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Abstract 

Green roofs (GRs) can provide multiple ecosystem services (ESs) such as air quality improvement, 

biodiversity support and climate regulation.  The hypothesis was tested that plants with different 

structural and functional characteristics (canopy size and density, evapotranspiration (ET) rates) 

differ in the provision of stormwater management and runoff quality improvement.  Experiments 

were conducted comparing the potential of industrial standard GR cover (Sedum) to alternative 

species with higher ET rates (Heuchera micrantha ‘Obsidian’, Salvia officinalis and Stachys 

byzantina).  High ET was strongly linked to rainfall retention, with Salvia and Stachys providing the 

greatest overall retention (32% of the total rainfall), although large, dense canopies were also 

advantageous when antecedent substrate moisture was high, with Sedum retaining 17% 

compared to 13% with Stachys.   

Species with high ET rates will require irrigation to maintain plant health and provision of ESs, but 

strategies for sustainable irrigation of GRs are needed.  In this study, crop coefficients of 1.47, 

2.98, 2.94 and 1.66 for Heuchera, Salvia, Stachys and Sedum respectively were calculated and 

used in a simple ET-based model (using the FAO-56 Penman-Monteith equation) that was 

proposed for scheduling GR irrigation based on plant water use.  Greywater as an alternative 

water source for irrigation was also investigated.  Plant health and functioning (and thus provision 

of ESs) for most species were not affected by greywater irrigation with no negative effects in 

Stachys and Sedum, but ET rates of Heuchera and Salvia were reduced by 14% and 9% 

respectively after 6 weeks of greywater irrigation.  Species differences were also apparent in 

improvement of runoff quality after both freshwater and greywater irrigation, with the highest 

quality runoff from Stachys.  

Results highlight the importance of appropriate species choice for improving the provision of ESs 

on GRs, and suggest that the irrigation requirements of these species could be met by using 

greywater. 
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Chapter 1  

Introduction and literature review 

1.1 Introduction 

Urbanisation results in the modification of natural systems and processes, altering the climate of 

urban areas (Alexandri and Jones, 2008).  Land use change (i.e. the replacement of vegetation 

with hard, impervious surfaces) has detrimental impacts on several aspects of the urban 

environment, and may contribute to increased surface flooding (Section 1.2.1), elevated urban 

temperatures (Section 1.2.2), increased noise, air and water pollution, and reduced biodiversity 

and habitat changes (Gaston, 2010).  In addition, human health and comfort may be adversely 

affected by the higher summer temperatures and increased air and noise pollution (Jenerette et 

al., 2011).   

Water demand in urban areas is also increasing as populations continue to grow and the standard 

of living rises (Bedbabis et al., 2014), with global water demand doubling approximately every 21 

years (Li et al., 2010b).  This may lead to competition for limited water resources and restrictions 

for its usage, thus reducing the availability of water for landscape irrigation (Jones and Hunt, 

2010).   

In the UK and northern Europe, climate change has led to an increase in the frequency of hot 

summer days, heat waves and heavy precipitation events, and an increase in the area affected by 

droughts (since 1950; IPCC, 2013).  Climate warming, with associated changes in precipitation 

patterns, is projected to continue for many decades (Wigley, 2005).  In the UK, this is projected to 

result in (IPCC, 2013):  

• drier summers with an increased likelihood of drought and water shortages affecting 

larger areas for longer periods of time; 

• an increase in heavy precipitation events and a greater chance of flooding, especially in 

urban areas; 

• an increase in the frequency and duration of heat waves, with associated health risks; 

• higher urban temperatures and consequent air quality deterioration, leading to higher 

usage of air conditioning and thus carbon dioxide (CO2) emissions (Crutzen, 2004). 
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As global population continues to rise, the extent of urbanisation increases, as does the 

proportion of the population living in urban areas.  In 2014, 54% of the world’s population was 

estimated to live in urban areas, which is expected to increase to over 66% by 2050; in the UK, 

this figure was 82% in 2014, projected to increase close to 90% by 2050 (United Nations, 2015).   

Furthermore, urban areas are expected to be the most greatly impacted by climate change (Gill et 

al., 2007). 

1.1.1 Provision of ecosystem services by urban vegetation 

Ecosystem services (ESs) are defined as “the benefits people obtain from ecosystems” 

(Millennium Ecosystem Assessment, 2005, p.40), and have been classified into four categories: 

provisioning, regulating, cultural and supporting services (Table 1.1).  Provisioning, regulating and 

cultural services provide direct benefits to people, whereas supporting services are essential for 

maintaining the provision of all other ESs but do not benefit people directly. 

Table 1.1: Summary and examples of ecosystem services classified as provisioning, regulating, 

cultural and supporting services by the Millennium Ecosystem Assessment (2005). 

Provisioning 

Products obtained from ecosystems 

• Food 

• Materials 

• Fuel 

• Medicines 

Regulating 

Benefits obtained from regulation of ecosystem 
processes 

• Climate regulation 

• Air quality regulation 

• Water regulation (including runoff 
quantity and timing and water quality) 

• Pest and disease regulation 

Cultural 

Non-material benefits obtained from 
ecosystems 

• Recreation 

• Spiritual fulfilment 

• Education 

• Aesthetic value 

Supporting 

Services which are necessary to sustain all 
other ecosystem services 

• Water cycling 

• Nutrient cycling 

• Photosynthesis 

 

Reintroducing vegetation into urban areas has been shown to benefit the urban environment 

through provision of a number of ESs, some of which have been widely studied, including 
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stormwater management (i.e. reduced surface flooding), surface and aerial cooling (i.e. reduced 

urban heat island effect), and air quality improvement (Dimoudi and Nikolopoulou, 2003; Gill et 

al., 2007; Jim and Chen, 2009).  Additional ESs provided by urban vegetation include noise 

reduction, energy savings, carbon sequestration, biodiversity support, production of food and 

medicines, nutrient cycling, and a broad range of cultural services including health benefits, 

increased property values, and historical significance (Sailor et al., 2008; Cameron et al., 2012; 

Netusil et al., 2014; Davies et al., 2017). 

Vegetation can be incorporated into urban areas as street trees, parks, public and private 

gardens, green roofs and walls, allotments, and green corridors (Cameron et al., 2012).  

Characteristics of the vegetation within green infrastructure (including composition, structure, 

location, and species) may influence the ESs provided (Sadler et al., 2010); some types of 

vegetation are therefore more efficient at providing certain services, allowing maximisation of 

desired services through selection of appropriate vegetation.  For example trees are generally 

recognised as being better at capturing air pollution than shorter vegetation due to their large 

leaf surface area and greater surface roughness causing more wind turbulence (Fowler, 2002; 

Davies et al., 2017).  Similarly, vegetation type, cover, and longevity greatly affect the amount of 

carbon that may be sequestered (Nowak and Crane, 2002).   

Green walls and roofs are useful when the available space for greening is low, for example in 

densely urbanised cities such as Hong Kong (Cheng et al., 2010), and are still able to provide a 

wide variety of ESs including the provisioning of food, regulation of climate, air quality and water, 

and urban habitat provision, as well as supporting services such as photosynthesis and water and 

nutrient cycling (Oberndorfer et al., 2007; Whittinghill et al., 2015).  The focus of the present 

research is the provision of regulating services on green roofs, particularly stormwater 

management, water quality improvement and temperature regulation.  Previous research has 

established that green roofs have good potential to provide these ESs (e.g. Vijayaraghavan et al., 

2012; Sims et al., 2016; Heim et al., 2017), and they were therefore chosen to be studied in more 

detail by examining the potential of plants with various characteristics to maximise provision of 

these services (Section 1.6). 

1.1.1.1 Green roofs 

Green roofs, or vegetated roofs, are made up of a series of layers including the vegetation, 

substrate, and various membranes for waterproofing, support and protection (Getter and Rowe, 

2006; Oberndorfer et al., 2007; Ouldboukhitine et al., 2011).  They are classified as extensive, 
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semi-extensive or intensive, mainly depending on the depth of the substrate used, which can also 

determine the type of vegetation grown.  Extensive green roofs have shallow substrate, typically 

considered to be less than 150 mm (MacIvor et al., 2016), and generally require very little 

maintenance or irrigation.  The shallow substrate and typical lack of irrigation restrict the types of 

vegetation that can be planted on extensive green roofs, and they therefore tend to have lower 

aesthetic value and a more functional purpose (Oberndorfer et al., 2007).  Conversely, intensive 

green roofs have a deeper substrate layer (> 200 mm; Nagase and Dunnett, 2010), allowing a 

much greater variety of plants to be incorporated, and are often used as recreation spaces in 

urban areas.  However, due to the deeper substrate, larger plants and intended use as a roof-top 

garden, intensive green roofs usually require some structural support, regular maintenance and 

irrigation.  Semi-extensive green roofs lie in between extensive and intensive roofs, combining the 

growing techniques of extensive roofs with a slightly deeper substrate, thus allowing a wider 

range of plants to be grown (Dunnett and Nolan, 2004; Bianchini and Hewage, 2012), particularly 

when supplementary irrigation is available.  Since the focus of this research is to investigate how 

ESs provision can be maximised by species selection, the semi-extensive green roof model has 

been selected as the most appropriate for the purposes of this study, and forms the basis for 

experimental design (see Section 1.6.2). 

Environmental conditions on green roofs may be harsh, and plants can be exposed to both high 

and low temperature extremes and high wind speeds.  Green roofs are also prone to soil moisture 

deficiencies and drought, especially the thin substrate layer of extensive green roofs, which 

restricts root growth and thus species selection (Oberndorfer et al., 2007; Nagase and Dunnett, 

2010).  The traditional criterion for selecting green roof plants has therefore been their ability to 

tolerate stress and drought, and thus succulent (especially Sedum spp.) or grass species have been 

a frequent choice (Butler and Orians, 2011; MacIvor and Lundholm, 2011).  However, recent 

studies have suggested that it may be possible to select plants based on their ability to provide 

ecosystem services as well as their ability to survive (Blanuša et al., 2013), particularly when 

supplementary irrigation is available.  Indeed, results indicate that alternative species may in fact 

be much better at providing several ecosystem services than the traditional Sedum, including 

stormwater management, cooling and air pollutant removal (Nagase and Dunnett, 2012; Speak et 

al., 2012; Blanuša et al., 2013).  However, it is also evident that irrigation would be vital for non-

succulent species on green roofs to prevent plant death (Butler and Orians, 2011), or a reduction 

in the provision of ESs, particularly those dependent on high evapotranspiration (ET) rates, such 

as cooling (Blanuša et al., 2013; Vaz Monteiro et al., 2017) and stormwater management. 
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Green roofs are advantageous in cities with competition for land area as they do not require 

additional land space and also have the benefit of using space that is currently wasted (Gill et al., 

2007).  Indeed, Stovin et al. (2012) estimate that 40 – 50% of impermeable surfaces in most cities 

are rooftops, some of which could be used for retrofit of green roofs.  The presence of substrate 

and vegetation on the roof also provides insulation to the building, helping to regulate the 

temperature inside; the need for air conditioning in the summer and heating in the winter is thus 

decreased, reducing energy usage and associated CO2 emissions (Akbari et al., 2001).  

Furthermore, there is evidence that the quality of runoff from green roofs is better than that from 

a conventional roof, since the substrate and vegetation may act as a sink for some nutrients such 

as zinc and copper (Seidl et al., 2013).  However, green roofs may also act as a source for other 

nutrients such as phosphorus that may leach from the green roof and increase the pollutant load 

of the runoff (Berndtsson et al., 2009; Speak et al., 2014). 

1.2 Provision of ecosystem services by green roofs 

1.2.1 Stormwater management 

The removal of vegetation from urban areas and the consequent decline in interception and 

infiltration of rainfall results in more rapid and larger volumes of surface runoff (Gill et al., 2007); 

this is enhanced by the impermeable nature of most urban surfaces.  Pataki et al. (2011) estimate 

that urban areas with 50 – 90% impervious surfaces may lose 40 – 83% of precipitation as surface 

runoff compared to just 13% in a forested catchment.  This increased surface runoff puts pressure 

on the existing drainage and sewerage systems as they are often forced to cope with greater 

volumes of water than they are designed for.  The combination of inadequate drainage, increased 

volumes of runoff and the rapidity of its occurrence may result in flooding of urban areas (Stovin 

et al., 2013).  Surface runoff from urban areas is also likely to transport a range of urban 

pollutants to receiving water bodies, which may result in a deterioration of water quality and 

adverse effects on aquatic ecosystems (Carter and Rasmussen, 2006).  Climate change models 

indicate that there is likely to be an increase in the frequency of high intensity precipitation 

events in the UK (IPCC, 2013), further increasing the risk of flooding in urban areas and negative 

impacts on receiving water bodies and aquatic ecosystems. 

1.2.1.1 The role of green roofs in stormwater management provision 

The layers of a green roof along with its vegetation enable interception, infiltration, and storage 

of the rain water resulting in delayed, prolonged and reduced peak runoffs compared to a 
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standard roof.  Water is stored primarily in the substrate, with some additional storage provided 

by the vegetation canopy (MacIvor and Lundholm, 2011; Sims et al., 2016).  This water is 

subsequently lost from the green roof through evaporation from the substrate and vegetation 

surfaces and by uptake and transpiration by the vegetation (Dunnett and Kingsbury, 2004).  

Through these mechanisms, green roofs have been shown to delay the start of runoff and peak 

runoff (Carter and Rasmussen, 2006), as well as prolonging the duration of runoff compared to a 

conventional non-vegetated roof (e.g. for up to 9 hours; Teemusk and Mander, 2007), thus 

helping to mitigate the risk of flash flooding and combined sewer overflow.  Additionally, studies 

have shown that green roofs can retain between 0 and 100% of the total rainfall in individual 

storms (e.g. Stovin et al., 2012), depending on storm size and other factors, discussed in Section 

1.2.1.2.   

Rainfall will infiltrate into and be stored in the substrate, until the substrate reaches field capacity 

and can retain no additional water, after which runoff occurs (Sims et al., 2016).  The finite 

volume of water that can be stored in the substrate in this way is defined by the substrate 

retention capacity of the green roof.  This can result in a delay in runoff production compared to a 

standard roof, where runoff from a green roof is initially negligible until the substrate reaches 

saturation, after which runoff characteristics are more similar to those of a conventional roof 

(Carter and Rasmussen, 2006).  Following a rainfall event, the retention capacity of the green roof 

is restored through ET (Sims et al., 2016), thus allowing a greater volume of water to be retained 

by the roof in subsequent storms. 

1.2.1.2 Factors affecting rainfall retention on green roofs 

A number of variables affect the ability of a green roof to reduce and delay runoff, such as the 

type and depth of the substrate, and the roof slope and geometry (VanWoert et al., 2005; Getter 

et al., 2007) as well as hydrological factors such as rainfall characteristics and antecedent soil 

moisture (Stovin et al., 2012; Whittinghill et al., 2015; Sims et al., 2016). 

The age of the green roof may also influence retention performance as the substrate undergoes 

chemical and physical alterations over time, for example a decrease in mean particle and pore 

sizes due to settling of the substrate components and root growth (Berndtsson, 2010; De-Ville et 

al., 2017).  Indeed, Getter et al. (2007) found that at the end of their 17-month study the 

substrate had higher porosity, more macropores and organic matter, and almost four times 

greater water-holding capacity compared to at the start of the study. These changes may alter the 

drainage properties of a substrate, including hydraulic conductivity or macropore flow, thus 
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altering runoff patterns from green roofs, for example resulting in quicker initiation of runoff 

(Getter et al., 2007).  Nonetheless, old green roofs (e.g. 43 years old; Speak et al., 2013) have still 

been shown to be able to provide significant rainfall retention, and Mentens et al. (2006) found 

no correlation between green roof age and annual runoff. 

The volume of water that may be retained in the substrate corresponds to the field capacity of 

that particular substrate (Sims et al., 2016) and, as such, the type and depth of substrate, as well 

as the antecedent moisture conditions, can affect the amount of water storage available.  Deep 

substrates (e.g. > 150 mm) have been shown to retain a greater volume of water than shallower 

substrates, with a significant correlation between substrate depth and annual runoff identified by 

Mentens et al. (2006).  Substrate properties also influence the drainage and retention 

characteristics of a green roof, with substrates of high porosity, low field capacity and low organic 

matter typically having lower retention and thus higher runoff (Dunnett et al., 2008; Stovin et al., 

2015).  Antecedent soil moisture content (SMC) also has a strong influence on the ability of a 

green roof to retain water, as a substrate near its field capacity will not be able to retain much 

water compared to a substrate that is initially relatively dry (Volder and Dvorak, 2014).  Indeed, in 

a study of three identical green roofs located in different climatic regions of Canada, Sims et al. 

(2016) attributed differences in retention between the roofs during similar storms to differences 

in antecedent SMC, resulting from varying ET rates in different climates. 

The characteristics of the dry weather period preceding a rainfall event are therefore also an 

important factor determining the retention of a green roof, since they dictate the antecedent 

SMC and the substrate’s water retention availability at any given time (Sims et al., 2016).  

However, although some studies have identified a significant link between the length of the 

antecedent dry period and runoff (Carpenter et al., 2016; Heim et al., 2017) others have found no 

clear relationship (e.g. Speak et al., 2013; Sims et al., 2016), and Stovin et al. (2012) found that 

although a short dry weather period equated to low retention, long dry weather periods did not 

always equate to high retention, as a green roof has a finite capacity for water retention.  The 

effects of weather, climate or season on restoration of substrate retention capacity, and thus 

retention performance of green roofs, have also been noted in several other studies (e.g. Voyde 

et al., 2010a; Speak et al., 2013; Nawaz et al., 2015).  In addition to seasonal variations in 

precipitation, high temperatures during the summer increase ET rates, resulting in faster 

restoration of the substrate retention capacity and thus higher retention in subsequent rainfall 

events (Carter and Rasmussen, 2006).  Conversely, when the weather is cooler and wetter with 

high relative humidity, ET and hence restoration of the substrate’s retention capacity is restricted, 
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resulting in lower retention; this has been observed during the winter (e.g. Dunnett et al., 2008) 

and also when summer conditions are particularly wet (e.g.Voyde et al., 2010a; Speak et al., 

2013). 

Characteristics of individual rainfall events, such as depth, intensity and duration, influence the 

retention performance of green roofs, with an inverse relationship frequently identified between 

rainfall depth and the proportion of rainfall retained by a green roof (Whittinghill et al., 2015).  

Carter and Rasmussen (2006), for example, reported that nearly 88% of total rainfall was retained 

by a green roof during small storms (< 2.54 mm) whilst only 48% was retained in large storms 

(> 7.62 mm).  This decline in retention with increasing storm size occurs because the substrate can 

only retain water until it reaches field capacity, after which excess rainfall is released as runoff 

(Volder and Dvorak, 2014; Sims et al., 2016).  Rainfall retention by a green roof also shows an 

inverse relationship with the intensity of the rainfall (Villarreal and Bengtsson, 2005), possibly 

because the substrate is unable to absorb the rainfall fast enough during intense storms (Stovin et 

al., 2012), thus potentially resulting in the generation of runoff before the substrate has reached 

its retention capacity. 

1.2.1.3 The effect of vegetation type and physiology on green roof retention performance 

The majority of studies have focussed on the effects of substrate and rainfall characteristics on 

the retention performance of green roofs, with few studies accounting for the effect of the 

vegetation itself (MacIvor and Lundholm, 2011; Nagase and Dunnett, 2012; Stovin et al., 2015).  

Although the substrate (along with green roof retention layers) is recognised as the major store 

for rain water (VanWoert et al., 2005), vegetation has been frequently acknowledged as a small 

but significant component, influencing retention and runoff patterns (Voyde et al., 2010a).  For 

example, MacIvor and Lundholm (2011) found that vegetation was able to retain up to an 

additional 4% of rainfall on top of that retained by the substrate alone, depending on species.  

Furthermore, significant differences in retention have been identified with different species 

(Nagase and Dunnett, 2012; Whittinghill et al., 2015; Aloisio et al., 2016), suggesting that 

vegetation choice can influence the stormwater management capabilities of green roofs.  

Vegetation influences green roof rainfall retention through direct interception of rainfall on the 

canopy, and uptake of water from the substrate through ET, which restores the substrate’s 

retention capacity for subsequent rainfall events.  As such, physical characteristics of the 

vegetation (e.g. canopy structure, leaf traits, root system structure, ET rate etc.) are important in 

determining how much water is intercepted and lost through ET.  Larger plants with horizontally 
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aligned leaves, dense canopies, and hairy leaves are thought to increase the interception and 

retention of rainfall, thus reducing runoff (Lundholm et al., 2010; Nagase and Dunnett, 2012; 

Aloisio et al., 2016).  High root mass may also result in better soil structure, increased water-

holding capacity and thus greater retention (Teemusk and Mander, 2007; Nagase and Dunnett, 

2012), although conversely, MacIvor and Lundholm (2011) observed that high root density 

resulted in the lowest retention, and suggest that this may be due to decreased substrate porosity 

and water-holding capacity.  Additionally, it has been suggested that green roofs with a variety of 

species may intercept and retain a greater proportion of water than monocultures due to the 

more complex structure of the canopy and the roots, although studies have reported contrasting 

results (Dunnett et al., 2008; Lundholm et al., 2010; Whittinghill et al., 2015).  Moreover, species 

mixes may increase the total ET, thus resulting in lower antecedent SMC and greater storage 

capacity for rainfall in subsequent storms (Brandão et al., 2017).  

Species with higher evapotranspiration (e.g. high leaf area or plants that have C3 or C4 

photosynthesis, e.g. grasses and many crop plants including corn and rice, rather than 

Crassulacean Acid Metabolism (CAM), e.g. Sedum) are able to restore the substrate’s retention 

capacity quicker, thus allowing more water to be retained by the green roof in subsequent rainfall 

events (Berghage et al., 2007; Stovin et al., 2013).  However, the majority of retention studies to 

date have only tested species with low ET rates, such as Sedum or other succulents, and so the 

ability of green roofs planted with species with substantially higher ET rates to provide 

stormwater management needs further investigation.  As the substrate is recognised as the 

primary store of water, the contribution of interception to green roof retention is generally 

viewed as minimal compared to the role of the vegetation in restoring substrate retention 

capacity (Stovin et al., 2015).  As such, species with low ET rates, such as Sedum, have typically 

shown lower retention rates than other species tested (Nagase and Dunnett, 2012; Whittinghill et 

al., 2015). 

1.2.2 Surface and aerial cooling 

Urban areas are typically warmer than surrounding rural areas as a result of an alteration in the 

radiation budget of urban areas by removal of vegetation and the introduction of darker 

materials.  This lowers the albedo of urban areas to an average of 0.15 compared to 0.18 – 0.25 

for vegetation (Oke, 1987), meaning that less solar radiation is reflected and more is absorbed 

and re-released as long-wave radiation (i.e. heat) giving rise to the urban heat island effect (UHI).  

The UHI effect is enhanced by the release of anthropogenic heat, as well as the nature of urban 
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building materials, which tend to have a high heat capacity thus allowing more heat to be stored 

during the daytime and released at night (Ng et al., 2012).  Removal of vegetation also results in 

reduced ET in urban areas, and consequently, the proportion of energy partitioned as latent heat 

of evaporation (i.e. the heat absorbed per unit mass as water changes phase to water vapour; 

Oke, 1987) decreases and a greater proportion of energy is used as sensible heat (i.e. addition of 

energy that is sensed as a rise in temperature; Oke, 1987), further increasing urban temperatures 

(Bowler et al., 2010).  Heat islands are usually greater in large cities with a high percentage of 

impervious surfaces.  They reach their maximum expression on clear, still days (i.e. low cloud 

cover and wind speed) in the summer, and at night (Gaston et al., 2010), when UHI intensity (i.e. 

the temperature difference between urban areas and surrounding rural areas) has been found to 

reach over 10°C in London (Doick et al., 2014).  UHIs are expected to get larger and more intense 

as the climate continues to warm (IPCC, 2013). 

The elevated temperature in urban areas in the summer also results in greater use of air 

conditioning, thereby increasing greenhouse gas emissions and further enhancing the greenhouse 

effect.  Indeed, Akbari et al. (2001) found a 2 – 4% increase in urban peak electricity usage with 

every 1°C rise in daily maximum temperature (above 15 – 20°C).   

1.2.2.1 The role of vegetation in cooling provision 

Vegetation in urban areas can provide surface cooling and, if established at a large enough scale 

throughout a city, has the potential to cool the air too through modification of the urban energy 

budget (Oke, 1987; Taha, 1997; Yu and Hien, 2006).  The main mechanisms by which plants 

provide cooling is through increased reflection of solar radiation, shading, and greater partitioning 

of energy as latent heat for evapotranspiration (e.g. Cameron et al., 2014; Blanusa et al., 2016).  

Vegetation has a higher albedo than most urban surfaces, so more solar radiation is reflected (Li 

et al., 2010a) and less is absorbed and used to heat the air and surfaces.  Some solar radiation is 

also harnessed by the vegetation for use in photosynthesis and other biological processes, further 

reducing the energy available for heating (Eumorfopoulou and Kontoleon, 2009).  Plant canopies 

(and the substrate in which they are planted) shade the area below the vegetation and thus 

prevent solar radiation from reaching the ground or building surface; this in turn reduces the 

absorption of radiation and its re-emission as heat, resulting in cooler surfaces and potentially 

reducing the heating of the air (Dimoudi and Nikolopoulou, 2003).  The transpiration of vegetation 

also has an evaporative cooling effect, as a greater proportion of the available energy is 
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partitioned as latent heat for evapotranspiration (Bowler et al., 2010) and thus less energy is used 

as sensible energy to heat the air. 

Several studies have found that green roofs can reduce roof surface temperatures in the summer 

compared to conventional rooftops (Jim and Peng, 2012; Dvorak and Volder, 2013; Heim et al., 

2017) and compared to rooftops with bare, unvegetated substrate (e.g. by up to 3 °C; Lundholm 

et al., 2010), whilst air temperatures in urban parks can be up to 1.3°C lower than in the 

surrounding built environment, with smaller diurnal temperature fluctuations (Yu and Hien, 

2006).  Furthermore, greater aerial cooling can be achieved with larger vegetated areas (Dimoudi 

and Nikolopoulou, 2003; Vaz Monteiro et al., 2016b) and the extent of cooling may also extend 

beyond the immediate vegetative cover, for example between 20 and 440 m from the 

greenspace, depending on weather conditions (e.g. temperature and wind speed and direction) at 

night in London (Doick et al., 2014).  The cooling provided by urban vegetation may also indirectly 

improve air quality as the lower temperatures slow photochemical reactions and hence the 

production of pollutants such as ozone (Pataki et al., 2011).  

Vegetation (and substrate) around a building envelope can also modify the temperature inside 

the building by providing insulation, blocking the entry of solar radiation into the building, 

reducing heat fluxes through the walls or roof, and by reducing air flow around the building and 

regulating relative humidity (Eumorfopoulou and Kontoleon, 2009; Pérez et al., 2011).  Vegetation 

may therefore provide a form of passive cooling, decreasing the need for temperature control 

devices such as air conditioning units and leading to energy savings; this may indirectly help to 

improve air quality as fewer pollutants are emitted from power plants (Yang et al., 2008).  Winter 

energy savings may also be achieved, as the vegetation reduces wind speed around the building 

envelope, thus reducing cold drafts into the building and decreasing the heating demand inside 

(Cameron et al., 2012).  The use of deciduous plants has the additional benefit of allowing solar 

radiation to reach the building surfaces when the leaves are shed in the winter, thus enabling 

some heat flux into the building (Ip et al., 2010). 

1.2.2.2 Factors affecting cooling provision by vegetation 

In addition to the vegetation type and physiology (Section 1.2.2.3), there are several factors that 

may affect the cooling performance of vegetation including the substrate moisture availability, 

and local weather and climate conditions.  For a plant to provide evaporative cooling it must have 

an adequate supply of water for transpiration to continue; if there is insufficient moisture in the 

substrate, plants may close their stomata to prevent water loss by transpiration, thus increasing 
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leaf temperature and reducing evaporative cooling (Jones et al., 2002).  Since climate change 

projections suggest an increased likelihood of more frequent and prolonged periods of drought in 

the UK (IPCC, 2013), the extent of the cooling provided by evapotranspiration may therefore be 

restricted (Cameron et al., 2012) unless supplementary irrigation is available, potentially 

increasing the relative importance of shading and reflectance for cooling.  

Climate has been shown to affect the cooling potential of vegetation, with greater cooling 

achieved in hot, dry climates than cool or humid climates (Alexandri and Jones, 2008).  This is 

likely to be due to restricted ET rates in cool/humid climates, thus reducing evaporative cooling, 

whilst in hot/dry (or windy) climates ET may increase (Pérez et al., 2011).  Similarly, local weather 

conditions may also affect the amount of cooling provided by vegetation, with the greatest 

cooling usually reported on the hottest days (Cheng et al., 2010; Blanuša et al., 2013) and less 

cooling generally observed on overcast days (Eumorfopoulou and Kontoleon, 2009; Jim and Peng, 

2012), when ET is inhibited by the higher relative humidity (Cantuaria, 2000).  Additionally, low 

solar radiation on overcast days may suppress photosynthesis, restricting stomatal opening and 

resulting in less transpiration (Jim and Tsang, 2011). 

1.2.2.3 The effect of vegetation type and physiology on cooling 

The structure and function of the vegetation itself, including leaf colour, thickness and size, the 

presence of leaf hairs, canopy density and height, and ET rate (Vaz Monteiro et al., 2016a; 2017; 

Charoenkit and Yiemwattana, 2017), also influences the amount of cooling achieved (Wong et al., 

2003; Cameron et al., 2012; Blanuša et al., 2013) and the aerial extent of cooling (Vaz Monteiro et 

al., 2016b).  Several studies have employed models to estimate the cooling that may be provided 

by different forms of green infrastructure (Dimoudi and Nikolopoulou, 2003; Ouldboukhitine et 

al., 2011; Ng et al., 2012), but typically use only average values for plant characteristics such as 

albedo, ET rate and leaf temperature.  The differences between plant types and physiology are 

generally not taken into account when estimating the impact of vegetation on temperature 

modification, yet they have been shown to affect the magnitude of cooling provided in plant-level 

experiments (Wong et al., 2010; Liu et al., 2012; Blanuša et al., 2013). 

Vegetation with higher leaf area index (LAI) (i.e. a greater canopy density) is able to provide more 

cooling and produce a lower ambient air temperature (e.g. Wong et al., 2003; Yu and Hien, 2006; 

Vaz Monteiro et al., 2017) as larger leaves, greater vegetative coverage, and more dense 

vegetation (e.g. greater number of leaf layers) provide greater shading, thus resulting in lower 

surface temperatures below the vegetation (Ip et al., 2010; Wong et al., 2010; Ouldboukhitine et 



 Chapter 1 

13 
 

al., 2011; Sternberg et al., 2011).  This means that the amount of shading provided may vary as 

the vegetation grows and, in the case of deciduous plants, will vary seasonally.  It has also been 

suggested that green roofs consisting of a mixture of vegetation types (rather than monocultures) 

may be able to reduce rooftop temperatures more due to the greater height and complexity of 

the vegetation layers trapping more air (Dunnett et al., 2008; Lundholm et al., 2010; Heim et al., 

2017).  Additionally, the extent of evaporative cooling provided varies depending on the 

transpiration rate of particular species (Blanuša et al., 2013; Vaz Monteiro et al., 2017).  Succulent 

species such as Sedum, commonly chosen for green roofs, typically have low ET rates, whereas 

broadleaf species have higher ET rates and thus have been shown to provide greater cooling 

(Blanuša et al., 2013; Vaz Monteiro et al., 2017); indeed, ET has been identified as the primary 

mechanism for this cooling provision with some species (Vaz Monteiro et al., 2016a; 2017).  

1.3 The process of evapotranspiration 

Provision of some ESs, such as stormwater management and cooling (Section 1.2), is highly 

dependent on ET; it is therefore necessary to understand the physical process and the plant and 

environmental factors that may influence the rate at which ET could take place on a green roof. 

1.3.1 Evaporation 

Evaporation is the physical process of converting liquid water to water vapour, which is then 

transferred from the evaporating surface to the atmosphere.  The energy required to break the 

bonds between the molecules of liquid water, known as the latent heat of vaporisation, is 

primarily supplied by solar radiation (Verhoef and Egea, 2013).  The water vapour must then 

diffuse through the boundary layer, a thin layer of still air above the evaporating leaf or soil 

surface, before being transported higher into the atmosphere by turbulent transfer.  The 

thickness of the boundary layer depends mainly on wind speed and the size of the surface 

(Kramer and Boyer, 1995), with high wind speeds disrupting and lowering the resistance of the 

boundary layer and thus increasing evaporation rates (Kent, 2000).  Turbulent mixing of the air 

ensures that water vapour is continually transported away from the evaporating surface and a 

water vapour pressure gradient between the evaporating surface and the atmosphere is 

maintained, thus enabling continued evaporation.  Evaporation can occur from any surface, 

including open water bodies, the soil surface, and leaf or canopy surfaces. 
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1.3.2 Transpiration 

Transpiration is the process through which water is lost from the plant, consisting of evaporation 

of water from cell surfaces into intercellular air spaces and subsequent diffusion of the water 

vapour out of the leaf (Kramer and Boyer, 1995).  This occurs when stomata open to allow uptake 

of CO2 for photosynthesis and is driven by a water vapour pressure gradient between the leaf and 

the atmosphere (Taiz and Zeiger, 2006).  The air spaces inside the leaf are connected to the air of 

the atmosphere by the open stomata, causing water vapour to diffuse from inside the leaf air 

spaces, where concentrations are high, to the atmosphere, which has relatively lower 

concentrations (Kent, 2000; Smith et al., 2010).  Consequently, the water vapour concentration in 

the air spaces inside the leaf decreases, and so water evaporates from the surfaces of the 

mesophyll cells until the water vapour concentration and the water in the cells are in equilibrium 

again (Smith et al., 2010).   

Evaporation of water from the mesophyll cells lowers their water potential, causing water to flow 

into these cells from adjacent cells by osmosis, consequently lowering the water potential of the 

adjacent cells: this sets up a water potential gradient across the leaf, which results in water being 

drawn into the leaf from the xylem and flowing across cells until it reaches the furthest mesophyll 

cell, from which the water evaporates into the leaf’s internal air spaces (Kent, 2000).  Water is 

subsequently pulled up the xylem by cohesion-tension, and thus also pulled into the roots from 

the soil, due to the negative pressure created in the leaf by the evaporation of water from the 

mesophyll cells (Taiz and Zeiger, 2006).   

The rate of transpiration depends on the vapour pressure gradient between the internal leaf 

spaces and the atmosphere, the water potential gradient within the plant, the resistances 

associated with the diffusion pathway from the leaf to the air, the supply of water to the 

evaporating surfaces and the amount of energy available for evaporation (Kramer and Boyer, 

1995).  Since there is a large surface area of mesophyll cells from which water is evaporating 

compared to the volume of the internal leaf air spaces, the air inside the leaf is assumed to be 

close to saturation (Taiz and Zeiger, 2006).  As such, the absolute humidity difference between 

the leaf air spaces and the atmosphere varies with temperature: an increase in leaf temperature 

lowers the internal relative humidity and causes more water to evaporate from mesophyll cell 

surfaces, thus increasing the concentration of water vapour in leaf air spaces, whilst an increase in 

ambient air temperature lowers the relative humidity of the outside air, thus increasing the water 

vapour concentration gradient between leaf and atmosphere and increasing the rate of 

transpiration (Kent, 2000; Taiz and Zeiger, 2006).   
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Since water vapour must pass through the leaf as well as the boundary layer before entering the 

turbulent atmosphere, there are two main resistances associated with the diffusional pathway of 

water vapour from the leaf: stomatal resistance and boundary layer resistance.  The resistance to 

water vapour diffusing through the stomata is relatively low, and hence approximately 90% of 

water lost through transpiration is through the stomata (Kent, 2000).  Stomatal resistance, and 

therefore transpirational water losses, are regulated by controlling stomatal aperture (Taiz and 

Zeiger, 2006).  Stomata are generally open during the daytime to allow entry of CO2 for 

photosynthesis, but closed at night to prevent water loss (Oxlade, 2007).  Opening and closing of 

the stomata is controlled by the guard cells, which respond to environmental factors such as light 

intensity and quality, the water vapour concentration gradient between leaf and air, plant water 

status, leaf CO2 concentrations and temperature (Kaufmann, 1990; Collatz et al., 1991; Oxlade, 

2007; Smith et al., 2010).  The water status of the roots or soil has been recognised as having a 

direct effect on stomata (feed-forward response), meaning that stomatal conductance may 

decrease as the soil dries (Davies et al., 1994; Giorio et al., 1999).  Control of stomatal aperture 

also allows plants to regulate their canopy temperature (Jones, 1998a), since transpiration results 

in evaporative cooling of the leaf and thus a consequence of stomatal closure and reduced 

transpiration may be higher leaf temperatures (Costa et al., 2013). 

Boundary layer resistance arises due to the layer of still air next to the leaf or soil surface, which 

the water vapour must diffuse through before it can be transported higher in the atmosphere 

through turbulent mixing (Verhoef and Egea, 2013).  The thickness of the boundary layer is a 

function of wind speed, the shape and size of individual leaves, and the surface roughness of the 

canopy (Kramer and Boyer, 1995).  When wind speeds are high, and hence boundary resistance is 

low, stomatal resistance/aperture plays the largest role in controlling water vapour loss from the 

leaf (Kaufmann, 1990).  Conversely, when wind speeds are low and the boundary layer is thick, 

stomatal aperture has little effect on transpiration rate as boundary layer resistance dominates 

(Jones, 1998a; Taiz and Zeiger, 2006).  Additionally, in large planted areas, stomatal aperture and 

the shape and size of individual leaves are less important controls on ET than the surface 

roughness, and hence the boundary layer resistance of the whole crop canopy (Kramer and Boyer, 

1995). 

Transpiration rates also vary between plant types, for example due to differences in the size and 

number of stomata, and the total leaf area available for transpiration in different species (Azam-

Ali, 2013).  Additionally, leaf morphological characteristics such as size and shape, presence of leaf 

hairs and sunken stomata may affect the movement of air around the leaf, thus affecting the 
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boundary layer resistance and influencing transpiration rate (Taiz and Zeiger, 2006), and leaves 

with an impermeable, waxy coating may also limit water loss (Nagase and Dunnett, 2012). 

1.3.3 Evapotranspiration 

Evapotranspiration (ET) is the combination of simultaneous evaporation from the soil and plant 

surfaces and transpiration from plants.  Both evaporation and transpiration are the same physical 

process, in which liquid water at a surface is converted to water vapour and subsequently 

replaced by more liquid water at that surface (Azam-Ali, 2013).  Although it is difficult to 

distinguish between the two processes, the portion of crop ET accounted for by evaporation or 

transpiration depends partly on the exposure of the soil surface, with soil evaporation dominating 

when crops are small or sparse and ground cover is low.  Crop growth stage and time of year are 

therefore important factors.  When ground coverage is high, transpiration is the dominant 

process accounting for the bulk of the total crop ET (Nouri et al., 2013).  Additionally, 

transpiration may slow or even stop when the soil water supply is limited, so that all ET is 

accounted for by evaporation (Castiglia Feitosa and Wilkinson, 2016) until the soil surface 

becomes dry and evaporation also stops (Allen et al., 1998). 

1.3.4 Factors affecting evapotranspiration  

In addition to crop type and management, ET is influenced by atmospheric factors including the 

energy available to convert liquid water to water vapour, the capacity of the atmosphere to hold 

water vapour at a particular air temperature (i.e. the relative humidity), and the turbulence of the 

atmosphere (Azam-Ali, 2013).  The main meteorological parameters influencing the rate of ET are 

solar radiation, air temperature, air humidity, and wind speed.  Solar radiation represents the 

primary supply of energy for the conversion of liquid water to water vapour; the amount of solar 

radiation reaching the surface depends on location (i.e. latitude) and time of year, as well as the 

cloud cover at any specific time (Allen et al., 1998).  Air temperature influences ET by providing 

some additional energy to the evaporating surface in the form of sensible heat, as well as 

reducing the energy required for the evaporation process (Tan et al., 2015).  The removal of water 

vapour from the evaporating surface is driven by the humidity gradient between the air and the 

leaf (Allen et al., 1998), which is described by the vapour pressure deficit (VPD) and is a function 

of air temperature and humidity.  In humid environments, the air is often close to saturation and 

can hold little more water vapour, thus resulting in low VPD and low ET rates, whereas in arid 

environments the VPD between the evaporating surface and the atmosphere is high, resulting in 

higher ET rates.  Wind affects the thickness of the boundary layer and hence the boundary layer 
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resistance, with higher wind speeds resulting in lower resistance and thus higher ET.  Additionally, 

high wind speeds promote turbulent mixing of the atmosphere, resulting in greater replacement 

of the saturated air above the evaporating surface with drier air, and thus allowing ET to take 

place at a faster rate (Tan et al., 2015). 

Together, these meteorological factors determine the maximum possible ET rate of a crop, known 

as the potential evaporation, ETp (encompassing both evaporation and transpiration).  For ET to 

proceed at its maximum potential there must be a continual supply of water to the evaporating 

surface (either through the leaf or the soil).  If the water supply is limited, ET will be restricted and 

actual ET (ETa) will be lower than ETp (Verhoef and Egea, 2013).  The water content of the soil and 

the frequency of surface wetting through either rainfall or irrigation therefore also play important 

roles in regulating ET rate, since decreasing SMC over time following wetting may restrict the 

supply of water to the evaporating soil and leaf surfaces resulting in reduced ET (Stovin et al., 

2013).  Indeed, several studies found that the ET rate of various green roof species declined 

exponentially over time as soil water availability was reduced (Berghage et al., 2007; Voyde et al., 

2010b).  Furthermore, some succulent species, including Sedum, may utilise Crassulacean Acid 

Metabolism (CAM) when soil moisture is restricted, whereby carbon dioxide is fixed at night and 

stomata are closed during the daytime, thus reducing ET and conserving water (Farrell et al., 

2013).  In contrast, other species may continue to photosynthesise, and therefore transpire, at a 

high rate even when substrate moisture becomes low (Cameron et al., 2006; Voyde et al., 2010b), 

and plant response to drying substrate will therefore depend on the particular species and any 

drought adaptation strategies that may be employed. 

1.3.5 Estimating evapotranspiration 

There are several methods of estimating crop ET, either through direct measurement or 

modelling.  Methods of direct measurement include the use of weighing lysimeters, which 

estimate ET based on weight changes over a specified time period after accounting for any gains 

or losses from precipitation, irrigation or drainage (Verhoef and Campbell, 2005).  This can give 

continuous, accurate values of ET for a range of spatial scales over very short time periods (e.g. 

half-hourly).  For example, ET can be calculated from lysimeter weight changes with Equation 1.1 

(Tan et al., 2015) using time steps as small as 10 minutes:  

    

𝐸𝑇(𝑡𝑖𝑚𝑒) =
𝑊𝑎 − 𝑊𝑏

𝑡𝑖𝑚𝑒
×

1

𝐴𝑝𝑙𝑜𝑡
 (Eq. 1.1) 
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where ET(time) is the ET in a specified time (mm per unit time), Wa is the initial weight of the load 

cell (kg), Wb is the weight after the specified time interval (kg) and Aplot is the area of the plot (m2).  

Vegetation in the lysimeter is isolated from the surrounding crop but must be identical in physical 

characteristics such as height and leaf area index to ensure accuracy and applicability of the 

measured ET to the whole crop (Allen et al., 1998).  However, depending on their size, lysimeters 

may be relatively expensive and difficult to install and maintain, and measurements may be 

labour-intensive (Verhoef and Egea, 2013), thus potentially limiting their use, particularly for short 

timescale measurements.    

An alternative method of estimating ET in a specified area is by measuring all other components 

of the soil water balance in order to determine ET (Verhoef and Egea, 2013): 

 

∆𝛩 = 𝑃𝑟 + 𝐼 + 𝐶 − 𝐸𝑇 − 𝐷 ± 𝑅 

 

where ΔΘ is the change in substrate moisture content over a particular time period, Pr is the 

precipitation received in the specified area over that time period, I is the irrigation received, C is 

the capillary rise into the root zone, D is the deep percolation and R is runoff, either into or out of 

the measurement area.  All parameters are typically measured in units of mm day-1.  Some 

moisture fluxes are often assumed to be negligible (e.g. C and, on a flat surface, R) or may be 

difficult and labour-intensive to measure, particularly on short time scales such as hours or days.  

The soil water balance method is therefore generally only suitable for estimating ET on time 

scales of a week or longer (Allen et al., 1998). 

Since evaporation is limited by the amount of energy available at the surface for converting liquid 

water to water vapour, ET can also be estimated using a modelling approach of energy flux 

measurements and the principle of energy conservation (Allen et al., 1998): 

 

𝑅𝑛 − 𝐺 − 𝜆𝐸𝑇 − 𝐻 = 0 
                    

where Rn is the net radiation reaching the surface, G is the soil heat flux, λET is the latent heat flux 

(i.e. the ET), and H is the sensible heat flux.  All fluxes are in MJ m-2 day-1 and can be either 

positive or negative.  In this approach, only vertical fluxes are included (i.e. horizontal advection is 

ignored), which means that it is only suitable for estimating the ET of large, homogenously 

vegetated areas.  Additionally, although values for Rn and G can be easily obtained through 

measurement or from climate data, H is difficult to measure, which can make it difficult to 

estimate ET using this method.  More complicated micrometeorological methods of estimating ET 

(Eq. 1.2) 

(Eq. 1.3) 
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include the Eddy Covariance method and the Bowen ratio energy balance, both of which also call 

for extensive, homogenously vegetated areas and may require specialist equipment to accurately 

measure meteorological and atmospheric parameters with high frequency (Verhoef and 

Campbell, 2005). 

There are also a number of widely utilised models that can be used to calculate ET using 

equations based on meteorological parameters, including Thornthwaite, Hargreaves, Priestley-

Taylor and Penman-Monteith models (Poë et al., 2015).  These equations place importance on 

various easily-measured meteorological parameters such as solar radiation (e.g. Hargreaves) or air 

temperature (e.g. Thornthwaite) to provide estimates of ET which must then be calibrated for the 

climate of a particular location to give more accurate estimates (Schneider, 2011).  Due to the 

disparity in ET estimates obtained with each of these models, a standardised model based on the 

Penman-Monteith equation was developed in FAO Drainage and Irrigation Paper No. 56 (Allen et 

al., 1998) and subsequently recommended for all ET calculations and provides methods for 

obtaining or estimating all of the necessary meteorological parameters (see Section 5.1.1).  

1.4 Sustainable irrigation of green roofs 

Depending on plant type, irrigation of green roof vegetation may be necessary for maintaining 

plant health and functioning, particularly the maintenance of ET, which are vital for the continued 

provisioning of ESs, such as cooling (Blanuša et al., 2013; Vaz Monteiro et al., 2017) and 

stormwater management.  Moreover, supplemental irrigation has been shown to significantly 

increase the surface and aerial cooling that can be achieved by some species, including Sedum, as 

a greater water supply allows more ET to take place (MacIvor et al., 2016), and irrigation has been 

suggested as a potential strategy for providing additional cooling during heat waves (Broadbent et 

al., 2017).  In addition, since climate change projections for the UK indicate an increased 

likelihood of summertime droughts (IPCC, 2013), supplementary irrigation of all green roofs is 

more likely to be required to maintain plant health (Van Mechelen et al., 2015).   

Increasingly limited water resources available for landscape irrigation (Section 1.1), along with the 

cost of installing irrigation systems on green roofs, highlights the need for sustainable irrigation 

management practices.  The use of potable water for irrigation of green roofs is considered to be 

unsustainable where water shortages occur (Moritani et al., 2013), and may be restricted in 

places where competition for limited resources is high (Silva et al,. 2014).  Consequently, Van 

Mechelen et al. (2015) suggest three categories of sustainable irrigation management strategies, 

which can be implemented individually or in combination: 
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1. Adaptations of irrigation requirements – including selection of plants with low irrigation 

requirements to minimise water use and optimisation of green roof materials to increase 

water holding capacity and thus water available to plants; 

2. Alternative irrigation sources – rainwater harvesting or reusing household wastewater can 

reduce potable water use and decrease pressures on sewerage systems.  However, the 

long-term sustainability of alternative water sources should also be considered in terms of 

potential impact on ESs provision – for example, irrigation with saline waters may result in 

salt accumulation in the substrate (Al-Hamaiedeh and Bino, 2010), consequently resulting 

in plant stress and reduced ET, which may compromise the provision of certain ESs (see 

Section 1.5). 

3. Control and monitoring of irrigation regimes – increasing water use efficiency by 

scheduling irrigation based on plant water needs, for example through monitoring of 

meteorological parameters and ET. 

As the rationale behind the research presented here is to use species selection to maximise ESs 

provision on green roofs (see Section 1.6), this study focuses on the strategies of using alternative 

water sources for irrigation, specifically greywater (Sections 1.4.2 and 1.5), and control of 

irrigation regimes through monitoring plant water use (Section 1.4.1). 

1.4.1 Scheduling irrigation based on evapotranspiration 

Irrigation management and scheduling has traditionally been practiced in the agricultural context 

in order to achieve maximum yields of high quality crops whilst also minimising water use and 

costs associated with irrigation.  Water use for agricultural irrigation in England and Wales tripled 

between 1970 and 2000 (Hess and Knox, 2002), putting water resources under pressure, 

particularly during periods of drought, and highlighting the need for careful irrigation 

management.  Irrigation scheduling provides farmers with information about their specific crop 

water requirements, enabling determination of the timing and quantity of irrigation required 

(Bean and Pitt, 2012).  Similarly, scheduling supplementary irrigation based on plant water 

requirements (i.e. ET of the particular species used) has the potential to reduce water 

consumption for irrigation of green roofs whilst also maintaining plant health, functioning and 

provision of ESs, particularly those dependent on high ET rates such as cooling and stormwater 

management. 

Methods of irrigation scheduling commonly employed in agriculture typically fall into two 

categories: direct measurement of soil water content and water balance methods (Jones, 2004).  
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Measurement of soil water may involve expensive equipment which can be difficult to install, use 

or interpret and may require the assistance of specialist consultants; irrigation is scheduled when 

a pre-determined target soil moisture deficit is reached (Verhoef and Egea, 2013).  Water balance 

methods involve daily recording of the volumes of water received by the crop through rainfall and 

irrigation and estimation of daily crop ET in order to continually estimate the water balance 

(Withers and Vipond, 1974); as with direct soil moisture methods, irrigation is scheduled when a 

pre-determined soil water deficit is reached.   

ET can be measured directly with an open-pan or weighing lysimeters, estimated from 

meteorological measurements, calculated from evaporation equations (Section 1.3.5), or 

obtained from advisory services at a cost (Hess and Knox, 2002; Verhoef and Egea, 2013).   

Disadvantages associated with soil moisture-based methods include cumulative errors in the 

estimated water balance that may eventually become large and require recalibration by direct soil 

moisture measurement, and the fact that plants may respond to changes in plant water status 

rather than soil water content (Jones, 2004).  Thus, an alternative to soil moisture-based methods 

for scheduling irrigation is the use of plant indicators to directly assess plant water stress; this 

could be through direct measurement of plant water content or measurement of plant processes 

that respond sensitively to water stress, such as stomatal conductance (Withers and Vipond, 

1974; Verhoef and Egea, 2013).   

1.4.2 Sustainable alternative water sources for irrigation of green roofs 

In the UK, landscape irrigation accounts for approximately 7% of domestic water consumption 

(Environment Agency, 2011), whilst in Australian cities, 30% of potable water is used for domestic 

irrigation (Pinto and Maheshwari, 2010), presenting a huge potential for water savings if 

alternatives such as recycled wastewater are used for irrigation instead.   In arid and semi-arid 

regions where water availability is limited due to low rainfall and high evaporation rates, 

wastewater (either treated sewage effluent or grey wastewater from houses) is already 

commonly used for irrigating crops – for example more than 70% of Israel’s wastewater is used 

for crop irrigation (Travis et al., 2010).  Another common use of recycled water in urban areas is 

for flushing toilets, which may reduce potable water use by up to 30% (Al-Hamaiedeh and Bino, 

2010).  Even temperate regions that currently have high rainfall levels and no shortage of 

freshwater are expected to experience water scarcity in the near future, especially in urban areas 

(Li et al., 2010b), and therefore using harvested rainwater and recycled domestic wastewater may 

provide an alternative sustainable water source for irrigation of green roofs. 
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The varying sources and compositions of these alternative water supplies may have 

environmental impacts, affecting the growth and functioning of the vegetation and soil chemistry 

and structure (Misra et al., 2010); this must be clearly understood before large-scale wastewater 

irrigation systems can be implemented.   

1.4.2.1 Rainwater harvesting 

Rainwater harvesting involves the collection and storage of rainwater from rooftops, land and 

road surfaces, and rock catchments, and offers a renewable and sustainable source of water for 

individual households and communities which may supplement regular water supplies (Abdulla 

and Al-Shareef, 2009).  It is already commonly practiced in many parts of the world – for example, 

in Australia 26% of households collect rainwater for reuse (Gurung and Sharma, 2014) – and in 

some countries, such as Spain, regulations dictate that rainwater harvesting systems must be 

included in new developments with large gardens and roof areas (Domènech et al., 2015).  

Collection of rainwater has the immediate benefit of reducing surface runoff and helping to 

prevent flooding, thus reducing the pressure on drainage systems and reducing the pollutant load 

delivered to water bodies (Ahmed et al., 2014).  Using harvested rainwater for tasks such as 

irrigation also reduces the demand for potable water, leading to financial savings and offering a 

more sustainable alternative irrigation method (Li et al., 2010b); indeed, modelling of extensive 

rainwater harvesting systems suggests that freshwater consumption may be reduced by up to 

87.6% in residential areas (Bocanegra-Martínez et al., 2014).  In arid and semi-arid regions, the 

use of harvested rainwater for irrigation may also improve the agricultural productivity of rain fed 

crops (Helmreich and Horn, 2009). 

1.5 Greywater for sustainable irrigation of green roofs 

Greywater is defined as the portion of household wastewater arising from the kitchen, laundry, 

bathroom and washbasins, but does not include black water from the toilet (Eriksson et al., 2002).  

As such, the quality of greywater is lower than potable water but better than municipal 

wastewater, i.e. wastewater from communities treated in sewage treatment plants (Pinto et al., 

2010).  Greywater can account for up to 75% of total household wastewater (Ghaitidak and 

Yadav, 2013), suggesting that there is great potential for its reuse for irrigation purposes, 

especially in arid and semi-arid regions where freshwater availability is low (Rodríguez-Liébana et 

al., 2014).  Indeed, it has been estimated that greywater reuse for agricultural and domestic 

irrigation may reduce potable water use by up to 50% (Al-Hamaiedeh and Bino, 2010), resulting in 

financial savings as well as the preservation of high quality potable water.  Recycling domestic 
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wastewater also benefits the environment by reducing the cost and energy consumption of 

wastewater treatment plants and reducing the pollutant load to the environment (Al-Jayyousi, 

2003).  Greywater provides greater volumes and is a more reliable supplementary water source 

than other methods of water conservation that is available all year, regardless of rainfall 

(Mohamed et al., 2013; Domènech et al., 2015).  

The chemical and physical properties of greywater vary greatly between regions and over time, 

and also depend on its source within the house: for example, greywater originating from the 

kitchen is often recognised as being more polluted than that from showers and washbasins (Al-

Jayyousi, 2003; Environment Agency, 2011), and is in fact sometimes excluded from the definition 

of greywater due to its high organic load (Criswell and Roesner, 2007).  The composition of 

greywater varies between households and geographical regions depending on the quality of the 

mains water supply, the products used, and the lifestyles and customs followed by individual 

households (Pinto et al., 2010).  Variations in water consumption and product use over time (e.g. 

differences between week days and weekends) and degradation of chemicals during transport 

and storage also affect the composition of greywater produced (Eriksson et al., 2002; Abed and 

Scholz, 2016).   

Despite its variability in chemical composition, greywater generally contains elevated levels of 

salts, surfactants, oil and grease, microbial contaminants such as pathogens, suspended solids, 

and organic matter (Misra and Sivongxay, 2009; Travis et al., 2010).  It also has higher 

concentrations of nutrients such as sodium (Na), nitrogen (N), phosphorus (P) and boron (B) than 

potable water (Rodda et al., 2011b).  The physical properties of greywater may also differ from 

potable water in terms of pH, electrical conductivity (EC), chemical and biological oxygen 

demands (COD and BOD), temperature, colour, and turbidity (Eriksson et al., 2002; Pinto et al., 

2010).  The high variability of chemical and physical properties of greywater makes it difficult to 

obtain average values, and differences in greywater composition may affect its impact on soils 

and vegetation when used for irrigation; thus, for consistency and repeatability, synthetic 

greywater is often used in laboratory experiments (Diaper et al., 2008; Travis et al., 2010). 

The chemical and physical properties of greywater must be taken into account when selecting 

sources and systems for irrigation of green roofs, as, in addition to potential health risks, irrigation 

with greywater may have negative impacts on the environment, such as increased nutrient 

leaching and groundwater contamination, deterioration of soil structure and chemistry, and plant 

damage (Wiel-Shafran et al., 2006; Pinto and Maheshwari, 2010; Sawadogo et al., 2014).  A 

summary of the potential impacts of greywater on soils and plants (discussed fully in Sections 
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1.5.1 - 1.5.3) is presented in Table 1.2.  Health risks associated with using greywater for irrigation 

mainly arise from the spread of pathogens from greywater to people, and through accumulation 

of potentially toxic chemicals such as metals in plant parts which are then eaten (Jiménez, 2006).  

Microbial growth in greywater may be promoted by high temperature (due to the use of warm 

water for personal hygiene) and by storage (Eriksson et al., 2002); health risks due to pathogens 

may thus be reduced by not storing the greywater and by avoiding direct contact with it.  This has 

implications for the irrigation method used, as surface spraying may spread pathogens through 

inhalation of aerosols or contact with the water, whereas sub-surface irrigation, without 

generating any runoff, minimises human contact and health risks (Jeppesen, 1996).   

 

Table 1.2: Characteristics of greywater and their potential impacts on soils and plants. 

Greywater 

characteristic 
Impacts on soils Impacts on plants Other 

High pH 

Increases soil pH which can 

increase the likelihood of 

micronutrient deficiencies. 

Micronutrient 

deficiencies can limit 

plant growth. 
Reduced plant growth 

decreases the canopy 

area available for 

capture of rainfall or 

air pollutants and may 

decrease overall ET. 

High 

concentrations 

of salts / high 

EC and SAR 

Increased salinity of the soil 

(increased EC and SAR), 

leading to deterioration of 

soil structure and reduced 

hydraulic conductivity. 

High uptake of salts can 

reduce metabolic 

processes and limit plant 

growth.   

High 

concentrations 

of surfactants, 

oils and grease, 

and organic 

matter 

Reduces the soil’s hydraulic 

conductivity and may cause 

the soil to become water 

repellent, thus reducing 

infiltration rates. 

Reduced hydraulic 

conductivity makes it 

difficult for plants to 

take up water and may 

restrict transpiration. 

Reduced transpiration 

reduces provision of 

ESs such as cooling and 

restoration of 

substrate retention 

capacity. 

High 

concentrations 

of nutrients 

May accumulate in the soil 

or leach into groundwater 

and freshwater bodies. 

May act as a fertiliser, 

especially in nutrient-

poor soils, and increase 

growth and yield.  

However, nutrients may 

accumulate to toxic 

levels and restrict plant 

growth or health. 

Potential human 

health risk if some 

nutrients or metals 

accumulate to toxic 

quantities in edible 

plant tissues. 
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The health implications of using greywater for irrigating edible crop plants have received a lot of 

attention with many studies investigating the uptake and accumulation of potentially toxic metals 

such as cadmium (Cd) and B in edible plant tissues (Finley et al., 2009; Misra et al., 2010; Rodda et 

al., 2011b). Treatment of greywater prior to use may reduce health risks by reducing pathogen 

and nutrient content, as well as removing surfactants, suspended solids and organic matter and 

thus also improving greywater quality (Winward et al., 2008; Li et al., 2009; Martín et al., 2013).  

Treatment systems may be biological (e.g. constructed wetland), chemical (e.g. coagulation) or 

physical (e.g. filtration) (Li et al., 2009; Dalahmeh et al., 2014).  However, since green roof 

ornamental plants are not grown for consumption, it is generally considered acceptable to irrigate 

them directly with wastewater, without the need for treatment first (Niemczynowicz, 1999).  

Indeed, recent research suggests that green walls could themselves be used as treatment systems 

for greywater (Fowdar et al., 2017; Prodanovic et al., 2017), thus providing a sustainable irrigation 

source for a range of species to be grown whilst also producing runoff of higher quality than the 

original greywater that could then be used for other purposes such as toilet flushing.  

1.5.1 Effect of greywater irrigation on soils 

In addition to the human health risks discussed previously, greywater irrigation can also have 

negative impacts on the soil and its ability to support plant growth, mainly due to salinity, 

increased pH and EC, and the presence of surfactants and oils in the greywater compared to 

potable water (Gross et al., 2005; Finley et al., 2009; Albalawneh et al., 2016).  Impacts on the soil 

will therefore differ due to the great variability in greywater composition, as well as due to 

variation in soil structure and chemistry between different soil types (Travis et al., 2010).  The pH 

of greywater has consistently been found to be higher than that of tap water (often as high as 

9 or 10), which consequently raises the pH of the soil (Pinto et al., 2010; Ali et al., 2013) and may 

therefore increase the likelihood of micronutrient deficiencies, potentially limiting plant growth 

(Christova-Boal et al., 1996; Siggins et al., 2016). 

Soils continuously irrigated with greywater may accumulate nutrients and metals, including Na, B, 

N, P, calcium (Ca), potassium (K), magnesium (Mg), zinc (Zn), manganese (Mn), and copper (Cu) 

(Gross et al., 2005; Rodda et al., 2011b).  Accumulation of salts, especially sodium, has a 

detrimental effect on the soil; Sodium Adsorption Ratio (SAR) describes the concentration of Na+ 

relative to the concentrations of Ca2+ and Mg+, both of which counteract the negative effects of 

Na+.  High SAR (generally regarded as > 6; Al-Hamaiedeh and Bino, 2010) reduces the soil’s ability 

to support plant growth by deterioration of soil structure (e.g. collapse of soil aggregates) and by 
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reducing the hydraulic conductivity, thus making it difficult for plants to take up water (Al-

Hamaiedeh and Bino, 2010; Rodda et al., 2011b; Deinlein et al., 2014).  Indeed, Misra and 

Sivongxay (2009) found that the hydraulic conductivities of soils irrigated with greywater were 

only 5 – 16% of what they were when the same soils were irrigated with tap water.  Addition of 

surfactants, oils and organic matter can also reduce soil hydraulic conductivity, and may cause the 

soil to become water-repellent, particularly at the surface (Travis et al., 2010), which can also lead 

to reduced infiltration rates (Travis et al., 2008; Kaboosi, 2016) and thus reduced capacity of a 

green roof to retain rainfall and provide stormwater management service. 

Regular rainfall may prevent the accumulation of salts and metals in the soil by washing them out 

(Criswell and Roesner, 2007) whilst also preventing soil pH and EC increasing due to greywater 

irrigation; regional climate may therefore influence the impact of greywater on soils.  In arid areas 

where rainfall is low, alternating greywater irrigation with freshwater leaching may have the same 

effect and prevent accumulation (Al-Hamaiedeh and Bino, 2010; Pinto et al., 2010).  Substantial 

freshwater leaching during the wet season has also been shown to eliminate soil hydrophobicity 

that was originally caused by irrigation with wastewater (Nadav et al., 2013).  However, if 

nutrients such as Na have already accumulated through long-term use of greywater, freshwater 

leaching may result in contamination of the groundwater supply (Misra and Sivongxay, 2009). 

1.5.2 Effect of greywater irrigation on plants 

Irrigation with greywater may also impact plant health, growth and functioning, either positively 

or negatively.  Nutrients in wastewaters have been recognised as a possible source of nutrition for 

crops and vegetation that may provide a cheaper alternative to fertilisers and improve yield, 

whilst also providing a sustainable resource for irrigation in water-scarce areas (Pescod, 1992; 

Travis et al., 2010; Ali et al., 2013).  Indeed, several studies have found higher uptake and 

concentrations of both macro- and micro-nutrients including N, P, K, Na Ca, Mg, Zn, B, sulphur (S), 

and iron (Fe) in the tissues of plants irrigated with greywater (Misra et al., 2010; Rodda et al., 

2011b).  However, continued use of greywater may lead to accumulation and increased uptake of 

nutrients in the soil and plant tissues, some of which may prove toxic (e.g. Na, B, Zn and 

aluminium (Al)) even at relatively low concentrations, and thus adversely affect plant health and 

growth (Christova-Boal et al., 1996; Wiel-Shafran et al., 2006).  For example, high uptake of both 

Na+ and Cl- can reduce metabolic processes and photosynthetic activity, thereby limiting plant 

growth (Deinlein et al., 2014). 
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Plant tolerance to nutrient concentrations varies between species and is therefore likely to 

influence any impacts of greywater irrigation (Pinto et al., 2010); for example, citrus trees are 

considered to be sensitive to boron and should not be exposed to concentrations greater than 0.5 

mg L-1, whereas bell peppers are considered semi-tolerant and can be irrigated with 

concentrations up to 2 mg L-1 (Wiel-Shafran et al., 2006).  Indeed, Sharvelle et al. (2012) found 

that common garden plants, including small trees, shrubs and grasses, varied in their sensitivity to 

long-term greywater irrigation, ranging from an improvement or no difference to a significant 

decline in plant health, and Ouldboukhitine et al. (2014) reported deterioration in the visual 

health of periwinkle irrigated with greywater for 6 months, whilst there was no apparent impact 

on ryegrass. Indeed,  

The vast majority of studies to date, however, have investigated the impact of greywater on 

vegetable crop species, particularly lettuce, which is considered to be sensitive to water quality 

and is therefore frequently used as a model plant (Wiel-Shafran et al., 2006).  Nevertheless, the 

impacts of greywater irrigation on plant growth and yield (e.g. shoot and root biomass) have still 

been shown to vary: whilst some studies found increased plant growth and yield compared to 

freshwater irrigated plants (Misra et al., 2010; Ali et al., 2013) other studies found no difference 

between tap water and greywater irrigation (Finley et al., 2009; Pinto et al., 2010), and some 

reported a reduction in plant growth and biomass when irrigated with greywater compared to tap 

water (Travis et al., 2010).  Effects of greywater on plant health have also been variable, as 

although the majority of studies indicate no detrimental effects to plant health (Finley et al., 

2009; Al-Hamaiedeh and Bino, 2010; Pinto et al., 2010), others have observed negative effects 

such as symptoms of toxicity or chlorosis on the leaves (Bubenheim et al., 1997; Wiel-Shafran et 

al., 2006), or even plant death (Sawadogo et al., 2014).  In their study, Sawadogo et al. (2014) 

reported that irrigation with highly concentrated laundry greywater resulted in the death of all 

lettuce and okra plants after 12 days and 20 days respectively, again highlighting the difference in 

tolerance between plant species, 

The differences in the impacts on plant health and growth may be partly due to regional 

differences and variations in soil types and the compositions of greywater used; for example, 

Finley et al. (2009) note the low nutrient content of their greywater whilst Rodda et al. (2011b) 

suggest that low nutrient levels in their soil limited the growth of tap water-irrigated plants.  

Furthermore, Siggins et al. (2016) hypothesise that soil EC, pH and SAR were low in their study, 

even with greywater irrigation, as a result of high annual rainfall flushing greywater constituents 

out of the sandy soil.  Additionally, the irrigation method may influence the effect of greywater on 
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plant health, as Misra et al. (2010) suggest that the leaf chlorosis identified by Wiel-Shafran et al. 

(2006) may have been due to greywater directly contacting the leaves during irrigation, compared 

to their application of greywater directly to the soil.   

1.5.2.1 Impact of phosphorus, boron and sodium on plants 

The highest concentrations of P are typically found in laundry greywater (Eriksson et al., 2002) 

due to their prevalence in laundry detergents.  In recent years, however, many countries have 

moved to limit the concentration of phosphates in laundry detergents to reduce the nutrient load 

reaching water bodies and protect against eutrophication; EU legislation limiting the 

concentration of P in laundry detergents to 0.5 g per recommended dosage came into effect in 

the UK in 2013 (European Commission, 2015).  Phosphorus is classed as an essential plant 

macronutrient, and as such some of the P applied through irrigation is taken up and utilised by 

plants.  However, the majority of P adsorbs to soil particles; thus, when soil becomes saturated 

with P, and application by greywater irrigation continues, excess P may leach into groundwater or 

water bodies leading to eutrophication (Christova-Boal et al., 1996; Turner et al., 2013).  Indeed, P 

leaching from green roofs is well-documented even under freshwater irrigation regimes, with the 

substrate and fertilisers thought to be the major sources (Berndtsson et al., 2009).  Enhanced 

application of P with greywater irrigation is therefore likely to increase leaching and further 

reduce the quality of the runoff, and it has been suggested that, without careful management, P 

leaching could limit the environmental sustainability of greywater for irrigation (Turner et al., 

2013).  Since species differ in their uptake of nutrients, P quantities in the runoff may vary with 

plant type used (Sharvelle et al., 2012).  Excess P is not directly toxic to plants, but may result in 

deficiencies of other nutrients such as Zn, Fe, Mn and Ca; visual symptoms of these deficiencies 

typically include interveinal chlorosis, browning of leaf edges, stunted growth and small, distorted 

leaves (Jones, 1998b).  

Boron is a common constituent of many household products including laundry detergents, soaps 

and cleaning products.  Although it is considered an essential micronutrient for plants, B is known 

to be directly toxic to many species at low concentrations and may consequently limit plant 

growth (Wiel-Shafran et al., 2006).  Different plant types have differing B requirements for 

growth, leading to variation in B uptake and tolerance levels between species (Marschner, 1995): 

for sensitive plants, B concentrations above 0.5 mg L-1 are considered toxic (Almuktar et al., 2015).  

Boron is taken up in solution by the roots and transported to stems and leaves where it may 

accumulate, resulting in toxicity symptoms of necrosis and chlorosis of leaf tips and margins, 
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particularly in older leaves (Türker et al., 2014).  The rate of B uptake increases with higher 

transpiration rates (since it moves with the transpiration stream), higher temperatures and lower 

soil pH (Türker et al., 2014).  Boron also has a high affinity for the soil and in the short-term may 

be primarily adsorbed onto soil particles, thus keeping B concentrations low in the soil solution, 

meaning that there may be a lag between irrigation with B-rich waters and a visible effect on 

plant growth (Grattan et al., 2015).  Boron readily leaches from soils, and concentrations in 

leachate have been observed to increase over time (Sharvelle et al., 2012).  

Sodium is commonly found in laundry detergents, and concentrations are typically higher in 

greywater from the laundry and kitchen compared to bathroom greywater (Travis et al., 2010).  

Although not classed as an essential nutrient for most species, sodium is generally considered to 

be beneficial for plants; however, plant responses to sodium differ between species, and high 

uptake of Na+ (as well as Cl-) into plant tissues from saline soils can prove toxic to species with low 

tolerances (Marschner, 1995; Deinlein et al., 2014).  Moreover, sodium accumulation in soils can 

result in deterioration of soil structure, reduced infiltration, and reduced ability of the soil to 

support plant growth, for example by decreasing the soil’s ability to transmit water thus making it 

harder for plants to take up water (Misra and Sivongxay, 2009; Travis et al., 2010; Rodda et al., 

2011b).  As discussed in Section 1.5.1, SAR is an indicator of soil salinity (describing the content of 

Na+ ions relative to Ca2+ and Mg+); soil structure and permeability are likely to decline when SAR is 

6 or higher, consequently impacting plant growth (Wiel-Shafran et al., 2006).  Where Na 

accumulates in the soil, leaching is also a concern as the Na may be flushed out (e.g. by rainfall or 

irrigation with freshwater) leading to contamination of groundwater supplies (Misra and 

Sivongxay, 2009).   

1.5.3 Effect of greywater on the provision of ecosystem services 

Irrigation with greywater can also impact plant functioning and provision of ESs, although this has 

rarely been studied.  Reduced plant growth and poor plant health that may result from greywater 

irrigation could mean that there is a smaller canopy area available for capturing rainfall and air 

pollutants, thus reducing the vegetation’s capacity for stormwater management and 

improvement of air quality.  Deterioration of soil quality due to greywater irrigation may also 

compromise a green roof’s capacity for stormwater management by reducing the infiltration rate 

and the soil’s water retention capacity (Misra and Sivongxay, 2009; Kaboosi, 2016).  

Reduced soil hydraulic conductivity caused by accumulation of salts and surfactants can make it 

more difficult for plants to take up water, thus potentially limiting transpiration and reducing 
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water uptake from the soil.  Consequently, the health of the plants and their ability to provide ESs 

may be compromised, since reduced water uptake from the soil will slow the restoration of 

substrate water retention capacity between rainfall events (Ouldboukhitine et al., 2014), and 

cooling will be reduced when transpiration is suppressed (Blanuša et al., 2013; Vaz Monteiro et 

al., 2017).  Indeed, Ouldboukhitine et al. (2014) hypothesised that reduced plant transpiration 

with long-term (6 months) greywater irrigation was a major factor affecting the thermal 

performance of green roof modules compared to those irrigated with freshwater.  Some studies, 

however, report  no reduction in plant water use over 60 days with greywater compared to tap 

water irrigation (Misra et al., 2010; Pinto et al., 2010).  Conversely, Sharvelle et al. (2012) found 

that greywater-irrigated plants took up significantly more water than those irrigated with tap 

water (42.8% of the total irrigation water compared to 19.8%), although this was partly attributed 

to the significantly higher above-ground biomass of the greywater irrigated plants, rather than 

higher transpiration, resulting in greater water uptake. The source and quality of the greywater 

used for irrigation has also been shown to influence plant transpiration (Eriksson et al., 2006), 

where irrigation with four out of seven greywater samples resulted in higher transpiration in 

willow than with the control treatment, whilst two greywater samples with high EC and pH > 9.0 

proved toxic to willow and substantially decreased transpiration. 

1.5.4 Impacts of greywater irrigation on runoff quality improvement 

Green roofs may also be able to filter the greywater used for irrigation, by removing and storing 

(within substrate and plant tissues) some of the chemical constituents and improving the overall 

quality of the drainage water from the roof.  Soils are well-known to be able to perform this 

function – for example, Misra and Sivongxay (2009) observed lower pH, EC and SAR and a 40 – 

60% reduction in the concentrations of Na and K in runoff from soil cores compared to initial 

untreated laundry greywater.  Plant presence may enhance this service and further improve the 

quality of the runoff, particularly once the vegetation becomes mature and well established 

(Köhler, 2002).  Indeed, studies have found that concentrations of some nutrients are frequently 

lower in runoff from vegetated roofs than in runoff from roofs with just bare substrate (e.g. 

Emilsson et al., 2007; Vijayaraghavan et al., 2012).   This is thought to be due to a combination of 

additional uptake and storage of some elements in plant tissues as well as enhanced biological 

activities (such as degradation of organic matter) in the rhizosphere when plants are present, 

compared to bare soil (Gagnon et al., 2012).  As such, environmental factors such as season and 

temperature, which affect the rate of some biological processes, are also thought to influence the 

quality of runoff from green roofs (Buffam et al., 2016).  Plant species differ in their capacity to 
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take up nutrients, and so runoff quality also varies with species used (Fowdar et al., 2017); 

indeed, studies have identified significant differences in the quality of runoff from different 

species (Sharvelle et al., 2012; Aloisio et al., 2016), although this has received little attention to 

date and warrants further investigation.   

In addition to the type, age and maintenance practices of a green roof, the inherent nutrient 

content and physical properties of the substrate used also influence the quality of the runoff 

(Berndtsson et al., 2006; Mendez et al., 2011; Whittinghill et al., 2016).  Green roofs may act as a 

source of some nutrients rather than a sink, particularly when they are newly established or 

following application of fertilisers (Berndtsson et al., 2006; Emilsson et al., 2007), resulting in 

higher concentrations in the runoff than in the irrigation water or rainfall and thus potentially 

delivering a higher pollutant load to downstream water bodies (Buffam et al., 2016).  In particular, 

phosphorus leaching from green roofs is frequently reported (Dietz and Clausen, 2005; Van Seters 

et al., 2009), and the source of P is thought to be fertilisers added to the green roof or the 

substrate itself, especially if it contains compost (Berndtsson et al., 2009).  Additionally, studies 

have found that nutrient concentrations in runoff from green roofs tend to be greater following 

heavier rainfall (Teemusk and Mander, 2007) and at the onset of rainfall due to the ‘first flush’ 

effect (Berndtsson et al., 2006; Razzaghmanesh et al., 2014), with concentrations decreasing as 

rainfall events proceed as well as over longer periods of time as nutrients are continuously 

leached from the green roof (Razzaghmanesh et al., 2014).  Leaching of accumulated salts from 

the soil may also result in the runoff having higher EC than the irrigation water (Alfiya et al., 

2012).  Potential soil amendments for green roofs, such as addition of biochar, may enable the 

soil to retain more nutrients (as well as greater volumes of water), thus resulting in even lower 

concentrations of nutrients in the runoff (Beck et al., 2011).  

As well as the characteristics of the substrate used on a green roof, the chemical and physical 

properties of the water used for irrigation obviously play a large role in determining the quality 

improvement of the runoff.  Since greywater is generally of lower quality than tap water or 

rainwater, it is likely that the runoff from a greywater irrigated green roof will be lower quality 

than runoff from a tap water irrigated green roof, although this has received little attention in the 

literature.  When runoff quality studies have been conducted, results typically show that dissolved 

solids and concentrations of nutrients such as B and N are higher in runoff from treatments 

irrigated with greywater compared to tap water, as are physical parameters such as EC and SAR, 

presumably due to higher concentrations of salts in the irrigation greywater (Alfiya et al., 2012; 

Sharvelle et al., 2012). 



 Chapter 1 

32 
 

1.6 Research scope and aims 

It is clear from results of previous studies that green roofs have good potential to provide ESs such 

as stormwater management, with many studies reporting significant reductions in runoff with 

green roofs, and vegetation playing a vital role in addition to substrate alone (Section 1.2.1).  

However, although some studies have broadly identified some differences in the provision of 

stormwater management with different vegetation types (Lundholm et al., 2010; Nagase and 

Dunnett, 2012; Soulis et al., 2017), the majority of studies continue to focus on Sedum, and there 

have been few attempts to identify the characteristics of vegetation that could maximise rainfall 

retention and the consequent reduction in runoff.  As discussed in Section 1.2.1.3, the magnitude 

of the rainfall retention service provided by vegetation may vary with differing leaf and canopy 

attributes and, in particular, with varying ET rates since restoration of the substrate’s water 

retention capacity through ET between storms has been identified as the key role played by 

vegetation on a green roof (Stovin et al., 2015). 

One of the aims of the present research is therefore to investigate the potential of possible green 

roof plants to provide stormwater management and the key mechanisms for provision.  The 

retention performance of three broadleaf species with large, complex canopies and varying leaf 

traits (e.g. pubescence) will therefore be compared to a typical green roof succulent species, 

Sedum, in terms of their ability to intercept rainfall.  Furthermore, the impact of the inherently 

higher ET rates of the broadleaf species compared to Sedum on restoration of substrate water 

retention capacity, and thus overall stormwater management provision, will also be investigated. 

Additionally, this study aims to investigate the effect of varying climatic conditions and water 

deficit on the ET of each species, thus influencing their ability to provide stormwater management 

on green roofs in different climates and locations, as discussed in Section 1.3.4.  ET rates are 

known to decrease when substrate moisture becomes restricted, which may be common on 

extensive green roofs when irrigation is not available, due to the thin substrate layer.  

Meteorological variables, including air temperature and humidity, also influence the rate at which 

ET can take place, indicating that the rate of ET between storms, and thus the extent to which the 

substrate’s retention capacity is restored, will vary with local weather conditions and between 

green roofs located in areas with different climates (Berretta et al., 2014; Sims et al., 2016).   

Additionally, plant responses to these conditions may vary, for example through water 

conservation strategies as discussed in Section 1.3.4, but few studies have attempted to 

characterise restoration of substrate retention capacity through ET for different species under 
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different environmental conditions (e.g. Poë et al., 2015), particularly for species with inherently 

high ET rates.  This research therefore aims to identify the optimum climatic conditions for each 

of the species with good potential for stormwater management, under which ET takes place at an 

optimal rate, thus maximising the provision of stormwater management in particular climates or 

locations.  As such, the ET of the three broadleaf species and Sedum during week-long drying 

down periods will be quantified in controlled environment conditions simulating various potential 

UK summertime weather scenarios.  

As discussed in Section 1.4, irrigation of all green roofs is likely to become necessary in the 

summertime in order to maintain plant health and provision of ESs, and especially when species 

with high ET rates are used.  Additionally, provision of ESs dependent on high ET rates, such as 

cooling, may be significantly increased when supplemental irrigation is available (MacIvor et al., 

2016).  Since water resources available for green roof irrigation are also likely to be limited, 

however, there is a need to identify strategies for sustainable irrigation.  ET-based irrigation 

scheduling has proven to be a successful method of irrigating agricultural crops to maximise yield 

while also minimising water use (Section 1.4.1) and one of the aims of this research is therefore to 

investigate the potential of a similar irrigation scheduling model for green roofs, based on the 

daily ET of each of the four species, estimated using a standardised version of the Penman-

Monteith equation (see Chapter 5 for details), in various hypothetical UK summertime weather 

conditions.  Few studies have quantified the ET of green roof vegetation (Voyde et al., 2010b; Poë 

et al., 2015), but none of these have attempted to use this information for the purpose of 

scheduling irrigation. 

Similarly, this study aims to explore the potential of greywater as a sustainable alternative source 

of water for supplementary irrigation of green roofs, thus also contributing towards the 

conservation of high quality potable water in urban areas whilst maintaining plant health and 

provision of ESs, and enabling inclusion of species with high ET rates on green roofs.  Although 

several previous studies have investigated greywater as an option for irrigation, any impacts of 

greywater on substrates and plants are still unclear, as discussed in Sections 1.5.1 - 1.5.2.  

Moreover, most studies have primarily focussed on vegetable crops or wetland species (e.g. 

Eriksson et al., 2006; Finley et al., 2009; Al-Hamaiedeh and Bino, 2010), with very few testing 

green roof species, particularly those with high ET rates, although different species have been 

shown to respond differently to greywater (Sharvelle et al., 2012).  Additionally, very little 

research has been conducted to investigate whether irrigation with greywater impacts the 

provision of ESs, particularly those dependent on ET such as stormwater management and cooling 
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(Eriksson et al., 2006; Ouldboukhitine et al., 2014), and results of these studies are also not 

conclusive.   

The responses of Sedum and the three broadleaf species to short-term irrigation with greywater 

will therefore be tested, and their health, growth and ability to provide ESs compared to plants 

irrigated with tap water over the same time period.  Since impacts of greywater on plants and 

substrates have been shown to vary depending on the quality of the greywater used for irrigation, 

an industry standard synthetic greywater will be used throughout the study to ensure that all 

species are always exposed to greywater of the same quality (see Sections 2.7.1 and 6.1.2 for full 

details).  

Previous studies have frequently reported an improvement in the quality of runoff from green 

roofs compared to runoff from conventional roofs and, in some aspects, compared to the influent 

water (e.g. rainfall; Teemusk and Mander, 2007; Speak et al., 2014).  Using greywater for 

irrigation of a green roof may decrease the quality of the runoff, although it may still be improved 

compared to the influent greywater itself, as discussed in Section 1.5.4.  However, very few 

studies have examined the impact of greywater irrigation on runoff quality (Alfiya et al., 2012; 

Sharvelle et al., 2012), and there is no clear evidence regarding the ability of different plant types 

to improve the quality of the greywater and thus the quality of the runoff.  This study therefore 

aims to investigate how the four different plant species may vary in their ability to provide runoff 

quality improvement on green roofs and how this service may be impacted when greywater is 

used for irrigation. 

1.6.1 Research aims 

The overarching aims of this research were therefore to understand how provision of stormwater 

management, and particularly the role of ET, can be maximised by appropriate plant selection.   

This would be achieved by using broadleaf species with high ET rates that may be suitable for use 

on green roofs compared to a traditionally used Sedum, whilst also investigating strategies for 

sustainable irrigation of these species.  Six experiments and a modelling study were therefore set 

up aiming to: 

• Understand how stormwater management provision is influenced by the varying leaf and 

canopy characteristics and ET rates of potential green roof species (Chapter 3); 
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• Investigate, in detail, the role of ET in stormwater management provision and how it is 

influenced by varying weather and substrate moisture conditions, enabling identification 

of optimal weather conditions for ET with each species (Chapter 4); 

• Explore the potential of a simple ET-based model for scheduling irrigation of green roofs 

in order to maintain plant health and provision of ESs such as stormwater management 

and cooling (Chapter 5); 

• Investigate any impacts of greywater on plant health and growth, provision of ESs and 

runoff water quality in order to assess its potential for use as a sustainable water source 

for supplementary green roof irrigation (Chapter 6). 

1.6.2 Context of experimental setup and plant selection 

Although this study takes an experimental and modelling approach to investigate the maximum 

potential of various species to provide stormwater management, particularly through ET, and the 

potential of greywater for sustainable irrigation of these species, plant choices are based on 

maximising the potential of urban vegetation, and green roofs in particular, to provide regulating 

ESs (such as stormwater management and cooling).  As discussed in Section 1.1.1.1, green roofs 

provide a way for vegetation to be incorporated into urban areas without requiring additional 

space, whilst also offering insulation to the building in addition to providing a range of ESs.  

Planting choices on extensive green roofs have typically been dominated by succulent species, 

especially Sedum, due to the harsh environmental conditions (e.g. water deficit, high wind speeds 

and temperature extremes) on green roofs and their ability to survive without irrigation (Rowe et 

al., 2014).   

Recent studies, however, have indicated that other species may also be able to survive these 

harsh conditions (MacIvor and Lundholm, 2011; Nagase and Dunnett, 2013; Savi et al., 2016), and 

the range of potential species is further expanded when supplementary irrigation is available 

(Dunnett and Nolan, 2004; Nagase and Dunnett, 2010; MacIvor et al., 2013), as with semi-

extensive green roofs.  Furthermore, previous research at the University of Reading showed that 

some of these potential alternative broadleaf species were able to provide cooling to a 

significantly greater extent than Sedum, due to differing leaf and canopy attributes (e.g. leaf 

colour and pubescence and larger canopies) and their inherently higher ET rates (Blanuša et al., 

2013; Vaz Monteiro et al., 2016a; 2017).  Three of these broadleaf species, having already shown 

good cooling provision, were therefore selected for this study along with Sedum for comparison, 

with the aim of testing the maximum ability of a semi-extensive green roof planted with these 
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species to also provide stormwater management.  These broadleaf species are all low to medium 

growing perennial plants commonly found in UK gardens, and which represent the largest, most 

vigorous plant types likely to be supported on a semi-extensive green roof, thus maximising 

provision of ESs. 

The setup of all experiments therefore reflected this aim to quantify the maximum potential of 

each species to provide stormwater management and to investigate the impact of irrigation with 

greywater on these plants.  Experiments were thus carried out in controlled environmental 

conditions (i.e. inside a glasshouse or in controlled environment chambers).  However, to 

replicate a semi-extensive green roof where possible, an industry standard green roof substrate 

was used in the majority of experiments and the substrate depth in all experiments was between 

8 and 15 cm.  To fully quantify the influence of the various plant species, a control treatment 

consisting of bare, unvegetated substrate was also used in all experiments. 
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Chapter 2  

General materials and methods 

2.1 Overview of experiments 

Six experiments were carried out to address the research aims set out in Section 1.6.1.  

Experiments 1 – 4 were designed to investigate the ability of different plant species to maximise 

stormwater management provision on a green roof, through both interception and restoration of 

the substrate retention capacity.  Experiments 5 and 6 studied the impacts of using greywater for 

irrigation on plant health, growth and provision of ecosystem services and on runoff water 

quality.  Table 2.1 summarises all experiments; full details of materials, set-up and measurements 

can be found in the following sections. 

Table 2.1: Overview of all experiments carried out in the study and the chapter(s) in which they 

are presented. 

Expt. Dates Substrate Treatments Set-up Chapter 

1 

24th March – 

13th April 

2014 

Meadow Roof 

Medium; 11 cm 

depth 

8x Heuchera, Salvia, 

Stachys, Sedum, 

control 

Individual plants 

in 2 L containers 
3 

2 

1st – 14th 

September 

2015 

Meadow Roof 

Medium; 8 cm 

depth 

6x Heuchera, Salvia, 

Stachys, Sedum, 

control 

Small canopies in 

30 x 60 cm trays 
3 

3 
12th – 19th 

April 2016 

Peat-based 

compost; 15 cm 

depth 

6x Heuchera, Salvia, 

Stachys, Sedum, 

control 

Small canopies in 

40 x 60 cm trays 
3, 5 

4 

9th March – 

30th April 

2015 

Meadow Roof 

Medium; 11 cm 

depth 

6x Heuchera, Salvia, 

Stachys, Sedum, 

control 

Individual plants 

in 2 L containers 
4 

5 

22nd May – 

18th July 

2014 

Meadow Roof 

Medium; 11 cm 

depth 

16x Heuchera, Salvia, 

Stachys, Sedum, 

control; TW, GW 

Individual plants 

in 2 L containers 
6 

6 

22nd May – 

13th July 

2015 

VC mix; 11 cm 

depth 

22x Heuchera, Salvia, 

Stachys, Sedum, 

control; TW, GW 

Individual plants 

in 2 L containers 
6 
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2.2 Environmental conditions for experiments 

All experiments were carried out at the University of Reading Whiteknights campus, Reading, UK.  

Experiments 1 – 3 and 5 – 6 took place in ventilated glasshouses to allow study of water inputs 

and usage without the interference of precipitation.  Air temperature (T) and relative 

humidity (RH) were measured in the glasshouses every 30 minutes throughout all experiments 

using a Tinytag Plus 2 Data logger (Gemini Data Loggers, Chichester, UK), which was shielded from 

direct sunlight.  

Experiment 4 was carried out in controlled environment (CE) growth cabinets so that the impact 

of specified environmental conditions on water uptake could be studied.  Two Fisons 600G3/TL 

growth cabinets (Fisons Scientific Apparatus, Loughborough, UK), each with a growing area of 

0.72 m2, were used in the experiment.  A day length of 16 hours (05:00 – 21:00 h) was chosen to 

replicate UK summertime conditions.  This was provided by 13 Philips 40 W warm white 

fluorescent tubes, which provided a light intensity of 200 μmol m-2 s-1 (measured at the beginning 

of the experiment with an SKP 215 PAR Quantum Sensor; Skye Instruments, Powys, UK).  There 

was no function for the growth cabinets to generate wind, but a vertical air flow of 0.2 m s-1 

within the cabinet was provided by the air circulation system.  Internal T and RH were recorded 

every minute by the cabinets’ inbuilt logging systems.  Target environmental conditions for 

simulated T/RH treatments are detailed in Section 4.2.1. 

2.3 Plant material 

In all experiments, three broadleaf perennial plant species/cultivars (Heuchera micrantha 

‘Obsidian’, Salvia officinalis and Stachys byzantina) were compared to the succulent species 

Sedum spurium.  For the purpose of this study, the cultivar ‘Obsidian’ was intended as a 

representative of the species Heuchera micrantha, and will therefore be referred to as a species 

hereafter.  These three broadleaf species were selected for study as they have previously shown 

potential to provide a good cooling service and may be suitable for use on green roofs (Blanuša et 

al., 2013; Vaz Monteiro et al., 2016a).  Since it has traditionally been used on green roofs due to 

its drought tolerance and low maintenance requirements, Sedum was included for comparison. 

Photographs of all species studied are presented in Figure 2.1.  Salvia and Stachys both have 

green/grey leaves with silver hairs, which are long and form a dense covering in Stachys, whilst 

leaf hairs are shorter on Salvia and leaf surfaces are rough.  The Salvia canopy is bushy with 

upright woody stems whereas Stachys has a dense, ground-covering canopy. Heuchera is a 
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vigorous subshrub with large, overlapping leaves that are dark purple with smooth, glossy 

surfaces.  Sedum forms a dense, low-growing mat, with small green leaves that are smooth and 

succulent.  The average evapotranspiration (ET) rate of Sedum is lower than the three broadleaf 

species (Vaz Monteiro, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In January 2014 and January 2015, Heuchera were obtained as two-year old plants from Coblands 

Nursery (Tonbridge, Kent, UK), which were maintained in a peat-based substrate in 2 L plastic 

containers.  Salvia, Stachys and Sedum were propagated from cuttings in the winters of 2013/14, 

2014/15 and 2015/16 for use in summer experiments.  When transplanting into new substrates, 

as much of the old substrate as possible was removed from the roots of all species, although 

some peat-based compost was retained around the roots of Heuchera when transplanting into 

Heuchera micrantha ‘Obsidian’ Salvia officinalis 

Stachys byzantina Sedum spurium 

Figure 2.1: Plant species studied in all of the experiments 
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Meadow Roof Medium (MRM; Section 2.4) as preliminary experiments suggested that it may not 

grow well in 100% MRM. 

2.4 Growing media 

Three different substrates were used in the experiments (see Appendix for properties of all 

substrates).  To replicate ‘real-life’ conditions of a green roof, an industrial green roof substrate, 

Meadow Roof Medium (hereafter referred to as MRM; Vital Earth GB Ltd., Ashbourne, 

Derbyshire, UK) was used in Experiments 1, 2, 4 and 5.  Due to changes in the manufacturing 

processes, it was not possible to obtain MRM in 2015, and a ‘model’ situation, using peat-based 

compost (Vitax Ltd., Leicestershire, UK), was therefore set up in Experiment 3.  

MRM was chosen as a test substrate as it is a commercial green roof substrate manufactured and 

used in the UK, composed predominantly of crushed brick with added organic matter.  This 

therefore represents ‘real-life’ green roof conditions and the water-retention characteristics and 

the behaviour of plants growing in this substrate are of practical interest.  However, nutrient 

concentrations in the MRM are inherently high, resulting in high levels of phosphorus leaching 

from the substrate during the greywater (GW) experiment (Experiment 5).  Additionally, the 

nutrient content added through GW application was small compared to the inherent substrate 

nutrient content.  This made it difficult to analyse the uptake and storage of tracer nutrients in 

the substrate and plants, and to assess differences in runoff quality between treatments.   

It was therefore decided to also test the impact of GW under ‘model’ conditions using a nutrient-

poor substrate, so that the nutrient content added through GW application was an appreciable 

proportion of the total nutrients in the system.  Thus, several substrate mixtures with varying 

nutrient concentrations were tested in a pilot study (data not shown) to formulate a substrate 

that was low but not deficient in nutrients, and would not be too free-draining.  A 50:50 mix by 

volume of vermiculite and peat-based compost (hereafter referred to as VC mix) was identified as 

the most suitable substrate, and was used in Experiment 6.  The VC mix was prepared at the time 

of planting by manually combining equal volumes of vermiculite (William Sinclair Horticulture Ltd., 

Lincoln, UK) and peat-based compost (Vitax Ltd., Leicestershire, UK) in a bucket and mixing 

thoroughly before filling containers.  As nutrient concentrations in the VC mix were low, uptake 

and accumulation of the tracer nutrients in the substrate, plant tissues and runoff was easier to 

identify, thus allowing better assessment of differences between species and irrigation 

treatments.  To enable quantification of all nutrient inputs to the plant/substrate during 

Experiment 6, no fertilisers were added to the VC mix either during planting or throughout the 
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experiment.  Irrigation with GW was the only additional nutrient input and therefore may have 

acted as a fertiliser; plants irrigated with tap water (TW) received no additional nutrients during 

the experiment. 

2.4.1 Preliminary trials to characterise substrate moisture properties 

Preliminary trials were carried out with each substrate at the start of the experimental seasons 

(March 2014 with MRM; March 2015 with peat-based compost; and May 2015 with VC mix), in 

order to determine the moisture characteristics of each substrate and determine daily plant water 

use.  This information was then used to identify typical substrate moisture content (SMC) values 

under well-watered and dry conditions for each substrate, and to inform the irrigation volumes 

and scheduling in Experiments 5 and 6.   

In the MRM and VC mix tests, three replicates of each species in 2 L containers, plus three control 

containers with bare, unvegetated substrate, were saturated to container capacity by submerging 

in water for 15 minutes and then draining for 30 minutes.  Each container was then weighed and 

SMC was measured as described in Section 2.5.1.  Thereafter, containers were weighed every 24 

hours for 4 – 5 days to determine daily water loss from each container, and SMC was also 

measured daily.  Containers received no further irrigation during this period.  The substrate 

moisture characteristics of the peat-based compost used in Experiment 3 were tested in the same 

way, using 2 L control containers with bare, unvegetated substrate only.  The mean daily water 

loss per container in each of the preliminary trials is presented in Table 2.2.    It is worth noting 

that plants in the VC mix test were generally larger than those used in the MRM test, particularly 

Sedum, and tests were carried out at different times of the year (March for MRM and May for VC 

mix), which may partly account for the greater water uptake from the VC mix (in terms of 

absolute volumes), especially as water loss from bare, unvegetated substrate was similar. 

SMC of the MRM tended to range between 0.300 and 0.400 m3 m-3 when the substrate was 

saturated and decreased to as low as 0.100 m3 m-3 after 4 or 5 days of drying, depending on 

species (data not shown).  With the VC mix, SMC was around 0.550 – 0.600 m3 m-3 when the 

substrate was saturated and typically above 0.120 m3 m-3 after 5 days of drying, depending on 

species (data not shown).  The SMC of unvegetated peat-based compost varied from 0.600 m3 m-3 

when saturated to 0.500 m3 m-3 after 5 days of drying (data not shown).  Based on the results of 

the preliminary tests, plants in all three substrates were considered ‘well-watered’ during 

Experiments 1 – 6 when SMC was > 0.250 m3 m-3, whilst SMC < 0.150 m3 m-3 was considered low. 
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Table 2.2: Mean daily water loss per 2 L container for each treatment in the three substrates.  

Data are the mean daily water loss from 3 replicate containers per species/control measured 

over 4 or 5 days following saturation, with associated standard error of the means (SEM).  

Treatment 
Mean (± SEM) daily water loss per 2 L container (mL) 

Meadow Roof Medium VC mix Peat-based compost 

Heuchera 56 (± 4.4)   67 (± 6.4) - 

Salvia 72 (± 2.6)    114 (± 11.5) - 

Stachys 68 (± 3.8)     117 (± 12.5) - 

Sedum 39 (± 1.7)     164 (± 17.9) - 

Control 52 (± 4.3)    53 (± 7.9) 43 (± 4.0) 

2.5 Plant and substrate measurements 

Plant and substrate measurements made in each experiment are summarised in Table 2.3; 

methods and procedures for each of the measurements are outlined in Sections 2.5.1 - 2.5.6, with 

specific details of timings and replication for each experiment described in relevant chapters. 

Table 2.3: Summary of the plant and substrate parameters measured in each experiment. 

Parameter 
Stormwater management Greywater 

Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5 Expt. 6 

Substrate moisture content (SMC)       

Substrate electrical conductivity (EC)       

Evapotranspiration (ET)       

Canopy size (height and diameter)       

Leaf area       

Root and shoot dry weights       

Plant visual health and quality       

Stomatal conductance to water vapour       

Canopy temperature       

Plant tissue/substrate chemical analysis       
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2.5.1 Substrate moisture content and electrical conductivity 

Substrate moisture content (SMC) was measured in all experiments using a WET sensor 

connected to a HH2 Moisture Meter (Delta-T Devices, Cambridge, UK).  In Experiments 1, 4, 5 

and 6 two measurements were made in each 2 L container, and in Experiments 2 and 3 five 

measurements were made per tray, on each measuring occasion.  The WET sensor was calibrated 

for use with the MRM substrate by Delta-T Devices, and was used on the ‘organic’ substrate 

setting with the VC mix and peat-based compost.   

For Experiments 5 and 6, substrate electrical conductivity (EC) and temperature data, measured 

by the WET sensor simultaneously with SMC, were also generated.  Since EC is dependent on 

temperature, all EC readings were corrected after measurement by manually applying a 

temperature compensation coefficient of 2% per °C: all EC values are thus reported at 25°C.  A 

temperature correction coefficient of 2% °C-1 was chosen as it is recommended as the default 

value by the WET sensor manufacturers, Delta-T Devices, for reporting EC at a standard 

temperature, and represents an average correction value for a range of substrate solutions. 

2.5.2 Evapotranspiration 

Evapotranspiration (ET) from all treatments was measured in Experiments 1, 2, 3, 4 and 6.  

Containers/trays were weighed every 24 hours using a CBK 32 bench checkweighing scale (Adam 

Equipment Ltd., Milton Keynes, UK) and daily ET was estimated as the weight loss per 

container/tray between two consecutive measurements.  This was converted to ET depth (in mm) 

using Equation 1.1 (Section 1.3.5) by dividing the weight loss by the plot area.  

2.5.3 Plant/canopy size and biomass 

Several parameters were measured in all experiments to characterise canopy size.  Plant/canopy 

height (measured from the substrate surface to the top of the tallest stem) and diameter (the 

average of two perpendicular measurements taken from above) were measured in all 

experiments.  Leaf area was measured in Experiments 1, 2, 3, 4 and 6 using a leaf area meter with 

associated WinDIAS 3 Image Analysis System (Delta-T Devices, Cambridge, UK).  In Experiments 1, 

2, 4 and 6 all leaves from each plant/canopy were removed and their area measured.  In 

Experiment 3, leaves were collected from a representative section of each tray (15 x 36 cm) and 

the measured leaf area was then scaled to tray size to give an estimate of the full canopy area.  

Additionally, in Experiment 3, leaf area density (i.e. cm2 leaf area per cm3 of canopy) was 

calculated by dividing total canopy leaf area by canopy volume. 
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Plants were harvested for biomass measurements in Experiments 2 – 6.  Shoots and roots were 

separated and roots were carefully washed, removing as much substrate as possible.  Shoots and 

roots were then dried in a ventilated oven at 70 ° C for 72 hours before being weighed with a Kern 

PCB 250-3 precision balance (Kern & Sohn, Balingen, Germany).  In Experiment 3, roots and 

shoots from a representative area of each tray were harvested and results scaled up to describe 

the full canopy biomass.  Additionally, fresh root volume was obtained in Experiment 3 by 

measuring the water displacement when roots were submerged in water in a measuring cylinder. 

2.5.4 Plant health 

Plant visual health was assessed throughout Experiments 5 and 6.  Each plant was scored using a 

rating scale from 0 to 5 based on the visual plant health assessment system used by Sharvelle et 

al. (2012).  Additionally, the number of dead leaves per plant was counted in both experiments 

(excluding Sedum in Experiment 6 due to counting difficulties), and total leaf numbers were also 

counted for Salvia, Stachys and Heuchera.  Dead leaves were removed from all plants after 

counting in Weeks 4 and 6 in Experiment 5 and after every counting in Experiment 6 to enable 

easier counting and to make irrigation easier.   

2.5.5 Leaf stomatal conductance to water vapour 

Leaf stomatal conductance to water vapour (gs) was measured during Experiments 5 and 6.  

Measurements were made at approximately the same time of day for each species using two 

young, fully expanded leaves on each plant.  Measurements were made on one plant from each 

treatment alternately to account for any changes in environmental conditions throughout the day 

that might cause differences between treatments.   

For Heuchera, Salvia, and Stachys, gs was measured using an LCpro-SD infrared gas analyser 

(IRGA; ADC BioScientific Ltd., Hoddesdon, UK) with photosynthetic photon flux density 

supplemented to 1400 μmol m-2 s-1 using an external light source to ensure constant light levels 

throughout.  When leaf sizes were too small to fill the whole chamber, approximate percentage 

coverage was visually estimated and gs results were subsequently corrected during data analysis 

to give approximate gs for 100% coverage.  Owing to the very small leaf size of Sedum, an AP4 

porometer (Delta-T Devices, Cambridge, UK) was used to measure gs.   

Although ideally the same equipment would have been used to measure the gs all species, Sedum 

leaves were too small and too densely arranged to fit in the IRGA chamber, and the porometer 

was unsuitable for use with Salvia and Stachys as the humidity retained within the boundary layer 
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of their hairy leaves resulted in inconsistent and unreliable readings.  However, since the 

objective of this study was gs comparison within rather than between species, the decision was 

made to use the porometer for Sedum and the IRGA for the broadleaf species. 

2.5.6 Canopy temperature 

In Experiments 5 and 6, canopy temperature was inferred from thermal images taken with an 

infrared imaging camera Thermo Tracer TH7800 (NEC San-ei Instruments Ltd., Tokyo, Japan).  

Plants were always positioned in the shade for at least 10 minutes prior to image taking to avoid 

sunlight variations; images of all plants were taken within one hour from the same distance and 

angle.  Images were then analysed using NS9200 Report Generator software (NEC San-ei 

Instruments Ltd., Tokyo, Japan); canopy temperatures were determined in three representative 

areas for each plant and averaged to give a whole canopy temperature. 

2.6 Setup of Experiments 1 – 4: Stormwater management 

The experimental setup and preparation of plant materials for Experiments 1 – 4 are described in 

Sections 2.6.1 - 2.6.3 and 2.6.6.  In Experiments 1 – 3, ‘rainfall’ was applied to all plants/canopies 

in a series of experimental runs in order to measure retention and runoff, whereas in Experiment 

4 restoration of substrate retention capacity through ET was examined.  Experimental runs in 

Experiments 1 – 3 consisted of a rainfall application to all plants/canopies under ‘saturated’ and 

‘unsaturated’ conditions, as well as under ‘dry’ conditions in Experiment 1.  The ‘dry’ run was 

conducted when the SMC fell below 0.150 m3 m-3 for all containers – i.e. when the substrate 

would be considered ‘dry’, as determined in the preliminary tests described in Section 2.4.1.  In 

‘saturated’ runs, the substrate was pre-wetted to field capacity prior to rainfall application.  In 

‘unsaturated’ runs, rainfall was applied after a 72-hour antecedent dry period, with different plant 

treatments consequently having different SMCs due to differing ET rates.   

Rainfall was simulated in Experiments 1 – 3 to ensure that constant volumes and/or intensities of 

rainfall were applied to all treatments.  The simulators used in each experiment were tested 

extensively prior to the start of the experiments in order to determine suitable rainfall volumes 

and intensities and establish experimental procedures.  Full details of the rainfall simulators used 

and the experimental procedure followed in Experiments 1 – 3 can be found in Sections 2.6.4 and 

2.6.5 respectively.  Experimental procedure for Experiment 4 is detailed in Section 4.2.2. 
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2.6.1 Experiment 1 setup: Rainfall retention and runoff with individual plants 

In February/March 2014, eight plants of each of the four species were planted into 2 L containers 

with Meadow Roof Medium; each container was filled to 11 cm with MRM to ensure that 

substrate volumes were identical.  Eight 2 L control containers with 11 cm of bare, unvegetated 

MRM were also prepared.  Simulated rainfall was applied to each container three times over the 

course of the experiment, and restoration of substrate retention capacity (i.e. ET) was monitored 

between rainfall applications.  Full details of each of the experimental runs can be found in 

Section 3.2. 

 

 

 

 

2.6.2 Experiment 2 setup: Rainfall retention and runoff at canopy scale 

Six replicate trays (30 x 60 x 8 cm) of each species, plus bare, unvegetated substrate, were 

prepared in July 2015, thus creating small canopies.  All trays were filled to 8 cm with Meadow 

Roof Medium.  Salvia, Stachys and Sedum had been propagated from cuttings in January 2015 and 

Heuchera were purchased as two-year-old plants.  In order to create canopies with 100% 

coverage, 2, 4 or 6 plants were used per tray for Heuchera, Stachys, and Salvia and Sedum 

respectively.  Three rainfall events were simulated for each tray, with restoration of substrate 

retention capacity between rainfall events also measured.   

 

 

 

 

Experiment 1 

Treatments: 8 replicates of Heuchera, Salvia, Stachys, Sedum and control (bare substrate). 

Measurements: SMC; plant height and diameter; leaf area; ET; volume of rainfall captured on 

the canopy; volume of runoff; volume of ‘water lost due to dripping’. 

 

Experiment 2 

Treatments: 6 replicates of Heuchera, Salvia, Stachys, Sedum and control (bare substrate). 

Measurements: SMC; canopy height and diameter; leaf area; root and shoot dry weights; ET; 

volume of rainfall captured on the canopy; volume of runoff. 
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2.6.3 Experiment 3 setup: Canopy-scale stormwater management with an industry standard 

rainfall simulator 

In February/March 2016, six replicates of each species were prepared, each consisting of a 32 L 

plastic tray (40 x 60 x 19 cm) with drainage holes drilled in the bottom and filled to approximately 

15 cm with peat-based compost.  Six control trays of bare, unvegetated substrate were also 

prepared.  The number of plants per tray varied in order to achieve a full canopy, with 3 – 4 two-

year-old plants per tray for Stachys, Sedum and Heuchera and 6 Salvia per tray, which had been 

propagated from cuttings in December 2015.  Simulated rainfall was applied to each tray twice 

during the experimental period, and restoration of substrate retention capacity was also 

measured.  Full details of each of the experimental runs are described in Section 3.2. 

 

 

 

 

2.6.4 Simulated rainfall 

In Experiments 1 and 2, drip-system simulators were used.  The application of water in this 

manner did not truly represent rainfall, but provided a quick and convenient method of applying 

water to the plants in order to quantify the volumes captured by different species.  Based on the 

design described by Nagase and Dunnett (2012), rainfall simulators of this type were constructed 

for the experiments by drilling 1 mm-diameter holes in the bottom of a plastic box and inserting 

syringe needles (21G: 0.8 x 40 mm; Terumo UK Ltd., Surrey, UK) into the holes.  These were sealed 

in place with Blu tack (Bostick Ltd.) to prevent water leaking out around the needles, and 

produced water droplets with consistent size and frequency.  Reverse osmosis (RO) water was 

used for rainfall simulation with this type of simulator in Experiments 1 and 2  to prevent 

precipitates and air bubbles from mains tap water blocking the needles (Clarke and Walsh, 2007).   

2.6.4.1 Experiment 1 simulator tests 

Six small rainfall simulators were constructed for Experiment 1, using 1.6 L plastic boxes (internal 

dimensions 15.8 x 11.5 x 9.7 cm; Really Useful Products Ltd., Normanton, West Yorkshire, UK) 

each with 16 needles (Figure 2.2 A), which were 48 mm apart in rows 28 mm apart.  Simulated 

Experiment 3 

Treatments: 6 replicates of Heuchera, Salvia, Stachys, Sedum and control (bare substrate). 

Measurements: SMC; canopy height and diameter; leaf area; fresh root volume; root and 

shoot dry weights; ET; volume of rainfall captured on the canopy; volume of runoff. 
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rainfall covered a rectangular area of approximately 180 cm2, which was just slightly smaller than 

the area of the 2 L containers thus ensuring that the total volume of water applied fell onto the 

plant/container.  Simulators were supported approximately 60 cm above the ground, and one 

plant/container was positioned below each simulator for rainfall application (Figure 2.2 B). 

Initial tests demonstrated that at least 200 mL of water was required to generate runoff from 

planted containers; 500 mL of rain was therefore applied to each container to ensure that there 

was enough runoff for accurate measurement.  This was achieved by simulating rainfall for 10 

minutes, with an initial water depth of 8 cm, which equated to a target rainfall intensity of 

165 mm hour-1.  This very high rainfall intensity was chosen to reflect climate change projections 

of more intense precipitation events in the UK in the future (IPCC, 2013).  

 

Figure 2.2: One of the six rainfall simulators used in Experiment 1 (A), and the position of the 

containers and trays below each simulator in the experimental runs (B). 

The mean volume of simulated rainfall actually applied from each simulator in all of the 

experimental runs (as described in Section 2.6) was statistically similar (P = 0.820; LSD (5%) = 

63.22; data not shown).  There was little variation between simulators within each run, so all 

treatments received almost exactly the same volume of rainfall in each of the runs, allowing fair 

comparison of rainfall capture and runoff. 

2.6.4.2 Experiment 2 simulator tests 

For Experiment 2, three larger drip-system rainfall simulators were constructed using 32 L plastic 

boxes (internal dimensions 35 x 55 x 17 cm; Asda Stores Ltd., Leeds, UK).  Each box had 72 needles 

arranged in 6 rows 45 mm apart (Figure 2.3 A), so that simulated rain fell in an area of 1925 cm2, 

which covered all foliage.  Simulators were supported on a mesh bench approximately 70 cm 
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above the ground, and one tray was placed below each simulator for rainfall application (Figure 

2.3 B).  Trays were rolled in and out of position at the beginning and end of the rainfall application 

on a board, so that they were approximately 8 cm above the ground; the actual height of the 

simulators above the trays was therefore 62 cm.  

Ideally, the rainfall intensity with this simulator would have been the same as in Experiment 1 to 

enable comparison of results at individual plant and canopy scales.  However, with this 

experimental setup and needle configuration, which was partially dictated by the design of the 

mesh bench on which the simulators were supported, the maximum rainfall intensity that could 

be achieved was 115 mm hour-1.  The duration of rainfall was kept as 10 minutes, which equated 

to a target rainfall application of 3700 mL per tray.  Testing of the simulators indicated that trays 

of bare substrate required application of at least 750 mL of water before runoff production began, 

and so 3700 mL was considered great enough to generate runoff even from planted trays.   

 

Figure 2.3: One of the drip-system rainfall simulators used in Experiment 2 (A), and the position 

of the tray below the rainfall simulator during testing (B). 

Actual volumes of water applied from each simulator during each experimental run (described in 

Section 2.6) varied, both between simulators and also between runs (data not shown).  Average 

rainfall in all runs applied with simulator 1 was significantly lower than with simulator 3 (P = 

0.033; LSD = 651.9), and the average volume from all simulators applied in the third run 

(‘unsaturated’) was significantly less than applied in the first run (‘saturated’) (P = 0.03; LSD = 
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648.7).  The reduction in rainfall volume over the course of the experiment (i.e. between runs) 

could have been a result of the syringe needles becoming blocked with either air bubbles or 

debris in the water over time, despite the use of RO water, slowing the rate of dripping (Clarke 

and Walsh, 2007). As a result of this, only comparisons between treatments within each run were 

made.  Additionally, the rainfall simulator used to test each treatment was varied in all 

experimental runs, so that rainfall from each simulator was applied to two replicates of each 

treatment in each run, and any differences in application volumes between simulators should 

therefore average out.   

2.6.4.3 Experiment 3: Sprinkler rainfall simulator 

In order to bring the characteristics of the simulated rainfall closer to those of natural rainfall, a 

sprinkler system based on the design described by Iserloh et al. (2012) and designed ‘in house’ by 

an irrigation specialist at RHS Garden, Wisley, was used to simulate rainfall in Experiment 3.  The 

system consisted of a Lechler 460 608 nozzle attached by a 2 m length of hosing (Tricoflex) to a 

flow control, which was a series of pressure gauges and filters that ensured that the water flow 

and the characteristics of the droplets produced were constant.  This was connected to the mains 

water supply by hosepipe, and ‘rainfall’ could be turned on and off directly on the simulator.  The 

optimum flow pressure to achieve consistent rainfall in terms of droplet size and distribution was 

found to be 0.15 bars (15 kPa), and so this pressure setting was used for all rainfall simulations.  

The nozzle, hosing and simulator were fastened to an L-shaped timber support 2.4 m high and 

1 m across (Figure 2.4), which was then secured to a metal pole in the glasshouse to keep the 

simulator stable and ensure that the rainfall always fell in the same area.  

Trays were placed on a trolley and rolled into position under the rainfall (Figure 2.4 B), so that the 

actual height of the nozzle above the trays was 1.6 m; this is in line with the heights of other 

rainfall simulators cited in the literature, typically used in soil erosion and runoff studies, which 

vary between 0.7 and 3 m above the ground (e.g. Humphry et al., 2002; Fister et al., 2012).  The 

height of the rainfall simulator determines the kinetic energy and terminal velocity of the water 

droplets produced; since the fall height is much lower than for actual rainfall, the velocity and 

energy of large drops in particular will be lower than in natural rainfall (Iserloh et al., 2012).  
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Figure 2.4: The sprinkler rainfall simulator used in Experiment 3, showing the pressure 

regulators and filters connected to the nozzle (A) and the experimental setup of the simulator 

secured to an L-shaped timber support with a tray positioned below the nozzle on a trolley for 

testing (B).   

The spatial distribution of rainfall was found to vary and so tests were initially carried out to 

identify which position within the rainfall area could be used to ensure consistent rainfall 

intensity.  Fifty-three numbered, empty buckets (24.2 cm diameter) were weighed and then 

positioned in concentric circles on the floor under the rainfall (Figure 2.5 A).  Rainfall was 

simulated for 10 minutes with the flow pressure set to 15 kPa, and then all buckets were weighed 

again.  The volume of water applied in each position was determined as the weight gain of each 

bucket, allowing spatial rainfall intensity to be mapped (Figure 2.5 B).  Rainfall intensity was 

lowest directly below the nozzle and higher around the perimeter, similar to the spatial rainfall 

distribution described by Iserloh et al. (2012) and Fister et al. (2012) with the same nozzle type.  

The area of buckets 1-2-6-7 (Figure 2.5 A) was identified as having the most consistent volume 

and intensity of rainfall in every rainfall simulation in further testing of the simulator, and this was 

therefore chosen as the position for the trays during the experiments.  Unfortunately, no other 

areas were identified as having similar and consistent rainfall intensity, and so it was decided to 
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test one tray at a time during the experiments, always in location 1-2-6-7 to ensure that all 

treatments were exposed to the same rainfall intensity.  At trolley height (i.e. 1.6 m below the 

nozzle), the average rainfall intensity in the chosen location was consistently 28 mm hour-1. 

 

 

 

 

 

 

 

 

 

 

 

To further characterise the simulated rainfall, average raindrop size was measured using the flour 

pellet method described by Clarke and Walsh (2007).  Flour was sieved into a tray to a depth of 

approximately 2 cm and lightly compressed, and the tray was then placed under the rainfall 

simulator at the selected height and position, and exposed to the rainfall for 5 seconds.  After 

< 10 mm hr-1 

 

10 – 20 mm hr-1 

 

20 – 30 mm hr-1 

 

> 30 mm hr-1 

 

Timber support 
 

Nozzle 

Rainfall intensity: 

B 

A 

Figure 2.5: Setup of buckets (A) for the spatial rainfall distribution tests of the sprinkler 

simulator used in Experiment 3, and the ‘mapped’ rainfall intensities at ground level (B). 
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drying in the oven at 70°C for 24 hours, the raindrops formed pellets in the flour which were 

photographed.  The diameters of all raindrops in three representative 4 x 4 cm areas were then 

measured using Image J software (National Institutes of Health, USA).  Raindrop sizes ranged from 

0.21 to 2.76 mm with the majority of droplets (70%) smaller than 1 mm diameter, similar to the 

simulated raindrops produced in other studies (e.g. Fister et al., 2012; Iserloh et al., 2012). 

The time taken for runoff to be generated from trays with bare substrate was tested with the 

chosen settings, and found to vary between 2 and 8 minutes, depending on initial SMC.  To ensure 

that adequate runoff was always generated from all planted treatments and all SMC conditions, it 

was therefore decided to simulate rainfall for 20 minutes for each tray.  Since rainfall could only 

be applied to one tray at a time, this required rainfall duration meant that only 12 trays could be 

tested in a day.  Each experimental run was therefore conducted over three consecutive days, 

testing 2 replicates from each treatment each day so that results were not affected by any 

differences in environmental conditions between days. 

The actual volume of water applied on each day of each run of the experiment (as described in 

Section 2.6) was measured three times per day (beginning, middle and end of the experiment) by 

placing an empty tray of the same dimensions in position under simulated rainfall for 20 minutes 

(data not shown).  The average volume of rainfall captured in the tray was similar in the 

‘saturated’ and ‘unsaturated’ runs (P = 0.154; LSD = 148.1), although there were significant 

differences between experimental days in both runs (P = 0.017, LSD = 84.5 for the ‘saturated’ run 

and P = <0.001, LSD = 121.7 for the ‘unsaturated’ run).  However, as two replicates per treatment 

were tested each day and there was very little variation in the volume of rainfall captured within 

each experimental day (data not shown), any differences in rainfall volume should average out for 

all treatments.  

2.6.5 Rainfall application procedure (Experiments 1 – 3) 

In each experiment there were five treatments: the four plant species and a control treatment of 

bare, unvegetated substrate.  In addition, every time one replicate of each of the five treatments 

was tested, an empty tray was also placed under the rainfall to measure the volume of water 

simulated.  All containers/trays were watered daily prior to the start of the experiments, and dead 

leaves were removed from all plants the day before each experiment started.  In all runs, in all 

experiments, one container/tray was placed under each of the rainfall simulators at a time (Figure 

2.2 - Figure 2.4); rainfall was therefore applied to six containers simultaneously in Experiment 1, 

three trays simultaneously in Experiment 2, and one tray at a time in Experiment 3.  To account 
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for differences that might be caused by any changes in environmental conditions throughout the 

experiments, one container or tray from each treatment were always tested simultaneously in 

Experiment 1 or alternately in Experiments 2 and 3. 

In all experiments, containers or trays were weighed, antecedent SMC was measured and 

plant/canopy height and diameter were measured at the start of each run.  To collect runoff from 

each treatment in Experiments 2 and 3, trays were placed inside a second tray of the same 

dimensions, thus ensuring that no rainfall fell directly into the second tray and so only runoff was 

captured.  Wooden supports were used to raise the treatment trays so that there was space for 

runoff to collect in the second tray.  In Experiment 1, a distinction was made between runoff – i.e. 

water that passed through the container and leached out again – and ‘water lost due to dripping’ 

from the canopy – i.e. rainfall that bounced or dripped from the canopy or substrate surface onto 

surrounding surfaces and therefore did not enter the plant/substrate system.  Runoff was 

collected by placing each container inside a plastic bag (resealable food and freezer bags: 260 x 

300 mm) and securing with an elastic band.  The containers were then stood in trays (38.5 x 

28.6 cm) to collect any ‘water lost due to dripping’ from the canopy.  Since the rainfall simulators 

used in Experiment 1 did not cover an area larger than the containers, no rainfall fell directly into 

these trays.   

After the pre-determined rainfall duration (10 minutes in Experiments 1 and 2 and 20 minutes in 

Experiment 3), containers were left to drain until runoff stopped; this took approximately 10, 20 

and 30 minutes in Experiments 1, 2 and 3 respectively.  Volumes of water captured in the runoff 

trays (or bag in Experiment 1, plus the ‘water lost due to dripping’ in the tray) were then 

measured using measuring cylinders.  Each container or tray was weighed again, and SMC 

measurements were made as before.   

At the end of each experiment, plants were harvested for leaf area and biomass measurement, as 

described in Section 2.5.3.  In Experiment 1, four plants of each species were harvested after the 

‘unsaturated’ run, and the remaining four plants per species were harvested after the ‘saturated’ 

run.  In Experiment 2, four replicates of each species were harvested at the end of the 

experiment, after all runs had been completed, and in Experiment 3 representative sections of all 

trays were harvested at the end of the experiment.   
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2.6.6 Experiment 4 setup: Plant-environment interactions in restoration of substrate retention 

capacity 

Individual plants in 2 L containers filled to a depth of 11 cm with MRM, as well as control 

containers with 11 cm of bare, unvegetated substrate were used in Experiment 4.  Two year-old 

Heuchera plants were transplanted into the MRM at the beginning of February 2015.  Salvia, 

Stachys and Sedum plants were already planted in 2 L containers in MRM prior to the start of the 

experiment, having been transplanted the previous year.  There were six replicates of each 

treatment, and plants of similar size and health with maximum substrate coverage were selected. 

Three containers of each treatment were transferred into each CE growth cabinet (see Section 

2.1) at the start of each experimental trial, apart from trial 4 where only two replicates per 

treatment were tested at once due to the use of a dehumidifier (which was required to bring RH 

into the required range) limiting the space inside the cabinet.  Environmental conditions and 

details of all the individual trials are described fully in Section 4.2.1.  Containers were randomly 

arranged within the cabinet and measurements were made for 4 or 5 days, depending on 

environmental conditions and SMC. 

 

 

 

2.7 Setup of Experiments 5 and 6: Greywater for irrigation 

Plants of each species were transplanted into 2 L containers filled with 11 cm of substrate (MRM 

in Experiment 5 or VC mix in Experiment 6) 3 – 4 weeks before each experiment started.  In 

Experiment 5 there were 16 plants of each species plus 16 control containers of bare, 

unvegetated MRM; in Experiment 6 there were 22 containers for each treatment, including 

containers with unvegetated VC mix.  Salvia and Stachys were propagated from cuttings in 

February 2014 and January 2015 for Experiments 5 and 6 respectively and Sedum plants were cut 

back during the winter so that they were actively growing during the experiments.  Two year-old 

Heuchera plants were split before transplanting so that they were of comparable size to plants of 

the other species.  In both experiments, four additional plants of each species were also prepared 

at the same time, to be harvested at the start of each experiment for baseline values. 

Experiment 4 

Treatments: 6 replicates of Heuchera, Salvia, Stachys, Sedum and control (bare substrate). 

Measurements: SMC; plant height and diameter; leaf area; root and shoot dry weights; ET. 
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In both experiments, all species/controls were divided into two irrigation treatments: tap water 

(TW) and greywater (GW).  There were therefore 8 TW replicates and 8 GW replicates of each 

species/control in Experiment 5, and 11 TW and 11 GW replicates of each species/control in 

Experiment 6.    In both experiments, containers were placed inside the glasshouse with TW and 

GW treatments of each species positioned together to ensure they were exposed to the same 

environmental conditions (e.g. shading) so that any differences between treatments at the end of 

the experiment could be attributed solely to differences in the irrigation they received. 

In Experiment 6, at the end of 6 weeks, the treatments were further divided into two groups for 

different experimental testing: five containers of each treatment (i.e. 5 TW replicates and 5 GW 

replicates of each species/control; hereafter referred to as ‘runoff quality’ containers) were used 

to test the ability of plants to improve runoff quality; the remaining 6 TW and 6 GW replicates of 

each species/control (hereafter referred to as ‘ET assessment’ containers) were used to quantify 

ET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment 5 

Treatments: Heuchera, Salvia, Stachys, Sedum and control (bare substrate: MRM) – 8 

replicates with TW irrigation and 8 replicates with GW irrigation.  

Irrigation regime: Irrigation volumes were always identical for all containers in all treatments. 

Measurements: SMC; substrate and runoff EC; plant growth (height and diameter); plant 

health; gs; canopy temperature; leaf area; root and shoot dry weights; nutrient concentrations 

in roots, shoots, substrate and runoff. 

Experiment 6 

Treatments: Heuchera, Salvia, Stachys, Sedum and control (bare substrate: VC mix) – 11 

replicates with TW irrigation and 11 replicates with GW irrigation. 

Irrigation regime: Irrigation volumes were based on average water use per species, and 

differed between species/control; TW/GW volumes were always identical within species. 

Measurements: SMC; substrate and runoff EC; plant growth (height and diameter); plant 

health; gs; canopy temperature; ET; leaf area; root and shoot dry weights; nutrient 

concentrations in roots, shoots, substrate and runoff. 
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2.7.1 Synthetic greywater 

A synthetic greywater was used for the GW irrigation treatment in both experiments so that the 

chemical and physical properties of the GW were pre-determined to an industry standard recipe.  

This ensured that the composition and properties of the greywater were consistent throughout 

the experiment and that the results obtained were replicable.  The GW prepared for these 

experiments followed the recipe formulated by Diaper et al. (2008) (Table 2.4) to represent GW 

from the bathroom and laundry.   

Table 2.4: Components of the synthetic greywater mixed for Experiments 5 and 6, based on the 

recipe formulated by Diaper et al. (2008); ingredient amounts per 100 L are as stated by 

Diaper et al. (2008).   

Ingredient Product Used 

Amount of product (g) 

per 100 L 
per 21 L 
(Expt. 5) 

per 25 L 
(Expt. 6) 

Moisturiser ‘Simple rich moisturiser’ 1.00 0.21 0.25 

Toothpaste ‘Colgate Advanced White’ 3.25 0.68 0.81 

Deodorant ‘Sure (Women) Crystal Invisible’ 1.00 0.21 0.25 

Vegetable 
Oil 

‘Co-Op’ Sunflower Oil 0.70 0.15 0.18 

Hand Wash ‘Imperial Leather’ 72.00 15.12 18.00 

Laundry ‘Ariel Actilift’ 15.00 3.15 3.75 

Na2SO4 BDH Chemicals Ltd (Poole, UK) 3.50 0.74 0.88 

NaHCO3 BDH Chemicals Ltd (Poole, UK) 2.50 0.53 0.63 

Na2PO4 BDH Chemicals Ltd (Poole, UK) 3.90 0.82 0.98 

Boric Acid May and Baker Ltd. (Dagenham, UK) 0.14 0.03 0.07* 

* Boric acid concentration was doubled in Experiment 6 (compared to the Diaper et al. (2008) 

formulation) due to difficulty detecting boron in Experiment 5. 

GW was mixed up in batches (typically 21 L in Experiment 5 and 25 L in Experiment 6), which were 

used for irrigation for a maximum of one week and stored below 4°C between uses.  All 

ingredients were measured out into a small beaker using a precision balance and topped up to 

150 mL with mains tap water.  This was then mixed at 50°C for 10 minutes with a magnetic stirrer 
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hotplate (Fisher Scientific UK Ltd., Loughborough, UK ), after which the mixture was transferred to 

a large beaker, topped up to 1500 mL with tap water and stirred for a further 20 minutes.  The 

mixture was then poured into a 25 L plastic bucket and diluted with tap water up to 21 or 25 L 

whilst vigorously mixing manually.  Tap water and the mixed GW were both sampled for chemical 

analysis each time a new GW batch was mixed and their pH and electrical conductivity (EC) were 

measured using a pH meter (Hanna Instruments, Leighton Buzzard, UK) and the WET sensor 

respectively.   

2.7.2 Irrigation regimes 

Irrigation volumes and timings for both experiments were determined based on the results of the 

substrate moisture tests described% in Section 2.4.1.  The aim was to maintain SMC within the 

‘well-watered’ range (determined to be > 0.250 m3 m-3) to prevent plant function becoming 

compromised due to water stress, whilst also preventing any runoff being generated.  This 

strategy was chosen to ensure that none of the GW chemicals leached from any of the containers 

so that total nutrient inputs could be accurately determined and there could be fair comparison 

between treatments. 

Different approaches to achieving this aim were employed in Experiments 5 and 6: in 

Experiment 5, the same volume of water (TW or GW) was used for irrigation of all treatments so 

that every container received an identical quantity of nutrients.  However, due to differences in 

ET rates between species (and the bare substrate), this approach proved difficult in keeping SMC 

high in some treatments whilst also preventing runoff generation from others.  Therefore, in 

Experiment 6 a different approach was used, in which irrigation volumes differed for each 

species/control based on their water use, but were kept identical within species/control.  With 

this strategy, it was possible to keep SMC within the ‘well-watered’ range for all treatments 

without producing runoff from any containers.  Although this meant that species received 

different quantities of nutrients over the course of the experiment, this was considered to be a 

satisfactory solution, since comparison between species was not the primary objective of 

Experiment 6.  In both experiments, identical volumes of TW and GW were always used within the 

same plant treatment, and water was applied directly to the substrate to avoid any potential 

damage to the plants through direct contact of greywater on the foliage (Misra et al., 2010).   

At the start of Experiment 5, the SMC of all treatments was in the region of 0.300 m3 m-3 (data not 

shown), which is considered high for the MRM (as determined from substrate moisture tests in 

Section 2.3.1).  Based on this high SMC and the average daily plant water use identified in 
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preliminary tests (Section 2.4.1), each container was initially irrigated with 80 mL of TW or GW 

approximately every two days.  As a result of warming weather and the decision to employ 

regulated deficit irrigation to avoid generation of runoff from any of the containers, SMC 

gradually decreased over the first 3 weeks of the experiment.  Irrigation volumes were therefore 

increased to 100 mL approximately 5 times per week to reduce drought stress to plants whilst 

also continuing to prevent runoff generation, allowing SMC to stabilise in the range 0.100 –

 0.200 m3 m-3.  There were, however, increasing differences in SMCs between treatments, due to 

irrigating with fixed volumes which did not take into account the varying ET rates of each species.  

Control containers, which contained MRM and no vegetation, generally maintained higher SMC in 

the range 0.200 – 0.250 m3 m-3.  All containers received the same volume of TW or GW for 

irrigation over the course of the experiment. 

At the start of Experiment 6, the SMCs of all containers were within the ‘well-watered’ range 

identified in substrate moisture tests (Section 2.4.1), and irrigation volumes were initially set at 

150 mL of TW or GW per container 5 times per week.  Over the first 10 days of the experiment, 

the SMC of planted treatments gradually declined, at varying rates depending on their ET rates, 

whilst control SMC remained above 0.400 m3 m-3.  Irrigation volumes were therefore adjusted to 

reflect this, with Salvia, Stachys and Sedum receiving higher volumes than Heuchera and control 

for approximately 3 weeks.  In the final week of the experiment, Heuchera irrigation volumes 

were increased and matched those of Salvia, Stachys and Sedum, whilst control still received 

lower volumes.  All planted treatments generally maintained SMC above 0.200 m3 m-3 and control 

containers maintained SMC above 0.300 m3 m-3 for the majority of the experiment (see 

Chapter 6). 

2.7.3 Total nutrient inputs to containers during experiments 

Over the 8 weeks of Experiment 5, all containers were irrigated with a total volume of 3180 mL of 

either TW or GW.  This equated to an average nutrient input of 0.3 or 16.5 mg of phosphorus and 

0.13 or 1.53 mg of boron per container with TW or GW irrigation respectively.  During the 6 weeks 

of Experiment 6, control containers each received a total of 3070 mL of TW or GW, Heuchera 

containers received 4520 mL each, and Salvia, Stachys and Sedum containers all received 5450 mL 

of either TW or GW.  The average nutrient inputs per container in Experiment 6 are presented in 

Table 2.5. 
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Table 2.5: Average nutrient input total per container during the 6 weeks of Experiment 6.  

Phosphorus and boron values for tap water treatments are estimated maximums as nutrient 

concentrations were reported as ‘less than’ values by NRM.  

 Treatment 
Average total received per container (mg) 

Phosphorus Boron Sodium 

Tap water 

Heuchera 0.9 0.09 73.7 

Salvia 1.1 0.11 88.8 

Stachys 1.1 0.11 88.8 

Sedum 1.1 0.11 88.8 

Control 0.6 0.06 50.0 

Greywater 

Heuchera 22.1 3.39 484.1 

Salvia 26.7 4.09 583.7 

Stachys 26.7 4.09 583.7 

Sedum 26.7 4.09 583.7 

Control 15.0 2.30 328.8 

2.7.4 Chemical analyses 

Chemical analysis was carried out on harvested roots, shoots, substrate and runoff in Experiments 

5 and 6.  Dried root and shoot samples were prepared for chemical analysis by adding liquid 

nitrogen and grinding into a fine powder with a pestle and mortar.  All samples were analysed for 

boron (B) and phosphorus (P) content, plus sodium (Na) in Experiment 6, at NRM Laboratories 

(Bracknell, UK); procedures followed to determine P, B and Na concentrations (as specified by 

NRM) were as follows.   

Samples of MRM from Experiment 5 were dried and sieved to 2 mm; available phosphorus was 

extracted using a 0.5 M sodium bicarbonate solution, the blue colour of which was measured 

spectrophotometrically to determine the concentration of available P, whilst the concentration of 

hot water extractable boron was determined by Inductively Coupled Plasma–Optical Emission 

Spectroscopy (ICP-OES).  A full suite of analysis was carried out on the VC mix samples from 

Experiment 6, including measurement of P, B, Na, calcium (Ca) and magnesium (Mg) 
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concentrations.  Nutrients were extracted by adding a weight of sample equivalent to a volume of 

60 mL (determined by substrate bulk density) to 300 mL of deionised water; this was shaken for 

1 hour at 250 rpm at 22°C, and then all nutrient concentrations were determined by ICP-OES.    

Root and shoot samples were ashed at 550°C to destroy all organic matter then dissolved in 

hydrochloric acid, and water samples were digested in nitric acid; the concentrations of B, P and 

Na were then analysed by ICP-OES in all plant and water samples. 

2.8 Statistical analysis 

All statistical analysis was carried out using GenStat 16th edition software (VSN International Ltd., 

Hemel Hempstead, UK).  Analysis of variance (ANOVA) was used in all experiments to assess the 

effects of various treatments on different parameters.  Normality assumptions and variance levels 

were checked for homogeneity and data were transformed where necessary; square or square 

root transformations were chosen for each dataset as appropriate, as described in relevant 

chapters, so that the distribution of the transformed data residuals was normal.  Variables are 

reported as a mean for each treatment with associated Least Significant Difference (LSD), which 

was used to assess significant differences between treatments at 5% significance level.  In the 

case of unbalanced ANOVAs, the maximum LSD (at 5% significance) was reported. 

2.8.1 Analysis of stormwater management data 

In Experiments 1 – 3, the volume of water captured on the plant/substrate ‘complex’ was 

assumed to be equal to the weight gain of each container/tray after rainfall had been applied.  For 

each application of rainfall in Experiments 1 – 3, ANOVA was used to assess the effect of different 

plant species on the volume of rainfall captured on the plant/substrate ‘complex’, the volume of 

runoff, and, in Experiment 1, the volume of ‘water lost due to dripping’.  Linear regressions 

combining all species were also carried out for each experimental run to test the relationship 

between antecedent SMC, ET prior to rainfall application, plant height, plant diameter, leaf area, 

leaf area density, canopy volume, shoot and root dry weights and fresh root volume with the 

volume of water retained on the plant/substrate ‘complex’ or the volume of runoff. 

In Experiments 1 – 4, ANOVA was used to assess significant differences between species in water 

uptake from the substrate following a rainfall event or saturation (i.e. ET rates).  In Experiment 4, 

ANOVA was also used to assess the effect of the varying environmental conditions on the ET rates 

of each species.  Additionally, linear regressions were carried out on data from Experiment 4 to 
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assess the significance of any relationships between the uptake of water from the substrate and 

environmental conditions (antecedent SMC, air temperature, RH, vapour pressure deficit), 

combining data from all experimental trials for each individual species/control. 

2.8.2 Analysis of greywater data 

In Experiments 5 and 6, ANOVA was used to assess any differences in plant growth, substrate EC, 

canopy temperature and stomatal conductance between TW and GW treatments for each 

species/control.  In addition, in Experiment 6 the effect of irrigation treatment on the measured 

ET was also assessed.  For all parameters, differences between TW and GW treatments were 

assessed at each measurement point over the course of each experiment, except canopy 

temperature in Experiment 5 which was only measured at the end of the experiment.  ANOVA 

was also used to test for significant differences between the TW and GW treatments in the 

concentrations of B, P and Na measured in the substrate, roots, shoots and runoff of each 

treatment in both experiments.  Additionally, significant differences between the species/control 

in terms of B, P and Na concentrations in roots, shoots, substrate and runoff were assessed. 
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Chapter 3  

The effect of vegetation type on green roofs’ capacity to 

provide stormwater management 

3.1 Introduction 

Surface flooding in urban areas is likely to become more common due to further increases in 

urbanisation (i.e. replacement of natural materials and vegetation with impervious surfaces) and 

a likely increase in the frequency of intense precipitation events in the UK predicted by climate 

change models (IPCC, 2013).  Urban vegetation, including green roofs, can help to mitigate the 

flood risk by delaying, prolonging and reducing the volume of runoff compared to conventional 

urban roofs and surfaces.  The main mechanisms through which vegetation on green roofs 

provide stormwater management are: direct interception on vegetation surfaces during rainfall; 

infiltration and storage of water in the substrate; and subsequent evapotranspiration (ET) from 

the green roof during dry periods (Stovin et al., 2012).  The retention performance of green roofs 

depends on the characteristics of rainfall events (intensity, depth, duration) and climate (Voyde et 

al., 2010a), as well as properties of the roof itself (e.g. slope; Getter et al., 2007) and the substrate 

and vegetation types (Beecham and Razzaghmanesh, 2015; Brandão et al., 2017). 

The substrate has frequently been acknowledged as the most important store of water 

(VanWoert et al., 2005), and retention of rainfall by a green roof has therefore been shown to 

depend on substrate characteristics, such as the type, depth and age of substrate (Mentens et al., 

2006; Getter et al., 2007), and its properties including water-holding capacity, porosity and 

antecedent substrate moisture content (SMC) (Volder and Dvorak, 2014; Stovin et al., 2015).  

Based on these factors, the substrate is able to retain a finite maximum volume of water during a 

rainfall event (defined as the substrate’s retention capacity), after which any further water added 

will become runoff (Sims et al., 2016). 

The presence of vegetation is known to significantly increase the retention performance of a 

green roof compared to bare substrate alone (Voyde et al., 2010a).  Furthermore, significant 

differences in retention have been identified with different plant types (Nagase and Dunnett, 

2012; Whittinghill et al., 2015), resulting from differences in both canopy capture and restoration 

of substrate retention capacity through ET.  Direct interception of rainfall on the vegetation 

canopy has been shown to provide up to an additional 4% retention, depending on species 
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(MacIvor and Lundholm, 2011), with characteristics such as canopy structure, size and density, 

leaf morphology and root structure thought to influence interception capacity (Nagase and 

Dunnett, 2012).  Species tested to date primarily include succulent species, grasses and forbs 

(Lundholm et al., 2010; Nagase and Dunnett, 2012).  There is little information available regarding 

the ability of larger plants with different canopy structures, such as broadleaf species, to provide 

stormwater management on a green roof. 

The contribution of interception to long-term retention performance is, however, generally 

considered minor compared to the role of the vegetation in restoring substrate retention capacity 

through ET (Stovin et al., 2015).  Species with high ET rates are able to restore the substrate 

retention capacity faster, thus allowing greater storage of water in the substrate during 

subsequent rainfall events (Stovin et al., 2013).  Green roof planting choices have typically been 

based on survival without irrigation and hence species that are able to withstand substrate 

moisture deficits (i.e. succulents such as Sedum) are frequently used; likewise, the majority of 

green roof rainfall retention studies use succulent species.  However, these species have 

inherently low ET rates, thus restricting the restoration of substrate retention capacity, and have 

typically been found to provide lower overall retention than other species (Dunnett et al., 2008; 

Whittinghill et al., 2015).  As very few studies have tested non-succulent species (primarily grasses 

and forbs; Dunnett et al., 2008; Lundholm et al., 2010), the ability of species with higher ET rates 

to provide stormwater management has not yet been fully investigated. 

3.1.1 Study aims 

It is clear that vegetation characteristics, such as canopy, leaf and root characteristics as well as ET 

rate, can influence the retention performance of a green roof, and species choice will therefore 

impact the stormwater management provision by the green roof.  However, the majority of 

studies continue to test only succulent species, despite the fact that the low ET rates of these 

species are known to limit their retention ability.  Furthermore, only a limited range of plant types 

have been investigated to date, with little variation in canopy characteristics or ET rates.  The 

experiments described in this chapter therefore adopted a more theoretical framework to 

investigate the maximum potential of plants to provide stormwater management and the 

mechanisms through which it is provided, using broadleaf species with high ET rates and larger, 

more complex canopy structures with varying leaf traits (e.g. presence of leaf hairs).  The 

objectives of this chapter were therefore: 
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• To identify the contribution of the vegetation itself to rainfall retention in addition to the 

retention provided by the substrate; 

• To investigate the impact of species selection on the retention performance of a green 

roof, by comparing traditionally used Sedum to alternative, significantly more 

physiologically active, broadleaf species; 

• To investigate how varying canopy and leaf morphologies, root system sizes and ET rates 

influence retention performance through canopy interception and restoration of 

substrate retention capacity. 

3.2 Materials and Methods 

Three glasshouse experiments were carried out using simulated rainfall to quantify the volume of 

water that could be retained by plants with differing canopy characteristics and to examine the 

role of plants in restoring a substrate’s retention capacity following a rainfall event.  The basic 

setup of all experiments is described in Section 2.6.  However, although every effort was made to 

ensure that rainfall was applied consistently to all treatments in all simulated rainfall events, there 

was considerable variation in the depth of rainfall applied in each simulated rainfall event and 

during each experimental run in Experiment 2.  This resulted in relatively large variability of 

results, even within treatments, with low statistical significance.  The general trends observed 

were very similar to the results of Experiment 3, however, in which rainfall application was 

consistent and more representative of natural rainfall.  Therefore, Experiments 1 and 3 only are 

presented in this chapter, being representative of individual plants and small canopies 

respectively. 

A summary of the setup and details of Experiments 1 and 3 is presented in Table 3.1, and 

timelines of simulated rainfall applications in both experiments are given in Figure 3.1 and Figure 

3.2.  Full details of the plant materials and substrates used are described in Sections 2.3 and 2.4.  

Rainfall was simulated to ensure consistency in the rainfall depth and intensity applied to each 

treatment within each experiment; full details of the rainfall simulators used in each experiment 

can be found in Section 2.6.4.  The average characteristics of the simulated rainfall events in each 

run of Experiments 1 and 3 are presented in Table 3.2.  The experimental procedure and all 

measurements made in the experiments are described in Sections 2.6.5 and 2.5 respectively. 

 

 



 Chapter 3 

66 
 

Table 3.1: Summary of Experiments 1 and 3. 

 Experiment 1 Experiment 3 

Dates 24th March – 13th April 2014 12th – 19th April 2016 

Set-up Individual plants in 2 L containers 

with 11 cm of Meadow Roof Medium 

Small canopies in 40 x 60 cm trays 

with 15 cm of peat-based compost 

Treatments 8x Heuchera, Salvia, Stachys, Sedum, 

control 

6x Heuchera, Salvia, Stachys, Sedum, 

control 

Rainfall simulator Drip-system Sprinkler 

Measurements SMC; plant height and diameter; leaf 

area; ET; volume of rainfall captured 

on the canopy; volume of runoff; 

volume of ‘water lost due to 

dripping’  

SMC; canopy height and diameter; 

leaf area; ET; fresh root volume; 

root and shoot dry weights; volume 

of rainfall captured on the canopy; 

volume of runoff 

 

Table 3.2: Average characteristics of simulated rainfall events in each experimental run in 

Experiments 1 and 3.    

Experimental run 
Average characteristics of simulated rainfall events 

Amount (mm) Duration (minutes) Intensity (mm hr-1) 

Experiment 1 

   'Dry' * 26.5 10 159.2 

'Saturated' ^ 28.8 10 172.6 

'Unsaturated' # 28.8 10 172.9 

Experiment 3 

   'Saturated' ^ 9.3 20 27.9 

'Unsaturated' # 8.9 20 26.6 

* ‘Dry’ run was conducted when substrate moisture content fell below 0.150 m3 m-3 for all 

containers (i.e. substrate would be considered ‘dry’; see Section 2.4.1). 

^ In ‘saturated’ runs, substrate was pre-wetted to field capacity before rainfall application. 

# In ‘unsaturated’ runs, rainfall was applied after a 72-hour antecedent dry period, with 

different plant treatments consequently having different SMCs due to differing ET rates. 
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3.2.1 Retention on the canopy 

To quantify the volume of water directly captured on the canopy, the substrate of all treatments 

was saturated to container capacity prior to rainfall application in Experiments 1 and 3, so that no 

further storage was available in the substrate and antecedent SMC was high.  Rainfall was then 

applied in these ‘saturated’ conditions in both experiments.   

To saturate the substrate, all containers/trays were submerged in water for 10 or 30 minutes in 

Experiments 1 and 3 respectively.  Containers/trays were then allowed to drain to field capacity 

Experiment 1 

‘Dry’ run 

•  24th – 25th March 

2014 

• 8 reps per 

treatment 

• Low SMC 

(< 0.150 m3 m-3) 

for all treatments 

prior to rainfall 

Experiment 3 

‘Unsaturated’ run 

•  27th – 28th March 

2014 

• 8 reps per treatment 

• Rainfall applied after 

72 h of ET and no 

irrigation 

• SMCs differed 

between treatments 

‘Saturated’ run 

•  11th April 2014 

• 4 reps per 

treatment 

• Substrate 

saturated for all 

treatments 

before rainfall 

Figure 3.1: Timeline of simulated rainfall events in Experiment 1. 

‘Saturated’ run 

•  12th – 14th April 2016 

• 6 reps per treatment 

• Substrate saturated 

for all treatments 

before rainfall 

‘Unsaturated’ run 

•  15th – 17th April 2016 

• 6 reps per treatment 

• Rainfall applied after 

72 h of ET and no 

irrigation 

• SMCs differed 

between treatments 

Figure 3.2: Timeline of simulated rainfall events in Experiment 3. 
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(i.e. until dripping stopped) for a further 10 – 15 minutes in Experiment 1 and two hours in 

Experiment 3.  Simulated rainfall was then applied to each container/tray in the manner described 

in Section 2.6.5, for the pre-determined duration, as stated in Table 3.2. 

In both experiments, antecedent SMC was measured before rainfall application, with two 

measurements per container in Experiment 1 and five measurements per tray in Experiment 3.  

Containers/trays were also weighed before and after rainfall, and the volume of water captured 

on the canopy was taken to be the weight gain of each container/tray after rainfall application.  

The volume of runoff from each container/tray was also measured, and in Experiment 1 the 

volume of ‘water lost due to dripping’ from the canopy was also measured, as described in 

Section 2.6.5.   

3.2.2 Retention on the whole canopy/substrate ‘complex’  

To quantify the volume of water that could be retained on the whole canopy/substrate ‘complex’, 

in both experiments simulated rainfall was applied to all treatments following an antecedent dry 

period of 72 hours, during which no further irrigation was received.  The retention capacity of 

each treatment’s substrate was therefore restored at a natural rate during this time, dependent 

on the ET rate of each species, resulting in differing antecedent SMCs for each treatment at the 

onset of rainfall.  Applications of rainfall in these conditions are hereafter referred to as 

‘unsaturated’ runs.  The volume of water retained on the canopy/substrate ‘complex’ was 

determined as the weight gain of the container/tray after rainfall.  Runoff from each 

container/tray was also measured in both experiments, and ‘water lost due to dripping’ from the 

canopy was measured in Experiment 1.   

Additionally, in Experiment 1 rainfall was applied to all treatments in ‘dry’ conditions – i.e. 

SMC < 0.150 m3 m-3, which was identified as low SMC for the Meadow Roof Medium substrate 

based on preliminary moisture tests (see Section 2.4.1), as well as being the SMC at which 

significant reduction in leaf stomatal conductance would occur for the plant species used (Vaz 

Monteiro et al., 2016a; 2017).  To accomplish this, daily irrigation of all treatments was stopped a 

week before the start of the experiment, after which the SMC of all containers was measured 

daily and plants were irrigated with small volumes of water as required to maintain plant health 

without increasing SMC above 0.150 m3 m-3.  Simulated rainfall was applied as described in 

Section 2.6.5 once the SMC of all treatments was below 0.150 m3 m-3.  
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3.2.3 Restoration of substrate retention capacity 

The rate of restoration of the substrate retention capacity following rainfall or saturation is 

dependent on the ET rate.  To quantify this, daily ET from each container/tray was measured for 

up to 72 hours following rainfall in all experimental runs of Experiments 1 and 3.  During this time, 

containers/trays remained in the glasshouse but received no irrigation.  SMC was measured and 

all containers/trays were weighed every 24 hours. 

3.2.4 Data analysis 

The volume of water retained on the canopy or canopy/substrate ‘complex’, the volume of runoff 

and the volume of ‘water lost due to dripping’ from the canopy were all converted to 

depths (mm) by dividing by plot area (Eq. 1.1; Section 1.3.5), and expressed as a proportion of the 

total rainfall applied to each container/tray (%).  As all applied rainfall was accounted for in 

Experiment 1, the total rainfall applied to each container was calculated as the sum of the water 

captured on the canopy (or canopy/substrate ‘complex’), as runoff and as ‘water lost due to 

dripping’.  In Experiment 3, the total rainfall applied to each tray was calculated based on the 

average volume of water collected in empty trays on each day of the experiment, which was then 

scaled to reflect the surface area of each individual canopy to determine the volume of rainfall 

that fell onto each specific canopy.  To account for the effect of different canopy sizes between 

species, the absolute volume of water retained on the canopy in ‘saturated’ conditions in each 

experiment was expressed relative to canopy leaf area.  Daily ET in the days following rainfall was 

calculated as the weight loss from each tray/container in each 24-hour period, which was then 

converted to depth (mm).  All measurements of daily ET were also expressed relative to total 

canopy leaf area. 

Statistical analyses were performed as described in Section 2.8.  All data relating to ‘water lost 

due to dripping’ from the canopy in all runs of Experiment 1 were normalised using square root 

transformations prior to analysis.  Additionally, runoff data from ‘unsaturated’ conditions in 

Experiment 1 were normalised using a square transformation.  All other data satisfied normality 

assumptions and did not require transformations before analysis.   
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3.3 Results 

3.3.1 Experimental setup 

Antecedent SMC for each treatment prior to the application of rainfall in ‘dry’, ‘saturated’ and 

‘unsaturated’ conditions in Experiments 1 and 3 are presented in Table 3.3.  The differences in 

SMC values between Experiments 1 and 3 are a result of the different substrates used in each 

experiment (Meadow Roof Medium in Experiment 1 and peat-based compost in Experiment 3).   

Table 3.3: Mean antecedent SMC of all treatments prior to rainfall application in ‘dry’, 

‘saturated’ and ‘unsaturated’ conditions in Experiments 1 and 3.  

Treatment 

Mean antecedent SMC (m3 m-3) 

Expt. 1 (Meadow Roof Medium) Expt. 3 (peat-based compost) 

'Dry' * 'Saturated' ^ 'Unsaturated' # 'Saturated' ^ 'Unsaturated' # 

Heuchera 0.139 0.256 0.093 0.579 0.516 

Salvia 0.133 0.256 0.111 0.596 0.486 

Stachys 0.123 0.264 0.097 0.630 0.488 

Sedum 0.133 0.299 0.180 0.604 0.519 

Control 0.132 0.286 0.175 0.580 0.535 

LSD (d.f.) 0.0280 (39) 0.0231 (19) 0.0154 (39) 0.0271 (29) 0.0363 (29) 

* ‘Dry’ run was conducted with SMC < 0.150 m3 m-3 for all containers. 

^ In ‘saturated’ runs, substrate was pre-wetted to field capacity before rainfall application. 

# In ‘unsaturated’ runs, rainfall was applied after a 72-hour antecedent dry period. 

In ‘unsaturated’ conditions in both experiments there were significant differences in SMC 

between treatments (Table 3.3) as a result of differing ET rates (see Figure 3.5).  In Experiment 1, 

SMCs of all three broadleaf species (Heuchera, Salvia and Stachys) were significantly lower than 

the SMCs of Sedum and the unvegetated control (P < 0.001), whilst in Experiment 3, the SMCs of 

only Salvia and Stachys were significantly lower than the control (P = 0.045).  There were also 

differences in SMC between treatments in ‘saturated’ conditions in both experiments, possibly 

due to different rooting densities between species, affecting the water-holding capacity of the 

substrate.  However, all treatments were saturated to container capacity and SMCs were all 
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within the ‘well-watered’ ranges identified for both substrates in Section 2.4.1.  In ‘dry’ conditions 

in Experiment 1, the SMCs of all treatments were statistically similar. 

Measured plant/canopy parameters for the plants used in Experiments 1 and 3 are presented in 

Table 3.4.  In Experiment 1, all plants measurements were made once at the time of the ‘dry’ and 

‘unsaturated’ runs and again during the ‘saturated’ run due to a two-week gap; plants were 

measured once during Experiment 3. 

3.3.2 Retention on the canopy 

The proportion of the total rainfall retained on the plant canopy in ‘saturated’ conditions varied 

significantly between species in both experiments (Figure 3.3 A).  With individual plants in 

Experiment 1, Salvia and Sedum retained the most water (5.1 and 3.4% of the total rainfall 

respectively).  The larger canopies in Experiment 3 retained a much higher proportion of the total 

rainfall, with Sedum and Stachys retaining the most water (17.1 and 13.1% respectively).  In both 

experiments, Heuchera retained the least rainfall and was not significantly different to the bare 

substrate control treatment.  In ‘dry’ conditions in Experiment 1, in which all treatments had 

similarly low antecedent SMC and differences in retention should therefore reflect canopy 

interception, observed trends were similar to Experiment 1 ‘saturated’ conditions, with Salvia 

retaining significantly more rainfall on the canopy/substrate ‘complex’ than Stachys (46.0% 

compared to 36.0%; LSD = 8.31) (data not shown). 

To account for differences in individual canopy sizes, the volume of water retained on the canopy 

in ‘saturated’ conditions in Experiments 1 and 3 was calculated relative to the total leaf area 

(Figure 3.3 B).  Trends were typically the same as for retention percentage in each experiment, 

with significant differences between species still apparent.  Additionally, regression models 

identified significant positive relationships between the volume of water retained on the canopy 

in the ‘saturated’ run of Experiment 3 and shoot dry weight (adjusted R2 = 0.45; P < 0.001) and 

leaf area density (adjusted R2 = 0.38; P < 0.001), whilst there was no relationship with canopy 

height (adjusted R2 = 0.02; P = 0.227) (data not shown).  
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Table 3.4: Average plant/canopy parameters per container/tray in Experiments 1 and 3, with 

associated standard error of the means (SEM).  For Experiment 1, data are a mean of 8 

replicates per species for the ‘dry’ and ‘unsaturated’ runs (apart from leaf area which is the 

mean of 4 replicates) and 4 replicates per species for the ‘saturated’ run.  For Experiment 3, 

data are the mean of 6 replicate trays per species.  

Species 

Mean 
(± SEM) 
canopy 

height (cm) 

Mean 
(± SEM) 
canopy 

diameter 
(cm) 

Mean (± SEM) 
leaf area (cm2) 

Mean 
(± SEM) 

shoot dry 
weight (g) 

Mean 
(± SEM) 

fresh root 
volume 

(cm3) 

Expt. 1 - 'Dry' * & 
''Unsaturated' # 

     Heuchera 17.4 (± 0.8) 25.3 (± 0.8) 1031 (± 29.5) - - 

Salvia  9.9 (± 0.4) 17.9 (± 0.6)   699 (± 21.2) - - 

Stachys  9.5 (± 0.3) 23.5 (± 0.8)   735 (± 50.0) - - 

Sedum  6.2 (± 0.3) 17.1 (± 0.6)   681 (± 78.4) - - 

Expt. 1 - 

'Saturated' ^ 

     Heuchera 16.4 (± 0.8) 31.1 (± 1.3)   1142 (± 143.3) - - 

Salvia 12.5 (± 0.5) 24.5 (± 1.4)   1001 (± 175.1) - - 

Stachys 13.9 (± 0.2) 24.3 (± 1.2) 797 (± 27.5) - - 

Sedum 7.2 (± 0.4) 18.4 (± 1.0)    825 (± 101.8) - - 

Experiment 3 

     Heuchera 14.0 (± 0.2) 52.6 (± 1.1)    6943 (± 775.2)   57.1 (± 7.3) 320 (± 36.1) 

Salvia 18.8 (± 0.5) 74.6 (± 1.6) 18564 (± 687.5) 125.2 (± 6.9) 603 (± 41.1) 

Stachys 19.1 (± 1.0) 76.2 (± 2.4) 20760 (± 871.3) 141.9 (± 5.2) 437 (± 52.0) 

Sedum 13.6 (± 0.4) 62.1 (± 0.7) 13586 (± 884.7) 111.0 (± 4.6) 203 (± 25.5) 

* ‘Dry’ run was conducted with SMC < 0.150 m3 m-3 for all containers. 

^ In ‘saturated’ runs, substrate was pre-wetted to field capacity before rainfall application. 

# In ‘unsaturated’ runs, rainfall was applied after a 72-hour antecedent dry period. 
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Figure 3.3: Mean rainfall retention on the canopy (A) and retention relative to leaf area (B) in 

‘saturated’ conditions in Experiments 1 and 3.  Data are means of 4 or 6 replicate 

containers/trays per species in Experiments 1 and 3 respectively, with associated LSDs (5%); red 

bars indicate statistical differences between the means of each experiment respectively. 
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There were also significant differences between treatments in runoff depth in ‘saturated’ 

conditions in both experiments (Table 3.5).  In Experiment 1, significantly less runoff was 

produced with Heuchera than with the bare substrate control treatment (17.2 compared to 22.7 

mm) whilst all other species produced similar depths (20 – 21 mm).  However, in Experiment 1, 

‘water lost due to dripping’ from the canopy of Heuchera accounted for over 20% of the total 

rainfall, which was significantly more than with Salvia and the control.  With larger canopies in 

Experiment 3, significantly greater runoff was produced with Heuchera than with Salvia, Stachys 

and Sedum (P < 0.001).  With the bare substrate control treatment, the entire volume of rainfall 

applied was lost as runoff.   

 

Table 3.5: Mean runoff from each container/tray in ‘saturated’ conditions in Experiments 1 and 

3 and ‘water lost due to dripping’ from the canopy in Experiment 1, expressed as depths and 

proportions of the total rainfall.  Analysis of the ‘water lost due to dripping’ data was carried 

out on square root transformed data (LSD (5%) was 1.235; P = 0.208); letters indicate statistical 

differences between the means of each experimental run.  

‘Saturated’ 

conditions ^ 

Experiment 1 Experiment 3 

Runoff ‘Water lost due to dripping’ Runoff 

Treatment 
Depth 
(mm) 

% of 
rainfall 

Depth (mm) % of rainfall 
Depth 
(mm) 

% of 
rainfall 

Heuchera 17.2 77.7 4.7 b 20.5 8.6   92.7 

Salvia 20.8 92.1 0.6 a  2.8 6.4   69.0 

Stachys 20.5 91.6  1.5 ab  6.6 6.5   70.5 

Sedum 20.4 89.5  1.5 ab  7.1 6.3   68.1 

Control 22.7 95.9 0.8 a  3.7 9.7 100.0 

LSD (d.f.) 4.59 (19) - - (19) - 0.74 (29) - 

^ In ‘saturated’ runs, substrate was pre-wetted to field capacity before rainfall application. 

 

 



 Chapter 3 

75 
 

3.3.3 Retention on the whole canopy/substrate ‘complex’ 

In ‘unsaturated’ conditions (i.e. following a 72-hour antecedent dry period), there were significant 

differences in the proportion of total rainfall retained on the whole canopy/substrate ‘complex’ in 

both experiments (Figure 3.4).  With individual plants in Experiment 1, the three broadleaf species 

retained significantly more water within the canopy and substrate than Sedum and the control 

(P < 0.001), with Salvia retaining almost twice as much as the control (50.7% compared to 28.6% 

respectively).  With larger canopies in Experiment 3, differences between treatments were more 

pronounced, with Salvia and Stachys retaining significantly more rainfall within the 

canopy/substrate ‘complex’ than all other treatments (P < 0.001), and over 3 times more than the 

control.  Retention with Stachys was also 2.5 times greater than with Heuchera, which retained a 

relatively small proportion of the rainfall (28.5%), similar to the control (20.5%).   

 

 

Figure 3.4: Mean rainfall retention on the canopy/substrate ‘complex’ in ‘unsaturated’ 

conditions (i.e. following a 72-hour antecedent dry period) in Experiments 1 and 3.  Data are 

means of 8 or 6 replicate containers/trays per treatment in Experiments 1 and 3 respectively 

with associated LSDs (5%); red bars indicate statistical differences between the means of each 

experiment respectively.  

0

10

20

30

40

50

60

70

80

90

Experiment 1 - Plants Experiment 3 - Canopies

R
e

te
n

ti
o

n
 o

n
 t

h
e

 c
an

o
p

y/
su

b
st

ra
te

 'c
o

m
p

le
x'

 
(%

 o
f 

to
ta

l r
ai

n
fa

ll)

Heuchera Salvia Stachys Sedum Control

‘Unsaturated’ conditions 



 Chapter 3 

76 
 

There were also significant differences between treatments in the depth of runoff produced in 

‘unsaturated’ conditions in both experiments (Table 3.6).  With individual plants in Experiment 1, 

significantly more runoff was produced with Sedum and the control than with the other species 

(P < 0.001).  As with ‘saturated’ conditions, Heuchera produced the least runoff (8.7 mm) but the 

‘water lost due to dripping’ from the canopy was also significantly greater than all other 

treatments (P < 0.001), accounting for over 15% of the total rainfall.  Conversely, with larger 

canopies in Experiment 3, Heuchera produced significantly more runoff than all other species 

(5.9 mm; P < 0.001), whilst Salvia and Stachys produced the least runoff (1.2 and 1.4 mm 

respectively).  The bare substrate control produced significantly more runoff than all species, 

accounting for 84.2% of the total rainfall.   

 

Table 3.6: Mean runoff from each tray/container in ‘unsaturated’ conditions in Experiments 1 

and 3 and ‘water lost due to dripping’ from the canopy in Experiment 1, expressed as depths 

and proportions of the total rainfall.  Analyses of runoff and ‘water lost due to dripping’ data 

from Experiment 1 were carried out on square and square root transformed data respectively 

(LSDs (5%) were 38.89 and 0.423; P < 0.001 for both); letters indicate statistical differences 

between the means of each experimental run.  

‘Unsaturated’ 
conditions # 

Experiment 1 Experiment 3 

Runoff ‘Water lost due to dripping’ Runoff 

Treatment 
Depth 
(mm) 

% of 
rainfall 

Depth (mm) % of rainfall 
Depth 
(mm) 

% of 
rainfall 

Heuchera  8.7 a 38.4 3.5 b 15.5 5.9 67.1 

Salvia 11.0 a 47.7 0.4 a  1.6 1.2 12.3 

Stachys 13.0 b 56.8 0.1 a  0.5 1.4 15.2 

Sedum 15.9 c 69.0 0.0 a  0.2 3.4 38.1 

Control 16.5 c 71.3 0.0 a  0.1 7.5 84.2 

LSD (d.f.) - (39) - - (39) - 1.25 (29) - 

# In ‘unsaturated’ runs, rainfall was applied after a 72-hour antecedent dry period. 
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Regression models between the volume of runoff produced per tray in Experiment 3 (in both the 

‘saturated’ and ‘unsaturated’ runs) and potential explanatory variables identified a strong positive 

and statistically significant relationship with antecedent SMC (adjusted R2 = 0.76; P < 0.001) (data 

not shown).  However, there was no correlation between runoff and any plant parameters 

(canopy height and diameter, leaf area, leaf area density, shoot and root dry weights or fresh root 

volume), with adjusted R2 values typically below 0.02 and not statistically significant (data not 

shown). 

3.3.4 Restoration of substrate retention capacity 

Daily ET from each container/tray, measured between the ‘dry’ and ‘unsaturated’ runs in 

Experiment 1 and between the ‘saturated’ and ‘unsaturated’ runs in Experiment 3, is presented in 

Figure 3.5.  All containers/trays were assumed to be at field capacity at the start of the measuring 

periods as they followed simulated rainfall events.  Cumulative ET after 72 hours varied 

significantly between treatments in both experiments, with Salvia and Stachys always losing 

significantly more water than Sedum and the control (P < 0.001).  Furthermore, regression models 

indicated that cumulative ET in the 72-hour dry period prior to rainfall application in the 

‘unsaturated’ run of Experiment 3 had a strong, statistically significant relationship with both 

rainfall retention on the canopy/substrate ‘complex’ and runoff (adjusted R2 = 0.94 and 0.91 

respectively; P < 0.001; Figure 3.6).  With individual plants in Experiment 1, Heuchera ET was high, 

similar to Salvia, with a loss of 11.0 mm after 72 hours (Figure 3.5 A).  Conversely, in 

Experiment 3, Heuchera had very low ET, similar to the control, with a loss of just 5.9 mm in 72 

hours (Figure 3.5 B). However, when expressed per leaf area to take account of differing canopy 

sizes, ET losses with Heuchera were similar to Salvia and Stachys in all experiments, whilst water 

uptake by Sedum was significantly lower (data not shown). 
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Figure 3.5: Mean cumulative evapotranspiration (ET) from each container/tray for 72 hours 

following saturation in Experiment 1 (A) and Experiment 3 (B).  Data are means of 8 or 6 

replicate containers/trays per treatment in Experiments 1 and 3 respectively, with associated 

LSDs (5%); red bars indicate statistical differences between the means at each time point. 
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3.4 Discussion 

This chapter examined the potential of four plant species to provide stormwater management on 

a green roof by retaining rainfall in the substrate and on the canopy, thereby reducing the volume 

of runoff from the roof and mitigating the risk of urban flooding. 

3.4.1 Species differences in rainfall retention and runoff reduction 

Rainfall retention by vegetated treatments in all experiments varied from 1.7 to 72.9% of the total 

rainfall per rainfall event, depending on species, antecedent SMC and rainfall characteristics.  

Several studies have also noted widely ranging retention in individual storm events (e.g. 0 - 100 % 

retention; Stovin et al., 2012) and attribute this variation mainly to the size of the rainfall event 

and the antecedent weather conditions.  Indeed, the inverse relationship between storm size 

(depth, duration and intensity) and green roof retention (or runoff) is well documented (e.g. 

Villarreal and Bengtsson, 2005; Whittinghill et al., 2015; Carpenter et al., 2016), as larger storms 

saturate the substrate beyond field capacity, resulting in runoff production.  Rainfall intensity and 

depth were substantially higher in Experiment 1 than Experiment 3 (average depth of 28.8 

compared to 9.1 mm respectively), which could partially explain the overall higher retentions 
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Figure 3.6: Regression models showing the relationship between total ET in the 72-hour 

antecedent dry period prior to rainfall application in the ‘unsaturated’ run of Experiment 3 and 

rainfall retention on the canopy/substrate ‘complex’ (A) and runoff (B).  Analysis was carried 

out on all species combined. 
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observed in Experiment 3 (average retention of 31.8% for vegetated treatments compared to 

22.8% in Experiment 1).  Rainfall depth greater than 10 mm is generally considered to be a heavy 

storm, following the classification proposed by Getter et al. (2007). 

In addition to the scale of the experiments (individual plants compared to small canopies), the 

substrate type and depth also differed between experiments.  The substrate used in Experiment 1 

was an industry standard, free-draining green roof substrate which would be expected to have 

different drainage properties to the organic-rich, peat-based compost used as the ‘model’ setup 

in Experiment 3.  Indeed, Dunnett et al. (2008) observed lower runoff from a natural, more 

organic soil compared to a synthetic green roof substrate, although some other studies have 

found no significant differences in rainfall retention percentages between green roofs with 

differing substrate types (Voyde et al., 2010a; Fassman-Beck et al., 2013).  Since the objective of 

the presented experiments was to assess the retention capabilities of the different plant species 

rather than focussing on different substrates, comparison between treatments within each 

experiment is still valid.  It should also be noted that in Experiments 1 – 3, retention and runoff 

were both measured directly, whereas published studies typically measure only runoff and then 

calculate retention as the remaining portion of rainfall; comparison of results should therefore be 

treated with caution. 

As expected, rainfall retention by the bare substrate control treatment was significantly lower 

than by vegetated treatments, ranging from 0.4 to 28.6% in all rainfall events in Experiments 1 

and 3, depending on antecedent SMC.  In ‘unsaturated’ conditions, up to 22.1% more rainfall was 

retained by vegetated treatments compared to bare substrate in Experiment 1 (with Salvia) and 

up to 52.4% more in Experiment 3 (with Stachys).  This highlights the importance of vegetation, 

and is similar to results of several other studies, in which vegetated treatments have retained 

significantly more rainfall than bare substrate treatments (e.g. Volder and Dvorak, 2014; Beecham 

and Razzaghmanesh, 2015; Stovin et al., 2015), indicating that the addition of vegetation can 

improve the retention performance of a green roof above that of bare substrate alone.   

In addition to the significant difference in retention between vegetated and control treatments, 

there were also significant differences between the species tested in this study, with overall 

average retention with Salvia (31.8%) and Stachys (32.6%) almost double the retention with 

Heuchera (19.6%), and also significantly higher than with Sedum (25.0%) in Experiments 1 and 3.  

These differences were more pronounced in ‘unsaturated’ conditions than ‘saturated’ conditions, 

as a result of varying ET rates, and thus available substrate storage, in addition to differences in 

canopy capture (see Sections 3.4.2 and 3.4.3). 
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Although there is clear evidence that vegetation contributes significantly to green roof retention, 

the majority of green roof stormwater retention studies use Sedums or other succulent species as 

vegetated treatments, and do not attempt to account for potential differences that may be a 

result of different vegetation types.  Additionally, there have been few studies directly 

researching the effects of different vegetation types on retention performance (e.g. Berghage et 

al., 2007; Lundholm et al., 2010; Whittinghill et al., 2015; Heim et al., 2017) or the mechanisms 

that enable particular species to surpass others in their retention performance.  A few studies 

have found that Sedums retain significantly less water than other species (Dunnett et al., 2008; 

Nagase and Dunnett, 2012; Whittinghill et al., 2015), whereas Stovin et al. (2015) found no 

difference in annual retention between Sedum spp. and Meadow Flowers.  These differences in 

results could be due to the length and setup of the studies, as Stovin et al. (2015) note that there 

were seasonal variations in plant cover with Meadow Flowers during their 4-year study, whereas 

Sedum maintained a full, dense cover throughout.  Likewise, Heim et al. (2017) reported similar 

retention with Sedum and another native succulent, Rhodiola rosea, likely resulting from 

differences in plant cover throughout the study (69 – 97% for Sedum compared to 26 – 36% for R. 

rosea), and suggest that the retention performance of R. rosea may increase if coverage 

increased, since this species has higher water use (Wolf and Lundholm, 2008).  Additionally, 

climatic variation between seasons influences ET rates and hence restoration of substrate 

retention capacity, resulting in significantly different retention/runoff at different times of the 

year (Mentens et al., 2006).  Since Experiments 1 and 3 were carried out during late spring/early 

summer, retention would likely be lower during the winter, and the observed retention during the 

experiments is therefore probably an overestimate of the cumulative annual retention that would 

be experienced on a green roof with these species.  

Dunnett et al. (2008) and Nagase and Dunnett (2012) identified significant relationships between 

the volume of runoff produced and plant characteristics (including height, diameter, and root and 

shoot dry weights), and other studies have attributed greater retention or runoff reduction with 

denser vegetative cover and larger plants with greater canopy complexity (Teemusk and Mander, 

2007; Whittinghill et al., 2015).  Similarly, Lundholm et al. (2010) suggest that planting a mix of 

species rather than a monoculture will create a more complex canopy architecture that may 

consequently be able to intercept and retain more water.  However, regression models between 

the volume of runoff produced in Experiment 3 and potential explanatory canopy variables 

(canopy height and diameter, shoot and root dry weights, and leaf area) were not significant and 

all produced low adjusted R2 values (typically less than 0.02; data not shown), indicating that plant 

characteristics alone were not predictive of the runoff produced.   
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The results of Experiments 1 and 3 highlight the impact of varying ET rates between species on 

their ability to retain rainfall and thus reduce runoff.  It is clear from the results of all experiments 

that species with high ET rates (i.e. the broadleaf species) were able to restore the retention 

capacity of the substrate more than species with low ET rates (Sedum), resulting in significantly 

lower antecedent SMC at the onset of rainfall in ‘unsaturated’ conditions and thus greater rainfall 

retention in the substrate/canopy ‘complex’.  

3.4.2 The role of the evapotranspiration in rainfall retention 

The additional retention provided by vegetated treatments compared to bare substrate results 

from a combination of direct canopy interception of rainfall (discussed in Section 3.4.3) as well as 

the role of the vegetation in restoring the substrate’s retention capacity through ET between 

rainfall events.  This water loss from the substrate through ET is generally considered to be of 

greater importance than canopy interception (Stovin et al., 2015) since it is clear that the 

substrate itself represents the majority of a green roof’s water storage capacity (VanWoert et al., 

2005; Dunnett et al., 2008).  This was clearly highlighted in the results of Experiment 1, in which a 

substantially higher proportion of the total rainfall was captured on the canopy/substrate 

‘complex’ in ‘dry’ conditions compared to ‘saturated’ conditions (e.g. 50.7% retention compared 

to 5.1% respectively with Salvia), where the only difference between the two rainfall applications 

was that antecedent SMC was low in the ‘dry’ run whereas the substrate was saturated to field 

capacity at the beginning of the ‘saturated’ run.   

ET is therefore recognised as a key factor determining a green roof’s retention performance 

(Stovin et al., 2012), which is also evident in the results of these experiments.  For example, 

although Sedum was one of the top performing species in terms of canopy capture in ‘saturated’ 

conditions in Experiments 1 and 3, water retention on the whole canopy/substrate ‘complex’ was 

significantly lower than most other species in ‘unsaturated’ conditions, probably as a result of its 

low ET rate limiting the restoration of the substrate’s water retention capacity.  Indeed, the 

overall effectiveness of Sedum compared to other species in rainfall capture is often considered to 

be limited by its low ET rate (Nagase and Dunnett, 2012). Moreover, regression models identified 

strong relationships between both rainfall retention and runoff in the ‘unsaturated’ run of 

Experiment 3 and ET in the preceding 72 hours, with adjusted R2 values of 0.94 and 0.91 

respectively (P < 0.001).   These results indicate that retention and runoff are both strongly 

dependent on ET in the preceding dry period,   highlighting the importance of restoration of the 

substrate’s water retention capacity in overall retention performance.  Furthermore, the 
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advantage of species with high ET rates, and thus their ability to maximise stormwater 

management provision on a green roof, is clearly evident. 

In the 3 days with no irrigation following a rainfall event, there were significant differences 

between treatments in water uptake and consequently SMCs in all experiments, resulting from 

varying ET rates.  Salvia and Stachys had significantly higher ET rates than Sedum and the control 

treatment in all experiments, typically taking up around twice as much water from the substrate 

in 72 hours.  Consequently, the water retention capacity of the substrate is likely to have been 

restored twice as much with these species, theoretically doubling the water storage availability in 

the substrate for a subsequent rainfall event.  Water uptake by Heuchera varied between 

experiments, with high ET rates similar to Salvia and Stachys in Experiment 1 but low ET rates, 

similar to the control and significantly lower than Sedum, in Experiment 3.  However, under the 

conditions of these experiments this variation was probably due to differences in canopy sizes, as 

water uptake expressed relative to leaf area indicates that the ET rate of Heuchera was similar to 

those of Salvia and Stachys, and significantly higher than that of Sedum in all experiments (data 

not shown). 

These findings are consistent with previous studies, in which the presence of vegetation has been 

shown to increase substrate moisture losses compared to bare substrate alone (Voyde et al., 

2010b) and succulent species such as Sedum were generally found to deplete substrate moisture 

slower than herbaceous species (Poë et al., 2015).  Additionally, species with very dense 

vegetative cover, such as Sedum, may retain moisture in the substrate for longer by preventing 

evaporation from the substrate surface (Wolf and Lundholm, 2008).  

Species differences in ET, and hence water retention capacity of the substrate, became more 

pronounced over time in all experiments: for example, in Experiment 3 water loss with Stachys 

was 2.3 mm greater than with the control after 24 hours, whilst the difference was 6.0 mm after 

72 hours of drying.  This suggests that the advantage of one species over others and over bare 

substrate would become greater with longer periods of dry weather between rainfall events.  This 

pattern was also identified in the first few days of drying (6 – 14 days) in several other studies 

(e.g. Berghage et al., 2007; Voyde et al., 2010b).  However, beyond this time the cumulative water 

uptake of different treatments was observed to converge so that the available substrate retention 

capacity became similar for all treatments (Poë et al., 2015).  This is probably a result of 

decreasing ET rates over time as substrate moisture becomes limited (Stovin et al., 2013), 

particularly in broadleaf species with initially high ET rates, which quickly deplete substrate 

moisture.  The cumulative retention provided by green roofs will therefore be greatest when 
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rainfall events are spread out in time, allowing restoration of the substrate retention capacity 

through ET between storms (Berghage et al., 2007).  However, the advantage of broadleaf species 

with high ET rates, such as Stachys, over those with low ET rates, such as Sedum, is likely to be the 

greatest in the first few days following rainfall, when there are the greatest differences between 

ET losses and thus restoration of the substrate’s water retention capacity.   

In Experiment 3, there was a highly significant relationship between antecedent SMC and the 

volume of runoff produced from vegetated treatments (adjusted R2 = 0.76; P < 0.001), indicating 

that antecedent SMC, as well as ET in the preceding dry period, can be an important indicator of 

potential rainfall retention on a green roof.  Retention in ‘unsaturated’ conditions was directly 

related to the antecedent SMCs of each treatment at the onset of rainfall, in all experiments.  Due 

to the varying ET rates of each treatment during the preceding 72-hour dry period, antecedent 

SMCs varied significantly between treatments, with SMCs of the control treatments always similar 

to Sedum and significantly higher than Salvia and Stachys.  This was similar to other studies, in 

which antecedent SMC was significantly higher in bare substrate treatments than vegetated 

treatments at the onset of rainfall (e.g. Volder and Dvorak, 2014).  This indicated that greater 

substrate water storage would be available with Salvia and Stachys during the rainfall event in 

‘unsaturated’ conditions, which was observed in all experiments as retention was significantly 

higher with Salvia and Stachys compared to Sedum and the control.  Rainfall retention under 

natural environmental conditions on a green roof is therefore clearly related to the available 

water storage in the substrate (and thus antecedent SMC), which in turn is dictated by ET losses in 

the preceding dry period. 

3.4.3 The role of the canopy in rainfall retention 

The contribution of the canopy itself to rainfall retention was generally small compared to the 

role of the substrate, which is in line with the results of other studies – for example, MacIvor and 

Lundholm (2011) found that canopy interception contributed up to 4% of the total rainfall 

retention, depending on species.  Similarly, in ‘saturated’ conditions, in which retention was solely 

dependent on the canopy since the substrate was already saturated to field capacity, vegetated 

treatments retained up to 5% more rainfall than bare substrate in Experiment 1 (with Salvia) and 

up to 16% more (with Sedum) in Experiment 3. There were also significant differences in retention 

between species in all experiments, with greater differences observed between species with the 

larger canopies in Experiment 3.  This additional retention provided by the canopy would be 

important at times when antecedent SMC is high at the onset of rainfall, for example when 
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storms occur close together and there is little time for restoration of substrate retention capacity 

between rainfall events, or during cooler and wetter weather or seasons.  In these situations, 

canopy interception may be the sole mechanism for retention, and so having a species capable of 

high canopy retention is essential.   

Although very few studies have investigated retention with different vegetation types, plant 

characteristics such as canopy height, diameter and density, and waxy or hairy leaves were 

identified as factors that may affect the amount of rainfall retained on vegetation (Nagase and 

Dunnett, 2012).  Regression models between retention on the canopy and potential explanatory 

plant characteristics in the ‘saturated’ run of Experiment 3 identified significant correlations for 

shoot dry weight (P < 0.001) and leaf area density (P < 0.001).  However, in all experiments there 

were still significant differences between species when retention was expressed relative to leaf 

area to account for potential variation due to plant size.  The differences in rainfall retention on 

the vegetation may therefore also be due to differing canopy structures and leaf morphologies 

(e.g. presence/absence of leaf hairs, leaf shape) that are not adequately described by any of the 

variables measured in these experiments.   

Sedum typically formed a very dense canopy composed of many upright branches with small, 

succulent leaves and rosettes, which together provided a large area for capturing water and may 

account for its high retention in all experiments.  Furthermore, the stems of Sedum contributed 

greatly to the overall canopy density (up to 20% of the total canopy area in Experiment 3; data 

not shown), and as they were not included in leaf area measurements, this may account for the 

high relative volume of water captured per leaf area.  Indeed, when stems were included in 

calculations, the leaf area density of Sedum increased from 0.43 to 0.53 cm2 cm-3, whilst the leaf 

area density of the other species all increased by only 0.01 cm2 cm-3 (data not shown).  Salvia also 

formed a dense, closed canopy in all experiments, made up of several layers of horizontally 

aligned leaves, which are hairy with rough surfaces.  This provided good coverage of the substrate 

whilst also allowing water to penetrate down through the leaf layers, providing a large surface 

area for water capture.  Additionally, the rough, hairy, horizontal leaves were able to retain water 

droplets, even when they coalesced.   

Stachys has large and particularly hairy leaves, which were able to retain water efficiently on their 

surfaces.  This was evident in Experiment 3 when the larger canopies were full and dense and 

rainfall covered the whole canopy area, retaining 13.1% of the total rainfall.  However, with 

individual plants in Experiment 1, Stachys was one of the poorest performing species tested, 

retaining only 1.8% of the total rainfall applied.  This may have been partly due to the structure of 
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the canopy, as Stachys branches tended to grow at an oblique angle, meaning that the centre of 

the canopy was relatively sparse, often leaving a large area of the substrate exposed.  

Additionally, the simulated rainfall in Experiment 1 only covered a rectangular area of 

approximately 180 cm2, which often resulted in some of the Stachys canopy being outside of the 

rainfall area; due to the sparse centre of the Stachys canopies, this tended to result in a relatively 

large proportion of the rainfall falling directly onto the exposed substrate.   

Heuchera typically formed a large canopy with good substrate coverage, although canopy cover 

was slightly lower than other species in Experiment 3 (approximately 90%).  However, both the 

structure of the Heuchera canopy and characteristics of its leaves resulted in significantly lower 

rainfall retention than other species in all experiments.  The large leaves, which are smooth and 

horizontally-aligned, formed an almost continual layer that raindrops bounced and dripped off of, 

preventing water infiltrating through the canopy and reaching the substrate surface.  These leaf 

and canopy characteristics resulted in the large volume of ‘water lost due to dripping’ from the 

canopy with Heuchera (20.5% of the applied rainfall in ‘saturated’ conditions), measured in 

Experiment 1.  Consequently, runoff from Heuchera was lower than the other treatments (77.7% 

in ‘saturated’ conditions), despite the fact that only a small proportion of the total rainfall was 

retained on the canopy (1.7%).  The ‘water lost due to dripping’ from the canopy in this way is an 

important parameter to consider, since runoff from a green roof will not be delayed or reduced as 

much if a large proportion of the rainfall drips off of the vegetation onto surrounding surfaces.  

However, the ‘water lost due to dripping’ from individual plants measured in Experiment 1 is likely 

to be an overestimate compared to larger canopies, including a full green roof, as the edge effect 

is exaggerated with individual plants.  Additionally, it is clear that runoff alone may not be an 

accurate parameter to measure the stormwater management capabilities of a green roof, as it 

does not take into account the volume of ‘water lost due to dripping’ from the canopy. 

3.5 Key conclusions 

• Species selection for green roofs has an impact on the stormwater management service 

that can be provided, as there are significant differences between species in terms of 

both canopy capture and restoration of substrate retention capacity following rainfall, 

depending on the ET rate and the canopy characteristics of each species.   

• Substrate is the major store for water and antecedent SMC is therefore a key factor in 

stormwater management with green roofs.  However, under the experimental conditions 

of this study canopies themselves retained up to 17% of the total rainfall, depending on 
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species, and can therefore make a substantial contribution to rainfall retention on a green 

roof.  

• There was a strong relationship between ET, rainfall retention and runoff reduction in 

‘unsaturated’ conditions, when plants were allowed to freely transpire during an 

antecedent dry period of 72 hours, suggesting that greater restoration of substrate 

retention capacity through enhanced ET is the most important contribution of vegetation 

to retention performance.  Species with high ET rates are therefore able to provide the 

greatest stormwater management service.  Experimental results suggest that the 

advantage of species with high ET rates is likely to be greatest in the first few days 

following rainfall when differences in ET losses between species are greatest. 

• The ability of the canopy to intercept and retain rainfall is likely to become more 

important when antecedent SMC is constantly high, for example in cool, wet weather or 

when rain storms are close together. 

• Sedum provided good canopy capture in ‘saturated’ conditions but was slow to restore 

the substrate retention capacity due to its low ET rate, which consequently resulted in 

one of the lowest retention and highest runoff volumes of all the species tested in 

‘unsaturated’ conditions. 

• Stachys and Salvia provided good canopy capture and were also able to restore the 

substrate retention capacity quickly due to their high ET rates; these species were 

therefore able to retain the most rainfall and reduce runoff the most in ‘unsaturated’ 

conditions. 
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Chapter 4  

The impact of different simulated summertime 

temperature and humidity scenarios on plants’ water use: 

links with restoration of the substrate’s water retention 

capacity 

4.1 Introduction 

The role of green roofs in mitigating urban flooding, through delay and reduction of runoff, is well 

documented.  The substrate is generally regarded as the most important part of a green roof 

system in terms of its stormwater management capabilities, since the bulk of the rainfall is stored 

in the substrate (VanWoert et al., 2005; Dunnett et al., 2008).  The substrate has a finite retention 

capacity, which varies with substrate type, depth, porosity and water-holding properties. Removal 

of water from the substrate through evapotranspiration (ET) between storms allows a greater 

volume of water to be stored by the system in the next rainfall event (Stovin et al., 2012), up to 

the maximum retention capacity of the substrate, after which any water added will become 

runoff (Sims et al., 2016).  Vegetation is acknowledged to play a vital role in increasing the 

retention potential of a green roof over and above that of bare substrate alone (Voyde et al., 

2010a), mainly as result of the additional contribution of plant transpiration to total ET in dry 

periods.  This was also clearly highlighted in Chapter 3, where experiments revealed that rainfall 

retention on the canopy/substrate ‘complex’ following a 3-day antecedent dry period was 

strongly related to cumulative ET, and consequently antecedent substrate moisture content 

(SMC), during the dry period (see Sections 3.3 and 3.4.2). 

Significant differences in rainfall retention have been identified with different plant species 

(Nagase and Dunnett, 2012; Whittinghill et al., 2015), as well as in the experimental results 

presented in Chapter 3, highlighting the importance of species choice for maximum provision of 

stormwater management.  However, few studies have directly examined the role of different 

species in restoring substrate retention capacity through ET (e.g. Berghage et al., 2007; Poë et al., 

2015), and green roof ET has rarely been quantified (Voyde et al., 2010b).  Additionally, the vast 

majority of plant species examined to date, in terms of both ET and overall retention, have been 

succulents such as Sedum (e.g. Voyde et al., 2010b; Farrell et al., 2012; Berretta et al., 2014).  
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Although these species have traditionally dominated green roof planting choices due to their 

ability to survive without irrigation, they also have inherently low ET rates (Vaz Monteiro et al., 

2017), which restrict restoration of substrate retention capacity and limit their ability to provide 

rainfall retention (Nagase and Dunnett, 2012).  Species with high ET rates are likely to restore the 

substrate retention capacity faster and to a greater extent in dry periods between storms, so that 

a greater retention capacity is available for rainfall storage in subsequent storms, even when they 

occur close together.  However, the ability of species with high ET rates to restore substrate 

retention capacity during dry periods through ET has not yet been examined. 

Rainfall retention performance of green roofs has been observed to vary between locations and 

between seasons (Speak et al., 2013; Sims et al., 2016), which is likely to be a result of the varying 

environmental conditions and their influence on ET.  Indeed, Sims et al. (2016) studied identical 

green roofs (in terms of substrate type and depth, configuration and vegetation treatments) in 

three different climatic regions of Canada to attempt to isolate the influence of climatic variables 

on green roof retention performance.  They found that higher ET between storms on the roof in a 

semi-arid climate resulted in greater restoration of substrate retention capacity than on the roof 

located in a maritime climate, leading to an overall retention of 75.2% compared to 43.4% (Sims 

et al., 2016); rainfall totals were similar in both locations, suggesting that the influence of climate 

on ET plays an important role in overall retention performance.   

The main climatic parameters influencing ET are solar radiation, air temperature and humidity, 

and wind speed (Allen et al., 1998).  Radiation provides the primary energy supply for the 

evaporation process; temperature provides a small additional energy source, whilst also reducing 

the energy required for the process (Tan et al., 2015).  High wind speeds increase ET by reducing 

the thickness of the boundary layer, thus reducing boundary layer resistance to water vapour, and 

by promoting turbulent mixing of the atmosphere, which allows saturated air above the 

evaporating surface to be replaced with drier air (Tan et al., 2015).  The humidity gradient 

between the saturated air in the leaf and the relatively drier external air drives the removal of 

water vapour from the evaporating surface and is described by vapour pressure deficit (VPD), 

which is a function of air temperature and humidity (Allen et al., 1998).  The rate at which water 

vapour from the evaporating surfaces is transferred to the air, controlled by all of these 

climatological variables, influences a green roof’s ability to restore substrate retention capacity 

between storms and thus the proportion of a subsequent rainfall event that can be retained (Poë 

et al., 2015).  
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Very few studies have examined the influence of climatic variables on the ET rates of green roof 

species (Berretta et al., 2014; Poë et al., 2015; Sims et al., 2016), especially whilst keeping all 

other factors constant (e.g. vegetation type, substrate type and depth, season and duration of 

study).  These studies typically observed greater ET in summer compared to spring conditions 

(Berretta et al., 2014; Poë et al., 2015) and in dry compared to humid climates (Sims et al., 2016), 

resulting from higher VPD in warm and dry conditions driving faster ET.  This suggests that, in a UK 

summer, green roofs would be able to provide greater rainfall retention when conditions are 

predominantly hot and dry (i.e. high temperature and low humidity).  However, over a long dry 

period (28 days; Poë et al., 2015), the higher ET rates in summer conditions declined after the first 

12 days due to low SMC, becoming lower than spring ET for the remainder of the study. 

Moreover, these studies primarily tested the effect of varying climates on Sedum species, which 

are widely acknowledged to be adapted to drought conditions through leaf succulence and the 

ability to switch to Crassulacean Acid Metabolism (CAM) photosynthesis in order to conserve and 

prolong water supplies (Farrell et al., 2013).  However, other species, including broadleaf species 

with high ET rates, may not utilise water conservation strategies, and there is evidence that 

photosynthesis, and therefore transpiration, can continue at a higher rate even when substrate 

moisture is low (Cameron et al., 2006; Voyde et al., 2010b).  This could be advantageous for a 

green roof’s overall rainfall retention performance, as the substrate retention capacity would be 

restored to a greater capacity more quickly with broadleaf species as a result of their high ET 

rates.  Thus, a larger volume of rainfall could be stored in the substrate in subsequent rainfall 

events, even if they occur very close together.  Moreover, this suggests that species could be 

selected based on a green roof’s location and predominant summer weather conditions in order 

to maximise the provision of stormwater management, as different species may have optimal 

climatic conditions for ET and thus restoration of substrate retention capacity. 

Since the maintenance of ET at its maximum potential rate depends on a constant supply of water 

to the evaporating surface (Verhoef and Egea, 2013), the actual rate of ET declines over time if no 

supplementary irrigation is supplied, as available substrate moisture becomes increasingly 

restricted (Stovin et al., 2013).  This daily ET decrease has been observed in succulent species 

during long drying periods (e.g. 4 weeks) in glasshouse and controlled environment experiments 

(Voyde et al., 2010b; Poë et al., 2015), with the ET rates of vegetated treatments often eventually 

becoming similar to or lower than unvegetated treatments.  Additionally, experimental results 

presented in Chapter 3 indicated that for species with higher ET rates (i.e. broadleaf species such 

as Stachys), this decline in daily ET may occur much faster as a result of substrate moisture being 

depleted faster, thus restricting subsequent ET.  This suggests, therefore, that these species may 



 Chapter 4 

91 
 

only have an advantage over succulents or bare substrate, in terms of restoring substrate 

retention capacity and allowing greater storage of water in subsequent rainfall events, for a 

relatively short time after a rainfall event, when SMC is not restricted.  However, this decline in 

the ET over time with decreasing SMC has not yet been fully examined and quantified for species 

with high transpiration rates in the context of green roof ecosystem services (ESs) provision.   

4.1.1 Study aims 

There is therefore a need to characterise the behaviour of species with high ET rates in terms of 

the impact of varying climates on ET rates and their responses to drying substrate, in order to 

identify optimum environmental conditions for ET and thus provision of stormwater management 

service.  The experimental trials presented in this chapter adopted a theoretical framework to 

investigate the maximum ability of species with high ET rates to restore substrate retention 

capacity under varying environmental conditions (air temperature (T) and relative humidity (RH) 

in different combinations; hereafter referred to as T/RH treatments) and as substrate moisture is 

depleted.  Trials were therefore conducted under controlled environmental conditions to ensure 

that other parameters (such as solar radiation and wind speed) remained constant, using 

broadleaf species with high ET rates relative to Sedum to identify the optimum T and RH 

conditions that promote the greatest restoration of substrate retention capacity.  The objectives 

of this chapter were therefore: 

• To investigate the impact of varying air temperature and humidity on the ET rates of 

different species, in order to identify optimum environmental conditions for each species 

in terms of restoring substrate retention capacity; 

• To investigate the response of each species to drying substrate (i.e. decreasing SMC) in 

terms of ET rates, and the impact of any water conservation strategies on the species’ 

ability to restore substrate retention capacity. 
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4.2 Materials and Methods 

A controlled environment (CE) experiment was carried out to examine how ET, and thus the rate 

of restoration of substrate retention capacity, varies between species in different T/RH 

treatments.  A summary of the experimental setup for Experiment 4 is presented in Table 4.1.  Full 

details of the plant materials and substrates used in the experiments are described in Sections 2.3 

and 2.4 and all measurements were made as described in Section 2.5. 

Table 4.1: Summary of Experiment 4. 

 Experiment 4 

Dates 9th March – 30th April 2015 

Set-up Individual plants in 2 L containers with 11 cm of Meadow Roof 

Medium 

Treatments 6x Heuchera, Salvia, Stachys, Sedum, control 

Measurements SMC; plant height and diameter, leaf area, root and shoot dry 

weights, ET 

 

4.2.1 Restoration of substrate retention capacity under different environmental conditions 

Experiment 4 consisted of a series of 5 successive trials in CE growth cabinets, each with different 

environmental settings to examine how ET rates of each species, and thus the rate of restoration 

of substrate retention capacity, varied in different T/RH treatments.  The experimental setup of 

Experiment 4 was described in Section 2.6.6.  There were five treatments in all trials: the four 

plant species (Heuchera, Salvia, Stachys and Sedum) plus a bare substrate control.  Each trial was 

carried out in two or three parts (referred to as Parts a, b and c), due to space limitations in the CE 

cabinets only allowing a maximum of 3 replicates per treatment (half the total number) to be 

tested at a time.  Moreover, in trial 4 (‘dry’) only 2 replicates of each treatment fitted inside the 

cabinet at a time, as a Honeywell HDE010E dehumidifier (Honeywell International Inc., Kaz Europe 

SA, Switzerland), which was capable of maintaining a set RH of 40%, was placed inside the CE 

cabinet to achieve the target RH.  Trial 4 therefore took place in three successive parts with 2 

replicates per species/control tested each time.   

The target environmental settings for the five trials were chosen to simulate a range of potential 

summertime T/RH scenarios that could be experienced in the UK.  Trials are hereafter referred to 
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as ‘warm’, ‘hot’, ‘cool’, ‘dry’ and ‘humid’, based on their target T and RH (Table 4.2); target vapour 

pressure deficit (VPD) was calculated from the target T and RH for each treatment (using 

Equations 5.12 and 5.13; see Section 5.2.2).  The actual mean T and RH recorded in the CE 

cabinets during each part of each trial are presented in Table 4.3, along with the calculated actual 

VPD.  General environmental conditions of the CE growth cabinets were described in Section 2.1. 

Table 4.2: Target air temperature (T) and relative humidity (RH) settings and calculated target 

vapour pressure deficit (VPD) for the controlled environment cabinets during each T/RH trial. 

Trial 
T/RH 

summertime 
scenario 

Target temperature (°C) 
Target relative 
humidity (%) 

Target mean 
VPD (kPa) 

Day Night 

1 ‘Warm’ 22 14 60 0.85 

2 ‘Hot’ 28 16 60 1.12 

3 ‘Cool’ 18 10 60 0.66 

4 ‘Dry’ 22 14 40 1.27 

5 ‘Humid’ 22 14 80 0.42 

4.2.2 Experimental procedure 

Setup details of all trials are summarised in Table 4.3, along with the mean actual environmental 

conditions recorded in the CE cabinets during each trial.  Fluctuations in actual T and RH inside the 

cabinets during experimental trials resulted in almost identical average VPDs during the ‘hot’ and 

‘dry’ trials (1.34 and 1.33 kPa respectively) and during the ‘cool’ and ‘humid’ trials (0.53 and 

0.55 kPa respectively).  At the start of each trial, containers were saturated to container capacity 

by submerging in water for 15 minutes and then leaving to drain to field capacity for 

approximately 1 hour.  Five containers (one of each species/control) were saturated 

simultaneously.  Each container was then weighed and two SMC measurements were made 

before randomly placing all containers inside the growth cabinets.  Containers remained in the 

cabinets for the remainder of the trial, and were removed every 24 hours for weighing and SMC 

measurement.  To ensure survival of all plants and avoid irreversible damage, trials were ended 

when the SMC of any species fell below 0.100 m3 m-3, which was considered low for the Meadow 

Roof Medium (MRM) based on substrate moisture tests (see Section 2.4.1).  Containers were then 

removed from the cabinets and placed in a glasshouse where they were watered daily and 

allowed to recover for at least 3 days before the start of the next trial.    
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Plant height and diameter were also measured at the start of every trial.  Once all trials had been 

completed, four plants of each species were randomly selected for harvesting, and leaf area and 

root and shoot dry weights were measured. 

Table 4.3: Details of the setup of each experimental trial and the actual temperature (T), 

relative humidity (RH) and calculated vapour pressure deficit (VPD) recorded in the controlled 

environment (CE) cabinets during each part of each T/RH trial. 

T/RH 
summertime 

scenario 

Trial/ 
part 

Plant 
replicates 

tested 

Mean temperature (°C) 
Mean 
RH (%) 

Mean VPD 
(kPa) 

Day Night 

‘Warm’ 
1a 1-3 20.9 14.4 61.7 0.92 

1b 4-6 19.5 15.3 63.7 0.96 

‘Hot’ 
2a 1-3 26.8 16.3 54.3 1.44 

2b 4-6 24.3 18.3 61.9 1.24 

‘Cool’ 
3a 1-3 15.3 9.7 78.0 0.43 

3b 4-6 16.9 10.3 72.4 0.62 

‘Dry’ 

4a 1-2 22.4 14.8 42.8 1.40 

4b 3-4 22.4 15.1 42.2 1.31 

4c 5-6 22.5 15.2 41.3 1.29 

‘Humid’ 
5a 1-3 20.5 13.7 78.7 0.53 

5b 4-6 21.9 14.0 79.1 0.57 

 

4.2.3 Data analysis 

All statistical analyses were performed as described in Section 2.8.  Daily ET was calculated as the 

weight loss from each container in each 24 hour period, which was converted to depth (in mm) by 

dividing by plot area (using Eq. 1.1; Section 1.3.5).  To account for the effect of different canopy 

sizes, ET in the first 24 hours after saturation was expressed relative to leaf area for all species 

under all environmental conditions. 
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4.3 Results 

Although water loss from bare substrate control containers was solely through evaporation, for 

simplicity, the term ‘evapotranspiration’ (ET) is used from here on to describe water loss from 

containers of all species/control.  

4.3.1 Plant parameters 

The average plant height and diameter of each species measured at the beginning of each T/RH 

trial are presented in Table 4.4.  Due to the length of time taken for each trial and mechanical 

problems with the CE cabinets, trials 4 and 5 (‘dry’ and ‘humid’) were conducted approximately 

5 – 6 weeks after trial 1 (‘warm’).  Plant height and diameter generally increased over the course 

of the experiment, and therefore plants were larger in the later trials.  Leaf area and shoot and 

root dry weights of harvested plants, measured at the end of the experiment after all trials had 

been completed, are presented in Table 4.5. 

Table 4.4: Average plant height and diameter of each species during each environmental trial, 

with associated standard error of the means (SEM).  Data are means of 6 replicates per species. 

Species 
Average (± SEM) plant height and diameter during each experimental trial (cm) 

'Warm' 'Hot' 'Cool' 'Dry' 'Humid' 

Heuchera 

     Height 16.7 (± 0.4) 20.0 (± 0.7) 21.1 (± 0.7) 20.7 (± 0.6) 21.1 (± 0.7) 

Diameter 30.5 (± 0.8) 30.6 (± 1.0) 33.3 (± 2.0) 38.2 (± 1.2) 38.2 (± 1.4) 

Salvia 

     Height 15.9 (± 0.6) 17.4 (± 0.7) 21.1 (± 0.8) 23.8 (± 0.5) 23.3 (± 0.4) 

Diameter 31.7 (± 1.5) 34.0 (± 0.9) 37.2 (± 1.7) 41.5 (± 1.3) 41.9 (± 0.7) 

Stachys 

     Height 15.1 (± 0.4) 16.4 (± 0.3) 19.2 (± 0.6) 21.0 (± 1.2) 20.6 (± 0.8) 

Diameter 42.2 (± 1.0) 41.5 (± 0.8) 44.8 (± 1.0) 46.2 (± 1.0) 49.5 (± 1.3) 

Sedum 

     Height 14.2 (± 0.9) 14.9 (± 0.8) 15.6 (± 0.5) 15.5 (± 0.3) 16.6 (± 0.8) 

Diameter 34.8 (± 1.4) 34.2 (± 1.0) 37.9 (± 0.8) 37.9 (± 1.0) 37.0 (± 1.2) 
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Table 4.5: Average leaf area and shoot and root dry weights per plant of each species with 

associated standard error of the means (SEM), measured at the end of all experimental trials.  

Data are means of 4 replicates per species.  

Species 
Mean (± SEM)  
leaf area (cm2) 

Mean (± SEM)  
shoot dry weight (g) 

Mean (± SEM)  
root dry weight (g) 

Heuchera   1956 (± 301.5) 21.6 (± 2.1) 11.6 (± 0.6) 

Salvia   2627 (± 250.9) 29.6 (± 1.5)   9.3 (± 0.8) 

Stachys   4600 (± 279.6) 35.1 (± 1.3) 12.1 (± 1.1) 

Sedum 2086 (± 36.2) 29.9 (± 1.7)   4.5 (± 0.6) 

 

Cumulative ET after 96 hours for each species/control in each environmental trial is presented in 

Table 4.6.  ET results from Experiments 1 and 3 indicated that cumulative differences between 

species/control became more pronounced over time (see Section 3.3.4), and thus cumulative ET 

after 96 hours is presented here in order to compare maximum differences.  Although the ‘cool’ 

and ‘humid’ trials continued for a further 24 hours, for fair comparison cumulative ET after 96 

hours in all trials was examined.  The contribution of plant transpiration as a percentage of total 

ET (i.e. if ET = 100% and evaporation from bare substrate = 40% of ET, then plant transpiration 

= 60% of total ET) is also presented in Table 4.6. 

Table 4.6: Mean cumulative ET per container in 96 hours for each species/control in each T/RH 

trial.  Data are means of 6 replicates per treatment with associated LSDs (5%).  Numbers in 

brackets indicate the contribution of plant transpiration to the total ET (%).   

Treatment 

Mean cumulative ET in 96h (mm) and contribution of plant transpiration  
to total ET (%) in each of the experimental trials 

'Warm' 'Hot' 'Cool' 'Dry' 'Humid' 

Heuchera    20.92 (51)   24.30 (49)  16.79 (56)   24.12 (51)  17.17 (60) 

Salvia    26.31 (61)   29.58 (58)  22.28 (67)   30.29 (61)  24.43 (72) 

Stachys    28.16 (63)   31.83 (61)  25.95 (72)   30.69 (61)  24.90 (72) 

Sedum    12.29 (16)   16.03 (22)   11.95 (38)   18.77 (37)  12.75 (46) 

Control 10.35 (-) 12.47 (-) 7.39 (-) 11.84 (-) 6.89 (-) 

LSD (d.f. = 29) 2.485 1.896 2.124 2.021 2.127 



 Chapter 4 

97 
 

There were significant differences in cumulative ET between species/control in all T/RH 

treatments (P < 0.001), with the same patterns observed in all trials: Stachys and Salvia had the 

highest ET, followed by Heuchera and then Sedum, whilst the bare substrate control had the 

lowest ET in all trials.  ET from the control was particularly low compared to planted treatments in 

the ‘cool’ and ‘humid’ trials, approximately 3.5 times lower than with Stachys compared to 2.5 

times lower in the ‘warm’, ‘hot’ and ‘dry’ trials.  This was also evident from the percentage of total 

ET provided by plant transpiration, which was highest in the ‘cool’ and ‘humid’ treatments for all 

species.  The contribution of plant transpiration with Sedum was also high in the ‘dry’ treatment. 

To attempt to account for any differences in ET that may have resulted from varying canopy sizes, 

mean water loss in the first 24 hours after saturation in each T/RH trial was expressed relative to 

leaf area for each species (Figure 4.1).  Data were expressed this way only for well-watered 

conditions (i.e. the first 24 hours after saturation) so that ET was not restricted by drying 

substrate with any species (Section 4.3.3).  Differences in relative water loss between species 

were only significant in the ‘warm’ and ‘humid’ treatments (P = 0.004 and 0.009 respectively), 

with significantly higher water loss per unit leaf area with Heuchera compared to Sedum in both 

treatments, and also compared to Stachys in the ‘humid’ treatment.  However, since leaf area was 

only measured once after all trials had been completed, plant growth over the course of the 

experiment is not accounted for.  Results are therefore only an indication of relative water loss 

per unit area for each species, and are only used for comparison of species within each trial rather 

than across all trials. 
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Figure 4.1: Mean water loss per container in the first 24 hours after saturation expressed 

relative to leaf area for each species in each T/RH trial.  Data are means of 4 replicates per 

species with associated LSDs (5%); red bars indicate statistical differences between species 

within each T/RH treatment.  

4.3.2  Evapotranspiration under varying temperature and humidity 

To examine the effect of varying temperature and RH on ET rates, cumulative ET over the course 

of each trial for each species/control is presented in Figure 4.2.  Within all species/control, there 

were significant differences in cumulative ET between T/RH treatments (P < 0.001).  Treatments 

with high VPD (i.e. ‘hot’ and ‘dry’) always had significantly greater ET than treatments with low 

VPD (i.e. ‘cool’ and ‘humid’) with all species/control, typically close to double in the first 24 hours.  

Observed ET patterns for all T/RH treatments were similar with Heuchera, Stachys and control 

Figure 4.2 A, C and E), where cumulative ET was statistically similar in the ‘hot’ and ‘dry’ 

treatments and in the ‘cool’ and ‘humid’ treatments.  Cumulative ET in the ‘warm’ treatment was 

between these two extremes and typically significantly different from all other treatments.  With 

Heuchera and control, the differences in cumulative ET between treatments generally increased 

over time (e.g. for control the difference between ‘dry’ and ‘humid’ was 1.91 mm at 24 hours and 

5.58 mm at 96 hours).  However, this was not the case with Stachys, where ET differences 
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between treatments were up to 6.67 mm at 24 hours, and remained at around 7 mm for the 

remainder of the trials.  Daily ET rates were more similar in all T/RH treatments after the first 24 

hours, gradually becoming lower in the ‘warm’, ‘hot’ and ‘dry’ treatments compared to the ‘cool’ 

and ‘humid’ treatments (data not shown). 

With Salvia, there were significant differences in cumulative ET between the ‘hot’ and ‘dry’ 

treatments for the first 48 hours and between the ‘cool’ and ‘humid’ treatments between 24 and 

72 hours (P < 0.001; Figure 4.2 B).  By 96 hours, these differences were no longer observed, and 

the patterns of cumulative ET in all of the treatments became similar to those of Heuchera, 

Stachys and control.  The maximum difference in cumulative ET between treatments (‘cool’ and 

‘dry’) with Salvia increased in the first 48 hours from 6.12 to 10.61 mm but then decreased again, 

reaching 8.01 mm after 96 hours.  There were also significant differences between the ‘hot’ and 

‘dry’ treatments for the whole length of the trials with Sedum (P < 0.001; Figure 4.2 D), whilst 

cumulative ET in the ‘warm’ treatment was statistically similar to the ‘cool’ and ‘humid’ trials.  

Differences in cumulative ET between T/RH treatments became progressively larger over time, 

increasing from 2.89 mm difference at 24 hours (between ‘cool; and ‘dry’) to 6.82 mm difference 

at 96 hours. 
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Figure 4.2: Average cumulative ET per 

container over the course of all T/RH 

trials for Heuchera (A), Salvia (B), 

Stachys (C), Sedum (D) and control (E).  

Data are means of 6 replicates per 

species/control with associated LSDs 

(5%); red bars indicate statistical 

differences between the means of each 

trial.  
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Regression models indicated that there was a fairly strong relationship (adjusted R2 values 

between 0.47 and 0.67; Figure 4.3) between ET under well-watered conditions (i.e. in the first 24 

hours after saturation when ET is not limited by decreasing SMC) and VPD for all species/control, 

particularly for Heuchera, Salvia and Stachys.  Low ET in the first 24 hours was also strongly 

related to high RH (adjusted R2 values between 0.50 and 0.71; data not shown), whereas the 

relationship between ET and air temperature was weaker for all species/control (adjusted R2 

values between 0.21 and 0.38; data not shown).   

4.3.3 Effect of drying substrate on ET rates of different species 

To examine the effect of drying substrate on ET, the daily ET rates of each species/control in the 

‘warm’ treatment, along with associated SMCs at the start of each 24-hour period, are presented 

in Figure 4.4.  Average daily VPD, which was relatively uniform for each day, is also displayed to 

illustrate any possible variation in the environmental conditions in the CE cabinets (Figure 4.4 A).  

Although absolute volumes of water lost per container differed in each T/RH treatment for each 

species/control, daily ET exhibited a similar decline in each T/RH treatment for all species/control; 

the ‘warm’ treatment is therefore presented here as representative of the average ET decline 

observed.  Saturated SMCs of Salvia and Stachys were somewhat higher than for Heuchera, 

Sedum or control in all trials, which is likely to be a result of differing root densities affecting the 

water-holding capacity of the substrate.  However, containers of all species/control were 

saturated to container capacity and SMCs were all within the well-watered range identified in 

Section 2.4.1 at the start of each trial.   

ET and SMC of all species/control declined after Day 1.  For Stachys the decline in daily ET was 

initially rapid, declining by around 4 mm day-1 each day (from 12.36 mm day-1 on Day 1 to 

4.31 mm day-1 on Day 3), before appearing to slow, decreasing by only 1.32 mm day-1 on Day 4.  

Stachys SMC also declined rapidly in the first 2 days, from 0.548 m3 m-3 when saturated to 

0.214 m3 m-3 after 2 days; after this time SMC decreased more gradually.  A similar pattern was 

also observed in all other environmental trials (data not shown), with the decline in SMC and daily 

ET typically faster in the ‘hot’ and ‘dry’ treatments (reduction in daily ET of 5 – 6 mm day-1 on 

average) and slower in the ‘cool’ and ‘humid’ treatments (reduction of around 2 mm day-1).  

Stachys ET was initially significantly higher than all other species/control (P < 0.001) but declined 

to such an extent that by Day 4 it was similar to Sedum.  This pattern was also observed in all 

other T/RH trials: in the ‘hot’ and ‘dry’ trials Stachys daily ET was similar to Sedum by Day 3, 

whereas in the ‘cool’ trial it took until Day 5 for ET rates to become similar (data not shown). 
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Figure 4.3: Regression models showing 

the relationship between VPD and daily 

ET under well-watered conditions (i.e. 

the first 24 hours after saturation) in all 

T/RH treatments combined for 

Heuchera (A), Salvia (B), Stachys (C), 

Sedum (D) and control (E). 

VPD / daily ET regression 
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The declines in both daily ET and SMC were much slower with Sedum and the control, with daily 

ET for both treatments reducing by only 1.17 mm day-1 from Day 1 to Day 4.  In the ‘cool’ and 

‘humid’ treatments, daily ET decreased by an average of only 0.76 and 0.24 mm day-1 from Day 1 

to Day 5 for Sedum and the control respectively (data not shown).  However, in the ‘dry’ 

treatment daily ET with Sedum decreased by 2.84 mm day-1 from Day 1 to Day 4 (data not shown).  

Regression models indicated that the SMC at the start of each day could be a good indicator of 

the daily ET rate, depending on species/control (Figure 4.5).  There was a particularly strong and 

significant relationship between SMC and ET for Stachys in all treatments (adjusted R2 = 0.76; 

P < 0.001), whilst the relationship was weak for Sedum (adjusted R2 = 0.01; P = 0.100) and the 

control (adjusted R2 = 0.02; P = 0.052).  However, the correlation between SMC and daily ET was 

typically higher in the ‘dry’ treatment for all species/control, with adjusted R2 values of 0.34, 0.40, 

0.64, 0.87 and 0.93 for Sedum, control, Heuchera, Salvia and Stachys respectively. 
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Figure 4.4: Average daily ET per container in the ‘warm’ trial, with mean VPD measured in the 

CE cabinets on each day of the trial (A), and associated average SMC of each species/control at 

the start of each 24-hour period (B).  Data are means of 6 replicates per treatment with 

associated LSDs (5%); red bars indicate statistical differences between the means of 

species/control on each day of the trial.  
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Figure 4.5: Regression models showing 
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4.4 Discussion 

This chapter examined in depth the influence of varying temperature (T) and relative humidity 

(RH) conditions (T/RH treatments) and decreasing substrate moisture content (SMC) on the 

evapotranspiration (ET) rates of four plant species in the context of ET as a proxy for restoration 

of substrate retention capacity on a green roof, thus allowing greater rainfall retention in 

subsequent storms. 

4.4.1 Species differences in ET rates in all climatic scenarios 

Removal of moisture from the substrate through ET between storms restores the retention 

capacity of the substrate for rainfall retention in subsequent rainfall events (Stovin et al., 2012).  

Varying ET rates of different species are therefore of interest as they determine the extent and 

speed of substrate retention capacity recharge.  In the presented experiment, cumulative ET in 96 

hours without irrigation ranged from 6.89 mm (control; ‘humid’ treatment) to 31.83 mm (Stachys; 

‘hot’ treatment).  The same pattern of differences between species/control was observed in all 

T/RH treatments for cumulative ET in 96 hours, with Salvia and Stachys always having significantly 

higher ET than all other species/control, whilst ET with Heuchera was significantly greater than 

Sedum, and control ET was significantly lower than all other species.  When using stomatal 

conductance (gs) as an indicator of ET, a similar pattern was observed in an earlier study with 

these species in outdoor plots (Vaz Monteiro et al., 2017), with Salvia and Stachys having greater 

gs than Heuchera, and Sedum gs the lowest.   

These results highlight the importance of species selection for optimal provision of ESs such as 

stormwater management on a green roof, as cumulative ET was significantly higher in all T/RH 

treatments with the broadleaf species, especially Stachys and Salvia, compared to Sedum or bare 

substrate. Thus, it appears that maximum rainfall retention performance on a green roof (as a 

result of restoration of substrate retention capacity through ET) would always be achieved with 

Stachys and Salvia, regardless of the predominant summertime weather conditions.  Additionally, 

cumulative ET with Sedum was significantly higher than with bare substrate, in all T/RH 

treatments (apart from ‘warm’), similar to results of other studies (Berghage et al., 2007; Voyde et 

al., 2010b).  This indicates that, although the low ET rate of succulent species may limit their 

potential for stormwater management provision (Nagase and Dunnett, 2012), the presence of 

Sedum on a green roof enables greater rainfall retention than bare substrate alone. 
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ET values (both daily and cumulative) for Sedum were similar to those reported for succulent 

species in other studies, which typically range from around 1 to 3 mm day-1, depending on 

species, SMC and weather conditions (Voyde et al., 2010b; Berretta et al., 2014).  However, ET 

rates of the broadleaf species were substantially higher in all simulated T/RH summertime 

scenarios, with daily ETs under well-watered conditions of up to 7.76, 12.27 and 15.17 mm day-1 

for Heuchera, Salvia and Stachys respectively in the ‘dry’ treatment.  Significant differences in ET 

between different species have previously been identified (e.g. Berghage et al., 2007; Farrell et 

al., 2012), but these have typically been between a variety of succulent species and so ET 

differences were generally small.  There was also substantial variation in daily ET within the 

broadleaf species, with the ET rate of Stachys plants double that of Heuchera under well-watered 

conditions.  However, these differences were not apparent when water loss was expressed 

relative to canopy leaf area, indicating that although daily ET with Stachys was significantly 

greater when individual mature plants were considered, ET per unit leaf area was similar with all 

broadleaf species.  Results of the presented experiment clearly highlight the superior ability of 

species with high ET rates to remove water from the substrate following rainfall, thus having the 

potential to restore the substrate retention capacity to a much greater extent than with succulent 

species even in just 24 hours, and allowing storage of a larger volume of rainfall in the next storm.   

The presence of vegetation increases the ability of a green roof system to restore the substrate 

retention capacity above that of bare substrate alone, as was observed in the presented 

experiment, due to the additional contribution of plant transpiration (Voyde et al., 2010a).  The 

proportion of total cumulative ET after 96 hours provided by plant transpiration (see Section 

4.3.1) was large, particularly for the broadleaf species (e.g. up to 60% for Heuchera and 72% for 

Salvia and Stachys, all in the ‘humid’ treatment), clearly demonstrating the importance of 

vegetation over and above bare substrate.  Contribution to ET through plant transpiration was 

smaller with Sedum, especially in the ‘warm’ and ‘hot’ treatments where it was around 3 times 

less than Stachys.  This again highlights the advantage of species with high transpiration rates 

compared to species with low ET rates such as Sedum, and the greater restoration of substrate 

retention capacity that can be achieved with these species.  Voyde et al. (2010b) reported a plant 

contribution to ET of 34% with Sedum under well-watered conditions, decreasing to 29% of the 

total ET when low SMC restricted plant transpiration, as evaporation from the substrate is known 

to dominate ET when water supply becomes restricted (Castiglia Feitosa and Wilkinson, 2016).  A 

similar result was obtained for Sedum in Experiment 4, with an average plant transpiration 

contribution of 32% in all trials, where Sedum transpiration is not thought to have been restricted 

by low SMC at any time during the relatively short trials.  Furthermore, the contribution of plant 
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transpiration to total ET was particularly large in low VPD treatments (‘cool’ and ‘humid’), which 

was likely due to limited evaporation from the bare substrate and a more abundant water supply 

(i.e. higher SMC) in vegetated treatments in these conditions (Voyde et al., 2010b).  The benefit of 

having vegetation on a green roof, compared to bare substrate, may therefore be the most 

valuable under cool, wet summertime conditions, substantially increasing restoration of substrate 

retention capacity, and hence overall retention performance, of the system.  

4.4.2 Effect of varying temperature and humidity on ET rates 

The main meteorological parameters controlling ET are solar radiation, air temperature and 

humidity, and wind speed (Allen et al., 1998).  Climatic variables that influence ET rates will affect 

the overall retention performance of a green roof (Sims et al., 2016), by controlling the extent to 

which the substrate retention capacity is restored between rainfall events and thus the volume of 

water that can be retained in the next storm.  Hence, green roof retention has been found to vary 

between seasons (Mentens et al., 2006; Berghage et al., 2007; Speak et al., 2013) and between 

locations with different climates (Sims et al., 2016).  The artificial conditions inside the CE cabinets 

differed somewhat to natural atmospheric conditions outdoors, as radiation and wind speed were 

very low, which is likely to have restricted ET; measurements are therefore likely to be 

conservative estimates compared to natural environmental conditions.   

Although every effort was made to achieve the target climatic settings in the CE cabinets, average 

vapour pressure deficit (VPD), which describes the vapour pressure gradient between the leaf and 

the air and drives ET, was similar in the ‘hot’ and ‘dry’ treatments (1.34 and 1.33 kPa respectively) 

and in the ‘cool’ and ‘humid’ treatments (0.53 and 0.55 kPa respectively).  Since all other 

atmospheric parameters (i.e. radiation and wind speed) were constant in the CE cabinets 

throughout all T/RH trials, ET results in the ‘hot’ and ‘dry’ and in the ‘cool’ and ‘humid’ treatments 

were probably more similar than if the target range of VPDs had been achieved.  

Relative differences in cumulative ET between T/RH treatments were similar for each 

species/control, and there were significant differences between treatments with all 

species/control.  Cumulative ET in the ‘hot’ and ‘dry’ trials (i.e. high VPD) was always significantly 

greater than in the ‘cool’ and ‘humid’ trials (i.e. low VPD) with all species/control.  This was 

expected as high VPD would induce greater ET, and indicates that a higher percentage of rainfall 

could be retained in the substrate in the ‘hot’ and ‘dry’ treatments, with all species and the 

control, if a rainfall event occurred at any time during the drying period.  Low ET rates measured 

in other studies with cool, humid conditions have been found to limit the restoration of substrate 
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retention capacity between rainfall events, thus keeping antecedent SMC high and resulting in 

lower overall retention performance of the green roof (Stovin et al., 2012; Speak et al., 2013; 

Volder and Dvorak, 2014).  Indeed, a study with identical green roofs in a maritime climate (i.e. 

low VPD; Halifax, Nova Scotia) and a semi-arid climate (i.e. high VPD; Calgary, Alberta) found that, 

despite having similar annual rainfall totals, retention was 43.4% and 75.2% respectively, as a 

result of greater ET between storms in Calgary restoring the substrate retention capacity to a 

greater extent (Sims et al., 2016).  Other studies have also observed higher ET rates in warmer 

compared to cooler conditions, when substrate moisture was not restricted (Berretta et al., 2014; 

Poë et al., 2015).  Moreover, Voyde et al. (2010a) hypothesised that low radiation and high RH 

during their study restricted ET between rainfall events and thus limited the available retention 

capacity of the substrate during individual storms. 

With Stachys, Heuchera and control, cumulative ETs were similar in the ‘hot’ and ‘dry’ treatments 

and the ‘cool’ and ‘humid’ treatments, in line with the similar VPDs experienced in the CE cabinets 

during these trials.  However, cumulative ET in the ‘dry’ treatment was significantly higher than in 

the ‘hot’ treatment for the first 48 hours with Salvia and for the whole length of the trials with 

Sedum.  This suggests that these plants would therefore perform best on a green roof (i.e. provide 

greater rainfall retention) following dry periods with low RH and moderate temperatures.  

Additionally, cumulative ET in the ‘humid’ treatment was significantly higher than in the ‘cool’ 

treatment between 48 and 72 hours with Salvia.  It is, however, possible that these differences 

could partially be a result of plant growth over the course of the experiment, as the ‘dry’ and 

‘humid’ trials were conducted 2 – 4 weeks later than the ‘hot’ and ‘cool’ trials, due to the length 

of each trial component.  Indeed, the average height and diameter of Salvia in particular 

increased between trials, whilst Sedum growth was relatively modest.   

Daily ET with Sedum was fairly constant throughout the ‘hot’ trial (average of 4 mm day-1 each 

day), which was consistent with the steady ET rates also observed in the ‘warm’, ‘cool’ and 

‘humid’ trials (data not shown).  Conversely, in the ‘dry’ trial there was a greater decline in daily 

ET with Sedum, decreasing from an initially high 6.34 mm day-1 on Day 1 to 3.50 mm day-1 on 

Day 4 (data not shown).  It is possible that the higher air temperatures during the ‘hot’ trial may 

have induced Sedum to utilise water conservation strategies (e.g. by switching to CAM 

photosynthesis; Farrell et al., 2012), whilst the more moderate temperatures in the ‘dry’ trial did 

not.  This could have been a response to either increased leaf temperature (as stomatal 

conductance (and thus ET) has been strongly linked to leaf temperature for a range of species, 

including succulents; Vaz Monteiro et al, 2016a) or heat stress experienced by the root system as 
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substrate temperatures increased (Savi et al., 2016).  Indeed, Sedum substrate temperatures 

under well-watered conditions (after 24 hours) were moderately higher in the ‘hot’ treatment, 

averaging 22.7°C compared to 20.9°C in the ‘dry’ treatment (data not shown).  Although there are 

a range of environmental factors that may trigger facultative CAM plants to switch to CAM 

photosynthesis, some Sedum species (e.g. S. album) are known to be particularly sensitive to 

temperature (Starry et al., 2014), possibly due to a stronger influence of environmental conditions 

on leaf temperatures due to the lower leaf succulence (and thus thinner leaves) in these species 

(Farrell et al., 2012; Rayner et al., 2016; Vaz Monteiro et al, 2016a). 

Higher VPD in the CE cabinets was strongly linked to greater daily ET under well-watered 

conditions (i.e. the first 24 hours after saturation), particularly for the species with high ET rates 

(adjusted R2 = 0.61, 0.60 and 0.67 for Stachys, Salvia and Heuchera respectively).  Similarly, 

greater ET was also strongly linked to lower RH (adjusted R2 values between 0.50 and 0.71).  

Conversely, the relationship between daily ET under well-watered conditions and average daily air 

temperature was weaker, with adjusted R2 values between 0.21 (Sedum) and 0.38 (Heuchera), 

suggesting that humidity may have a greater influence on ET than air temperature.  Indeed, Voyde 

et al. (2010b) identified a correlation between RH and ET, where the daily ET rate under well-

watered conditions was 2.3 mm when mean RH was 64% and only 1.1 mm when mean RH was 

93%.   

4.4.3 The effect of drying substrate on ET rates 

The saturated SMCs of Stachys and Salvia were greater than for Heuchera, Sedum and control in 

all trials, possibly due to differences in rooting densities between species affecting the maximum 

retention capacity of the substrate (Nagase and Dunnett, 2012; Berretta et al., 2014).  However, 

SMC of all species/control declined over the course of the trials, with Stachys and Salvia SMC 

decreasing rapidly due to their high ET rates so that after 96 hours their SMCs were similar to 

Heuchera and significantly lower than Sedum SMC in all treatments except ‘dry’, in which Sedum 

was similar.   

For ET to continue at its maximum potential rate, water must be continually supplied to the 

evaporating surfaces (i.e. the substrate or leaf surfaces; Verhoef and Egea, 2013).  As SMC 

declines over time after wetting, the water supply to the evaporating surfaces becomes 

increasingly restricted, causing ET rates to fall (Stovin et al., 2013).  This was clearly observed in all 

T/RH trials in the presented experiment, with daily ET declining concurrently with SMC, depending 

on species/control, and there was a strong relationship between antecedent SMC at the 
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beginning of each day and ET in the subsequent 24 hours identified for species with the highest ET 

rates (Stachys and Salvia: adjusted R2 = 0.76 and 0.44 respectively).  Indeed, daily ET with Stachys 

declined rapidly over time in all trials, particularly in the first 3 days after saturation (e.g. from 

15.17 day-1 on Day 1 to 4.22 mm day-1 on Day 3 in the ‘dry’ treatment), probably as a result of 

reduced availability of substrate moisture (SMC declined from 0.495 to 0.109 m3 m-3 over the 

same period).  Consequently, by Day 3 Stachys ET was lower than Heuchera and Salvia ET 

(significantly so in the ‘hot’, ‘dry’ and ‘warm’ trials) and similar to Sedum ET; by the end of all 

trials, the daily ET rate of Stachys was approaching that of the control.  These results imply that 

the majority of a green roof’s substrate retention capacity would be restored very quickly (in the 

first 2 – 3 days following rainfall) with species with high transpiration rates, thus enabling the 

green roof to store a large volume of water in subsequent rainfall events that occur relatively 

close together.   

Since the daily ET of these species declined whilst those with lower ET rates did not, the available 

substrate retention capacity would become more similar with all species (and control) after this 

time, indicating that the advantage of species with high ET rates (e.g. Stachys) over species with 

lower ET rates (e.g. Sedum) would be greatest in the first 2 – 3 days following rainfall.  A similar 

decline in daily ET rates and a convergence of the cumulative ETs of different species were 

observed with succulent species in other studies (Berghage et al., 2007; Voyde et al., 2010b; Poë 

et al., 2015), although typically over a much longer period of time (28 days), which may account 

for why this was not observed for all species/control in the short duration of these trials.   

In all T/RH treatments, declines in SMC and daily ET with Stachys, and to a slightly lesser extent 

Salvia, were accompanied by wilting (Figure 4.6), presumably indicating low leaf water status with 

these species in response to drought conditions.  Cameron et al. (2006) observed similar 

behaviour with Forsythia under severe regulated deficit irrigation, and suggested that vigorous 

species may continue to photosynthesise at maximum potential (based on available light), thus 

maintaining high stomatal conductance even when water deficit is high and plants become 

stressed.  Similarly, (Voyde et al., 2010b) noted that Disphyma australe did not adapt to drought 

stress during drying, instead depleting plant water content in order to maintain higher 

transpiration rates, and thus resulting in plant wilting.  It is likely, therefore, that Stachys and 

Salvia may continue to photosynthesise, and thus transpire, at their full potential whilst light is 

available, quickly depleting substrate moisture and resulting in a rapid decline in subsequent ET 

and also leaf water status.  Indeed, the gs of these species, an indicator of ET, has previously been 

found to only be significantly reduced when SMC falls below 0.150 – 0.200 m3 m-3 (Blanuša et al., 
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2013; Vaz Monteiro et al, 2016a).  Additionally, once Stachys became wilted the plants formed a 

very dense cover over the substrate (Figure 4.6 B), probably restricting evaporation from the 

substrate surface and further reducing overall ET.   

Wilting of Stachys and Salvia plants was, however, temporary and they recovered quickly when 

irrigated at the end of each trial, with no permanent damage evident.  It is therefore likely that 

these species could provide good rainfall retention on a green roof as long as supplementary 

irrigation is provided in periods of drought to ensure plant survival and continuation of high ET 

rates.  Although the substrate retention capacity available for water storage during the next 

rainfall event can only be restored by a finite amount, maintaining high ET rates is advantageous 

for the provision of additional ecosystem services (ESs), particularly cooling (Vaz Monteiro et al, 

2016a).  Results of this experiment suggest that irrigation would be required after an average of 3 

- 4 dry days, depending on T and RH conditions, in order to maintain plant health and high ET 

rates with Stachys.  

 

Figure 4.6: Example of a Stachys plant under well-watered conditions (A) and the same plant 

after 4 days with no irrigation in the ‘dry’ treatment (B), showing extreme turgor loss.   

In contrast, with Sedum and the control, the relationship between antecedent SMC and daily ET in 

all trials was extremely weak, with adjusted R2 values of 0.01 and 0.02 respectively.  Moreover, in 

contrast to other studies (e.g. Voyde et al., 2010b), ET rates did not decline over the course of the 

trials, probably because of the short duration of the trials and the consistently low daily ET rates 

limiting the depletion of substrate moisture.  A rapid decline in stomatal conductance (and thus 

transpiration) of Sedum species when they switch to CAM photosynthesis in response to low SMC 

has previously been observed (D'Arco et al., 2017).  Additionally, Sedum spurium is considered to 

have relatively low leaf succulence compared to other Sedum and succulent species, likely 

reducing its ability to survive in severe drought conditions (Farrell et al., 2012).  However, 
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substrate moisture did not appear to become restricted with Sedum in the presented experiment 

due to the short duration of the trials and its low ET rate, and so these effects were not observed.   

4.5 Key Conclusions 

• ET rates differed significantly between species under all T/RH treatments: Stachys and 

Salvia had the highest rate of water loss and therefore potential to quickly restore the 

substrate’s retention capacity, and thus the capacity to provide the greatest overall 

rainfall retention.  Sedum had the lowest ET rate in all treatments but this was 

significantly greater than the control, confirming that the use of Sedum on a green roof 

would result in better rainfall retention than bare substrate alone. 

• There were significant differences in the rate of water use in different T/RH simulated 

summertime scenarios for all species; the highest ET rates were observed in high VPD 

treatments (‘hot’ and ‘dry’).  With Sedum and Salvia, ET rates were significantly higher 

during some or all of the ‘dry’ trial compared to the ‘hot’ trial, indicating that provision of 

stormwater management can be maximised by selecting the plants best suited to a the 

environment in a particular location.  For example, the best stormwater management 

provision with Sedum is likely to be achieved in ‘dry’ conditions. 

• The contribution of plant transpiration to total ET, and thus to restoration of substrate 

retention capacity between storms, was greater in ‘cool’ and ‘humid’ conditions, when 

evaporation from the bare substrate was very low.  Transpiration by broadleaf species 

contributed to total ET more than Sedum. 

• Stachys and Salvia removed water from the substrate at a high rate, even as SMC 

decreased, suggesting that these species could provide a good rainfall retention service 

(and additional ESs such as cooling) if supplementary irrigation is provided  in periods of 

drought (approximately every 3 – 4 days) to maintain plant health and these high ET 

rates.  
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Chapter 5  

An ET-based model for sustainable irrigation management 

of green roofs to ensure maintenance of ecosystem 

services provision 

5.1 Introduction 

Plants require water for their health and growth as well as for the maintenance of ecosystem 

services (ESs) provision, particularly those which depend on evapotranspiration (ET) such as 

cooling (Vaz Monteiro et al., 2017) and stormwater management (through restoration of 

substrate retention capacity between storms; Chapters 3 and 4).  Ensuring that adequate soil 

moisture is maintained is therefore essential (Bean and Pitt, 2012).  Green roof planting choices 

have generally been dominated by succulent species, such as Sedum, due to their ability to survive 

without irrigation (Butler and Orians, 2011) since their water requirements should typically be 

fulfilled by rainfall alone in the UK (GRO, 2014).  However, research has shown that provision of 

some ESs (e.g. cooling and stormwater management) could be maximised by selecting alternative 

species with high transpiration rates (Blanuša et al., 2013; Vaz Monteiro et al., 2017; Chapter 3).  

These species typically have higher water requirements, and supplementary irrigation of a green 

roof planted with these species is therefore likely to be required, particularly during prolonged 

dry periods in the summer, in order to maintain high ET rates and provision of ESs (Blanuša et al., 

2013).  Indeed, experimental results presented in Chapter 4 indicated that species with high ET 

rates (Stachys and Salvia) are likely to require irrigation every 3 – 4 days during dry periods.  

Furthermore, climate change projections indicate changing precipitation patterns and longer 

periods of drought in the UK (IPCC, 2013), which is likely to increase the requirement for 

supplementary irrigation of all green roofs in the summer to maintain plant health (Van Mechelen 

et al., 2015).   

As well as the potential to use greywater as a sustainable water source (see Chapter 6), 

supplementary irrigation should be efficiently managed to optimise the timing and amount of 

water used, thus minimising green roof maintenance costs and avoiding excess runoff and 

potential leaching issues due to over-irrigation (Kashyap and Panda, 2001; Snyder et al., 2015).  In 

agriculture, estimating crop ET has proven to be an effective method of determining the irrigation 
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requirements of specific crops (Droogers and Allen, 2002), thus allowing irrigation timing, 

frequency and volume to be scheduled and ensuring optimal efficiency of time and water 

resources without compromising yield.  Employing irrigation management similar to these 

agricultural methods for the efficient irrigation of green infrastructure, including green roofs, has 

the potential to reduce water demand for irrigation in urban areas whilst also maintaining plant 

health and aesthetic quality and provision of ESs. 

5.1.1 FAO-56 Penman-Monteith model for estimating evapotranspiration 

Crop ET can be estimated by direct measurement (e.g. using weighing lysimeters or the soil water 

or energy balance methods) or by modelling (see Section 1.3.5).  Disparity in ET estimates 

obtained with different models led to the creation of a standardised model based on the Penman-

Monteith equation, developed in FAO Drainage and Irrigation Paper No. 56 (Allen et al., 1998).  

This model was recommended for all ET calculations and provides methods for obtaining or 

estimating all of the necessary meteorological parameters. 

The Penman-Monteith equation was developed from the original Penman equation (1948), which 

combined mass transfer with the energy balance to calculate evaporation from open water 

surfaces, by adding resistance factors in order to apply the equation to cropped surfaces.  The 

equation takes the form (Allen et al., 2006): 

𝐸𝑇 =
Δ (𝑅𝑛 − 𝐺) + 𝜌𝑎  𝑐𝑝  

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

(Δ + 𝛾 (1 +
𝑟𝑠
𝑟𝑎

)) 𝜌𝑤𝜆

 

 

where ET is the evapotranspiration in mm day-1, λ is the latent heat of vaporisation (MJ kg-1), Rn is 

the net radiation reaching the surface (MJ m-2 day-1), G is the soil heat flux (MJ m-2 day-1), ρa is the 

air density at constant pressure (kg m-3), cp is specific heat of the air (J kg-1 K-1), ρw is the density of 

liquid water (kg m-3), es is the saturation vapour pressure (kPa), ea is the actual vapour pressure 

(kPa), ra is the aerodynamic resistance (s m-1), Δ is the slope of the saturation vapour pressure 

temperature curve (kPa °C-1), ϒ is the psychrometric constant (which is a function of atmospheric 

pressure and thus elevation; kPa °C-1) and rs is the bulk surface resistance (s m-1).  Equation 5.1 

includes all of the meteorological parameters that influence ET: radiation is described by the 

(Rn - G) term, wind speed is a parameter of the ra term (see Eq. 5.2), and air temperature and 

humidity are accounted for in the (es-ea) term, which is effectively vapour pressure deficit (VPD).  

(Eq. 5.1) 
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Additionally, the characteristics of the specific crop are incorporated into the equation by the two 

resistance terms, ra and rs, thus allowing the ET of the crop to be calculated directly. 

The aerodynamic resistance, ra, describes the resistance to the transfer of water vapour from the 

evaporating surface into the atmosphere (i.e. the boundary layer resistance), and is given by 

(Allen et al., 1998):  

𝑟𝑎 =  
𝑙𝑛 (

𝑧𝑚 − 𝑑
𝑧𝑜𝑚

)  𝑙𝑛 (
𝑧ℎ − 𝑑

𝑧𝑜ℎ
)

𝑘2 𝑢𝑧
 

 

where zm is the height at which wind measurements were recorded (m), zh is the height of 

humidity measurements (m), d is the zero plane displacement height (m), zom is the roughness 

length governing momentum transfer (m), zoh is the roughness length governing transfer of heat 

and vapour (m), k is Von Karman’s constant (0.41), and uz is the wind speed at height z (m s-1).  

Values of d, zom and zoh vary depending on crop architecture and can be calculated from Equations 

5.3 – 5.5 where h is the crop height (m): 

     

𝑑 =
2

3
 ℎ 

          

𝑧𝑜𝑚 = 0.123 ℎ 

                   

𝑧𝑜ℎ = 0.1 𝑧𝑜𝑚 
             

The ra term assumes neutral atmospheric stability with no heat exchange, and may require 

stability correction factors when calculation timesteps are very short (i.e. less than hourly). 

The surface resistance, rs, describes the total resistance to flow of the water vapour through the 

leaves (Allen et al., 1998): 

𝑟𝑠 =
𝑟𝑙

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
 

 

where rl is the bulk stomatal resistance of the well-illuminated leaf (s m-1) and LAIactive is the active 

(sunlit) leaf area index (LAI), which is approximately 0.5 LAI.  Although bulk stomatal resistance, rl, 

describes the average resistance of a single leaf and is therefore crop specific, rl may also vary 

depending on crop management, the age of the crop, water availability and climate (Allen et al., 

1998; Schneider, 2011).  Additionally, LAIactive for a crop may vary through its growth stages, and 

also depends on crop type and density. 

(Eq. 5.2) 

(Eq. 5.3) 

(Eq. 5.4) 

(Eq. 5.5) 

(Eq. 5.6) 
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Both resistance terms show variability even within a specific crop type, since crop characteristics 

may vary with climate, soil water status, growth stage and so on, and it may be difficult and time 

consuming to calibrate ET for every crop condition.  Thus, in order to simplify ET calculations, the 

FAO created a standardised version of the Penman-Monteith equation (hereafter referred to as 

the FAO-56 PM equation) in Drainage and Irrigation Paper No. 56 (Allen et al., 1998), in which ET 

is calculated for a standard ‘reference’ surface, as in Equation 5.7: 

 

𝐸𝑇𝑜 =
0.408 Δ (𝑅𝑛 − 𝐺) + 𝛾 

900
𝑇 + 273 𝑢2 (𝑒𝑠 − 𝑒𝑎)

Δ + γ (1 + 0.34 𝑢2)
 

 

where ETo is the ET of the reference crop, known as the reference ET (mm day-1), T is the mean 

daily air temperature at a height of 2 m (°C), u2 is the wind speed at a height of 2 m (m s-1) and all 

other terms are as previously described.  

The reference surface is defined as a hypothetical crop with a uniform height of 0.12 m, an albedo 

of 0.23 and a fixed surface resistance of 70 s m-1, which is designed to represent a well-watered, 

actively growing grass surface with 100% ground coverage (Allen et al., 1998).  The reference 

surface is also assumed to be extensive (at least 50 m in all directions) and homogenous so that 

only vertical fluxes are included and any horizontal fluxes (e.g. advection) can be ignored (Allen et 

al., 2005; see Section 5.4.1 for further discussion).  Since all crop-specific parameters are 

incorporated into the reference surface, calculation of ETo only requires input of easily obtained 

weather parameters (which can be estimated where data are missing), and as such it expresses 

the evaporative demand of the atmosphere irrespective of specific crop characteristics.  Thus, the 

purpose of ETo is to give a reference ET that the ET of other crops can be related to and that ET at 

different locations and different times of the year can also be compared to.  

The actual ET of a specific crop (ETc) can be estimated from ETo by using a crop coefficient (Kc), so 

that: 

      𝐸𝑇𝑐 = 𝐸𝑇𝑜 × 𝐾𝑐 
 

The crop coefficient incorporates all of the characteristics of the particular crop that differ from 

those of the reference crop and may affect ET (e.g. crop size and architecture, crop albedo, 

stomatal resistance) without the need to measure them directly (as in Eq. 5.1), and a standard Kc 

for a crop may theoretically be applied to ETo calculated in any location and at any time of the 

year (Allen et al., 1998; Nouri et al., 2013).  Kc can be determined using Eq. 5.8 by measuring the 

actual ETc of a crop (with a direct method, such as weighing lysimeters; see Section 1.3.5) and 

(Eq. 5.7) 

(Eq. 5.8) 
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comparing it with the ETo calculated from meteorological parameters for the same time period 

and location to give Kc.  ETc for that crop could then be estimated in any environmental conditions 

using Equations 5.7 and 5.8, by calculating ETo with the specified weather conditions and then 

applying the pre-determined Kc.   

5.1.2 Application of FAO-56 PM for estimating evapotranspiration on green roofs 

The vast majority of currently available ET data and crop coefficients are for agricultural crop 

species, and many studies have demonstrated that the FAO-56 PM model can provide accurate 

estimates of daily crop ET (e.g. Liu et al., 2002).  However, studies using FAO-56 PM for estimation 

of ET from species other than agricultural crops (e.g. wetland species) have demonstrated the 

importance of calculating an accurate Kc value for each individual species, location and 

environmental conditions (Borin et al., 2011).  Indeed, the characteristics of urban environments 

and the vegetation used on green roofs may differ vastly from those of agricultural crops (Nouri et 

al., 2013), and a separate database of values and coefficients specific to those species therefore 

needs to be established.  Some studies have attempted to model ET or identify Kc values for green 

roof species using the FAO-56 PM method (e.g. Schneider et al., 2011; Locatelli et al., 2014; Poë et 

al., 2015), but these primarily use Sedum, and there has been no attempt to identify crop 

coefficients for alternative species with high ET rates that may be able to maximise the provision 

of ESs on a green roof.  Identifying crop coefficients for these species would provide green roof 

managers with information regarding the water requirements of each specific species based on 

their ET, which would enable efficient scheduling of green roof irrigation (i.e. timing and quantity 

of irrigation).  This could therefore ensure efficient use of limited water resources whilst also 

maintaining plant health, high ET rates and thus continued provision of ESs such as cooling and 

stormwater management. 

Some of the underlying assumptions in the FAO-56 PM equation may compromise the validity or 

accuracy of using this model for calculation of ET on green roofs, in particular the assumption that 

the crop is an extensive surface of at least 50 m in all directions, thus allowing horizontal fluxes to 

be ignored (Allen et al., 2005).  Green roofs are generally rather smaller than the agricultural 

fields for which FAO-56 PM was designed, and horizontal fluxes may be more significant than is 

accounted for by the equation.  Additionally, green roofs often have mixed plant types, do not 

always maintain 100% ground coverage, and are often subject to soil water deficits (Nagase and 

Dunnett, 2010; Heim and Lundholm, 2016).  Moreover, there may be additional energy fluxes 
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from the building below the green roof that are not accounted for in the FAO-56 PM equation 

(Locatelli et al., 2014).  

5.1.3 Study aims 

Once crop coefficients for individual green roof plant species have been identified, the FAO-56 PM 

model could potentially be used to estimate and predict daily ET in any weather conditions, 

allowing green roof managers to determine when irrigation is necessary in order to maintain plant 

health and provision of ESs.  Crop coefficients have been calculated for a wide range of 

agricultural crops, but there has been little research to identify the Kc values of landscape plants 

(e.g. Lazzarin et al., 2005), though there is a clear use for them in irrigation scheduling by allowing 

easy calculation of green roof ET from measurement of simple meteorological data.   

The aim of this chapter was therefore to use the FAO-56 PM model to estimate Kc values for the 

four tested potential green roof species (Heuchera, Salvia, Stachys and Sedum) to contribute 

towards a database of crop coefficients for species suitable for use in green infrastructure.  These 

Kc values were then used to create an example of a basic irrigation management reference table, 

with estimated daily ETc of each species in a range of UK summertime weather conditions.  The 

purpose of this table is to provide a quick and simple reference table from which a green roof 

manager could easily identify estimated daily ETc from a green roof vegetated with one of these 

species, based on simple observations of the weather (i.e. cloud cover and wind conditions) 

without the need for any equipment or direct measurements.  This would then inform the 

scheduling of supplementary irrigation (with mains water or greywater), based on cumulative 

estimated ET for a particular species during dry periods, in order to maintain plant health and 

provision of ESs.  By scheduling irrigation according to specific plant water requirements (based 

on ET), it could also help to manage water resources in a sustainable way, especially if greywater 

is used for irrigation, thus lowering green roof maintenance costs.  Furthermore, cost and time 

efficiencies would be increased by using a reference table to look up estimated daily ETc instead 

of measuring ET each day, as it requires no equipment and very little input from a green roof 

manager. 

For the purpose of creating an example irrigation management reference table, three simple 

hypothetical weather scenarios for a UK summertime, based on cloud cover, were chosen: ‘blue 

sky’ (i.e. clear skies and bright sunshine all day); ‘sunny spells’ (i.e. mixed sunshine and cloud 

throughout the day); and ‘overcast’ (i.e. full cloud cover).   Since irrigation is only intended to 

supplement rainfall, all scenarios are dry days.  Since wind speed also affects ET and is 
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independent of the other parameters that may be inferred from cloudiness (i.e. solar radiation, 

temperature and RH), two easily observable wind conditions were used for each scenario – ‘calm’ 

and ‘windy’.  Basic observations of the weather should thus enable classification of each day into 

one of the 6 hypothetical weather scenarios, without overcomplicating the input required from 

the green roof manager.   

Specific objectives of this study were therefore: 

• To use the FAO-56 PM model to estimate Kc values for each species (Heuchera, Salvia, 

Stachys and Sedum) based on actual ET (ETa) measured in Experiment 3 and the 

corresponding calculated reference ET (ETo) to contribute towards a database of Kc values 

of potential green roof species; 

• To use the estimated Kc values of each species and calculated ETo for 6 weather conditions 

to estimate daily ETc in these hypothetical UK summertime weather scenarios, classified 

by the simple daily weather observations described above;  

• To create an example of an irrigation management reference table with estimated daily 

ETc for each species under each of these weather scenarios to enable a green roof 

manager to schedule irrigation (ideally with greywater) based on simple daily weather 

observations in order to maintain ESs provision whilst also managing water sustainably. 

5.2 Materials and Methods 

Actual ET (ETa) data from Experiment 3 (rainfall retention experiment), in conjunction with 

measured meteorological parameters for the same period (13th – 16th April 2016), were used to 

calculate Kc values for each species.  The plant material and substrate used in Experiment 3 are 

described in Sections 2.3 and 2.4, and the experimental procedure is outlined in Sections 2.6.3 – 

2.6.5.  Daily ET from trays of each species (Heuchera, Salvia, Stachys and Sedum) following rainfall 

application under ‘saturated’ conditions (see Section 3.2.1) was measured as described in Section 

2.5.2.  Since all trays were generally weighed between 11:30 and 15:30 each day following rainfall 

application in Experiment 3, the ‘days’ referred to in these calculations correspond to the period 

13:31 on one day to 13:30 on the following day rather than calendar days.  All calculation 

procedures for ETo and Kc outlined below follow the guidelines and equations described by Allen 

et al. (1998).   
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5.2.1 Experiment 3 actual evapotranspiration, ETa 

ETa in mm day-1 for each individual tray was calculated using Equation 1.1 (see Section 1.3.5).  In 

order to account for differences in the sizes of each plant canopy, plot area was taken to be the 

surface area covered by the canopy and was calculated from diameter measurements of each 

replicate made during Experiment 3.  The plants used in Experiment 3 were large and fully grown, 

with good coverage of the substrate (typically 100% for all species except Heuchera, which had 

approximately 90% coverage on average), and were therefore considered to be representative of 

mature plants during the summer on a green roof.  ET data for the period 24 – 48 hours after 

rainfall in the ‘saturated’ run (see Section 3.2.1) were used in the calculations to ensure that, 

whilst substrate moisture was not limiting, the substrate had fully drained to field capacity 

following the rainfall application.  Average substrate moisture content (SMC) was high in this 

period (0.533, 0.530, 0.548 and 0.549 m3 m-3 on average for Heuchera, Salvia, Stachys and Sedum 

respectively; data not shown) and plants could therefore be considered ‘well-watered’ but not 

waterlogged, thus satisfying underlying assumptions of the FAO-56 PM equation.  Since two 

replicate trays of each species were tested each day over 3 consecutive days in Experiment 3, the 

period of 24 – 48 hours after rainfall fell on different dates for different replicates, as summarised 

in Table 5.1; these are hereafter referred to as Days 1, 2 and 3 for the purposes of this chapter.  

Values of ETa, ETo and Kc were therefore calculated for each species for each of the three days 

individually, and then average values per species were determined. 

Table 5.1: Summary of the dates of rainfall application to each replicate tray in Experiment 3 

and the dates that therefore correspond to the period 24 – 48 hours after rainfall. 

Experimental 
‘day’ 

Date of rainfall application 
(13:30 on average) 

Dates covered by 24-48 h 
period (13:31 – 13:30) 

Tray replicates                               
(of all species) 

Day 1 12th April 2016 13th – 14th April 2016 1 and 2 

Day 2 13th April 2016 14th – 15th April 2016 3 and 4 

Day 3 14th April 2016 15th – 16th April 2016 5 and 6 

5.2.2 Experiment 3 reference evapotranspiration, ETo 

ETo for each of the 24-hour time periods (i.e. Days 1, 2 and 3) was calculated using Equation 5.7.  

Since ETo only takes into account meteorological parameters (as all crop characteristics are set by 

the reference crop), one ETo value was obtained per ‘day’.  Daily maximum and minimum air 

temperature (Tmax and Tmin) and relative humidity (RHmax and RHmin) for each 24-hour period were 



 Chapter 5 

122 
 

obtained from Tinytag data recorded inside the glasshouse every 30 minutes during Experiment 3.  

These were then used to calculate mean daily air temperature (T; °C), the slope of the saturation 

vapour pressure curve (Δ; kPa °C-1), saturation vapour pressure (es; kPa) and actual vapour 

pressure (ea; kPa) using Equations 5.9 – 5.13: 

 

 

𝑇 =
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
 

 

𝑒𝑜(𝑇) = 0.6108 𝑒𝑥𝑝 (
17.27 𝑇

𝑇 + 237.3
) 

 

 

Δ =
4098  𝑒𝑜(𝑇)

(𝑇 + 237.3)2
 

      

                 

𝑒𝑠 =
𝑒𝑜(𝑇𝑚𝑎𝑥) + 𝑒𝑜(𝑇𝑚𝑖𝑛)

2
 

 

 

𝑒𝑎 =
𝑒𝑜(𝑇𝑚𝑖𝑛) 

𝑅𝐻𝑚𝑎𝑥
100 + 𝑒𝑜(𝑇𝑚𝑎𝑥) 

𝑅𝐻𝑚𝑖𝑛
100

2
 

 

where eo(T), eo(Tmax) and eo(Tmin) are the saturation vapour pressures at temperature T, Tmax and 

Tmin respectively (kPa). 

The psychrometric constant (ϒ; kPa °C-1) was calculated with Equation 5.14, where P is the 

atmospheric pressure (kPa) calculated from the elevation above sea level (z; m) of the 

experimental site (taken as 60 m for Reading; Google Maps, 2016) as in Equation 5.15.  

 

𝛾 = 0.665 × 10−3 𝑃 
 

 

𝑃 = 101.3 (
293 − 0.0065 𝑧

293
)

5.26

 

 

Wind speed inside the glasshouse was not measured directly but was assumed to be very low due 

to the sheltering effect of the glasshouse.  Using estimated wind speed in the FAO-56 PM 

equation has proven to have a relatively low impact on the calculated ETo (Cai et al., 2007), and so 

a daily average wind speed (u2) of 0.5 m s-1 was used in all calculations; this is the minimum value 

recommended by Allen et al. (1998) in order to improve the accuracy of ETo calculations at very 

(Eq. 5.9) 

(Eq. 5.10) 

(Eq. 5.11) 

(Eq. 5.12) 

(Eq. 5.13) 

(Eq. 5.14) 

(Eq. 5.15) 
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low wind speeds.  As ETo was calculated at daily timesteps, daily soil heat flux (G) was assumed to 

be zero (Allen et al., 1998).  

Rn was calculated using Equation 5.16, where Rns and Rnl are the net shortwave and net longwave 

radiation respectively.  

 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙  

5.2.2.1 Net shortwave radiation, Rns 

Net shortwave radiation, Rns, was calculated using Equation 5.17, where α is the albedo of the 

crop surface (0.23 for the reference crop) and Rs is the incoming shortwave/solar radiation at the 

surface (MJ m-2 day-1).   

𝑅𝑛𝑠 = (1 − 𝛼)𝑅𝑠 
 

For the whole experimental period, five minute averages of incoming shortwave radiation (Rs) 

data were obtained from the University of Reading Atmospheric Observatory (UoR AO), located 

approximately 600 m away from the glasshouses on the Whiteknights campus.  Radiation data 

were converted from W m-2 to MJ m-2 day-1 by multiplying by a conversion factor of 0.0864 (Allen 

et al., 1998) and averages were calculated for each ‘day’.   

As Experiment 3 took place inside a glasshouse, it was necessary to adjust RS values obtained from 

the UoR AO to reflect the fact that some fraction of incoming solar radiation is reflected from and 

absorbed by the glass, thus decreasing the actual Rs reaching the plant surfaces.  The 

transmissivity of a glasshouse can be described by a transmissivity coefficient (τ), which varies 

depending on the angle of the sun (affected by time of day, time of year and latitude), glasshouse 

type, orientation and cleanliness, and daily atmospheric conditions including cloud cover and the 

resultant effect on the proportion of radiation reaching the glasshouse as direct beam or diffuse 

radiation (Oke, 1987).  There are further spatial variations of Rs within a glasshouse due to shading 

of some areas by construction materials and the varying aperture of glasshouse vents, which may 

allow radiation to enter directly when vents are open wide.   

Estimating the reduction in Rs inside a glasshouse by modifying outdoors Rs measurements with a 

glasshouse transmissivity coefficient has previously yielded good results (Valdés-Gómez et al., 

2009).  Therefore, an attempt was made to estimate the transmissivity (τ) of the glasshouse 

compartment used in Experiment 3, which was in a multi-span glasshouse with an approximately 

east-west orientation.  Light levels (photosynthetically active radiation; PAR) inside and outside 

(Eq. 5.16) 

(Eq. 5.17) 
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the glasshouse were measured using an SKP 215 PAR Quantum Sensor attached to a SpectroSense 

2+ 8-channel meter (Skye Instruments, Powys, UK) held approximately 1 m above the ground (the 

average height of the plant canopies on benches in Experiment 3).  The transmissivity of glass to 

PAR is reported to be marginally higher (0.03 – 0.06) than to the entire solar spectrum (Kittas et 

al., 1999; Papadakis et al., 2000), and so the calculated τ should be considered an upper estimate. 

Measurements were repeated on three separate occasions throughout the day (approximately 

08:50 – 09:00, 13:00 – 13:10 and 16:50 – 17:00) on a bright, sunny day (3rd October 2016).  At 

each measuring time, 10 light measurements were made inside the glasshouse and 10 were made 

outside, with measurements made alternately inside and outside and as close together as 

possible so that results were not affected by any changes in environmental conditions.  

Measurements inside were made in the centre of the glasshouse compartment and 

measurements outside were made as close to the glasshouse as possible without being in its 

shadow.  A summary of the results of the light measurements and τ calculations are presented in 

Table 5.2.  A daily average τ value of 0.62 was obtained, which was similar to glasshouse τ values 

reported in other studies (e.g. 0.51 - 0.73; Heuvelinka et al., 1995); this value was then used to 

calculate Rns, using a modified version of Equation 5.17:   

 

𝑅𝑛𝑠 = (1 − 𝛼)  ×  (𝑅𝑠 𝜏) 

 

 

Table 5.2: Average light (photosynthetically active radiation; PAR) measured inside and outside 

the glasshouse compartment used in Experiment 3 on three occasions on a clear, sunny day 

(3rd October 2016).   

Measurement time 
PAR (μmol m-2 s-1) 

Transmissivity (τ) 
Inside glasshouse Outside glasshouse 

08:50 - 09:00 179.0  390.8 0.46 

13:00 - 13:10 935.0 1231.3 0.76 

16:50 - 17:00  59.8    95.2 0.63 

Average τ - - 0.62 

 

 

(Eq. 5.18) 
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5.2.2.2 Net longwave radiation, Rnl 

Net longwave radiation, Rnl, was calculated from Equation 5.19, a modified form of the Stefan-

Boltzmann law, which states that the emission of longwave radiation from a surface is 

proportional to its temperature (in K) raised to the fourth power.  However, the net flux at the 

Earth’s surface is also influenced by absorption and emittance of longwave radiation from the 

atmosphere due to the presence of clouds, water vapour and gases (Allen et al., 1998), and 

consequently Equation 5.19 also contains correction factors for the humidity and cloudiness of 

the atmosphere.  

 

𝑅𝑛𝑙 = 𝜎 (
𝑇𝑚𝑎𝑥 4 + 𝑇𝑚𝑖𝑛 4

2
) (0.34 − 0.14 √𝑒𝑎  ) (1.35 

𝑅𝑠

𝑅𝑠𝑜
− 0.35) 

    

where σ is the Stefan-Boltzmann constant (4.903 x 10-9 MJ K-4 m-2 day-1), Tmax and Tmin are the 

maximum and minimum absolute temperatures during the day respectively (K), Rso is the clear-sky 

radiation (MJ m-2 day-1) and Rs and ea are as previously described.  Rso, calculated from Equation 

5.20, gives the potential maximum amount of solar radiation reaching the surface on any given 

day assuming zero cloud cover, and as such is a function of latitude and time of year, both of 

which are incorporated into the calculation of extraterrestrial radiation, Ra (Equation 5.21).  Rs/Rso 

in Equation 5.19 thus describes the relative solar radiation reaching the surface at a particular 

location compared to the maximum amount possible on any given day and must therefore have a 

value ≤ 1.  Since the calculations here relate to a glasshouse experiment, calculated Rso values 

were also adjusted with the glasshouse transmissivity coefficient of 0.62 to be in line with Rs 

values. 

𝑅𝑠𝑜 = (0.75 + 2 × 10−5 𝑧) 𝑅𝑎 
  

 

𝑅𝑎 =
24(60)

𝜋
𝐺𝑠𝑐  𝑑𝑟 [𝜔𝑠  sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 sin 𝜔𝑠] 

 

where Ra is the extraterrestrial radiation (MJ m-2 day-1), z is the elevation above sea level (m), Gsc is 

the solar constant (0.0820 MJ m-2 day-1), dr is the inverse relative distance between the Earth and 

the sun, ωs is the sunset hour angle (radians), ϕ is the latitude (radians) and δ is the solar 

declination (radians).  The latitude of Reading was taken as 51°21’ (Google Maps, 2016) which 

converted to 0.898 radians.  dr, δ and ωs were calculated from Equations 5.22 – 5.24, where J is 

the Julian day (between 1 and 365/366).  Since the ‘days’ used in the ETo calculations covered the 

period 13:31 on one day to 13:30 on the following day and were therefore not exact Julian days, 

(Eq. 5.19) 

(Eq. 5.20) 

(Eq. 5.21) 
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Ra was calculated for both Julian days covered in each 24-hour period, and the average Ra for each 

experimental ‘day’ was then used in further calculations.  

 

 

𝑑𝑟 = 1 + 0.033 cos (
2 𝜋

365
 𝐽) 

 

      

𝛿 = 0.409 sin (
2 𝜋

365
 𝐽 − 1.39) 

     

 

𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠 [− tan 𝜑 tan 𝛿] 
  

 

5.2.2.3 Summary of Experiment 3 ETo input parameters  

Summaries of all of the constants and calculated parameters for each ‘day’ of Experiment 3 that 

were used in the calculation of ETo are given in Table 5.3 and Table 5.4 respectively.  Using these 

input values, ETo for each experimental day was calculated using Equation 5.7. 

 

Table 5.3: Constants used in the calculation of ETo and their sources. 

Constant Units Value used Source 

z m 60 Google Maps (2016) 

σ MJ K-4 m-2 day-1 4.903 x 10-9 (Allen et al., 1998) 

ϕ radians 0.898 Google Maps (2016) 

Gsc (MJ m-2 day-1) 0.0820 (Allen et al., 1998) 

α - 0.23 (Allen et al., 1998) 

ϒ (kPa °C-1) 0.067 Eq. 5.14 

τ - 0.62 Measured 

G (MJ m-2 day-1) 0 (Allen et al., 1998) 

 

 

(Eq. 5.22) 

(Eq. 5.23) 

(Eq. 5.24) 
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Table 5.4: Summary of input parameters for the calculation of ETo for each of the experimental 

‘days’ in Experiment 3. 

Parameter Units 
Values used 

Source 
Day 1 Day 2 Day 3 

u2 (m s-1) 0.5 0.5 0.5 (Allen et al., 1998) 

Tmean (°C) 22.40 22.67 20.93 Eq. 5.9 

Δ (kPa °C-1) 0.165 0.167 0.152 Eq. 5.11 

es kPa 2.772 2.815 2.504 Eq. 5.12 

ea kPa 1.444 1.566 1.468 Eq. 5.13 

Rn (MJ m-2 day-1) 3.574 3.277 3.097 Eqs. 5.16 – 5.24 

5.2.3 Calculation of crop coefficients, Kc 

Using ETa calculated in Section 5.2.1 and ETo calculated in Section 5.2.2.3, Kc for each species was 

calculated using Equation 5.8.  Kc was initially determined for each of the experimental days 

individually and then averaged to give one Kc value for each species. 

5.2.4 Calculation of ETo in hypothetical UK summertime weather scenarios 

To identify values of air temperature, relative humidity and solar radiation to input into the ETo 

calculations for each hypothetical weather scenario (as described in Section 5.1.3), representative 

values of each parameter under similar weather conditions in Reading were obtained from 

meteorological data measured at the UoR AO.  Since supplementary irrigation on a green roof is 

only likely to be required during periods of hot and dry weather, the data were obtained for the 

summer months (June, July and August) of 2015 and 2016, which were the only two years of data 

available from UoR AO.  Parameters obtained included 5-minute averages of sunshine duration, 

incoming shortwave radiation (Rs), air temperature, relative humidity and wind speed at 2 m, as 

well as hourly rainfall totals.  Unfortunately sunshine duration data were unavailable for all of 

June 2016, and incoming shortwave radiation data were missing for 1st – 23rd June 2015; for this 

latter period, global solar radiation data were used instead as the two parameters are 

comparable.  The data were examined for accuracy, and all data from 27th July 2015 and 29th - 31st 

August 2015 were discarded due to missing or incorrect data.  Additionally, since irrigation would 
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not be required on rainy days, all days with a rainfall total greater than 0.2 mm (defined by the 

UoR AO as ‘days with rain’) were discarded from the dataset. 

To calculate ETo, Rn must be calculated for a particular day of the year (as Julian day is a required 

parameter for calculating Ra; Equations 5.21 – 5.24).  Since day length and solar radiation (i.e. Ra) 

in Reading vary quite considerably between the beginning of June and the end of August, it was 

decided to calculate ETo for each month individually, using the 15th day of each month as the 

Julian day required.  The data were therefore separated into three datasets – June, July and 

August – with data from both 2015 and 2016 combined for each month.  

5.2.4.1 Classification of days into hypothetical weather scenarios 

For each day in the datasets, daily average values of air temperature, RH, Rs and wind speed were 

calculated, as well as total daily sunshine duration.  Daily values of Tmax, Tmin, RHmax and RHmin were 

also identified for each day in the datasets.  The weather observations required for a green roof 

manager to classify a particular day into the correct hypothetical scenario are based mainly on 

cloud conditions; days in each month’s dataset were therefore classified based on total daily 

sunshine duration as follows: 

• ‘Blue sky’ scenario: more than 800 minutes total sunshine duration per day 

• ‘Sunny spells’ scenario: 500 – 600 minutes total sunshine duration per day 

• ‘Overcast’ scenario: less than 300 minutes total sunshine duration per day 

This classification system loosely followed that used by Cai et al. (2007) to classify weather 

conditions based on cloudiness, in which sunshine duration was assumed to increase linearly 

between various cloudiness conditions.  The values of sunshine duration used here were 

arbitrarily chosen based partly on the requirement of categorising at least 3 days per month in 

each scenario to be able to calculate average meteorological data for each scenario and thus 

obtain a more representative ETo estimate.  Since no sunshine duration data were available for 

June 2016, Rs data from 2015 for each scenario were examined and compared to Rs data from 

2016 in order to identify days in 2016 likely to have similar sunshine durations, thus enabling 

inclusion of 12 days from June 2016 in the analysis.   

5.2.4.2 Average meteorological data for each hypothetical weather scenario 

Once days had been classified, average values of Rs, Tmax, Tmin, RHmax and RHmin were calculated for 

each scenario in each month (Table 5.5).  Since these hypothetical calculations relate to green 
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roofs, Rs was not adjusted with the glasshouse transmissivity coefficient.  Average values for some 

of the weather parameters for the overcast scenario in June were rather high (RHmin) or low (Rs, 

Tmax) compared to those calculated for July and August.  This was probably a result of the way the 

days were classified and the specific weather experienced in the years of available data.   

Table 5.5: Daily average meteorological parameters for each of the hypothetical UK 

summertime weather scenarios in June (A), July (B) and August (C), calculated from 2015 and 

2016 data obtained from the University of Reading Atmospheric Observatory (UoR AO). 

Hypothetical UK 
summertime scenario 

Daily average meteorological parameters 

A June Total sunshine 
duration (mins) 

Tmax  
(°C) 

Tmin  
(°C) 

RHmax 
(%) 

RHmin 
(%) 

Rs  
(MJ m-2 s-1) 

‘Blue sky’ 850 23.28   8.96 94.8 37.3 27.88 

‘Sunny spells’ 577 19.53   9.70 88.7 41.3 23.01 

‘Overcast’ 242 17.11 10.96 94.1 74.3  9.31 

  

B July Total sunshine 
duration (mins) 

Tmax  
(°C) 

Tmin  
(°C) 

RHmax 
(%) 

RHmin 
(%) 

Rs  
(MJ m-2 s-1) 

‘Blue sky’ 842 27.02 13.11 95.9 37.1 27.66 

‘Sunny spells’ 544 21.76 10.49 94.6 45.8 21.22 

‘Overcast’ 209 21.81 12.99 92.3 53.9 13.60 

  

C August Total sunshine 
duration (mins) 

Tmax  
(°C) 

Tmin  
(°C) 

RHmax 
(%) 

RHmin 
(%) 

Rs  
(MJ m-2 s-1) 

‘Blue sky’ 820 24.24   9.98 97.9 41.6 23.15 

‘Sunny spells’ 543 23.43 11.74 94.8 42.9 19.42 

‘Overcast’ 145 22.16 12.08 90.0 51.1 10.36 

 

Daily average wind speed from all days in the datasets ranged from 0.49 to 4.14 m s-1, with the 

vast majority (nearly 60%) of daily wind speeds in the range 1 – 2 m s-1 (data not shown).  To keep 

the weather observations and classifications simple, only two wind conditions were used for the 

irrigation management reference table: ‘calm’ and ‘windy’.  Wind speed (u2) values chosen for use 



 Chapter 5 

130 
 

in the ETo calculations were based on the upper and lower wind speeds actually recorded so that 

they were representative of a UK summer, whilst also accounting for the fact that wind speeds 

are typically higher on a green roof (Nagase and Dunnett, 2010).  Values of 0.75 m s-1 and 4.0 m s-1 

were therefore used for the ‘calm’ and ‘windy’ scenarios respectively.  Both of these values were 

within the range recorded at UoR AO but were close to the lowest and highest daily average wind 

speeds, and they therefore represent the extremes.  Although a daily average wind speed greater 

than 4.0 m s-1 was recorded only once during the summers of 2015 and 2016, higher wind speeds 

are expected on a green roof and so it is likely that values of 4.0 m s-1 would be recorded more 

frequently. 

5.2.4.3 Summary of ETo input parameters for each hypothetical weather scenario 

Input parameters for the ETo calculation (es, ea, Δ, Rn and T) were calculated from the average 

meteorological values identified for each weather scenario (Table 5.5) and are summarised in 

Table 5.6; values used for constants were the same as those presented in Table 5.3.  Within each 

month, all parameters apart from wind speed were the same in the ‘calm’ and ‘windy’ scenarios.  

Rs on ‘blue sky’ days was noticeably lower in August than in June and July as expected due to 

shorter day length, whilst there was less difference between months on ‘overcast’ days.  T was 

very similar in all of the hypothetical scenarios in August, partly due to the higher value of Tmin 

observed with ‘overcast’ conditions whereas ‘blue sky’ days experienced a lower Tmin.  As 

discussed in Section 5.2.4.2, average values of some weather parameters in June differed from 

those calculated for July and August; correspondingly, some of the input parameters (Tmean and es 

- ea) for the ETo calculation were low for ‘overcast’ days in June.  

Using these parameters, ETo in June, July and August for each of the hypothetical weather 

scenarios was then calculated using Equation 5.7.   

5.2.5 Creation of irrigation management reference table 

Daily ETc for each species in each hypothetical weather scenario was estimated using Equation 5.8 

by applying the average Kc value calculated for each species (Section 5.2.3) to the ETo calculated 

for each scenario in each month (Section 5.2.4.3), thus creating the irrigation management 

reference table. 
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Table 5.6: Summary of input parameters for each hypothetical UK summertime weather 

scenario in June (A), July (B) and August (C) for the calculation of ETo. 

Hypothetical UK 
summertime scenario 

ETo input parameters 

A June 
u2  

(m s-1) 
Tmean  

(°C)  
Δ   

(kPa °C-1) 
es - ea 

(kPa) 
Rn   

(MJ m-2 day-1) 

'Blue sky' 
'Calm' 0.75 

16.12 0.117 0.926 15.742 
'Windy' 4 

'Sunny 
spells' 

'Calm' 0.75 
14.62 0.107 0.735 13.391 

'Windy' 4 

'Overcast' 
'Calm' 0.75 

14.04 0.104 0.289 6.859 
'Windy' 4 

       

B July 
u2  

(m s-1) 
Tmean  

(°C)  
Δ   

(kPa °C-1) 
es - ea 

(kPa) 
Rn   

(MJ m-2 day-1) 

'Blue sky' 
'Calm' 0.75 

20.06 0.145 1.154 15.621 
'Windy' 4 

'Sunny 
spells' 

'Calm' 0.75 
16.13 0.117 0.740 12.471 

'Windy' 4 

'Overcast ' 
'Calm' 0.75 

17.40 0.126 0.659 8.884 
'Windy' 4 

       

C August 
u2  

(m s-1) 
Tmean  

(°C)  
Δ   

(kPa °C-1) 
es - ea 

(kPa) 
Rn   

(MJ m-2 day-1) 

'Blue sky' 
'Calm' 0.75 

17.11 0.124 0.896 12.174 
'Windy' 4 

'Sunny 
spells' 

'Calm' 0.75 
17.59 0.127 0.859 10.615 

'Windy' 4 

'Overcast' 
'Calm' 0.75 

17.12 0.124 0.723 6.734 
'Windy' 4 
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5.3 Results 

5.3.1 Crop coefficients for each species 

Crop coefficients (Kc) calculated for each species, based on actual ET (ETa) and reference ET (ETo) 

for each ‘day’ of the Experiment 3 data, are presented in Table 5.7.  ETa was calculated as an 

average of the two replicates of each species that were tested on each day (see Section 5.2.1).  

ETo for each ‘day’ was identical for all species on each day since it was calculated with only 

meteorological data.  ETa of Salvia and Stachys were around 50% and 25% lower respectively on 

Day 3 compared to Days 1 and 2, resulting in somewhat lower Kc values on Day 3 (see Section 

5.4.1).  However, the average Kc values calculated for Salvia and Stachys were substantially higher 

than those calculated for Heuchera and Sedum.  The average Kc value for each species was used in 

subsequent ETc calculations for each of the hypothetical weather scenarios.   

Table 5.7: Calculated crop coefficients (Kc) for each of the species, based on actual ET (ETa) and 

reference ET (ETo) calculated for each ‘day’ of Experiment 3. 

Species 
Experimental 

‘day’ 
Actual ET,  

ETa (mm day-1) 
Reference ET, 
ETo (mm day-1) 

Kc 
Average Kc 

for each 
species 

Heuchera 

Day 1 1.87 1.25 1.50 

1.47 Day 2 1.71 1.15 1.49 

Day 3 1.50 1.05 1.43 

Salvia 

Day 1 4.25 1.25 3.41 

2.98 Day 2 4.02 1.15 3.50 

Day 3 2.12 1.05 2.02 

Stachys 

Day 1 3.67 1.25 2.95 

2.94 Day 2 3.66 1.15 3.18 

Day 3 2.82 1.05 2.69 

Sedum 

Day 1 2.19 1.25 1.76 

1.66 Day 2 1.97 1.15 1.71 

Day 3 1.58 1.05 1.51 
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5.3.2 Irrigation management reference table 

The completed irrigation management reference table for all species, based on the calculated ETo 

and Kc values, is presented in Table 5.8.  For all species in all months, estimated ETc was highest 

under ‘blue sky’ conditions and lowest under ‘overcast’ conditions, and higher in ‘windy’ 

conditions compared to ‘calm’ condition.  ETc in ‘blue sky windy’ conditions was 2 - 3 times 

greater than ETc in ‘overcast calm’ conditions for all species in all months.  Within each scenario, 

ETc was generally an average of 20 - 30% higher in windy conditions compared to calm conditions 

for all species.  ETc was lower in August than in June and July in ‘blue sky’ and ‘sunny spells’ 

conditions, as a consequence of the lower Rs values obtained for August in Section 5.2.4.3 due to 

shorter day length.  In ‘overcast’ conditions, ETc was lowest in June, corresponding to the 

unusually low meteorological values for this scenario in June discussed in Section 5.2.4.3.  ETc in 

the different scenarios varied less in August compared to June and July, with a maximum 

difference in ETc (between ‘blue sky windy’ and ‘overcast calm’) of 7.89 mm day-1 in August  

compared to 11.17 and 10.49 mm day-1 in June and July respectively, all with Salvia.    

Corresponding to their higher Kc values, Salvia and Stachys had higher daily ETc than Sedum and 

Heuchera in all scenarios and all months; indeed, Salvia and Stachys ETc was double that of 

Heuchera (as were their Kc values; Section 5.3.1).  Additionally, the range of ETc values estimated 

for the different scenarios was much greater with Salvia and Stachys compared to Heuchera and 

Sedum.  The greatest variations in ETc were 13.09 mm day-1 with Salvia compared to 

6.46 mm day-1 with Heuchera, both between ‘blue sky windy’ conditions in July and ‘overcast 

calm’ conditions in June.  ETc variations between months in each scenario were also more 

pronounced with Salvia and Stachys; for example, ETc in ‘blue sky windy’ conditions was 

4.04 mm day-1 higher in July than in August with Salvia, compared to a 2.00 mm day-1 difference 

with Heuchera. 
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Table 5.8: Completed irrigation management reference table, with estimated daily ETc (mm) 

from a green roof vegetated with Heuchera (A), Salvia (B), Stachys (C) or Sedum (D) in 6 

hypothetical UK summertime weather scenarios in June, July and August. 

 

 

Estimated daily ETc (mm) 

A 'Blue sky' 'Sunny spells' 'Overcast' 

Heuchera 'Calm' 'Windy' 'Calm' 'Windy' 'Calm' 'Windy' 

June 6.55 8.14 5.39 6.66 2.63 3.00 

July 7.07 9.09 5.20 6.48 3.91 5.20 

August 5.33 7.09 4.76 6.51 3.20 4.91 

       

B 'Blue sky' 'Sunny spells' 'Overcast' 

Salvia 'Calm' 'Windy' 'Calm' 'Windy' 'Calm' 'Windy' 

June 13.28 16.50 10.93 13.50 5.33   6.07 

July 14.34 18.42 10.54 13.14 7.93 10.53 

August 10.81 14.38   9.65 13.20 6.49   9.95 

       

C 'Blue sky' 'Sunny spells' 'Overcast' 

Stachys 'Calm' 'Windy' 'Calm' 'Windy' 'Calm' 'Windy' 

June 13.10 16.28 10.78 13.32 5.26   5.99 

July 14.15 18.17 10.40 12.96 7.82 10.39 

August 10.67 14.18   9.52 13.02 6.40   9.82 

       

D 'Blue sky' 'Sunny spells' 'Overcast' 

Sedum 'Calm' 'Windy' 'Calm' 'Windy' 'Calm' 'Windy' 

June 7.40   9.19 6.09 7.52 2.97 3.38 

July 7.99 10.26 5.87 7.32 4.42 5.87 

August 6.02   8.01 5.38 7.35 3.62 5.54 

Irrigation management reference table 
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5.4 Discussion 

In this chapter, crops coefficients (Kc) for four potential green roof species (Heuchera, Salvia, 

Stachys and Sedum) were estimated, which could contribute to a wider database of Kc values for 

landscape plants.  These were then used to create a table of estimated daily ETc from a green roof 

vegetated with each of the four species under different weather conditions, as an example of a 

simple irrigation management reference table that could be created using simple weather 

observations.  The purpose of the table is to allow a green roof manager to make simple 

observations of the weather each day and look up the corresponding estimated ETc from the 

green roof in order to inform irrigation scheduling so that plant health and provision of ESs is 

maintained, whilst also managing limited water resources in a sustainable way.  As such, the use 

of greywater for this supplementary irrigation is encouraged.   

5.4.1 Estimated crop coefficients for each species 

The FAO-56 PM model has proven to be a robust and reliable method for calculating crop 

coefficients for a wide range of agricultural crops (e.g. Tyagi et al., 2000; Liu et al., 2002), but few 

attempts have been made to calculate Kc values for landscape plants that may be used on green 

roofs (e.g. Poë et al., 2015).  Previous studies highlighted the importance of calculating Kc values 

for individual species, locations and environmental conditions to ensure accurate calculation of ET 

(Borin et al., 2011), and these are likely to differ vastly on a green roof compared to agricultural 

environments (Nouri et al., 2013).  In this chapter, one Kc value was calculated for each species, 

using mature, fully grown plants with 100% coverage (or 90% for Heuchera) in well-watered 

conditions, considered to be representative of green roof conditions in the summertime in the 

UK.   Since landscape plants are likely to show greater variation in vegetation characteristics (e.g. 

height and density) than agricultural crops, even within growth stages (Allen and Pereira, 2009), Kc 

values for green roof plants would ideally need to be obtained under a range of conditions to 

achieve a representative average value for use in further ETc calculations. This was also evident in 

the ETa results from Experiment 3, in which ETa (and consequently Kc) of Stachys and especially 

Salvia were substantially lower on Day 3 than on Days 1 and 2 (50% lower for Salvia).  This could 

have been a result of differences in environmental conditions on Day 3, particularly higher 

humidity and lower solar radiation compared to Days 1 and 2 (data not shown), which is likely to 

have restricted ET, as discussed in Section 4.4.2.   However, although environmental conditions on 

each experimental day are accounted for in the ETo calculation, Kc values were still up to 40% 

lower on Day 3 for Salvia.  This is therefore likely to indicate a difference between the plants 
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themselves, with the plant replicates used on Day 3 likely having a lower ET rate than those used 

on Days 1 and 2 since all plants were of comparable size.  This highlights the variation that can be 

found in landscape plants and thus the need for calculating Kc values in a wide range of conditions 

in order to obtain a robust and representative species average. 

Whilst good initial estimates, the Kc values calculated in this chapter would need to be validated 

outdoors and in a green roof context to ensure applicability of the Kc values to further ET 

estimations for these species.  Calculated Kc values were somewhat higher than published values 

for agricultural crops, which typically should not exceed 1.3 (Allen and Pereira, 2009).  Values 

were particularly high for Salvia and Stachys (2.98 and 2.94 respectively), whereas for Heuchera 

and Sedum they were only slightly higher than the indicated range (1.47 and 1.66 respectively).  

These values reflect the higher ETa of Salvia and Stachys compared to Heuchera and Sedum 

(discussed in Chapters 3 and 4), highlighting the different irrigation needs of the different species 

and therefore the importance of calculating Kc values for each species individually.  Accurate 

estimation of ETc of specific species is particularly important for the purposes of scheduling 

irrigation based on plant water requirements in order to maintain provision of ESs.   

Kc values have rarely been calculated for landscape plants, so comparison of the results of this 

study is limited, particularly for the broadleaf species as the majority of studies have typically 

focussed on Sedum mixes.  Additionally, results that are available for landscape plants show a lot 

of variation.  For example, Kc values of 0.4 – 0.5 and 0.53 were calculated for well-watered Sedum 

on green roofs in August and September in Italy and New Hampshire, USA respectively (Lazzarin 

et al., 2005; Sherrard and Jacobs, 2012), whilst on a different Sedum-vegetated green roof in 

Pennsylvania, USA, monthly average Kc values of 1.0 – 1.4 were obtained under low-stress 

summertime conditions (Schneider, 2011).  Compton and Whitlow (2006) attempted to identify Kc 

values for alternative species that may be suited to green roofs due to their tolerance of both 

drought and salt (Solidago canadensis and Spartina alterniflora), obtaining average values of 3.9 

and 3.4 respectively.  However, the ETo used in their calculations was measured by evaporation 

pan, and therefore did not take into account transpiration and crop factors, hence resulting in 

such large Kc results. 

The FAO-56 PM equation has a number of underlying assumptions built into the calculations, 

including the requirement for a large (> 50 m in all directions), homogenous crop due to the 

exclusion of lateral energy fluxes in the calculations.  The size of the plots tested in Experiment 3 

were much smaller than this, and horizontal energy exchanges therefore probably played a larger 

role than accounted for by the calculations, probably resulting in overestimation of Kc values and 
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consequently ETc (Allen and Pereira, 2009).  Kc values obtained for small, isolated stands of 

vegetation are frequently higher than expected (Allen et al., 1998), often between 1.9 and 2.3 

(Schneider, 2011).  The high Kc values calculated for Salvia and Stachys in this study were likely to 

be a result of the small plot size and would therefore need further validation in a green roof 

context to ensure accuracy.  However, it is also unlikely that a green roof would be as large as 

required for the FAO-56 PM model, which was designed for large agricultural crops, and therefore 

lateral energy exchanges may always play a larger role in ETc than is accounted for with FAO-56 

PM. 

5.4.2 ETc under hypothetical UK summertime weather scenarios 

ETc of each species in six simple hypothetical UK summertime weather scenarios was estimated to 

create an example of an irrigation management reference table for a UK summer, the aim of 

which was to allow a green roof manager to easily observe the weather each day, without the 

need for equipment, and simply classify the day into one of the six scenarios.  Estimated daily ETc 

of a particular species in that weather scenario could then easily be looked up in the irrigation 

management reference table and irrigation scheduled appropriately.  The hypothetical weather 

scenarios were based mainly on cloud cover and wind conditions, covering all likely summer 

weather conditions in the southern UK, with typical meteorological values on similar days 

obtained from weather data of previous summers (2015 and 2016) in Reading.   

Estimated ETc for all species was high compared to the ETa calculated from Experiment 3 data and 

compared to published ET values in experiments with green roof species, which typically averaged 

1 – 3 mm day-1 in summer conditions on green roofs vegetated with Sedum in New York City 

(DiGiovanni et al., 2012) and New Hampshire (Sherrard and Jacobs, 2012).  This was probably due 

to overestimation of ETc in the irrigation management reference table resulting from the high Kc 

values calculated for these species as some of the underlying assumptions in the ETo calculation 

were not met (Section 5.4.1).  Additionally, ETa may be low compared to ETc estimates due to the 

different environmental conditions inside a glasshouse; for example, it was noted that Rn values 

used in all hypothetical weather scenarios in all months were substantially higher than the Rn 

values used for the Experiment 3 ETo calculations (3.10 – 3.57 MJ m-2 day-1). 

This example of an irrigation management table clearly highlights the differences in irrigation 

requirements between the species, and under different weather conditions.  ETc differences 

between species corresponded directly to differences in their Kc values; for example, the mean Kc 

of Heuchera was half that of Salvia and Stachys (1.47 compared to 2.98 and 2.94 respectively), 
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resulting from the lower ETa with Heuchera, which was likely due to the slightly older and smaller 

plants (with approximately 90% surface coverage) with Heuchera compared to all other species.  

This meant that ETc with Heuchera was half that of Salvia and Stachys in all hypothetical weather 

scenarios and all months, resulting in a wider range of ETc values between the different weather 

scenarios and between months for Salvia and Stachys compared to Heuchera and Sedum.  This 

highlights the importance of basing irrigation scheduling on plant water use (i.e. ET) of individual 

species in particular weather conditions in order to maintain plant health and provision of ESs 

whilst also using limited water resources in an efficient way. 

Differences in estimated ETc between species were most pronounced in the ‘blue sky windy’ 

scenario in all months (e.g. ETc in July ranged from 18.42 mm day-1 for Salvia to 9.09 mm day-1 for 

Heuchera) and the least variation in ‘overcast calm’ conditions (e.g. ETc was 7.93 mm day-1 for 

Salvia in July and 3.91 mm day-1 for Heuchera).  This pattern was also evident for differences in ETc 

between months, with the greatest variation in the ‘blue sky windy’ scenario for all species (e.g. a 

difference of 4.04 mm day-1 for Salvia in July compared to August), whilst ETc values for each 

month were the most similar in the ‘overcast calm’ scenario (e.g. a difference of 2.60 mm day-1 in 

July compared to June with Salvia).  ETc values within each weather scenario were generally 

similar in June and July and lower in August for all species, with the exception of the ‘overcast’ 

scenario, in which ETc was lowest in June.  Low ETc in the ‘overcast’ scenario in June likely resulted 

from the low meteorological parameters noted previously (Sections 5.2.4.2 - 5.2.4.3); the 

accuracy of ETc estimates in all scenarios could be improved by using a larger historical dataset of 

summertime meteorological data to ensure that values used in ETo calculations are representative 

of the long-term summer averages.   

Additionally, estimated ETc in all months and with all species was around 20 – 30% greater in 

‘windy’ compared to ‘calm’ conditions in each weather scenario.  However, species with different 

aerodynamic resistances may respond differently (to the grass reference crop and to other 

species) to changing wind speed in terms of their actual ET, resulting in disparity between ETa and 

ETo estimates (Allen et al., 2005).  Indeed, Allen and Pereira (2009) suggest that Kc values may 

increase with increasing wind speed as a result of the higher surface roughness of crops 

compared to the grass reference crop, and Allen et al. (1998) note that Kc values tend to be larger 

under dry and windy conditions.  The Kc values calculated in this study would therefore need to be 

validated for the higher wind speeds typically experienced on green roofs (Nagase and Dunnett, 

2010) to ensure accurate estimation of green roof ETc with these species. 
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Based on estimated ETc, it is therefore likely that irrigation of a green roof planted with any of 

these species would be required most often or with the greatest volumes during June and July 

compared to August (in similar weather conditions), and in ‘windy’ and ‘blue sky’ conditions.  

These are also the conditions in which species differ the most in their irrigation requirements, and 

so understanding the particular requirements of the specific species used on a green roof is vital 

for managing irrigation sustainably whilst also ensuring that the provision of ESs does not become 

compromised. 

5.4.3 Application of the irrigation management reference table 

Little experimental data has previously been available regarding ET from different types of green 

roof vegetation in different climatic conditions, thus making it difficult to accurately quantify or 

model green roof ET (Voyde et al., 2010a), or to schedule irrigation appropriately.  Although they 

need further validation in green roof conditions, the results of this study provide a good initial 

estimation of how daily ETc varies with Heuchera, Salvia, Stachys or Sedum in different 

hypothetical UK summertime weather scenarios.  The results also highlight the ease with which 

ETc can be estimated under any climatic conditions by using the FAO-56 PM model once a Kc has 

been calculated for the relevant species.  This method therefore has the potential to be a 

straightforward and convenient approach to modelling green roof ET, and creation of a database 

of Kc values for landscape species would be beneficial in future ET modelling for green roofs.   

Differences in estimated daily ETc between the different species were clearly highlighted in the 

irrigation management reference table, as well as between different weather conditions and 

different months.  This emphasises the need for careful scheduling of supplementary irrigation 

based on the specific type of vegetation used in order to maintain provision of ESs, such as cooling 

and stormwater management, whilst also preserving limited water resources.  An irrigation 

management reference table would provide a simple way for a green roof manager to estimate 

daily ETc from the roof by simply observing the weather, enabling a record to be kept of 

cumulative water loss in the days following rainfall.  Once the total water lost from the roof 

reaches a pre-determined value, at which plant health and provision of ESs may become 

compromised, supplementary irrigation (with greywater or other water sources) is scheduled.  For 

a green roof manager to know at what point to irrigate, the water requirements for 

uncompromised provision of ESs for each species need to be accurately determined through 

further experimental work.  As an example, based on the experimental results presented in 

Chapter 4, it was proposed that irrigation would be required after 3 – 4 dry days in hot and dry 
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conditions (i.e. high T and low RH) with Salvia and Stachys in order to maintain plant health and 

aesthetic quality (i.e. to prevent wilting) and to maintain high ET rates, which equated to a 

cumulative ET loss of 25 – 30 mm for both species (see Sections 4.3.2 and 4.4.3).  Using the 

example irrigation management reference table to estimate ETc for Salvia and Stachys, this water 

loss threshold would be reached after 2 consecutive ‘blue sky windy’ days, compared to 4 – 5 

consecutive ‘overcast calm’ days, depending on month. 

The example irrigation management reference table created in this chapter indicates that 

ET-based irrigation scheduling could be used in a very simple way to schedule irrigation of a green 

roof in order to maintain the provision of ESs by particular species.  Using greywater for the 

supplementary irrigation will further improve the sustainability of this approach, helping to 

preserve high quality tap water without compromising the needs of the plants.  To further 

improve the accuracy of ETc estimates for each species in various summertime weather scenarios, 

the Kc values calculated from Experiment 3 data could be validated in the green roof context, 

taking into account differences in plot size, wind speed and atmospheric conditions outdoors 

rather than inside a glasshouse.  Furthermore, this initial table is valid only for well-watered 

conditions as no stress factor (Ks) was applied in these calculations as ETa was measured under 

well-watered conditions in Experiment 3 (i.e. Ks = 1).  Since ET decreases over time as the 

substrate dries following rainfall or saturation (Castiglia Feitosa and Wilkinson, 2016), in practice, 

Ks would become increasingly large over consecutive dry days.  Ks is typically calculated each day 

from the soil water balance (Allen and Pereira, 2009) and is therefore difficult to account for in an 

irrigation management reference table such as the example created in this study, whilst 

maintaining simplicity.  However, as the purpose of such a table would be to allow a green roof 

manager to schedule irrigation based on cumulative ET during dry periods between rainfall, 

further work is needed to attempt to identify Ks for each species on each consecutive dry day in 

order to modify ETc estimates appropriately.  

5.5 Key conclusions 

• The FAO-56 PM model provided a simple method for estimating daily ETc from a 

green roof under a variety of hypothetical UK summertime weather scenarios.  

Irrigation management reference tables may have potential for enabling green roof 

managers to schedule irrigation according to plant water requirements whilst also 

conserving limited water resources and keeping green roof maintenance costs low. 
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• Kc values for each species under standard growing conditions in the summertime 

were identified and could contribute to a database of Kc values for landscape species.  

However, further validation of Kc and ETc results is required to account for the small 

plot size and the validity of extrapolating results from inside a greenhouse to 

outdoors on a green roof, as well as to identify Ks for each species on each 

consecutive dry day to account for decreasing ET due to drying substrate. 

• Salvia and Stachys had higher Kc values than Sedum and Heuchera; consequently, they 

always had the highest daily ETc and therefore would require irrigation with greater 

volume or frequency in order to preserve the provision of ESs. 

• ETc for all species was greatest under ‘blue sky windy’ conditions in June and July, and 

irrigation is thus likely to be required more frequently under these conditions. 
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Chapter 6  

Potential of greywater for sustainable irrigation of green 

roofs: impacts on plants, continued provision of 

ecosystem services and runoff quality 

6.1 Introduction 

Green roofs have the potential to provide multiple ecosystem services (ESs), including surface and 

aerial cooling and stormwater management.  Recent studies at the University of Reading have 

shown that a variety of species with different morphological and physiological characteristics than 

traditionally used succulent species (e.g. Sedum) may be able to provide ESs to a higher degree 

(Blanuša et al., 2013; Vaz Monteiro et al., 2016a). However, it is also apparent that supplementary 

irrigation of these species is required during times of drought to ensure plant survival and 

continued provision of ESs, particularly cooling (Butler and Orians, 2011; Blanuša et al., 2013).  

Indeed, the extent of cooling provided by some species, including Sedum, has been shown to be 

significantly higher when supplementary irrigation is provided (MacIvor et al., 2016).  

Furthermore, experimental results presented in Chapters 3 and 4 indicate that irrigation of 

species with high transpiration rates (e.g. Stachys and Salvia) would be required approximately 

every 3 days during a dry summer period in the UK in order to maintain plant health and high 

evapotranspiration (ET) rates.  Transpiration has previously been identified as the primary 

mechanism providing cooling with these species (Blanusa et al, 2013; Vaz Monteiro et al, 2016a; 

2017), and preservation of high ET rates are thus crucial for continued cooling provision, as well as 

stormwater management through restoration of substrate retention capacity. 

Increasing demand for water in urban areas and changing rainfall patterns in the UK due to 

climate change (including longer and more frequent droughts; IPCC, 2013) means that the 

possibility of water shortages and competition for limited water resources may become more 

likely (Jones and Hunt, 2010; Pinto et al., 2010).  Using greywater (GW) instead of tap water (TW) 

may provide a sustainable alternative for green roof irrigation and could result in fresh water 

savings of up to 50% (Jeppesen, 1996).  Additionally, GW is a consistent and reliable source of 

water all year, regardless of rainfall (Mohamed et al., 2013) and is available in large quantities, 

accounting for up to 75% of total household wastewater (Ghaitidak and Yadav, 2013). 
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It is as yet unclear whether vegetation can continue to grow and function efficiently when 

irrigated with GW, as previous studies have yielded a range of both positive and negative impacts 

in terms of plant growth and health (Ali et al., 2013).  It is also clear that different species respond 

differently to GW irrigation, possibly because the toxic threshold for various elements is likely to 

vary between plant species (Sharvelle et al., 2012).  Moreover, the majority of studies examining 

the impacts of GW on plant health have focused on vegetable crops (Finley et al., 2009; Al-

Hamaiedeh and Bino, 2010) or wetland species e.g. willow (Eriksson et al., 2006), with very few 

studying potential green roof species, particularly species with high ET rates.  As well as the 

tolerance of a particular species, the effect of GW on plants and soils also depends on the soil 

type, the irrigation regime (if GW is used solely or the plants also receive freshwater e.g. rain), the 

quality of the GW itself (i.e. its chemical and physical properties) and the length of exposure to 

GW (Kaboosi, 2016).  Impacts of GW irrigation on soils and plants were discussed fully in Sections 

1.5.1 - 1.5.2.  Rodda et al. (2011a) suggest that changes to soil properties are slow and will 

therefore only become apparent when GW has been used for irrigation long-term, whereas 

impacts on plants may occur in the short-term.   

The effect of GW on plant functioning (such as leaf stomatal conductance) has not yet received 

much attention, but is important to understand in order to determine whether GW-irrigated 

plants continue to provide ESs such as cooling and stormwater management, which depend on 

high ET rates (Vaz Monteiro et al., 2017), to the same extent as those irrigated with TW.  The few 

studies that have examined the impact of GW on plant transpiration and water uptake have 

yielded differing results, with some indicating reduced transpiration with GW irrigation (Eriksson 

et al., 2006; Ouldboukhitine et al., 2014), whilst others found no difference in water uptake with 

GW or TW treatments (Misra et al., 2010; Pinto et al., 2010).  Eriksson et al. (2006) also identified 

a clear difference in plant response to GW of different qualities and synthetic greywater is 

therefore often recommended for use in laboratory studies to ensure consistency and 

repeatability of results (Diaper et al., 2008). 

Green roofs also provide the service of improving the quality of runoff compared to runoff from 

conventional roofs, through plant uptake and substrate storage of chemical constituents, thus 

reducing the pollutant load in urban runoff (Berndtsson et al., 2009).  Similarly, the quality of 

irrigation GW may be improved by this filtering effect and plant uptake of nutrients on a green 

roof, thus resulting in runoff that is of better quality than the original irrigation GW.  As well as 

factors such as roof type and age, maintenance practices (e.g. application of fertilisers; Emilsson 

et al., 2007), and environmental factors including temperature and size of rainfall event (Teemusk 
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and Mander, 2007; Buffam et al., 2016), the magnitude of this service is strongly dependent on 

substrate type, plant species and quality of the original irrigation water (Berndtsson et al., 2006; 

Sharvelle et al., 2012; Fowdar et al., 2017).  However, green roofs may sometimes act as a source 

of some nutrients rather than a sink, particularly phosphorus which is thought to leach from the 

substrate (Van Seters et al., 2009).  Irrigation with GW may impact the capacity of a green roof to 

improve runoff quality, due to the additional input of salts and generally lower quality of GW 

compared to TW, so that runoff from GW-irrigated roofs may be of lower quality than runoff from 

TW-irrigated roofs (Alfiya et al., 2012).  Runoff quality is also likely to vary with plant type used as 

different species have different capacities for taking up and storing nutrients in plant tissues. 

6.1.1 Study aims 

It is clear that GW has the potential to be used for supplementary irrigation of green roofs but it is 

not yet fully understood how potential green roof species with high transpiration rates will 

respond to it and how it will impact their ability to continue providing ESs, especially cooling and 

stormwater management. The principal aims of this study, therefore, were to investigate the 

impacts of short-term GW irrigation on the health, growth and functioning of potential green roof 

species with high ET rates.  Since plant transpiration has previously been identified as the main 

mechanism by which these species provide both cooling (Blanuša et al., 2013; Vaz Monteiro et al., 

2016a; 2017) and stormwater management (through restoring the substrate retention capacity 

between storms; Chapters 3 and 4), the impact of GW on continued provision of ESs though 

stomatal modification and associated ET was also investigated. 

It is not clear how irrigation with GW will impact the quality of the runoff from a green roof and 

whether plant presence or type may influence runoff quality.  This study therefore also aimed to 

evaluate whether the quality of runoff was improved above that from bare substrate alone by any 

of the potential green roof species, and whether runoff quality was impacted by using GW for 

irrigation instead of TW. 

The specific objectives of the study were therefore: 

• To evaluate the impact of short-term (6 – 8 weeks) irrigation with greywater on the health 

and growth of potential green roof species, compared to plants of the same species 

irrigated with tap water; 
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• To investigate whether irrigation with greywater affects plant processes such as 

transpiration, which are necessary for the continued provision of ecosystem services such 

as cooling and stormwater management; 

• To investigate species differences in nutrient uptake (focusing on P, B and Na) and any 

resultant improvement in runoff quality, and whether plant presence offers an advantage 

compared to bare substrate. 

6.1.2 Synthetic greywater formulation and nutrient tracer selection 

Sodium (Na), phosphorus (P) and boron (B) were chosen as ‘tracer elements’ in this study (P and B 

in Experiment 5; P, B and Na in Experiment 6).  The primary concern relating to elevated B and Na 

concentrations in GW is their impact on soil and plant health, whilst the main environmental 

concerns relating to elevated P concentrations in GW are leaching and reduced runoff quality 

resulting in contamination of water bodies (e.g. Misra et al., 2010; Mohamed et al., 2013; 

discussed fully in Section 1.5.2.1).  The accumulation of these elements in the soil depends on 

their concentrations in irrigation waters, which for GW varies with the types of product used in 

the household and the source within the house as well as the quality of the original TW.  

Additionally, different plant species are likely to respond differently to GW due to varying plant 

requirements and tolerances to the various elements.   

Therefore, in order to standardise the water quality and element content received by all species 

throughout this study and to be able to easily replicate results, a synthetic GW was used.  The 

recipe selected was developed by Diaper et al. (2008), and is designed to simulate combined 

bathroom and laundry GW (see Section 2.7.1).  This recipe was selected due to the thorough and 

robust research and development techniques used in its formulation, and the similarity in 

chemical and physical properties to real GW achieved with the final recipe.  Using synthetic GW 

also allowed some control over the chemical formulation of the GW used: for example, B 

concentrations were low in the original GW formulation used in Experiment 5, so ingredient 

amounts were adjusted in Experiment 6 to increase GW B content and enable easier tracing 

through the study.  Although a disadvantage of using synthetic GW is that it lacks the variability in 

chemical and physical parameters of real GW, for the purposes of this study a controlled 

application with water of consistent quality was considered to be of greater advantage.  
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6.2 Materials and Methods 

Two experiments were carried out to examine the impact of greywater (GW) on plant health, 

growth, functioning and ability to continue providing ecosystem services, as well assessing how 

runoff quality is affected by GW irrigation.  The experimental setup of both experiments is 

summarised in Table 6.1.  Experiment 5, using an industry standard green roof substrate, was 

carried out for 8 weeks in summer 2014, during which half of each plant treatment were irrigated 

with mains tap water (TW) and half with GW.  Experiment 6 was set up as a ‘model’ situation, 

using a nutrient-poor substrate mix (see Section 2.4), and was carried out over a 7 week period in 

summer 2015; for the first 6 weeks, half the containers in each plant treatment were irrigated 

with TW and half with GW.  After 6 weeks, plants in ‘runoff quality’ containers (5 replicates of 

each treatment; see Section 2.7) were harvested for chemical analysis, whilst the experiment with 

the remaining ‘ET assessment’ containers continued into the 7th week, in which water uptake 

from each container was measured (6 replicates of each treatment). 

Table 6.1: Summary of Experiments 5 and 6. 

 Experiment 5 Experiment 6 

Dates 22nd May – 18th July 2014 22nd May –  13th July 2015 

Set-up 
Individual plants in 2 L containers with 

11 cm of Meadow Roof Medium 

Individual plants in 2 L containers with 

11 cm of vermiculite: peat-based 

compost 50:50 mix 

Treatments 
16x Heuchera, Salvia, Stachys, Sedum, 

control 

22x Heuchera, Salvia, Stachys, Sedum, 

control 

Irrigation 

regime 

TW, GW; identical volumes for all 

replicates of all treatments 

TW, GW; different volumes for each 

species/control based on water use 

Measurements 

SMC; substrate EC; plant growth and 

health; gs; canopy temperature; leaf 

area; root and shoot dry weights; 

runoff EC; nutrient concentrations in 

roots, shoots, substrate and runoff. 

SMC; substrate EC; plant growth and 

health; gs; canopy temperature; ET;  

leaf area; root and shoot dry weights; 

runoff EC; nutrient concentrations in 

roots, shoots, substrate and runoff. 

 

Plant materials and substrates used in the experiments are described in Sections 2.3 and 2.4, and 

the basic setup of each experiment, including formulation of synthetic GW and irrigation regimes, 
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is detailed in Section 2.7.  Average chemical and physical properties of the tap water and synthetic 

GW mixed for both experiments are presented in Table 6.2. 

General principles of all measurements made over the course of Experiments 5 and 6 are 

described in Section 2.5.  However, specific details of the measurements made in each 

experiment are described in Sections 6.2.1 - 6.2.4.  

Table 6.2: Average chemical and physical properties of the tap water and synthetic greywater 

used in Experiments 5 and 6, sampled each time a new GW batch was mixed. 

Parameter 
Experiment 5 Experiment 6 

Tap water Greywater Tap water Greywater 

EC * (μS cm-1) 386.0 530.7 373.1 521.0 

pH 7.7 7.8 8.5 7.7 

Total P (mg L-1) < 0.1 5.2 < 0.2 4.9 

Total B (mg L-1) < 0.04 0.48 0.01 0.75 

Total Na (mg L-1) - - 16.3 107.1 

* Electrical conductivity (EC) values are reported at 25°C 

6.2.1 Baseline plant measurements 

Four additional plants of each species were destructively harvested at the start of both 

experiments to obtain baseline values.  Baseline plant biomass for each experiment was obtained 

by harvesting the roots and shoots of the baseline plants to obtain dry weights.  In addition, in 

Experiment 5, leaf stomatal conductance to water vapour (gs) of the baseline plants was 

measured prior to harvesting on Day 0 of the experiment.  Containers had been watered daily to 

container capacity with TW before gs was measured, so that values were an indicator of normal 

plant functioning with optimal substrate moisture content (SMC).  In Experiment 6, baseline 

values of gs and canopy temperature of all the experimental plants (22 replicates per treatment) 

were measured on Day 1 of the experiment.  

6.2.2 Impact of greywater on the substrate and plant health, growth and functioning 

Starting from Day 1, SMC and substrate electrical conductivity (EC) of all containers were 

measured three times per week throughout both experiments.  Plant growth was measured and 
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visual health was assessed at the start of both experiments and then fortnightly throughout the 

experiments.  The health of each plant was scored between 0 and 5 based on the visual plant 

health assessment system used by Sharvelle et al. (2012), including assessment of factors such as 

crown size and density, foliage colour, leaf senescence and overall quality.  Following baseline 

measurements, stomatal conductance (gs) was measured throughout both experiments 

(fortnightly in Experiment 5 and weekly for the first 6 weeks of Experiment 6), as described in 

Section 2.5.5, as an indicator of the plants’ functioning.  

6.2.2.1 Substrate sodium adsorption ratio 

Sodium adsorption ratio (SAR) describes the concentration of Na+ in the substrate relative to the 

concentrations of Ca2+ and Mg2+, which counteract the negative effects of Na+.  As such, it is a 

dimensionless ratio that expresses the sodium content of the substrate.   

In Experiment 6, the SAR of the VC mix substrate after 6 weeks of TW or GW irrigation was 

calculated.  At the end of Week 6, substrate was harvested from ‘runoff quality’ containers (5 

replicates per treatment) and dried, and the concentrations of sodium (Na), calcium (Ca) and 

magnesium (Mg) were measured using ICP-OES at NRM Laboratories (Bracknell, UK), as described 

in Section 2.7.4.  SAR of the substrate was then calculated using Equation 6.1 (Travis et al, 2010): 

 

𝑆𝐴𝑅 =  
𝑁𝑎+

√[𝐶𝑎2+] + [𝑀𝑔2+]
2

 

 

6.2.3 Impact of greywater on provision of ecosystem services 

Canopy temperatures were measured as an indicator of the extent of cooling provision.  In 

Experiment 5, thermal images were taken once, as described in Section 2.5.6, at the end of the 

experiment (Day 58) when SMC had been brought up to an optimal range (> 0.300 m3 m-3) 

following flushing (see Section 6.2.4).  In Experiment 6, images of all plants were taken fortnightly 

throughout the 6 week experiment.   

To further examine the impact of GW on plant transpiration and water use, in Experiment 6 daily 

water uptake (i.e. ET) from the ‘ET assessment’ containers (12 replicates of each plant treatment - 

6 each from the TW and GW irrigation treatments) was measured in Week 7.  This directly 

followed on from the first 6 weeks of controlled irrigation, so containers had already been 

exposed to GW for 6 weeks.  Each container was saturated to container capacity by submerging in 

(Eq. 6.1) 
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either TW or synthetic GW as appropriate for 15 minutes and then draining for 1 hour.  

Containers were weighed and SMC and substrate EC were measured after draining and then every 

24 hours for 6 days.  At the end of this period, leaf areas of 4 randomly selected plants from every 

treatment were measured, and shoots and roots were harvested and weighed. 

6.2.4 Impact of greywater on runoff quality 

To assess how different species may influence runoff quality and the impact of GW on this service, 

containers were flushed with either TW or GW (depending on their irrigation treatment) at the 

end of both experiments and the runoff was collected for chemical analysis.  All containers were 

flushed at the end of 8 weeks in Experiment 5, whilst in Experiment 6, ‘runoff quality’ containers 

only (i.e. 10 replicates of each species/control – 5 each from the TW and GW treatments) were 

flushed at the end of 6 weeks.   

To ensure that the whole depth of substrate was saturated whilst generating runoff, a total of 

600 mL of water (TW or GW) was applied directly to the substrate of each container in three 

separate applications 5 minutes apart in Experiment 5, and a total of 800 mL in four separate 

applications in Experiment 6.  Containers were stood in clean trays to collect the runoff, which 

was then poured into sample bottles.  The EC of each runoff sample was measured using the WET 

sensor, and samples were stored below 4°C until analysis.   

After flushing, roots and shoots from 4 replicates per treatment in Experiment 5 and all ‘runoff 

quality’ containers in Experiment 6 were harvested.  Additionally, substrate from each of the 

containers (350 g of Meadow Roof Medium (MRM) and 1 L of the vermiculite: peat-based 

compost mixed substrate (VC mix) in Experiments 5 and 6 respectively) was collected and air 

dried.  Concentrations of boron and phosphorus (plus sodium in Experiment 6) in all runoff, root, 

shoot and substrate samples were determined by chemical analysis, as described in Section 2.7.4. 

6.2.5 Data analysis 

All statistical analyses were performed as described in Section 2.8.  Daily ET measured in week 7 

of Experiment 6 was calculated as the weight loss per container in each 24-hour period and 

converted to depth (mm).  To account for any differences in plant sizes between TW and GW 

treatments, daily ET relative to leaf area for each plant was also calculated.  
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6.3 Results 

Experiments 5 and 6 were conducted with different substrates to explore the impact of plant 

choice on runoff quality in realistic green roof (GR) conditions as well as in an idealised, modelled 

setting.  For simplicity, Experiments 5 and 6 are hereafter referred to as being conducted under 

‘industry standard GR conditions’ (i.e. with the Meadow Roof Medium; MRM) or ‘model GR 

conditions’ (i.e. with the vermiculite: peat-based compost mixed substrate; VC mix) respectively. 

6.3.1 Impact of greywater irrigation on the substrate 

6.3.1.1 Sodium Adsorption Ratio of the substrate 

The average substrate Sodium Adsorption Ratio (SAR) of each treatment after 6 weeks of TW or 

GW irrigation in Experiment 6 is presented in Table 6.3.  SAR was significantly higher in GW-

irrigated substrates compared to those irrigated with TW for all species and the control 

(P < 0.001), with SARs of all species irrigated with GW greater than 6.  The SAR of the bare 

substrate control was somewhat lower than for all planted treatments (31% lower on average); 

this is likely to have resulted from the lower total input of nutrients to control containers due to 

the irrigation regime employed in Experiment 6 based on the ET losses of each treatment (see 

Sections 2.7.2 - 2.7.3). 

 

Table 6.3: Mean Sodium Adsorption Ratio (SAR) of the substrate after 6 weeks of tap water 

(TW) or greywater (GW) irrigation for all treatments in Experiment 6.  Data are means of 5 

replicates per treatments with associated LSDs (5%); red colour indicates statistical differences 

between TW and GW irrigation treatments within each species/control.  

Expt. 6 Mean SAR of substrate 

Treatment TW GW LSD (d.f. = 9) 

Heuchera 1.7 6.3 0.56 

Salvia 1.9 6.7 0.95 

Stachys 2.2 7.0 0.77 

Sedum 1.9 6.3 0.74 

Control 1.3 4.5 0.65 
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6.3.1.2 Substrate electrical conductivity 

Average weekly substrate electrical conductivity (EC) for each treatment throughout Experiments 

5 and 6 are presented in Figure 6.1 and Figure 6.2 respectively; all EC values are reported at 25°C 

(see Section 2.5.1).  Substrate ECs with ‘industry standard GR conditions’ in Experiment 5 were 

typically greater than 3000 μS cm-1 for all treatments at the start of the experiment.  ECs of all 

species/control (both TW- and GW-irrigated) decreased significantly over the 8 weeks of the 

experiment (P < 0.001) and were only 40 – 60% of their week 1 values in week 8.  Substrate ECs of 

TW and GW treatments were statistically similar for the majority of Experiment 5 for all species 

apart from Stachys, where the substrate EC of GW-irrigated containers was significantly higher 

than for TW-irrigated containers for most of the experiment Figure 6.1 C; P = 0.005 in week 1 and 

P = 0.028, 0.011, 0.043, 0.001 and < 0.001 in weeks 4 – 8 respectively).  Additionally, the 

difference in substrate EC between TW- and GW-irrigated Stachys became progressively greater 

over the 8 weeks, with substrate EC of the GW treatment 10% higher than the TW treatment in 

week 1 increasing to 30% higher in week 8. 

Substrate ECs were typically lower with ‘model GR conditions’ in Experiment 6 (700 – 

1700 μS cm -1), and increased significantly over the course of the 6 weeks for all planted 

treatments (both TW- and GW-irrigated treatments; P < 0.001), except for GW-irrigated Sedum 

and TW-irrigated Heuchera.  Conversely, substrate EC of the control treatment decreased 

significantly over the course of the experiment with both TW and GW irrigation (P < 0.001), 

similar to Experiment 5.  Substrate EC was frequently significantly higher with GW irrigation 

compared to TW for all species/control, and differences between TW and GW irrigated containers 

became increasingly large over the 6 weeks of the experiment, particularly for Heuchera, Sedum 

and the control Figure 6.2 A, D and E); for example, substrate EC of GW-irrigated Heuchera was 

4% lower than the TW-irrigated treatment in week 1 but was 38% higher by week 6. 

6.3.1.3 Accumulation of nutrients in the substrate 

The average concentration of nutrients accumulated in the substrate at the end of Experiments 5 

and 6 are presented in Table 6.4 and Table 6.5 respectively.  In Experiment 6, species/control 

received different irrigation volumes, and thus different quantities of nutrients, due to the ET-

based irrigation regime employed.  However, identical volumes of TW and GW were used for 

irrigation within species, enabling comparison of nutrient accumulation in the substrate of TW 

and GW treatments for each species.   
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Substrate EC – Expt. 6: ‘model GR conditions’ 

500

700

900

1100

1300

1500

1700

1900

1 2 3 4 5 6

M
e

an
 s

u
b

st
ra

te
 E

C
 (

µ
S 

cm
-1

)

Week of experiment

Heuchera

A

500

700

900

1100

1300

1500

1700

1900

1 2 3 4 5 6
Week of experiment

Salvia

B

500

700

900

1100

1300

1500

1700

1900

1 2 3 4 5 6

M
e

an
 s

u
b

st
ra

te
 E

C
 (

µ
S 

cm
-1

)

Week of experiment

Stachys

C

500

700

900

1100

1300

1500

1700

1900

1 2 3 4 5 6

Week of experiment

Sedum

D

500

700

900

1100

1300

1500

1700

1900

1 2 3 4 5 6

M
e

an
 s

u
b

st
ra

te
 E

C
 (

µ
S 

cm
-1

)

Week of experiment

Control

TW GW

E Figure 6.2: Mean weekly substrate 

electrical conductivity (EC; reported at 

25 °C) per container over the course of 

Experiment 6 for each treatment (A-E).  

Data are means of 11 replicate containers 

per treatment (3 measurements per 

week) with associated LSDs (5%); red bars 

indicate statistical differences between 

the means of tap water (TW) and 

greywater (GW) treatments in each week 

of the experiment. 

 



 Chapter 6 

154 
 

Table 6.4: Mean concentrations of phosphorus (P) and boron (B) accumulated in the MRM 

substrate per container after 8 weeks in Experiment 5.  Data are means of 4 replicates per 

treatment with associated LSDs (5%); red colour indicates statistical differences between tap 

water (TW) and greywater (GW) irrigation treatments within each species/control.  

Expt. 5 Mean concentration of nutrients in the substrate (mg L-1) 

Treatment 
Phosphorus Boron 

TW GW LSD (d.f. = 7) TW GW LSD (d.f. = 7) 

Heuchera 121 143 13.6 6.5 7.1 0.94 

Salvia 160 170 16.7 9.0 9.5 0.82 

Stachys 153 137 24.9 8.8 7.1 0.89 

Sedum 125 128 30.7 6.7 8.1 0.78 

Control 128 148 15.1 7.5 7.4 2.27 

 

Table 6.5: Mean concentrations of phosphorus (P), boron (B) and sodium (Na) accumulated in 

the VC mix substrate per container after 6 weeks in Experiment 6.  Data are means of 5 

replicates per treatment with associated LSDs (5%); red colour indicates statistical differences 

between tap water (TW) and greywater (GW) irrigation treatments within each species/control.  

Expt. 6 Mean concentration of nutrients in the substrate (mg L-1) 

Treatment 

Phosphorus Boron Sodium 

TW GW 
LSD 

(d.f. = 9) 
TW GW 

LSD 

(d.f. = 9) 
TW GW 

LSD 

(d.f. = 9) 

Heuchera   3.7 12.0 1.77 0.05 0.59 0.113 43 157 16.2 

Salvia   3.9 18.2 4.21 0.05 0.74 0.027 61 197 34.6 

Stachys   4.0 15.8 5.25 0.05 0.65 0.126 69 202 17.1 

Sedum   4.9 12.6 1.60 0.08 0.86 0.088 72 220 18.1 

Control 11.4 23.7 5.65 0.05 0.43 0.061 55 171 37.8 
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Phosphorus and boron concentrations in the substrate were substantially higher in the MRM used 

in Experiment 5 compared to the VC mix substrate used in Experiment 6, even with TW irrigation 

and despite doubling the concentration of B in the irrigation GW in Experiment 6 (Table 6.4 and 

Table 6.5).  For example, the average P concentration in the substrate of TW-irrigated control 

containers was 128 mg L-1 for the MRM (Experiment 5) compared to 11.4 mg L-1 for the VC mix 

(Experiment 6), highlighting the inherently high nutrient content in the MRM and the inherently 

low nutrient content in the VC mix.  With ‘model GR conditions’ in Experiment 6, concentrations 

of all nutrients in the substrate were significantly higher after 6 weeks of GW irrigation compared 

to TW irrigation for all species/control (P < 0.001; Table 6.5): P content was at least double in GW-

irrigated containers, Na concentrations were around three times higher, and B content was at 

least 10 times higher compared to TW-irrigated containers.  Nutrient concentrations in the 

substrate were more similar in TW- and GW-irrigated containers with ‘industry standard GR 

conditions’ in Experiment 5 (Table 6.4).  

6.3.2 Impact of greywater on plant health and growth 

6.3.2.1 Plant uptake of nutrients 

Concentrations of nutrients taken up into the roots and shoots of TW- and GW-irrigated plants in 

Experiment 6 are presented in Table 6.6.  As with accumulation in the substrate, although species 

received different quantities of nutrients through irrigation over the 6-week experiment as a 

result of the irrigation regime, identical volumes of TW and GW were used within species, 

enabling comparison of TW and GW treatments.  It should also be noted that Salvia and Stachys 

were propagated from cuttings approximately 5 months before the start of the experiment, 

whereas Heuchera and Sedum were 2-year-old plants; this may account for the higher 

concentrations of some nutrients (such as Na) in Heuchera and Sedum shoots and roots. 

With ‘industry standard GR conditions’ in Experiment 5, there was very little difference in the 

nutrient concentrations in the roots or shoots between TW and GW treatments for any species 

(data not shown), similar to the comparable nutrient accumulations in the substrate and probably 

resulting from the inherently high nutrient content in the MRM.  In contrast, concentrations of 

nutrients in the roots and shoots with ‘model GR conditions’ in Experiment 6 were frequently 

significantly higher with GW irrigation compared to TW (Table 6.6).  This was always the case with 

Stachys, with significantly higher concentrations of P, B and Na in both shoots and roots 

(P < 0.001), whilst concentrations of all nutrients in Heuchera roots and in Salvia shoots were 

statistically similar in TW and GW treatments. 
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Table 6.6: Mean concentrations of phosphorus (P), boron (B) and sodium (Na) in the roots and 

shoots of plants from all treatments harvested after 6 weeks in Experiment 6.  Data are means 

of 5 replicates per treatment with associated LSDs (5%); red colour indicates statistical 

differences between tap water (TW) and greywater (GW) treatments within each species.  

Expt. 6 Mean concentration in roots and shoots per plant (mg kg-1) 

Nutrient Species 

Roots Shoots 

TW GW 
LSD 

(d.f. = 9) 
TW GW 

LSD 

(d.f. = 9) 

P 

Heuchera 2918 3351 976.1 2785 3549 668.3 

Salvia 1962 3134 631.5 2319 2291 685.8 

Stachys 1590 2646 479.4 2792 3769 706.6 

Sedum 2597 2803 478.4 2170 2483 255.7 

B 

Heuchera 15.6 19.4 5.01 21.2 25.0   1.43 

Salvia 13.2 14.8 1.18 31.2 34.3 10.22 

Stachys 13.5 17.1 1.40 17.3 30.3   3.29 

Sedum 17.3 21.8 2.12 22.2 30.0   3.52 

Na 

Heuchera 2592 4228 2134.2 332 384 425.7 

Salvia   862 1998   618.9   91 102   26.0 

Stachys   653 2293   640.2   76 302   77.7 

Sedum 1812 2434   902.7 392 564 126.7 

6.3.2.2 Plant health 

There were no significant differences in the visually assessed health of plants irrigated with TW or 

GW for any species for the duration of both Experiments 5 and 6 (Figure 6.6 and Figure 6.7).  All 

plants appeared to grow well in both experiments with both TW and GW irrigation (e.g. Figure 

6.3), with consistently high visual scores over the course of the experiments (typically above 4); 

the exceptions were Heuchera in Experiment 5 and Salvia in Experiment 6. 

With the ‘industry standard GR conditions’ in Experiment 5 (i.e. the MRM substrate), the visual 

health of Heuchera declined substantially in week 4 (Figure 6.6 A) following foliar scorching in 
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week 3 of the experiment, which resulted in high levels of leaf dieback and a reduction in plant 

height, diameter and overall quality (Figure 6.4).  This appeared to affect plants irrigated with 

both TW and GW to a similar extent, with reductions in visual scores from 4.5 in week 0 to 2.9 in 

week 4 for TW-irrigated plants and 4.4 to 2.3 for GW-irrigated plants, and was likely to be a result 

of the hot, sunny weather experienced at the start of the experiment or transplant shock from 

transplanting Heuchera into the MRM approximately 1 month prior to the start of Experiment 5.  

Indeed, Heuchera plants also exhibited a decline in health following transplanting into the VC mix 

prior to the start of Experiment 6, resulting in relatively low visual health at the start of the 

experiment (visual scores around 3.5; Figure 6.7 A) and subsequent improvement over the 6 

weeks to visual scores of around 5.   

With the ‘model GR conditions’ in Experiment 6 (i.e. the low-nutrient VC mix substrate), Salvia 

visual health declined after week 2 for both TW- and GW-irrigated plants (Figure 6.5), from 

average visual scores of 5 in week 0 to 4 by week 6 (Figure 6.7 B).  This possibly could have been 

due to a nutrient deficiency since the VC mix substrate had inherently low nutrient concentrations 

and both TW and GW treatments were similarly affected. 
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Figure 6.3: Examples of typical Stachys (A) and Sedum (B) plants at the end of Experiment 5; 

similarly, both species grew well throughout Experiment 6. 

 

Figure 6.4: Example of a Heuchera plant at the start of Experiment 5 (A) and in week 4 (B), 

showing the decline in visual health due to high levels of foliar scorching and leaf dieback. 

 

Figure 6.5: Example of a Salvia plant at the start of Experiment 6 (A) and in week 6 (B), showing 

foliar chlorosis and necrosis and a consequent decline in visual health. 
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Visual health – Expt. 5: ‘industry standard GR conditions’ 
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Figure 6.6: Mean visual health score of plants of each species (A – D) in tap water (TW) and 

greywater (GW) irrigation treatments over the course of Experiment 5.  Data are means of 8 

replicates per treatment with associated LSDs (5%). 
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Visual health – Expt. 6: ‘model GR conditions’ 

Figure 6.7: Mean visual health score of plants of each species (A – D) in tap water (TW) and 

greywater (GW) irrigation treatments over the course of Experiment 6.  Data are means of 11 

replicates per treatment with associated LSDs (5%). 
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6.3.2.3 Plant growth 

There were no significant differences in plant height (Figure 6.8 and Figure 6.9) or diameter (data 

not shown) between TW or GW treatments for any of the species throughout both Experiments 5 

and 6.  The only exception was significantly greater plant height of Heuchera irrigated with TW 

compared to GW in week 4 of Experiment 5 (P = 0.016; Figure 6.8 A), which occurred when both 

height and diameter of all plants (both TW- and GW-irrigated) decreased concurrently with the 

decline in visual health and quality (Section 6.3.2.2).  Plant height and diameter of all other 

species (and Heuchera in Experiment 6) generally increased over the course of both experiments.  

Indeed, shoot and root dry weights of most species increased significantly over the course of both 

experiments (Table 6.7 and Table 6.8); the only exception was Heuchera shoot dry weight in 

Experiment 5 which was significantly lower after the 8 weeks of the experiment than the baseline 

(P < 0.001; Table 6.7), corresponding to the decrease in plant height and diameter and visual 

health around week 4.  However, there were no significant differences in root or shoot dry 

weights measured after 8 weeks in Experiments 5 and after 6 weeks in Experiment 6 between 

plants irrigated with TW or GW for any species.  Additionally, root and shoot dry weights (data not 

shown) and leaf areas (Table 6.8) of plants used in week 7 of Experiment 6 were statistically 

similar for all species. 

 

Table 6.7: Mean root and shoot dry weights of baseline plants harvested on Day 0 of 

Experiment 5 and plants in all treatments harvested after 8 weeks.  Data are means of 4 

replicates per treatment/baseline with associated LSDs (5%); red colour indicates statistical 

differences between baseline, tap water (TW) and greywater (GW) plants within each species.  

Expt. 5 Mean root dry weight per plant (g) Mean shoot dry weight per plant (g) 

Species Baseline TW GW 
LSD 

(d.f. = 11) 
Baseline TW GW 

LSD 

(d.f. = 11) 

Heuchera 11.2 18.6 21.5 4.99 22.8 13.1   9.8   3.55 

Salvia   0.9   3.1   2.7 1.34   3.1   5.5   5.4   1.83 

Stachys   1.2   2.5   2.0 0.67   3.3   6.8   6.1   1.24 

Sedum   3.1   8.2   7.8 3.04 17.4 23.4 25.0 12.23 



 Chapter 6 

162 
 

6

8

10

12

14

16

18

20

22

0 2 4 6 8

M
e

an
 p

la
n

t 
h

e
ig

h
t 

(c
m

)

Week of experiment

Heuchera

A

6

8

10

12

14

16

18

20

22

0 2 4 6 8
Week of experiment

Salvia

B

6

8

10

12

14

16

18

20

22

0 2 4 6 8

M
e

an
 p

la
n

t 
h

e
ig

h
t 

(c
m

)

Week of experiment

Stachys

TW

C

6

8

10

12

14

16

18

20

22

0 2 4 6 8

Week of experiment

Sedum

GW

D

 

 

 

 

 

Plant height – Expt. 5: ‘industry standard GR conditions’ 

Figure 6.8: Mean height of plants of each species (A – D) in tap water (TW) and greywater (GW) 

treatments over the course of Experiment 5.  Data are means of 8 replicates per treatment with 

associated LSDs (5%); red bars indicate statistical differences between the means of TW and GW 

treatments in each week of the experiment. 
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Plant height – Expt. 6: ‘model GR conditions’ 

Figure 6.9: Mean height of plants of each species (A – D) in tap water (TW) and greywater (GW) 

treatments over the course of Experiment 6.  Data are means of 11 replicates per treatment with 

associated LSDs (5%). 
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Table 6.8: Mean root and shoot dry weights of baseline plants (harvested on Day 0) and plants 

in tap water (TW) and greywater (GW) treatments harvested after 6 weeks in Experiment 6 

(‘runoff quality’ containers), and mean leaf area of plants in each treatment measured at the 

end of week 7 (‘ET assessment’ containers).  Shoot and root data are means of 5 replicates per 

treatment (or 4 replicates of baseline plants) with associated LSDs (5%); leaf area data are 

means of 4 replicates per treatment with associated LSDs (5%).  Red colour indicates statistical 

differences between means within each species.  

Expt. 6 Species Baseline TW GW LSD (d.f.) 

Mean root 
dry weight 

per plant (g) 

Heuchera 4.2 5.4 5.9 2.37 (13) 

Salvia 1.9 5.7 5.6 1.36 (13) 

Stachys 1.8 5.6 5.1 2.26 (13) 

Sedum 6.5 8.1 8.3 1.92 (13) 

Mean shoot 
dry weight 

per plant (g) 

Heuchera 7.1 16.0 16.4 3.97 (13) 

Salvia 4.9 13.0 12.9 1.92 (13) 

Stachys 6.4 13.7 12.7 2.84 (13) 

Sedum 18.5 37.5 38.9 6.54 (13) 

Mean leaf 
area per 

plant (cm2) 

Heuchera - 1646.7 1577.6 407.22 (7) 

Salvia - 626.5 526.9 192.55 (7) 

Stachys - 734.9 837.0 315.84 (7) 

Sedum - 1533.2 1815.7 560.50 (7) 

 

6.3.3 Impact of greywater on plant functioning and provision of ecosystem services 

6.3.3.1 Leaf stomatal conductance 

There were no significant differences in leaf stomatal conductance to water vapour (gs) between 

TW and GW treatments of any species throughout Experiment 5 or 6 (Figure 6.10 and Figure 

6.11), with the exception of Heuchera in week 6 of Experiment 6, when the gs of GW-irrigated 

plants was significantly lower than the gs of TW-irrigated plants (P = 0.045; Figure 6.11 A).  
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The gs of Heuchera increased over the course of Experiment 6 concurrently with an increase in 

visual health (Section 6.3.2.2), particularly for the TW treatment, which was approximately 2.5 

times higher in week 6 compared to week 0 (Figure 6.11 A).  In contrast, Salvia gs decreased over 

the course of Experiment 6 from week 3 onwards for both TW and GW treatments (Figure 6.11 B), 

in line with an observed decrease in visual health (Section 6.3.2.2); by week 6, Salvia gs was only 

54% or 61% of its original baseline value for TW and GW treatments respectively.   

In Experiment 5, the gs of Heuchera, Stachys and Sedum (both TW and GW treatments) were 

substantially lower for most of the experiment than the baseline gs, with average gs in week 2 

31%, 49% and 18% of baseline gs respectively (Figure 6.10 A, C and D).  This coincided with a 

decline in the SMC of all treatments over the first few weeks of the experiment, from around 

0.300 m3 m-3 in week 1 decreasing to 0.100 – 0.200 m3 m-3 by week 3 (data not shown), which 

resulted from the regulated deficit irrigation regime used.  The gs of all treatments was high in 

week 8 when the SMCs of all containers were high (> 0.350 m3 m-3 for all containers; data not 

shown) following flushing (Section 6.2.4). 

6.3.3.2 Canopy temperatures 

There were no significant differences in canopy temperatures measured once after 8 weeks in 

Experiment 5 (Table 6.9) or at any time throughout Experiment 6 (Table 6.10) between TW and 

GW treatments of any species. 
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Stomatal conductance – Expt. 5: ‘industry standard GR conditions’ 

Figure 6.10: Mean stomatal conductance (gs) of plants of each species (A – D) in tap water (TW) 

and greywater (GW) treatments over the course of Experiment 5.  Data are means of 8 replicates 

per treatment with associated LSDs (5%).  Baseline gs (week 0) was measured using baseline 

plants (4 replicates per species).   
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Stomatal conductance – Expt. 6: ‘model GR conditions’ 

Figure 6.11: Mean stomatal conductance (gs) of plants of each species (A – D) in tap water (TW) 

and greywater (GW) treatments over the course of Experiment 6.  Data are means of 11 

replicates per treatment with associated LSDs (5%); red bars indicate statistical differences 

between the means of TW and GW treatments in each week of the experiment.  A significant 

difference (P = 0.013) in Heuchera baseline gs between TW and GW treatments (A) was 

considered to be descriptive of plant functional ‘health’ as measurements were made before 

TW/GW irrigation commenced. 
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Table 6.9: Mean canopy temperature of plants in tap water (TW) and greywater (GW) 

treatments, measured at the end of Experiment 5 (Day 58).  Data are means of 8 replicates per 

treatment with associated LSDs (5%).  

Expt. 5 Mean canopy temperature (°C) 

Species TW GW LSD (d.f. = 15) 

Heuchera 24.3 24.8 0.67 

Salvia 23.6 23.0 1.12 

Stachys 24.0 23.5 1.42 

Sedum 24.5 24.0 1.66 

 

Table 6.10: Mean canopy temperature of plants in tap water (TW) and greywater (GW) 

treatments over the course of Experiment 6.  Data are means of 11 replicates per treatment 

with associated LSDs (5%). 

Expt. 6 Mean canopy temperature (°C) 

Treatment Week  0 Week 2 Week 4 Week 6 

Heuchera 

TW 22.7 21.8 21.2 21.9 

GW 22.6 22.0 21.4 22.3 

LSD (d.f. = 21) 0.64 0.31 0.25 0.41 

Salvia 

TW 19.3 21.3 20.1 21.4 

GW 19.3 21.3 20.1 21.5 

LSD (d.f. = 21) 0.26 0.34 0.21 0.51 

Stachys 

TW 19.0 21.0 19.5 20.5 

GW 18.9 20.9 19.4 20.6 

LSD (d.f. = 21) 0.48 0.26 0.29 0.32 

Sedum 

TW 20.3 22.2 22.2 22.0 

GW 20.2 22.2 22.3 22.3 

LSD (d.f. = 21) 0.43 0.29 0.22 0.44 
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6.3.3.3 Evapotranspiration 

Daily evapotranspiration (ET) per container was measured following saturation in week 7 of 

Experiment 6, following directly on from the previous 6 weeks of irrigation with TW or GW.  The 

saturated SMCs were lower for containers in the GW treatment compared to the TW treatment 

for all species/control (Table 6.11), significantly so for Heuchera (P = 0.007) and the control 

(P = 0.003). 

Table 6.11: Mean SMC of each treatment following saturation at the beginning of week 7 in 

Experiment 6.  Data are means of 6 replicates per treatment with associated LSDs (5%); red 

colour indicates statistical differences between tap water (TW) and greywater (GW) irrigation 

treatments within each species/control. 

Expt. 6 Mean SMC of saturated substrate (m3 m-3) 

Treatment Heuchera Salvia Stachys Sedum Control 

TW 0.600 0.563 0.617 0.591 0.621 

GW 0.544 0.520 0.555 0.565 0.566 

LSD (d.f. = 11) 0.0371 0.0588 0.0783 0.0388 0.0307 

 

There was a general trend of slightly lower ET from GW-irrigated containers compared to 

TW-irrigated containers for all species throughout week 7 of Experiment 6 (Figure 6.12), which 

was significant for Heuchera, Salvia and the control.  For Heuchera, ET was significantly lower in 

the GW treatment compared to the TW treatment for almost the whole week (P = 0.019, 0.041, 

0.035, 0.008 and 0.007 at 24, 48, 96, 120 and 144 hours respectively; Figure 6.12 A), whilst for 

Salvia differences became significant after 96 hours of ET with no additional irrigation (P = 0.011, 

0.002 and 0.016 at 96, 120 and 144 hours respectively; Figure 6.12 B).  Although plant size and 

leaf area of TW and GW treatments of all species were statistically similar (Table 6.8), when ET 

was expressed relative to leaf area there were no significant differences in ET per cm2 of leaf area 

between TW and GW treatments for any species throughout week 7 (Table 6.12). 
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Evapotranspiration – Expt. 6: ‘model GR conditions’ 
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Table 6.12: Mean water loss per container expressed relative to leaf area for plants in tap water 

(TW) and greywater (GW) treatments in the week following saturation in Experiment 6.  Data 

are means of 4 replicates per treatment with associated LSDs (5%). 

Expt. 6 Mean water loss (mL) per leaf area (cm2) following saturation 

Treatment 24 h 48 h 72 h 96 h 120 h 144 h 

Heuchera 

TW 0.076 0.168 0.276 0.378 0.459 0.491 

GW 0.070 0.164 0.269 0.365 0.432 0.458 

LSD (d.f. = 7) 0.0155 0.0292 0.0159 0.0362 0.0889 0.1222 

Salvia 

TW 0.205 0.460 0.754 0.989 1.167 1.239 

GW 0.222 0.493 0.789 1.033 1.208 1.287 

LSD (d.f. = 7) 0.0391 0.1019 0.2704 0.3142 0.3492 0.3739 

Stachys 

TW 0.161 0.345 0.550 0.733 0.866 0.918 

GW 0.137 0.310 0.500 0.654 0.760 0.806 

LSD (d.f. = 7) 0.0246 0.0651 0.1464 0.1778 0.2137 0.2453 

Sedum 

TW 0.076 0.165 0.266 0.367 0.455 0.494 

GW 0.058 0.130 0.216 0.294 0.357 0.386 

LSD (d.f. = 7) 0.0225 0.0502 0.0831 0.1083 0.1434 0.1770 

 

6.3.4 Impact of greywater on runoff quality 

Average EC and nutrient content of the runoff from all treatments, collected after 8 weeks of 

TW/GW irrigation in Experiment 5 and after 6 weeks in Experiment 6 are presented in Figure 6.13 

and Table 6.13, respectively.  In Experiment 6, species/control received different quantities of 

total nutrients over the course of the experiment as a result of the ET-based irrigation regime (see 

Section 2.7.3), with Salvia, Stachys and Sedum receiving approximately 1.2 times more than 

Heuchera and 1.8 times more than the control.  As identical volumes of TW and GW were used 

within species/control, the effect of GW can still be assessed; however, species comparisons 

should be treated with caution. 



 Chapter 6 

172 
 

In both experiments, runoff from GW-irrigated treatments had significantly higher concentrations 

of nutrients (P < 0.001) and significantly higher EC than runoff from TW-irrigated treatments 

(P = 0.034, 0.001 and 0.035 for Salvia, Stachys and Sedum respectively in Experiment 5; P = 0.025 

for control and < 0.001 for all species in Experiment 6).  The exceptions were runoff from 

Heuchera and the control in Experiment 5, both of which had similar B content and EC with both 

TW and GW irrigation.  In Experiment 5, nutrient concentrations and ECs were typically 

significantly higher in the runoff from all treatments compared to the irrigation TW or GW 

(P < 0.001), except for the P content in runoff from GW-irrigated treatments, which was similar to 

the P content of the irrigation GW for all species/control (Figure 6.13 B).  Conversely, in 

Experiment 6, EC and P and Na concentrations were significantly higher in the runoff from all GW-

irrigated treatments compared to the irrigation GW (P < 0.001), whilst B concentrations were 

significantly lower in the runoff than in the irrigation GW (0.25 – 0.40 mg L-1 in the runoff 

compared to 0.75 mg L-1 in the GW, P < 0.001; Table 6.13 B).  With TW irrigation in Experiment 6, 

Na content in the runoff from all treatments was significantly higher than the Na content of the 

irrigation TW (P < 0.001), but EC and P and B content of the runoff from some treatments (e.g. 

Stachys) were statistically similar to those of the irrigation TW (Table 6.13 A).  

With TW irrigation in both experiments, runoff from planted treatments frequently had 

significantly lower EC and nutrient concentrations than runoff from the bare substrate control 

(Figure 6.13 A and Table 6.13 A).  Indeed, despite receiving greater total quantities of nutrients 

over the 6 weeks of Experiment 6, runoff from Stachys, Salvia and Sedum had significantly lower 

EC and P content than runoff from the control with TW irrigation (P < 0.001), and also with GW 

irrigation for Stachys (P < 0.001).  Species differences in runoff quality were also evident in both 

experiments, with Heuchera runoff having significantly higher concentrations of nutrients and EC 

than all other species in Experiment 5 (P < 0.001), and Sedum runoff typically having higher EC and 

nutrient content than runoff from Stachys and sometimes Salvia in Experiment 6. 
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Runoff quality – Expt. 5: ‘industry standard GR conditions’ 
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Figure 6.13: Mean concentrations of phosphorus and boron and mean electrical conductivity 

(EC) of runoff from containers of all species/control in the tap water (TW) and greywater (GW) 

treatments (A and B respectively) of Experiment 5; nutrient content and EC of the TW and GW 

used for irrigation are also presented.  Data are means of 8 replicates per species/control (11 

replicates of irrigation TW and GW) with associated LSDs (5%); red bars indicate statistical 

differences between treatments for each parameter respectively. 
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Runoff quality – Expt. 6: ‘model GR conditions’ 

Table 6.13: Mean concentrations of phosphorus (P), boron (B) and sodium (Na) and mean 

electrical conductivity (EC) of runoff from containers of all species/control in the tap water (TW) 

and greywater (GW) treatments (A and B respectively) of Experiment 6; nutrient content and EC 

of the TW and GW used for irrigation are also presented.  Data are means of 5 replicates per 

species/control (13 or 22 replicates of irrigation TW or GW respectively) with associated LSDs 

(5%); red colour indicates statistical differences between treatments for each parameter 

respectively. 

 

  B           GW Mean concentration of nutrients in runoff and mean runoff EC  

Treatment P (mg L-1) B (mg L-1) Na (mg L-1) EC (μS cm-1) 

Irrigation GW   4.9 0.75 107.1   521 

Heuchera 10.1 0.27 178.6   840 

Salvia 10.2 0.25 213.2   954 

Stachys 10.6 0.32 209.8   857 

Sedum 12.9 0.40 228.6 1159 

Control 14.0 0.27 133.0 1055 

LSD (d.f. = 46) 2.24 0.078 15.45 140.0 

 

  A           TW Mean concentration of nutrients in runoff and mean runoff EC  

Treatment P (mg L-1) B (mg L-1) Na (mg L-1) EC (μS cm-1) 

Irrigation TW 0.2 0.01 16.3 373 

Heuchera 1.6 0.03 39.3 471 

Salvia 1.2 0.02 54.9 528 

Stachys 0.6 0.02 45.1 404 

Sedum 0.8 0.03 57.9 501 

Control 2.0 0.03 43.9 790 

LSD (d.f. = 37) 0.74 0.010 8.15 105.0 
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6.4 Discussion 

In this chapter, the potential suitability of greywater (GW) for use as supplemental irrigation was 

evaluated by assessing the impact of GW on plant health, growth, functioning and continued 

provision of ecosystem services (ESs) with four potential green roof species.  The ability of the 

species to improve runoff quality (compared to bare substrate) and to improve the quality of the 

influent GW was also evaluated. 

6.4.1 Characterisation of the synthetic greywater  

The composition and properties of GW are known to vary widely depending on its source within 

the house and the products used (Eriksson et al., 2002), and this can lead to great variation in the 

impacts of GW on soils and plants when used for irrigation.  For example, Finley et al. (2009) 

attributed similar growth of lettuces irrigated with TW and GW to the low nutrient content of 

their GW not restricting growth.  Indeed, P and Na concentrations in their untreated GW (0.24 - 

1.02 and 20 - 27 mg L-1 respectively) were substantially lower than in the synthetic GW used in 

Experiments 5 and 6 (average of 5.1 and 107 mg L-1 respectively).  Furthermore, another study 

found that the impacts of seven GW samples of differing origin on the growth and transpiration of 

willow varied widely depending on GW quality, from improvements in growth and functioning to 

suppressed transpiration (Eriksson et al, 2006).   

Although concentrations of all nutrients (phosphorus (P), sodium (Na) and boron (B)) in the 

synthetic GW were significantly greater than in TW in both experiments, the concentration of B in 

the GW in Experiment 5 (0.48 mg L-1) was similar to the lower toxicity threshold for sensitive 

plants (0.5 mg L-1; Almuktar et al., 2015).  Moreover, B concentration in the GW used in 

Experiment 6 (0.75 mg L-1) was at the lower end of the range for irrigation waters classified as 

having slight to moderate restrictions on their usage (B content between 0.7 and 3.0 mg L-1; 

Pescod, 1992).  The concentration of B in the GW used in both experiments is therefore unlikely 

to have been high enough to have much negative impact on the substrate or plants.   

Additionally, although the EC of the synthetic GW mixed for both experiments was slightly higher 

than the target range of 300 – 400 μS cm-1 recommended by Diaper et al. (2008), with an average 

EC of 526 μS cm-1 in both experiments, it was substantially lower than EC values reported in the 

literature for both real and synthetic GWs, which are frequently over 1500 μS cm-1 (Wiel-Shafran 

et al., 2006; Al-Hamaiedeh and Bino, 2010).  Moreover, the EC of the TW was only slightly (but 

statistically significantly) lower than that of the GW (an average of 380 μS cm-1 in both 
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experiments), suggesting that plants irrigated with GW were not necessarily exposed to a much 

greater salinity (Gross et al., 2005).  High EC of irrigation GW was linked to reduced transpiration 

of willow plants in a study testing GWs with a range of EC and pH values (Eriksson et al., 2006).  

However, EC values of up to 1000 μS cm-1 are deemed to be acceptable for irrigation waters, 

without affecting soil salinity or plant health (Albalawneh et al., 2016).  The EC, and thus salinity, 

of the synthetic GW used in both experiments could therefore be considered moderate, which 

may have limited any measurable impacts of the GW on the substrate and plants.   

GW has also frequently been found to have high pH, often up to 9 or 10 (Pinto et al., 2010) 

depending on its origin within the house and the pH of the TW, with laundry GW typically having 

the highest pH (Eriksson et al., 2002).  Irrigation with high-pH GW is likely to increase the pH of 

the soil (Ali et al., 2013), which could result in micronutrient deficiencies, consequently limiting 

plant growth (Christova-Boal et al., 1996).  The pH of the synthetic GW used in both experiments 

averaged 7.8, which was within the target range of 6.5 – 8.0 specified by Diaper et al. (2008) and 

was similar to the pH of TW (8.1 on average).  Consequently, substrate pH (measured in 

Experiment 6 with ‘model GR conditions’) was only marginally higher with GW compared to TW 

irrigation after 6 weeks (averages of 7.1 compared to 6.9 respectively; data not shown). 

6.4.2 Impacts of greywater on substrate salinity 

Accumulation of salts, particularly Na, in the substrate with GW irrigation can cause deterioration 

of the soil structure and can reduce the hydraulic conductivity of the substrate, thus making it 

difficult for plants to take up water (Al-Hamaiedeh and Bino, 2010; Rodda et al., 2011b).  

Substrate Sodium Adsorption Ratio (SAR) measured at the end of 6 weeks in Experiment 6 ranged 

from 6.3 to 7.0 for all species irrigated with GW, compared to a range of 1.7 to 2.2 for plants 

irrigated with TW, indicting significantly greater substrate salinity with GW irrigation.  The ability 

of a substrate to support plant growth is generally considered to be limited by SAR greater than 6 

(Al-Hamaiedeh and Bino, 2010), indicating potential for negative impacts on plant growth and 

functioning (e.g. their ability to take up water for transpiration) in GW-irrigated treatments in 

Experiment 6.  Substrate EC, which is another measure of substrate salinity, was also generally 

greater in GW-irrigated containers compared to those irrigated with TW in both Experiments 5 

and 6 (Section 6.3.1.2), with a trend of increasingly greater substrate EC with continued GW 

irrigation compared to TW observed for some species (e.g. Stachys in Experiment 5).  A similar 

trend has been identified in other studies (Wiel-Shafran et al., 2006; Pinto et al., 2010; Ali et al., 

2013), resulting from accumulation of salts in the substrate with continued GW application.  
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However, although substrate salinity was greater in containers irrigated with GW compared to TW 

in both Experiments 5 and 6, there was no apparent impact on the growth or health of any of the 

species (Section 6.4.3), although there was a suggestion that stomatal conductance may have 

been affected in Experiment 6 (Section 6.4.4).   

Elevated substrate salinity resulting from GW irrigation could have potential implications for plant 

health, growth and functioning, particularly after a few weeks of continuous exposure to GW.  

Alternating GW with freshwater for irrigation could prevent this accumulation of salts in the 

substrate, thus ensuring that substrate EC and SAR do not become elevated and reducing the 

potential for any negative impacts on plants; indeed, Pinto et al. (2010) reported that substrate 

EC and concentrations of P in the substrate of silverbeet irrigated with freshwater and GW 

alternately were similar to when freshwater was used solely.  Since GW is likely to be used only to 

supplement rainfall during extended periods of drought in the UK, substrate salinity would 

probably not increase and any impacts of GW would therefore be limited. 

Elevated substrate EC over time with GW irrigation was particularly evident in Experiment 6 (for 

all treatments, especially Heuchera) when the inherent EC of the substrate was lower and 

addition of nutrients with GW irrigation had a more pronounced effect.  Indeed, with these 

‘model GR conditions’, substrate EC was relatively low with both TW and GW irrigation and was 

always within the range deemed acceptable for plant growth and soil microbial activities (0 - 

1500 μS cm-1) suggested by De Clerck et al. (2003).  Conversely, with ‘industry standard GR 

conditions’ in Experiment 5, substrate ECs were mostly higher than this recommended range, and 

were particularly high at the beginning of the experiment – typically over 3000 μS cm-1.  Since 

initial substrate EC was high with all treatments and with both GW and TW irrigation, this was 

likely to be an inherent property of the MRM substrate, which could have masked any impacts of 

irrigation with GW.  Substrate EC declined rapidly in the first 3 weeks of Experiment 5 but still 

remained relatively high (1300 – 2200 μS cm-1) for the remainder of the experiment.   

This decline in substrate EC over time with both TW and GW irrigation in Experiment 5 was 

unusual, since EC has generally been found to increase over time with GW irrigation, due to the 

continued addition of salts (Al-Hamaiedeh and Bino, 2010; Pinto et al., 2010).  The observed 

decline in Experiment 5 could have been a result of salts leaching down the substrate profile and 

accumulating at the bottom of the containers, particularly as the substrate settled in the first 3 

weeks of the experiment.  Indeed, substrate EC has previously been found to decrease 

substantially over time after original preparation, probably due to leaching or uptake of salts by 

plants (Noya et al., 2017).  However, this was unfortunately beyond the reach of the WET sensor 
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probe, which only enabled measurement of the top 70 mm of the substrate, and actual ECs at the 

bottom of the containers may have been greater, especially as the irrigation regime ensured that 

no runoff was ever generated.  However, plant roots probably reached the bottom of the 2 L 

containers, particularly for species with larger root systems (Stachys and Salvia); plants could 

therefore have been exposed to high salinity throughout the whole 8 weeks of the experiment 

despite an apparent decline in substrate EC at the surface.  Other studies have also reported 

vertical leaching of salts through the soil profile, with greater EC at depth compared to the surface 

(Sharvelle et al., 2012) and a decrease in EC over time in the top 30 cm of the soil profile 

(Albalawneh et al., 2016).   

6.4.3 Impacts of greywater irrigation on plant health and growth 

Irrigation with GW could compromise plant health and growth due to accumulation and uptake of 

nutrients that may prove toxic (Christova-Boal et al., 1996; Wiel-Shafran et al., 2006) as well as its 

impacts on the substrate (Section 6.4.2), including elevated pH, EC and salinity (Gross et al., 2005; 

Finley et al., 2009), and decreased hydraulic conductivity as a result of salinity and the presence of 

surfactants (Al-Hamaiedeh and Bino, 2010; Travis et al., 2010).  Alternatively, the additional 

nutrients in GW may increase plant growth, particularly in nutrient-poor soils (Rodda et al., 

2011b).  As such, studies have reported variable effects of irrigation with GW on plants, ranging 

from improvements in plant health and growth compared to plants irrigated with freshwater 

(Misra et al., 2010; Ali et al., 2013) to reduced growth and health (Travis et al., 2010) or even 

plant death (Sawadogo et al., 2014).   

For all species tested in this study, there were no significant differences in height, diameter, 

biomass (shoot and root dry weights and leaf area) or health between plants irrigated with TW 

and those irrigated with GW, throughout the entire duration of both Experiments 5 and 6.  All 

species generally grew well (with the exception of Heuchera in Experiment 5 and Salvia in 

Experiment 6; see Sections 6.3.2.2 - 6.3.2.3) with no visible symptoms of GW toxicity and a 

general increase in biomass over the course of both experiments.  These results are in agreement 

with several other studies (Finley et al., 2009; Pinto et al., 2010; Alfiya et al., 2012) which also 

reported no difference in plant health and growth with TW or GW irrigation.  Short-term (6 – 8 

weeks) irrigation with GW thus had no apparent detrimental effect on any of the species tested in 

this study, suggesting that GW may be suitable as a sustainable water source for irrigation of 

green roofs planted with these species.  These results are only applicable for the synthetic GW 

used in the experiments, however, since the impacts of GW on plants and substrates has been 
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shown to depend strongly on the quality of the GW (Eriksson et al., 2006; Finley et al., 2009).  The 

composition and quality of real GW can vary greatly, depending on its source within the house, 

the products used in the household and the quality of the influent TW (Eriksson et al., 2002; Pinto 

et al., 2010), and so in practice the GW used to irrigate a green roof would probably vary in 

quality each time it is used.  The synthetic GW used in this study was designed to simulate 

bathroom and laundry GW; further testing of these species with GW of varying qualities (e.g. 

kitchen GW, which is generally considered to have the highest organic load; Al-Jayyousi, 2003) is 

therefore required before any definitive conclusions can be made regarding the impact of GW on 

these plants. 

Sharvelle et al. (2012) suggest that GW irrigation is required for several years before it is possible 

to confidently assess a particular species’ tolerance to GW.  In the UK, irrigation of green roofs 

planted with these species is likely to only be needed during relatively short periods of drought in 

the summertime, in order to maintain high ET rates and thus provision of ESs such as cooling and 

stormwater management (as discussed in Chapter 4).  GW application would therefore be 

infrequent and would be interspersed with natural rainfall, which is likely to prevent accumulation 

of GW constituents in the substrate (Criswell and Roesner, 2007) and related consequences (such 

as substrate hydrophobicity induced by GW irrigation; Nadav et al., 2013), thus limiting the 

impact of GW on the plants.   

The wide variety of results obtained in different studies regarding the impact of GW on plant 

growth and health is probably due to differences in the plant species tested (Sharvelle et al., 

2012), substrate type and nutrient content (Rodda et al., 2011b), the quality and composition of 

the GW used (Reichman and Wightwick, 2013), and the irrigation regime and length of exposure 

to GW (Kaboosi, 2016).  Indeed, Rodda et al. (2011b) suggested that the growth of plants irrigated 

with freshwater in their study may have been restricted by the nutrient-poor substrate, whilst 

plants irrigated with GW exhibited greater growth due to the additional input of nutrients from 

the GW.   

Although the VC mix substrate used in the ‘model GR conditions’ in Experiment 6 had inherently 

low nutrient content, plants of all species (except Salvia; see Section 6.3.2.2) grew well when 

irrigated with both TW and GW, and there was no indication that the growth of TW-irrigated 

plants was restricted.  However, B, P and Na accumulated in the substrate to significantly higher 

concentrations with GW irrigation compared to TW, with P concentrations at least double, Na at 

least 3 times higher, and B 10 times greater in substrate irrigated with GW compared to TW, with 

all species.  Accumulation of nutrients in the substrate with GW irrigation has frequently been 
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reported in other studies (Wiel-Shafran et al., 2006; Pinto et al., 2010; Rodda et al., 2011b) and 

could either offer an advantage to plants and improve growth or have detrimental impacts on the 

substrate and restrict plant growth and health (Kaboosi, 2016).  In Experiment 6, neither effect 

was evident, despite the significantly greater concentrations of P, B or Na frequently taken up into 

the roots or shoots of plants irrigated with GW compared to TW (Section 6.3.2.1).  This was similar 

to results of another study (Simmons et al., 2010) and could have been due to the relatively short 

duration of the study (6 weeks); GW-irrigated plants may have exhibited greater growth and 

health if the nutrient content of the VC mix had been depleted over a longer period.  Conversely, 

other studies have found that increased uptake of nutrients with GW irrigation compared to TW 

resulted in significantly higher plant growth and biomass (Rodda et al., 2011b) or leaf area (Misra 

et al., 2010). 

In contrast, with the ‘industry standard GR conditions’ in Experiment 5, differences in nutrient 

concentrations in the substrate between TW and GW treatments were small, resulting from the 

inherently high nutrient content of the MRM substrate, which masked the effects of GW.  In these 

conditions of high nutrient availability, the additional input of nutrients with GW was negligible, 

probably limiting any impacts on GW relating to nutrient accumulation and toxicity.  This was also 

apparent in plant uptake of nutrients, with similar concentrations of P and B in both roots and 

shoots of TW and GW-irrigated plants of all species in Experiment 5 (data not shown).  Al-

Hamaiedeh and Bino (2010) similarly reported no difference in the nutrient content in plant 

tissues with either TW or GW irrigation. 

6.4.4 Impacts of greywater irrigation on plant functioning and continued provision of 

ecosystem services 

Constituents of GW that impact the substrate, and consequently plant health and growth, may 

also impact plant functioning (e.g. transpiration).  As such, the provision of ESs which depend on 

high transpiration rates, such as cooling (Blanuša et al., 2013; Vaz Monteiro et al., 2017) and 

stormwater management (through restoration of substrate retention capacity between storms; 

Ouldboukhitine et al., 2014; Chapters 3 and 4), therefore may also be compromised by irrigation 

with GW.  However, very few studies have investigated the effects of GW on plant functioning, 

and any consequent impacts on ESs provision have not been fully addressed. 

In this study, leaf stomatal conductance (gs) was measured as an indicator of plant functioning 

over the course of both experiments.  Stomatal conductance was relatively low for all species 

throughout Experiment 5 compared to previously published values for well-watered plants (e.g. 
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Stachys > 200 mmol m-2 s-1 and Sedum > 50 mmol m-2 s-1; Blanuša et al., 2013).  This was likely to 

be a result of low substrate moisture content (SMC) experienced through the majority of the 

experiment with all treatments (data not shown) due to the regulated deficit irrigation regime 

employed, which probably resulted in stomatal closure and reduced transpiration with both TW 

and GW irrigation.  Generally, there were no significant differences in gs between TW and GW 

treatments for any of the species throughout both experiments, suggesting that plant functioning 

was not compromised by short-term irrigation with GW. Additionally, since previous research 

with these broadleaf species (Heuchera, Salvia and Stachys) has indicated that gs is strongly linked 

to plant transpiration and that high gs is a key trait for providing cooling (Vaz Monteiro et al., 

2017), results of both experiments suggest that the extent of the cooling service provided would 

also not have been compromised.   

The canopy temperatures of each species were also not significantly different with TW or GW 

irrigation in either experiment (measured once at the end of Experiment 5 and fortnightly 

throughout Experiment 6).  Leaf temperatures increase when stomata close and transpiration is 

suppressed (e.g. in response to low SMC; Blanuša et al., 2013), and are therefore an important 

indicator of the extent of cooling provision.  Leaf temperatures did not increase with GW 

irrigation for any species for the duration of either experiment, further indicating that 

transpiration was not suppressed in the 6 – 8 week period and the cooling provision probably 

would not have been reduced with short-term GW irrigation.   

Very few studies have directly examined the effect of GW irrigation on plant transpiration, and 

results vary depending on GW quality and plant species.  For example, Eriksson et al. (2006) 

investigated the impact of seven GW samples (of different origin within the house and thus 

differing quality) on the transpiration of willow.  They found that transpiration was similar to 

controls with two of the GW samples, and was enhanced by up to 200% with four of the GW 

samples, although this may have been partly due to improved plant growth.  However, 

transpiration was inhibited by up to 60% with the two GW samples originating from the kitchen 

and the laundry, which was attributed to the high EC and high pH of the samples (Eriksson et al., 

2006).  Indeed, kitchen GW is frequently acknowledged to be more polluted than GW from 

showers and washbasins (Al-Jayyousi, 2003), for example with higher concentrations of oil and 

grease (Travis et al., 2008), whilst laundry GW is also known to contain high concentrations of 

surfactants, salts, suspended solids and typically has the highest pH (Eriksson et al., 2002; Misra 

and Sivongxay, 2009).  Ouldboukhitine et al. (2014) also attributed a reduction in the thermal 
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resistance of green roof modules irrigated with GW to reduced ET due to accumulation of salts 

and surfactants in the substrate.   

In Experiments 5 and 6, however, it was noted that the SMCs of all GW-irrigated containers were 

higher than SMCs of TW-irrigated containers by the end of both experiments (data not shown), 

despite starting at similar values and receiving identical volumes for irrigation; for example, in 

Experiment 5 the SMC of TW-irrigated Stachys was 58% lower than GW-irrigated plants at the end 

of week 8.  Since there were no significant differences in plant sizes between TW and GW 

treatments for any species in either experiment, this could indicate reduced water uptake (i.e.ET) 

from GW-irrigated containers (both planted and controls), thus depleting substrate moisture 

more slowly.  

Significant differences were evident when daily ET from each container following saturation was 

measured in week 7 of Experiment 6, with significantly lower cumulative ET losses from 

containers irrigated with GW compared to TW for Heuchera, Salvia and the control.  Since there 

were no significant differences in plant size (height, diameter, biomass or leaf area) between TW 

and GW treatments for any species, differences in ET are likely an impact of the GW irrigation.  

This also corresponds with the significantly lower gs measured for Heuchera irrigated with GW 

compared to TW in Week 6 (discussed further below).  As this part of the experiment followed 

immediately after the 6 previous weeks of irrigation with GW, some differences were already 

becoming evident at the start of week 7 which could have affected plant functioning, such as 

higher substrate EC and nutrient content in containers irrigated with GW compared to TW.   

Although there is a suggestion that provision of ESs dependent on ET may begin to be reduced 

after 6 weeks of GW irrigation for some species, these results, coupled with the canopy 

temperature results over the 6-week period, suggest that impacts are initially small or may take 

longer to become apparent.  It is possible that these impacts could be mitigated, however, by 

alternating GW with freshwater for irrigation (Pinto et al., 2010), although this would need to be 

fully tested for confirmation.  Ouldboukhitine et al. (2014) also found species differences in 

response to GW, with a 32% reduction in thermal resistance with periwinkle compared to a 28% 

reduction with ryegrass; the greater impact of GW on periwinkle was also visually evident, as 

plants irrigated with GW showed poor visual health compared to those irrigated with TW.  

Irrigation with GW has been shown to reduce the hydraulic conductivity of substrates compared 

to freshwater irrigation (e.g. by up to 95 %; Misra and Sivongxay, 2009), probably as a result of 

accumulation of surfactants and salts, and consequent deterioration of the soil structure.  
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Substrate salinity (EC and SAR) was significantly higher in containers irrigated with GW compared 

to TW by week 6 of Experiment 6 for all species/control, suggesting a likely reduction in substrate 

hydraulic conductivity.  This could have made it difficult for plants to take up water (Rodda et al., 

2011b), which could thus account for the lower ET rates observed in GW-irrigated containers in 

Experiment 6.  ET was also significantly lower from control containers irrigated with GW 

compared to TW, suggesting a lower hydraulic conductivity resulting from GW irrigation also 

decreased evaporation from the substrate as well as plant transpiration.  The volumes of water 

lost from control containers each day were relatively small, and consequently any impacts of GW 

may have taken longer to become apparent. 

Additionally, although gs of Heuchera increased over the course of Experiment 6 for both TW and 

GW treatments, concurrently with an improvement in visual health as plants recovered from 

possible transplant shock, gs was significantly lower in the GW treatment than in the TW 

treatment at the end of week 6.  This suggests that GW may have been starting to have an impact 

on Heuchera plants after 6 weeks of continuous exposure to GW; lower ET from GW-irrigated 

containers during week 7 would also appear to support this indication.  Indeed, substrate EC of 

GW-irrigated Heuchera became increasingly greater than TW-irrigated Heuchera over the 6 weeks 

of the experiment, and was 38% higher by week 6.   ET from GW-irrigated Salvia became 

significantly lower than those irrigated with TW only towards the end of the week (from 96 hours 

after saturation onwards), when SMC was low (approaching 0.200 m3 m-3 for both TW and GW 

treatments; data not shown).  Salvia gs declined from about week 4 onwards, concurrently with a 

decline in visual health, and particularly in week 6 when gs was only 54 or 61% of baseline value 

(for TW and GW treatments respectively).  However, this decline was similar for both TW and GW 

treatments, and gs was still statistically similar for both treatments at the end of week 6, which 

may account for the similar ET in the first few days of week 7.  gs presumably decreased in the 

GW-irrigated plants as the substrate dried out, however, thus resulting in significantly lower ET in 

GW-irrigated plants compared to those irrigated with TW.   

Since transpiration is the main contributor to cooling provided by Salvia and Heuchera (Vaz 

Monteiro et al., 2016a; 2017), this suggests that cooling provision is likely to be compromised by 

GW irrigation – after 6 weeks of continuous exposure to GW for Heuchera, but only when the 

substrate became dry for Salvia.  Moreover, reduced ET in these species resulting from GW 

irrigation would slow the rate of restoration of substrate retention capacity between storms, thus 

reducing their ability to provide stormwater management.  These negative impacts of GW could 

potentially be counteracted by alternating GW with freshwater (e.g. rainfall) for irrigation by 
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preventing accumulation of GW constituents in the substrate (Criswell and Roesner, 2007), thus 

limiting any negative impacts on the substrate and plants (Pinto et al., 2010).  In the temperate 

climate of the UK, GW may only need to be used to supplement rainfall during extended periods 

of drought, as it is likely that rainfall throughout the summer will occur regularly; indeed, in their 

study, Dunnett and Nolan (2004) reported a positive improvement to plant performance on a 

semi-extensive green roof with only 6 irrigation events over the entire summer season to 

supplement natural rainfall.  Using GW only to supplement rainfall may enable these species to 

continue functioning, and thus providing ESs, to a similar extent to those irrigated exclusively with 

freshwater.  Additionally, more frequent irrigation of Salvia may have ensured continuation of 

plant functioning, by maintaining high SMC, gs and ET rates. 

For Stachys, and for Sedum for almost the whole of week 7, ET losses from containers in both the 

TW and GW treatments were similar.  This corresponds to the similar gs of both TW and GW-

irrigated plants and agrees with the findings of other studies (Misra et al., 2010; Pinto et al., 2010) 

which reported no differences in the water consumption of tomato or silver beet respectively 

over the course of their studies when irrigated with GW compared to TW.  These authors 

attributed these results to high tolerance to GW of the studied species and the short-term nature 

of both experiments (9 weeks and 60 days respectively).  Conversely, Sharvelle et al. (2012) 

observed greater water uptake by plants irrigated with GW than by plants irrigated with TW, 

although they hypothesised that greater plant growth with GW irrigation could account for this.  

Since transpiration has proven to be the primary mechanism through which cooling is provided by 

Stachys plants, and gs is strongly linked to transpiration (Blanuša et al., 2013; Vaz Monteiro et al., 

2017), results indicate that the cooling that could be provided by Stachys was not compromised 

by irrigation with GW.  Furthermore, since ET was not reduced in Stachys or Sedum plants 

irrigated with GW compared to TW in Experiment 6, restoration of substrate retention capacity in 

dry periods would probably continue at the same rate when GW is used for irrigation, and 

provision of stormwater management would therefore not be compromised.   

The saturated SMCs of all species and the control at the start of week 7 in Experiment 6 were 

lower in the GW treatment compared to the TW treatment, significantly so for Heuchera and the 

control.  This could potentially indicate that the substrate’s water retention capacity may have 

been reduced by the previous 6 weeks of GW irrigation, probably due to changes to the substrate 

structure and quality, and accumulation of GW constituents such as surfactants and oil (Kaboosi, 

2016).  Since the substrate is known to be the major store of water in rainfall events (VanWoert et 
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al., 2005), this potential reduction in available storage could negatively affect stormwater 

management provision and result in greater runoff production. 

6.4.5 Impacts of greywater on green roof runoff quality 

Runoff from green roofs has frequently been found to be of higher quality (e.g. lower nutrient 

concentrations, more neutral pH) than runoff from conventional rooftops (Teemusk and Mander, 

2007) and some aspects of runoff quality may also be improved compared to rainfall (Speak et al., 

2014) resulting from the role of the green roof in filtering and storing some nutrients and 

constituents.  However, green roofs are also known to be a source of some nutrients, such as P, 

resulting in leaching and consequently high concentrations in runoff (Dietz and Clausen, 2005; 

Van Seters et al., 2009), particularly on newly established roofs (Berndtsson et al., 2006); this can 

have negative environmental impacts for receiving water bodies, such as eutrophication  

(Christova-Boal et al., 1996).  The quality of runoff from green roofs varies depending on several 

factors, including the substrate type and use of fertilisers, plant species used (if any), the age of 

the green roof, and proximity to pollution sources (Berndtsson et al., 2006; Van Seters et al., 

2009; Zhang et al., 2015).   Leaching of all nutrients (P and B) was clearly observed in Experiment 5 

with both TW and GW irrigation, with significantly higher concentrations of nutrients and 

significantly higher EC in the runoff from all species/control compared to the original TW or GW 

used for irrigation (apart from P in GW treatments).  This was likely to be a result of the inherently 

high nutrient content of the MRM substrate used for the ‘industry standard GR conditions’ in 

Experiment 5.  Indeed, substrate is considered to the primary source of P leaching from green 

roofs, particularly when it contains compost or fertilisers are added (Berndtsson et al., 2009).  

However, leaching was also observed from the nutrient-poor VC mix substrate used for the 

‘model GR conditions’ in Experiment 6, possibly due to the higher organic matter content of the 

peat-based compost.    

Studies have also found that nutrient concentrations in runoff from green roofs tend to be greater 

following heavier rainfall (Teemusk and Mander, 2007) and at the onset of rainfall (due to the 

‘first flush’ effect), as the nutrients accumulate in the substrate during dry periods (Berndtsson et 

al., 2006; Razzaghmanesh et al., 2014).  In Experiments 5 and 6, irrigation volumes were 

calculated to prevent leaching from any of the containers until they were flushed at the end of 

both experiments; nutrients were therefore able to accumulate in the substrate, particularly with 

the higher nutrient input with GW irrigation, which may have resulted in high concentrations of P, 

B and Na in the first flush of runoff generated.  Indeed, runoff from GW-irrigated treatments 
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generally contained significantly higher concentrations of all nutrients and had significantly higher 

EC than runoff from TW-irrigated treatments for all species/control in both experiments; this was 

similar to results of other studies (Alfiya et al., 2012; Sharvelle et al., 2012), and reflects the 

significantly different quality of the irrigation GW and TW (Section 6.4.1).  Additionally, containers 

in the GW treatments in both experiments were flushed with GW in order to generate runoff, 

probably resulting in higher concentrations of nutrients in the runoff than if TW had been used for 

flushing.  However, since GW is only likely to be used for green roof irrigation to supplement 

rainfall during times of drought in the UK, GW constituents are unlikely to accumulate in the 

substrate and would probably be frequently flushed out by rainfall, thus preventing such high 

concentrations in the runoff. 

In terms of EC and P, B and Na concentrations, the quality of the runoff from all species/control 

was generally lower than the quality of the irrigation TW or GW in both experiments as containers 

mostly acted as a source for nutrients, probably as a result of nutrient accumulation in the 

substrate over the 6 – 8 weeks of the experiments and leaching from the substrate.  However, B 

concentrations in the irrigation GW in Experiment 6 were reduced significantly in the runoff from 

all species/control, indicating an improvement in runoff quality compared to the irrigation GW, 

probably resulting from the very low B content in the VC mix and the relatively high concentration 

of B in the synthetic GW used in Experiment 6.  In another study, B concentrations in runoff from 

GW-irrigated treatments (both bare substrate and vegetated) were always lower than the B 

content applied through the irrigation GW (Sharvelle et al., 2012); however, in that study B 

concentrations in the runoff were observed to increase over the 13-month experiment as B 

accumulated in the soil.  This may result from the fact that B has a high affinity for the soils, which 

can cause a lag in the time taken for B concentrations to increase in the soil water, since B may 

primarily adsorb to soil particles initially (Grattan et al., 2015).  In Experiment 6, runoff was 

collected from containers after only 6 weeks of GW irrigation; B concentrations in the runoff may 

therefore have increased after a longer time as soil water B increased.  

6.4.5.1 Impact of plant presence and species selection on runoff quality 

Although substrate alone may be able to improve the quality of runoff compared to irrigation 

waters (e.g. by reducing nutrient concentrations, pH, EC and SAR of runoff compared to irrigation 

GW; Misra and Sivongxay, 2009), plant presence on a green roof may enhance this service and 

further improve the quality of the runoff (Gagnon et al., 2012; Whittinghill et al., 2016), through 

additional uptake and storage of nutrients in plant tissue and additional filtration provided by the 
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plant root system (Fowdar et al., 2017).  Indeed, runoff EC and concentrations of nutrients in the 

runoff from planted treatments in the TW treatments of Experiments 5 and 6 were frequently 

lower than in runoff from the bare substrate control, indicating an improvement in runoff quality 

with plants.  This is similar to results of previous studies, which found that runoff from planted 

treatments had significantly lower concentrations of nutrients such as N and P than runoff from 

bare substrate (Sharvelle et al., 2012; Vijayaraghavan et al., 2012).  When GW was used for 

irrigation, however, plant presence made very little difference to nutrient concentrations in the 

runoff from any species compared to the bare substrate control, suggesting that vegetated green 

roofs are not able to improve runoff quality any more than bare substrate when GW is used 

exclusively for irrigation.  This probably also applies when substrates are nutrient-rich and plants 

are typically smaller on newly established green roofs or when fertilisers are added (Köhler, 2002; 

Berndtsson et al., 2006; Emilsson et al., 2007).   

In Experiment 6, however, each species/control received different quantities of nutrients with 

both TW and GW irrigation as a result of the ET-based irrigation regime (see Section 2.7.2 - 2.7.3), 

making it difficult to compare the effect of different species on runoff quality.  Over the 6 weeks 

of the experiment, control containers received approximately 56% of the total nutrients that 

Salvia, Stachys and Sedum received, and 68% of the total nutrients received by Heuchera, with 

both TW and GW irrigation.  Despite this lower nutrient input, runoff from TW-irrigated control 

containers had significantly higher EC than all species and significantly higher P concentrations 

than Salvia, Stachys and Sedum, indicating that the presence of these species improved runoff 

quality.  Furthermore, the EC and P content of runoff from Stachys were significantly lower than 

runoff from the control even with GW irrigation.  This suggests that on more mature green roofs, 

when the substrate would tend to contain lower concentrations of nutrients, the choice of plant 

species could have an impact on runoff quality and appropriate selection of species could 

therefore maximise the ability of a green roof to improve runoff quality.  Conversely, the 

concentration of Na in runoff from the control was significantly lower than Na concentrations in 

the runoff from Salvia and Sedum with TW irrigation and runoff from all species with GW 

irrigation, probably resulting from the higher nutrient content received by the planted treatments 

compared to the control.  In practice, on green roofs in the UK, species with high ET rates, such as 

Stachys and Salvia, are likely to require more frequent irrigation or larger irrigation volumes, and 

so these species will receive higher quantities of nutrients when GW is used for irrigation.  It is 

interesting, therefore, that there was some evidence that runoff from Stachys was of higher 

quality than runoff from bare substrate with both TW and GW irrigation, even though Stachys 
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received almost double the total amount of nutrients than control over the 6 weeks of the 

experiment.  

Plant species selection has proven to be important in terms of nutrient uptake efficiency (Fowdar 

et al., 2017), and consequently, differences in the quality of runoff (e.g. P and N concentrations) 

from different species have also been identified in previous studies (Sharvelle et al., 2012; Aloisio 

et al., 2016).  There was some evidence of species differences in runoff quality in Experiments 5 

and 6, with runoff from Sedum having significantly higher concentrations of P and B and higher EC 

than Salvia and Stachys, despite receiving the same quantity of nutrients over the 6 weeks of 

Experiment 6 with GW irrigation.  Additionally, although fewer differences between species were 

apparent with TW irrigation, runoff from Stachys had significantly lower Na content than runoff 

from Salvia and Sedum, and significantly lower EC than runoff from Salvia.  Under the ‘model GR 

conditions’ of Experiment 6, runoff from Stachys therefore appeared to be of better quality than 

runoff from other species or bare substrate, in terms of nutrient concentrations and EC.  

6.5 Key conclusions 

• Short term (6 – 8 weeks) irrigation with greywater had no apparent impact on the health 

and growth of any of the plant species tested, suggesting that greywater may be a 

suitable alternative water source for supplemental irrigation of green roofs in the UK 

during periods of drought in the summer. 

• GW generally did not appear to affect plant functioning (measured by leaf stomatal 

conductance) or canopy temperatures of any of the species over the 6 or 8-week period, 

suggesting that the provision of ESs such as cooling and stormwater management were 

not compromised.  However, Heuchera gs was significantly lower in week 6 of Experiment 

6 with GW irrigation, which may indicate negative effects of GW after 6 weeks of 

continual exposure. 

• There was some evidence that 6 weeks of GW irrigation in Experiment 6 may have altered 

substrate properties such as hydraulic conductivity and water retention capacity to the 

extent that there were significant differences in ET between TW and GW treatments for 

Heuchera, Salvia and the control after 6 weeks of GW irrigation.  Provision of ESs that rely 

on high transpiration rates (i.e. cooling and restoration of substrate retention capacity) 

were likely to be compromised for these species beyond the 6-week period of continuous 

GW irrigation. 
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• Salvia, Stachys and Sedum appeared to improve the quality of runoff (in terms of lower 

nutrient concentrations and EC) compared to runoff from the bare substrate control, but 

only when TW was used for irrigation.  Runoff quality was generally not improved by plant 

presence, however, when GW was used exclusively for irrigation for 8 and 6 weeks in 

Experiments 5 and 6, although there was some evidence that runoff from Stachys was of 

better quality than runoff from the control (in terms of EC and P concentrations only) in 

Experiment 6.  There was evidence that appropriate species selection could maximise the 

ability of a green roof to improve runoff quality when the nutrient content of the 

substrate is low, as on an older, mature roof.  

• There was little evidence of an improvement in the quality of runoff compared to the 

quality of the irrigation TW or GW in either experiment, with only B concentrations in GW 

treatments in Experiment 6 significantly lower in runoff than in the irrigation GW.  

Otherwise, both the MRM and VC mix substrates were a source of nutrients, resulting in 

leaching and higher concentrations of nutrients and higher EC in the runoff from all 

species/control compared to the irrigation TW or GW.  

 

 

 

 

 



 Chapter 7 

190 
 

Chapter 7  

General discussion and concluding remarks 

7.1 Can provision of stormwater management on a green roof be maximised by 

appropriate plant species selection? 

Previous studies have shown that urban surface flooding and combined sewer overflows could be 

mitigated by introducing vegetation into urban areas, including green roofs (e.g. Dunnett et al., 

2008; MacIvor and Lundholm, 2011; Stovin et al., 2012; Heim et al., 2017), as discussed in Section 

1.2.1.  This is due to the increased interception, infiltration and storage of rainfall in the substrate 

and vegetation layers of green roofs, resulting in delayed and reduced volumes of runoff, as well 

as the return of water back to the atmosphere through increased evapotranspiration (ET) during 

dry periods; factors influencing stormwater management are summarised in Figure 7.1. 
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Figure 7.1: Major factors influencing the stormwater management provision of a green roof; 

variables highlighted in red were investigated in this study. 
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However, although some studies have broadly identified differences between plant types in 

stormwater management performance on green roofs (e.g. Lundholm et al., 2010; Nagase and 

Dunnett, 2012; Soulis et al., 2017), the majority of studies focus on grasses or Sedum as typical 

vegetation covers, even though succulents are widely acknowledged to have low ET rates that 

may limit their ability to provide a good stormwater management service.  Furthermore, very few 

studies have attempted to identify the plant attributes that could allow maximum stormwater 

management provision on an extensive or semi-extensive green roof.  The focus of this study was 

therefore to compare species with different underlying structure and function and identify the 

key plant characteristics for maximising rainfall retention on a green roof and thus reducing runoff 

and mitigating the risk of urban flooding.  This information could allow green roof and landscape 

professionals to select vegetation with these desirable attributes in order to maximise the 

provision of ecosystem services (ESs) such as stormwater management.  Results of this study 

therefore have important implications for green roof design and management, and, more broadly, 

could also be applied to help vegetation selection for a wider range of green infrastructure, such 

as rain gardens, parks, gardens and allotments. 

7.1.1 How do the studied species compare in their ability to provide stormwater 

management? 

In this study, significant differences in rainfall retention and runoff reduction were observed 

between species, resulting from differences in both canopy attributes and inherent ET rates.  

Overall, species with high ET rates (Salvia and Stachys) exhibited the greatest potential for 

stormwater management provision, due to greater restoration of the substrate’s water retention 

capacity in dry periods.  However, canopy characteristics were also an important factor, 

particularly when antecedent substrate moisture content (SMC) was high and canopy interception 

became dominant, with species with large, dense canopies (e.g. Sedum) performing best. 

The substrate has frequently been acknowledged as the major store of water on a green roof 

(VanWoert et al., 2005; Dunnett et al., 2008), and so the ability of plants to remove water from 

the substrate between storms through ET, thus increasing the available storage capacity in the 

substrate for subsequent rainfall events, is often viewed as the most important role played by 

vegetation (Stovin et al., 2015).  Indeed, in this study, a much higher proportion of rainfall was 

retained by all species and the unvegetated control after a 72-hour antecedent dry period 

compared to when the substrate was saturated at the onset of rainfall (e.g. 73% in ‘unsaturated’ 

conditions compared to 13% in ‘saturated’ conditions with Stachys in Experiment 3); 
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consequently, runoff from all species/control was substantially lower from the rainfall event 

following a 72-hour antecedent dry period.   

ET during the 72-hour antecedent dry period was strongly linked to rainfall retention, and thus 

runoff reduction, in the subsequent rainfall application (adjusted R2 values of 0.94 and 0.91 

respectively; P < 0.001), and significant species differences were also evident: species with high ET 

rates (i.e. broadleaf species) took up more water from the substrate than Sedum, resulting in 

lower antecedent SMCs and thus retention of a greater proportion of rainfall (e.g. 73% retention 

with Stachys compared to 49% with Sedum in Experiment 3).  In this respect, species with 

inherently high ET rates clearly have an advantage over those with low ET rates, as they are able 

to restore the substrate’s water retention capacity to a greater extent and thus retain more water 

in subsequent rainfall events.  The low ET rate of Sedum, conversely, limited its ability to retain 

rainfall in ‘unsaturated’ conditions, despite having high canopy capture in ‘saturated’ conditions, 

thus limiting its overall potential to provide stormwater management on a green roof.  Results of 

this study therefore suggest that the provision of stormwater management on a green roof could 

be maximised by using species with high ET rates, such as Stachys and Salvia. 

Canopy traits, such as structure, density and substrate coverage, were also important for rainfall 

retention in ‘saturated’ conditions, with significant differences between species evident.  

Interception of rainfall by the canopy was high with Sedum (up to 17% of the total rainfall), and 

was in fact greater than all other species or bare, unvegetated substrate in Experiment 3.  Further 

analysis of results revealed that leaf area density and shoot dry weight were significant factors in 

determining retention on the canopy, whereas plant height was not correlated with retention.  

The low-growing, dense Sedum canopy therefore exhibited these traits as well as having full 

substrate coverage, thus resulting in high retention and lower runoff volumes and indicating that 

Sedum can still offer some stormwater management on a green roof, despite its low ET rate.  This 

is particularly the case when antecedent SMC is high at the onset of rainfall, for example when 

rainfall events occur close together or in cool, humid conditions when ET, and thus restoration of 

substrate retention capacity between storms, is restricted with all vegetation types.  Furthermore, 

all species, including Sedum, retained more rainfall and reduced runoff more than bare, 

unvegetated substrate in both ‘saturated’ and ‘unsaturated’ conditions (up to 52% more retention 

in ‘unsaturated’ conditions in Experiment 3).  This resulted from the additional canopy capture 

and enhanced ET in dry periods increasing available substrate storage, thus highlighting and 

confirming the advantage of any vegetation on a green roof over and above substrate alone 

(Voyde et al., 2010a; Stovin et al., 2015). 
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Additionally, plants with hairy leaves and open canopies (Stachys and Salvia) retained a greater 

volume of water than canopies with smooth leaves and closed canopies (Heuchera).  Indeed, the 

closed structure of the Heuchera canopy prevented rainfall from penetrating down to the lower 

layers whilst the smooth leaves were unable to retain water droplets, particularly when they 

coalesced and became large.  Consequently, these leaf and canopy characteristics resulted in an 

average of 18% of the total applied rainfall dripping from the Heuchera canopy in Experiment 1, 

compared to averages of just 2.2, 3.6 and 3.7% for Salvia, Stachys and Sedum respectively .  On a 

green roof, runoff may not be delayed or reduced if a large volume of water slides from the 

canopy onto adjacent surfaces, particularly where conventional roofing materials may be present, 

such as around the edge of the vegetated area (Speak et al., 2013).  The ‘edge effect’ in this study, 

however, was likely to have been exaggerated by the small size of the plots used in Experiment 1, 

and so the proportion of rainfall ‘lost due to dripping’ from the Heuchera canopy would probably 

be lower on a full size green roof.   

Although the retention performance and ET rate of Heuchera was comparable to Stachys in 

Experiment 1, it was the worst performing species in Experiment 3 and was in fact similar to the 

bare substrate control.  This could have partly resulted from the incomplete canopy coverage 

(around 90%) or small plant size leading to overall lower ET from Heuchera plots, or could have 

been due to the age and condition of the plants used in Experiment 3.  Young, actively growing 

Heuchera plants were found to be vigorous with high ET rates, consequently providing good 

cooling, in previous studies (Vaz Monteiro et al., 2016a; 2017).  This was also observed in some of 

the experiments in this study (e.g. Experiment 1), particularly when plants had been cut back 

during the winter or split before transplanting, thus encouraging new plant growth and high ET 

rates.  However, the older plants used in Experiment 3 appeared to have slow growth and low ET 

rates (lower than Sedum), suggesting that Heuchera would need regular pruning in order to 

maintain vigorous growth, high ET rates, and continued provision of ESs such as cooling and 

stormwater management.  Heuchera is therefore probably not suited for use on a green roof 

where maintenance costs should be kept low and provision of ESs maximised. 

7.2 How do the evapotranspiration rates of these species vary with environmental 

conditions?  

As the restoration of substrate water retention capacity through ET between storms has been 

identified as the most important role of vegetation in stormwater management provision, 

environmental conditions that control ET (e.g. meteorological variables, SMC, etc.) will also 
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influence the extent of the stormwater management provision.  Indeed, previous studies have 

identified differences in rainfall retention performance of green roofs in different geographical 

locations (i.e. with different climates; Sims et al., 2016) and different seasons (Speak et al., 2013; 

Berretta et al., 2014), and a decline in daily ET as SMC decreases has been observed in laboratory 

studies (Voyde et al., 2010b; Poë et al., 2015).  However, most studies have typically tested 

Sedum species, while the performance of species with high ET rates in different weather 

conditions and with drying substrate is not fully understood.  The focus of this study was 

therefore to compare the ET rates of different species under various weather scenarios, as a 

proxy for restoration of substrate retention capacity and thus stormwater management provision, 

and to identify the optimal environmental conditions for each species in which stormwater 

management provision could be maximised. 

Species ‘rankings’, in terms of both daily and cumulative ET, were the same in all 

temperature/relative humidity (T/RH) scenarios simulated in this study: Stachys and Salvia had 

the highest ET rates in all T/RH treatments, followed by Heuchera, whilst Sedum had the lowest ET 

rate of the species tested in all T/RH treatments (approximately 50% lower than Stachys and 

Salvia after 96 hours) but was significantly higher than the bare substrate control.  These results 

indicate that ET took place at a high rate in all weather conditions with Stachys and Salvia, and 

these species would therefore be able to restore the substrate’s water retention capacity faster 

and to a greater extent than the other species in any weather conditions.  For example, daily ET 

on Day 1 in the ‘dry’ treatment was 15.2 mm for Stachys compared to 6.3 mm for Sedum, 

indicating that 8.9 mm of additional water storage capacity was available with Stachys just 24 

hours after saturation (i.e. the previous rainfall event).  Provision of stormwater management in 

any climatic region and any season could thus theoretically be maximised by using species such as 

Stachys and Salvia on a green roof, particularly when rainfall events occur relatively close 

together.  However, results also suggest that even Sedum could significantly improve stormwater 

management provision compared to bare substrate alone, which is in line with results of other 

studies (Berghage et al., 2007; Voyde et al., 2010b).  The ET rate of Heuchera was intermediate in 

all T/RH treatments in this experiment, being significantly lower than Stachys and Salvia but 

significantly higher than Sedum.  However, as discussed in Section 7.1.1, there is evidence that the 

ET rate of Heuchera may decrease as the plants age unless they are regularly pruned, and, as 

such, Heuchera is not recommended for use on green roofs. 

The daily ET rates of Salvia and Stachys declined over time after saturation in all T/RH treatments 

in this experiment, probably due to rapid depletion of substrate moisture, consequently 
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restricting further ET (e.g. Denmead and Shaw, 1962; Hsiao, 1973; Stovin et al., 2013).  In 

particular, Stachys ET rates typically declined rapidly in the first 3 days following saturation, for 

example from 15.2 to 4.2 mm day-1 from Days 1 to 3 in the ‘dry’ treatment.  Consequently, the 

daily ET rate of Stachys after this time became more similar to other species, even approaching 

that of the control by the end of the experiment (Day 4 or 5).  This suggests that the greatest 

advantage of species with very high ET rates, such as Stachys, would be in the first few days after 

rainfall (or saturation), when the substrate’s water retention capacity is restored to a significantly 

greater extent with these species compared to species with low ET rates, and before the 

substrate’s finite retention capacity has been fully restored.  Stormwater management provision 

on a green roof planted with these species would therefore be maximised when rainfall events 

occur relatively close together or supplementary irrigation is available, ensuring that substrate 

moisture does not become restricted and thus allowing ET to continue at high rates in the 

intervening dry periods.  This would also be beneficial for the continued provision of other ESs 

that depend on ET, in particular cooling.  If irrigation is not available during prolonged periods of 

drought, however, the benefits of species with high ET rates such as Stachys and Salvia may 

become less over time, as, in addition to slower restoration of substrate retention capacity, 

cooling provision would also be reduced by declining ET rates (Vaz Monteiro et al., 2017), and the 

aesthetical appeal of Stachys may be limited due to wilting in response to drought conditions. 

7.2.1 Are there optimal environmental conditions for each species in which restoration of the 

substrate’s water retention capacity through ET is maximised? 

In this study, there were significant differences in ET rates in different simulated T/RH conditions 

with all species.  ET rates were always greatest in the treatments with high vapour pressure deficit 

(VPD; i.e. dry and hot conditions) and lowest in treatments with low VPD (i.e. cool and humid 

conditions) for all species and the bare substrate control; for example, cumulative ET after 96 

hours was around 30% higher on average in high VPD compared to low VPD treatments.  This was 

expected, as the vapour pressure gradient between the leaf and the air is smaller in low VPD 

conditions, resulting in slower removal of water vapour from the leaf and thus low ET (Allen et al., 

1998).  These results therefore indicate that overall stormwater management performance would 

be greatest in dry, hot conditions (e.g. in summer or in hot, arid climatic regions) as the 

substrate’s water retention capacity would be restored to a greater extent between storms, thus 

enabling retention of a greater volume of water in subsequent rainfall events.  Conversely, cool, 

humid conditions are likely to suppress ET, thus limiting the restoration of substrate retention 

capacity and subsequent rainfall retention, as has been identified in previous studies (Stovin et al., 
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2012; Volder and Dvorak, 2014; Sims et al., 2016).  However, results of this study indicated that 

the contribution of plant transpiration to total ET was greatest in cool, humid conditions for all 

species (e.g. 72% in the ‘humid’ treatment compared to 58% in the ‘hot’ treatment for Salvia), 

probably as a result of limited evaporation from the substrate and plentiful substrate moisture in 

these conditions allowing transpiration to continue at a high rate (Voyde et al., 2010b).  The 

presence of vegetation on a green roof, compared to bare substrate, therefore appears to be of 

greater importance in cool, humid conditions for restoring the substrate’s water retention 

capacity and thus increasing stormwater management provision. 

For most species studied in this experiment, ET rates were similar in the ‘hot’ and ‘dry’ treatments 

due to the almost identical VPD in these two trials.  With Sedum, however, ET was significantly 

higher in the ‘dry’ treatment compared to the ‘hot’ treatment, possibly as a result of Sedum 

plants switching to Crassulacean Acid Metabolism (CAM) photosynthesis in response to the high 

temperatures in the ‘hot’ trial (Farrell et al., 2012), thus reducing ET rates and conserving water, 

as discussed in Section 4.4.2.  There was also some evidence that the ET rate of Salvia was greater 

in ‘dry’ conditions than in ‘hot’ conditions, although it is unclear if this was a result of larger plant 

size in the ‘dry’ trial or a physiological characteristic of Salvia that resulted in greater ET in low RH 

conditions.  These results suggest that the stormwater management service provided by Sedum, 

and possibly Salvia, could be maximised in optimal climatic conditions (i.e. low RH and moderate 

temperatures), since significantly greater ET in these conditions will maximise restoration of the 

substrate’s water retention capacity between storms.  Moreover, further analysis of results 

indicated that RH was a more important control on the ET of all species than air temperature 

(when substrate moisture was not limiting), suggesting that low RH conditions may result in 

higher ET than high temperature conditions.  

7.2.2  Can daily ET be used to help schedule green roof irrigation?  

As a result of climate change and a greater likelihood of summertime droughts in the UK, 

supplementary irrigation of all green roofs is likely to become necessary in order to maintain plant 

health (Van Mechelen et al., 2015) and provision of ESs.  Furthermore, if species with high ET 

rates are used in order to maximise provision of ESs such as stormwater management and 

cooling, irrigation will be required more frequently to maintain high ET rates and plant aesthetic 

quality.  Water resources available for irrigation of green roofs are limited, however, due to 

increasing water demand in urban areas and changing precipitation patterns, and irrigation must 

be carefully managed to avoid wasting water whilst also maintaining plant health.  Since different 
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plants have different water requirements, scheduling irrigation based on the water use (i.e. ET) of 

the specific species used on a green roof could offer a potential strategy for sustainable irrigation.  

Indeed, irrigation scheduling based on the water balance of each specific crop has traditionally 

been practiced in agriculture in order to maximise yield whilst minimising water use and costs 

(Jones, 2004).  Rather than maximising yield, the aim of supplementary irrigation on green roofs 

would be to maintain plant health, aesthetics and ESs provision, whilst also potentially broadening 

the range of species that could survive on a green roof.   

Few studies have quantified ET of green roof vegetation (typically Sedum; Voyde et al., 2010b; 

Poë et al., 2015), and there has been no attempt to use this information for the purposes of 

irrigation scheduling.  The aim of this study was therefore to explore the potential of using the 

daily ET of different species in various hypothetical weather scenarios to create a simple irrigation 

scheduling tool for green roofs.  The approach chosen was to first calculate a crop coefficient (Kc) 

for each species, which, as well as contributing to a database of Kc values for landscape plants, 

could then be used to estimate daily ET from a green roof planted with any of these species in any 

weather conditions using the FAO-56 PM model (described in Section 5.1.1).  Kc values calculated 

for Salvia and Stachys (2.98 and 2.94 respectively) in this study were roughly double those of 

Heuchera and Sedum (1.47 and 1.66 respectively), reflecting the inherently higher ET rates of 

these species as discussed in Section 7.2.  Consequently, estimated daily crop ET (ETc) was twice 

as high with Salvia or Stachys as with Heuchera or Sedum in all weather conditions in all months, 

highlighting the differences in water requirements of the different species.  The Kc value, and thus 

ETc values, obtained for Heuchera in this study are considered to be low estimates applicable to 

older plants (as discussed in Section 7.1.1); values may be higher with younger, more active plants 

with 100% substrate coverage.   

It is clear, therefore, that green roof irrigation frequency and quantity should be based on the 

specific water requirements of the particular species used, in order to avoid wasting limited water 

resources by overwatering species with low water requirements whilst also ensuring that species 

with high water requirements receive enough supplementary irrigation to maintain plant health 

and provision of ESs.  Moreover, it is also apparent that daily ETc varies substantially with different 

weather conditions, even within species; for example, with Salvia, ETc ranged from 5.33 mm day-1 

in ‘overcast calm’ conditions in June to 18.42 mm day-1 in ‘blue sky windy’ conditions in July.  This 

is a result of differences in the meteorological parameters that influence ET (i.e. solar radiation, 

wind, and air temperature and humidity; Allen et al., 1998).  Irrigation requirements of a green 

roof are thus also dependent on daily weather conditions and time of year, and this should be 
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accounted for when scheduling irrigation (e.g. by using meteorologically-based models such as 

the FAO-56 PM model), in order to optimise the timing and quantity of supplementary irrigation 

in order to maintain plant health and provision of ESs whilst also preserving limited water 

resources. 

Scheduling supplementary irrigation during dry periods using the FAO-56 PM model (Allen et al., 

1998) to estimate daily ET could provide a strategy for sustainable irrigation of green roofs, which 

incorporates both the specific species and the atmospheric parameters that influence ET without 

the need for much time or monetary inputs from green roof managers.  An example of a 

hypothetical record kept by a green roof manager, using the irrigation management reference 

table presented in Section 5.3.2 to look up estimated daily ETc from a green roof planted with 

Sedum, is presented in Table 7.1.  Following a hypothetical rainfall on 28th June which saturates 

the substrate to field capacity, the green roof manager is able to easily record the accumulated 

moisture deficit by simply observing the weather each day and looking up the associated 

estimated ETc in the table.  Irrigation would then be scheduled once the accumulated substrate 

moisture deficit reaches a pre-defined value, which would need to be determined for the green 

roof through further experimentation (as discussed in Section 5.4.3), based on the substrate type, 

depth and water-holding capacity and the deficit at which plant health or ESs are considered to 

become compromised. 

When scheduling irrigation of green roofs, it is also important to consider the balance between 

supplying water so that ET can continue at a high rate, thus maintaining plant health and 

provision of services such as cooling, whilst also ensuring that the maximum substrate water 

retention capacity is available at the onset of rainfall, thus providing maximum stormwater 

management.  It may therefore be necessary to irrigate with small quantities of water more 

frequently, to avoid saturating the substrate, thereby removing the majority of the rainfall 

retention capacity, whilst also maintaining high enough substrate moisture to allow ET, and thus 

cooling, to continue at a high rate.  Additionally, there was some indication in this study that the 

transpiration of Salvia irrigated with greywater for 6 weeks may have become compromised when 

the substrate was dry (Sections 6.3.3.3 and 6.4.4).  It may therefore be important to maintain 

relatively high substrate moisture with Salvia, and thus irrigate more frequently, if greywater is 

used for irrigation on a green roof, in order to maintain provision of ESs dependent on high ET 

rates, such as cooling. 
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Table 7.1: Example of how cumulative ET from a green roof planted with Sedum could be 

monitored using the irrigation management reference table.  The green roof manager would 

look up estimated daily crop evapotranspiration (ETc), based on simple weather observations 

and month, and schedule supplementary irrigation when the accumulated substrate moisture 

deficit reaches a pre-defined value, in order to maintain plant health and provision of ESs.  

Date  Observed weather Estimated ETc (mm) Accumulated deficit (mm) 

28th June Rain - Substrate saturated 

29th June Blue sky – calm 7.40   - 7.40 

30th June Overcast - calm 2.97 - 10.37 

1st July Blue sky – calm 7.99 - 18.36 

2nd July Sunny spells – windy 7.32 - 25.68 

3rd July Sunny spells - calm 5.87 - 31.55 

 

As discussed in Section 5.4.3, since ET is known to decline with decreasing substrate moisture 

(Voyde et al., 2010b; Stovin et al., 2013), stress factors (Ks) need to be identified for each species 

for each subsequent day of drying (based on the daily soil moisture balance measured in further 

experiments) to account for this expected decline in ET.  Furthermore, both Kc and ETc values 

derived in this study would need to be validated for larger, outdoor plots to ensure the suitability 

of their application to a full size green roof, and are therefore considered initial estimates for well-

watered conditions only in this study. 

7.3 Does irrigation with greywater impact the health and growth of any of the chosen 

species or their ability to continue providing ecosystem services? 

Use of greywater for irrigation of green roofs may represent an additional strategy for sustainable 

irrigation, helping to preserve limited water resources in urban areas whilst ensuring plant health 

and maintenance of ESs and broadening the range of potential species that could be incorporated 

on green roofs.  However, previous studies have reported contradictory results with regards to 

the impacts of greywater irrigation on plants and soils, with either positive results (e.g. increased 

plant growth and yield; Misra et al., 2010; Ali et al., 2013) or negative results (e.g. reduction in soil 

hydraulic conductivity and infiltration rates; Misra and Sivongxay, 2009; Travis et al., 2010).   

Moreover, although differences in the impacts of greywater on plant health and growth have 

been identified between different plant species (Sharvelle et al., 2012; Sawadogo et al., 2014), the 
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majority of studies have tested vegetable crop and wetland species, with few potential green roof 

species tested (e.g. Ouldboukhitine et al., 2014).  Furthermore, very few studies have investigated 

the impact of greywater irrigation on plant functioning and ability to provide ESs (Eriksson et al., 

2006; Ouldboukhitine et al., 2014), with no definitive trends apparent.  This study therefore 

aimed to evaluate the impact of short-term greywater irrigation on the health and growth of 

potential green roof species and on their ability to provide ESs, compared to plants of the same 

species irrigated with freshwater.  This information would hopefully confirm the suitability of 

greywater for sustainable supplementary irrigation of green roofs in the UK and encourage its 

use, whilst also identifying ‘tolerant’ species that have demonstrated no negative impacts of 

irrigation with greywater and maintenance of ESs. 

In this study, there were no apparent impacts, either positive or negative, on the health or growth 

of any of the tested species when irrigated exclusively with synthetic greywater for 6 – 8 weeks 

compared to plants irrigated with tap water.  These results indicate that, although the extra 

nutrients in the greywater did not enhance plant growth, greywater may be suitable for short-

term irrigation of green roofs without compromising aesthetic quality or plant size (and thus 

provision of ESs dependent on canopy size and structure such as rainfall retention, air pollution 

capture and building insulation).  Furthermore, plant functioning, as measured by leaf stomatal 

conductance (gs) and canopy temperature, was generally not affected by short-term irrigation 

with greywater.  Since both gs and leaf temperature have been linked to cooling provision in 

several species (Vaz Monteiro et al., 2016a; 2017), including those tested in this study, these 

results suggest that the extent of cooling provided by these plants would not be compromised by 

irrigation with greywater. 

With the nutrient-poor ‘model’ substrate used in Experiment 6, Heuchera gs was significantly 

reduced by week 6 with greywater irrigation compared to tap water, and ET was also significantly 

lower in greywater-irrigated treatments of Heuchera, control and Salvia in week 7.  This suggests 

that, although greywater had no apparent impacts on the gs of any species for the majority of the 

experiment, the cumulative effect of 6 weeks of continuous irrigation with greywater may have 

impacted the substrate to such an extent as to begin affecting the functioning of some species. 

Indeed, substrate salinity (measured by Sodium Adsorption Ratio (SAR) and electrical conductivity 

(EC)) was typically higher in greywater treatments, particularly towards the end of the 6-week 

experiment, which could have altered the substrate structure and properties, such as hydraulic 

conductivity, thus making it difficult for plants to take up water.  For Salvia, the reduction in ET 

only became apparent as the substrate dried (i.e. after 4 days with no irrigation), suggesting that 
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this could be avoided if irrigation (or rainfall) was provided at frequent enough intervals to 

prevent the substrate becoming dry.  Reduced gs and ET are also likely to indicate a reduction in 

cooling that could be provided by Heuchera, and possibly Salvia, after 6 weeks, as well as slower 

restoration of the substrate’s water retention capacity between storms, thus reducing overall 

stormwater management provision.  Stachys and Sedum gs, canopy temperature and ET were 

similar with both tap water and greywater irrigation throughout the study, suggesting that 

provision of ESs was not compromised by greywater irrigation, and these species may therefore 

be good choices for a green roof that will be irrigated with greywater. 

In practice, however, the irrigation regime on a green roof in the UK is likely to be quite different 

to this study, in which containers were irrigated with greywater exclusively for the length of both 

experiments (6 – 8 weeks) with no runoff ever generated from the containers, allowing greywater 

constituents to accumulate in the substrate.  Conversely, irrigation of a green roof with greywater 

would only be to supplement rainfall during periods of drought (in order to maintain plant health 

and provision of ESs, as discussed in Section 7.2.2).  Additionally, runoff would likely be generated 

by some rainfall events, thus flushing greywater constituents out of the substrate and preventing 

accumulation.  Although this could have potential consequences for the quality of runoff from 

green roofs and the pollutant load entering downstream water bodies, previous studies have 

found that alternating greywater irrigation with freshwater (or rainfall) can alleviate any potential 

impacts of greywater on the substrate (Pinto et al., 2010; Siggins et al., 2016), which could also 

minimise any impacts on plants.   

7.4 Does irrigation with greywater impact the quality of runoff compared to using tap 

water? 

Rainfall runoff from green roofs can be of higher quality than runoff from conventional rooftops 

(Teemusk and Mander, 2007), with lower concentrations of nutrients and more neutral pH, thus 

reducing impacts of urban runoff on receiving water bodies.  This results from filtering and 

storage of constituents as water passes through the substrate, as well as plant uptake where 

vegetation is present; indeed, runoff quality has frequently been found to be of significantly 

higher quality from vegetated green roofs compared to bare substrate alone (Emilsson et al., 

2007; Vijayaraghavan et al., 2012), especially once the plants have become mature and well-

established (Köhler, 2002).  However, studies have also shown that green roofs can sometimes act 

as a source of certain nutrients, such as phosphorus (P) and salts (Van Seters et al., 2009; Alfiya et 

al., 2012), resulting in runoff of lower quality than the original rainwater or irrigation waters and 
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increasing the pollutant load delivered to water bodies.  The substrate is considered to be major 

source of these nutrients (Berndtsson et al., 2009), and leaching is greater when green roofs are 

newly established or following application of fertilisers (Berndtsson et al., 2006; Emilsson et al., 

2007). 

In this study, leaching of nutrients was evident from both the ‘industry standard’ green roof 

substrate, which had an inherently high nutrient content, and from the nutrient-poor ‘model’ 

substrate, with both tap water and greywater irrigation.  Consequently, runoff from all species 

had significantly higher EC and nutrient concentrations than the influent tap water or greywater 

used for irrigation in both experiments.  Only boron (B) in the runoff from greywater-irrigated 

treatments in Experiment 6 was significantly reduced compared to the B content of the irrigation 

greywater, probably as a result of the high concentration of B in the synthetic greywater 

(0.75 mg L-1) and the inherently low B content of the nutrient-poor substrate (0.06 mg L-1).  

Although these results may suggest that these substrates were typically a source of nutrients, 

nutrients would have accumulated in the substrate over the course of the experiments since no 

runoff was ever generated, probably resulting in particularly high concentrations in the runoff 

collected at the end of the experiments.  In practice, rainfall is likely to flush nutrients out of the 

substrate of a green roof more frequently, thus preventing accumulation and high concentrations 

in the runoff.  

The additional nutrients and chemical constituents applied through greywater irrigation may limit 

the ability of a green roof to improve the quality of the runoff, potentially leading to negative 

environmental impacts and thus limiting its suitability for green roof irrigation.  Although this has 

rarely been studied, available results indicate that runoff from greywater-irrigated treatments is 

typically of lower quality than from tap water-irrigated treatments, with higher concentrations of 

nutrients and higher EC and SAR (Alfiya et al., 2012; Sharvelle et al., 2012).  In this study, EC and 

concentrations of P, B and sodium (Na) were also significantly higher in runoff from 

plants/substrate irrigated with greywater compared to tap water (P and B concentrations up to 17 

times higher, Na up to 5 times higher and EC twice as high), indicating that runoff quality was 

indeed reduced with greywater irrigation.   

As previously mentioned, the irrigation regime used in this study prevented generation of any 

runoff throughout the duration of the experiments, probably resulting in high accumulation of 

nutrients in the substrate which would have been flushed out at the end of the experiments.  

Indeed, other studies have found that nutrient concentrations in runoff are typically high at the 

onset of rainfall (the ‘first flush’ effect) as nutrients that have accumulated through dry deposition 
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in dry periods are flushed out (Berndtsson et al., 2006; Razzaghmanesh et al., 2014).  Additionally, 

greywater-irrigated containers were flushed with greywater at the end of both experiments to 

generate runoff, probably resulting in higher nutrient concentrations in the runoff than if 

containers had been flushed with tap water.  Results obtained in this study are therefore 

considered to be a high estimate of the nutrient concentrations in runoff from greywater-irrigated 

containers.  Since greywater would only be used to supplement rainfall during periods of drought 

on green roofs in the UK, nutrients would be unlikely to accumulate in the substrate to such high 

concentrations as in this study.  Indeed, previous studies have shown that alternating freshwater 

and greywater irrigation can result in similar nutrient concentrations and substrate EC as when 

freshwater is used exclusively (Pinto et al., 2010).  Furthermore, runoff is likely to be generated 

during some rainfall events, flushing any greywater constituents out of the substrate more 

frequently and thus in lower concentrations.   

7.4.1 Can species selection influence the quality of the runoff from a green roof, when 

irrigated with either tap water or greywater? 

As well as factors such as substrate type and nutrient content, maintenance practices of green 

roofs and the quality of influent irrigation waters, runoff quality may also vary with plant species 

(Sharvelle et al., 2012; Aloisio et al., 2016), since species differ in their nutrient uptake efficiency 

(Fowdar et al., 2017).  Although plant presence has frequently been found to improve runoff 

quality compared to bare substrate alone (Vijayaraghavan et al., 2012; Beecham and 

Razzaghmanesh, 2015), the impact of different plant species on runoff quality has received very 

little attention to date.   

In this study, runoff from vegetated treatments was frequently of higher quality (i.e. lower 

nutrient concentrations and EC) than runoff from bare substrate, but only when tap water was 

used for irrigation.  Indeed, with the nutrient-poor ‘model’ substrate in Experiment 6, runoff from 

tap water-irrigated Stachys, Salvia and Sedum had significantly lower EC and P content than 

runoff from the control, despite receiving almost double the nutrients through irrigation over the 

6 weeks of the experiment (see Sections 2.7.2 - 2.7.3 and 6.4.5.1).  Further species differences 

were also apparent with tap water irrigation, with runoff from Stachys having significantly lower 

Na concentrations than runoff from Sedum and Salvia and lower EC than Salvia in Experiment 6, 

and runoff from Heuchera having significantly higher EC and P and B content than runoff from all 

other species in Experiment 5.  These results suggest therefore that Stachys was able to offer the 

greatest improvement to runoff quality when tap water was used for irrigation, whilst Heuchera 
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offered the least improvement, and appropriate species selection could therefore allow runoff 

quality improvement on a green roof to be maximised. 

When irrigated with greywater, nutrient contents were generally similar in runoff from vegetated 

and unvegetated containers, indicating that plant presence had little effect on improving runoff 

quality.  However, runoff EC and P content were significantly lower in runoff from Stachys 

compared to runoff from the control in Experiment 6, even though the control received only 56% 

of the nutrients that Stachys did over the course of the experiment.  Furthermore, despite 

receiving the same quantity of nutrients through irrigation with greywater, runoff from Stachys 

and Salvia had significantly lower EC and P and B concentrations than runoff from Sedum, 

highlighting the impact of species selection on runoff quality improvement. 

High application and accumulation of nutrients in the substrate over the course of both 

experiments with greywater irrigation is likely to have made any impacts of species differences in 

terms of runoff quality improvement negligible.  These high nutrient concentrations may also be 

representative of substrate nutrient conditions on a newly-established green roof with young 

plants or after fertiliser application (Köhler, 2002; Berndtsson et al., 2006; Emilsson et al., 2007), 

suggesting that plant presence may not offer greater runoff quality improvement than bare 

substrate under these circumstances.  Conversely, the inherently low nutrient content of the 

‘model’ substrate used in Experiment 6 could reflect the conditions on a mature green roof, when 

substrate nutrient content would tend to be lower; results of this study suggest that, in these 

conditions, runoff quality improvement could be maximised by selecting species that show the 

greatest reduction of nutrient concentrations in the runoff, such as Stachys. 

7.5 Key conclusions and knowledge application 

This study contributes to the growing body of research (Nagase and Dunnett, 2012; Blanuša et al., 

2013; Cameron et al., 2014; Lundholm et al., 2014; Vaz Monteiro et al., 2016a; 2017) advocating 

the idea that, in addition to plant survival rates, species selection for green roofs, and indeed any 

form of green infrastructure, should also be based on the plants’ ability to maximise the provision 

of a range of ESs such as stormwater management, runoff quality improvement and cooling.  

Results of this study could change the perspective of urban planners and architects and enable 

them to select appropriate species for inclusion on green roofs in order to maximise the provision 

of stormwater management, thus helping to mitigate surface flooding and combined sewer 

overflows in urban areas.  Furthermore, results indicated that the ET rate of a particular species 

could be maximised in optimal weather conditions, thus adding further importance to the concept 
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of selecting appropriate plants for a specific location and purpose.  Green roof planners should 

therefore also consider the regional climate and local weather conditions experienced on the 

green roof, and where possible, plants should be used in locations where environmental 

conditions are optimal for maximum ET and thus maximum restoration of the substrate’s water 

retention capacity and cooling provision. 

Green roofs are considered to be good way of incorporating Sustainable Drainage Systems (SuDS) 

into urban areas, as they control surface water close to its source whilst also potentially improving 

water quality and providing amenity value (Stovin et al., 2013).  Plant choice for SuDS has not 

been viewed as a priority, and green roofs in the UK are typically planted with succulent species 

such as Sedum, with no irrigation systems installed.  However, with increasing urbanisation and 

climate change projections of more frequent high intensity precipitation events in the UK, highly 

polluted rooftop runoff and surface flooding are likely to become greater problems and the ability 

of green roofs to mitigate these will therefore become a more valuable and desirable service.  

Although plant presence, in general, improved the quality of runoff compared to bare substrate 

alone, differences between species in their ability to improve runoff quality were clearly identified 

in this study, with the highest quality runoff from Stachys, even when greywater was used for 

irrigation.  These results highlight the importance of plant selection on green roofs to maximise 

the ESs that can be provided, and green roof planners should therefore consider species choice in 

order to ensure that runoff is of the highest possible quality, thus minimising environmental 

impacts. 

This study clearly demonstrated that maximum stormwater management provision could be 

achieved using species with both high ET rates and large, dense canopies, and in weather 

conditions with low RH.  Canopy interception proved to be important when antecedent SMC is 

high, for example when rainfall events occur close together or in cool, humid weather when ET is 

restricted.  In these conditions, species with large, dense canopies and rough or hairy leaves are 

able to provide the greatest rainfall retention.  Nevertheless, restoration of the substrate’s water 

retention capacity during dry periods appears to be the most important role played by the 

vegetation, and species with inherently high ET rates are therefore advantageous.  However, 

these species may not be able to maintain high ET rates when substrate moisture becomes 

depleted during a prolonged period of drought, and the aesthetic quality of the plants and 

provision of additional ESs such as cooling may also become compromised.  Irrigation during 

periods of drought is therefore crucial for ensuring plant health and provision of ESs, but a 

balance must be sought between maintaining high enough substrate moisture to allow ET (and 
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thus cooling and restoration of substrate retention capacity) to continue at a high rate and 

maintaining high availability of substrate retention capacity for maximum water retention in 

subsequent rainfall events.   

Since water demand in urban areas is increasing and climate change projections indicate an 

increased likelihood of droughts and water shortages (IPCC, 2013), water for irrigation of green 

roofs may be limited, and irrigation practices must therefore be sustainable.  This study 

highlighted the substantially different water requirements of individual species, and in different 

weather conditions, lending support to the suitability of green roof irrigation scheduling based on 

daily ET.  Indeed, results indicated that species with the highest inherent ET rates (Salvia and 

Stachys) will require more frequent irrigation, whilst all species will require more frequent 

irrigation in ‘blue sky’ windy conditions in June and July.  Crop coefficients identified for the 

species used in this study could contribute towards a database of Kc values for potential green 

roof species, thus enabling ET-based irrigation scheduling for a broader range of species, and 

again, emphasise species differences, with Salvia and Stachys having Kc values twice as large as 

Heuchera and Sedum.  Using the FAO-56 PM model to estimate daily ET from a green roof could 

allow green roof managers to monitor water use and schedule irrigation at a pre-determined 

substrate moisture deficit in order to maintain plant health and the provision of ESs whilst also 

preserving limited water resources and minimising costs.  To make irrigation scheduling in this 

way easier and more accessible to green roof managers, a smartphone app could be developed 

with the FAO-56 PM model as its basis (see Section 7.6). 

Results of this study indicate that the use of greywater for supplementary irrigation of green 

roofs, interspersed with natural rainfall, could offer a suitable alternative to high quality potable 

water without having negative impacts on plant health and provision of ESs.  Stachys and Sedum 

demonstrated the greatest tolerance to greywater irrigation, with no observed impacts on plant 

health, growth or functioning, and thus, presumably, no impact on provision of ESs.  Although ET 

rates of Salvia and Heuchera appeared to be restricted after 6 weeks of greywater irrigation, in 

practice the intermittent use of greywater to supplement rainfall and frequent flushing of the 

substrate on a green roof may negate this effect and allow ET to continue at the same rate as 

when freshwater is used for irrigation.  Urban planners should therefore consider the use of 

greywater for sustainable supplemental irrigation of green roofs, or other forms of green 

infrastructure, and engineering systems to store or transport greywater produced inside a 

building up to the rooftop could be incorporated into new building design.   
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Main numerical findings from this study are summarised in Table 7.2.  This information can 

hopefully be used as a benchmark and for comparison when planners intend to introduce 

alternative potential green roof species for the purpose of increasing the roof’s stormwater 

management provision or when planning to use greywater for irrigation.  Since all experiments in 

this study were carried out in glasshouse or controlled environment settings, stormwater 

management and ET results would need to be validated outdoors on a full size green roof.  

Testing species performance on this large scale would require use of equipment such as weighing 

lysimeters, which is also likely to increase the accuracy of measurements. 

Table 7.2: Summary of plant parameters and provision of ecosystem services for species tested 

in this study.  Mean stomatal conductance (gs) is based on baseline measurements made at the 

start of Experiment 6 when substrate moisture was not restricted.  Mean daily ET in well-

watered conditions (i.e. the first 24 hours after saturation), mean canopy density (based on leaf 

and stems area) and mean rainfall retention results are from the larger canopies in Experiment 

3.  Runoff quality improvement is compared to runoff from bare substrate.  

Plant parameters and ESs 
performance 

Heuchera Salvia Stachys Sedum 
Bare 

substrate 

Mean gs (mmol m-2 s-1) 41 272 232 116 - 

Mean ET in well-watered 
conditions (mm day-1) 

2.8 4.6 4.7 3.7 2.4 

Mean canopy density  
(cm2 cm-3) 

0.23 0.44 0.47 0.53 - 

Crop coefficient 1.47 2.98 2.94 1.66 - 

Mean rainfall 
retention (%) 

‘Saturated’ 2.2 7.9 13.1 17.1 1.1 

‘Unsaturated’ 28.5 63.6 72.9 48.9 20.5 

Evidence of 
negative 

impacts of 
greywater 

Plant health 
and growth 

    - 

Plant 
functioning 

    - 

Evidence of 
some runoff 

quality 
improvement 

With TW 
irrigation 

    - 

With GW 
irrigation 

    - 
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Key conclusions and recommendations for maximising stormwater management provision and 

providing sustainable irrigation solutions that can be drawn from this study are therefore: 

• Species such as Salvia and Stachys, rather than traditionally used Sedum, possess key 

attributes for maximising stormwater management provision of green roofs (high ET 

rates, large, dense canopies with an open structure allowing water to penetrate and 

rough or hairy leaves).  High ET rates of these species were correlated with their ability to 

retain a greater volume of rainfall; 

• ET rates of all plants will generally be greater in hot and dry climates and weather 

conditions.  However, ET of some species can be maximised by placing them in locations 

with optimal environmental conditions, which will maximise that species’ contribution to 

restoration of water retention capacity.  For example, with Sedum ET is greatest in 

conditions with low RH and moderate temperatures, and its stormwater management 

provision can thus be maximised by placing it in locations with these environmental 

conditions.  It is therefore important for planners to consider the idea of using the ‘best 

plant in the best place’ in order to achieve the greatest ET possible in the local weather 

conditions; 

• Irrigation of green roofs planted with these alternative species is vital for maintaining 

plant aesthetic quality, high ET rates and provision of ESs dependent on ET including 

cooling and restoration of substrate water retention capacity.  Irrigation can be 

scheduled, using the FAO-56 PM model and irrigation management reference tables 

proposed here, according to the individual water requirements of each species and daily 

weather conditions.  

• Initial results suggest that intermittent use of greywater to supplement rainfall during 

periods of summertime drought in the UK may provide a suitable sustainable option for 

irrigation of green roofs without having any negative impacts on plant health and 

provision of ESs.  Greywater irrigation systems should therefore be considered by urban 

planners.  

7.6 Future work 

The alternative plant species for green roofs tested in this study have previously demonstrated 

good potential to provide a cooling service, and results of this study provide further information 

about the ability of these plant types to provide multiple ESs (i.e. stormwater management and 

improvement of runoff quality).  Future research should continue to build on this knowledge by 
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comparing the ability of different species to provide additional ESs, such as air pollution 

mitigation, biodiversity support etc.  Software packages, such as ‘i-Tree species’ (USDA, 2017), 

have recently been developed, allowing users to identify appropriate tree species that could be 

planted in a particular location, based on the primary objective of the tree planting (i.e. which ESs 

provision is considered most important).  Similar software could be developed for green roof 

species if enough field data were available, enabling urban planners to identify species easily that 

are both suited to their location and could maximise the provision of the ESs deemed most 

important. 

Similarly, if the database of available crop coefficients for potential green roof species were 

expanded through field data collection, a computer model or smartphone app could be 

developed, based on the FAO-56 PM model, to aid irrigation scheduling of green roofs planted 

with a wide range of species.  This app could follow the principles of the irrigation management 

reference table (presented in  Section 5.3.2), requiring minimal input from a green roof manager 

(i.e. a simple observation of the weather each day) to calculate daily ET, and notifications when 

irrigation is required in order to maintain plant health and ESs provision.  Alternatively, to further 

minimise user time demands, the app could be connected to weather forecasting and monitoring 

services to automatically calculate daily ET based on local weather data.  Furthermore, if more 

field data were collected to establish the substrate moisture deficit at which ESs provision (e.g. 

cooling) may become compromised for each species, this app could notify the user to irrigate 

before plant health or ESs provision becomes compromised.  A few smartphone apps are 

currently available allowing users to remotely control irrigation systems, with a small number 

using real-time monitoring of weather or soil moisture to adjust irrigation quantities according to 

need (e.g. Hydrawise and CropX); these systems typically do not account for different vegetation 

types, however, and require installation of sophisticated, full-scale irrigation systems or sensors 

which may be costly.   

Some recent research has begun to attempt to link ESs provision, and thus plant selection for 

green roofs, to plant physiological and functional traits (Farrell et al., 2013; Van Mechelen et al., 

2014; Lundholm et al., 2015).  With further research, it may also be possible to link plant 

tolerance to greywater irrigation and provision of additional ESs (e.g. runoff quality improvement, 

air pollution capture) to key plant attributes, thus allowing assessment of the potential 

performance of new species based on their possession of these attributes without the need to 

test every species individually.  In addition to testing a wider range of species with varying 

attributes in order to identify any plant traits that may be linked to tolerance to greywater 
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irrigation, the effect of alternating freshwater and greywater irrigation on plants, substrates and 

runoff quality should be verified, since it has previously been suggested that this technique can 

prevent accumulation of greywater constituents (e.g. salts) in the substrate (Pinto et al., 2010).  It 

is important to clarify if this could negate any of the negative impacts resulting from greywater 

irrigation solely that were observed in this study (i.e. reduced ET and gs in some species) to 

confirm the suitability of using greywater for supplemental irrigation of green roofs.   

Some green roof research has focussed on the advantages of incorporating a variety of species on 

a green roof instead of planting monocultures, with some evidence that, as well as improving 

aesthetics and biodiversity, plant communities may improve survival rates, surface cooling and 

stormwater management provision (Dunnett et al., 2008; Lundholm et al., 2010; Nagase and 

Dunnett, 2010).  Furthermore, Heim and Lundholm (2016) suggest that selecting plants with 

phenological complementarity can increase plant survival by reducing competitive pressures as 

well as increasing the provision of ESs.  Since different species have differing nutrient 

requirements and may take up different nutrients from the substrate, planting a mixture of 

species could also prove beneficial for improving runoff quality.  Likewise, in addition to individual 

species, the tolerance of plant communities to greywater irrigation should be investigated, since 

species may complement each other in their requirements and uptake of nutrients.  This may 

allow species that are sensitive to certain greywater constituents when planted individually to be 

incorporated on green roofs, as other species may take up these constituents or be able to 

moderate any negative substrate conditions. 

Finally, following on from the results of this study, future research could investigate how the 

environmental and economic benefits obtained by using alternative species on green roofs 

compares to the additional costs, particularly in terms of the need for an irrigation system to 

maintain these plants.  For urban planners to consider selecting alternative species for green roofs 

based on their ability to maximise ESs provision, there needs to be strong evidence that the 

environmental and economic benefits provided (i.e. improved ESs provision, building insulation, 

etc.) outweigh the additional cost and practicalities of installing and maintaining an irrigation 

system.  Furthermore, the logistics and cost of the infrastructure required to divert greywater 

produced in a building up to the rooftop when it is required for irrigation should be fully 

investigated and compared to the monetary savings and environmental benefits gained by re-

using greywater rather than freshwater for irrigation. 
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Appendix 

A.1 Manufacturer’s product information sheet for meadow Roof Medium substrate used in 

Experiments 1, 2, 4 and 5.  

 

MEADOW ROOF 
MEDIUM 
 

  

            

                

Product Overview 
       

        

Ingredients               

5-2 mm clean brick, dust-free 
       

10-0 mm green compost, PAS100 2011 
       

  
       

Recommended Uses               

Meadow roofs: established using plant mat, seed or transplants. 

Can be installed using a Blower Truck or more conventional methods. 

  
       

Key Benefits               

A well-researched medium made entirely from recycled sustainable materials. 

Gives excellent establishment & survival even under harsh/wet conditions. 

Nil slumping. 
       

Humified woody material hosts disease-suppressive fungi e.g. Trichoderma spp. 

  
       

Advice: not recommended for drought-intolerant subjects  

Always check the load-bearing properties of the roof before installation, allowing 
for heavy rainfall.  

Follow safety procedures. 
      

  

 
Footnotes: 

              

1 This should not be compared with pH of peat products (the optimal pH of peat products is much lower 
than for soil and composted materials). 

  

2 'CAT' = aqueous solution of calcium chloride + DTPA (chelating agent) - an extractant originally developed for 
soils and now specified in UK and 
European standards for composted materials (e.g. PAS100) because it is more appropriate for most nutrients 
than the water-extraction method originally developed for peat products only. 

    

      
  

For more information on all our services and products, please call 01335 300355, 
email info@vitalearth.tv or visit our website www.thegreenergardener.com 
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Purchase Options & Application Rates 
 

  
Size: 1000 L IBC's, 20 L bags, or bulk 

Application Rates: 150 L/m2 at 150mm depth  

Properties: typical values 
    

  

Load: as received 
saturated 

112 kg/m2 
 

  

Load: 151 kg/m2     

Air-Filled Porosity 10cm tension 48% v/v 

Water-Holding Capacity 10cm tension 26% v/v 

Solids 
 

  10cm tension 27%v/v 

Saturated hydraulic conductivity 0.24 cm/s 

Particle size range mm 100%m/m <10mm 

Bulk Density  g/l 750   

Moisture Content %m/m 10   

Moisture Content g/l 75   

Dry Matter (DM) g/l 675   

Organic matter 
% DM 

3.5   

Carbon: Nitrogen Ratio 13:1   

pH1   7.7   

Electrical Conductivity µS/cm 1500   

Electrical Conductivity mS/M 150   

Stability: mgCO2/g Organic matter     12   

Physical Contaminants Meets PAS100 2011 

Potentially toxic elements including heavy 
metals 

Meets PAS100 2011 

Weeds Meets PAS100 2011 

   
  

Nutrients 
    

  

As received Total CAT2 Water  % 

(fresh basis) mg/l soluble soluble Water/ 

    mg/l mg/l Total 

Nitrogen (N) 1200 NA 15 12.5 

Phosphorus (P) 474 8 0 0 

Potassium (K) NA 310 NA NA 

Calcium (Ca) NA NA NA NA 

Magnesium (Mg) NA 53 NA NA 

Iron (Fe) NA 19 NA NA 

Manganese (Mn) NA 8 NA NA 
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A.2 Chemical and physical properties of the peat-based compost used in Experiment 3 

(analysed and reported by NRM Laboratories Ltd., Bracknell, UK).  

Parameter Units Value Parameter Units Value 

pH - 5.7 Conductivity at 20º μS cm-1 555 

Density kg m-3 339 Ammonia-N mg L-1 22.8 

Dry matter % 34.2 Nitrate-N mg L-1 257.9 

Dry density kg m-3 115.9 Total soluble N mg L-1 280.7 

Chloride mg L-1 24.3 Sulphate mg L-1 370.6 

Phosphorus mg L-1 84 Boron mg L-1 0.1 

Potassium mg L-1 246.2 Copper mg L-1 0.13 

Magnesium mg L-1 163.7 Manganese mg L-1 0.29 

Calcium mg L-1 136.2 Zinc  mg L-1 0.94 

Sodium mg L-1 36.7 Iron mg L-1 1.33 

 

A.3 Chemical and physical properties of the vermiculite: peat-based compost 50:50 mixed 

substrate used in Experiment 6 (as reported by NRM Laboratories Ltd., Bracknell, UK).  

 Parameter Units Value  Parameter Units Value 

pH - 6.1 Conductivity at 20º μScm-1 382 

Density kgm-3 285 Ammonia-N mgl-1 11.9 

Dry matter % 49.7 Nitrate-N mgl-1 169.9 

Dry density kgm-3 141.6 Total soluble N mgl-1 181.8 

Chloride mgl-1 14.9 Sulphate mgl-1 256.4 

Phosphorus mgl-1 34.3 Boron mgl-1 0.06 

Potassium mgl-1 187.6 Copper mgl-1 0.17 

Magnesium mgl-1 113.3 Manganese mgl-1 0.38 

Calcium mgl-1 70.1 Zinc  mgl-1 0.52 

Sodium mgl-1 28.5 Iron mgl-1 0.9 
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