolysis of carbon and 

hydrogen. They can be accumulated in barbequed, grilled, fried and smoked 

food (PHE, 2008). PAH4, including benz[a]anthracene (BaA), benzo[a]pyrene 

(BaP), benzo[b]fluoranthene (BbF) and chrysene has recently been reported 

as indicator of carcinogenic potency of PAHs in food (Janoszka, 2011). In 

PAH4, both BaA and BaP are considered as probable carcinogens in human 

(Group 2A) comparing with other PAHs (less carcinogenic) according to the 

updated IARC (2010) report. Thus, it is necessary to evaluate the dietary 

intake of BaA and BaP from processed meat products. Particularly, BaA 

largely exists in smoked meat and is widely examined by researchers, BaP is 

one of PAHs with the highest Toxicity Equivalency Factor (TEFBaP=1, 

TEFBaA=0.1, TEFBbF=0.1 and TEFBkF=0.1) (Janoszka, β011; Rozentāle et al., 

2015; Saito et al., 2014; Santos, Gomes, & Roseiro, 2011).   

Epidemiological studies indicate that high meat intake could increase the risk 

of cancer, since a high level of carcinogenic compounds could be produced 

during high-temperature constantly cooking, such as HCAs (Egeberg et al., 

2013; Janoszka, 2010; Liao et al., 2010; Oz and Kaya, 2011). González et al. 



48 

 

(2006) carried out a cohort study and found out that there might be a close 

association between red and processed meat intake and gastric non cardiac 

cancer. Stefani et al. (1997) suggested that red meat intake increased the risk 

of breast cancer in the cohort study. Well-done meat such as beef steak and 

bacon contained more HCAs, which might be a factor that caused breast 

cancer (Zheng et al., 1998). Exposure to PAHs has been probably associated 

with causing lung and skin cancer (PHE, 2008). However, these cohort 

studies did not provide solid evidence that increased cancer risk was caused 

by the amount of carcinogens in red and processed meat, in particular 

because of the complexity of processing conditions, meat type and 

composition of processed meat products. Although IARC (1993) has already 

classified processed meat as carcinogenic to human, the level of carcinogens 

in meat products varies from not detectable to 500 ng/g due to different 

manufacturing process and food materials (Rahman et al., 2014). With the 

aim of understanding the relationship of red/processed meat and health risk, it 

is useful to study the impact of meat processing and ingredients on the 

formation of carcinogens. RTE meat consumption increased nearly two-fold 

(115g to 190g consumed per person per week) from 1975-2010 because of its 

convenience, they can be found either in packed sandwiches or meal dishes 

(Chalabi, 2013). Therefore, the main focus of this study was to determine the 

concentration of HCAs and PAHs in selected RTE meat products that are 

popular on UK’s market, in order to assess the dietary intake of carcinogens 

that RTE meat products contributed and provide useful guideline about dietary 

meat intake for general public. 

2.3 Material and methods 

2.3.1 Meat samples 

11 RTE meat products were purchased from a local supermarket (Reading, 

UK) including BBQ British chicken breast slices, tikka British chicken breast 

slices, Chargrilled British chicken breast slices, British smoked ham slices, 

British ham slices, classic roasted bacon, crispy smoked streaky bacon, sliced 

pork sausage, Swedish meatballs, honey roast salmon flakes and sweet chilli 

salmon flakes (Figure 2-1). These 11 RTE meat products have been selected 

based on the relatively higher amount of average daily consumption (g/day) 
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from NDNS (2015) (raw data, unpublished) with the consideration of variety of 

meat products, including chicken, pork and fish. All chicken products were 

produced in UK by using British chicken. The supplier information and 

ingredients information were listed in Table 2-1. All the samples were stored 

at 4oC, and analysis were carried out within 10 days. All samples were 

purchased at 3 different occasions to take into account the batch effect. 
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Table 2-1: Ingredients in Selected RTE meat samples 

Sample Ingredients Supplier information Packaging information 
BBQ British 
chicken breast 
slices 

Marinated Chicken Breast (Chicken Breast, Stabiliser: 
Sodium Triphosphate, Brown Sugar, Dextrose, Salt), 
Barbecue Style Marinades (Sugar, Spirit Vinegar, Smoked 
Paprika, Rice Flour, Tomato Puree, Maltodextrin, Cornflour, 
Salt, Molasses, Potato Starch, Barley Malt Extract, Allspice, 
Sunflower Oil, Cumin, Rapeseed Oil, Paprika Extract, Clove). 
Made using 104g of chicken per 100g of marinated, cooked 
chicken. 
 

Produced in UK by using 
British chicken 

Plastic - PP tray 
Laminate film Lid 
Paper laminate label 

Tikka British 
chicken breast 
slices 

British Chicken Breast Fillet, Tikka Style Marinades (26%) 
(Yogurt (Cow’s milk), Onion, Cornflour, Rice Flour, Sunflower 
oil, Ginger Puree, Chilli Puree, Garlic Puree, Coriander, 
Potato Starch, Salt, Lemon Juice, Cumin, Tumeric, Black 
Pepper, Cinnamon, Cardamom, Paprika Extract, Fenugreek, 
Rapeseed Oil, Dill, Ginger, Clove), Stabiliser: Sodium 
Triphosphate; Brown Sugar, Dextrose, Salt. Made using 104g 
of chicken per 100g of marinated, cooked chicken. 
 

Produced in UK by using 
British chicken 

Plastic - PP tray 
Laminate film Lid 
Paper laminate label 

Chargrilled British 
chicken breast 
slices 

British Chicken Breast Fillet, Rice Flour, Cornflour, Potato 
starch, Salt, Stabiliser: Sodium Triphosphate; Rapeseed Oil.  
 

Produced in UK by using 
British chicken 

Plastic - PP tray 
Laminate film Lid 
Paper laminate label 

British smoked 
ham 

Cured, cooked and smoked, reformed ham with less than 
15% added water. 
 

Produced in UK by using 
British pork 

Laminate film 
Plastic - APET base 
Virgin Paper - FSC label 

British ham slices Cured, cooked and reformed ham with less than 15% added 
water. 
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Sliced pork 
sausage 

Pork meat (53%), Water, Mechanically separated pork meat 
(6.5%), Salt, Soy protein, Potato starch, Pork collagen 
protein, Stabiliser: E451, E407a, E415, E331; Glucose, 
Sucrose. Maltodextrin, Antioxidant: E316; Flavour enhancer: 
E621; Flavourings (contains Wheat and gluten), Preservative: 
E250; Colour: E120.   

Country of origin: Poland 
Made in Poland 

Tray & Heat Sealed 

Classic roasted 
bacon 

Pork belly (98%), Water, Salt, Stabiliser: Potassium and 
Sodium Tri and Di phosphates, Carrageenan, Sodium citrate, 
Xanthan gum, Locust bean gum, Soya protein, Pork protein 
(Collagen), Modified starch, Antioxidant: Sodium erythorbate; 
Flavour enhancer: Monosodium glutamate; Flavourings, 
Spice extracts, Preservatives: Sodium nitrite.  
 

Produced in UK by using 
British pork 

Laminate film bag 
Paper label 

Crispy smoked 
streaky bacon 

Pork belly, Salt, Rosemary extract, Antioxidant: Sodium 
ascorbate, Preservatives: Sodium nitrite. Prepared with 405g 
raw pork per 100 of finished product. 
 

Produced in UK by using 
British pork 

Laminate film 
Plastic - APET base 
Virgin Paper - FSC label 

Swedish meatballs Meat 70% (Pork 55%, beef 15%), Water, Chopped whole 
potato, Potato starch, Onion, Iodized salt, Potato fibre, 
Spices, Dextrose, Sugar, Spice extract, Flavourings.  
 

Country of origin: Sweden 
Made in Sweden 

Tray & Heat Sealed 

Honey roast 
salmon flakes 

Salmon (84%), Honey, Demerara Sugar, Salt. 
 
 

Produced in UK by using 
Scottish salmon 

Plastic - RPET tray 
Plastic - APET film 

Sweet chilli 
salmon flakes 

Salmon (91%), Sugar, Water, Sweet Chilli Spice Mix (Sugar, 
Salt, Garlic Powder, Onion Powder, Cornflour, Coriander 
Leaf, Lemon Grass, Sunflower Oil, Paprika Extract); Salt, 
Red Wine, Vinegar, Red Chilli Puree, Red Pepper, Ginger 
Puree, Cornflour, Cayenne Pepper. 

 
Produced in UK by using 
Scottish salmon 

 

 
Plastic - RPET tray 
Plastic - APET film 
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(1)                                (2)                                (3)                               (4)                                 (5)                                   (6) 

 

(7)                               (8)                                  (9)                                (10)                             (11)     

Figure 2-1: Pictures of 11 RTE meat products1.   

1(1): BBQ chicken; (2): Tikka chicken; (3): Chargrilled chicken; (4): Smoked ham; (5): Ham; (6): Pork sausage; (7): Crispy bacon; (8): Roasted 
bacon; (9): Swedish meatballs; (10): Honey roasted salmon; (11): Sweet chilli salmon. 
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2.3.2 Chemicals 

The HCA standards IQ (2-amino-3-methyl-imidazo [4,5-f]quinoline), MeIQ (2-

amino-3,4-dimethyl-imidazo [4,5-f]quinoline), MeIQx (2-amino-3,8-

dimthylimidazo [4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-trimethyl-

imidazo [4,5-f]quinoxaline), and PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-

b]pyridine, BaA (Benz[a]anthracene) and BaP (benzo[a]pyrene) were 

purchased from Toronto Research Chemicals (Toronto, Canada). Ammonium 

acetate, triethylamine, acetonitrile (HPLC grade), methanol (HPLC grade), 

ethyl acetate (>98%), hydrochloric acid, water (HPLC grade) and sodium 

hydroxide were purchased from Fisher Scientific (Loughborough, UK). 

Phosphoric acid was obtained from Sigma Aldrich (Sigma Aldrich, UK). 

Extrelut NT 20 columns and diatomaceous earth refill material were 

purchased from Merck (Darmstadt, Germany). Bond Elut propyl-sulfonic acid 

(PRS) cartridges (100 mg, 10ml), C-18 cartridges (7 ml) were purchased from 

VWR Inc (Lutterworth, UK). 

2.3.3 pH and composition analysis 

pH was measured by homogenizing 5g sample and 45ml distilled water 

(Puangsombat et al., 2011). The moisture content was determined by drying 

3g meat at 100°C for 24 hours. Samples were dried firstly in an oven for 4 h 

and analysed in Soxhlet extraction system to determine the fat level. The 

protein content was determined by the Kjeldahl method (Horwitz and Latimer, 

2005). The creatine content was measured based on the method used by 

Puangsombat et al. (2011). 0.25g well homogenized sample was stirred with 

60ml trichloroacetic acid (30g/L in distilled water) for 5 minutes. The mixture 

was then filtered with a filter paper (No.1, Filter speed: medium fast & 

qualitative, 100 circles, 18.5cm, Whatman Ltd). 10ml diethyl ether was added 

to 20ml filtrate to dissolve fat. The mixture was shaken well and held for 10min 

to complete separating 2 phases. 4ml of defat layer was added with 2 ml of 

diacetyl (0.2 g/L in distilled water) and 2 ml of 1-naphthol (25 g/L in 20 g/L of 

sodium hydroxide solution). The blend was heated for 5 min at 40 °C. The 

absorbance of solution was measured at 520nm against a reagent blank in an 

UV spectrophotometer. The creatine content was expressed as milligram per 

gram of the meat sample. Standard curve was made from 5 gradient 
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concentrations (0-20 mg/L) of creatine monohydrate (>98%, Sigma Aldrich, 

UK). 

2.3.4 Determination of HCAs 

HCAs extraction was based on the methods proposed by Puangsombat et al. 

(2011). To minimize the variation and bias due to the unevenly distribution of 

sauce on the surface of meat, all samples were blended well before analysis.  

3g ground meat sample was blended well with 12ml 1M sodium hydroxide. 

The mixture was then transferred into an Extrelut 20 column with 17g 

diatomaceous earth. The HCAs were eluted by 60ml ethyl acetate in Extrelut 

column, and transferred into PRS cartridge which was pre-conditioned with 

7ml ethyl acetate. A PRS cartridge was then washed with 6ml 0.1M HCl, 15ml 

methanol/0.1M HCl (45/55, v/v) and 2ml pure water to remove interferences 

from the PRS cartridge. The HCAs were then eluted by 20ml 0.5M ammonium 

acetate (pH 8.5) from the PRS cartridge and transferred into a C-18 cartridge 

that was conditioned with 5ml methanol and 5ml pure water. Finally, HCAs 

were eluted with 1ml methanol/ammonium hydroxide (9/1, v/v) from C-18 

cartridge into a 2ml amber vial, followed by drying the mixture under nitrogen 

stream for 1.5h at room temperature. The contents of the vial were dissolved 

with 50µl methanol and submitted for HPLC analysis. 0.1ml of each 5 

standard compounds mixtures (50 ng/ml) was spiked into samples before 

extraction for measuring the recovery rate. Three replicates were carried out 

for each sample. 

IQ, MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP were analysed using  HPLC 

(HP1635 Series, Agilent ChemStation, Agilent Technologies, Kidlington, UK) 

connected with a diode array UV detector (RF 2000). The HCAs were 

separated gradually by a reversed-phase Luna 5u C18 column (250 × 4.60 

mm, 5 μm, 100A, Product No: 00G-4252-E0, Phenomenex, UK). Mobile 

phase A was 0.01 M triethylamine (adjusted pH 3.6 with phosphoric acid) and 

phase B was acetonitrile (>99%, HPLC grade). The solvent contained 95% A 

and 5% B at beginning, then linearly changed to 75% A and 25% B within 30 

min at flow rate 1.0 ml/min. The temperature of column was 40 °C. The UV 

detector was set at 252 nm (Puangsombat et al., 2011). 
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2.3.5 Determination of PAHs 

5g meat sample was homogenised with 15ml 1M NaOH for 1 h. The 

homogenized sample was then mixed with 17g diatomaceous earth and 

loaded in an Extrelut 20 column. Elution of PAHs started from Extrelut 

columns, and was followed by propyl sulphonic acid (PRS) cartridges with 

60ml of CH2Cl2 containing 5% toluene. The dichloromethane solution was 

then vacuum evaporated to small amount (0.5-1ml) and the rest of the solvent 

was dried by a nitrogen stream. The residue was re-dissolved in 1ml n-hexane 

and transferred to the top of a glass column packed with silica-gel (10 g). 

PAHs were then eluted by 25ml of n-hexane and 60 ml of 60:40 (v/v) n-

hexane–CH2Cl2 mixtures. After evaporation to dryness the residues obtained 

were dissolved in 1ml acetonitrile (spiked and unspiked samples) before the 

HPLC analysis (Janoszka, 2011). 50ng of 2 standard mixtures was spiked for 

measuring the recovery rate. 

BaA and BaP were analysed using HPLC (HP1635 Series, Agilent 

ChemStation, Agilent Technologies, Kidlington, UK) connected with a 

fluorescence detector. Mixture of 84% acetonitrile (>99%, HPLC grade) and 

16% water (HPLC grade) were used as a mobile phase under isocratic 

condition. The separation was performed at 40oC with flow rate 1.0 ml/min. 

The fluorescence detection was performed by applying the following excitation 

(Ex)/emission (Em) wavelength program: 280/410 nm from 0 to 8.50 min 

(BaA), 376/410 nm from 8.50 to 15 min (BaP) (Janoszka, 2011). �݉ܪ�� ݈�ݑ݀�ݒ�݀݊ܫ ݂݋ ݐ݊ݑ݋ ሺ݊݃/݃ሻ  = ሺ݊݃/݈݉ሻ ���ܪ ݉݋ݎ݂ ܪ�� ݈�ݑ݀�ݒ�݀݊� ݂݋ ݐ݊ݑ݋݉� × ሺ݃ሻ ݐℎ݃�݁ݓ ݈݁݌݉��ሺ݈݉ሻ ݈݁ݎݐ�݊݋ݐ݁ܿ� ݊� ݃݊�ݒ݈݋ݏݏ�݀݁ݎ ݊݉ݑ݈݋ݒ ݈�݊��  

2.3.6 Assessment of dietary exposure of Carcinogen from HCAs 

The assessment of exposure of individual HCA from RTE meat products (ng/g) 

was calculated below:  

Daily exposure of individual HCA (ng/day) = daily consumption of meat (g/day) 

× Concentration of individual HCA (ng/g) in meat (Norrish et al., 1999).  
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The daily meat consumption (g/day) for adults and elderlies (both genders) 

were based on data from NDNS (2015) (raw data, unpublished).   

2.3.7 Assessment of dietary exposure of carcinogens from PAHs 

Risk assessment of dietary exposure of PAHs was carried out by calculating 

Lifelong Average Daily Intake (LADD) ng/kg BW/day: 

LADD = (TEQa× IR×ED) / (BW×LT),  

where TEQa (toxicity equivalent) = Concentration of BaA × RPVBaA. + 

Concentration of BaP × RPVBaP. 

The relative potency value (RPV) of BaP is 1 and for BaA is 0.1. IR is average 

intake of processed meat in exposure duration (g/day) based on NDNS (2015) 

(raw data, unpublished). ED is expected duration of exposure. BW is the 

average body weight during exposure duration (83.6kg for male and 70.2kg 

for female); and LT is the average life expectancy for carcinogen (79.3 years 

old for male, 83 years old for female in UK), according to ONS (2015). 

Ingestion cancer risk= LADD × CSF, 

where LADD= Lifetime average daily intake (ng/kg BW/day), CSF= Cancer 

slope factor (mg/kg BW/day)-1 (EPA, 2012). 

2.3.8 Statistical analysis 

Overall, 3 batches of samples were purchased for each product. 

Measurements of HCAs, PAHs, pH and composition were determined with 

three replicates. All the results were analysed by analysis of variance (ANOVA) 

using SPSS Statistics β1, while Duncan’s multiple test was used to investigate 

the difference between means. Pearson’s correlation was used to investigate 

the relationship between HCAs/PAHs and moisture/fat level. The minimum 

acceptable probability for difference between samples was p<0.05. 

2.4 Results and discussion 

2.4.1 Proximate composition and pH of selected RTE samples 

Composition and pH of meat samples, including moisture, fat, protein and 

creatine content are listed in Table 2-2. Ham and smoked ham had the 

highest moisture (75%), followed by Tikka chicken (67.81%) and pork 
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sausage (68.07%) (p<0.05). Crispy bacon and honey roasted salmon had the 

lowest water content, which was 47.60% and 48.55%. Roasted bacon and 

crispy bacon contained the highest fat (25.84% and 26.49%) among all 

samples, which were lower than the value (37.9%) reported by Puangsombat 

et al. (2011). All 3 types of chicken products had the lowest fat level with less 

than 2%. Sweet chilli salmon had almost twice much of fat (12.16%) than 

honey roast salmon (6.04% fat), which could be attributed to the sunflower oil 

in marinade. In general, results of proximate composition were comparable 

with the nutritional clarification on the packaging. pH of 11 RTE samples 

ranged from 5.94 to 6.26. BBQ chicken, roasted bacon, crispy bacon and 

Swedish meatballs had the significantly low pH compared with all other RTE 

meat products (p<0.05). Protein contents varied greatly among samples. 

Honey roasted salmon had the highest protein content (25.40%), compared 

with pork sausage, which had only 9.87% protein (the lowest). The greatest 

level of creatine (10.09 mg/g) occurred in honey roasted salmon, which was 

significantly higher than those in chicken and pork samples. The result of ham 

and smoked ham was in the range of 2.31-5.00 mg/g creatine in cooked pork 

(del Campo et al., 1998; Vangnai et al., 2014). The creatine concentration in 

sweet chilli salmon was consistent with results (4.5 mg/g creatine in salmon) 

published in Balsom, Söderlund, & Ekblom (1994). However, Johansson and 

Jagerstad (1994) reported that 16.64 mg/g creatine was found in cooked 

salmon (from the Pacific Ocean), compared with 10.09 mg/g creatine in honey 

roasted salmon (from Scottish). Variation might be due to raw materials from 

different area. 
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Table 2-2: Proximate composition and pH of 11 selected samples (n=9) 

Sample Water content (%) Fat (%) pH Protein (%) Creatine (mg/g) 

BBQ chicken 62.42±0.79d 1.68±0.20a 5.95±0.06a 24.89±0.10de 5.12±0.27d 

Tikka chicken 67.81±0.42e 1.58±0.24ab 6.17±0.13b 24.91±0.14e 3.29±0.15c 

Chargrilled chicken 57.48±1.50c 1.49±0.17a 6.26±0.02b 22.79±0.28cd 3.15±0.07c 

Ham 75.45±0.13f 2.80±0.07b 6.26±0.02b 18.01±0.23b 4.37±0.43d 

Smoked ham 75.74±0.20f 3.08±0.14b 6.17±0.06b 18.13±0.39b 2.94±0.13bc 

Roasted bacon 58.08±0.12c 25.84±0.27f 5.98±0.02a 20.57±0.49c 1.08±0.09a 

Crispy bacon 47.60±3.06a 26.49±0.18f 5.98±0.03a 24.21±0.34e 2.24±0.43b 

Pork sausage 68.07±0.57e 15.00±0.26e 6.19±0.03b 9.87±0.26a 0.66±0.07a 

Swedish meatballs 61.67±0.67cd 16.57±0.40e 5.94±0.03a 11.49±0.25a 1.00±0.12a 

Honey roasted salmon 48.55±2.94a 6.04±1.03c 6.22±0.01b 25.40±0.47e 10.09±0.77e 

Sweet chilli salmon 52.04±0.99b 12.16±0.34d 6.19±0.03b 24.52±0.28de 4.99±0.27d 

Results with different letters in the same column are significantly different at the level p<0.05.  
Each value is represented as mean ± standard deviation (SD).
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2.4.2 Limit of detection (LOD) and limit of quantification (LOQ) of 

HCAs and PAHs 

LOD and LOQ of 5 HCAs were estimated based on the peak-to-peak noise 

magnitude near analyte peaks with a known concentration and signal-to-noise 

ratios (R=S/N) of 2 and 10, respectively (Shrivastava & Gupta, 2011). The 5 

standard HCA compounds were identified through the retention time of the 

peaks and specturms (details see Appendix 8). The quantity of each individual 

HCA was determined according to the external standard calibration curves, 

which were established by the following standard solutions of each HCA at 

0.5-250ng/ml (Appendix 10). The average recoveries of these 5 HCAs 

according to triplicates were 58.52±5.46% for IQ, 61.89±7.19% for MeIQ, 

65.98±8.51% for MeIQx, 62.21±10.06% for 4, 8-DiMeIQx and 62.78±8.58% 

for PhIP as showed in Table 2-3. Extraction solvent could affect the recovery 

rate significantly. Janoszka et al. (2009) reported that the recovery rates for 

MeIQ and PhIP were only 20% and 25% when dichloromethane containing 5% 

toluene was used as extraction solvent, whereas in this work was used ethyl 

acetate to extract MeIQ and PhIP. Khan et al. (2008) indicated that the 

efficiency of extracting polar HCAs such as IQ, MeIQx by using 

dichloromethane was less than 50%.  However, results were comparable with 

several published data (Balogh et al., 2000; Gibis, Kruwinnus, & Weiss, 2015; 

Hasnol, Jinap, & Sanny, 2014). The recovery rate was also affected by the 

complexity of sample matrix and extraction procedures.    

LOD and LOQ of PAHs were determined as same as method of HCAs (Table 

2-4). Quantitative determination was calculated by using an external 

calibration curve, which was established by individual standard solution at 0.5-

50ng/ml concentration. The regression coefficients of calibration curves for 

each individual standard were at least 0.996, which implied that the peak area 

on the chromatogram were markedly related to the concentration. The 

recovery rate for BaA and BaP were 55.86±6.37% and 57.91±8.42% 

respectively, which were in line with published range of 50% - 115% 

(Farhadian et al., 2010; Ishizaki et al., 2010; Janoszka, 2011).
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Table 2-3: The retention time, LOD and LOQ calibration curve for standard solution, regression coefficient and recovery 
rate of 5 HCAs determined (n=3) 

HCA 
Retention 
time (min) LOD (ng/g) LOQ (ng/g) 

Calibration curve 
equation 

Regression 
coefficient Recovery rate 

IQ 10.501 0.02 0.10 y=3.7854x-0.2474 0.996 58.52±5.46% 

MeIQ 12.873 0.01 0.05 y=0.7767x-0.0280 0.997 61.89±7.19% 

MeIQx 13.552 0.02 0.10 y=1.9182x+0.0516 0.995 65.98±8.51% 

4,8-DiMeIQx 17.134 0.05 0.25 y=1.0502x+0.0204 0.997 62.21±10.06% 

PhIP 24.993 0.03 0.15 y=0.3687x+0.0324 0.994 62.78±8.58% 

 

Table 2-4: The retention time, LOD, LOQ, calibration curve for standard soluition, regression coefficient and recovery rate 
of 2 PAHs determined (n=3) 

PAHs Retention 
time (min) 

LOD (ng/g) LOQ (ng/g) Calibration curve equation Regression 
coefficient 

Recovery rate 

BaA 7.336 0.08 0.16 y=0.3019x-0.0184 0.996 55.86±6.37% 

BaP 9.487 0.06 0.12 y=0.1020x+0.0495 0.997 57.91±8.42% 
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2.4.3 Determination of HCAs  

Table 2-5 showed HCAs levels in 11 types of RTE meat products. The total 

amount of HCAs were varied from 0.57 ng/g to 37.45 ng/g. Chargrilled 

chicken contained the most HCAs (37.45±4.89ng/g), followed by BBQ chicken 

(18.81±9.02 ng/g), Tikka chicken (18.07±2.56 ng/g) and honey roast salmon 

(17.12±5.86 ng/g). Ham (4.49±1.19 ng/g), smoked ham (0.57±0.29 ng/g), pork 

sausage (5.19±1.00 ng/g), crispy bacon (5.22±0.39 ng/g), Swedish meatballs 

(9.13±7.31 ng/g) and sweet chilli salmon (2.59±0.55 ng/g) had relatively low 

total HCAs content. Only BBQ chicken and honey roasted salmon had all 5 

types of HCAs. The dominating compounds of HCAs in RTE meat products 

were IQ (nd-22.68 ng/g) and 4, 8-DiMeIQx (nd-12.61 ng/g), where 

Puangsombat et al. (2011) reported that PhIP and MeIQx were the major 

HCAs in RTE products that selected from the United States’ market, and the 

total HCAs amount of selected RTE products (0.05-13.07 ng/g) were lower 

than the  UK ones. Popularity of different RTE meat products in two countries 

could explain the difference. Rotisserie chicken with skin had the highest 

HCAs among all the RTE products in USA (Puangsombat et al., 2011), while 

the highest total HCAs (37.45ng/g) was detected in chargrilled chicken which 

had high consumption in UK RTE meat market (NDNS, 2015) (raw data, 

unpublished). Chargrilled chicken was the main contributor to IQ and 4, 8-

DiMeIQx in consideration of total HCAs (Table 2-5), while Rotisserie chicken 

was key determinant for PhIP and MeIQx in concern of total HCAs in USA 

RTE meats. Commercial process for different RTE meat products varies in 

different countries, such as diverse cooking temperatures and the efficiency of 

various cooking equipment. 
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Table 2-5: The level of HCAs in selected meat products (n=9) 

Sample IQ (ng/g) MeIQ(ng/g) MeIQx(ng/g) 4,8-
DiMeIQx(ng/g) 

PhIP(ng/g) Total (ng/g) RSD1 of total 
HCAs (%) 

BBQ chicken 9.16±7.58b 0.07±0.07a 1.87±0.31bc 5.46±3.50ab 2.27±0.36a 18.81±9.02c 47.94 

Tikka chicken 9.74±2.25b Nd Nd 2.88±1.27a 5.39±1.54a 18.07±2.56c 14.14 

Chargrilled 
chicken 22.68±1.99a 2.72±0.59b 2.93±1.08c 9.11±1.49ab Nd 37.45±4.89d 13.04 

Ham Nd 2.59±1.29b 1.90±0.18bc Nd Nd 4.49±1.19ab 26.59 

Smoked ham Nd Nd 0.31±0.29a 0.30±0.02a Nd 0.57±0.29a 85.05 

Roasted 
bacon Nd 2.64±0.75b Nd 12.61±0.92b Nd 15.24±1.31bc 8.60 

Crispy bacon Nd 3.39±0.37b Nd 1.83±0.08a Nd 5.22±0.39ab 7.43 

Pork sausage Nd 2.87±0.19b Nd 2.32±1.13a Nd 5.19±1.00ab 19.30 

Swedish 
meatballs 

Nd 2.11±0.42b Nd 7.02±7.69ab Nd 9.13±7.31ab 80.11 

Honey roasted 
salmon 5.56±3.75b 0.14±0.90a 0.83±0.25ab 4.88±3.80ab 5.71±4.15a 17.12±5.86c 34.21 

Sweet chilli 
salmon 2.09±0.19b Nd 0.30±0.52a 0.47±0.44a Nd 2.59±0.55a 21.10 

Nd: Not detected. Results with different letters in the same column are significantly different at the level p<0.05.   
Each value is represented as mean ± SD. 
1RSD: Relative standard deviation 
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Proximate composition of meat, such as moisture content had an effect on the 

level of total HCAs. As showed in Table 2-7, moisture content and total HCAs 

level were negatively correlated (r=-0.708, p<0.05), which implied that meat 

products with more moisture content seemed to contain less HCAs. Ham and 

smoked ham had the highest moisture content (about 75%) compared with 

the 3 chicken products (approximately 65%), which could partially explain a 

lower level of HCA in ham products than chicken products. Given the 

processing technology of ham, phosphate is one of the key ingredients used 

in ham products to improve the water holding capacity and to offer high 

moisture level in the final products. Consequently, high level of moisture in the 

product could dilute the concentration of HCAs generated during the 

processing (Chen, Pearson, & Gray, 1990). Vangnai et al. (2014) found that 

salt/phosphate injection reduced the total amount of HCAs in pork loin, which 

was cooked at 200°C for 16 min. In addition, Fiener (2006) stated that water 

could prevent HCAs precursors moving to the food surface so that declined 

the concentration of carcinogens.  

There was no significant correlation observed between fat content and total 

amount of HCAs in this study. However, positive relationship about fat and 

HCAs was reported by Johansson and Jagerstad (1994). The complexity of 

heating and formation of HCAs could shed some lights for the discrepancy. 

Although lipids and lipid oxidation could interact with the Maillard reaction to 

produce pyridine-intermediates in the formation of HCAs and promote the 

production of carcinogens (Barnes, Maher, & Weisburger, 1983), high level of 

fat could also dilute the reaction system and lead to a low level of carcinogens 

in final products. Nevertheless, Knize et al. (1994) reported increasing fat 

content up to 15% could accelerate the heat penetration and lead to more 

HCAs being produced, but a reduced level of carcinogens was observed 

when the fat content was over 15% owe to the dilution effect. In this study, low 

fat chicken samples had significantly higher total HCAs than high fat bacon 

and sausage samples, which might indicate that other factors such as cooking 

method might dominate the level of HCAs formation instead of fat content.  
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IQ level ranged from not detectable to 22.68±1.99 ng/g. Chargrilled chicken 

had the highest level of IQ, followed by Tikka chicken (9.74±2.25 ng/g), BBQ 

chicken (9.16±7.58 ng/g), honey roasted salmon (5.56±3.75 ng/g) and sweet 

chilli salmon (2.09±0.19 ng/g). Similar result was reported by Hasnol, Jinap, & 

Sanny (2014) that grilled chicken breast cooked at 300oC for 8 min contained 

18.6±0.61 ng/g of IQ. In current study, IQ was only found in chicken and fish 

samples, but not in selected pork and bacon products. MeIQ was not detected 

in Tikka chicken, smoked ham and sweet chilli salmon, but crispy bacon 

(3.39±0.37 ng/g), pork sausage (2.87±0.19 ng/g), chargrilled chicken 

(2.72±0.59 ng/g), roasted bacon (2.64±0.75 ng/g), ham (2.59±1.29 ng/g) and 

Swedish meatballs (2.11±0.42 ng/g) had significantly higher level (p<0.05) of 

MeIQ, compared with BBQ chicken (0.07±0.07 ng/g) and honey roasted 

salmon (0.14±0.90 ng/g). Similar level of MeIQ (up to 1.7ng/g) was also 

reported in pork sausage and bacon by Busquets et al. (2004) and Johansson 

and Jagerstad (1994). MeIQ level in salmon samples was consistent with the 

work of Oz and Kotan (2016) that up to 0.42ng/g MeIQ in cooked salmon was 

determined with various cooking methods including  microwave, dry-heating in 

pan, oven roasting, hot plat and barbecuing. MeIQx was detected up to 

2.93±1.08 ng/g for selected RTE meat products, which fell in the ranges 

reported by Gibis (2016) and Oz and Kotan (2016), nd - 9 ng/g for cooked 

chicken breast, 0.1 – 27 ng/g for cooked pork and bacon, nd - 2.13 ng/g for 

cooked salmon. 4, 8-DiMeIQx was detected in all selected samples except 

ham (ng-9.11±1.49 ng/g). The significantly higher amount of 4, 8-DiMeIQx 

was observed in roasted bacon (12.61±0.92 ng/g, p<0.05), whereas extremely 

low level of 4, 8-DiMelQx was found in ham and smoked ham. In the present 

study, 4, 8-DiMelQx in chicken, pork and bacon products were higher than 

data reviewed by Gibis (2016), i.e. nd-3.6 ng/g in cooked chicken, nd-5.2 ng/g 

in cooked pork and bacon. Relatively high standard deviation occurred in BBQ 

chicken, Swedish meatballs and honey roasted salmon, which could be 

attributed to the batch effect when sampling from supermarket.  

PhIP was only detected in BBQ chicken (2.27±0.36 ng/g), Tikka chicken 

(5.39±1.54 ng/g) and honey roasted salmon (5.71±4.15 ng/g). Skog and 

Solyakov (2002) reported similar level of PhIP (2.4-5.3 ng/g) in commercial 
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roasted chicken cooked at 175°C. There was no PhIP detected in chargrilled 

chicken, which was consistent with the result of Skog and Solyakov (2002) 

that no PhIP was found in commercial grilled chicken. However, Hasnol, Jinap, 

& Sanny (2014) detected 29.2ng/g PhIP in grilled chicken cooked at 300°C for 

8 min with internal temperature higher than 80°C. The disagreement might be 

attributed to the difference in the doneness of final products, as Knize et al. 

(2002) pointed out that the exposure of PhIP was especially high in well-done 

chicken. PhIP was significantly inhibited in sweet chilli salmon (not detectable), 

compared with that in honey roast salmon (5.71±4.15 ng/g) (p<0.05), which 

might be due to marinating ingredients in sweet chilli salmon, such as red 

pepper (Table 2-1). Wong, Cheng, & Wang (2012) indicated that polyphenol 

compounds (in red pepper) could directly trap phenyl acetaldehyde (a major 

precursor of PhIP) and inhibit the formation of PhIP. 

In chicken products, chargrilled chicken breast contained the highest level of 

IQ, MeIQ and total HCAs, compared with BBQ chicken and Tikka chicken 

(commercially cooked in oven). Researchers discovered that grilling and 

barbecuing produced higher level of carcinogens than any other cooking 

methods such as boiling, since the high temperature of flame directly applied 

over the food surface and promoted greatly moisture loss (Liao et al., 2010; 

Skog, Johansson, & Jaègerstad, 1998). Roasting usually would not generate 

high amount of carcinogens, as meat products were cooked under heated air 

(110-300°C), which resulted in the crispy surface of cooked meat but high 

internal moisture (Skog and Solyakov, 2002). On the other hand, marinating 

ingredients could attribute to the low or non-detectable level of MeIQ and 

MeIQx in Tikka chicken and BBQ chicken (Table 2-5). Tikka chicken was 

processed with lemon juice which contained high level of Vitamin C, while 

BBQ chicken contained spices such as cumin, paprika and clove (Table 2-1). 

Both ascorbic acid and spices have been found to reduce HCAs formation 

due to their antioxidant capacity (Vitaglione and Fogliano, 2004). Cheng et al. 

(2007) stated that marinated beef with lemon juice could reduce about 30% 

MeIQ in grilled products. 
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In observed RTE meat products, pork and bacon products contained relatively 

low level of HCAs. It could be related to their processing methods. In pork and 

bacon products, commercial ham and smoked ham are usually cooked by 

placing the reformed ham in a hot water bath (80°C - 90°C) or steam until the 

interior temperature reaches to 72°C, which lead to high moisture content and 

low amount of HCAs (Vangnai et al., 2014). On the other hand, to reach the 

desirable smoked flavour for crispy bacon and smoked ham, smoking can be 

delivered by cold smoking at 15-25°C, warm smoking at 25-50°C and hot 

smoking at 50-85°C by injecting smoking liquid with brine (Toldrá, 2009). 

Smoking at 15-85°C, a relatively low temperature range, only generated small 

amount of HCAs (Turesky, 2010), which could verify that smoked ham and 

crispy bacon contained less amount of HCAs. 

In fish products, the occurrence of HCAs in sweet chilli salmon (2.59±0.55 

ng/g) was nearly 8 times lower than those in honey roasted salmon 

(17.12±5.86 ng/g) (Table 2-5). It was supposed that spice powder (red pepper, 

garlic powder, onion powder, paprika extract) and sunflower oil in sweet chilli 

salmon played key roles in reducing the amount of HCAs (Table 2-1). 

Antioxidants in spices and oils such as polyphenols, organosulfides 

compounds, Vitamin C or Vitamin E have been proved to trap intermediates or 

remove free radicals to reduce the formation of HCAs (Janoszka, 2010; Lan 

and Chen, 2002; Salmon, Knize, & Felton, 1997). Diallyl disulfide and dipropyl 

disulfide (in garlic and onion powder) may contribute to trap intermediates in 

Maillard reaction so that prohibit further reactions, and also they may be 

regarded as scavengers of free radicals (Janoszka, 2010). In addition, 

sunflower oil (containing Vitamin E) added to sweet chilli salmon could also 

affect the formation of PhIP. Balogh et al. (2000) reported that spraying 

vitamin E on the surface of fried beef patties, resulted in the reduction of total 

HCAs by 71%. However, which type of compounds is more effective and the 

dosage effect need to be further investigated. 

2.4.4 Determination of PAHs 

The amount of individual PAH (BaA and BaP) and total PAHs in selected RTE 

meat products were listed in Table 2-6. The concentration of total PAHs 
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ranged from not detectable to 3.06 ng/g. Chargrilled chicken contained the 

highest amount of total PAHs, followed by Swedish meatballs (2.36±0.33ng/g), 

roasted bacon (1.75±0.17 ng/g) and crispy bacon (1.08±0.21 ng/g). There 

were no BaA and BaP detected in BBQ chicken, Tikka chicken, ham and 

sweet chilli salmon. While both PAHs were observed in roasted bacon, crispy 

bacon, sausage and Swedish meatballs. It was noticed that total PAHs level 

was negatively correlated to moisture content (r=-0.734, p<0.01) and 

positively correlated to fat content (r= 0.414, p<0.05) (Table 2-7). Similar trend 

that total PAHs increased with fat level in meat was reported by Chung et al. 

(β011), Fretheim (198γ) and Janoszka (β011). Dost and İdeli (β01β) indicated 

that there were no PAHs in barbecued trout or bass, because of low fat 

content in those types of fish. However, grilled salmon at 290oC for 20 min 

contained high level of BaP (1.66 ng/g) due to high fat content. Pöhlmann et 

al. (2013) found that total PAH level was reduced in hot smoked Frankfurter-

type sausages when back fat decreased from 30% to 20%. The positive 

relationship between fat level and PAHs could be attributed to the pyrolysis of 

heated fat which dropped on charcoal or other heating resources and 

deposited on the surface of meat (Fretheim, 1983). 
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Table 2-6: The level of PAHs in selected meat samples (n=9) 

Sample BaP (ng/g) BaA (ng/g) Total PAHs 
(ng/g) 

RSD1 of total 
PAHs (%) 

BBQ chicken Nq Nq Nq N/a 

Tikka chicken Nq Nd Nq N/a 

Chargrilled 
chicken 

Nq 3.06±0.50d 3.06±0.50e 16.34 

Ham Nd Nq Nq N/a 

Smoked ham Nq 0.19±0.16ab 0.19±0.16a 84.21 

Roasted 
bacon 1.09±0.11d 0.66±0.07b 1.75±0.17d 9.71 

Crispy bacon 0.71±0.12c 0.37±0.09ab 1.08±0.21c 19.44 

Pork sausage 0.21±0.03ab 0.67±0.10b 0.89±0.10bc 11.24 

Swedish 
meatballs 0.18±0.11ab 2.18±0.22c 2.36±0.33d 13.98 

Honey 
roasted 
salmon 

0.35±0.06b Nq 0.35±0.06b 17.14 

Sweet chilli 
salmon 

Nd Nd Nd N/a 

Nd: Not detected, Nq: Not quantified.  
Results with different letters in the same column are significantly different at the level 
p<0.05. 
Each value is represented as mean ± SD. 
1RSD: Relative standard deviation  
N/a: Not applicable 
 
Table 2-7: Correlation coefficients between total carcinogens level and 
moisture/fat content in meat samples 

Components Correlation 
coefficient(r) 

p-value 

Total HCAs/Moisture -0.708 0.001 

Total HCAs/Fat -0.213 0.317 

Total PAHs/Moisture -0.734 0.001 

Total PAHs/Fat 0.414 0.046 
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The range of BaP in RTE meat products was from nd to 1.09±0.11 ng/g. The 

highest level of BaP was found in roasted bacon, followed by crispy bacon 

(0.71±0.12 ng/g), pork sausage (0.21±0.03 ng/g) and Swedish meatballs 

(0.18±0.11 ng/g). BaP was not detectable/quantifiable in chicken and ham 

products. Olatunji et al. (2014) revealed that similar level of BaP in smoked 

pork (1.28±1.61ng/g). Djinovic, Popovic, & Jira (2008) reported that BaP was 

detected 0.01-0.36 ng/g in smoked bacon and 0.08-0.33ng/g in smoked 

sausages, respectively. The amounts of BaP in all samples were all below 

2ng/g, which is the maximum value that allows in smoked meat products that 

agreed by the Commission Regulation EC No 208/2005 and 1881/2006. BaP 

was proved that it was significantly correlated to the 6 IARC possible and 

probable carcinogens PAHs (BaA, BaP, BbF, benzo[k]fluoranthene, 

dibenzo[a,h]anthracene and indeno [1,2,3-cd]pyrene) in 4 Spanish traditional 

smoked sausage (Lorenzo et al. 2011; Lorenzo et al., 2010), hence it is 

necessary that reduce the amount of BaP in processed meat products. BaP 

was completely inhibited by marinating spice mix such as garlic, onion and 

pepper powder in sweet chilli salmon, compared with honey roasted salmon 

(0.35±0.06 ng/g). Farhadian et al. (2012) stated that marinating beef with 

onion, garlic, turmeric and lemon juice (70% w/w) was the most effective way 

to inhibit BaP in grilled beef. The mechanism of spice or vitamins affect the 

formation of PAHs has not fully understood yet, it could be possible due to the 

antioxidant capacity in marinating ingredients that interfere free radicals 

during cooking (Janoszka, 2011).     

BaA was not detected in Tikka chicken and sweet chilli salmon, was not 

quantifiable in BBQ chicken, ham and honey roasted salmon. It could be 

found in pork and bacon products, but not chicken and fish except chargrilled 

chicken. Chargrilled chicken (3.06±0.50 ng/g) had significantly higher amount  

of BaA (p<0.05), compared with BBQ chicken and Tikka chicken. Janoszka 

(2011) reported that grilling could form more PAHs due to the incomplete 

combustion of fat and charcoal under direct heat source, which lead to be 

dripped into fuel, evaporated and attached on the surface of cooked meat. As 

it could be seen, 0.19±0.16 ng/g BaA was occurred in smoked ham, this was 

consistent with the previously published result (0.102-1.50 ng/g in industrially 
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smoked ham) (Djinovic, Popovic, & Jira, 2008). Smoking could also contribute 

to form more PAHs, as meat would be exposed by smoke produced from 

wood or charcoal with less O2. Lawrence and Weber (1984) stated that more 

PAHs detected in smoked fish than in un-smoked fish. Olatunji et al. (2014) 

also concluded that smoked meat contained the most PAHs compared with 

boiled meat. 

2.4.5 Dietary exposure of HCAs and PAHs from RTE meat products 

Meat consumption data from NDNS 2015 (male and female, adults: 19-64 

years old and elderly: over 65 years old) (Appendix 15) and levels of HCAs 

determined were used to estimate the daily exposure (ng/day) of IQ, MeIQ, 

MeIQx and PhIP from RTE meat products (ng/g) (Norrish et al., 1999). Table 

2-8 showed that great daily intake of IQ (79.15-189.38 ng/day) from 

chargrilled chicken, MeIQ (9.49-19.92 ng/day) and MeIQx (7.14-14.61 ng/day) 

from chargrilled chicken and ham in both genders. It can be seen that daily 

intake of IQ from chargrilled chicken, MeIQ and MeIQx from chargrilled 

chicken and ham in female was relatively higher than those of male in both 

age groups. Sugimura et al. (2004) estimated that the median amount of 

HCAs daily intake for European people is 103ng/day, whereas the average 

intake of IQ from chargrilled chicken in female (both age groups) and male 

(adults group) were higher than 103ng/day (117.71- 189.38 ng/day). Recent 

case-control studies have been reported that the increasing intake of HCAs is 

related with colorectal adenoma and oxidative stress (Budhathoki et al., 2015; 

Carvalho et al., 2015). Carvalho et al. (2015) stated that high intake of HCAs 

including MeIQx, DiMeIQx and PhIP could aid in increasing oxidative stress 

regardless of lifestyle factors, in order to increase the risk of chronic diseases, 

such as cancer and heart disease. Budhathoki, et al. (2015) reported that a 

notably increased risk of colorectal adenoma (Odds Ratio: 2.10, 95% CI: 

1.20–3.67, p=0.01) was related with the higher quartile of MeIQ (6.0 ng/day). 

The daily intake of MeIQ (male: 9.49-17.71 ng/day, female: 14.12-22.71 

ng/day) from chargrilled chicken and ham were much higher than this 

threshold, it implies that increasing intake of these 2 RTE meat products has a 

higher risk of colorectal adenoma.  
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Table 2-8: Daily intake of IQ, MeIQ, MeIQx and PhIP from selected RTE 
meat samples 

 Daily intake of HCAs 

 Male Female 

 
19-64 years 

old 
>65 years 

old 
19-64 years 

old 
>65 years 

old 
IQ (ng/day)     

BBQ chicken 0.27 0 2.47 0 

Tikka chicken 15.39 0 10.51 14.66 
Chargrilled 

chicken 
147.65 79.15 189.38 117.71 

MeIQ (ng/day)     

BBQ chicken 0.0021 0 0.018 0 
Chargrilled 

chicken 
17.71 9.49 22.71 14.12 

Ham 10.77 9.74 15.31 19.92 

Smoked ham 1.37 1.61 0.98 1.66 

Roasted bacon 3.63 0.96 3.86 1.63 

Crispy bacon 0.13 0.26 0.1 0.54 

Pork sausage 0.78 0 1.19 0.49 
Swedish 

meatballs 
0.0021 0 0.018 0 

MeIQx (ng/day)     

BBQ chicken 0.056 0 0.5 0 
Chargrilled 

chicken 
19.07 10.23 24.47 15.21 

Ham 7.9 7.14 11.23 14.61 

Smoked ham 0.13 0.02 0.05 0.12 

PhIP (ng/day)     

BBQ chicken 0.07 0 0.61 0 

Tikka chicken 8.52 0 5.98 8.62 
 

The intake of HCAs might be linked with breast cancer. The consumption of 

IQ, MeIQx and PhIP from the lowest to highest quartile was associated with 

increasing breast cancer risk 2-3 fold, which was reported by Stefani et al. 

(1997). The amount of IQ in chargrilled chicken (22.68±1.99 ng/g) was greater 

than the highest quartile (1.02ng/g) (Odds Ratio: 3.34, 95%CI: 1.85-6.02, 

p=0.001), which indicate that high intake of chargrilled chicken could increase 
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at least 2-3 fold risk of breast cancer. They also revealed that exposure of 

PhIP was significantly linked with breast cancer and does-dependent, 

especially the cancer risk increased 3 times when the exposure of PhIP over 

20.15ng/g (Odds Ratio: 3.31, 95%CI: 1.60-6.87, p<0.001). However, the 

amount of PhIP from chargrilled chicken was 5.39±1.54 ng/g, which were not 

enough to pose the risk. Overall, it should be pointed out that female 

consumers who have a high intake of chargrilled chicken and ham might 

increase the risk of breast cancer and colorectal adenoma. It is suggested 

that reducing the amount of HCAs in processed meat products, which would 

decrease the daily exposure of HCAs to UK processed meat consumers and 

lower the risk of breast cancer and colorectal adenoma.     

The amounts of BaA and BaP in various selected RTE meat products ranged 

from not detectable-3.56 ng/g and not detectable-1.20 ng/g respectively. The 

concentration of BaP was ranged from 0.01-50 ng/g ng/g (Nisha et al., 

2015).The LADDs of PAHs were estimated to assess the health risk imposing 

by selected RTE meat products (Table 2-9). The greatest LADDs were 0.0285 

and 0.0177 ng/kg BW/day from chargrilled chicken in female, adults and 

elderly respectively. LADDs in the elderly group were lower than those in 

adults. LADDs were higher in chargrilled chicken, crispy bacon and roasted 

bacon than all other types of meat due to the higher average daily 

consumption. The cancer risk induced by PAHs was evaluated according to 

the carcinogenic potency factor (slope factor) of BaP, which was1.3-1.4 mg/kg 

BW/day-1 by oral exposure, which caused tumours in mice (Schneider et al., 

2002). It was estimated that ingestion cancer risk associated with the dietary 

intake of in RTE meat products to be 2.5:108 for male with average body 

weight of 83.6kg and 2.4:108 for females with average body weight of 70.2kg 

(ONS, 2015). The acceptable risk level of developing cancer is a one in a 

million chance of additional human cancer over a 70 year lifetime (1/106), and 

a serious level is that one in ten thousand (1/104) (Alomirah et al., 2011; Chen 

et al., 2013). However, the acceptable risk level would be higher during 

lifetime exposure, as the lifetimes of both genders in UK are greater than 70 

years. Even though the risk of PAHs in commercial RTE meat products is 

relatively low, it could be higher than the acceptable level of cancer risk if the 
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average daily intake (g/day) of chargrilled chicken is over 292 g/day in female 

adults.  

Table 2-9: Lifelong Average Daily Intake (LADD) of PAHs from RTE meat 
products in the UK 

  LADD (ng/kg BW/day) 

  Male Female 

Meat 
19-64 years 

old > 65 years old 
19-64 years 

old > 65 years old 

BBQ chicken trace trace1 trace trace 

Tikka 
chicken 

trace trace trace trace 

Chargrilled 
chicken 

0.0184 0.0099 0.0285 0.0177 

Ham trace trace trace Trace 

Smoked 
ham 0.0001 trace  trace  0.0001 

Roasted 
bacon 0.0057 0.0066 0.0049 0.0083 

Crispy bacon 0.0097 0.0026 0.0124 0.0053 

Pork 
sausage 

0.0001 0.0003 0.0001 0.0006 

Swedish 
meatballs 

0.0011 trace 0.0020 0.0008 

1 trace: <0.0001 

2.5 Conclusions 

The total HCAs level in selected RTE meat products ranged from 0.57±0.29 

ng/g to 37.45±4.89 ng/g, nd-3.06±0.50 ng/g for PAHs. Dominating compounds 

were IQ and 4, 8-DiMeIQ in chicken, fish and pork products respectively, BaP 

in bacon products and honey roasted salmon. Chargrilled chicken contained 
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the highest level of both types of carcinogens. Tikka chicken, BBQ chicken 

and honey roast salmon contained a significantly higher level of total HCAs 

than those in ham, smoked ham and sweet chilli salmon, whereas chargrilled 

chicken contained the highest amount PAHs. This work offered the accurate 

level of carcinogens from both HCAs and PAHs in RTE meat products, which 

could be used to support the guideline of dietary intake of HCAs from RTE 

meat products. The dietary intake of HCAs, particularly IQ and MeIQ from 

chargrilled chicken and ham were relatively high, which might contribute to the 

increased risk of breast cancer and colorectal adenoma. The Lifelong 

Average Daily Intake of PAHs from chargrilled chicken, crispy bacon and 

roasted bacon were higher than all other types of meat products. Overall, 

intake of chargrilled chicken could increase breast cancer and colorectal 

adenoma risk, other types of meat had relatively lower health risk. However, if 

the average dietary intake of chargrilled chicken increased to 292 g/day, the 

health risk would be over the acceptable level. Since the consumption of meat 

is unlikely to change, it is recommended that processing methods should be 

optimized to reduce the amount of these carcinogens. Therefore, the health 

risk from intake of RTE meat products could be reduced for the general public.  
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3.1 Abstract 

Formation of HCAs and PAHs was examined to evaluate the impact of using 

vegetable oil as fat replacement on carcinogens formation in meat product. 

Pork patties were formulated with 40% fat replacement by olive oil, sunflower 

oil or grape seed oil and cooked at 180oC or 220oC, respectively. Control 

patties contained the highest amount of HCAs compared with all other patties 

at both temperatures. Olive oil and sunflower oil replacement completely 

inhibited formation of MeIQ, while grape seed oil completely inhibited MeIQx, 

4, 8-DiMeIQx and PhIP in patties. Grape seed oil achieved the highest 

inhibition capacity compared with sunflower oil and olive oil. HCAs increased 

significantly with cooking temperature (p<0.05), but no difference was 

observed in total PAHs for patties cooked at different temperature (p>0.05). In 

conclusion, fat replacement with sunflower oil, olive oil or grape seed oil in 
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pork patties could reduce the formation of HCAs without compromising eating 

quality.             

Key words: Antioxidants; Fat modification; Maillard reaction; Oxidation. 

3.2 Introduction 

Fat plays an important role in the human diet. It not only creates a unique 

sensation of food, but also helps maintain health. The consumption of pork in 

the world has dramatically increased from 18 to 110 million tons per year 

(1950-2010) (Brown, 2013). Research found that increased saturated fatty 

acid intake could elevate the risk of cardiovascular disease, but 

monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids 

(PUFAs) could reduce the risk and maintain cardiovascular health (McAfee et 

al., 2010; Sadler, 2014). Therefore, changing fatty acids profile of meat 

products by replacing saturated fatty acids with unsaturated fatty acids has 

attracted lots of attention in both academic research and meat processors. 

Adding olive oil could dramatically increase the percentage of MUFAs in final 

products, whereas sunflower oil and grape seed oil could greatly raise the 

level of PUFAs in fat replaced meat products (Gunstone, 2002; Matthäus, 

2008). Rodríguez-Carpena et al. (2012) successfully replaced 50% fat with 

avocado, sunflower and olive oil in cooked pork patties and reported that 

avocado and olive oil could even offer better aroma to the final products than 

control ones. Vural and Javidipour (2002) successfully substituted beef fat in 

Frankfurters with the mixture of interesterified palm, cottonseed and olive oil 

without changing physical parameters and total sensory scores. Choi et al. 

(2010) used pre-emulsified grape seed oil and 2% rice bran fibre to develop 

pork batters with 50% fat replacement and reported that the fat-reduced pork 

batters could achieve the comparable eating quality with control samples. 

Domínguez, et al. (2016) replaced 100% pork back fat with olive oil in pork 

pâté, which significantly increased the content of tocopherols and MUFAs in 

cooked products without altering physio-chemical properties. Domínguez et al. 

(2017) and Lorenzo et al. (2016) replaced 25%-75% backfat with olive oil, 

microencapsulated fish oil and the mixture of fish oil and olive oil, which 

significantly increased the percentage of PUFAs in frankfurter type sausage 
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and Spanish salchichón. These results indicate that vegetable oil could be 

used successfully to replace fat partially or completely to offer products 

comparable eating quality with healthier fatty acids profile, i.e. high level of 

MUFAs and PUFAs. 

However, unsaturated fatty acids in vegetable oil may pose risk in domestic 

cooking due to their oxidation and decomposition at high temperature. For 

example, linoleic acid was found associated with the formation of potentially 

toxic compounds, such as free radicals, aldehydes and ketones (Guillén & 

Uriarte, 2012; Katragadda et al., 2010). These reactive oxygen species (ROS) 

initiated by unsaturated fatty acids peroxidation could induce the 

decomposition of Amadori compounds and generate 1- and 3- deoxysone that 

are intermediates for Strecker aldehydes, pyrazines and pyridines in Maillard 

reaction. Consequently, it might promote the formation of HCAs (Morello, 

Shahidi & Ho, 2002; Turesky, 2010; Zamora & Hidalgo, 2007). Some 

hydroperoxides generated from the decomposition of the unsaturated 

hydrocarbons during heating, such as linolenate can also undertake 

aromatization and de-hydrocyclization, further cleave into benzaldehydes and 

other benzene ring-containing compounds, which are precursors of PAHs 

(Chen & Chen, 2001; Lorenzo et al., 2010; Lorenzo et al., 2011; Singh, 

Varshney & Agarwal, 2016). 

HCAs, PAHs and N-nitrous compounds are well-known carcinogens which 

were detected in processed meat products (Hasnol, Jinap & Sanny, 2014; 

Jinap et al., 2013; Liao et al., 2010; Oz & Kaya, 2010; Salmon, Knize & Felton, 

1997). HCAs are mainly formed with the presence of free amino acids, 

carbohydrates and creatine under high cooking temperature (Rahman et al., 

2014). IARC (1993) classified the following 5 aminoimidazoarenes (AIAs) 

compounds as human carcinogens, including 2-amino-3-methylimidazo[4,5-

f]quinoline (IQ), 2-amino-3,4-methylimidazo[4,5-f]quinoline (MeIQ), 2-amino-

3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-

trimethylimidazo[4,5-f]quinoxaline (4, 8-DiMeIQx) and 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP). PAHs are hydrocarbons that contain two 

or more benzene rings, such as pyrene, anthracene and naphthalene. They 
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can be formed through incomplete combustion or pyrolysis of organic 

components, including fat, protein and carbohydrates at the temperature over 

200 oC. Grilling, roasting and smoking meat products likely contain high level 

of PAHs (Alomirah et al., 2011). Benz[a]anthracene (BaA) and 

benzo[a]pyrene (BaP) are the most potent carcinogenic PAHs in processed 

meat products (PHE, 2008). The metabolite of BaP, BaP-7,8-diol-9,10-

epoxide, has been reported with the highest tumour-inducing activity due to 

causing DNA adducts (Purcaro, Moret & Conte, 2013).  

Vegetable oils contain various antioxidants such as vitamin E, ß-carotenes 

and phenolic compounds (Ramírez-Anaya et al., 2015). These antioxidants 

have been characterized as free radical scavengers during cooking, which 

might inhibit the formation of carcinogens (Janoszka, 2011; Wong, Cheng & 

Wang, 2012). Cheng, Chen and Wang (2007) reported that marinating beef 

patties with phenolic compounds such as epicatechin gallate, rosmarinic acids 

and carnosic acid could significantly reduce HCAs by 24%-70% in final 

cooked products. Balogh et al. (2000) found that HCAs (IQ, MeIQ, MeIQx, 

DiMeIQx and PhIP) were inhibited by 45%-75% when sprayed 1% vitamin E 

(w/w) on the surface of beef patties before frying. Therefore, in the concern of 

the carcinogens level in processed meat products, replacing saturated fat with 

vegetable oils rich in unsaturated fatty acids needs to be justified. Thus, the 

objectives of this study were to (1) explore the effect of partially replacing pork 

back fat with sunflower oil, olive oil and grape seed oil on the formation of 

HCAs and PAHs; (2) examine the effect of different cooking temperatures on 

the formation of carcinogens in fat reduced pork patties. 

3.3 Materials and methods 

3.3.1 Materials 

Three batches of lean pork leg and pork back fat were purchased from 

Jennings Caversham (Reading, UK) at different time point to consider the 

batch effect.  In average, pork back fat consists of 40.3% SFA, 43.4% MUFA 

and 10.0% PUFA (McCance & Widdowson, 2002). Excess visible fat on pork 

legs was trimmed, then minced by a Kenwood Food processor (Chef Titanium 

KM010, 4.6, Kenwood Limited) and vacuum packed separately. Raw 
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materials were stored at -18oC and defrosted 24h at 4 oC before use. 

Commercial grape seed oil (Waitrose©, produced in Italy) with 12.4% SFA, 

20.2% MUFA, 68.2% PUFA, 10-15mg tocopherols and 5.9-11.5mg/100g 

polyphenols (Bail, Stuebiger, Krist, Unterweger, & Buchbauer, 2008), 

sunflower oil (Morrisons©, produced in UK) with 14.3% SFA, 20.5% MUFA, 

63.3% PUFA and 50mg/100g tocopherols (McCance & Widdowson, 2002) 

and refined olive oil (Filippo©, phenols were removed by industrial process, 

produced in Italy) with 14.3% SFA, 73.0% MUFA, 8.2% PUFA and 5-300mg 

tocopherols (McCance & Widdowson, 2002) were purchased from local 

supermarket (Reading, UK). Oils were kept in refrigerator (4oC) before making 

patties and further analysis. 

The 5 HCAs and 2 PAHs standards were purchased from Toronto Research 

Chemicals (Toronto, Canada). Ammonium acetate, triethylamine, acetonitrile 

(HPLC grade), bovine serum albumin (BSA), dinitrophenylhydrazine (DNPH), 

ethyl acetate 99.5% 0.9000g/ml, 6M guanidine HCl (pH 6.5), hydrochloric acid 

solution 0.1M, methanol (HPLC grade), HPLC grade water, sodium hydroxide 

1M, perchloric acid (99.8%), sodium phosphate buffer (pH 6.5), thiobarbituric 

acid (TBA), and trichloroacetic acid (TCA) were purchased from Fisher 

Scientific (Loughborough, UK). 2,2-Azobis(2-methylpropionamidine) 

dihydrochloride granular 97% (ABAP), 2,2-Azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt (ABTS), (±)-6-Hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid (Trolox), phosphate buffer solution 0.1 

M and phosphoric acid were purchased from Sigma-Aldrich (Gillingham, UK). 

The solid-phase extraction Extrelut NT 20 columns and diatomaceous earth 

refill material were purchased from Merck (Darmstadt, Germany). Bond Elut 

propyl-sulfonic acid (PRS) cartridges (100 mg, 10 ml), C-18 cartridges (7 ml) 

were purchased from VWR Inc (Lutterworth, UK). 

3.3.2 Procedures for preparing and cooking pork patties 

The formulation of control patties (as shown in Table 3-1) included 700g lean 

pork mince, 180g distill water, 100g pork back fat and 20g salt per kilogram. 

For the fat partially replaced patties, 40% of pork back fat was replaced with 

sunflower oil, olive oil or grape seed oil respectively. Overall, there were 4 
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types of pork patties prepared in this study, i.e. control (100% back fat, C 

patties), sunflower oil patties (S patties), olive oil patties (O patties) and grape 

seed oil patties (G patties). All ingredients were homogenized at 5000rpm for 

5min in the Kenwood Food processor to reach a uniform emulsion. Each patty 

was weighed 100g, shaped in a foil cup (9.0cm diameter * 2.5cm height) for 

standardization.  

Table 3-1: Formulation of control and fat replaced pork patties 

  Ingredients in recipe represent as g/1kg 

Treatment Lean pork 
leg 

Oil Pork back 
fat 

Salt Water 

Control, pork back fat  

(C patties) 

700 0 100 20 180 

Fat replaced with Sunflower 
oil (S patties) 

700 40 60 20 180 

Fat replaced with Olive oil 
(O patties) 

700 40 60 20 180 

Fat replaced with Grape 
seed oil (G patties) 

700 40 60 20 180 

 

Patties were cooked in an air-forced oven at either 180 oC for 26 min or 220oC 

for 22 min until the core temperature of patties reached to the range of 72.6-

73.4 oC, which was monitored by applying a thermal probe (KM330 Industrial 

Thermometer, Comark Instruments, UK). After cooking, pork patties were 

covered by foil and chilled in cold room at 4 oC for 24 hours. Physical 

properties including texture and colour were measured on the following day of 

cooling. While part of samples was homogenized and stored in -18 oC for 

further chemical analysis. Cooking loss was determined according to the 

equation: Cooking loss (%) = (Wr - Wc)/Wr *100, where Wr was the weight of 

raw pork patties, and Wc was weight of cooked pork patties. Three batches of 

control and fat replaced pork patties cooked at 180 oC or 220 oC (8 treatments 

in total) were manufactured. For each replicate, 8 patties were made for each 

treatment. 



86 

 

3.3.3 pH and composition analysis including moisture, fat and 

protein content 

The procedure of analysis was the same with Chapter 2.3.3. 

3.3.4 Lipid/protein oxidation and antioxidant capacity 

3.3.4.1 Lipid oxidation--Thiobarbituric acid-reactive substances 

(TBARS) value 

The degree of lipid oxidation in samples was expressed by TBARS values. It 

was determined by the method orinignally reported by Tarladgis et al. (1964) 

with slight modification, which is extraction method. Pork patties that for 

TBARS analysis were vacuum packed and kept frozen (-18oC) up to 30 days. 

Three batches of vacuum-packed pork patties were deforsted at 4 oC for 24h 

and homogenized to uniform bebfore analysis. 5 g homogenized pork patty 

was homogenized with 15 ml perchloric acid (3.86%) and 0.5ml BHT (4.2% in 

ethanol) in a beaker, which was immersed in an ice bath to minimize oxidative 

reactions in samples during extraction. The mixture was then filtered and 

centrifuged at 3000 rpm for 4 min, 2 ml supernatant was mixed with 2 ml 

thiobarbituric acid (0.02 M) in test tube. The test tubes were then placed in a 

boiling water bath (100 oC) for 45 min. After cooling, the absorbance was 

measured at 532nm using a spectrophotometer (6315, Bibby Scientific Ltd, 

UK). The standard curve was prepared using 1,1,3,3-tetraethoxypropane 

(TEP) in 3.86% perchloric acid with the concentration of 0, 0.5, 1.0, 2.5, 5.0 

and 10.0µM.  

3.3.4.2 Total protein carbonyl value (Protein oxidation) 

The degree of protein oxidation can be evaluated by calculating the total 

carbonyl value according to the method originally described by Oliver et al. 

(1987). Pork patties that for protein carbonyl analysis were vacuum packed 

and kept frozen (-18oC) up to 30 days. Three batches of vacuum-packed pork 

patties were deforsted at 4oC for 24h and homogenized to uniform bebfore 

analysis. 1g of homogenized pork patties 1:10 (w/v) was mixed in 20 mM 

sodium phosphate buffer containing 0.6 M NaCl (pH 6.5) for 30 s. Two equal 

aliquots of 0.2ml mixture were then dispensed in 2 ml eppendorf tubes, 

respectively. 1ml cold trichloroacetic acid (TCA) (10%, w/w) was added into 
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tubes and centrifuged for 5 min at 5000 rpm. One pellet was mixed with 1 ml 

2M HCl in order to measure protein concentration, while the other pellet was 

mixed with 1 ml of 0.2% (w/v) dinitrophenylhydrazine (DNPH) in 2M HCl in 

order to measure carbonyl concentration. Both tubes were incubated for 1 h at 

room temperature. Subsequently, 1 ml 10% TCA was added into tubes and 

pellets were washed twice with 1 ml ethanol: ethyl acetate (1:1, v/v) to remove 

excess of DNPH. The pellets were then mixed with 1 ml of 20 mM sodium 

phosphate buffer containing 6M guanidine HCl (pH 6.5), stirred and 

centrifuged for 2 min at 5000 rpm to remove insoluble fragments. Protein 

concentration (mg/ml) was calculated from absorption at 280 nm using BSA 

as standard. The carbonyl concentration (nmol/ml) was calculated by using 

the Beer-Lambert Law: A = e*c*l, where A is the absorbance at 370nm, e is 

the absorption coefficient of DNPH for absorbance at 370 nm (21.0 nM-1 cm-1), 

c is the carbonyl concentration of sample and the l is the length of cuvette 

(1cm). The protein carbonyl content in samples was expressed as nmol of 

carbonyl per mg of protein.  

Protein carbonyl content (nmol/mg) = (Carbonyl nmol/ml) / (protein content 

mg/ml) 

3.3.4.3 Trolox equivalent antioxidant capacity (TEAC) of 

vegetable oils/ back fat 

TEAC was used to evaluate the total antioxidant capacity of vegetable oils 

and pork back fat. The measuring procedures were based on the method 

reported by van den Berg et al. (1999). An ABTS radical solution was 

prepared by mixing 2ml 2.5 mM ABAP with 20ml 20 mM ABTSβ− stock 

solution in 25ml 100 mM phosphate buffer (pH 7.4), which contained 2ml 150 

mM NaCl. The solution was covered with foil and heated at 60°C for 12 min, 

then cooled down to room temperature. 1g sample was diluted with 10ml 80% 

n-hexane. 40 μl of the sample solution was mixed with 1960 μl of the freshly 

prepared ABTS solution. Difference of absorbance at 734 nm in 6 min was 

recorded. A calibration curve was made by measuring the difference of 

absorbance in 6min for Trolox at the concentration of 0, 0.5, 1.0, 2.5, 5.0, 7.5 
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and 10.0 μM. The TEAC of vegetable oils or back fat was presented on a 

molar basis to Trolox (μmol Trolox/100g). 

3.3.5 Determination of HCAs 

Approximate 2mm samples surface were trimmed and blended well before 

measuring. The procedure of analysis was the same with Chapter 2.4.3. 

3.3.6 Determination of PAHs 

The procedure of analysis was the same with Chapter 2.4.4. 

3.3.7 Recovery rate of HCAs and PAHs 

The 5 standard HCAs (IQ, MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP) and 2 PAHs 

(BaA and BaP) compounds were identified through the retention time of the 

peaks and spectrum, and the quantity of each individual compound was 

determined according to the standard calibration curves, which was 

established by the standard solution at 0.5-250ng/ml. Limit of detection (LOD) 

for IQ, MeIQ, MeIQx, 4, 8-DiMeIQx, PhIP, BaA and BaP were for 0.02 ng/g, 

0.01 ng/g, 0.02 ng/g, 0.05 ng/g, 0.03 ng/g, 0.07 ng/g and 0.06 ng/g. The 

average recoveries of these 5 HCAs based on triplicates were 60.01% for IQ, 

61.76% for MeIQ, 53.64% for MeIQx, 60.57% for 4,8-DiMeIQx and 55.98% for 

PhIP. Results were comparable with several published data (Gibis, Kruwinnus 

& Weiss, 2015; Messner & Murkovic, 2004; Oz & Cakmak, 2016; Yao et al., 

2013). The recovery rate for BaA and BaP was 54.37 and 49.54% 

respectively, which was comparable with published results of 50% - 115% 

(Farhadian et al., 2010; Ishizaki et al., 2010; Iwasaki et al., 2010; Janoszka, 

2011). Recovery rate could be affected by sorbing materials, flow rate through 

cartridges, organic modifier quality and/or content, interfering effects of eluting 

solvents (Busetti et al., 2006). Stevens et al. (2006) reported that overlapping 

peaks on chromatogram indicating insufficient separation procedures could 

result in recovery rate over 110%, and AOAC (2016) recommends that 40-120% 

recovery rate is acceptable for compounds at 1ng/g concentration. 

3.3.8 Inhibitory efficiency of HCAs and PAHs 

Inhibitory efficiency was determined according to the equation:  

Inhibitory efficiency (%) = (Ac – At)/Ac × 100  
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where Ac was the average total amount of HCAs/PAHs in control samples 

(ng/g), and At was the average total amount of HCAs/PAHs in fat partially 

replaced patties (S/ O/ G patties) (ng/g). 

3.3.9 Physical parameters 

Texture and colour parameters were measured on pork patties to determine 

the overall eating quality of products that affected by reformulation. 

3.3.9.1 Colour 

Colour feature including L*, a* and b* was measured using Hunter Lab Colour 

instrument (Hunter Associates Laboratory, Virginia, USA, 2003). Each sample 

was measured at 3 different locations, while the average was recorded as the 

colour feature of the sample. 

3.3.9.2 Texture 

Texture profile analysis (TPA) was performed at room temperature with a 

Stable System Texture Analyzer (Middleboro, USA). Cyclinder samples 

(D=18mm, H=22mm) were prepared using a stainless cork borer. Before the 

analysis, samples were tempered at room temperature (20oC) for 30min. The 

settings for texture analysis were: load cell 5 kg, head speed 1.6 mm/s, and 

compression depth 10.0 mm. The calculation of TPA values was based on the 

compression curve with force (y-axis) and time (x-axis). Values for hardness 

(N) was defined as the absolute peak force in the 1st compression cycle, 

cohesiveness as the area of work in the 2nd compression divided by the area 

of work in the 1st compression, chewiness as the product of 

hardness*cohesiveness*springiness, and springiness as the force that sample 

return to its initial pattern after compression (Sánchez del Pulgar, Gázquez & 

Ruiz-Carrascal, 2012). Each sample was measured at least 5 times, and the 

average was recorded as the value of the sample. 

3.3.10 Statistical analysis 

Statistical significance test was carried out by using SPSS Statistics 21. The 

significant difference in chemical composition, physical properties, levels of 

HCAs and PAHs for the 8 treatments were carried out by one-way analysis of 

variance (ANOVA) at the significant level 0.05, and Duncan test was selected 

for multiple comparisons if equal variances assumed, otherwise Tamhane’s 
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T2 test was used. To analyse the effect of factors and the interaction between 

factors (cooking temperature and replacing oil type), two-way ANOVA was 

employed at the significant level 0.05. Multivariate linear regression model 

was employed to explore the effect of multi independent factors, including lipid 

oxidation, protein oxidation and antioxidant capacity of oils on the formation of 

HCAs and PAHs at the significant level 0.05. Pearson correlation was 

employed for the measurements as a prerequisite for the regression. 

3.4 Results and discussion 

3.4.1 Effect of replacing oil and cooking temperature on pH, 

proximate composition and physical parameters of reduced 

fat pork patties   

3.4.1.1 Proximate composition and pH 

Table 3-2 shows the effect of replacing oil and cooking temperature on 

proximate composition and pH values in patties. Type of replacing oil did not 

pose any effect on all proximate composition and pH, but cooking temperature 

had significant influence on moisture and cooking loss (p<0.01). Interaction 

between type of oil and cooking temperature was only observed in cooking 

loss (p<0.01).      

Moisture content varies from 63.36±0.37% to 67.53±0.26% in fat partially 

replaced patties, which are consistent with the results reported by Rodríguez-

Carpena et al. (2012). They found that pork patties with 50% fat replaced with 

sunflower oil, olive oil and avocado oil had moisture level at 61.48-63.39% 

when patties were cooking at 170 oC for 18 min in a forced-air oven. Type of 

oil did not affect moisture content in the patties (with or without fat 

replacement) (p>0.05), which indicated that replacing back fat with vegetable 

oils did not affect moisture level in the final products. However, cooking 

temperature significantly affected the moisture content in the final products 

(p<0.05). Higher cooking temperature at 220 oC led to low moisture level in 

cooked patties, compared with low cooking temperature at 180 oC (p<0.01), 

which were 63.58% vs 69.15% for control, 63.36% vs 65.91% for olive oil 

treatment, 63.49% vs 66.34% for sunflower oil treatment and 65.90% vs 67.53% 

for grape seed oil treatment. Low moisture level in the final products are 
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directly associated with high cooking loss, as cooking loss is mainly 

composed of water and water soluble nutrients such as proteins (Sánchez del 

Pulgar et al., 2012). Pork patties with or without fat replacement had cooking 

loss ranged from 20.30%- 24.75%, which was consistent with the results 

reported by Rodr´ıguez-Carpena, Morcuende and Est´evez (2011). They 

found that cooked pork patties at 170 oC for 18 min had cooking loss at 

20.69%- 22.20%. Fat and protein content ranged from 9.49%-10.01% and 

15.03%-15.34% respectively, as expected, fat and protein content in fat 

modified patties were comparable with those in C patties. pH ranged from 

5.85 to 5.99. Cooking temperature and type of oil did not affect pH of patties, 

there was no interaction between temperature and type of oil as well (p>0.05).
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Table 3-2: Proximate composition and pH values of 4 types of patties cooked at 180oC and 220oC a,b 

Treatment Cooking 
temperature(oC) 

Moisture (%) Cooking loss(%) Fat (%) Protein (%) pH 

Control 180 69.15±0.30d 20.51±1.59a 10.01±0.85a 15.19±1.56a 5.99±0.01a 

 220 63.58±0.60a 24.75±1.24d 9.98±1.05a 15.03±1.69a 5.85±0.02b 

Olive oil 180 65.91±0.16b 20.30±0.60a 9.62±1.21a 15.21±1.98a 5.85±0.02b 

 220 63.36±0.37a 23.21±0.84bcd 9.49±1.25a 15.09±1.37a 5.86±0.01b 

Sunflower oil 180 66.34±0.63b 22.54±0.29bc 9.68±1.17a 15.28±1.59a 5.88±0.01b 

 220 63.49±0.15a 24.23±0.76cd 9.70±1.05a 15.17±1.94a 5.87±0.02b 

Grapeseed oil 180 67.53±0.26c 21.88±0.31ab 9.76±1.14a 15.34±1.32a 5.87±0.02b 

 220 65.90±0.09b 24.72±1.09d 9.68±1.32a 15.17±1.46a 5.87±0.01b 

p-value (Type of oil) 0.21 0.43 0.74 0.54 0.065 

p-value (Temperature) <0.01 <0.01 0.33 0.28 0.16 

p-value (Interaction between oil* 

temperature)  

0.18 <0.01 0.49 0.15 0.16 

a Results with different letters in the same column are significantly different at the level p<0.05. 
b Values represented as the Mean ± SD, n=3.   
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3.4.1.2 Physical parameters  

3.4.1.2.2 Texture 

Texture property of cooked pork patties was examined including hardness, 

cohesiveness and chewiness through a typical texture profile analysis, with 

the purpose of assessing the comparable eating quality of fat replaced patties. 

Results were listed in Table 3-3.  Cooking temperature affected hardness, 

cohesiveness and chewiness (p≤0.05). Fat replacement with vegetable oils 

did not affect any of the texture attributes (p>0.05). There was no interaction 

observed between oil replacement and temperature for hardness and 

chewiness except cohesiveness (p>0.05). 

High cooking temperature led to high hardness. Control patties cooked at 

220°C had significantly higher hardness (26.65±3.15N) than that cooked at 

180°C (20.14±2.81N) (p<0.05). Roldán et al. (2013) observed that the 

elevating cooking temperature resulted in higher hardness, while the 

increased hardness in pork patties might be associated with high cooking loss. 

There was no difference observed in hardness for fat modified patties 

regardless of temperature (p>0.05), which agreed with the results reported by 

Rodr´ıguez-Carpena et al. (2011). They stated that patties partially (50%) 

replaced with sunflower oil, olive oil and avocado oil had the same hardness 

with control patties. However, Hur, Jin and Kim (2008) reported that olive oil 

replacement in pork patties resulted in lower hardness compared with control 

patties. The cooking temperature could help to explain the disagreement. In 

their study, patties were cooked at 100 oC in water bath, while samples were 

cooked in convection oven at 180oC or 220oC. The hardening effect of high 

cooking temperature could be neutralized by the softening effect of the 

replacing vegetable oil. As a result, there was no difference observed in 

hardness for fat modified patties and control samples (p>0.05). 

Temperature affected cohesiveness greatly (p=0.001), because the texture 

parameters are mainly determined by denaturation of the structural protein 

system, i.e. actomyosin complex and collagen (Palka & Daun, 1999). Type of 

oil did not have any effect on the cohesiveness of pork patties (p>0.05). 

Rodríguez-Carpena et al. (2012) also reported that there was no difference in 
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cohesiveness between control and patties with 50% fat substitution using 

avocado, sunflower or olive oil. The interaction between temperature and type 

of oil on cohesiveness was observed (p<0.05). For control, olive and 

sunflower oil treatment, patties cooked at 220oC had higher cohesiveness 

than these cooked at 180oC (p<0.05), but there was no difference in 

cohesiveness for grape seed oil samples cooked at different temperatures 

(p>0.05). This interaction between cooking temprature and type of oil could be 

explained by the emulsion stability of oil/fat emulsion. Youssef and Barbut 

(β009) and Rodr´ıguez-Carpena et al. (2011) reported that vegetable oil with 

high PUFAs had small fat globules in meat emulsion, which could offer a 

stronger fat-protein interaction. Grape seed oil contained high level of PUFAs 

compared with back fat and olive oil, which led to a stable emulsion in G 

patties. In addition, polyphenol compounds in grape seed oil emulsion could 

help maintain the protein functionality through inhibition of protein oxidation 

during processing (Ganhão, Morcuende & Estévez, 2010). Thus, grape seed 

oil/meat emulsion was less sensitive to temperature changes in relation to 

cohesiveness of the final products.  

For chewiness, temperature significantly affected it (p<0.05). High cooking 

temperature resulted in high chewiness. Chewiness remained similar for all 

patties cooked at 180 oC (from 3.94 to 4.11N.s), but increased to 

5.92±0.77N.s in C patties, and 5.35±0.41 N.s in O patties cooked at 220 oC. 

Greater hardness, cohesiveness and chewiness at higher cooking temprature 

could be due to the more severe denaturation of myosin (40-60 oC) and actin 

(66-73 oC) (Sánchez del Pulgar et al., 2012). In addtion, chewiness is also 

associated with the water retention in meat products (Roldán et al., 2014). 

Patties cooked at 180oC had significantly higher mositure content than thoes 

cooked at 220oC (as shown in Table 3-2). Therefore, high chewiness would 

be expected in samples cooked at 220oC due to high moisture loss.
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Table 3-3: Texture parameters (hardness, cohesiveness and chewiness) and colour parameters (lightness L*, redness a* 
and yellowness b*) in 4 types of patties cooked at 180 oC and 220 oC a,b  

Treatment 
Cooking 
temperatur
e (oC) 

Hardness (N) Cohesiveness Chewiness 
(N.s) 

L* a* b* 

Control 180 20.14±2.81a 0.34±0.02ab 4.06±0.77ab 70.71±0.08bc 2.30±0.11c 16.98±0.80abc 

 
 

220 26.65±3.15b 0.37±0.01d 5.92±0.77c 65.80±1.82a 1.46±0.22ab 18.73±1.15c 

Olive oil 180 18.02±3.58a 0.34±0.01a 3.94±0.41a 69.80±1.76bc 2.82±0.08d 16.23±0.71ab 

 220 21.75±0.37a 0.38±0.01d 5.35±0.41bc 65.33±3.69a 1.18±0.02a 17.44±1.90bc 

Sunflower 
oil 

180 17.98±2.45a 0.35±0.01abc 3.96±0.35a 70.10±0.57bc 2.86±0.13d 15.41±0.73a 

 220 19.40±2.81a 0.38±0.02d 4.34±0.99ab 65.97±2.05a 1.43±0.22ab 17.59±0.45bc 

Grape seed 
oil 

180 17.86±1.12a 0.37±0.01cd 4.11±0.30ab 71.41±1.74c 3.24±0.37d 17.03±0.38abc 

 220 21.55±2.37a 0.36±0.01bc 5.22±1.02abc 68.15±0.47ab 1.66±0.43b 18.47±0.15c 

p-value (Type of oil) 0.10 0.87 0.50 0.062 0.54 0.65 

p-value (Temperature) 0.05 0.001 0.001 0.05 0.005 0.05 

p-value (Interaction 
between oil*temperature) 

0.41 0.02 0.33 0.083 0.84 0.04 

a Results with different letters in the same column are significantly different at the level p<0.05. 
b Values represented as the Mean ± SD, n=3. 
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3.4.1.2.3  Colour 

Effects of vegetable oil and cooking temperature on colour characteristics of 

cooked pork patties including lightness (L*), redness (a*) and yellowness (b*) 

were summarized in Table 3-3. Temperature significantly affected all three 

parameters (p≤0.05), especially a* with p=0.005.  Different vegetable oils did 

not have any impact on the colour parameters, while the interaction between 

oil and temperature was observed in yellowness (b*). Patties cooked at 220oC 

had lower L* than those cooked at 180 oC (p<0.01), which agreed with the 

results of Sánchez del Pulgar et al. (2012). The decrease in surface lightness 

could be attributed to the brown pigments formed from caramelization of 

sugars and Maillard reaction when samples were cooked at temperature over 

90 oC (Girard, 1992). In addition, the lightness was also associated with the 

moisture content in meat products. Qiao et al. (2001) reported that there was 

positive correlation between lightness and moisture content in broiler breast 

fillet. Presence of heme pigments, containing 90-95% myoglobin in muscles 

gives meat red colour (a*). At 180 oC, a higher a* value was found in all pork 

patties with oil replacement than control patties (p<0.05). The antioxidants in 

these vegetable oils, such as vitamin E could prohibit the oxidation of 

oxymyoglobin and lead to a high redness in the final products (Hui, 2001; 

Sánchez del Pulgar et al., 2012). Cooking temperature could significantly 

affect a* as well. All patties cooked at 220 oC had significantly lower a* than 

those cooked at 180 oC. The reduction of a* caused by increased temperature 

could be associated with the denaturation of myoglobin (Nollet, 2012). Liao, 

Xu and Zhou (2009) found that a* of stir fried pork floss decreased 

significantly by 30% when cooking temperature increased from 125oC to 

150oC.  

Yellowness b* ranged from 15.41-18.73 in all cooked patties. Both type of oil 

and cooking temperature had no effect on b* values, but the interaction 

between type of oil and cooking temperature was observed. Jamali et al. 

(2016) also found that b* value in beef patties was not affected by cooking 

temperature (160 oC and 220 oC). The results of b* in control samples (16.98-

18.73) were comparable with Vittadini et al. (2005). 
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3.4.2 Effects of vegetable oils and cooking temperature on the 

formation of HCAs 

Concentration of HCAs (IQ, MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP) in control 

patties and fat modified patties cooked at 180oC and 220oC were listed in 

Table 3-4. Type of oil affected all individual HCAs compound except IQ, 

cooking temperature significantly affected the total amount of HCAs and all 

individual HCAs compounds except MeIQx. Interaction between oil and 

cooking temperature was observed in total HCAs, IQ, MeIQ, 4, 8-DiMeIQx 

and PhIP, but not MeIQx. At both temperatures, all fat modified patties had 

significantly lower amount of MeIQ, 4, 8-DiMeIQx and total HCAs than control 

patties (p<0.05). MeIQx, 4, 8- DiMeIQx and PhIP were not detectable in G 

patties. Tocopherols (average 50mg/100g in sunflower oil, 5-300mg/100g in 

refined olive oil and 10-15mg/100g in grape seed oil) and polyphenols 

(common profile in grape seed oil: catechin, epicatechin and epicatechin 

gallate) in these oils could play roles in reducing the final HCAs in patties (Bail 

et al., 2008; McCance & Widdowson, 2002; Rombaut et al., 2014). 

Tocopherols have been found to block dialkyl-pyrazine radicals for further 

reaction with creatine to form HCAs, or react with precursors of 4, 8-DiMeIQx 

to inhibit the formation of HCAs (Pearson et al., 1992; Vitaglione & Fogliano, 

2004). Polyphenols could also prevent the formation of imidazoquinoxaline-

type HCAs through trapping pyrazine cation radicals and some other carbon-

centred radicals generated either from pyrazine cation radicals or different 

pathway during Maillard reaction (Kato et al., 1996). In addition, polyphenols 

compounds have the ability to directly trap phenylacetaldehyde, which is a 

major intermediate during the formation of PhIP (Cheng et al., 2007).  

Total HCAs ranged from not detected (Nd) to 140.57±22.03 ng/g. Control 

patties cooked at both cooking temperatures contained significantly higher 

amount of total HCAs (67.56±17.29 ng/g and 140.57±22.03 ng/g), followed by 

S patties (5.98±1.10 ng/g and 23.88±2.44 ng/g) and O patties (4.11±0.87ng/g 

and 20.03±2.25 ng/g), while G patties achieved the lowest total HCAs in both 

temperatures (Nd and 1.90±0.04 ng/g). Control samples cooked at 220oC 

contained all types of HCAs, whereas none of HCA compounds were 

detected in G patties cooked at 180oC. The dominating compounds of HCAs 
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were MeIQ (59.70±0.98ng/g) and 4, 8-DiMeIQx (43.37±15.67ng/g) in C patties, 

while PhIP in O (14.78±1.49ng/g) and S patties (22.70±1.95ng/g). The total 

HCAs in C patties were higher than some published results. Vangnai et al. 

(2014) reported MeIQx (7.59±0.43ng/g), PhIP (13.12±0.72 ng/g) and total 

HCAs (22.35±1.17 ng/g) in fried pork loins cooked at 204 oC for 16 minutes. 

The total level of HCAs in pan-fried well-done pork was 49.7ng/g with cooking 

ended at 80 oC core temperature (Iwasaki et al., 2010). The sampling 

procedure for measuring HCAs could help explain the difference. HCAs were 

extracted from the 2mm outer layer surface of samples in this study, while lots 

of researchers extracted HCAs from entirely ground samples. The precursors 

of HCAs, such as creatine, glucose and free amino acids would migrate to the 

surface of meat and enhance Maillard reaction during cooking (Gibis & Weiss, 

2015). As a result, surface could accumulate much higher level of HCAs 

compared with internal part of the sample. Therefore, a higher concentration 

of HCAs would be expected than that exacted from entirely ground samples. 
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Table 3-4: HCAs in cooked pork patties with partial replacement of fat by vegetable oils at 180 oC and 220 oC a,b,c 

Treatment Cooking 
temperature 

(oC) 

IQ (ng/g) MeIQ (ng/g) MeIQx 
(ng/g) 

4,8-DiMeIQx 
(ng/g) 

PhIP (ng/g) Total (ng/g) Inhibitory 
efficiency  

Control 180 Nd 18.26±14.46a 8.34±1.78ab 25.66±1.51b 11.43±6.33a 67.56±17.29c N/a 

 220 3.88±3.50a 59.70±0.98b 13.45±7.43b 43.37±15.67c 24.07±1.99b 140.57±22.03d N/a 

Olive oil 180 0.58±0.01b Nd 3.50±0.68a Nd Nd 4.11±0.87a 93.90% 

 220 1.30±0.42b Nd 2.52±0.36a 1.31±0.22a 14.78±1.49a 20.03±2.25b 85.75% 

Sunflower 
oil 

180 Nd Nd 4.32±0.50a 1.02±0.50a Nd 5.98±1.10a 91.15% 

 220 0.64±0.16b Nd 4.31±0.55a 5.12±0.35a 22.70±1.95b 23.88±2.44b 83.01% 

Grape 
seed oil 

180 Nd Nd Nd Nd Nd Nd 100% 

 220 0.59±0.04b 1.31±0.06c Nd Nd Nd 1.90±0.04a 98.64% 

p-value (Type of oil) 0.12 <0.01 <0.01 <0.01 <0.01 <0.01  

p-value (Temperature) 0.037 <0.01 0.37 0.039 <0.01 <0.01  

p-value (Interaction 
between oil*temperature) 

0.040 <0.01 0.24 0.035 <0.01 <0.01  

a Results with different letters in the same column are significantly different at the level p<0.05. 
b Values represented as the Mean ± SD, n=3. 
c Nd: Not Detected. 
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IQ was detected up to 3.88 ng/g in cooked patties, which was in the range of 

0.7-5.3 ng/g in fried ground beef patties (Balogh et al., 2000). At 180 oC, IQ 

was not detected apart from O patties, but cooking at 220oC generated high 

level of IQ in all patties (p<0.05). Different vegetable oils did not affect the 

formation of IQ (p>0.05), but interaction between vegetable oil and 

temperature was observed in formation of IQ. IQ is generally formed through 

reactions between creatinine, pyridine radicals and formaldehydes (Vitaglione 

& Fogliano, 2004). Vegetable oils could decompose into hydroperoxides, and 

then aldehydes and ketones at high cooking temperature, which further react 

with amino acids in Maillard reaction (Johansson, Skog, & Jagerstad, 1993; 

Zamora & Hidalgo, 2007). Olive oil with high level of oleic acid has been 

reported decomposed into aldehydes (-CHO) much faster (3-15 times) than 

sunflower oil and grape seed oil containing high amount of linoleic and 

linolenic acid at 190oC (Guillén & Uriarte, 2012b). This might explain IQ was 

only detected in olive oil patties at 180oC, while the detailed pathway between 

fatty acids profile and formation of IQ need further investigation. The highest 

MeIQ was found in control patties cooked at 220 oC (59.70±0.98 ng/g), 

followed by in control patties cooked at 180 oC (18.26±14.46 ng/g). Janoszka 

(2010) reported that 6.28 ng/g MeIQ was detected in pan-fried pork patties 

cooked at 170oC for 12 minutes, which was similar with this study. Formation 

of MeIQ was completely inhibited by olive oil and sunflower oil at both cooking 

temperatures. Grape seed oil could only inhibit formation of MeIQ at low 

cooking temperature, while 1.31ng/g was detected in G patties cooked at 

220oC. The inhibitory effect on MeIQ could be attributed to the antioxidants 

such as vitamin E and polyphenols in vegetable oils. Rounds et al. (2012) and 

Liao et al. (2009) also reported that vitamin E and polyphenols could reduce 

the formation of MeIQ. Balogh et al. (2000) found that vitamin E had stronger 

inhibitory effect on MeIQ with reduction rate 64.3% than phenolic compound 

in Oleoresin rosemary extract with reduction rate 47.9% in fried beef patties. 

Since olive oil and sunflower oil contained higher level of vitamin E than grape 

seed oil, therefore, stronger inhibition of MeIQ would be expected in O patties 

and S patties. Cooking temperature did not affect MeIQx level in patties 

(p>0.05), but formation of MeIQx was significantly affected by different 
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vegetable oils. S patties and O patties had similar MeIQx with control samples. 

For G patties cooked at both temperatures, there was no MeIQx detected. 

However, sunflower oil and olive oil did not affect MeIQx in patties, although 

both oils were rich of vitamin E. No MeIQx was detected at all which was in 

agreement with Rounds et al. (2012), who also reported grape seed extract 

could completely inhibit the formation of MeIQx in cooked beef patties. 

Temperature significantly increased formation of 4, 8-DiMeIQx as evidenced 

in C patties cooked at 180 oC and 220 oC (25.66±1.51 ng/g and 43.37±15.67 

ng/g) (p<0.05). All vegetable oils effectively reduced 4, 8-DiMeIQx in patties. 

Grape seed oil was the most effective one among the three vegetable oils as 

4, 8-DiMeIQx was not detected in G patties cooked at both temperatures.  

PhIP ranged from Nd to 24.07±1.99 ng/g. A similar level of PhIP (18.4±11.5 

ng/g) in fried pork patties was reported by Zhang et al. (2013), when patties 

were cooked at 180oC for 5 min.  At 180 oC, PhIP (11.43±6.33 ng/g) was 

totally inhibited by all 3 vegetable oils, but only grape seed oil could 

completely inhibit the formation of PhIP at both cooking temperatures. The 

stronger inhibitory effect on PhIP in G patties could be attributed to the 

polyphenol compounds in grape seed oil. Gibis and Weiss (2012), Jamali et al. 

(2016) and Oguri et al. (1998) found that catechin, epicatechin and 

epicatechin-3-O-gallate in grape seed extract may be responsible for 50%-90% 

reduction of PhIP in both oven cooked beef patties and chemical model 

system. Zamora and Hidalg (2015) suggested phenolic compounds could 

effectively scavenge the carbonyl compounds in the Strecker degradation of 

phenylalanine to produce phenylacetaldehyde (major intermediate in the 

development of PhIP). Temperature significantly affected PhIP level in pork 

patties (p<0.05). PhIP increased significantly in C patties from 11.43±6.33 

ng/g to 24.07±1.99 ng/g, O patties from Nd to 14.78±1.49 ng/g and S patties 

from Nd to 22.70±1.95 ng/g when cooking temperature increased from 180 oC 

to 220 oC (p<0.05). The results agreed with Gibis and Weiss (2012) and 

Wong et al. (2012) that PhIP level was directly related to the cooking 

temperature. At 175 oC -200 oC, only very low level of PhIP (0-6.91 ng/g) 

could be formed even at varied cooking time, but it could increase 
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dramatically to 31.80ng/g with prolonged cooking time if temperature went 

above 200 oC.  

Type of vegetable oil significantly affected the level of total HCAs in cooked 

patties (p<0.05). Interaction between type of vegetable oil and cooking 

temperature was observed as well (p<0.05). Effect of fatty acids/oils on the 

formation of HCAs has been documented inconsistently. Johansson et al. 

(1995) reported that the most MeIQx and DiMeIQx found in burgers fried in 

rapeseed oil containing high level of oleic acid with high peroxides values, 

compared with butter, margarine and sunflower oil. However, Zamora et al. 

(2012) stated that both primary and secondary lipid oxidation products, 

hydroperoxides, such as methyl 13-hydroperoxyoctadeca-9,11-dienoate and 

alkenals could enhance PhIP, and low to medium oxidation degree of oil could 

accelerate the formation of PhIP comparing to highly oxidized oil in chemical 

model system. This inconsistency might be resulted from non-

pyridine/pyrazine participated pathway of PhIP and more complexity of real 

meat system with the consideration of antioxidants in oils (Johansson, Skog, 

& Jagerstad, 1993). In the current study, reduction of total HCAs by 85.75%-

93.90% was found in O patties, 83.01%-91.15% in S patties, while G patties 

achieved the highest reduction rate at 98.64%-100% (Table 3-4). Antioxidants 

in the vegetable oils could be responsible for the reduction of total HCAs as a 

strong negative correlation (r=-0.618, p<0.01) was disclosed between total 

HCAs level and antioxidant capacity (TEAC) of oils (Table 3-6). Grape seed 

oil had the highest TEAC value with 0.71±0.01 µmol Trolox/100g, followed by 

olive oil (0.52±0.05 µmol Trolox/100g) and sunflower oil (0.18±0.04 µmol 

Trolox/100g), while pork back fat had the lowest TEAC value (0.09±0.02 µmol 

Trolox/100g) (Figure 3-1). Therefore, reduction of HCAs in vegetable oils, 

especially grape seed oil was expected compared with control samples. 

Results were comparable with findings of Matthäus (2008) and Castelo-

Branco and Torres (2012). Balogh et al. (2000) found that 1% vitamin E spray 

on the surface of beef patties could reduce the concentrations of IQ, MeIQ, 

MeIQx, DiMeIQx and PhIP significantly by 45% to 75%, because vitamin E 

could remove free radicals in Maillard reaction. Similar result was also 

reported by Lan, Kao and Che (2004). They found that 70% of total HCAs (IQ, 
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MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP) were prohibited when 0.β% α-

tocopherol was added into ground pork 1h before cooking. Polyphenol 

compounds, such as catechin, epicatechin-3-O-gallate, oligomer procyanidins 

and tocopherols in grape seed oil contributed to its antioxidant capacity 

(Agostini et al., 2012; Crews et al., 2006; Matthäus, 2008). Vitaglione and 

Fogliano (2004) suggested that mixture of antioxidant compounds could 

perform better than single antioxidant as they could inhibit various pathways 

in different steps of reactions. Therefore, polyphenols compounds might work 

synergistically with tocopherols to enhance each other to inhibit the formation 

of HCAs. However, the synergistic effect between different antioxidants needs 

to be further examined. 

 

Figure 3-1: Trolox Equivalent Antioxidant capacity (umol Trolox/100g) of 
pork backfat and 3 vegetable oils1. 
1Results with different letters are significantly different at the level p<0.05.  

Cooking temperature significantly affected total HCAs in pork patties (p<0.01) 

(Table 3-4). Patties cooked at 220 oC had significantly higher level of total 

HCAs than these at 180 oC (p<0.01). Effect of temperature on the formation of 

HCAs was well examined in previous research (Knize et al., 1994; Liao et al., 

2009; Oz & Kaya, 2011). Thermal processing has vital influence on the 

formation of polar HCAs (IQ, MeIQ, MeIQx, DiMeIQx and PhIP), which are 

formed in meat products when samples are cooked at 160-250 oC, typical 

domestically cooking temperature. High cooking temperature generated more 

diverse types of HCAs, but also stimulate the accumulation of the amount of 
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HCAs on the surface of meat products (Olsson & Pickova, 2005; Skog, 

Johansson & Jaègerstad, 1998). 

3.4.3 Effects of vegetable oils and cooking temperature on the 

formation of PAHs 

Concentration of PAHs (BaA and BaP) in cooked pork patties with different 

cooking temperature was listed in Table 3-5. The range of total PAHs was 

from 1.59±0.26 ng/g to 3.84±0.21 ng/g. BaA ranged from 0.14-0.31 ng/g in 

cooked patties, while BaP ranged from 1.44 to 3.53ng/g. Temperature did not 

affect the formation of both BaA and BaP, but type of vegetable oil had 

significant effect on the formation (p<0.05). Interaction between type of oil and 

cooking temperature was also observed in both compounds (Table 3-5). BaP 

level in this study (1.44-3.53 ng/g) are consistent with results reported by 

Nisha et al. (2015) and Janoszka (2011), i.e. 1.52 ng/g of BaP in the oven 

broiled pork and 1.61 ng/g BaP in oven grilled pork chop (17min at 170oC). 

Olive oil and grape seed oil showed inhibitory effect on BaP when patties 

cooked at 220 oC, but no effect or even promoting effect was observed at 

180oC. On the contrast, sunflower oil offered inhibition on BaP at 180 oC, but 

promotion at 220 oC. As BaP is one of the highest toxic potency compounds 

during meat cooking, EU Commission has regulated that the updated limit of 

BaP occurring in processed meat and seafood products is 2 ng/g (Purcaro et 

al., 2013; Wretling et al., 2010). Among all the patties, only O patties cooked 

at 220 oC and S patties cooked at 180 oC met the safety regulation of BaP. 

Therefore, it is necessary to develop any procedures or alternative methods 

that reduce the amount of BaP to safety limit. 
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Table 3-5: PAHs in in cooked pork patties with partial replacement of fat by vegetable oils at 180 oC and 220 oC a,b 

Treatment Cooking 
temperature (oC) 

BaA (ng/g) BaP(ng/g) Total PAHs (ng/g) Inhibitory 
efficiency  

Control 180 0.15±0.01a 2.44±0.37c 2.58±0.36c N/a 

 220 0.21±0.03b 3.08±0.06d 3.28±0.07d N/a 

Olive oil 180 0.15±0.02a 2.24±0.40bc 2.38±0.40bc 7.75% 

 220 0.15±0.01a 1.44±0.27a 1.59±0.26a 51.52% 

Sunflower oil 180 0.14±0.01a 1.88±0.17ab 2.02±0.16ab 21.71% 

 220 0.31±0.02c 3.53±0.20e 3.84±0.21e -17.07% 

Grape seed oil 180 0.18±0.01ab 3.29±0.15d 3.46±0.16d -34.11% 

 220 0.18±0.05ab 2.51±0.07c 2.71±0.07c 17.38% 

p-value (Type of oil) <0.01 <0.01 0.031  

p-value (Temperature) 0.1 0.076 0.43  

p-value (Interaction between oil* 
temperature) 

<0.01 <0.01 <0.01  

a Results with different letters in the same column are significantly different at the level p<0.05. 
b Values represented as the Mean ± SD, n=3. 
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The effect of oil and interaction between type of oil and cooking temperature 

on the formation of PAHs were significant (p<0.05). Cooking temperature did 

not affect the formation of PAHs (p>0.05). S patties cooked at 220 oC had the 

highest total PAHs (3.84±0.21 ng/g), followed by G patties (3.46±0.16 ng/g) 

cooked at 180 oC and C patties (3.28±0.07 ng/g) cooked at 220 oC. O patties 

cooked at 220oC obtained the lowest PAHs. PAHs were mainly associated 

with the pyrolysis of fat undertaken at high temperature (Viegas et al., 2012). 

Therefore, smoking point of vegetable oils may help explain the difference in 

PAHs. Sunflower oil and grape seed oil contain high content of PUFAs, 

especially linoleic acid and linolenic acid have lower smoke points (grape 

seed oil 216 oC, sunflower oil 227 oC), which make them easy to decompose, 

compared with olive oil (smoke point 242 oC). The decomposition of oil could 

generate more reactive free radicals to accelerate the production of PAHs 

(Chen & Lin, 1997; Elmore et al., 2002). They also concluded that 

hydroperoxides from lipid oxidation, could subsequently generate cyclic 

compounds through intramolecular reaction, and PUFAs could undergo 

further polymerization. In addition, vegetable oils themselves contained BaP, 

which might increase the total amount of PAHs in cooked meat. Fromberg, 

Højgard and Duedahl-olesen (2007) reported that olive oil, sunflower oil and 

grape seed oil approximately contained 0.12 ng/g, 0.4 ng/g and 1.0 ng/g BaP 

respectively. As a result, high level of PAHs was expected in sunflower oil and 

grape seed oil samples. Although vegetable oils contain antioxidants, the 

inhibitory effect on PAHs formation was not observed consistently. In O 

patties, the inhibitory efficiency at both temperatures were 7.75% and 51.52%, 

but sunflower oil and grape seed oil increased the formation of PAHs by 17.07% 

and 34.11%, respectively. It shows that antioxidants in vegetable oils were not 

involved in the formation of PAHs to a great extent, which is further confirmed 

by the correlation analysis. As indicated in Table 3-6, there is no correlation 

relationship observed between antioxidant capacity of oil (TEAC) and total 

PAHs. However, Wongmaneepratip and Vangnai (2017) reported that radical 

scavenging activity of commercial palm oil and sunflower oil could be 

correlated to the inhibitory effect on PAHs formation in grilled chicken. The 

discrepancy could be attributed to the difference of preparation process. 
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Longer marinating time of commercial oils with meat might provide enough 

time for antioxidants in oils to perform scavenging ability (Wongmaneepratip 

and Vangnai, 2017). The impact of tocopherols and polyphenol compounds 

on the formation of PAHs in processed meat was not well documented. In 

vitro study, Zhu et al. (2014) found that vitamin E intake could significantly 

prohibit free radicals induced by BaP and protect cellular damage in human 

lung, but the effect of antioxidants on formation of PAHs in food products has 

been scarce. 

Table 3-6: Pearson correlation coefficient (r) between the level of total 
HCAs/PAHs (ng/g) and TBARS, protein carbonyl and TEAC  

 TEAC HCAs PAHs 

TBARS -0.764** 0.826** -0.154 

Protein carbonyl -0.606** 0.778** 0.019 

TEAC - -0.618** 0.301 

** Significant level 0.01 
 

3.4.4 Correlation between lipid oxidation, protein oxidation and the 

formation of HCAs and PAHs 

It is noted that the results from current extraction method were slightly 

different with those from distillation method described by Tarladgis et al. 

(1964), which could be attributed to the interference of haemoglobin. Jurdi-

Haldeman et al. (1987) reported that TBARS values of cooked ground lamb 

was higher in distillation method with higher sensitivity, compared with in 

extraction method. However, extraction method was used in the consideration 

of popularity in recent publications and practical availability. In Figure 3-2, S 

patties, O patties and G patties had significantly lower TBARS values than 

control samples (p<0.05), while G patties had the lowest TBARS value 

compared with O and S patties (p=0.001). This inhibitory effect against lipid 

oxidation could be attributed to the antioxidants (tocopherols and polyphenol 

compounds) within the oils, since a significantly negative relationship was 

found between TBARS values and antioxidant capacity of oils (r= -0.764, 
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p<0.01) (Table 3-6). Wong et al. (2015) reported that 0.1-0.4 mmol vitamin E 

could inhibit 45% of lipid oxidation in beef patties, by obstructing the formation 

of some key aldehydes and ketones during lipid oxidation. Similar results 

were achieved by Ahn, Grün and Fernando (2002) as well. Frankel (1998) 

proposed that α-tocopherol could prevent the chain propagating and remove 

free radicals through reacting with either singlet oxygen or peroxyl radicals. 

Consequently lipid oxidation was reduced. Meanwhile, polyphenols, such as 

epicatechin (EC) and oligomer procyanidins were also sufficient to inhibit lipid 

oxidation by reducing free radicals and preventing chain propagation in 

cooked pork and beef (Rojas & brewer, 2007). They could also chelate metals 

(iron and cooper in meat) or react with ROS, and then turn into non-radical 

species. As a result, reactions were terminated (Roman et al., 2013). 

Moreover, Ahn et al. (2002) and Tang et al. (2001) reported that polyphenols 

such as catechin, epicatechin were more efficient in inhibiting lipid oxidation 

than α-tocopherol at the same concentration in cooked meat. This could 

explain why G patties had the lowest TBARS values than S and O patties. 

Although Gunstone (2002) stated that a higher degree of unsaturation of fatty 

acids could be easier to trigger the lipid oxidation and interacted with Maillard 

reaction, the presence of antioxidants should be also considered. 

 

Figure 3-2: TBARS values in pork patties cooked at 180 oC and 220 oC1 

1 Results with different letters are significantly different at the level p<0.05. 
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Protein carbonyls are produced from protein oxidative degradation in meat 

products, which were used to analyse degree of protein oxidation (Figure 3-3). 

Significant effect of vegetable oils on the protein oxidation was observed 

(p=0.001). C patties had a significantly higher level of protein carbonyls (12.11 

nmol/mg) than other 3 fat modified patties (p<0.05). The protein oxidation 

could be inhibited by the presence of antioxidants in oil, as negative 

correlation between antioxidant capacity of oils (TEAC) and protein carbonyl 

level was found with r=-0.606, p<0.01, as indicated in Table 3-6. Botsoglou et 

al. (2014) found that protein carbonyl value could be reduced significantly in 

cooked pork patties when 50mg/kg α-tocopherol was added (p<0.05). Vuorela 

et al. (2005) reported that phenolic compounds, including vinylsyringol and 

sinapic acid in rapeseed oil had good antioxidant capacity against protein 

oxidation in cooked pork patties. Ganhão et al. (2010) also found that arbutus-

berries extract containing catechins significantly reduced protein oxidation by 

chelating heme iron in cooked patties. However, there was no difference in 

the protein carbonyl level among O, S and G patties (p>0.05). 

 

Figure 3-3: Protein carbonyl values in pork patties cooked at 180 oC and 
220oC1 

1Results with different letters are significantly different at the level p<0.05 
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interactions between free radicals generated from lipid oxidation and free 

radicals produced in Maillard reaction (Hwang & Ngadi, 2002; Skog et al., 

1998). Therefore, it is useful to explore the relationship between lipid/protein 

oxidation and the formation of HCAs. In this study, correlation analysis was 

conducted between TBARS/protein carbonyl values and concentration of total 

HCAs in fat modified cooked patties (Table 3-6). Significant positive 

correlation was disclosed between total HCAs and TBARS (r=0.826, p<0.01) 

and between HCAs and protein carbonyl (r=0.778, p<0.01), which further 

confirmed that both lipid oxidation and protein oxidation participated the 

formation of HCAs during cooking process. In order to further examine the 

relationship between lipid oxidation/protein oxidation/antioxidant capacity of 

lipids and total HCAs in cooked patties, multivariate linear regression model 

was displayed below,   

Total HCAs= -42.37+ 108.26 * TBARS + 5.647 * Protein Carbonyl. 

It can be seen from the equation that TBARS (lipid oxidation) played a 

predominant role on the formation of HCAs, compared with protein carbonyl 

(protein oxidation). The factor ‘TEAC (antioxidant capacity of lipids)’ has been 

removed from the model, because the strong correlation between TEAC and 

TBARS/ protein carbonyl indicates that variance accounted for TEAC could be 

well accounted by TBARS/ protein carbonyl. In cross-validation, adding/ 

removing ‘TEAC’ caused little change in adjusted R square of the predicted 

models, which indicated variance caused by TEAC could be well explained by 

other independent factors in the model (Field, 2009).    

Free radicals, aldehydes and ketones generated from lipids oxidation could 

interact with Maillard reaction by reacting with the polar head of an amino 

group to produce more HCAs (Jägerstad et al., 1998; Zamora & Hidalgo, 

2007). On the other hand, active protein carbonyl residues, such as alkyl, 

peroxyl radicals that formed by muscle protein oxidation can be initialized by 

lipid oxidation, metal ions and other peroxided compounds (Cai et al., 2002). 

Subsequently, these carbonyls could interact with Maillard reaction via Schiff 

base and then generate Strecker aldehydes, which are intermediates of 

imidazoquinolines and imidazoquinoxalines (Estévez, 2011; Soladoye et al., 
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2015). Researchers also suggested that lipid oxidation could trigger protein 

oxidation by reacting with heme iron that released from myoglobin (Ganhão et 

al., 2010; Vuorela et al., 2005). In this work, there was no correlation 

observed between TBARS /protein carbonyl and PAHs (p>0.05), which 

indicated that the involvement of lipid and protein oxidation in the formation of 

PAHs was only at null level. Thus, no linear regression model was fitted. The 

antioxidants in vegetable oils could not inhibit the formation of PAHs, which 

was evidenced by null correlation between TEAC and PAHs (p>0.05).  

3.5 Conclusion 

Control patties contained the highest amount of HCAs and relatively higher 

PAHs at 180 oC and 220 oC. All 3 fat modified patties had significantly lower 

HCAs, which could be attributed to antioxidants, such as tocopherols and 

polyphenol compounds existing in the oils. The negative correlation (r= -0.618, 

p<0.01) between the antioxidant capacity of lipids and the total amount of 

HCAs could be useful evidence to support this claim. Both lipid and protein 

oxidation contributed to the formation of HCAs, which were supported by the 

positive relationship between TBARS/ protein carbonyl values and total HCAs 

with r= 0.826 and 0.788 (p<0.01), respectively. Olive oil and sunflower oil 

completely prohibited MeIQ, whereas grape seed oil could inhibit MeIQx, 4, 8-

DiMeIQx and PhIP. Grape seed oil could achieve the highest inhibitory effect 

on the formation of HCAs. However, effect of vegetable oils on the formation 

of PAHs was not consistent, which could be attributed to complexity of oil 

decomposition and antioxidants in the oils. The involvement of lipid oxidation 

and protein oxidation in formation of PAHs was limited or at a minimum level. 

Antioxidants in oils could not reduce the total amount of PAHs effectively. 

Therefore, it is necessary to explore other methods to reduce PAHs in 

processed meat. Overall, replacing pork back fat with vegetable oils in 

processed meat products could offer healthier meat products with reduced 

HCAs without compromising eating quality. 
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 The effect of common spices and 

meat type on the formation of heterocyclic 

amines and polycyclic aromatic hydrocarbons 

in deep-fried meatballs 
 

This chapter is ready for submiting to the journal ‘Food Control’. 

4.1 Abstract 

Spices are commonly used as flavour enhancer and natural antioxidants in 

processed meat products. However, effect of spices on the formation of 

carcinogens especially heterocyclic amines (HCAs) and polycyclic aromatic 

hydrocarbons (PAHs) in different meat system has yet been investigated. In 

this study, 0.5% garlic, onion, red chilli, paprika, ginger and black pepper 

powder was added into beef and chicken meatballs fried at 180oC. Formation 

of HCAs and PAHs was examined to evaluate the inhibitory efficiency of 

spices in beef and chicken meatballs. Control meatballs (without adding spice) 

contained the highest amount of HCAs compared with all spice added 

meatballs of both beef and chicken. All the spices powder reduced the 

formation of total HCAs, while ginger powder achieved the highest inhibition 

efficiency compared with all other spices. The correlation coefficient (r) 

between antioxidant capacity of spices and total HCAs was - 0.853 (p<0.01) 

for TEAC and -0.712 (p<0.05) for ORAC. Chicken meatballs contained less 

HCAs than beef, but no difference was observed in total PAHs between beef 

and chicken meatballs (p>0.05). Both electron transfer and hydrogen donation 

were involved with the inhibitory effect of spices for developing HCAs, but only 

electron transfer mainly in the formation of PAHs. In conclusion, antioxidant 

capacity of spices determined their efficiency in prohibiting formation of HCAs 

and PAHs, and meat type affected the formation of HCAs, but not PAHs.  

Key words: Antioxidant capacity; Free radicals; Phenolics; Thermal stability. 

4.2 Introduction 

In processed meat products, the presence and hazard of HCAs and PAHs 

become a major concern for both consumers and researchers. HCAs 
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represent a class of carcinogenic compounds that were identified in meat 

products cooked at high temperature (Rahman, Sahar, Khan, & Nadeem, 

2014). Five of them, including 2-amino-3-methylimidazo [4,5-f]quinoline (IQ), 

2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-

dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-

trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP) are reasonably regarded as human 

carcinogens (IARC, 1993). Meanwhile, PAHs are hydrocarbons that contain 

two or more benzene rings, which could be generated through incomplete 

combustion or pyrolysis of carbon and hydrogen. They can be accumulated in 

barbequed, grilled, fried and smoked food (PHE, 2008). PAH4, including 

benz[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF) 

and chrysene has recently been reported as indicator of carcinogenic potency 

of PAHs in food (Janoszka, 2011). In PAH4, both BaA and BaP are 

considered as probable carcinogens in humans (Group 2A) comparing with 

other PAHs (less carcinogenic) according to the updated IARC (2010) report.  

In order to reduce HCAs and PAHs in the cooked meat products, research 

work about understanding their formation pathways has been extensively 

carried out. Readily oxidized and decomposed species, such as free radicals, 

aldehydes and ketones could interact with Maillard reaction during meat 

cooking to accelerate the formation of HCAs (Guillén & Uriarte, 2012; 

Katragadda et al., 2010). PAHs are formed mainly due to incomplete 

combustion or pyrolysis of organic components, including fat, protein and 

carbohydrates at the temperature over 200 oC (Alomirah et al., 2011). The 

whole process of forming HCAs and PAHs contained a series of radical 

reactions (D'Anna & Violi, 1998; Wang, Raj, & Chung, 2013). Antioxidants 

have been proved to interfere with these radical reactions to affect the 

formation of HCAs and PAHs. Vitaglione and Fogliano (2004) and Janoszka 

(2011) stated that antioxidants could trap free radicals, such as intermediates 

of HCAs and PAHs, to prevent the formation of HCAs and PAHs. Thus, 

incorporating antioxidants in meat products has been considered as an 

effective way to reduce the level of HCAs and PAHs in cooked meat products. 

Synthetic antioxidants, including butylated hydroxyanisole (BHA), butylated 
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hydroxytoluene (BHT), propyl gallate (PG) have been proved effective 

reduction on the formation of MeIQx and 4, 8-DiMeIQx in chemical model 

systems (Vitaglione & Fogliano, 2004). However, these synesthetic 

antioxidants have been banned in Europe and some other countries due to 

their carcinogenic potential to human (Oz & Kaya, 2011b). In addition, using 

natural ingredients in food processing have been highly demanded by 

consumers. 

Natural source of antioxidants such as herbs and spices has been explored 

as ingredients in processed meats. Garlic and onion are both from Allium 

family, and they contain a high level of antioxidants, mainly organosulfides 

including diallyl sulfide (DAS) and diallyl disulfide (DAD). In addition, quercetin 

in onion has well documented for its antioxidant capacity and antibacterial 

properties (Mellado-García et al., 2015). Paprika and red chilli are members of 

the Capsicum family and have been reported to contain carotenoids and 

capsaicin both of which have high scavenging radical activity (Materska & 

Perucka, 2005). Quercetin and piperine in black pepper and gingerol in ginger 

were well known compounds with antioxidant capacity (Shobana & Naidu, 

2000). The inhibitory effect of some spices on the formation of HCAs and 

PAHs in meat products has been documented. Janoszka (2010, 2011) 

reported that adding garlic and onion in pork could reduce 26%-36% of total 

HCAs and 50-60% of total PAH during frying. Black pepper could reduce 

12%-100% of total HCAs in beef meatballs fried at 175oC, 200 oC and 225 oC 

(Oz & Kaya, 2011a). They also found sprinkling 1% (w/w) flaked red pepper 

on pork steak could reduce 75-100% of total HCAs during pan-frying at 175 
oC, 200 oC and 225 oC (Oz & Kaya, 2011b). Researchers proposed that 

antioxidants could scavenge free radicals such as alkylpyridine and 

dialkylpyrazine for HCAs formation (Jägerstad et al., 1998), propargyl (C3H3∙) 

for PAHs formation (El-Badry, 2010; Janoszka, 2011). For example, rosemary 

extract could reduce MeIQx by up to 92% and PhIP up to 85% in beef patties. 

Carnosol, carnosic acid and rosmanol within the extract could be attributed to 

the inhibitory effect as these compounds have reactive ortho-diphenol groups 

which could scavenge cation radicals (Puangsombat, Jirapakkul, & Smith, 

2011). Meat marinades containing beer (Viegas et al., 2014) and spices 



124 

 

including garlic and onion (El-Badry, 2010) were reported with reduction of 

PAHs level in final products as antioxidants including lipophilic polyphenols, 

vitamin E and vitamin C presented, these marinades would scavenge free 

radicals both in fragmentation of hydrocarbons and cyclization of aromatic 

compounds during the formation of PAHs (Pulido, Hernandez-Garcia, & 

Saura-Calixto, 2003; Viegas et al., 2014). The scavenging capacity between 

different antioxidants may depend on antioxidant’s molecular structure and 

particularly the potent reactivity of phenol or polyphenol moieties with free 

radicals (Meurillon & Engel, 2016). 

High intake of meat with presence of metals has been associated with 

increasing cancer risk. Tasevska (2009) found that high intake of heme iron in 

meat products might trigger lung cancer, and it could induce endogenous 

carcinogens N-Nitroso compounds formation. In addition, iron can act as a pro 

oxidant that promotes lipid oxidation and the formation of heat-induced 

carcinogens at high temperature. Skog (2000) reported that adding iron into 

chemical model system could increase the amount of MeIQx. Free radicals 

generated from lipid oxidation induced by iron could interact with the formation 

of HCAs (Jägerstad, 1998). Rice-Evans, Miller, and Paganga (1997) 

discovered that polyphenols could particularly chelate iron and prevent the 

formation of transition metal-catalysed free radicals. As iron content varies 

between red meat and white meat, and it could significantly affect the 

formation of carcinogens during meat processing (Jinap et al., 2016). Spices 

containing different level and type of antioxidants may perform differently in 

different meat system. So far, most studies have been focused on the dosage 

effect or temperature effect on the formation of HCAs and PAHs, while limited 

attention was given to understand the efficiency of different spices or 

performance in different meat system. Therefore, 6 commonly used spices 

with equal dosage level were selected to investigate their performance on the 

formation of HCAs and PAHs in two meat systems, beef and chicken in 

consideration of the heme iron level. 
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4.3 Materials and methods 

4.3.1 Materials 

Lean beef steak, skinless chicken breast, tallow and chicken skin were 

purchased from Jennings Caversham (Reading, UK). Excess visible fat on 

beef and chicken was trimmed before cooking. Raw materials were stored at -

18 oC and defrosted 24h at 4oC before making meatballs. Commercial spices, 

ground black pepper, garlic granules, ginger powder, onion powder, paprika 

powder and red chilli powder from Schwartz®, were purchased from ASDA 

supermarket (Reading, UK). Sunflower oil (ASDA, UK) for deep frying and 

spices were kept in refrigerator (4oC) before use. 

4.3.2 Procedures of making meatballs and cooking process 

The formulation of beef and chicken meatballs per kilogram was listed in 

Table 4-1 and Table 4-2, respectively. Fat level of beef meatballs were 

adjusted to 16% and chicken to 10%. Spices including garlic, onion, paprika, 

ginger, red chilli and black pepper were added to the meat batter according to 

the popularity of useage both in commercial recipes and previous research. 

Concentration of the spices (0.5%, w/w) was chosen based on the sensory 

result from Dwivedi et al. (2006), they reported that although adding spices 

powder could increase spice flavour and aroma in products, moderate spice 

flavour intensity (0.5%, w/w) in cooked beef products would be acceptable for 

public. 

All ingredients were homogenized at 5000rpm for 5min in a Kenwood Food 

processor (Chef Titanium KM010, 4.6, Kenwood Limited) to reach a uniform 

batter. Each meatball was weighed 15±0.1g, and shaped to ball with 9.0±0.2 

diameters by hand. Meatballs were deep fried in a rotary deep fryer (Delonghi, 

Type No: F283118) with the setting temperatures 180oC for 3min until core 

temperature 71.8-73.1oC reached, measured by a thermal probe (KM330 

Industrial Thermometer, Comark Instruments, UK). After cooking, meatballs 

were placed on paper towel for 10min to remove excess oil on surface then 

final weight was recorded to calculate the cooking loss. Cooking loss was 

determined by the equation: Cooking loss (%) = (Wr - Wc)/Wr × 100, where Wr 

was the weight of raw meatballs, and Wc was weight of cooked meatballs.  
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Cooked meatballs were chilled in cold room at 4 oC overnight, followed by 

stored at -18 oC for further analysis. Meatballs used for lipid oxidation and 

protein oxidation were vacuum packed and stored at -18 oC.  

Table 4-1: Formulation of raw beef meatballs 

 

 

Table 4-2: Formulation of raw chicken meatballs 

 

 
Minced 

lean beef 
(g) 

Tallow 
(g) 

Salt 
(g) 

Powder 
(g) 

Water 
(g) 

Bread 
crumb 

(g) 

Control 640 160 10 0 90 100 

Garlic 640 160 10 5 85 100 

Onion 640 160 10 5 85 100 

Red chilli 640 160 10 5 85 100 

Paprika 640 160 10 5 85 100 

Ginger 640 160 10 5 85 100 

Black 
pepper 

640 160 10 5 85 100 

 
Minced 

lean 
chicken 

(g) 

Chicken 
skin (g) 

Salt 
(g) 

Powder 
(g) 

Water 
(g) 

Bread 
crumb 

(g) 

Control 700 100 10 0 90 100 

Garlic 700 100 10 5 85 100 

Onion 700 100 10 5 85 100 

Red chilli 700 100 10 5 85 100 

Paprika 700 100 10 5 85 100 

Ginger 700 100 10 5 85 100 

Black 
pepper 

700 100 10 5 85 100 
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4.3.3 Proximate composition and physical analysis 

4.3.3.1 pH, moisture, fat and protein content 

The procedure of analysis was the same with Chapter 2.3.3. 

4.3.3.2 Colour 

The procedure of analysis was the same with Chapter 3.3.9.1. 

4.3.4 Determination of HCAs 

Approximate 2mm samples surface were trimmed and blended well before 

measuring. The procedure of analysis was the same with Chapter 2.4.3. 

4.3.5 Determination of PAHs 

The procedure of analysis was the same with Chapter 2.3.5. 

4.3.6 LOD, LOQ and recovery rate of HCAs and PAHs 

LOD and LOQ of 5 HCAs were estimated based on the peak-to-peak noise 

magnitude near analyte peaks with a known concentration and signal-to-noise 

ratios (R=S/N) of 2 and 10, respectively. The average recoveries of these 5 

HCAs according to triplicates were 58.35% for IQ, 61.10% for MeIQ, 53.97% 

for MeIQx, 57.24% for 4,8-DiMeIQx and 55.99% for PhIP. Results were 

comparable with published data (Gibis, 2007; Oz, 2011). Similarly, recovery 

rate of BaA and BaP were 54.03% and 50.87% respectively, which was 

comparable with published results of 50% - 115% (Farhadian et al., 2010; 

Janoszka, 2011). 

4.3.7 Inhibitory rate of HCAs and PAHs 

Inhibitory rate was determined according to the equation:  

Inhibitory rate (%) = (Ac – At)/Ac × 100  

where Ac was the total amount of HCAs or PAHs in control samples (ng/g), 

and At was the total amount of HCAs or PAHs in spice added meatballs (ng/g). 

4.3.8 Lipid oxidation and protein oxidation 

4.3.8.1 TBARS value (Lipid oxidation) 

TBARS analysis was completed by measuring from the meatballs that 

vacuum frozen (-18oC) up to 30 days. The procedure of analysis was the 

same with Chapter 3.3.4.1. 
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4.3.8.2 Protein carbonyl value (Protein oxidation) 

Protein carbonyl analysis was completed by measuring from the meatballs 

that vacuum frozen (-18oC) up to 30 days. The procedure of analysis was the 

same with Chapter 3.3.4.2. 

4.3.9 Total phenolic content (TPC) 

Total phenolic content was determined using Folin–Ciocalteu agent according 

to the procedures published by Wojdyło, Oszmiański, and Czemerys (β007). 

1g spice powder was added into a tube with 10ml mixture of methanol and 

water (8:2, v/v). The test tube was agitated firstly for 15min in a shaker (Multi 

Reax D-91126, Heidolph, Germany) and then covered with foil and left for 24 

hours at room temperature for adequate extraction of polyphenols from spices. 

The extract was centrifuged for 10 min (1500rm) at room temperature and 

supernatant was collected for further analysis. 100 μl supernatant was mixed 

with 0.2 ml of Folin–Ciocalteu reagent and 2 ml of distilled H2O for 3 min, and 

then incubated with 1 ml 20% sodium carbonate for 1 hour at room 

temperature. The absorbance of solution was measured at 734 nm with a UV 

spectrophotometer (6315, Bibby Scientific Ltd, UK). Standard curve was 

prepared using gallic acid solution at 0, 10, 25, 50, 100, 250 and 500 mg/L. 

The results were expressed as gallic acid equivalents (GAE) per gram dry 

weight (dry weight). 

4.3.10 Antioxidant activity assay of 6 spice powder  

4.3.10.1 TEAC 

The procedure of analysis was the same with Chapter 3.3.4.3. 

4.3.10.2 Oxygen radical antioxidant capacity (ORAC) 

Determination of ORAC of spices was according to the method described by 

Ou et al. (2001). 1g of spice powder was mixed with 10ml acetone and water 

(1/1, v/v) in a test tube. The test tube was then agitated for 15min in a shaker 

(Multi Reax D-91126, Heidolph, Germany) with coverage of foil and left for 24 

hours at room temperature. The extract was centrifuged for 10 min (1500rm) 

at room temperature. Phosphate buffer was made with 75 mM K2HPO4 

solution and 75 mM NaH2PO4.2H2O, 4.72/1 v/v, adjusted pH to 7.4. 100µM 

fluorescein solution was prepared by dissolving 3.76mg disodium fluorescein 
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into 100ml phosphate buffer. The blank was prepared by adding 25 µl of 

phosphate buffer to a well. The plate reader was switched on and the 

temperature was set to 37oC. Emission and excitation wavelengths were set 

at 535 and 485 nm respectively in the GENios TECAN plate reader (Serial No. 

12900400464, TECAN, Austria Gesellschaft M.B.H.). 150µl fluorescein 

solution was kept at 37oC in an incubator for 30 min. 25 µl spice extraction 

followed by 150µl fluorescein were added to each well and the initial 

fluorescence was recorded in the plate reader. A volume of 75 µl of AAPH 

was then added to wells to start the kinetic measurement. Fluorescence 

measurements were taken every 1 min. The dynamics of fluorescence 

intensity with time was plotted. Area under the curve (AUC) is used to quantify 

the antioxidant capacity, expressed as the ORAC value. A calibration curve 

was prepared by linear concentrations of Trolox (1, 10, 25, 50, 75 and 100µM). 

 AUC = 1 + RFU1/RFU0 + RFU2/RFU0 + RFU3/RFU0 +…..+ RFUn/RFU0 

RFU0 = relative fluorescence units at time point zero 

RFUn = relative fluorescence units at time points n 

4.3.11 Statistical analysis 

Statistical significance test was carried out by using SPSS Statistics 21. The 

significant difference in chemical composition, physical property, levels of 

HCAs and PAHs, TBARS and protein carbonyl values for the 14 samples 

were examined using one-way analysis of variance (ANOVA) at the significant 

level 0.05, and Duncan test was selected for multiple comparison if equal 

variances assumed, otherwise Tamhane’s Tβ test was used. The associations 

between total HCAs/PAHs, lipid oxidation, protein oxidation, and antioxidant 

capacity were examined by Pearson’s correlation. To analyse the effect of 

factors and the interaction between factors (spice and meat type), two-way 

ANOVA was employed at the significant level 0.05. 

4.4 Results and discussion 

4.4.1 Antioxidant capacity and TPC of 6 spices   

Single electron transfer and hydrogen atom transfer are two key mechanisms 

for understanding the antioxidant activity or radical scavenging property 
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(Shahidi & Ambigaipalan, 2015). TEAC assay is designed to measure single 

electron transfer during antioxidation, while ORAC is used to investigate the 

hydrogen atom transfer during antioxidation. TEAC values, ORAC values and 

TPC of 6 spices were reported in Table 4-3. In TEAC assay, black pepper with 

13.57±1.63 µmol of Trolox/ 100 g of dry weight showed the highest 

antioxidant capacity in single electron transfer, followed by ginger with 

11.19±1.15 µmol of Trolox/ 100 g of dry weight. Red chilli (8.45±1.35 µmol of 

Trolox/ 100 g of dry weight), paprika (7.86±1.29 µmol of Trolox/ 100 g of dry 

weight), garlic (7.5±0.94 µmol of Trolox/ 100 g of dry weight) and onion 

(6.55±0.90 µmol of Trolox/ 100 g of dry weight) had similar TEAC values, but 

their TEAC measurements were lower than those in black pepper and ginger 

(p<0.05). Mariutti et al. (2008) and Ho et al. (2010) also found that ginger and 

black pepper had higher TEAC value than onion and garlic. 6-gingerol and 

shogaol in ginger, kaempferol and quercetin in black pepper (Ho et al., 2010; 

Suhaj, 2006) have been considered as main phenolics with scavenging 

activity due to their structure of monophenolic moiety (Hinneburg, Dorman, & 

Hiltunen, 2006). The scavenging ability is dependent on the structure of active 

compounds. Great antioxidant properties of kaempferol and quercetin are 

resulted from the presence of catechol hydroxyl groups connected to phenyl 

and pyran fused rings compared with other phenolics (Shahidi & 

Ambigaipalan, 2015). Hossain et al. (2008) and Shahidi and Ambigaipalan 

(2015) found kaempferol and gingerol had higher antioxidant efficiency than 

capsaicin in TEAC assay. Therefore, high TEAC values in black pepper and 

ginger are expected as compared with that in red chilli and paprika. 

For ORAC assay, red chilli had significantly higher antioxidant capacity 

(809.90±400.65 µM Trolox/g) than garlic (276.43±15.75 µM Trolox/g) (p<0.05), 

similar result was also found in the work of Ho et al. (2010). However, no 

significant difference in ORAC value was observed among onion, black 

pepper, paprika and ginger (p>0.05).  Main antioxidants in red chilli are 

mixture of capsaicin, ȕ-carotene, ascorbic acid and phenolic acids including 

sinapic acid and ferulic acid (Materska & Perucka, 2005). Carotenoids, such 

as ȕ-carotene act as antioxidant through quenching the oxidation promoters, 

such as oxygen singlet (Shahidi & Zhong, 2010). Shahidi and Ambigaipalan 
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(2015) reported that hydroxyl group on the aromatic ring is responsible for the 

antioxidant capacity of sinapic acid and ferulic acid mainly through hydrogen 

atom donation. H-donation capacity of capsaicinoids in red chilli could be 

mainly attributed to the presence of a methoxy group in ortho position to -OH 

in the phenolic ring (Materska & Perucka, 2005). Phenolic acids were 

considered as one of the main types of antioxidants, while red chilli (3.47 mg 

GAE/g dry matter) contained the highest level of TPC. As a result, high ORAC 

was expected in red chilli. Black pepper showed moderate antioxidant 

capacity in ORAC owing to the presence of piperanine and piperine, which 

could scavenge free radicals through hydrogen-donation and chelate metals 

(Kapoor et al., 2009). Results of TPC in black pepper (2.97 mg GAE/g dry 

weight) and ginger (3.41 mg GAE/g dry weight) were consistent with data 

reported by Embuscado (2015) and Ninfali et al. (2005). Although garlic 

contains organosulfur compounds with antioxidant potential, low ORAC value 

of garlic (276.43±15.75 µM Trolox/g) might be attributed to the low phenolic 

content (0.90 mg GAE/g dry matter). In Table 4-7, TPC was correlated to both 

TEAC (r=0.78, p<0.01) and ORAC (r=0.68, p<0.01), which indicated that 

phenolic compounds in spices could scavenge free radicals through both 

electron transfer and hydrogen atom transfer. Similar mechanism was also 

proposed by Ho et al. (2010) and Shahidi and Zhong (2010). 
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Table 4-3: Antioxidant capacity and principle compounds of 6 common spices    

Common name 
(Scientific name) 

Trolox equivalent 
antioxidant capacity 
(TEAC)   
(µM of Trolox/100g of 
dry weight) 

Oxygen radical 
antioxidant capacity 
(ORAC)  
(µM Trolox/g) 

Total phenolic 
content 
(TPC) 
(mg GAE/g dry 
weight) 

Principle compounds 

Garlic 
(Allium sativum) 

7.5±0.94a 276.43±15.75a 0.90±0.003a Organosulfur compounds: disulfides, 
trisulfide (Iciek, Kwiecień, & Włodek, 
2009) 

Onion 
(Allium cepa L.) 

6.55±0.90a 611.06±266.79ab 0.99±0.012a Organosulfur compounds: Thiosulfinates 
Flavonols: Quercetin (Block, 
Naganathan, Putman, & Zhao, 1992; 
Nuutila, Puupponen-Pimiä, Aarni, & 
Oksman-Caldentey, 2003) 

Red chilli 
(Capsicum 
frutescens) 

8.45±1.35a 809.90±400.65b 3.47±0.036d Capsaicin; phenolic acids; Carotenoids: 
ȕ-carotene; Ascorbic-acid (Suhaj, 2006; 
Yanishlieva, Marinova, & Pokorný, 2006) 

Paprika 
(Capsicum 
annuum) 

7.86±1.29a 625.61±240.39ab 1.18±0.011b Capsaicin; Carotenoids: lutein, ȕ-
carotene (Materska & Perucka, 2005; 
Vega-Gálvez et al., 2009) 

Black pepper 
(Piper nigrum L.) 

13.57±1.63c 703.81±125.01ab 2.97±0.019c Piperine and piperine isomers 
Flavonols: Quercetin (Suhaj, 2006) 

Ginger  
(Zingiber 
officinale Rosc.) 

11.19±1.15b 696.54±234.05ab 3.41±0.028d Phenolic: gingerol, shogaol and zingerol 
(Shan, Cai, Sun, & Corke, 2005; 
Yanishlieva et al., 2006) 

Results with different letters in the same column are significantly different at the level p<0.05. Each value is represented as mean ± SD (n = 3).
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4.4.2 Proximate composition and colour of deep fried beef and 

chicken meatballs 

Table 4-4 shows the effect of spice and meat type on physical and chemical 

properties of meatballs. Type of spice did not pose any effect on cooking loss, 

pH, fat and protein, but moisture and colour (p<0.05), while meat type 

significantly affected all the physical and chemical properties of meatballs 

(p<0.01). There was no interaction observed between type of spice and meat 

type except colour (L*, a* and b*) (p<0.01). 

Cooking loss in beef meatballs (25.59%-31.28%) was significantly higher than 

these in chicken (19.89%-23.18%) (p<0.05), while spices had no impact on 

cooking loss. Lan et al. (1995) found that cooking loss increased with lowering 

pH of muscle meat, as it might induce more protein denaturation and reduce 

the water holding capacity of meat products. Chicken had higher pH than beef, 

which could explain a low cooking loss in chicken compared with that in beef. 

Moisture content ranged from 39.43% to 46.67% in beef and 47.14% to 51.32% 

in chicken meatballs. Moisture content in chicken meatballs was comparable 

with Al-abdullah et al. (2011). They reported that chicken meatballs with 

similar ingredients that deep fried at 180oC for 4min had moisture level of 

46.9-57.20%. However, moisture content in lean beef meatballs deep fried at 

160oC for 3min was 58.8-65.1% (Galanakis, Tornberg, & Gekas, 2010), which 

was much higher than the results in this work. Higher level of water addition 

(15%) in their recipe and low cooking temperature might explain the difference. 

Low moisture level in the final products is usually corresponded to high 

cooking loss, as cooking loss is mainly composed of water and water soluble 

nutrients including proteins (Sánchez del Pulgar, Gázquez, & Ruiz-Carrascal, 

2012). 
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Table 4-4: Cooking loss, proximate composition and colour attributes of deep fried beef and chicken meatballs 

  Cooking loss 
(%) 

Moisture (%) pH Fat (%) Protein (%) L* a* b* 

Beef  Control 25.59±0.83d 41.11±3.52a 6.01±0.02a 20.32±2.82c 23.92±0.40c 33.93±1.89a 7.25±0.54a 5.29±0.99c 

 Garlic 27.34±0.46d 41.40±1.19a 5.98±0.03a 19.85±2.88c 24.11±0.36c 35.23±1.71a 6.59±0.61a 4.26±0.70c 

 Onion 27.09±0.47de 44.75±1.56a 6.00±0.03a 21.05±0.77c 24.09±0.24c 34.35±1.19ab 6.69±0.42a 2.84±0.98ab 

 Red chilli 31.28±1.05e 41.30±1.56a 6.00±0.02a 20.88±1.27c 24.09±0.23c 36.54±1.07bc 7.12±0.45a 3.41±0.57bc 

 Paprika 27.00±0.61de 43.52±2.46a 5.97±0.04a 20.45±2.41c 24.10±0.28c 34.73±1.19ab 6.61±0.10a 2.41±0.91ab 

 Black 
pepper 

27.05±0.90d 39.43±1.99a 5.98±0.03a 20.90±1.36c 24.17±0.37c 34.49±1.01ab 6.37±0.68a 1.59±0.65a 

 Ginger 27.96±1.42d 46.67±7.83ab 5.97±0.04a 19.62±1.43c 24.15±3.16c 35.03±0.81ab 6.61±0.53a 1.67±0.71a 

Chicken Control 21.97±0.98bc 51.32±4.21bc 6.24±0.02bcd 16.47±0.20b 21.06±0.41b 42.75±1.96e 1.76±0.88b 14.99±0.56f 

 Garlic 20.38±0.82ab 47.14±5.19bc 6.26±0.03cd 15.18±1.32a 20.28±0.41a 43.30±2.08e 1.64±0.99b 14.37±0.94f 

 Onion 19.89±0.98a 50.91±1.18c 6.28±0.03d 16.88±1.10ab 20.51±0.92ab 44.75±0.41e 1.60±1.05b 14.50±0.26f 

 Red chilli 23.18±0.50c 50.07±2.82bc 6.28±0.02d 16.16±1.46b 20.77±0.49ab 36.47±0.34bc 1.43±0.37b 8.91±0.27d 

 Paprika 21.16±1.34ab 49.27±2.22bc 6.24±0.02bcd 15.90±0.35a 20.43±0.38ab 39.13±1.17d 1.74±0.14b 9.83±0.71e 

 Black 
pepper 

20.36±1.19ab 50.85±1.30bc 6.20±0.03b 16.45±1.87b 20.78±0.41b 38.38±0.40cd 1.45±0.81b 8.35±0.55d 

 Ginger 20.72±0.67ab 50.51±1.25bc 6.22±0.02bc 16.26±1.11b 20.92±0.25ab 42.97±0.74e 1.53±0.45b 10.75±0.16e 

p (Spice) 0.102 <0.01 0.318 0.792 0.621 <0.01 0.578 <0.01 

p (Meat type) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

p (Interaction 
between spice and 
meat type) 

0.098 0.190 0.415 0.990 0.375 <0.01 <0.01 <0.01 

Results with different letters in the same column are significantly different at the level p<0.05.  
Each value is represented as mean ± SD (n = 3).
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pH ranged 5.97-6.01 in beef and 6.20-6.28 in chicken meatballs, respectively. 

Similarly, Oz (2014) reported pH with 5.71±0.21 in fried beef meatballs. pH of 

chicken meatballs was consistent with the data published by Bhat, Kumar, 

and Kumar (2013), who observed that deep fried chicken meatballs with 

added 0-25% chicken skin had pH 6.2 on average. The pH of meatballs was 

not affected by spices, but meat type. Zeng et al. (2017) found adding 0.5% -

1.5% red chilli powder into beef patties did not change pH in final products. 

There was no significant difference in pH between control and beef patties 

added with 0.1%-2% paprika, red pepper and black pepper powder (p>0.05) 

(Martínez et al., 2006). pH of raw muscles varies originally, where beef with 

5.53 and chicken with 6.19 (Lan et al., 1995), this might contribute to the 

variation of pH in the cooked products.  

Beef had fat level at 19.62%-21.05% and chicken had fat level at 15.18%-

16.88% (as indicated in Table 4-4), which were expected as 16% tallow and 

10% chicken fat were mixed into meatballs exogenously. Protein content 

ranged from 23.92% to 24.17% in beef and 20.43% to 21.06% in chicken. The 

protein content in beef was slightly lower than the result reported by Ulu 

(2004), as they found 25.51% protein in shallow-fried beef meatballs 

formulated with 70% beef. Chicken had higher protein content than 

commercial chicken meatballs (9.93%-15.06%). The food starch and other 

food conditioner might dilute concentration of protein in final products, and 

lead to low protein level in commercial meatball products (Huda, Shen, & 

Huey, 2009).    

Effects of spice and meat type on colour characteristics of deep fried 

meatballs including lightness (L*), redness (a*) and yellowness (b*) were 

summarized in Table 4-4. Spices affected L* and b*, while meat type affected 

all three parameters (p<0.01). The interaction between spices and meat type 

was observed in all three parameters (p<0.01).  

L* (lightness) varied from 33.93 to 36.54 in beef meatballs and 36.47 to 44.75 

in chicken meatballs. Rhee, Cho, and Pradahn (1999) also found lightness of 

cooked chicken was higher than that of beef, since chicken originally 

contained less heme pigments than beef. Adding red chilli, paprika and black 
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pepper significantly reduced L* in chicken meatballs (p<0.05). Similar results 

was also found in the work of Martínez et al. (2006). They reported adding 

0.1%-2% red pepper, paprika and black pepper powder in pork sausage 

significantly reduce L* value of the final products compared with control 

samples (p<0.05). Although brown pigments generated during cooking 

process could reduce lightness, colour of spice itself added into meatballs 

should also be taken into account. The black pepper reduced the lightness of 

meatballs significantly, which could be attributed to the light grey colour of 

black pepper. In addition, Martínez et al. (2006) proposed that spices, such as 

red pepper were often added in dry form, which could absorb free water in 

meat products, and resulted in the reduction of L* consequently. 

Redness a* ranged from 6.37 to 7.25 in beef and 1.43 to 1.76 in chicken, 

variation is directly associated with the myoglobin level in two muscles. Hazell 

(1982) reported that myoglobin content in beef (13.7-19.8 µg/g) was almost 40 

times higher than that in chicken (0.3-0.5 µg/g), thus, a higher a* in beef was 

expected. Spice had no effect on a* in meatballs. Although pigments of 

Capsicum family, such as keto-carotenoids (red xanthophylls), capsanthin and 

capsorubin contribute to red colour, there was no significant difference 

observed between spices added samples and control samples. The low 

concentration of spice powder used in the products may be not high enough 

to initiate the significance (Martínez et al., 2006). Yellowness b* of control 

chicken meatballs was comparable with data reported by Huda et al. (2009). 

Higher L* and b* were observed in chicken meatballs compared with in beef, 

which might be attributed to less myoglobin content of chicken meat (Yılmaz, 

Şimşek, & Işıklı, β00β). Similar result was also found in Mitsumoto et al. 

(2005), they reported that cooked chicken patties had greater b* (8.3) than 

beef (6.1). 

4.4.3 Effect of common spices on the formation of HCAs in deep 

fried beef and chicken meatballs 

Concentration of HCAs including IQ, MeIQ, 4, 8-DiMeIQx and PhIP in control 

and spice added beef and chicken meatballs were listed in Table 4-5. Both 

spice and meat affected each individual HCAs compound and total HCAs 
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(p<0.01). Interaction between spice and meat type was observed in IQ, MeIQ 

and PhIP, but not 4, 8-DiMeIQx and total HCAs. In control samples, the 

leading contributor to total HCAs was 4, 8-DiMeIQx in beef and MeIQ in 

chicken meatballs. Jinap et al. (2013) found similarly that MeIQ was major 

contributor to total HCAs in both cooked beef and chicken satay.
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Table 4-5: HCAs in deep fried beef and chicken meatballs added with six common spices1 

 Treatment IQ (ng/g) MeIQ (ng/g) 4,8-DiMeIQx 
(ng/g) 

PhIP (ng/g) Total (ng/g) Inhibitory 
efficiency (%) 

Beef Control 11.29±1.88e 15.38±0.75bc 19.90±4.33d 13.85±2.26c 60.42±9.07e - 

 Garlic 5.14±0.76bc 10.59±6.33abc 5.11±2.62b 7.81±1.85b 31.67±6.96c 47.58 

 Onion 4.02±0.80b 18.09±1.04bc 7.47±1.22c 4.87±0.63b 34.44±2.66c 42.99 

 Red chilli 4.17±0.22ab 11.65±4.70abc 7.43±0.75c 4.67±0.57b 27.92±3.77bc 53.79 

 Paprika 4.66±0.69b 15.64±1.90bc 8.16±0.82c 4.05±0.72b 32.46±1.28c 46.28 

 Black pepper 2.47±0.40a 10.77±1.25bc 5.31±0.16b 2.81±0.87a 21.36±0.12b 64.65 

 Ginger 2.46±0.22a 3.03±1.59a 4.72±1.50b 2.79±0.45a 12.99±1.52a 78.50 

Chicken Control 8.96±0.93e 12.61±1.17bc 16.36±1.23d 11.07±1.44c 48.99±3.26d - 

 Garlic 8.07±0.21de 15.43±0.74bc 1.61±0.13a 1.28±1.59a 26.39±2.04bc 46.13 

 Onion 8.07±0.57de 11.56±6.99abc 1.56±0.23a 1.73±0.75a 22.93±6.50bc 53.19 

 Red chilli 4.43±2.33b 9.85±4.44ab 1.51±0.55a 1.46±1.35a 17.26±8.05abc 64.77 

 Paprika 6.46±0.38cd 11.82±2.79b 1.83±0.67a 2.09±0.79a 22.20±1.27b 54.68 

 Black pepper 8.87±0.86e 1.73±0.90a 0.31±0.54a 2.82±0.22a 13.73±1.57a 71.97 

 Ginger 3.43±1.23ab 0.70±0.39a Nd 2.36±0.93a 6.49±0.63a 86.75 

p (Spice) <0.01 <0.01 <0.01 <0.01 <0.01  

p (Meat type) <0.01 <0.01 <0.01 <0.01 <0.01  
p (Interaction between spice 
and meat type) 

<0.01 0.038 0.556 <0.01 0.613  

Results with different letters in the same column are significantly different at the level p<0.05. Nd: Not detected.  Each value is represented as mean ± SD 
(n = 3); 1 MeIQx was not detected in all samples. 
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All 6 spices reduced IQ greatly in beef meatballs with maximum level of 

5.14±0.76 ng/g in spices added samples vs 11.29±1.88 ng/g in control beef 

sample (p<0.05). However, only red chilli (4.43±2.33 ng/g), paprika (6.46±0.38 

ng/g) and ginger (3.43±1.23 ng/g) were effective to inhibit IQ (8.96±0.93 ng/g 

in control chicken) in chicken meatballs (p<0.05). Similar result was found by 

Oz and Kaya (2011b) that average 88% of IQ was inhibited by 1% (w/w) 

flaked red pepper in fried beef chop. Viegas et al. (2012) also found that IQ 

was totally inhibited in pan-fried beef by marinating with beer, 2.9% (w/v) 

garlic, 0.4% (w/v) rosemary, 0.25% (w/v) thyme, 2.8% (w/v) ginger and 0.1% 

(w/v) red chilli pepper. Garlic and onion powder showed inhibition on IQ in 

beef but not in chicken. Tsai, Jenq, and Lee (1996) reported that DAD, which 

is an organosulfide compound that naturally existed in garlic and onion extract 

could inhibit the formation of IQ-mutagens in boiled pork juice. It has been 

proposed that organosulfide compounds could directly interact with glucose in 

Maillard reaction, in order to compete the substrate of forming HCAs (Shin, 

Strasburg, & Gray, 2002a). Knize and Felton (2005) determined that glucose 

content in chicken (0.47 mg/g meat wet weight) was much lower than in beef 

(7.03 mg/g meat wet weight), which might make organosulfur compounds less 

effective in chicken. MeIQ was only inhibited by ginger in beef (3.03±1.59 

ng/g), ginger (0.70±0.39 ng/g) and black pepper (1.73±0.90 ng/g) in chicken 

(p<0.05), compared with control meatballs (15.38±0.75 ng/g in beef, 

12.61±1.17 ng/g in chicken). Oz and Kaya (2011a) found that 1% black 

pepper reduced 25% MeIQ in beef meatballs fried at 200oC and 100% fried at 

225oC respectively. MeIQ was reduced by 83% in medium grilled beef using 

marinade containing torch ginger (2.5-10%, w/w) (Jinap, Iqbal, & Selvam, 

2015). The amount of MeIQ in control beef meatballs was consistent with the 

result that reported by Dong, Lee, and Shin (2011). However, they also stated 

that adding onion powder (12-16g/ 100g) could promote the formation of 

MeIQ in cooked beef patties, since reducing sugar within onion could promote 

Maillard reaction. 4, 8-DiMeIQx ranged from 4.72-19.90 ng/g in beef and nd-

16.36 ng/g in chicken. Both meat type and spices significantly affected the 

level of 4, 8-DiMeIQx in the meatballs. Spices reduced the level of 4, 8-

DiMeIQx significantly both in beef and chicken samples, but there was no 
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difference of inhibiting efficiency among 6 spices in chicken, while ginger 

completely inhibited the formation of 4, 8-DiMeIQx in cooked chicken 

meatballs. In beef samples, 4, 8-DiMeIQx in ginger, black pepper and garlic 

added samples were significantly lower than that in onion, red chilli and 

paprika, which indicated that ginger, black pepper and garlic had better 

inhibitive effect on the formation of 4, 8-DiMeIQx in beef samples. Jinap et al. 

(2016) reported that ginger (10%) showed the greatest inhibition (about 45%) 

on DiMeIQx, compared with turmeric, lemon grass and curry leaves in deep 

fried lamb with both medium and well-done degree of doneness. Strong 

inhibitory effect on 4, 8-DiMeIQx was also reported by Oz and Kaya (2011a) 

and Oz and Kaya (2011b) that black pepper could completely inhibit the 

formation of 4, 8-DiMeIQx in pan-fried beef chop (225oC for 15min) and deep 

fried beef meatballs (225oC for 15min) respectively. 

The PhIP content was same in beef (13.85 ng/g) and chicken (11.07 ng/g) 

meatballs, but adding spices reduced the level of PhIP significantly in both 

beef and chicken meatballs (p<0.05). Black pepper (2.81±0.87 ng/g) and 

ginger (2.79±0.45 ng/g) had notably the lowest amount of PhIP in beef, 

followed by paprika (4.05±0.72 ng/g), red chilli (4.67±0.57 ng/g), onion 

(4.87±0.63 ng/g) and garlic (7.81±1.85 ng/g). PhIP in control beef and chicken 

samples were higher than the result of Keşkekoğlu and Üren (β014), who 

reported 0.69ng/g PhIP in beef and 0.30ng/g in chicken meatballs. Lower 

frying temperature (150oC) in their study and different sampling procedures 

(homogenization of whole sample vs surface sampling) might explain the 

difference (Gibis, 2016; Lu, Kuhnle, & Cheng, 2017b). There was no 

difference in PhIP content for all spices added chicken meatballs, which 

indicated that all the spices had similar inhibitory effect on PhIP in chicken 

meatballs. Rounds et al. (2012) confirmed garlic, onion and paprika powder 

inhibit the development of PhIP effectively in beef patties cooked at 200oC for 

5min. Phenolic compounds, such as quercetin could act as nucleophiles and 

consequently react with active sites of phenylacetaldehyde to make the 

intermediate unavailable for further reaction with creatinine. As a result, the 

formation of PhIP was reduced (Zhu et al., 2016). All the spices demonstrated 

similar inhibitory efficiency in chicken meatballs, but varied efficiency in beef 
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meatballs on the formation of PhIP. It may indicate that involvement of iron 

and antioxidants in the formation of PhIP was quite complicated and need 

further investigation. 

The six common spices could significantly reduce total HCAs in both cooked 

beef and chicken meatballs as indicated in Table 4-5 (p<0.05). Ginger showed 

the strongest inhibitive effect on the formation of total HCAs in cooked 

meatballs, with the reduction rate 78.50% in beef and 86.75% in chicken, 

followed by black pepper with reduction of 64.65% in beef and 71.97% in 

chicken, red chilli with 53.79% in beef and 64.77% in chicken. There was no 

significant difference of total HCAs in beef and chicken meatballs with addition 

of garlic, onion and paprika (p>0.05), which indicated that these 3 spices 

presented similar inhibitory efficiency on the formation of total HCAs. Inhibitory 

efficiency of spices on formation of HCAs was associated with their 

antioxidant capacity, which has been demonstrated in rosemary, cumin, 

turmeric (Puangsombat et al., 2011), garlic and onion (Janoszka, 2010). The 

relationship between total HCAs and their antioxidant capacity was confirmed 

by the negative correlations in Table 4-7, i.e. r = -0.853 (p<0.01) between 

TEAC and total HCAs; r = -0.712 (p<0.05) between ORAC and TPC. The 

negative correlation between antioxidant capacity and total HCAs implied that 

principle compounds in these spices might inhibit the formation of HCAs 

through both ways, i.e. quenching free radicals by hydrogen atom donation 

and transferring single electron to reduce active radicals (El-Badry, 2010).  

The inhibitory efficiency of selected spices on radical scavenging depends on 

the structure and composition of phenolic compounds, i.e., the number of 

hydroxyl group attached on benzene ring, the position of hydroxyl group(s) 

and substitution pattern of hydroxyl group (El-Badry, 2010). Shahidi and 

Ambigaipalan (2015) explained that quercetin in black pepper and onion with 

high antioxidant capacity resulted from the catechol hydroxyl groups and 4-

oxo group, which could donate hydrogen and delocalize the unpaired 

electrons to prohibit the propagation of radical reaction. The highest inhibitory 

efficiency of ginger could be explained by the relatively high TEAC and ORAC 

values, while the thermal behaviour of principle antioxidants at high cooking 
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temperature could also play a key role. Gingerol was the principle antioxidant 

in ginger, which could be degraded into shogaols and zingerone under high 

cooking temperature due to the presence of a ȕ-hydroxy keto group in the 

structure. These two compounds had even higher free radical scavenging 

capacity compared with gingerol, which might lead to the increase in inhibitory 

efficiency (Bandyopadhyay, Chakraborty, & Raychaudhuri, 2008; Ho & Su, 

2016; Puengphian & Sirichote, 2008). While piperine in black pepper acted as 

free radicals and reactive oxygen species quencher also showed good 

thermal stability at roasting condition. Chacko et al. (1996) reported piperine 

could remain stable at 150oC for 15min. In addition, flavonoids in black pepper 

and onion are mainly quercetin-4’-O- monoglucoside and quercetin-3, 4’-O-

diglucoside (Lee et al., 2008). At high temperature, 80% of quercetin 

glucosides could degrade into aglycone (quercetin) with more antioxidant 

activity (Khatun et al., 2006; Rohn et al., 2007). Quercetin could reduce HCAs 

by 60% in heated chemical model system and by 50% in meat products 

(Cheng, Chen, & Wang, 2007a; Zhu et al., 2016). Capsaicin was considered 

as the principle antioxidant in red chilli and paprika (Shahidi & Ambigaipalan, 

2015; Shobana & Akhilender Naidu, 2000). Although red chilli had the highest 

TPC value, the inhibitory efficiency on HCAs was only moderate, which could 

be attributed to rapid degradation of capsaicin at high temperature (Wang et 

al., 2009). In addition, high tempratures could accelelerate the release of fat-

soluble carotenoid and other bound phenolics into cooking oil, which could 

also contribute to the loss of antioxidants (Tiwari et al., 2006). Organosulfides 

are principle antioxidants in garlic and onion mainly including diallyl disulfide 

(DAD), diallyl sulfide and dipropyl disulfide.  Shin et al. (2002a) reported that 

70-78% of total HCAs could be reduced in garlic and onion added beef patties. 

In this study, garlic and onion showed the least inhibition on HCAs compared 

with the other spices. It could be attributed to the volatility of organosulfides 

during processing. In this work, garlic powder was used and large amount of 

sulfur compounds may be lost during garlic powder processing, such as 

crushing and drying (Iciek, Kwiecień, & Włodek, β009). In addition, the bond 

strength of disulphide bond (S-S) is much weaker than that of phenyl-hydroxyl 

(-OH), the functional group of phenolics, which might make sulfide compounds 
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less stable compared with phenolic compounds at high temperature (Blanksby 

& Ellison, 2003; Franklin & Lumpkin, 1952). Therefore, garlic and onion 

achieved the least efficiency in prohibiting formation of total HCAs. 

Meat type significantly affected the formation of HCAs (p<0.05). In control 

samples, beef meatballs had significantly higher total HCAs than chicken 

ones (p<0.05). Beef meatballs added with black pepper and paprika also 

contained higher level of total HCAs than these chicken ones (p<0.05). The 

difference in precursors (type and amount) between beef and chicken could 

explain the variation (Keşkekoğlu & Üren, β014). Beef contains high level of 

nonheme iron compared with chicken, which could accelerate the oxidative 

process by reacting with hydroxyl and peroxyl radicals. Consequently the lipid 

oxidation and Maillard reaction were accelerated (Gibis, 2016). Average 

creatine content is 6.33mg/g in beef and 3.54-4.44 mg/g in chicken (Zöchling, 

Murkovic, & Pfannhauser, 2002). Being the major precursor of HCAs creatine 

could react with pyrazine and pyridine radicals produced from Strecker 

degradation to produce imidazoquinoline and imidazoquinoxaline (Vitaglione 

& Fogliano, 2004). Jinap et al. (2013) reported that roasted beef contained 

higher HCAs than in roasted chicken due to high content of creatine and low 

level of free amino acids. In addition, the high moisture content in chicken 

meatballs compared with beef might dilute the concentration of HCAs. Jinap 

et al. (2016) also reported low moisture content may be associated with high 

HCAs as well. Thus, high level of HCAs would be expected in beef meatballs. 

4.4.4 Effect of common spices on the formation of PAHs in deep 

fried beef and chicken meatballs 

In control samples, total PAHs in deep fried beef meatballs (3.87±1.44 ng/g) 

was similar with that in chicken meatballs (3.66±2.18 ng/g) (Table 4-6). Spice 

affected the formation of BaA, BaP and total PAHs, but only meat type had 

significant effect on the formation of BaA (p<0.01). Interaction between meat 

type and spice was not observed in both individual compounds and total 

PAHs (p>0.05) (Table 4-6). The level of BaA in beef meatballs (0.08-1.91 ng/g) 

was similar with commercial Swedish meatballs (2.18± 0.22 ng/g) reported by 

Lu, Kuhnle, and Cheng (2017a). BaP in chicken meatballs (0.1- 2.8 ng/g) was 
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lower than the result from El-Badry (2010), who detected 3.84 ng/g BaP in 

pan-fried chicken. Higher BaP in their study might be resulted from longer 

cooking time (10min) compared with 3min in this study. There was no 

difference in BaA between control and spice added beef samples, which 

indicated that all the spices did not have inhibitory effect on BaA in beef 

meatballs, however all the spices could inhibit the formation of BaA in chicken 

meatballs, as evidenced by a low BaA content in spice added samples 

compared with control (p<0.05). On the contrary, inhibitory effect of spices on 

BaP was observed in beef meatballs (p<0.05) but not in chicken meatballs 

(p>0.05). El-Badry (2010) reported that both spice mixture (cumin, coriander, 

black pepper and rosemary) and garlic paste could reduce BaP from 3.84 

ng/g to 0.18 ng/g in pan-fried chicken and to 1.16 ng/g in garlic paste treated 

chicken. The discrepancy in the prohibitive effect of spices in chicken may be 

caused by the big variation in control samples. EU Commission has reduced 

the limit of BaP occurring in processed meat and seafood products from  

5ng/g to 2 ng/g because of its high toxic potency (Ledesma, Rendueles, & 

Díaz, 2016). Control samples had high risk of over the limit due to the big 

variation, and adding spices in the meat products could greatly reduce this 

risk although significant reduction was not observed in spices added chicken 

samples.
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Table 4-6: PAHs in deep fried beef and chicken meatballs added with six common spices 

 Treatment BaA (ng/g) BaP (ng/g) Total (ng/g) Inhibitory 
efficiency (%) 

Beef  Control 1.91±1.37ab 1.96±0.08c 3.87±1.44bc - 

 Garlic 0.76±0.35ab 0.59±0.01b 1.35±0.34b 65.12 

 Onion 1.09±0.12a 0.60±0.04b 1.68±0.08b 56.59 

 Red chilli 0.47±0.73ab 0.91±0.23ab 1.37±0.82ab 64.60 

 Paprika 0.38±0.66ab 0.13±0.06a 0.51±0.60ab 86.82 

 Black pepper 1.34±0.06ab 0.71±0.21ab 2.05±0.17b 47.03 

 Ginger 0.08±0.04b Nd 0.08±0.04a 97.93 

Chicken Control 2.02±0.98ab 1.64±1.23abc 3.66±2.18bc - 

 Garlic Nq 0.50±0.08b 0.50±0.08a 86.11 

 Onion Nq 0.52±0.09b 0.52±0.09a 85.56 

 Red chilli Nd 0.75±0.22b 0.75±0.22ab 79.17 

 Paprika Nd 0.92±0.32b 0.92±0.32b 74.44 

 Black pepper Nd 0.11±0.05a 0.11±0.05a 96.94 

 Ginger Nd 0.10±0.06a 0.10±0.06a 97.22 

p (Spice) <0.01 <0.01 <0.01  

p (Meat type) <0.01 0.659 0.796  

p (Interaction between spice and meat type) 0.228 0.074 0.721  

Results with different letters in the same column are significantly different at the level p<0.05. Nd: Not detected, Nq: Not quantified. Each value is 
represented as mean ± SD (n = 3). 
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Table 4-7: Pearson correlation coefficient (p) between the level of total HCAs (ng/g) / PAHs (ng/g) and TBARS, protein 
carbonyl, TPC, ORAC and TEAC 

 TPC TBARS Protein carbonyl Total HCAs Total PAHs 

TBARS  - 0.279 0.644** 0.364* 

Protein carbonyl  0.279 - 0.768* 0.598* 

TEAC 0.781** -0.532** -0.736* -0.853** -0.647* 

TPC - -0.598** -0.657** -0.754* -0.507* 

ORAC 0.680** -0.343* -0.625* -0.712* -0.238 

* Correlation is significant at the level p<0.05 (2 tailed) 

** Correlation is significant at the level p=0.01 (2 tailed) 
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Among all the spices, ginger powder (97.93%) was the only spice which 

significantly inhibited the formation of total PAHs in both beef and chicken 

meatballs (p<0.05). Black pepper, garlic and onion only showed inhibitory 

effect on total PAHs in chicken meatballs (p<0.05), but not in beef ones 

(p>0.05). Red chilli and paprika did not show significant inhibitory effect on 

total PAHs neither in beef or chicken meatballs. Janoszka (2011) reported 

that adding garlic and onion could reduce 54% and 60% of total PAHs in fried 

pork chop. They proposed that antioxidants, such as disulfides and 

polyphenols, could prevent the oxidation and polymerization of hydrocarbons 

produced from decomposition of fatty acids and protein, and lead to low level 

of PAHs. In control samples, meat type did not affect BaP, BaA and total 

PAHs (p>0.05). 

The relationship between total PAHs and antioxidant capacity was also 

confirmed in Table 4-7. Total PAHs was negatively correlated with TEAC (r = -

0.647, p<0.05) and total phenolic content of spices (r = -0.507, p<0.05), which 

indicated that antioxidant capacity had negative correlation with inhibitory 

effect on total PAHs. Viegas et al. (2014) also reported that inhibitory effects 

of marinade on formation of PAHs in charcoal-grilled pork were related to their 

ability to scavenge free radicals and destroy fatty acid hydroperoxides. 

However, no relationship was observed between ORAC and total PAHs 

(p>0.05), which indicated that the inhibitory effect of antioxidants in spices on 

the formation of PAHs was mainly through electron atom transfer instead of 

hydrogen atom transfer. Janoszka (2011) mentioned that the progress of 

forming PAHs involves a series of radical reaction, which presented in the 

form of active cations. In vivo study, organosulfides (Singh & Shukla, 1998) 

and phenolic compounds in ginger powder (Nirmala, Krishna, & Polasa, 2007) 

were also reported with capacity of detoxification of BaP during metabolism. 

4.4.5 Correlation between lipid oxidation, protein oxidation and the 

formation of HCAs and PAHs 

TBARS values of cooked beef and chicken meatballs were showed in Figure 

4-1. TBARS was determined up to 0.68mg/kg in cooked beef meatballs and 

up to 0.5 mg/kg in cooked chicken meatballs. Such a degree of lipid oxidation 
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would not affect sensory quality of the meatballs, since the highest level of 

TBARS (up to 0.68 mg MDA /kg meat, which equals to 9.44 µmol/kg) in 

control beef meatballs was below the sensory limit for rancidity around 10–20 

μmol/kg meat (Racanicci et al., 2004). In cooked beef meatballs, low TBARS 

was only observed in ginger added samples (p<0.05). In chicken samples, 

both ginger and black pepper offered lower TBARS values than other spices 

(p<0.05). The reduction of TBARS could be contributed to antioxidants, 

including gingerol, shogaol and zingerone in ginger. Tanabe, Yoshida, and 

Tomita (2002) reported that dried ginger had the highest reduction (75%) of 

lipid oxidation in pork sausages compared with sage, rosemary and black 

peppercorns, while the inhibitory efficiency on lipid oxidation was correlated 

with the number of antioxidants and their activity in spices. Ginger contained 

the highest number of antioxidants (40), compared with rosemary (26), thyme 

(26), oregano (26) and allspice (25), which might explain why ginger had the 

highest inhibitory efficiency. Phenolic compounds in ginger and alkaloid 

piperine in black pepper could inhibit lipid oxidation by quenching hydroxyl 

radicals or fatty acid radicals and preventing propagation of lipid peroxidation 

in cooked meat (Brewer, 2011). They could also chelate metals (iron and 

cooper in meat) and then turn them into non-reactive forms (Shobana & 

Akhilender Naidu, 2000). 
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Figure 4-1: TBARS values in cooked beef and chicken meatballs1 

1Results with different letters are significantly different at the level p<0.05.  

 

There was no difference in TBARS value of beef and chicken meatballs 

added with red chilli and paprika (p>0.05), which indicated that both spices 

could not reduce the lipid oxidation of meat products. Low thermal stability of 

functional compounds in these spices could explain the result. Shobana and 

Naidu (2000) reported that capsaicin in red chilli and paprika degraded rapidly 

when temperature over 150oC. Addition of garlic and onion did not reduce 

TBARS in both chicken and beef meatballs (p>0.05). DAD in garlic powder 

showed ability of scavenging hydroxyl radicals, however, it had no effect on 

superoxide radicals, which is a primary and the most harmful reactive oxygen 

species in lipid oxidation (Chung, 2006; Shahidi & Zhong, 2010). In addition, 

the frying temperature (180oC) was close to the boiling point of organosulfur 

compounds, i.e. 190oC for DAD and 164-166oC for alliin. The volatilization of 

functional compounds under high temperature would make them less effective 

to prohibit the lipid oxidation (El-Badry, 2010). Overall, TBARS in cooked beef 

meatballs were higher than those in cooked chicken meatballs (p<0.05), 

which could be explained by the difference of their composition. High content 

of nonheme iron in beef could be responsible of severe lipid oxidation by 

reacting with denatured myoglobin at high temperature (Vuorela et al., 2005). 

Protein carbonyls are produced from protein oxidative degradation in meat 

products, which were used to analyse degree of protein oxidation (Figure 4-2). 

Significant effect of spices on the protein oxidation was observed (p<0.05). 

Control beef and chicken meatballs had a significantly higher level of protein 

carbonyls (2.3 nmol/mg protein in beef and 2.01 nmol/mg in chicken) than 

other 6 spices-added meatballs (p<0.05). Similar results was found by Duthie 

et al. (2013) that adding dry vegetable powder (7%, w/w), especially red 

pepper, spinach and celery could reduce protein oxidation in cooked turkey 

patties (p<0.05). The inhibition of protein oxidation could be explained by the 

antioxidants in spices, which was disclosed by the negative correlation 

between protein carbonyl level and antioxidant capacity of spices, i.e. r =-
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0.736 with TEAC and -0.625 with ORAC as indicated in Table 4-7 (p<0.05). 

The inhibitory efficiency of spices on protein oxidation is as followed: ginger> 

black pepper=red chilli> paprika= onion= garlic in cooked beef meatballs and 

ginger= onion> paprika= garlic> red chilli= black pepper in cooked chicken 

meatballs. Inconsistent inhibitory efficiency of spices in beef and chicken 

meatballs might be not only associated with the capability of antioxidants, but 

also the level of substrates in protein oxidation. For example, beef contained 

high content of iron comparing with chicken.  

 

Figure 4-2: Protein carbonyl values in cooked beef and chicken 
meatballs1 

1Results with different letters are significantly different at the level p<0.05.  

 

Lipid oxidation and protein oxidation were found associated with the 

development of HCAs and PAHs through interactions of radicals generated 

from lipid oxidation, lipid pyrolysis and Maillard reaction (Chen & Chen, 2001; 

Gibis, 2016; Lu et al., 2017b). Thus, it is necessary to investigate the 

relationship between lipid/protein oxidation and the formation of HCAs/PAHs. 

Correlation analysis in Table 4-7 disclosed significant positive correlation 

existed between total HCAs and TBARS (r =0.664, p<0.01), and between 

HCAs and protein carbonyl (r =0.768, p<0.05), which indicated that both lipid 

oxidation and protein oxidation contributed to the formation of HCAs during 
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cooking process. Aldehydes and ketones generated from peroxyl radicals 

(ROO•) in the initial step of lipid oxidation might promote the formation of 

pyrazine via reacting with amino acids (Johansson, Skog, & Jagerstad, 1993). 

At the same time, peroxyl radicals could also react with hydrogen atoms on 

protein residues to trigger protein oxidation (Falowo, Fayemi, & Muchenje, 

2014). Ganhão, Morcuende, & Estévez (2010) also suggested that lipid 

oxidation could enhance protein oxidation by reacting with heme iron that 

released from myoglobin. The incomplete combustion or pyrolysis of organic 

components including fat, protein and carbohydrates at temperature over 

200oC, especially at 500-900oC was the main pathway for developing PAHs. 

In this study, a weak correlation between total PAHs and TBARS was 

observed (r=0.364, p<0.05), low frying temperature (180oC) could be the main 

cause. 

4.5 Conclusions 

All 6 spices could reduce total HCAs formation in both beef and chicken 

meatballs, while ginger and black pepper demonstrated the highest inhibitory 

efficiency. Strong negative correlation between total HCAs and antioxidants 

capacity including TEAC and ORAC indicated that antioxidant capacity of 

spices was the key indicator of inhibitory efficiency in reducing formation of 

total HCAs. Antioxidants in the spices may be interfered with the formation of 

HCAs through both hydrogen atom donation and single electron transfer to 

reduce or quench active radicals. However, inhibition of PAHs of spices may 

be only involved with electron transfer as no correlation was observed 

between ORAC and PAHs. In beef meatballs, PAHs was only inhibited by 

ginger, but garlic, onion, black pepper and ginger were all effective in reducing 

PAHs in chicken samples. In conclusion, spices used in processed meat 

products could reduce HCAs and PAHs, and their antioxidant capacity was 

key indicator of their inhibitory efficiency. 
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 Understand the inhibitory effect of 

diallyl disulfide and gallic acid on the 

formation of heterocyclic amines and 

polycyclic aromatic hydrocarbons using meat 

model system 
 

This chapter will be submitted to ‘Food Chemistry’. 

5.1 Abstract 

Effect of diallyl disulfide (DAD) and gallic acid (GA) on the formation of 

heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) in 

deep-fried beef meatballs was examined. DAD at 0%, 0.05% and 0.1% 

combined with GA at 0%, 0.01% and 0.02% were added into beef meatballs 

and cooked at 180oC for 3min. Result showed the inhibitory effect of DAD on 

total HCAs was dose-dependent (p<0.05). GA at 0.01% also showed 

inhibitory effect on total HCAs, but increasing GA from 0.01% to 0.02% did not 

show further reduction of total HCAs (p>0.05). Regression model between 

total HCAs, DAD and GA was established, i.e. predicted total HCAs (ng/g) = 

52.30 - 22.34 GA - 21.62 DAD + 10.17 GA * DAD (Adjusted R2= 0.74, p<0.05). 

Both DAD and GA could reduce PAHs, especially BaP and BaA could be 

completely inhibited at 0.1% DAD. Regression model between total PAHs, 

DAD and GA was: predicted total PAHs (ng/g) = 2.32 - 1.21 GA - 1.29 DAD + 

0.696 GA * DAD (Adjusted R2= 0.78, p<0.05). Regression models revealed 

that DAD and GA contributed similar inhibitory efficiency on the formation of 

HCAs and PAHs, while the interaction between DAD and GA may promote 

the formation of HCAs and PAHs. Addition of DAD and GA could also reduce 

lipid and protein oxidation in cooked meatballs. 

5.2 Introduction 

Intake of red meat and processed meat products has been found associated 

with colon and rectum cancer in World Cancer Research Fund/American 

Institute for Cancer Research (WCRF/AICR) report (2007). The occurrence of 

mutagens, such as HCAs, PAHs and N-nitroso in red/processed meat 
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products might contribute to the increase health risk from intake of meat 

products, as they could induce DNA adducts and cause adenomas in colon 

(Aune et al., 2013; Gibis, 2016). HCAs are mainly formed with the presence of 

free amino acids, carbohydrates and creatine under high cooking temperature 

(Turesky, 2010). 5 aminoimidazoarenes (AIAs) compounds, including 2-

amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-methylimidazo[4,5-

f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-

amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4, 8-DiMeIQx) and 2-amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are commonly presented 

carcinogens in meat cooked at household cooking temperature (180-250oC). 

In the meantime, polycyclic aromatic hydrocarbons (PAHs) can be generated 

in meat processing through: (1) incomplete combustion of organic materials, 

such as wood or charcoal; (2) pyrolysis of carbon and hydrogen, i.e. fat and 

carbohydrate; (3) lipids dripping on heating source and adhering on food 

surface (Alomirah et al., 2011). They are generally found in barbequed, 

smoked, fried and roasted meat products. PAH4, sum of benz[a]anthracene 

(BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF) and chrysene, has 

been selected to present total PAHs in food. BaA and BaP are the most 

potent carcinogenic PAHs (Group 2A) among them (IARC, 2010).  

Diet is one of the major routes to expose carcinogenic HCAs and PAHs to 

general public. With the increase in meat consumption, it is necessary to 

reduce health risk associated with dietary HCAs and PAHs exposure from 

cooked/processed meat. Lots of researchers have worked on identifying 

pathways of HCAs and PAHs, and they believed that the formation of HCAs 

and PAHs involves a series of free radical reactions (Singh, Varshney, & 

Agarwal, 2016; Wang, Raj, & Chung, 2013). Antioxidants are well known 

radical scavengers, which have been reported to interfere with the formation 

of HCAs and PAH through quenching free radicals or blocking intermediates. 

There are 3 forms of application to get antioxidants involved in meat 

products/chemical model system: whole food, bioactive extracts and pure 

antioxidant compounds. Studies about inhibitory effect of antioxidants on 

HCAs and PAHs have been conducted extensively on phenolics and 

organosulfur compounds. The formation of polar HCAs in meat products has 
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been successfully inhibited by dried apple peel powder (Sabally et al. , 2016), 

red pepper and black pepper (Oz & Kaya, 2011a; Oz & Kaya, 2011b), spices 

such as ginger, turmeric and lemongrass (Jinap, Iqbal, & Selvam, 2015), 

grape seed and rosemary extract (Gibis & Weiss, 2012; Rounds et al., 2012), 

pomegranate seed extract (Keşkekoğlu & Üren, β014), phlorizin, 

epigallocatechin gallate (EGCG), quercetin, kaempferol, naringenin (Cheng, 

Chen, & Wang, 2007a; Zhu et al., 2016) and organosulfur, diallyl disulfide 

(DAD) and dipropyl disulfide (DPD) (Shin et al., 2002b). Fresh garlic and 

onion (Janoszka, 2011), spice and herbs marinade with lemon juice 

(Farhadian et al., 2012), beer marinades, including Pilsner and black beer 

(Viegas et al., 2014) have been reported inhibitory effect on PAHs formation 

in various cooked meat products.  

However, inconsistent results of inhibitory efficiency were obtained between 

adding bioactive extract and its corresponding principle antioxidant compound. 

Tsen, Ameri, and Smith (2006) reported that rosemary extract and its 

corresponding principle compound, rosmarinic acid had similar reduction 

efficiency on the formation of MeIQx and PhIP in roasted beef patties. 

However, Zeng et al. (2016) compared the inhibitory efficiency of chilli pepper 

and its principle compound- capsaicin on HCAs formation in roasted beef, and 

they found that compounds other than capsaicin in chilli pepper might 

enhance the formation of HCAs. The inconclusive results might be attributed 

to the complexity of antioxidant food vehicle, the synergistic effect or 

supressing effect between compounds. As single principle compounds could 

not present comprehensively inhibitory effect in the whole food matrix, it is 

useful to explore the effect of combining different types of antioxidants to have 

better understanding the effect of natural ingredients. 

Spice and herbs, such as garlic, onion, ginger and black pepper are essential 

ingredients offering unique flavour and antioxidant properties in the meat 

processing. The antioxidant capacity of spices was mainly attributed to two 

types of antioxidants, organosulfur compounds and phenolic compounds 

(Iciek, Kwiecień, & Włodek, β009; Shahidi & Ambigaipalan, β015). In order to 

study the inhibitory pattern and interaction between antioxidants on the 
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formation of carcinogenic compounds, diallyl disulfide (DAD) as the 

representative of organosulfur compounds and gallic acid (GA) as phenolic 

compounds were added in meatballs to establish the relationship. 

5.3 Materials and methods 

5.3.1 Materials 

Diallyl disulfide (>80%) and gallic acid powder were purchased from Sigma-

Aldrich (Gillingham, UK). Other chemicals used see Chapter 4.3.1. 

5.3.2 Procedures for preparing and cooking beef meatballs  

The formulation of control beef meatballs (as shown in Table 5-1) included 

640g lean beef mince, 160g tallow, 100g breadcrumbs, 10g salt, 88.8g ice 

and 1.2g methanol per kilogram. According to the spices chosen from Chapter 

4, organosulfides and phenolic acids are two of main principle compounds 

presenting antioxidant potential. DAD was chosen to represent organosulfides 

because DAD was the major compound (60%-70% of total organosulfides) 

contained in garlic and onion powder/extracts (Iciek et al., 2009). Gallic acid is 

a typical compound that expresses total phenolic content in spices/extracts, 

which could represent for phenolics.  

Concentration of DAD (0%, 0.05%, 0.1%) and GA (0%, 0.01%, 0.02%) was 

chosen with the consideration of spices/herbs application in meat products. 

DAD solutions with 0%, 0.05%, 0.1% and GA solutions with 0%, 0.01%, and 

0.02% were made in methanol. Before manufacturing meatballs, all the 

solutions were kept in the fridge (4oC). Beef mince, tallow, breadcrumbs, salt 

and ice were homogenized at 5000rpm for 5min in the Kenwood Food 

processor to reach a uniform emulsion, followed by adding DAD, GA and their 

combination solution into the mixture with a further homogenization for 2 min 

to obtain even distribution of the solution. Each meatball was weighed 14.9g-

15.1g, and shaped to ball with 9.0±0.2 diameters by hand. Meatballs were 

deep fried in a rotary deep fryer (Delonghi, Type No: F283118) with the 

setting temperatures 180oC for 3min until core temperature 71.6-73.2oC 

reached, measured by a thermometer (KM330 Industrial Thermometer, 

Comark Instruments, UK). After cooking, meatballs were placed on paper 

towel for 10min to remove excess oil on surface then final weight was 
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recorded to calculate the cooking loss. Cooking loss and the storage of 

samples, please see Chapter 4.3.2. 

5.3.3 Proximate composition, pH and Colour analysis 

5.3.3.1 Proximate composition and pH 

The procedure of analysis was the same with Chapter 2.3.3. 

5.3.3.2 Colour 

The procedure of analysis was the same with Chapter 2.3.3. 

5.3.4 Determination of HCAs 

Approximate 2mm samples surface were trimmed and blended well before 

measuring. The procedure of analysis was the same with Chapter 2.4.3. 

5.3.5 Determination of PAHs 

The procedure of analysis was the same with Chapter 2.3.5. 

5.3.6 LOD, LOQ and recovery rate of HCAs and PAHs 

The procedure of analysis was the same with Chapter 4.3.6. The average 

recoveries of these 5 HCAs according to triplicates were 58.35% for IQ, 61.10% 

for MeIQ, 53.97% for MeIQx, 57.24% for 4,8-DiMeIQx and 55.99% for PhIP. 

Results were comparable with published data (Gibis, 2007; Oz, 2011). 

Similarly, recovery rate of BaA and BaP were 54.03% and 50.87% 

respectively, which was comparable with published results of 50% - 115% 

(Farhadian et al., 2010; Janoszka, 2011).  
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Table 5-1: Formulation of raw beef meatballs (per kg) 

  Beef Mince 

(g) 

Fat (g) Bread 

Crumbs (g) 

Salt (g) Ice (g) Treatment 

T1 Control 640 160 100 10 88.8 Methanol 1.2g 

T2 GA 0.01% 640 160 100 10 89.9 GA 0.1g 

T3 GA 0.02% 640 160 100 10 89.8 GA 0.2g 

T4 DAD 0.05% 640 160 100 10 89.5 DAD 0.5g 

T7 DAD 0.1% 640 160 100 10 89 DAD 1g 

T5 DAD 

0.05%+GA0.01% 

640 160 100 10 89.4 DAD 0.5g + GA 0.1g 

T6 DAD0.05%+GA 

0.02% 

640 160 100 10 89.3 DAD 0.5g + GA 0.2g 

T8 DAD 0.1%+GA 

0.01% 

640 160 100 10 88.9 DAD 1g + GA 0.1g 

T9 DAD 0.1%+GA 

0.02% 

640 160 100 10 88.8 DAD 1g + GA 0.2g 
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5.3.7 Lipid oxidation and protein oxidation 

5.3.7.1 TBARS value (Lipid oxidation) 

The procedure of analysis was the same with Chapter 3.3.4.1. 

5.3.7.2 Protein carbonyl value (Protein oxidation) 

The procedure of analysis was the same with Chapter 3.3.4.2. 

5.3.8 Antioxidant capacity 

5.3.8.1 TEAC 

The procedure of analysis was the same with Chapter 3.3.4.3. 

5.3.8.2 ORAC 

The procedure of analysis was the same with Chapter 4.3.10.2. 

5.3.9 Statistical analysis 

Statistical significance test was carried out by using SPSS Statistics 21. The 

significant difference in chemical composition, colour characters, levels of 

HCAs and PAHs for the 9 treatments were carried out by one-way analysis of 

variance (ANOVA) at the significant level 0.05, and Duncan test was selected 

for multiple comparison if equal variances assumed, otherwise Tamhane’s Tβ 

test was used. To analyse the effect of DAD and GA and the interaction 

between factors (antioxidant compounds and their concentration) on the 

formation of HCAs and PAHs, two-way ANOVA was employed at the 

significant level 0.05. Regression model between HCAs/PAHs and GA/DAD 

was established using General Linear Model (GLM) Univariate Analysis at the 

significant level 0.05. 

5.4 Results and discussion 

5.4.1 Effect of DAD and GA on cooking loss, pH, proximate 

composition and colour of cooked meatballs 

5.4.1.1 Cooking loss, pH and proximate composition 

Table 5-2 shows the effect of DAD and GA on physical and chemical 

properties of meatballs. Addition of DAD significantly affected pH, moisture 

and protein, but not cooking loss and fat content; however GA had no effect 

on any parameters, but pH (p<0.05). There was no interaction observed 

between DAD and GA in all parameters except pH (p>0.05). 
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Cooking loss ranged from 23.16-24.79% in deep fried beef meatballs. It was 

comparable with results reported by Odiase et al. (2013), who found that deep 

fried beef meatballs at 170oC for 3 min had 27.33% weight loss. However, 

much higher cooking loss was found in Keşkekoğlu and Üren (β014), and they 

reported 52.43±1.17% cooking loss in deep fried beef meatballs for 5min with 

pomegranate seed extract (0.5% w/w). Similar result was also found by Raza 

et al. (2015) that deep fried beef for 10min had 42.73±2.14% cooking loss. 

Long frying time might partially explain the difference, as revealed in a kinetic 

model that mass loss of beef meatball increased by 50% with frying time 

increased from 3 min to 10 min (Ateba & Mittal, 1994). Effect of GA, DAD and 

interaction between DAD and GA on cooking loss was not significant (p>0.05). 

Effect of DAD on cooking loss was consistent with the work of Nurwantoro et 

al. (2011), who reported marinating beef with garlic juice containing 60-70% 

DAD did not affect cooking loss, compared with beef without marinade. Zeng 

et al. (2017) found similarly no difference of cooking loss between control and 

patties added with capsaicin (2-6 mg/100g).  

pH ranged from 5.59 to 5.75. Both DAD and GA significantly reduced pH in 

deep fried meatballs (p<0.05). Meatballs with GA addition had pH 5.60-5.62 

and with DAD had pH 5.59-5.60 respectively. There was interaction observed 

between DAD and GA (p<0.01). pH is determined by the amount of free 

hydrogen ions (H+) in system, as GA is acidic, addition of GA would increase 

H ions level, and a low pH would be expected (Leygonie, Britz, & Hoffman, 

2011). Decrease in pH was also observed in pork sausage with garlic powder 

(Phromraksa et al., 2003) and beef marinated with garlic juice (Nurwantoro et 

al., 2011), which might be attributed to acidic properties of raw garlic (pH 5.9) 

(Nurwantoro et al., 2011).  

Moisture content ranged from 41.39% to 43.81% in cooked beef meatballs. 

Generally speaking, low moisture level in the final products was associated 

with high cooking loss, because the weight loss caused by cooking mainly 

included water and water-soluble nutrients such as myofibrillar and 

sarcoplasmic proteins, collagen and salt (Sánchez del Pulgar, Gázquez, & 

Ruiz-Carrascal, 2012). Addition of 0.05% DAD significantly reduced moisture 
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from 43.81% to 41.39% (p<0.05), while effects of GA and interaction between 

DAD and GA were not significant (p>0.05). Nurwantoro et al. (2011) reported 

that marinating beef with garlic juice (pH 5.9) initiated the decrease of pH 

close to the isoelectric point of meat proteins (pH 5.1). Since lowering meat 

pH could lead meat proteins including actin and myosin to approach to 

isoelectric point, which would trigger the reduction of space between protein 

filaments. As a result, water was squeezed out of the structure and low 

moisture content was expected. Adding DAD and GA did not affect fat content 

in deep-fried meatballs, which ranged from 23.82%-25.29%. Protein content 

of cooked meatball with 0.1% DAD (23.80%) was significantly lower than in 

meatballs with 0% (24.81%) and 0.05% DAD (24.52%), while GA inclusion did 

not cause significant variation of protein content. Nieto et al. (2013) reported 

that organosulfur compounds could interact with meat protein to generate 

protein thiols and cross-link, which might contribute to the reduction of crude 

protein content in final products. 
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Table 5-2: Cooking loss, pH, proximate composition and colour parameters of deep fried beef meatballs 

  Cooking loss 

(%) 

pH Moisture (%) Fat (%) Protein (%) L* a* b* 

Effect 

of DAD 

0 23.16±2.37A 5.75±0.14B 43.81±1.51B 23.82±0.88A 24.81±0.57A 31.90±3.12A 10.30±1.08A 8.50±0.74A 

0.05% 24.67±1.15A 5.59±0.05A 41.39±1.27A 24.93±2.02A 24.52±0.57A 33.54±2.44A 9.30±1.75B 8.68±1.09A 

0.1% 24.22±1.70A 5.60±0.03A 42.05±2.24A 25.29±1.85A 23.80±0.42B 32.67±3.16A 9.13±1.09B 7.09±1.07B 

p-value  0.161 <0.05 <0.05 0.128 <0.01 0.232 <0.01 <0.01 

          

Effect 

of GA 

0 24.79±1.60a 5.72±0.17b 42.56±2.05a 24.11±1.27a 24.28±0.62a 34.63±3.09a 10.64±0.68b 8.39±0.54a 

0.01% 23.63±1.92a 5.62±0.04a 41.48±1.52a 24.96±2.07a 24.39±0.58a 32.93±2.46a 9.78±1.15b 8.21±1.85a 

0.02% 23.67±1.97a 5.60±0.06a 43.23±2.05a 24.97±1.78a 24.47±0.83a 30.55±1.46a 8.31±1.20a 7.67±0.77a 

p-value  0.241 <0.05 0.107 0.401 0.672 0.726 <0.05 0.093 

p-value (interaction 

DAD*GA) 

0.117 <0.01 0.615 0.101 0.065 <0.01 0.113 <0.01 

Results with different letters in the same column and in the same section are significantly different at the level p<0.05.  
Each value is represented as mean ± SD (n = 9) 
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5.4.1.2 Colour 

Effects of DAD and GA on colour characteristics of deep fried meatballs 

including lightness (L*), redness (a*) and yellowness (b*) were summarized in 

Table 5-2. a* and b* significantly affected by DAD, while GA only affected a* 

(p<0.05). Interactions between DAD and GA were observed in L* and b* 

(p<0.05), but not a* (p>0.05).  

Both DAD and GA could significantly reduce a* in cooked meatballs (p<0.05). 

However, there was no significant effect of interaction between DAD and GA 

on a* (p> 0.05). Redness of meat is usually related to the degree of myoglobin 

denaturation (Oz & Kotan, 2016). pH in raw meat could affect the 

performance of myoglobin under heating, and a low pH could increase the 

denaturation of myoglobin (Claus, 2007). Myoglobin in raw and cooked meat 

exists in three forms including deoxymyoglobin (purple), oxymyoglobin (red) 

and metmyoglobin (brown) (Boles & Pegg, 2010). These 3 forms of myoglobin 

are constantly interconverted, and adding DAD/GA into raw beef mince might 

break the equilibrium, and led to significant variation in cooked products. In 

this work, adding DAD and GA caused a decrease in pH, which might 

increase the denaturation of myoglobin during cooking. Therefore, a lower a* 

was expected in meatballs added with DAD or GA.  

L* was not affected by DAD or GA, but the interaction between DAD and GA 

(p<0.01). Boles and Pegg (2010) stated that pH could affect the charge on the 

proteins presented in muscle, which resulted in the alteration of space 

between the fibres of the meat. Horita et al. (2016) showed there was no 

significant difference of lightness in frankfurters sausages with the addition of 

garlic powder /commercial garlic oil, compared with control ones. Adding 

antioxidants could scavenge free radicals and suppresse the formation of 

brown pigments in Maillard reaction, however, antioxidants such as 

organosulfides could retard metmyoglobin and decrease L* (Ferna´ndez-

Lo´pez et al., 2005). Thus, the lightening effect of suprsessing Maillard 

reaction could be neutrolized by the effect of reducing metmyoglobin. 

Although L* was not significantly affected by DAD or GA, their interaction may 

modify the physical structure of meat and led to changes in light reflection and 
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absorption. b* was affected by DAD and the interaction between DAD and 

GA(p<0.01), but not GA. The variation of b* may be due to pH, oxidation 

extent and water activity (Frank, Xu, & Xia, 2014). 

5.4.2 Effect of DAD and GA on the formation of HCAs in deep fried 

beef meatballs 

HCAs content, including IQ, MeIQ, MeIQx, 4, 8-DiMeIQx and PhIP in deep 

fried meatballs with DAD and/or GA at different concentration were expressed 

ng/g in Table 5-3. DAD and GA had significant effect on individual HCAs 

compounds and total HCAs (p<0.05), expect MeIQx (p>0.05). Effect of 

interaction between DAD and GA was significant on IQ, MeIQ, 4, 8-DiMeIQx 

and total HCAs (p<0.05), but not MeIQx and PhIP. 

5.4.2.1 Effect of DAD on the formation of HCAs  

Effect of DAD on the formation of IQ, MeIQ, MeIQx, 4, 8-DiMeIQx, PhIP and 

total HCAs was significant (p<0.05). It was also observed that effect of DAD 

on total HCAs and all 5 individual HCAs compounds except MeIQx were 

dose-dependent (p<0.05). IQ in meatballs decreased from 5.98±5.52 ng/g to 

3.90±2.03 ng/g with the concentration of DAD increased to 0.05%. With the 

concentration of DAD increased to 0.1%, IQ was further reduced to 1.45±1.25 

ng/g in meatballs. Tsai, Jenq, & Lee (1996) observed similar results that 

adding 0.067mM and 0.67mM DAD into boiled pork juice could suppress IQ 

by 62.2% and 96.7% in pork juice. Similar to IQ, MeIQ decreased from 

8.51±8.71 ng/g to 1.80±0.92 ng/g in meatballs with adding DAD up to 0.1%. 

The effect of pure antioxidant compounds on the formation of MeIQ has been 

limited documented, most of studies focused on the inhibitory effect of whole 

food or extracts. MeIQx increased from 0.11±0.42 ng/g to 4.57±2.12 ng/g in 

meatballs with the addition of 0.05% DAD, but there was no difference 

observed in MeIQx with DAD at 0% and 0.1% (p>0.05). Shin, Strasburg, and 

Gray (2002c) reported that adding DAD (0.67mM) could reduce MeIQx by 82% 

in a heated chemical model system containing phenylalanine, creatine and 

glucose. However, lower concentration of DAD could somehow promote the 

formation of MeIQx in this study. Further investigation is needed to explore the 

relationship between MeIQx and DAD.   
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Does-dependent effect between reducing 4, 8-DiMeIQx and addition of DAD 

was observed in meatballs. With the increase of DAD from 0% to 0.1%, 4, 8-

DiMeIQx decreased from 7.49±8.04 ng/g to 1.08±0.63 ng/g in meatballs with 

0.1% DAD (p<0.05). Shin et al. (2002a) reported that concentration of 4, 8-

DiMeIQx decreased with the increase of DAD concentration from 0.17mM - 

1.01mM in cooked ground beef. The inhibitory effect of DAD on the formation 

of PhIP was also significant (p<0.05). Adding 0.05% DAD into meatballs could 

decrease PhIP from 6.79±4.07 ng/g to 4.54±2.89 ng/g, and with 0.1% DAD 

achieving the lowest PhIP with 1.01±0.79 ng/g (p<0.05). This was consistent 

with the results reported by Shin et al. (2002a) and Moon and Shin (2013) in 

heated chemical model system.  

Addition of DAD reduced the total HCAs significantly (p<0.05), and the 

inhibitory efficiency of DAD increased with the concentration. Total HCAs was 

prohibited from 28.58±25.14 ng/g to 21.26±7.84 ng/g and 5.69±4.09 ng/g with 

the concentration of DAD increased to 0.05% and 0.1%, respectively. The 

mechanism has been proposed that the organosulfur compounds could 

prohibit intermediates such as pyrazine and pyridine by interfering early stage 

of Maillard reaction in both chemical heated model system and meat system 

(Dong, Lee, & Shin, 2011). Organosulfur compounds could get involved with 

Maillard reactions through the following two routes: (1) trapping free radicals 

through thiol group; (2) competing with substrate in Maillard reactions by 

direct interaction with glucose (Meurillon & Engel, 2016; Shin et al., 2002c). 

Friedman and Molnar-Perl (1990) stated that organosulfur compounds could 

interfere with Maillard reaction through reactions between thiol group and 

aldehydes on reducing sugar, to generate carbinol sulphide and thioketal, 

instead of Schiff base and Amadori rearrangement to block further reaction. 

Tsai et al. (1996) explored the inhibitory mechanism of organosulfur 

compounds including DAD, on HCAs by determining the amount of Maillard 

Reaction Products (MRPs), such as pyridines, pyrazines, thiophenes and 

thiazoles, the intermediates during in the formation of HCAs. They confirmed 

that the amount of MRPs was significantly reduced with adding DAD into the 

system.



173 

 

Table 5-3: Effects of DAD (0, 0.05% and 0.1%), GA (0, 0.01% and 0.02%) and their interaction on the formation of HCAs in 
deep fried beef meatballs  

  IQ (ng/g) MeIQ (ng/g) MeIQx (ng/g) 4, 8-DiMeIQx 

(ng/g) 

PhIP 

(ng/g) 

Total 

HCAs(ng/g) 

Effect of DAD 0 5.98±5.52C 8.51±8.71C 0.11±0.42A 7.49±8.04C 6.79±4.07C 28.58±25.14C 

 0.05% 3.90±2.03B 2.76±1.38B 4.57±2.12B 4.56±1.60B 4.54±2.89B 21.26±7.84B 

 0.1% 1.45±1.25A 1.80±0.92A 1.10±0.98A 1.08±0.63A 1.01±0.79A 5.69±4.09A 

p-value  <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 

Effect of GA 0 7.07±5.00a 8.51±8.49a 2.59±2.83a 8.40±7.43b 6.89±4.90b 33.45±23.22b 

 0.01% 2.78±1.35b 2.76±1.97b 1.97±2.45a 2.32±1.80a 3.13±1.87a 12.96±6.12a 

 0.02% 1.48±1.28b 1.80±1.91b 1.11±1.75a 2.40±2.23a 2.32±1.94a 9.12±7.50a 

p-value  <0.05 <0.05 0.07 <0.05 <0.05 <0.05 

p-value (interaction 

DAD*GA) 

<0.01 <0.01 0.476 <0.01 0.31 <0.01 

Results with different letters in the same column and in the same section are significantly different at the level p<0.05.  
Each value is represented as mean ± SD (n = 9). 
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5.4.2.2 Effect of GA on the formation of HCAs 

Effect of GA on the formation of all individual and total HCAs except MeIQx 

was significant (p<0.05). Adding 0.01% GA could significantly inhibit IQ, MeIQ, 

4, 8-DiMeIQx, PhIP and total HCAs (p<0.05). However, the inhibitory 

efficiency of GA on the formation of HCAs did not increase with concentration 

from 0.01% to 0.02% (Table 5-3). 

IQ declined from 7.07±5.00 ng/g to 2.78±1.35 ng/g in meatballs with the 

supplementation of 0.01% GA (p<0.05), however, increasing GA to 0.02% 

(1.48±1.28 ng/g) had no enhancement of inhibitory efficiency. The inhibitory 

efficiency of phenolic acid including gallic acid was documented by Ahn and 

Grün (2005), who found that IQ was reduced by more than 50% in cooked 

ground beef with addition of 1.0% Activin (grape seed extract). Similar trend 

was also found in MeIQ, MeIQ decreased greatly from 8.51±8.49 ng/g to 

2.76±1.97 ng/g in meatballs when 0.01% GA was added, but no further 

reduction in MeIQ was observed when GA addition increased to 0.02%. 

Control beef meatballs fried at 225oC had MeIQ with 2.66 ng/g, but MeIQ in 

meatballs was completely inhibited when 1% black pepper containing 3.8-5.1 

mg/g GA equivalent phenolic compounds was added (Embuscado, 2015; Oz 

& Kaya, 2011a). Balogh et al. (2000) reported that adding oleoresin rosemary 

(1% and 10%) containing phenolic compounds into fried ground beef could 

achieve 47.9-87% reduction of MeIQ. The presence of GA, regardless of its 

concentration, had no significant inhibitory effect on MeIQx in meatballs. 

However, previous research showed that phenolic acids, which have similar 

chemical structure to gallic acid, such as ferulic acid and p-coumaric acid 

could inhibit 100% MeIQx in chemical heated model (Zeng et al., 2016). 

Although chemical model could be used to understand the formation of HCAs 

in principle, the complexity of real meat system including the presence of 

lipids, amino acids and metals may interfere with Maillard reaction and limit 

the effect of phenolic acids.    

Compared with samples without GA (8.40±7.43 ng/g), sample with 0.01% GA 

reduced 4, 8-DiMeIQx formation (2.32±1.80 ng/g) significantly (p<0.05), but 

increasing level of GA to 0.02% did not reduce the formation of 4, 8-DiMeIQx 
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(2.40±2.23 ng/g) further in cooked beef meatballs (p>0.05). PhIP was reduced 

from 6.89±4.90 ng/g to 3.13±1.87 ng/g and 2.32±1.94 ng/g in meatballs added 

with 0.01% and 0.02% GA (p<0.05). It has been reported that polyphenol 

could inhibit PhIP formation through directly trapping phenylacetaldehyde, a 

key intermediate product of PhIP (Cheng, 2007). They also further confirmed 

that hydroxyl group on benzene ring in polyphenol could form adducts with 

phenylacetaldehyde (Cheng et al., 2008). In addition, Moon and Shin (2013) 

reported that the presence of epigallocatechin gallate (EGCG) in chemical 

heated model resulted in high energy requirement for initiating the reaction to 

form PhIP, as a result, it might delay the formation of PhIP. In addition, they 

also found that the inhibitory efficiency of EGCG on the formation of PhIP 

increased with concentration, where 1000ppm EGCG achieved the highest 

inhibition on PhIP.  

Effect of GA on the formation of total HCAs was significant (p<0.05). Deep 

fried beef meatballs without GA had total HCAs 33.45±23.22ng/g, but 

significant reduction in total HCAs (12.96±6.12 ng/g) was achieved in 

meatballs when 0.01% GA was added (p<0.05). There was no difference in 

total HCAs between samples added with 0.01% GA and 0.02% GA (p>0.05). 

The inhibitory effect of phenolic compounds on reducing HCAs has been 

explained by free radical scavenging properties (Cheng et al., 2007a; Dong et 

al., 2011; Meurillon & Engel, 2016). Kato et al. (1996) proposed that unstable 

pyrazine cation radicals and carbon-centred radicals could be eliminated with 

the addition of phenolics in chemical heated model. 

5.4.2.3 Effect of interaction between DAD and GA on the 

formation of HCAs 

Effect of interaction between DAD and GA on the formation of IQ, MeIQ, 4, 8-

DiMeIQx and total HCAs was significant (p<0.01). Since IQ, MeIQ and 4, 8-

DiMeIQx were all affected by the interaction between DAD and GA, they could 

contribute to interactive effect on total HCAs. Figure 5-1 illustrated the 

interaction between DAD and GA on total HCAs. Without DAD, adding 0.01% 

GA could greatly reduce total HCAs (p<0.05), but the inhibitory rate of GA 

seemed remained same even concentration increased to 0.02% (p>0.05). 
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With the addition of 0.05% DAD, it did not enhance inhibitory effect of GA at 

both concentrations (0.01% and 0.02%). Total HCAs could be reduced by 

almost 50% by adding 0.05% DAD, and with the addition of 0.01% / 0.02% 

GA, it could further decrease total HCAs (p<0.05). Synergistic effect was 

observed between GA and DAD at high concentration in reducing formation of 

total HCAs. Previous studies have reported that single or mixed antioxidants 

inhibit the formation of HCAs through various routes (Oz and Cakmak, 2016). 

Since organosulfur compounds could compete with glucose in Maillard 

reaction to block the pathway of forming pyrazines and pyridines (Kato et al., 

1998), while polyphenols could act as free radical scavengers to suppress the 

reaction between pyridine radicals and creatine (Cheng et al., 2007a; 

Vitaglione & Fogliano, 2004). As a result, these two types of compounds could 

work synergistically in Maillard reaction to reduce HCAs.   

 

Figure 5-1: Interaction between DAD (0%, 0.05% and 0.1%) and GAE (0%, 
0.01% and 0.02%) on the formation of total HCAs in cooked beef 
meatballs1. 
1Results with different letters in the figure are significantly different at the level p<0.05. 
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Predicted total HCAs = 52.30 - 22.34 GA - 21.62 DAD + 10.17 GA * DAD 

(Adjusted R2= 0.74, p<0.05)  

A regression model was fitted to reveal that the contribution of DAD, GA and 

interaction between DAD and GA to the formation of total HCAs (p<0.05). 

Regression coefficients of DAD (-21.62) and GA (-22.34) were similar, which 

indicated that both DAD and GA contribute almost equally to reduce the total 

amount of HCAs. The coefficient of interaction between DAD and GA was 

positive, but in consideration of the low concentration level for both 

compounds, the interaction effect was negligible in relation to the formation of 

total HCAs. The inhibitory effect of both DAD and GA could be associated with 

antioxidant capability, which was usually measured by TEAC assay with the 

free radical scavenging mechanism of electron transfer (radical reduction) and 

ORAC assay with that of hydrogen atom transfer (radical quenching) (Shahidi 

& Ambigaipalan, 2015).  

Table 5-4 showed the antioxidant capacity of DAD solution (0, 0.05% and 0.1% 

w/w in methanol), GA solution (0, 0.01% and 0.02% w/w in methanol) and 

their combination solution. In TEAC assay, the highest TEAC values was 

found in solution with 0.02% GA inclusion (25.41-29.31 µmol of Trolox/ 100g), 

while lower TEAC values were found in solution with 0.05% DAD (1.38±0.29 

µmol of Trolox/ 100g) and 0.1% DAD (9.87±0.11 µmol of Trolox/ 100g). Low 

TEAC value of DAD (1.7 µmol of Trolox equivalent) was also found by Kim et 

al. (2006). Tabart et al. (2009) reported TEAC value of GA dissolved in 

ethanol was approximately 78 µmol of Trolox/ 100g, which was twice higher 

than the result in this work. Samples containing GA with higher TEAC 

indicated they had stronger scavenging ability through transferring electron to 

reduce radicals. Leopoldini, Marino, Russo, and Toscano (2004) stated that 

gallic acid could stabilize free radicals due to the presence of the electron-

donating OH group in the ortho position and the electron-withdrawing −COOH 

group in the para position. 
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Table 5-4: TEAC and ORAC values of DAD solution (0, 0.05% and 0.1% 
w/w in methanol), GA solution (0, 0.01% and 0.02% w/w in methanol) and 
solution of their combination 

Treatments 
TEAC (µmol of Trolox/ 
100g) 

ORAC (µmol of 
Trolox/ g) 

T2 GA 0.01% 15.28±0.57c 39.45±23.40a 

T3 GA 0.02% 26.86±0.58d 199.44±97.23bcd 

T4 DAD 0.05% 1.38±0.29a 123.67±62.99abc 

T5 DAD 0.1% 9.87±0.11b 371.01±164.76e 

T6 DAD 0.05%+ 
GA0.01% 

8.73±1.07b 108.08±36.00ab 

T7 DAD 0.05%+ 
GA 0.02% 

26.72±0.29d 186.02±106.11bcd 

T8 DAD 0.1%+ 
GA 0.01% 

25.41±0.29d 332.81±125.01de 

T9 DAD 0.1%+ 
GA 0.02% 

29.31±0.39d 287.34±83.34cde 

Results with different letters in the same column are significantly different at 
the level p<0.05.  
Each value is represented as mean ± SD (n = 3) 
 
In ORAC assay, the highest value was found in sample with 0.1% DAD 

(371.01± 164.76 µmol of Trolox/g), followed by the mixture of 0.1% DAD and 

0.01% GA (332.81±125.01 µmol of Trolox/g), while 0.01% GA showed the 

lowest ORAC with 39.45±23.40 µmol of Trolox/g. Samples containing DAD 

with high ORAC values could act as strong radical scavenger through 

hydrogen transfer. Pyrazine and pyridine radicals have been recognized as 

key intermediates for the formation of HCAs (Gibis, 2016; Vitaglione & 

Fogliano, 2004). According to Adams et al. (2001), the interchange between 

thiol and disulfide group could take place in meat system. The transformation 

of DAD into thiol could provide hydrogen atom to the unstable pyrazine cation 

radical and turn radical into non-radical species to prohibit the formation of 

HCAs (Kikugawa, 1999).  

The TEAC and ORAC values of the two compounds indicated that GA might 

mainly scavenge free radicals through electron transfer, while DAD might 

mainly act as hydrogen donor to reduce the radicals during formation of HCAs. 

However, in order to have a comprehensive profile of antioxidant capacity of 
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these antioxidants, assays with various free radicals, such as OO-, OH∙, H2O2 

and ONOO- are required to specify antioxidant capacity of these compounds. 

5.4.3 Effect of DAD and GA on the formation of PAHs in deep fried 

beef meatballs 

Concentration of PAHs including BaA and BaP in deep fried meatballs added 

with GA and DAD were listed in Table 5-5. The dominating compound of 

PAHs was BaA in most samples. Temperature plays a major role on the 

formation of PAHs, the higher cooking temperature (>300 oC), the more 

aromatic rings could be generated within PAHs structure (Kub́tov́ et al., 

2011). In this work, a relatively low frying temperature at 180oC was used for 

cooking beef meatballs, therefore, more BaA with 4 fused rings, instead of 

BaP with 5 rings was detected in the samples. The EU Commission 

Regulation EC No 835/2011 states that the maximum allowance for BaP in 

cooked and smoked meat is 2 µg/kg in European countries. The highest level 

of BaP was 0.35±0.46 ng/g in this study, which was within the safety range. 

The sum of BaA and BaP in all samples was relatively low (0.11-1.19 ng/g), 

compared with Farhadian, Jinap, Abas, and Sakar (2010) and Farhadian et al. 

(2012), who reported that 4.51-4.46 ng/g BaP in grilled beef. The variation 

might be explained by the difference in cooking time and cooking method 

between the two studies. Addition of DAD, GA and interaction between GA 

and DAD affected the formation of BaA, BaP and total PAHs (p<0.05). 

5.4.3.1 Effect of DAD on the formation of PAHs 

DAD could significantly reduce both BaP and BaA, and the reduction 

increased with the concentration (p<0.05). Adding 0.05% DAD could reduce 

BaP from 0.34±0.47 ng/g in control samples to 0.13±0.11 ng/g, while no BaP 

was detected in samples with 0.1% DAD. Similarly, adding 0.05% DAD could 

reduce BaA from 0.85±0.95 ng/g in control samples to 0.24±0.06 ng/g, while 

adding 0.1% DAD could completely inhibit formation of BaA in meatball. Total 

PAHs could be inhibited from 1.19±1.33 ng/g to 0.38±0.16 ng/g in cooked 

meatballs with 0.05% DAD, and totally reduced by adding 0.1% DAD (p<0.05). 

Impact of pure compounds on the formation of PAHs in cooked meat has not 

been well documented. Previous researches have focused on the effect of 
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marinades on forming PAHs in cooked meat, and results were comparable to 

this study. El-Badry (2010) found that BaP was reduced from 3.84ng/g to 1.56 

ng/g in grilled chicken when chicken was pre-treated using garlic paste, which 

was rich of DAD. Similarly, Janoszka (2011) reported that garlic (15%) could 

significantly reduce BaA by 50% and BaP by 71% in pan-fried pork collar. 

PAHs with five or more rings, such as BaP, can be formed via the 

intramolecular cyclization (Kub́tov́ et al., 2011). During deep frying, alkenyl 

radicals containing double bond and unpaired electron can be formed in 

pyrolysis. The cyclization could be achieved by the movement of unpaired 

electron via hydrogen atom abstraction along the carbon chain with increasing 

temperature (Kub́tov́ et al., 2011). In Table 5-4, high ORAC value of DAD 

inclusion mixture showed the strong hydrogen transferring ability of DAD at 

high concentration. The cyclization in forming PAHs might be interfered by 

DAD through hydrogen donation. In addition, DAD could also enhance the 

decomposition of fatty acids hydroperoxides, in order to terminate the 

propagation of free radicals (Shah, Bosco, & Mir, 2014). 
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Table 5-5: Effects of DAD (0, 0.05% and 0.1%), GA (0, 0.01% and 0.02%) and their interaction on the formation of PAHs in 
deep fried beef meatballs 

  BaP (ng/g) BaA (ng/g) Total PAHs (ng/g) 

Effect of DAD 0 0.34±0.47B 0.85±0.95B 1.19±1.33B 

 0.05% 0.13±0.11A 0.24±0.06A 0.38±0.16A 

 0.1% Nd Nd Nd 

p-value  <0.05 <0.05 <0.05 

Effect of GA 0 0.35±0.46b 0.78±1.00b 1.13±1.37c 

 0.01% 0.12±0.10a 0.20±0.16a 0.32±0.25b 

 0.02% Nd 0.11±0.09a 0.11±0.09a 

p-value  <0.05 <0.05 <0.05 

Interaction 

(DAD*GA) 

 <0.01 <0.01 <0.01 

Results with different letters in the same column and in the same section are significantly different at the level p<0.05.  
Each value is represented as mean ± SD (n = 9). 
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5.4.3.2 Effect of GA on the formation of PAHs  

The efficiency of GA was comparable with DAD on reduction of BaP (Table 5-

5). BaP was decreased from 0.35±0.46ng/g in control to 0.12±0.10 ng/g in 

meatballs with 0.01% GA and it was inhibited completely in samples with 0.02% 

GA. Total PAHs decreased significantly with the increasing concentration of 

GA in deep fried meatballs (p<0.05). Food extracts contain polyphenols, such 

as tea extract and spice powder, which equivalent to 44-228 mg GA/g was 

found effective reduction of carcinogenic PAHs in cooked meat (Lianh et al., 

2015; Salah et al., 1995). Park et al. (2017) applied green tea and yerba mate 

tea marinade (0.25-1.0%) on grilled pork belly, and found BaP was reduced 

by 12.9% and 31.5%. BaA could be inhibited from 0.78±1.00 ng/g to 

0.20±0.16 ng/g in meatballs with 0.01% GA. Black beer, rich in 

prenylflavonoids, has also been reported to reduce BaA and BaP in grilled 

pork (Viegas et al., 2014). They also found a weak correlation between radical 

scavenging ability of beers and the reduction of total PAHs. However, 

increasing GA from 0.01% to 0.02% did not significantly reduce BaA (p>0.05). 

Similar result was found in Min, Patra, and Shin (2017), they reported that 

BaA and BaP were reduced by adding 100µg/kg EGCG into heated meat 

model system, and no further reduction with EGCG increasing from 200 to 

300µg/kg.  

Lipid/fat pyrolysis could contribute to the formation of PAHs through their 

degradation products with heat (Chung et al., 2011; Purcaro, Moret, & Conte, 

2013). With the presence of heat, oleate in frying medium and beef tallow can 

be degraded into short-chain alkanes, alkenes, aldehydes, ketones and 

several hydroperoxides. They could be broken down to form cyclic 

compounds, such as cyclohexene, then further oxidized to form benzene to 

provide the skeleton structure of PAHs, and/or in turn reacts with C4 

compound for propagation of fused rings (Chen & Chen, 2001; Kub́tov́ et al., 

2011; Marikkar et al., 2002). Shah et al. (2014) demonstrated the protective 

effect of polyphenol compounds on oxidation in meat products through free 

radical scavenging, which might prevent severe fatty acids oxidation during 

cooking, in order to prevent cyclization of degradation products and 

accumulation of more fused rings of PAHs. 
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5.4.3.3 Effect of interaction between DAD and GA on the 

formation of PAHs 

Effect of interaction between DAD and GA on the formation of BaA, BaP and 

total PAHs was significant (p<0.01) (Table 5-5). Addition of 0.01% GA 

significantly inhibited total PAHs compared with control meatballs (with no 

DAD) (p<0.05), while addition of 0.05% DAD did not enhance inhibition on 

total PAHs. Total PAHs could be inhibited completely by adding 0.1% DAD, 

and combination with the mixture of GA had no further effect on reducing 

PAHs. There was no synergistic effect observed between DAD and GA on the 

inhibition of PAHs, although enhancing effect between spice and garlic was 

mentioned by El-Badry (2010). They found that spices (cumin, black pepper 

and coriander) and garlic paste could inhibit 95% and 70% BaP respectively, 

and the mixture of them could completely inhibit BaP in grilled chicken.  

 

Figure 5-2: Interaction between DAD (0%, 0.05% and 0.1%) and GAE (0%, 
0.01% and 0.02%) on the formation of total PAHs in cooked beef 
meatballs1. 
1Results with different letters in the figure are significantly different at the level p<0.05. 
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presented below. Similar to the regression model of HCAs, both DAD and GA 

played equal role on reducing total PAHs, while interaction between DAD and 

GA was positively contributed to total PAHs. 

Predicted total PAHs = 2.32 – 1.21 GA – 1.29 DAD + 0.696 GA * DAD 

(Adjusted R2= 0.78, p<0.05) 

The pathway of forming PAHs has been proposed that small organic 

compounds including amino acids, such as aspartic acid and lipids are 

partially broken down into smaller unstable fragments under heat, which could 

recombine to form PAHs through free radicals (Sharma, Chan, & Hajaligol, 

2006). The formation of PAHs can be initiated via fat/oil and/or hydrocarbon 

incomplete combustion, followed by intramolecular cyclization path, where 

cyclopentanes were formed primarily by folding of alkenyl radicals, such as 

monoalkyl- and ortho-methyl-substituted six-membered monocyclic radicals 

with terminal double bonds (e.g., RHβ∙-C-C-C=C) through endo cyclization. 

Phenolics could reduce PAHs through prohibiting lipids degradation and 

eliminating fatty acids hydroperoxides (Min et al., 2017), and organosulfur 

might prevent cyclization by stabilizing free radicals (Janoszka, 2011). Thus, 

organosulfur and polyphenol might block or interfere with the pathway of 

forming PAHs by different approaches. 

5.4.4 Effect of DAD and GA on lipid oxidation and protein oxidation 

in cooked meatballs 

Table 5-6 showed TBARS and protein carbonyl values of control cooked 

meatballs and meatballs added with DAD and GA. Adding DAD, GA and 

interaction between DAD and GA could significantly affect lipid oxidation and 

protein oxidation in deep fried beef meatballs (p<0.05). 
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Table 5-6: Effects of DAD (0, 0.05% and 0.1%), GA (0, 0.01% and 0.02%) 
and their combination on lipid oxidation (TBARS) and protein oxidation 
(protein carbonyl) in deep fried beef meatballs.  

  TBARS  

(mg MDA/kg) 

Protein carbonyl 

(nmol/mg protein) 

Effect of DAD 0 0.61±0.15B 5.26±0.81B 

 0.05% 0.66±0.05A 1.43±0.17A 

 0.1% 0.58±0.04B 0.92±0.34A 

p-value  <0.05 <0.05 

Effect of GA 0 0.71±0.09c 3.00±2.49b 

 0.01% 0.62±0.03b 2.35±1.77a 

 0.02% 0.53±0.08a 2.25±1.94a 

p-value  <0.05 <0.05 

Interaction (DAD*GA) <0.01 <0.01 

Results with different letters in the same column and in the same section are 
significantly different at the level p<0.05.  
Each value is represented as mean ± SD (n = 9). 
 
It was noticed that 0.05% DAD could significantly increase TBARS value from 

0.61±0.15 mg MDA/kg in samples without DAD to 0.66±0.05 mg MDA/kg, 

while TBARS decreased to 0.58±0.04 mg MDA/kg when concentration of DAD 

increased to 0.1%. Yin and Cheng (2003) found out that adding 5-20µM DAD 

showed moderate inhibitory efficiency on lipid oxidation in raw ground beef. 

The antioxidant effect of organosulfur compounds has been proved in vivo 

through the activation and modification of several enzymes, such as 3-

hydroxy-3-methylglutaryl- CoA reductase, glutathione-s-transferase and 

catalase (Borek, 2001). However, GA showed superior retardation on lipid 

oxidation in deep fried meatballs, compared with DAD. With the increasing GA 

from 0.01% to 0.02%, TBARS was significantly reduced from 0.71±0.09 mg 

MDA/kg (no GA) to 0.62±0.03 mg MDA/kg and 0.53±0.08 mg MDA/kg, 

respectively. GA has showed inhibitory effect on TBARS in vitro metal-

catalysed oxidation of myofibrillar proteins, which was owing to its hydroxyl 

radical scavenging properties (Utrera & Estévez, 2013). TEAC values of GA 

and mixture contained GA in Table 5-4 could provide its strong antioxidant 

capacity. There was significant effect of interaction between DAD and GA on 
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lipid oxidation (p<0.01). With the presence of divalent metal ions or reducing 

compounds, GA could be formed into gallic phenoxyl radical through an 

autoxidation process of GA. The gallic phenoxyl radicals could interact and 

neutralise other radicals such as ∙OH (Utrera & Estévez, β01γ). The addition 

of DAD into GA might provide and enhance the reducing environment for GA, 

which could partially explain their interaction. Yang et al. (2011) reported that 

adding mixture of 0.1% garlic and 0.5% onion into raw beef could significantly 

reduce TBARS during storage, compared with 0.1% garlic or 0.5% onion 

addition in beef. From the aspect of sensory, cooked meatballs generated 

moderate garlic aroma, which was mainly attributed to strong intensity of DAD 

(gallic acid is odourless). Yang et al. (2011) reported that addition of garlic 

(0.1%) to ground beef produced a garlic aroma and flavour after cooking, it 

could also mask warmed over flavour.  

The inhibitory effect of DAD and GA on protein oxidation in cooked meatballs 

was also showed in Table 5-6. Addition of both DAD and GA could 

significantly reduce protein oxidation, while increasing concentration of both 

antioxidants did not further reduce protein oxidation in cooked meatballs 

(p>0.05). The effect of interaction between DAD and GA on protein oxidation 

was significant (p<0.01). Protein oxidation can be initiated by transition metals, 

myoglobin and oxidized lipids, especially protein carbonylation (Jia et al., 

2012). Iron released from myoglobin during the cooking could react with 

proteins and act as an oxidizing compound. Yin, Hwang, and Chan (2002) 

found organosulfur compounds including DAD had strong iron chelating ability, 

which could contribute to preventing protein oxidation. They also reported that 

antioxidant activity of DAD was enhanced at lower pH. On the other hand, 

addition of DAD could cause thiol/disulfides interchange in meat, and 

generate protein thiol and protein-protein cross-links (Singh & Whitesides, 

1993). These protein thiols and cross links could be readily oxidized and lead 

to severe protein oxidation (Nieto et al., 2013). Therefore, further validation 

between organosulfides and protein oxidation in meat should be conducted in 

the future. Although limited literature has focused on pure antioxidant 

compounds on protein oxidation, effect of plant extracts that contain diverse 

types of antioxidants on protein oxidation in meat products has been well 
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explored, including strawberry and blackberry extract (Ganhão, Morcuende, & 

Estévez, 2010), black currant extract (Jia et al., 2012) and white grape extract 

(Jongberg, Skov, Tørngren, Skibsted, & Lund, 2011). Researchers proposed 

that phenolic compounds inhibited myofibrillar protein oxidation via metal 

chelating and radical scavenging. They could also protect proteins from 

attracting free radicals by covalent and non-covalent interactions with proteins 

(Jia et al., 2012).  

5.5 Conclusions 

Both DAD and GA could reduce significantly total HCAs and PAHs in deep 

fried beef meatballs, which could be attributed to their antioxidant capacities 

measured in TEAC and ORAC assay. Regression models revealed that DAD 

and GA had similar inhibitory efficiency on the formation of HCAs and PAHs. 

Synergistic effect of DAD and GA was observed on the formation of HCAs, 

but not on PAHs. Addition of DAD and GA could also prohibit lipid oxidation 

and protein oxidation in cooked meatballs, which could potentially help to 

extend shelf life of meatballs. 
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 General discussion and future work 

6.1 General discussion 

Previous literature contributes to the understanding of HCAs and PAHs 

formation, characterization and quantification in meat. However, some 

aspects are still inconclusive due to the complexity in reaction system, such 

as formation of precursors and inconsistent results for causal relationship 

between dietary intake of meat and cancer risk (Ferguson, 2010; Gibis, 2016). 

In order to have a comprehensive evaluation on health risk associated with 

meat intake, it is necessary to determine the occurrence of HCAs and PAHs in 

a wide range of meat products for precise assessment about the health risk. 

Estimation of dietary intake of HCAs and PAHs in worldwide has been 

reported in US (Keating & Bogen, 2001; Layton et al., 1995), Switzerland 

(Zimmerli et al., 2001), Sweden (Olsson & Pickova, 2005), Spain (Busquets et 

al., 2004), Singapore (Salmon et al., 2006), Malaysia (Jahurul et al., 2010) 

and Japan (Kobayashi et al., 2002). However, few researches have focused 

on the occurrence of HCAs and PAHs in RTE meat products on UK’s market. 

Therefore, the level of HCAs and PAHs in cooked meat and fish products in 

UK were determined (Chapter 2), and risk assessment of dietary exposure to 

HCAs and PAHs for UK consumers were also carried out based on diet 

survey.  

Results from market research (Chapter 2) showed that most RTE meat 

products would not pose any health risk. However, increasing intake of 

chargrilled chicken and ham could increase risk of colorectal adenoma and 

breast cancer because the level of IQ and MeIQ in these meat products were 

much higher than the safety thresholds for cancer risk according to 

epidemiological studies. From a societal perspective, it is important to prevent 

cancer occurrence rather than receive treatments, as the low health care cost 

would be beneficial to individuals and government (Patel, 2015). Thus, it is 

necessary to explore dietary prevention strategies in meat processing to 

reduce the exposure of HCAs and PAHs. 
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Altering cooking practice has been popular strategy to reduce the formation of 

HCAs and PAHs for meat processors and researchers, but effects of meat 

composition and ingredients on the formation of the carcinogens are not 

consistent, especially food ingredients have evolved greatly in past decades. 

In Chapter 3, impact of fat replacement with vegetable oil on formation of 

HCAs and PAHs was evaluated. Result showed that replacing animal fat with 

vegetable oils in the formulation could not only improve fatty acids profile in 

the final meat products, but also help to inhibit the formation of HCAs and 

PAHs in meat products. The inhibitory effect of vegetable oil was attributed to 

antioxidants, such as tocopherols and polyphenols within the oils. Different 

type of antioxidants might have different function in prohibiting the formation 

of HCAs. Olive oil and sunflower oil could inhibit formation of 

imidazoquinolines, while grape seed oil could completely inhibit 

imidazoquinoxalines.  

Spices are common ingredients used in meat products. Research showed 

spices had great potential on inhibiting the formation of carcinogen. Inhibitory 

effect of 6 common spices including garlic, onion, paprika, red chilli, black 

pepper and ginger powder on HCAs and PAHs formation in different meat 

system was assessed in Chapter 4. Results showed that ginger and black 

pepper containing high level of phenolic had the highest inhibitory efficiency 

on HCAs, whereas garlic and onion with organosulfur compounds had the 

lowest efficiency. To further understand the inhibitory efficiency of the two 

types of antioxidants on carcinogens formation and related mechanisms, 

gallic acid presented as principle compound for phenolics and diallyl disulfide 

for organosulfides were applied to meat model system. Results indicated that 

gallic acid (0-0.02%) had same inhibitory efficiency with diallyl disulfide (0-

0.1%) on the formation of both HCAs and PAHs. Synergistic effect between 

diallyl disulfide and gallic acid was observed on reducing HCAs, but not on 

PAHs. 

In general, low level of HCAs and PAHs are detected in meat products 

prepared by boiling, steaming, or microwaving. However, frying, 

grilling/barbecuing and oven roasting at high temperature with long cooking 
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time usually generate high level of HCAs and PAHs in cooked meat products, 

which might lead to high cancer risk (Chung et al., 2011; El-Badry, 2010; 

Farhadian et al., 2010). Effect of pan-frying and grilling/barbequing on 

generating HCAs and PAHs has been studies previously (Alomirah et al., 

2011; Gibis, Kruwinnus, & Weiss, 2015; Gibis & Weiss, 2015; Viegas et al., 

2014), while limited attention has been given on oven roasted and deep-fried 

meat products. Therefore, this project focused on meat products prepared by 

oven roasting and deep-frying. Products and cooking process in Chapter 3, 4 

and 5 followed home cooking recipes and instructions (Rodríguez-Carpena, 

Morcuende, & Estévez, 2012; Zeng et al., 2014). The amount of HCAs and 

PAHs were determined respectively up to 141 ng/g and 3.8 ng/g in roasted 

pork patties (Chapter 3), up to 60 ng/g and 3.9 ng/g in deep-fried beef 

meatballs (Chapter 4 & 5) and up to 50 ng/g and 3.7 ng/g in deep-fried 

chicken meatballs (Chapter 4). Total HCAs in above samples was generally 

higher than previous results (Iwasaki et al., 2010; Oz & Kaya, 2011a; Zeng et 

al., 2017), which could be attributed to the sampling procedures (detailed 

explanation in Chapter 3). Among all the observed HCAs, 4, 8-DiMeIQx was 

frequently detected in almost all pork, beef and chicken samples in Chapter 3, 

4 & 5, followed by IQ, MeIQx and PhIP. In literature, PhIP and MeIQx are the 

compounds mostly studied in cooked beef, fish and poultry (Kobayashi et al., 

2002; Layton et al., 1995; Oz & Kaya, 2011a). However, some other 

aminoimidazoarenes, such as 2-Amino-1,6-dimethyl-furo[3,2-e]imidazo[4,5-

b]pyridine (IFP), 2-Amino-1,5,6-trimethylimidazo[4,5-b]pyridine (1,5,6 TMIP) 

and 2-Amino-3,5,6-trimethylimidazo[4,5-b]pyridine (3,5,6 TMIP) have been 

paid limited attention (Gibis, 2016). Therefore, it is recommended to consider 

the occurrence of these HCAs in order to have a more inclusive HCAs profile 

in meat products. Total PAHs were lower than those in grilled/barbequed 

meat products in literature (Alomirah et al., 2011; Chung et al., 2011; 

Farhadian et al., 2010; Purcaro, Moret, & Conte, 2013; Wongmaneepratip & 

Vangnai, 2017). The difference in sampling procedures, analytical methods, 

and cooking conditions for maximizing the formation of HCAs and PAHs 

without considering consumer acceptance might contribute to the variation 

(Oz and Kaya, 2010; Shabbir et al., 2015). The obtained data could provide 
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information about occurrence of HCAs and PAHs with a wider range of meat 

products cooked by domestic procedures. 

Impact of antioxidants on the formation of PAHs in cooked meat has been 

investigated by few researchers including Farhadian et al. (2012), El-Badry 

(2010), Janoszka (2011) and Viegas et al. (2014). They proposed that the 

reduction of PAHs might be associated with free radical scavenging, as the 

formation of PAHs involves with forming free radicals. Correlation analysis 

between antioxidants and PAHs was conducted in Chapter 3 and 4 to further 

explore the inhibitory mechanism. The correlation between TEAC of oils and 

PAHs was not observed in Chapter 3 (r=0.301, p>0.05). However, significant 

negative correlation between TEAC of spices and PAHs was disclosed in 

Chapter 4 (r= -0.647, p<0.05). The discrepancy might be explained by the 

antioxidant capacity between oil and spices. Oils had TEAC level up to 0.75 

µmol Trolox/100g, while spices had much higher TEAC with range of 6.55-

13.57 µmol Trolox/100g. The high TEAC level in spices was strong enough to 

show the inhibitory efficiency on the formation of PAHs through scavenging 

free radicals, whereas TEAC of oils might be too low to reveal the potential 

correlation.  

Several studies have mentioned that lipid oxidation could interact with protein 

oxidation and Maillard reaction (Wongmaneepratip & Vangnai, 2017; Zamora 

& Hidalgo, 2007). However, limited papers have reported the association 

between lipid/protein oxidation and the formation of HCAs and PAHs during 

cooking. Only Zamora, Alcón, and Hidalgo (2012) reported that lipid oxidation 

was significantly associated with the formation of PhIP. In this project, both 

lipid oxidation and protein oxidation were found interacted with the formation 

of HCAs, while lipid oxidation played a predominant role. However, 

inconsistent correlation between lipid oxidation and formation of PAHs was 

observed in different meat products from Chapter 3 and Chapter 4. In Chapter 

3 (fat replacement), more interfering factors including fatty acid profile, 

antioxidants in fat replaced meat system may affect the association between 

PAHs and lipid oxidation (Wongmaneepratip & Vangnai, 2017; Min, Patra, & 

Shin, 2017). Oils/lipids with high linoleic acid (C18:2) content could promote 



198 

 

the formation of PAHs and cause severe lipid oxidation, compared with those 

with high oleic acid (C18:1) content (Chen & Chen, 2001). In addition, heating 

stability of tocopherols was stronger in lipids/oils with high linoleic acid content 

than with oleic acid during prolonged cooking time (Rossi, Alamprese, & Ratti, 

2007), which could prevent lipid oxidation at different extent. Thus, unclear 

correlation was observed owing to the complexity of the whole system. 

Therefore, the complicated effect caused by promoting factor and inhibitory 

factor would lead to null correlation observed between lipid oxidation and 

PHAs in Chapter 3. 

To validate the regression model of predicting HCAs and PAHs established in 

Chapter 5, data of garlic and ginger obtained in Chapter 4 were used to verify 

the regression equations (see below).  

Predicted total HCAs (ng/g) = 52.30 - 22.34 GA - 21.62 DAD + 10.17 GA * 

DAD 

Predicted total PAHs (ng/g) = 2.32 - 1.21 GA - 1.29 DAD + 0.696 GA * DAD 

For example, the average amount of DAD was 390 µg/g and phenolic content 

was 0.9mg/g GA equivalent in garlic (Yu, Wu, & Chen, 1989). Thus, 5g garlic 

powder would contain 1950µg DAD and 4.5mg GA equivalent phenolic. 

According to the regression model, predicted HCAs and PAHs were 40.47 

ng/g and 1.68ng/g respectively (calculation details see Appendix 23), which 

slightly higher than the results determined in Chapter 4 (31.67 ±6.96 ng/g 

HCAs and 1.35 ±0.34 ng/g PAHs in garlic beef meatballs). Similarly ginger 

powder contained 3.4mg/g GA equivalent phenolic (results showed in Chapter 

4), and 5g ginger powder would contain 17mg GA equivalent phenolic. 

Results of predicted HCAs and PAHs were 14.32 ng/g and 0.42 ng/g, which 

was comparable with the results in Chapter 4 (12.99±1.52 ng/g HCAs and 

0.08±0.04 ng/g PAHs). This verification showed that the selected principle 

compounds DAD and GA could be able to present the major antioxidants in 

the whole food matrix on inhibiting HCAs and PAHs in cooked meat products, 

while there might be other antioxidants or synergistic effect between 

antioxidants also contributed to minor variation. 
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6.2 Limitation of studies and future work 

Dietary intake of HCAs and PAHs from selected RTE meat products from 

market were estimated, however, RTE meat could not only be comsumed 

alone, but also be in prepared dishes. Therefore, estimation of carcinogens 

intake should be more comprehensive, since dietary pattern of the general 

public was much more complex according to the NDNS survey. In addition, 

takeaway dishes from shops or restaurants are also highly consumed from the 

survey and few studies have focused on these products in the UK. Thus, it is 

useful to assess the occurrence of HCAs and PAHs from these meals as well 

in order to assess the exposure of HCAs and PAHs more accurately and 

further clarify the relationship between meat intake and related cancer risk. 

Correlation analysis in Chapter 3 showed that antioxidant capacity of oils and 

formation of HCAs was negatively related (p<0.05). However, the association 

(indicated in Figure 6-1) between antioxidant capacity (TEAC) of 3 oils and 

total HCAs was more complicated than a negative relation, further exploration 

is needed to consolidate whether a linear or non-linear relationship between 

them. Due to the difference in fatty acids profile and antioxidants level in oils, 

it would be interesting to explore the effect of a mixture of oils with optimum 

fatty acids and antioxidants profile on the formation of HCAs and PAHs in 

meat products. 

 

Figure 6-1: Scatter plot between total HCAs and antioxidant capacity of 
the 3 vegetable oils including sunflower oil, olive oil and grape seed oil. 
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Results in Chapter 4 reported that addition of spices could inhibit the 

formation of HCAs and PAHs in cooked meat. Although the level of spices 

added in meat was carefully selected according to commercial/home recipes, 

sensory evaluation should be conducted to evaluate the impact of spices on 

eating quality of the final products. In practice, application of antioxidants into 

meat products can be through (1) blending with raw meat (Puangsombat, 

Jirapakkul, & Smith, 2011), (2) coating/spraying on the surface of raw meat 

(Balogh et al., 2000; Sabally et al., 2016), (3) encapsulating with bioactive 

layers (Lorenzo et al., 2016). However, the approach with the most 

antioxidant potential and high consumer acceptance has yet been confirmed.  

Results in Chapter 5 showed that the inhibitory efficiency of gallic acid on the 

formation of HCAs remained same when concentration increased from 0.01%- 

0.02%. Further verification in chemical model system with wider range of 

gradient of antioxidants is useful to identify their inhibitory pathway 

theoretically. To explore the effect of gallic acid and diallyl disulfide on the 

formation of PhIP in chemical model system, it would be useful to quantify 

phenylacetaldehyde, as it is the key intermediate in the formation of PhIP. 

Pyrazine cation radicals and pyridine cation radicals could react with creatine 

to form imidazoquinoline and imidazoquinoxaline, which could be measured 

by Electron spin resonance. The determination of precursor and intermediate 

in chemical model system would help validate the inhibitory mechanism and 

understand the pathway of forming HCAs and PAHs during meat processing. 
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 Main conclusions 

This project has investigated the occurrence of carcinogenic HCAs and PAHs 

in highly consumed meat products, including RTE meat products, patties and 

meatballs. Results from market research showed that chargrilled chicken 

contained the highest level of both HCAs and PAHs. Increase intake of 

chargrilled chicken and ham could increase breast cancer and colorectal 

adenoma risk, but other types of meat had relatively lower health risk.  

Due to the carcinogenicity and related health risk, strategies to reduce 

exposure of HCAs and PAHs from meat products have been developed. 

Replacing pork back fat with vegetable oils including sunflower oil, olive oil 

and grape seed oil could not only improve fatty acids profile in cooked meat 

products, but also reduce HCAs, which could be attributed to the existence of 

tocopherols and polyphenol compounds in the vegetable oils. However, 

antioxidants in the oils could not reduce the total amount of PAHs effectively, 

while the complexity of oil decomposition and antioxidants performance at 

high temperature could partially explain the case.  

All 6 spices powder including garlic, onion, red chilli, paprika, black pepper 

and ginger reduced the formation of total HCAs, while ginger powder 

achieved the highest inhibition efficiency compared with all other spices. 

Antioxidant capacity of spices determined their efficiency in prohibiting 

formation of HCAs and PAHs in great extent, while meat type only affected 

the formation of HCAs, but not PAHs. Regression model suggested that both 

diallyl disulfide and gallic acid contributed similar inhibitory efficiency on the 

formation of HCAs and PAHs. Synergistic effect between diallyl disulfide and 

gallic acid was observed on reducing HCAs, but not on PAHs. 

Result in this thesis suggested that adding spices with high antioxidant 

potential could help to reduce dietary intake of HCAs and PAHs from meat 

products cooked in household kitchens. It also offered a better understanding 

about fat replacement because using vegetable oils to replace animal fat 

could not only improve nutritional value of products but also food safety from 

the aspect of minimizing HCAs and PAHs formation. In addition, these data 



205 

 

will provide important information for estimating dietary HCAs and PAHs 

exposure, and will contribute to verify the role of HCAs and PAHs from intake 

of meat products in the ecology of cancer population in the UK. 
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Appendix:  
 

Appendix 1: Amount of IQ in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperat
ure1 

Cooking 
time 
(min) 

IQ (ng/g) References 

Chicken 
breast 

Grilled 200 20 Nd Liao et al., 2010 

  270-350 6-8 4.09-41.84 Jinap et al., 2013; 
Hasnol et al., 2014 

 Pan-fried 180 10 1.76 Liao et al., 2010 
 Fried 180 10 Nd  
 Roasted 200 20 Nd  
Beef Grilled 200 18 Nd Viegas and Novo, 

2012 
  270-350 6-8 29.68-73.96 Jinap et al., 2013 
 Pan-fried 180 6 Nd-6.45 Viegas et al., 2012 
 Fried 150 8 Nd Knize et al., 1994 
  170-225 15 Nd-5.46 Oz and Kaya, 2011; 

Britt et al., 1998 
  180 20 10.2 Murkovic et al., 1998 
  175-225 12-20 0.7-5.3 Balogh et al., 2000 
Beef 
meatball 

Grilled 150-250 8 Nd Oz and Cakmak, 
2016 

  150-250 9 Nd-1.34 Oz and Kaya, 2016 
Pork 
Bacon 

Salted, 
smoked 
and fried 

150 5-10 3.8-10.5 Johansson and 
Jagerstad, 1994 

Loin Roasted  175-200 10 <0.1 Busquets et al., 2004 

Salmon Grilled 200 23 Nd Viegas and Novo, 
2012 

 Fried 210 8 0.04 Khan et al., 2013 
  260 - 0.6 IARC, 1993 
 Microwa

ved 
 4 Nd Oz and Kotan, 2016 

 Barbequ
ed 

180 8 0.09  

 Roasted 180 10 Nd  
1 Surface temperature (oC) 
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Appendix 2: Amount of MeIQ in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperat
ure 1 

Cooking 
time 
(min) 

MeIQ (ng/g) References 

Beef steak Grilled 195 4 nd Busquets et al., 
2004 

Beef Charcoal 
grilled 

285-325 7 34.76-36.4 Jinap et al., 
2013 

 Microwave 
heated and 
char grilled 

285-325 3 37.65-43.67  

Beef 
meatballs 

Grilled 150-250 8 Nd-0.09 Oz and 
Cakmak, 2016 

  150-250 9 Nd Oz and Kaya, 
2016 

Chicken Fried 185 12 Nd Busquets et al., 
2004 

 grilled 185 13 <0.1  

 charcoal 
grilled 

285-325 5 52.12-62.65 Jinap et al., 
2013 

 microwave 
heated and 
char grilled 

285-325 2 48.58-58.47  

  Fried 100-200 10 0.1-0.5 Skog and 
Solyakov, 2002 

Pork fried 185 10 Nd Busquets et al., 
2004 

Bacon Cured and 
fried 

150 5-10 Nd-1.7 Johansson and 
Jagerstad, 1994 

Pork chop Fried 170 12 9.28 Janoszka et al., 
2009 

Salmon Microwaved  4 Nd Oz and Kotan, 
2016 

 Barbequed 180 8 0.42  

 Roasted 180 10 Nd  
1 Surface temperature (oC) 
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Appendix 3: Amount of MeIQx in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperat
ure1 

Cookin
g time 
(min) 

MeIQx 
(ng/g) 

References 

Beef 
meatball 

Fried  175-225 15 Nd-2.66 Oz and Kaya, 
2011 

Beef steak Grilled 195 
 

4 2.9 Busquets et al., 
2004 

Beef Char grilled 285-325 7 15.12-15.6 Jinap et al., 2013 
  Microwave and 

char grilled 
285-325 3 9.99-11.9   

  Microwave and 
fried 

160 4 Nd   

Beef 
Pattie 

Fried  200-250 12 Nd-3 Felton et al., 1994 

  Microwave and 
fried 

200-250 12 Nd-5.1   

 Roasted 230 20 0.34-1.32 Zeng et al., 2014 
Chicken Fried 180-185 10-12 Nd-0.77 Liao et al., 2010; 

Busquets et al., 
2004 

  Pan fried 180 10 1.83 Liao et al., 2010 
   grilled  185-200 13-20 0.3-1.16 Busquets et al., 

2004; Liao et al., 
2010 

  Char grilled 285-325 5 5.18-11.3 Jinap et al., 2013 
  Microwave and 

fried 
160 3 3.44   

  Roasted 200 20 nd Liao et al., 2010 
Pork fried 185 10 Nd-1.9 Busquets et al., 

2004 
Ham Smoked and 

cooked 
74-802 70-72 0.03 Puangsombat et 

al., 2011 
ham Baked 230-250 12-20 0.1-3.1 Gibis and Weiss, 

2012 
Bacon cured and fried 150 5-10 Nd-1.7 Johansson and 

Jagerstad, 1994 
Salmon Pan-fried 1022 18.3 0.66-1.07 Iwasaki et al., 

2010 

  Charcoal 
grilled 

842 72 0.22-0.87   

 Microwaved  4 0.17 Oz and Kotan 
2016 

 Barbequed 180 8 2.13  
 Roasted 180 10 0.13  
Sardine Pan-fried 1012 11.3-

13.7 
0.36-0.7 Iwasaki et al., 

2010 
1 Surface temperature (oC) 
2 Internal temperature (oC) 
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Appendix 4: Amount of 4, 8-DiMeIQx in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperat
ure 1 

Cooking 
time (min) 

4, 8-
DiMeIQx 
(ng/g) 

References 

Beef Fried 175-225 15 Nd-3.35 Oz and Kaya, 
2011 

Beef 
steak 

Grilled 195 4 1.1 Busquets et al., 
2004 

Beef 
patties 

Fried 200-250 12 0.1-0.3 Felton et al., 
1994 

  Microwave and 
fried 

200-250 12 0.1-1.2   

 Roasted 230 20 0.24-1.04 Zeng et al., 
2014 

 Charcoal 
grilled 

285-325 7 Nd-5.54 Jinap et al., 
2013 

  Microwave and 
char grilled 

285-325 3 Nd-4.5   

Chicken 
breast 

Fried 180 10 0.38 Liao et al., 2010 

  Charcoal 
grilled 

285-325 5 3.06-5.55 Jinap et al., 
2013 

  Microwaved 
and char 
grilled 

285-325 2 Nd-8.06   

  microwaved 
and fried 

160 3 Nd   

  Fried 185 12 0.8 Busquets et al., 
2004 

  Pan-fried 180 10 1.05 Liao et al., 2010 
  Grilled 200 20 3.55   
    185 13 0.4 Busquets et al., 

2004 
  Roasted 200 20 nd Liao et al., 2010 
Pork fried 185 10 Nd-0.9 Busquets et al., 

2004 
Pork loin Chargrilled 200-230 10 Nd-4.78 Viegas, 2015 
Cured 
Ham 

Smoked and 
cooked  

74-80 70-722 0.03 Puangsombat et 
al., 2011 

  Baked  230-250 12-20 0.5-2.1 Gibis and 
Weiss, 2012 

Bacon Cured and 
fried 

150 5-10 Nd-1.7 Johansson and 
Jagerstad, 1994 

Salmon  Pan-fried 92-1022 18.3 Nd-0.45 Iwasaki et al., 
2010 

  Charcoal 
grilled  

842 72 Nd-0.42   

Sardine Pan-fried 1012 11.3-13.7 0.26-0.35   

1 Surface temperature (oC) 
2 Internal temperature (oC) 
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Appendix 5: Amount of PhIP in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperature
1 

Cooking 
time 
(min) 

PhIP 
(ng/g) 

References 

Chicken 
breast 

Pan-fried 197-211 14-36 0-70 Skog and Solyakov, 
2002; Liao et al., 
2010 

  Boiled 100 23 nd Skog and Solyakov, 
2002 

  Fried 180-204 20 2.16-6.06 Liao et al., 2010 
  Roasted  200 20 0.04  
Beef Grilled 200 18 1.45 Puangsombat et al., 

2012 
    204 12-24 1.58-5.63 Jinap et al., 2013 
  Fried  175-225 30 nd-9.47 Oz and Kaya, 2011 
    200 6 6.13-7.44 Wong et al., 2012 
    204-230 24 5.27-31.8 Gibis and Weiss, 

2012 
 Roasted 230 20 6.06-28.6 Zeng et al., 2014 
Pork Fried  204 16 1.8 Puangsombat et al., 

2012 
  Pan-fried 175-200 10 2.5 Busquets et al., 

2004 
Bacon Fried  172 6 6.91 Puangsombat et al., 

2012 
Pork 
chop 

Fried  170 12 Nd Janoszka et al., 
2009 

Pork loin Char 
grilled 

200-230 10 1.60-6.09 Viegas et al., 2015 

Ham Baked 230-250 12-20 0.2-0.8 Gibis and Weiss, 
2012 

Sausag
e 

Fried 175-200 9 <0.2 Busquets et al., 
2004 

Salmon Pan-fried 92-1022 18.3 6.17-7.37 Iwasaki et al., 2010 

  Charcoal 
grilled 

842 72 22.55-28.8   

 Microwav
ed 

 4 Nd Oz and Kotan, 2016 

 Barbeque
d 

180 8 2.67  

 Roasted 180 10 Nd  
 Fried  204 12 9.11 Puangsombat et al., 

2012 
  210 8 26.2 Khan et al., 2013 

Sardine Pan-fried 1012 11.3-
13.7 

0.53-2.28 Khan et al., 2013 

Cod Fried  210 8 19.1 Khan et al., 2013 
1 Surface temperature (oC) 
2 Internal temperature (oC) 
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Appendix 6: Amount of BaP in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperature1 

Cooking 
time 

Concentration 
of BaP (ng/g) 

References 

Chicken 
breast 

Grilled 350-400 6min 0-86.4 Wongmaneepratip 
and Vangnai, 2017 

 Sugar 
smoked 

 3-6min Nd Chen et al., 2013 

Beef 
ham 

Smoked Not clear 3-6 
days 

0.07-0.04 Djinovic et al., 
2008 

Beef lion Char 
grilled 

290 9 mins 0.6 Viegas et al., 2012 

    Not clear 30mins 0.055 Chung et al., 2011 
  Roasted 200 30mins Nd 
Steak Sugar 

smoked 
 3-6min Nd Chen et al., 2013 

Beef ribs Char 
grilled 

Not clear 30mins 0.199 Chung et al., 2011 

  Roasted 200 30mins 0.032   
Pork 
ham 

Smoked Not clear 3-6 
days 

0.12-0.18 Djinovic et al., 
2008 

Bacon Smoked Not clear 3-6 
days 

0.22-0.66 Djinovic et al., 
2008 

Pork loin Char 
grilled 

Not clear 30mins 2.99 Chung et al., 2011 

  200-230 10min 1.07-2.71 Viegas 2014 
 Roasted 200 30mins 0.018   
Pork 
belly 

Roasted 200 30mins 0.014 Chung et al., 2011 

 Grilled 230 8min 5.51-8.04 Park, 2017 
Pork 
chop 

Fried 170 12mins 0.41-1.61 Janoszka, 2012 

 Grilled 270 17mins 0.38-0.5 Janoszka, 2012 
Sausage Dry-

cured 
23 0-

40days 
0.26-3.53 Roseiro et al., 

2011 
Salmon Char 

grilled 
290 15 mins 1.66 Viegas et al., 2012 

 Sugar 
smoked 

 3-6min Nd Chen et al., 2013   

Iran fish Smoked  Not clear 7days 0.30-1.86 Mohammahi et al., 
2013 

1 Surface temperature (oC) 
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Appendix 7: Amount of BaA in cooked meat and fish products 

 Cooking 
process 

Cooking 
temperature1 

Cooking 
time 

BaA 
(ng/g) 

References 

Chicken 
breast 

Grilled 350-400 6min 0-
137.6 

Wongmaneepratip 
amd Vangnai, 
2017 

Beef   Smoked Not clear 3-6 days 0.2-
1.04 

Djinovic et al., 
2008 

  Char grilled 290 9 mins 0.68   

Pork 
ham 

Constantly 
exposed in 
burning of 
beech wood 
(smoking) 

Not clear 3-6 days 0.32-
0.53 

Djinovic et al., 
2008 

Bacon Smoked Not clear 3-6 days 0.53-
1.71 

Djinovic et al., 
2008 

Pork 
chop 

Fried 170 12mins 1.16-
2.63 

Janoszka, 2011 

Minced 
pork 
chop 

Grilled 270 17mins 1.1-
1.53 

Janoszka, 2011 

Pork loin Char grilled 200-230 10min 1.6-3.9 Viegas et al., 2014 
Salmon Char grilled 290 15 mins 3.98 Viegas et al., 2012 

Sausage Dry-cured 23 0-40days 0.79-
17.98 

Roseiro et al., 
2011 

1 Surface temperature (oC)
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Appendix 8: Retention time and UV spectrum of 5 HCAs 

HCAs Retention 
time (min) 

RSD (%) UV spectrum 

IQ 10.5 0.62 

MeIQ 12.8 0.32 

MeIQx 13.5 0.99 

4,8-DiMeIQx 17.1 0.55 

PhIP 
 

25.0 0.22 
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Appendix 9: Retention time and spectrum of 2 PAHs 

PAHs Retenti
on time 
(min) 

RSD 
(%) 

Spectrum 

BaA 7.3 0.15 

 
BaP 9.5 0.66 

 

Excitation 

Emission 

Excitation 

Emission 
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Appendix 10: Calibration curves of 5 HCAs and 2 PAHs in HPLC 
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Appendix 11: HPLC chromatograms of sample, sample with spiked 5 
HCA standards (5ng/ml and 50 ng/ml each) 
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Spiked sample (5ng/ml) 
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Appendix 12: HPLC chromatograms of sample, sample with spiked 2 
PAHs standards (5ng/ml and 50 ng/ml each) 

Sample: 

 

Spiked standards (5ng/ml) 

 

Spiked standards (50ng/ml) 
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Appendix 13: HPLC chromatograms of HCAs (IQ, MeIQ, MeIQx, 4, 8-
DiMeIQx and PhIP) detected with a UV detector (252nm) from selected 
RTE meat samples 
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Appendix 14: Toxicity Equivalency Factor of PAHs in 11 RTE samples1 

RTE Samples Measured 
concentration 
of BaP (ug/kg) 

Measured 
concentration 
of BaA 
(ug/kg) 

TEQ = Sum 
(C*TEF) (ug/kg) 

BBQ chicken Nq Nq N/a 
Tikka chicken Nq Nq N/a 
Chargrilled chicken Nq 3.06 0.306 
Ham Nd Nq N/a 
Smoked ham Nq 0.19 0.019 
Roasted bacon 1.09 0.66 1.156 
Crispy bacon 0.71 0.37 0.747 
Pork sausage 0.21 0.67 0.277 
Swedish meatballs 0.18 2.18 0.398 
Honey roasted salmon 0.35 Nq 0.35 
Sweet chilli salmon Nd Nd N/a 
1Toxicity Equivalency Factor (TEF, Unitless), TEFBaP=1, TEFBaA=0.1 
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Appendix 15: Sum and Average consumption of selected RTE meat products from age group of 19-64 years old and over 
65 years old in UK diet survey. Raw data obtained from the National Diet and Nutrition Survey1 (2015).  

Selected RTE 
meat 

Male  Female 

 

Sum of 
intake in 
the survey 
(g) 

Average 
intake2 
(g/day) 

Sum of 
intake in the 
survey (g) 

Average 
intake 
(g/day) 

 Sum of intake 
in the survey 
(g) 

Average 
intake 
(g/day) 

Sum of 
intake in 
the survey 
(g) 

Average 
intake 
(g/day) 

 19-64ys  Over 65ys   19-64ys  Over 65ys  

BBQ chicken 118.7 0.03 0 0.00  767.25 0.27 0 0.00 
Tikka chicken 5988 1.58 0 0.00  3165 1.11 1521.28 1.60 
Chargrilled 
chicken 

24593.5 6.51 2667.88 3.49  23710.75 8.35 4915.6 5.19 

Ham 15722.16 4.16 2870.5 3.76  16798.34 5.91 7288.1 7.69 
Smoked ham 1547 0.41 43.2 0.06  487.4 0.17 378 0.40 
Roasted 
bacon 

2008.3 0.53 473.46 0.62  1070 0.38 604.7 0.64 

Crispy bacon 5276.25 1.40 280 0.37  4220.05 1.49 600 0.63 
Pork sausage 180 0.05 77.4 0.10  126 0.04 198 0.21 
Swedish 
meatballs 

1118.6 0.30 0 0.00  1296 0.46 183.96 0.19 

1 945 females and 710 males from UK took part in the survey. 

2 The food diary was involving in 4 different days with one weekend.  
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Appendix 16: Calibration curve of TEP as standard solution in TBARS 
assay 

 

 

Appendix 17: Calibration curve of BSA as standard solution for 
calculating protein concentration in protein carbonyl assay  
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Appendix 18: Calibration curve of Trolox as the standard solution in 
TEAC assay 

 

 

Appendix 19: Calibration curve of Trolox as the standard solution in 
ORAC assay 

 
1Net AUC values reflecting the blank-corrected AUC values for the standard at 
different concentration. 
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Appendix 20: The concentration of spices in meatballs and their 
corresponding antioxidants in selected spices from previous studies 

 

1Gallic acid equivalent /g dry weight. 

 

 

 

 

 

 

 

Spices Amount in 
meatballs 
(w/w) 

Antioxidants References 

Garlic 5% Organosulfur compounds: 
0.16-13.0mg/g  
Phenolics: 0.08-0.2 mg 
GAE/g DW1 

Rounds et al. (2012) 
Nuutila et al. (2003); 
Rahman (2007) 

Onion 5% Organosulfur compounds: 
0.1-0.3 mg/g 
Phenolics: 0.8-2.0 mg  
GAE/g DW 

Rounds et al. (2012) 
Nuutila et al. (2003) 

Paprika 5% Phenolics:  13 mg  GAE/g 
DW 

Rounds et al. (2012) 
Vega-Gálvez et al. 
(2009) 

Red chilli 1% Phenolics: 7.9-26.1 mg  
GAE/g DW 

Gurnani et al. (2016); 
Oz and Kaya 
(2011b) 

Black 
pepper 

1% Phenolics:  3.8-27.5 mg  
GAE/g DW 

Oz and Kaya 
(2011a); Shahidi and 
Ambigaipalan 
(2015); Larsen 
(2017) 

Ginger 2.8% Phenolics: 8.41-21.24 mg  
GAE/g DW 

An et al. (2016); Liu 
et al. (2008); Lu et al. 
(2011); Viegas et al. 
(2012)  
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Appendix 21: Calibration curve of gallic acid as standard solution in 
total phenolic content assay 

 

 

 

Appendix 22: Average fluorescence signal curves for 6 selected spices 
powder (garlic, onion, paprika, red chilli, black pepper and ginger) in 
ORAC assay 
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Appendix 23: Calculations for verifying regression model estabilished in 
Chaper 5 

Regression model in Chapter 5:  

Predicted total HCAs (ng/g) = 52.30 - 22.34 GA - 21.62 DAD + 10.17 GA * 

DAD 

Predicted total PAHs (ng/g) = 2.32 - 1.21 GA - 1.29 DAD + 0.696 GA * DAD 

Assume coefficient of DAD ‘1’= 0.05% (50mg/100g) and of GA ‘1’= 0.01% 

(10mg/100g). 

For example, garlic powder contained average 380�g /g DAD and 0.9mg GA 

Equivalent/g (Yu et al., 1989), so 5g garlic powder contained 1900 �g DAD 

and 4.5mg GA Equivalent, thus, coefficient of DAD= 0.04 and GA = 0.5. 

Predicted total HCAs (ng/g) = 52.30 - 22.34 * 0.5 - 21.62 *0.04 + 10.17 * 0.5 * 

0.04 = 40.47 ng/g 

Predicted total PAHs (ng/g) = 2.32 - 1.21 *0.5 - 1.29 *0.04 + 0.696 *0.5 * 0.04 

= 1.68 ng/g 

Ginger powder contained average 3.4mg GA Equivalent/g, so 5g ginger 

powder contained 17mg GA Equivalent phenolic, the coefficient of DAD =0 

and GA =1.7. 

Predicted total HCAs (ng/g) = 52.30 - 22.34 * 1.7 = 14.32 ng/g 

Predicted total PAHs (ng/g) = 2.32 - 1.21 *1.7 = 0.42 ng/g 

 

 

 

 


