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Abstract. Changes in aerosols cause a change in net top-
of-the-atmosphere (ToA) short-wave and long-wave radia-
tive fluxes; rapid adjustments in clouds, water vapour and
temperature; and an effective radiative forcing (ERF) of the
planetary energy budget. The diverse sources of model uncer-
tainty and the computational cost of running climate models
make it difficult to isolate the main causes of aerosol ERF un-
certainty and to understand how observations can be used to
constrain it. We explore the aerosol ERF uncertainty by using
fast model emulators to generate a very large set of aerosol–
climate model variants that span the model uncertainty due
to 27 parameters related to atmospheric and aerosol pro-
cesses. Sensitivity analyses shows that the uncertainty in the
ToA flux is dominated (around 80 %) by uncertainties in the
physical atmosphere model, particularly parameters that af-
fect cloud reflectivity. However, uncertainty in the change
in ToA flux caused by aerosol emissions over the indus-
trial period (the aerosol ERF) is controlled by a combina-
tion of uncertainties in aerosol (around 60 %) and physical
atmosphere (around 40 %) parameters. Four atmospheric and
aerosol parameters account for around 80 % of the uncer-
tainty in short-wave ToA flux (mostly parameters that di-
rectly scale cloud reflectivity, cloud water content or cloud
droplet concentrations), and these parameters also account
for around 60 % of the aerosol ERF uncertainty. The common
causes of uncertainty mean that constraining the modelled
planetary brightness to tightly match satellite observations
changes the lower 95 % credible aerosol ERF value from
−2.65 to −2.37 W m−2. This suggests the strongest forcings

(below around −2.4 W m−2) are inconsistent with observa-
tions. These results show that, regardless of the fact that the
ToA flux is 2 orders of magnitude larger than the aerosol
ERF, the observed flux can constrain the uncertainty in ERF
because their values are connected by constrainable process
parameters. The key to reducing the aerosol ERF uncertainty
further will be to identify observations that can additionally
constrain individual parameter ranges and/or combined pa-
rameter effects, which can be achieved through sensitivity
analysis of perturbed parameter ensembles.

1 Introduction

Large aerosol radiative forcing uncertainty has persisted
through all Intergovernmental Panel on Climate Change as-
sessment reports since 1996 despite substantial develop-
ments in climate model complexity (Flato et al., 2013,
Sect. 9.1.3), numerous intercomparison projects (Randles
et al., 2013; Tsigaridis et al., 2014; Kim et al., 2014; Mann
et al., 2014; Pan et al., 2015; Lacagnina et al., 2015; Kipling
et al., 2016; Ghan et al., 2016; Koffi et al., 2016) and enor-
mous investments in observing systems (Khain et al., 2000;
Lacagnina et al., 2015; Seinfeld et al., 2016; Reddington
et al., 2017). Reducing aerosol forcing uncertainty has there-
fore proven to be one of the most challenging and persistent
problems in atmospheric science.

Reduction of uncertainty in aerosol effective radiative
forcing (ERF) is an important objective, not least because it
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would improve climate change projections (Andreae et al.,
2005; Myhre et al., 2013; Collins et al., 2013; Tett et al.,
2013; Seinfeld et al., 2016). An improved understanding of
the causes of uncertainty would also help to prioritise model
developments, suggest fruitful analyses across multiple mod-
els and point to potential new observations to constrain
the uncertainties. However, the task remains challenging for
multiple reasons. For example, aerosol ERF is usually quan-
tified with reference to a period pre-dating the satellite era
(usually 1850 or 1750), meaning it is not a directly observ-
able quantity. Satellite-derived observations of present-day
(PD) aerosol–cloud relationships have the potential to con-
strain the aerosol ERF uncertainty but require an improved
understanding of aerosol changes over the industrial period
(Gryspeerdt et al., 2017). Some of the ERF uncertainty might
therefore be irreducible unless pristine present-day environ-
ments are shown to be a good proxy for pre-industrial condi-
tions (Carslaw et al., 2013; Hamilton et al., 2014; Carslaw
et al., 2017). Furthermore, aerosol ERF depends on many
poorly understood interactions of aerosols with components
of the physical climate system. Important sources of un-
certainty are known to be aerosol emission fluxes (Granier
et al., 2011), representations of complex sub-grid processes
such as clouds (Haerter et al., 2009; Lohmann and Ferrachat,
2010; Guo et al., 2013; Gettleman et al., 2013; Golaz et al.,
2013; Neubauer et al., 2014; Lohmann, 2017), precipitation
responses (Tost et al., 2010; Croft et al., 2012; Michibata and
Takemura, 2015), aerosol processes (Croft et al., 2012; Tex-
tor et al., 2006, 2007; Storelvmo et al., 2009; Kasoar et al.,
2016), radiation calculations (Stier et al., 2013; Wilcox et al.,
2015) and subsequent feedbacks on atmospheric dynamics
(Booth et al., 2012; Bollasina et al., 2013; Kirtman et al.,
2013; Villarini and Vecchi, 2013; Allen et al., 2014) and sur-
face temperatures (Golaz et al., 2013).

Our intention here is to constrain aerosol ERF uncertainty
by pursuing a “bottom-up” approach that explores the under-
lying process uncertainty. This approach provides a set of ob-
servationally plausible model variants with which near-term
climate simulations could be performed. Although a lower
limit to the global mean aerosol ERF might be found us-
ing a “top-down” approach and historical temperature trends
(Stevens, 2015), inferences made about the climate system
are very sensitive to the simplifying assumptions that are
made in top-down approaches (Knutti et al., 2008; Kret-
zschmar et al., 2017). More importantly, such methods do not
provide a model with which to make improved climate pro-
jections, and they provide no information about regional vari-
ations in forcing, which are known to be important drivers of
climate variability (Chalmers et al., 2012; Dunstone et al.,
2013; Shindell et al., 2013; Kirtman et al., 2013; Bollasina
et al., 2013). Therefore, bottom-up methods that quantify
aerosol ERF using global climate models whose performance
and uncertainty are constrained by observations are required.

Multi-model studies (or model intercomparison projects,
MIPs) can provide some information about ERF uncertainty

because a set of models with different dynamical cores
and physical process parametrisations produces a range of
aerosol responses. However, such opportunistic sampling has
three main disadvantages. Firstly, inter-model comparisons
often include models with vastly different degrees of com-
plexity (Collins et al., 2013). For example, aerosol indirect
effects are not represented in many of the models included in
such studies, and this artificially inflates multi-model forcing
uncertainty (Bellucci et al., 2017). Secondly, multiple mem-
bers of an inter-model comparison will share key modules
and behaviours (Pennell and Reichler, 2010; Collins et al.,
2010; Knutti et al., 2013). This leads to compensating effects
between groups of models with shared structural errors that
cause the multi-model mean to outperform the majority of in-
dividual models across a range of climate metrics (Rougier,
2016). Thirdly, a small set of models (perhaps around 20)
cannot possibly sample the effects of dozens of interact-
ing uncertain processes in the individual models (Carslaw
et al., 2018). Therefore, inter-model comparisons do not pro-
vide statistically representative samples (Sexton et al., 2012;
Knutti et al., 2013; Collins et al., 2013), making it difficult to
draw inferences about the causes of aerosol ERF uncertainty
and the robustness of any observational constraint. Leading
experts subjectively assess the uncertainty in aerosol forcing
as being larger than that quantified by multi-model studies
(Morgan et al., 2006).

A complementary approach to exploring aerosol ERF un-
certainty in multiple models is to systematically explore the
uncertainty in underlying parameters and processes within
a single model. Much progress has been made in under-
standing the causes of uncertainty in state variables related
to aerosol ERF, such as cloud-active aerosol concentrations
(Lee et al., 2011, 2012, 2013; Samset et al., 2014; Mann
et al., 2014; Shrivastava et al., 2016; Kipling et al., 2016),
precipitation (Lebo and Feingold, 2014; Qian et al., 2015;
Johnson et al., 2015) and top-of-the-atmosphere (ToA) ra-
diative fluxes (Shiogama et al., 2012; Zhau et al., 2013; Ran-
dles et al., 2013). Furthermore, important sources of aerosol
forcing uncertainty (in the absence of rapid atmospheric ad-
justments) have been identified (Schulz et al., 2006; Haerter
et al., 2009; Lohmann and Ferrachat, 2010; Carslaw et al.,
2013; Myhre et al., 2013; Regayre et al., 2014, 2015). How-
ever, no study has comprehensively explored aerosol ERF
uncertainty in a model that accounts for rapid atmospheric
adjustments. Studies that do include rapid adjustments (e.g.
Gettleman, 2015) rely on one-at-a-time experiments (where
individual parameters or model structures are perturbed in
isolation), which do a poor job of sampling the model uncer-
tainty because they neglect important parameter interactions
(Pianosi et al., 2016).

Here we present a perturbed parameter ensemble of the
HadGEM3-GA4-UKCA global aerosol–chemistry–climate
model and use model emulation (Lee et al., 2013) to en-
able the combined effects of uncertainties in 27 aerosol,
cloud and other atmospheric model processes to be quanti-
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fied. Compared to our previous studies (Carslaw et al., 2013;
Regayre et al., 2014, 2015) we take a more holistic approach
to exploring model forcing uncertainty here by accounting
for the uncertainty in cloud and other physical atmospheric
processes, as well as the uncertainties in the aerosol com-
ponent of the model. We also explore for the first time the
uncertainty in aerosol ERF (including rapid atmospheric ad-
justments to aerosols) and in the components of ERF from
aerosol–radiation interactions (ERFARI) and aerosol–cloud
interactions (ERFACI). Other attempts to quantify the uncer-
tainty in the ToA radiative flux caused by aerosols (Tett et al.,
2013; Shiogama et al., 2012) explored only the current state
of the atmosphere and not how it changes over time.

The main questions we address in this paper are as fol-
lows. (1) How much of the uncertainty in aerosol ERF is
caused by aerosol processes and how much by physical atmo-
sphere processes? The answer is important because it will tell
us how the tuning of model processes apparently unrelated
to aerosols might inadvertently affect the aerosol ERF that
models calculate. (2) What are the processes that cause un-
certainty in the aerosol ERF, and to what extent do they also
affect the observable radiative state of the atmosphere? This
is important because aerosol ERF uncertainty will only be
effectively constrained by observations if the uncertainty in
both the ERF and the observations is driven by the same un-
certain processes (Lee et al., 2016). (3) How much does tun-
ing the radiative state of the model (i.e. ruling out implausible
model settings) affect the range of aerosol ERFs? The effect
of tuning of, for example, ToA radiative flux (Lohmann and
Ferrachat, 2010; Mauritsen et al., 2012) on the aerosol ERF
is not normally considered. However, we show that many
model variants (and parts of uncertain parameter space) can
be ruled out using ToA flux observations and that such state
variable observations can play an important part in reduc-
ing the overall uncertainty in aerosol ERF. The results from
this paper inform our more comprehensive effort to constrain
aerosol ERF uncertainty using multiple observational quan-
tities (Johnson et al., 2018).

In Sect. 2 we outline our methodology; then in Sect. 3.1
we quantify the magnitude of the uncertainty in aerosol
ERF, ERFARI and ERFACI through comprehensive sampling
of model parameter uncertainty. We then analyse the main
causes of uncertainty in aerosol ERF over multi-century and
multi-decadal periods in Sect. 3.2 and the causes of ToA ra-
diative flux uncertainty in Sect. 3.3 using sensitivity anal-
ysis techniques (Sect. 2). We also quantify the relative im-
portance of atmospheric and aerosol parameters as sources
of uncertainty in aerosol ERF and ToA radiative flux in
Sect. 3.3. In Sect. 3.4 we identify the main causes of uncer-
tainty in aerosol ERF and its components within 11 climat-
ically important regions. Following Lohmann and Ferrachat
(2010), we then explore how constraint of the model state
using present-day ToA flux observations influences the plau-
sible range of aerosol ERF (Sect. 3.5.1 and 3.5.4). We show
that, whilst the relationships between the important driving

parameters and individual parameter ranges are well con-
strained by ToA flux measurements (Sect. 3.5.2 and 3.5.3),
the range of credible aerosol ERFs is only moderately (10 %)
constrained. We investigate the causes of the modest con-
straint in Sects. 3.5.2, 3.5.3 and 4.

2 Methods

2.1 Set-up of the HadGEM-UKCA aerosol–climate
model

We used the UK Hadley Centre Met Office Unified
Model (HadGEM3, 2017) including release version 8.4 of
the UK Chemistry and Aerosol (UKCA) model, within
which the evolution of particle size distribution and size-
resolved chemical composition of aerosols are calculated us-
ing the GLObal Model of Aerosol Processes (GLOMAP;
Spracklen et al., 2005; Mann et al., 2010). The model has
a 1.25◦

× 1.875◦ horizontal resolution and 85 vertical hy-
brid pressure levels. The aerosol size distribution is defined
by seven log-normal modes: one soluble nucleation mode
as well as soluble and insoluble Aitken, accumulation and
coarse modes. The aerosol chemical components are sul-
fate, sea salt, black carbon, particulate organic carbon and
dust. Secondary organic aerosol material is produced from
the first-stage oxidation products of biogenic monoterpenes
under the assumption of zero vapour pressure. After kinetic
condensation onto existing aerosols, organic aerosols (pri-
mary and secondary) are treated as one chemical tracer.

The GLOMAP model resolves new particle formation,
particle coagulation, gas-to-particle transfer, cloud process-
ing (aqueous chemistry) and the deposition of gases and
aerosols. Sulfate particles form by binary homogeneous nu-
cleation (Vehkamäki et al., 2002) throughout the atmosphere
and by organically mediated nucleation (Metzger et al.,
2010) in the boundary layer. The activation of aerosol par-
ticles into cloud droplets is calculated using distributions of
sub-grid vertical velocities (West et al., 2014), and the re-
moval of cloud droplets by autoconversion into raindrops is
calculated by the physical atmosphere model. Aerosol re-
moval by impaction scavenging of falling raindrops (within
and below clouds) in the physical atmosphere model depends
partly on the collocation of clouds and precipitation (Boutle
et al., 2014). Soluble particles grow according to the rela-
tive atmospheric humidity using composition-dependent hy-
groscopicity factors (κ) in accordance with “Köhler theory”
(Petters and Kreidenweis, 2007).

Successive versions of the GLOMAP model have been
widely evaluated against global measurements of particle
number concentration (Spracklen et al., 2010; Reddington
et al., 2011), chemical compositions (Spracklen et al., 2011b;
Schmidt et al., 2011; Browse et al., 2012) and cloud ac-
tive aerosol concentrations (Korhonen et al., 2008; Spracklen
et al., 2011a; Pringle et al., 2012). The HadGEM models are
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subject to constant monitoring for ongoing use in numerical
weather prediction and have informed successive Coupled
Model Inter-comparison Project (CMIP) experiments (Taylor
et al., 2012). HadGEM capably represents changes in cloud
regime (Nam et al., 2012) – one of the requirements for sim-
ulating rapid adjustments to aerosol perturbations (Stevens
and Feingold, 2009; Zhang et al., 2016). Cloud water re-
sponses to aerosols may be too strong in the HadGEM model
because the current model version does not represent en-
hanced drying in polluted clouds (Toll et al., 2017). How-
ever, over multiple cloud regimes the cloud water response
is not of a sufficient magnitude to be climatically important
(Malavelle et al., 2017).

Anthropogenic emission scenarios prepared for the At-
mospheric Chemistry and Climate Model Inter-comparison
Project (ACCMIP; Lamarque et al., 2010) and prescribed
in some of the CMIP Phase 5 experiments (Taylor et al.,
2012) are prescribed here. Carbonaceous aerosol emissions
from fires were prescribed using a 10-year average of 2002
to 2011 monthly mean data from the Global Fire and Emis-
sions Database (GFED3; van der Werf et al., 2010).

Model horizontal winds were relaxed (nudged) towards
winds from the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim reanalysis above around
2 km. Nudging of atmospheric states is used primarily to
evaluate output from global models (Telford et al., 2008)
or to ensure that pairs of simulations have near-identical
atmospheric states, so that aerosol and/or chemistry per-
turbations can be applied and their effects quantified us-
ing single realisations of each simulation. In “free-running”
(non-nudged) simulations radiative fluxes need to be aver-
aged over many decades in order to produce signals stronger
than the noise resulting from internal variability (Kooper-
man et al., 2012). Nudging to horizontal winds above around
2 km forces synoptic-scale dynamical features to be consis-
tent across the ensemble, whilst allowing boundary layer at-
mospheric adjustments in response to changes in aerosols to
be affected by the parameter perturbations.

Each simulation was subject to a 7-month spin-up period
from a consistent starting simulation, with parameters set to
their median values for the first 4 months. Parameter pertur-
bations were applied during the final 3 months of the spin-up
period, after which a full year of data was produced for each
ensemble member. Aerosol ERF is calculated as the differ-
ence in net ToA short-wave plus long-wave radiative fluxes
between pairs of simulations with identical parameter set-
tings but distinct prescriptions of anthropogenic emissions
(1850, 1978 and 2008). The aerosol ERF and its components
were calculated based on the method of Ghan (2013).

2.2 Parameter sampling

The 27 parameters perturbed in the ensemble, as well as the
roles they play in the model, are presented in Table 1. We
perturbed nine parameters in the physical atmosphere model

known to affect the properties and distribution of clouds and
humidity within the boundary layer (atmospheric parame-
ters; Sexton et al., 2018) in combination with 18 aerosol
emission, deposition and process parameters (aerosol param-
eters) known to affect cloud droplet number concentrations
(Lee et al., 2013) and/or aerosol cloud-albedo effect forcing
(the ERFACI without accounting for rapid adjustments) at the
global (Carslaw et al., 2013; Regayre et al., 2014) and/or re-
gional scale (Regayre et al., 2015). Some parameters have
been included in the ensemble because they represent model
structural advances with inherent process uncertainty (Yosh-
ioka et al., 2018).

We did not attempt to include an exhaustive set of un-
certain parameters in the experimental design. Current su-
percomputing resources are too valuable to justify an un-
informed, exhaustive exploration of model uncertainty. In-
stead, we used one-at-a-time perturbation screening experi-
ments (not shown) to identify the parameters most likely to
influence radiative forcing within the model. The parameters
included in the preliminary screening process were identi-
fied by model domain experts as the key parameters within
individual model schemes (e.g. cloud microphysics) and/or
model processes (e.g. cloud droplet activation) with the po-
tential to significantly affect aerosol ERF. Our results may
change slightly with the inclusion of additional parameters.
However, we went through a thorough parameter screening
and prioritisation process, so we consider the parametric un-
certainty to be close to an upper limit. Furthermore, with
many possible opportunities for parameter compensation, ad-
ditional parameters only very gradually increase the overall
uncertainty.

The parameters we perturb here are likely to have readily
identifiable counterparts in other climate models. All global
climate models have similarities because they describe the
same physical processes; although process parametrisations
can differ between models, they often share common bi-
ases when compared to measurements (Knutti et al., 2013).
Therefore, our aim to identify the main causes of aerosol
ERF uncertainty in the HadGEM model (Sect. 3) will pro-
vide valuable clues for reducing the aerosol ERF uncertainty
in other models.

2.2.1 Definition of atmospheric parameters

Rad_Mcica_Sigma

The fractional standard deviation of the sub-grid cloud con-
densate as seen by radiation. This parameter controls the
inhomogeneity of cloud condensate within vertically over-
lapping sub-grid clouds (Räisänen et al., 2004), which is
used to calculate cloud radiative fluxes. Higher values of
Rad_Mcica_Sigma increase cloud condensate inhomogene-
ity and hence reduce cloud albedo (because of the non-linear
relationship between albedo and cloud condensate; Barker
and Räisänen, 2005). Atmospheric temperature profiles re-
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Table 1. Descriptions of the perturbed parameters. Parameters are grouped according to their source within the model as either “Atm” for
atmospheric or “Aer” for aerosol parameters.

Name Source Description PDF

Rad_Mcica_Sigma Atm Fractional standard deviation of sub-grid Trapezoid (0.1,0.4,1.5,2.2,2,2)
condensate seen by radiation

C_R_Correl Atm Cloud and rain sub-grid horizontal spatial correlation Trapezoid (0.0, 0.6, 0.9, 1.0, 1.8, 1. 1, 1.5)
Niter_BS Atm Number of microphysics iteration sub-steps Uniform (5, 20)
Ent_Fac_Dp Atm Entrainment amplitude scale factor Trapezoid (0, 0.5, 2, 4, 2, 2)
Amdet_Fac Atm Mixing detrainment rate scale factor Trapezoid (0, 0.5, 10.0, 15.0, 2, 2)
Dbsdtbs_Turb_0 Atm Cloud erosion rate (s−1) Trapezoid (0, 1 × 10−4, 5 × 10−4,

1 × 10−3, 2, 2)
Mparwtr Atm Maximum value of function controlling convective Trapezoid (1 × 10−3, 1 × 10−3,

parcel maximum condensate 1.5 × 10−3, 2 × 10−3, 2, 2)
Dec_Thres_Cld Atm Threshold for cloudy boundary layer decoupling Trapezoid (0.01, 0.011, 0.1, 0.8, 2, 4, 4)
Fac_Qsat Atm Rate of change in convective parcel maximum

condensate
Uniform (0.25, 1)

Ageing Aer Ageing of hygrophobic aerosols Trapezoid (0.3, 1, 5, 10, 2, 2)
(no. of monolayers of organic material)

Cloud_pH Aer pH of cloud droplets Trapezoid (4.6, 5.3, 6.3, 7, 4, 2)
Carb_BB_Ems Aer Carbonaceous biomass burning emission scale factor Trapezoid (0.25,0.8,2.2,4,2,2)
Carb_BB_Diam Aer Carbonaceous biomass burning emission diameter (nm) Trapezoid (90, 160, 240, 300, 2, 2)
Sea_Spray Aer Sea spray aerosol emission scale factor Trapezoid (0.125, 0.6, 3, 8, 4, 3)
Anth_SO2 Aer Anthropogenic SO2 emission scale factor Trapezoid (0.6, 0.81, 1.09, 1.5, 2, 2)
Volc_SO2 Aer Volcanic SO2 emission scale factor Trapezoid (0.71, 0.99, 1.7, 2.38, 4, 1.1)
BVOC_SOA Aer Biogenic secondary aerosol formation from volatile Trapezoid (0.81, 1.08, 3.5, 5.4, 3, 3)

organic compound scale factor
DMS Aer Dimethylsulfide surface ocean SO2 concentration

scale factor
Trapezoid (0.5, 1.26, 1.82, 2, 2, 3)

Dry_Dep_Acc Aer Accumulation mode dry-deposition velocity scale factor Trapezoid (0.1, 0.32, 3.16, 10, 2, 2)
Dry_Dep_SO2 Aer SO2 dry-deposition velocity scale factor Trapezoid (0.2, 0.56, 1.78, 5, 2, 2)
Kappa_OC Aer Köhler coefficient of organic carbon Trapezoid (0.1, 0.14, 0.25, 0.6, 4, 4)
Sig_W Aer Updraft vertical velocity standard deviation Trapezoid (0.1, 0.36, 0.44, 0.7, 2, 2)
Dust Aer Dust emission scale factor Trapezoid (0.5, 0.7, 1.4, 2, 2, 2)
Rain_Frac Aer Fraction of cloud-covered area in large-scale clouds Trapezoid (0.3, 0.31, 0.55, 0.7, 2, 3)

where scavenging occurs
Cloud_Ice_Thresh Aer Threshold of cloud ice fraction above which nucleation Trapezoid (0.1, 0.105, 0.35, 0.5, 2, 3)

scavenging is suppressed
BC_RI Aer Imaginary part of the black carbon refractive index Trapezoid (0.2, 0.352, 0.616, 0.8, 4, 2)
OC_RI Aer Imaginary part of the organic carbon refractive index Trapezoid (0, 0, 0.05, 0.1, 2, 6)

spond to changes in the cloud radiative fluxes and can in-
duce changes in precipitation rates and cloud amount. The
effect of perturbing Rad_Mcica_Sigma on reflected radiation
is largest in regions of persistent stratocumulus cloud where
low-altitude, high-albedo clouds occupy a substantial frac-
tion of each model grid box.

C_R_Correl

Cloud and rain sub-grid horizontal correlation. The collo-
cation of clouds and rain within the model is important be-
cause it determines the accretion rate of cloud droplets and
aerosols by raindrops. Higher values cause more accretion
because regions of high cloud water are closely correlated
with regions of high precipitation. Perturbations to this pa-

rameter affect cloud radiative properties by altering in-cloud
interstitial aerosol concentrations and cloud amount.

Niter_BS

Number of microphysics iteration sub-steps. The microphys-
ical processing of in-cloud interstitial aerosols and cloud
droplets is controlled by the cloud microphysics scheme
within the physical atmosphere model. The values of this pa-
rameter determine the degree of processing within a model
time step. Each iteration of the microphysics scheme allows
drops to grow larger before precipitation occurs. Therefore,
higher parameter values allow for greater microphysical pro-
cessing and cause the model to produce less light rain. This
affects the amount of liquid water within clouds and alters
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9980 L. Regayre et al.: Aerosol ERF uncertainty and constraint

the amount of cloud, which is important for cloud radiative
effects.

Ent_Fac_Dp

Entrainment amplitude scale factor. This convection scheme
parameter controls the shape of the convective mass flux and
the sensitivity of convection to relative humidity. Higher val-
ues reduce the depth of convection and suppress convective
precipitation. This parameter is important for cloud radiative
effects for several reasons. First, the retention of cloud water
increases cloud amount and short-wave reflectivity. Second,
lower-altitude clouds have a higher cloud top temperature
and attenuate less of the long-wave energy emitted by the
Earth’s surface. Third, if atmospheric moisture is not precip-
itated convectively, the increase in relative humidity causes
more large-scale frontal precipitation, which affects spatial
distributions of aerosols and clouds and hence the aerosol
ERF.

Amdet_Fac

Mixing detrainment rate scale factor. This parameter con-
trols the rate of humidification of the atmosphere and the
shape of the convective heating profile. Amdet_Fac is im-
portant for cloud radiative effects for similar reasons to
Ent_Fac_Dp. Both parameters affect clouds through their
influence on convection but through different mechanisms.
Higher values of Amdet_Fac increase atmospheric humidity
and temperature, leading to enhanced convection.

Dbsdtbs_Turb_0

The cloud erosion rate. This parameter alters the radiative
properties of clouds by altering the rate at which unresolved
sub-grid motions mix clear and cloudy air. Higher values
cause more rapid mixing of clear, dry air into clouds, thereby
reducing cloud liquid water content, autoconversion of cloud
droplets to raindrops and cloud amount. The atmospheric
lifetimes of aerosols and precursor gases are noticeably af-
fected by this parameter.

Mparwtr

Maximum value of the function controlling convective parcel
maximum condensate. Convective parcels near the Earth’s
surface precipitate when the amount of moisture reaches the
threshold set by this parameter. Higher values increase cloud
amount and lifetime by reducing convective precipitation. As
with other convective parameters Mparwtr affects cloud ra-
diative effects and aerosols by altering the spatial distribu-
tions of clouds and precipitation.

Dec_Thres_Cld

The threshold for cloudy boundary layer decoupling. Bound-
ary layer stability plays an important role in determining

the magnitude of cloud radiative effects because a well-
mixed, stable boundary layer retains more heat and permits
more dynamic activity. This parameter is the threshold at
which the boundary layer decouples from the rest of the at-
mosphere. Hence, higher parameter values lead to a better-
mixed boundary layer, increased cloudiness and longer in-
cloud processing times for aerosols.

Fac_Qsat

Rate of change of convective parcel maximum condensate
with altitude. The maximum amount of moisture a convec-
tive parcel can hold transitions from the threshold set by the
parameter Mparwtr at the surface to a much smaller thresh-
old at high altitudes. Fac_Qsat controls the rate at which this
threshold changes with altitude. Fac_Qsat therefore influ-
ences cloud radiative effects through similar mechanisms to
Mparwtr (higher values suppress precipitation and increase
cloud amount and lifetime) but is more important in the up-
per boundary layer.

2.2.2 Definition of the aerosol parameters

Ageing

Ageing of hydrophobic aerosols. Carbonaceous aerosols are
assumed to be non-hygroscopic when emitted into the atmo-
sphere and cannot act as cloud condensation nuclei until suf-
ficient layers of sulfuric acid and condensible organic matter
coat their surface. This parameter is the number of mono-
layers of soluble material required to convert initially insolu-
ble aerosols into cloud condensation nuclei. Higher values
reduce the conversion rate of hydrophobic to hygroscopic
aerosols. This parameter is important for aerosol ERF be-
cause it affects cloud condensation nuclei and the removal
rate of highly absorbing carbonaceous aerosols from the at-
mosphere.

Cloud_pH

The pH of cloud droplets. The pH of cloud droplets is used
in the aqueous chemistry module of GLOMAP to calculate
the conversion of SO2 into sulfate particles. Cloud droplet
pH depends on kinetic and thermodynamic processes that are
not explicitly simulated. Therefore, we use a globally defined
value of cloud droplet pH to control the reaction rate. Un-
certainty in this parameter accounts for the simplification in
its application. Higher values of this parameter increase sul-
fate production near SO2 emission sites and tend to reduce
aerosol concentrations in remote regions (through effects on
new particle formation). Therefore, the cloud pH parameter
affects the spatial distribution of aerosols, which is important
for aerosol ERF.
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Carb_BB_Ems

Carbonaceous biomass burning emission scale factor.
Higher values of this scale factor increase the amount of car-
bonaceous aerosols emitted into the atmosphere from large-
scale biomass burning. Carbonaceous aerosols are important
for aerosol ERF because they absorb solar radiation, and the
resulting energy redistribution affects boundary layer tem-
peratures and stability and can affect cloud cover (Gnanade-
sikan et al., 2017).

Carb_BB_Diam

Carbonaceous biomass burning emission diameter (nm).
This parameter determines the size of carbonaceous aerosols
at the time of emission. Higher values cause fewer, larger
carbonaceous aerosols to be emitted for a given value of
Carb_BB_Ems. Therefore, the total carbonaceous aerosol
particle number is reduced, leading to fewer cloud conden-
sation nuclei and a change in aerosol optical properties.

Sea_Spray

Sea spray aerosol emission scale factor. Aerosol ERF is
sensitive to emission fluxes of natural aerosols because
they strongly influence the pre-industrial background aerosol
concentration and the relative magnitude of the change in
aerosols over the industrial period. Perturbations to the wind-
driven emission fluxes affect aerosol distributions in marine
and coastal regions.

Anth_SO2

Anthropogenic SO2 emission scale factor. SO2 gas forms
H2SO4 molecules, which condense to form sulfate particles.
Furthermore, SO2 condenses onto existing particles, increas-
ing their size and solubility. Therefore, scaling anthropogenic
SO2 emissions affects aerosol ERF by influencing the con-
centrations and composition of present-day aerosols.

Volc_SO2

Volcanic SO2 emission scale factor. Volcanic SO2 emissions
are treated identically to anthropogenic SO2 emissions. How-
ever, they are present in both the pre-industrial and present-
day atmospheres and so exert an influence on aerosol ERF
through a similar mechanism to Sea_Spray by altering the
pre-industrial aerosol concentration.

BVOC_SOA

Biogenic secondary aerosol formation from volatile organic
compound scale factor. Secondary organic aerosols form
through multi-stage oxidation reactions of biogenic volatile
organic compounds (monoterpenes in this case). This param-
eter scales the secondary organic aerosol emission flux, with

higher values producing larger emissions. Perturbing this pa-
rameter changes the aerosol concentration and size distribu-
tion in the pre-industrial and present-day atmosphere.

DMS

Dimethylsulfide surface ocean concentration scale factor.
Perturbing the concentration of DMS in the oceans alters
the wind-driven flux of DMS into the atmosphere. DMS is
important for aerosol ERF because it is a source of natural
aerosols which affect the pre-industrial aerosol background
concentrations. Similar to the Sea_Spray parameter, DMS af-
fects aerosol concentrations in marine and coastal regions.
However, marine DMS concentrations increase with ocean
temperature, so perturbations to this parameter will have the
greatest influence on aerosol ERF in warmer months.

Dry_Dep_Acc

Accumulation mode dry-deposition velocity scale factor.
Aerosols are removed from the atmosphere at a velocity cal-
culated using Brownian diffusion, impaction and intercep-
tion. This calculation in the GLOMAP model depends on
wind speeds and surface roughness. High values of this pa-
rameter more readily remove accumulation mode aerosols
from the atmosphere, causing a reduction in cloud conden-
sation nuclei concentrations.

Dry_Dep_SO2

SO2 dry-deposition velocity scale factor. This parameter de-
termines the removal of SO2 gas from air masses that inter-
act with the surface. The removal of SO2 is important for
aerosol ERF because SO2 is a precursor for sulfate particles
and condenses onto existing particles, causing them to grow
to the larger sizes needed to act as cloud condensation nuclei.
Higher values of this parameter increase the removal rate of
SO2 from the atmosphere. This affects aerosol size distribu-
tions by simultaneously reducing particle formation rates and
the growth rates of existing aerosols.

Kappa_OC

Köhler coefficient of organic carbon. Aerosol water up-
take efficiency is determined by “Köhler theory” using size-
and composition-dependent hygroscopicity factors (κ; Pet-
ters and Kreidenweis, 2007). Higher values of this parameter
increase the water uptake efficiency of the organic material in
the particles. Perturbations to this parameter will change the
light-scattering efficiency of the particles and the droplet ac-
tivation process, thereby affecting cloud microphysical pro-
cesses. In particular, cloud-active aerosol concentrations in
the pre-industrial atmosphere are expected to be susceptible
to this parameter value (Liu and Wang, 2010).
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Sig_W

Updraft vertical velocity standard deviation. This parameter
controls the width of the probability distribution of sub-grid
vertical velocities used to calculate the activation of aerosols
into cloud droplets. Higher Sig_W values widen the distri-
bution of updraft velocities. The largest sub-grid updrafts
within the distribution have the greatest influence on cloud
droplet concentrations because, for any given supersatura-
tion, a larger updraft velocity will cause a greater propor-
tion of relatively small aerosols to activate. Higher values of
Sig_W therefore increase cloud droplet concentrations and
decrease precipitation efficiency (through reduced autocon-
version rates), cloud liquid water content and cloud albedo.
Sig_W perturbations have the greatest influence on cloud
droplet concentrations in regions of relatively high aerosol
concentrations because in such environments droplet activa-
tion is updraft-limited rather than aerosol-limited.

Dust

Dust emission scale factor. Dust aerosols are large, insoluble
particles when emitted but are treated as hygroscopic once
sufficiently aged by the condensation of soluble material onto
the particle surface (as defined by the “ageing” parameter).
We perturb dust emissions in our ensemble because they are
important for the ERFARI component of aerosol ERF. Fur-
thermore, dust influences cloud-active aerosol concentrations
(Manktelow et al., 2010) and cloud droplet concentrations
(Karydis et al., 2017).

Rain_Frac

Fraction of cloud-covered area in large-scale clouds where
scavenging occurs. Rain and clouds do not correlate per-
fectly (as discussed in the C_R_Correl definition). Higher
values of this parameter allow aerosols to be scavenged by
raindrops over a greater fraction of cloudy areas. The value
of this parameter is important for aerosol ERF because it af-
fects aerosol atmospheric lifetimes.

Cloud_Ice_Thresh

Threshold of cloud ice fraction above which nucleation scav-
enging of aerosol material is suppressed. The scavenging
of aerosol material in dynamic rain systems is controlled
partly by the rain formation process – either the collision–
coalescence process, which efficiently removes many aerosol
particles in raindrops, or the Wegener–Bergeron–Findeisen
process in mixed-phase clouds, which leads to less aerosol
scavenging and seems to account for the efficient winter-
time transport of aerosols to the Arctic (Barrett et al., 2011;
Browse et al., 2012). In our previous studies (Regayre et al.,
2014, 2015) we defined a temperature below which scaveng-
ing was suppressed. Here, we instead use the mass fraction of
ice to define a threshold above which no nucleation scaveng-

ing occurs. Higher values require a greater proportion of ice
to be present before scavenging is suppressed. This parame-
ter is important for high latitude aerosol concentrations and
cloud radiative effects (Browse et al., 2012; Regayre et al.,
2015; Yoshioka et al., 2018).

BC_RI

Imaginary part of the black carbon refractive index. This
parameter controls the absorption of radiation as it passes
through aerosols containing black carbon. Higher values of
the imaginary refractive index cause more energy to be ab-
sorbed and re-emitted by black carbon aerosols. The real part
of the refractive index is defined according to the imaginary
part, meaning that this parameter also controls the scatter-
ing of radiation by black carbon aerosols. Higher values of
the real part cause more incoming radiation to be refracted
towards the Earth’s surface (more forward scattering). Per-
turbations to BC_RI affect ERFARI as well as the vertical
profile of atmospheric heating and hence convection, cloud
amount and cloud radiative effects. Our simulations do not
account for the effect of depositing light-absorbing carbona-
ceous aerosols on snow (Bond et al., 2013), nor the air–sea
interactions that enhance rapid adjustments in marine regions
(Gnanadesikan et al., 2017).

OC_RI

Imaginary part of the organic carbon refractive index. The
absorption of radiation by organic carbon is controlled by
this parameter. Unlike BC_RI, the real part of the organic
carbon refractive index is held constant. Therefore, perturba-
tions to this parameter have no effect on the refractive prop-
erties of organic carbon. Otherwise, OC_RI affects the atmo-
sphere through the same mechanisms as BC_RI.

One potentially important parameter that we did not per-
turb is the autoconversion rate of cloud droplets into rain-
drops (although we did perturb Rain_Frac and C_R_Correl,
which affect aerosol and cloud droplet removal by rain-
drops). The coupling between the GLOMAP model and
the cloud microphysics scheme is currently one-way: cloud
droplet concentrations calculated in GLOMAP are used
in the autoconversion scheme and thereby affect precipi-
tation rates, cloud liquid water content and albedo. How-
ever, precipitation only alters the cloud droplet concentra-
tions in HadGEM and not aerosol concentrations within the
GLOMAP model. For aerosol concentrations to be directly
altered by the autoconversion process, the coupling would
need to be two-way so that cloud droplet concentrations in
GLOMAP would be consistent with those calculated in the
atmospheric model’s microphysics scheme.

Other HadGEM simulations have shown that over multi-
ple cloud regimes the cloud liquid water path is not substan-
tially affected by aerosols through autoconversion (Malavelle
et al., 2017), suggesting that neglecting the uncertainty in this
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process is not important to our results. However, in relatively
polluted regions (such as the North Atlantic) cloud liquid wa-
ter path responses to aerosols in low-altitude clouds (partic-
ularly stratocumulus) are likely to be overestimated in the
model because of known structural errors (Toll et al., 2017).
The cloud liquid water path response to aerosols in low,
warm clouds is weaker in HadGEM than in other global cli-
mate models (Ghan et al., 2016). Therefore, autoconversion
may seem more important in other models but will likely be
overstated (Toll et al., 2017). This process should be consid-
ered in future uncertainty analysis studies once shared model
structural errors are addressed and the process uncertainty is
better quantified.

2.3 Statistical methodology

Maximin Latin hypercube sampling was used to create a
parameter combination design of 162 points with excel-
lent space-filling properties that provide information on
model output across the 27-dimensional parameter uncer-
tainty space. A simulation with all parameters set to their
median values (from distributions described in Table 1) was
also included in the ensemble. Emulators were then con-
structed which describe individual model outputs (ToA flux,
aerosol ERF and its components) over the 27-dimensional
space of the uncertain parameters. Emulators provide a sta-
tistical representation of model output for all points within
the multi-dimensional parameter space and have been widely
used to analyse climate models (Lee et al., 2013; Carslaw
et al., 2013; Tett et al., 2013; Regayre et al., 2014; Hamil-
ton et al., 2014; Regayre et al., 2015; Johnson et al., 2015;
Lee et al., 2016) as well as complex models in many other
areas of science, including hydrology (Liu and Gupta, 2007),
galaxy formation (Rodrigues et al., 2017) and disease trans-
mission (Andrianakis et al., 2017).

In total 217 perturbed parameter simulations were created
for each anthropogenic emission period including a set of
54 simulations with parameter combinations that augment
the original design and were used to validate the emula-
tors. Twenty-six simulations did not complete an annual cy-
cle in at least one of the anthropogenic emission periods
(1850, 1978 and 2008) because the combinations of param-
eters caused the model to fail. Hence, the ensemble of sim-
ulations for each period was made up of the remaining 191
simulations. Once emulators were validated, by ensuring that
at least 75 % of the validation simulations produced out-
put within the relatively small emulator uncertainty bounds,
new emulators conditioned on output from the 191 perturbed
parameter simulations (with better space-filling properties)
were created by combining the validation simulations with
the original set of simulations.

Probability density functions (pdfs, Table 1) were used
to represent expert beliefs about parameter uncertainty. We
predominantly used trapezoidal distributions (Hetzel, 2012)
to represent parameter uncertainty in order to avoid having

an overly centralised multi-variate sample (Yoshioka et al.,
2018).

By combining perturbed parameter ensembles with model
emulation and then densely sampling emulator output using
the extended-Fourier amplitude sensitivity test (FAST) sam-
pling method (Saltelli et al., 1999), we were able to perform
sensitivity analyses (Saltelli et al., 1999, 2000; Lee et al.,
2012) and decompose the variance in model output into in-
dividual components. We used the percentage reduction in
variance which would be achieved if a parameter value were
known exactly as our main statistic for identifying the causes
of uncertainty. Emulation and sensitivity analyses were ap-
plied at the individual model grid box level (degraded to
N48 model resolution) as well as at the regional and global
mean level for the ToA flux as well as the forcing terms. For
the sensitivity analyses, samples of 270 000 members were
drawn from the emulators at parameter combinations deter-
mined by the parameter pdfs. The sensitivity analysis results
are therefore informed by expert knowledge about the model
behaviour in relation to the uncertain processes. However, for
the constraint of aerosol ERF using ToA flux observations we
sampled 1 million model variants using uniform pdfs. This
sampling approach uses the expert-elicited parameter pdfs to
determine the ranges of uniform pdfs for sampling but ne-
glects expert prior beliefs about parameter value likelihoods.
As such, the effects of applying the observational constraint
and expert knowledge can be quantified and compared. Fur-
thermore, the effect of applying the observational constraint
on the uncertain parameter space can be more readily as-
sessed when uniform pdfs are used to create the original sam-
ple because parameter combinations are more evenly spaced
throughout the 27-dimensional parameter space.

Preliminary parameter combination screening tests re-
vealed that values of Ent_Fac_Dp higher than around 1.8 in
combination with values of Amdet_Fac higher than around
8.0 caused model simulations to fail. This part of the 27-
dimensional parameter space (a corner of a 2-D plane) was
removed from the ensemble design and analyses. The sam-
pling method used to perform the sensitivity analyses was
adapted to reject samples from the 2-D corner of param-
eter space not included in the design. Rejected combina-
tions of the Ent_Fac_Dp and Amdet_Fac parameters were
re-sampled from the restricted 2-D parameter space without
affecting the sampling frequency across the remaining 25-
dimensional parameter space.

3 Results

3.1 Uncertainty in aerosol ERF and its components

Figure 1 shows pdfs of the global mean aerosol ERF (from
1850 to 2008) and its components: ERFARI and ERFACI. The
95 % credible interval of aerosol ERF used in the sensitiv-
ity analysis is −2.18 to −0.71 W m−2. Most of the uncer-
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tainty in aerosol ERF comes from the ERFACI component,
which has a credible interval of −2.20 to −0.61 W m−2 and
captures much of the recognised uncertainty in this forcing
term (Myhre et al., 2013; Shindell et al., 2013). We also ac-
count for above-cloud aerosols (Ghan, 2013) in our calcu-
lation of ERFACI and ERFARI, which affects the balance be-
tween these two components of aerosol ERF (Yoshioka et al.,
2018). This adjustment results in distributions of weaker
ERFARI values and stronger ERFACI values in our sample
compared to Myhre et al. (2013). We discuss these effects
further in Sect. 3.1.2.

The sample of aerosol ERFs in Fig. 1 has already been
constrained by our choice of probability distributions for
the uncertain parameters (Table 1). When we use uniform
parameter distributions to sample parameter combinations
(Sect. 2.3), the credible range (95 %) of aerosol ERFs is
−2.65 to −0.68 W m−2. When expert beliefs about param-
eter value likelihoods are applied, the aerosol ERF credible
range is only −2.18 to −0.71 W m−2 (Fig. 1a). This implies
that by applying the combined knowledge of experts with an
understanding of the model processes and parametrisations
we have effectively reduced the aerosol ERF credible range
by around 25 %.

The strongest aerosol ERFs in our distribution would lead
to a negative forcing when combined with best estimates of
changes in other forcing agents over the industrial period.
A net negative forcing is incompatible with the observed
increase in global mean surface temperatures over the in-
dustrial period (e.g. HadCRUT4, 2017). However, there is
substantial uncertainty in the ERFs of multiple other forc-
ing agents (Myhre et al., 2013; Fig. 8.16 and 8.18), so our
most negative aerosol ERF values cannot be considered im-
plausible using these criteria. Structural aspects of the model
could account for the strongest forcings. For example, our
model is missing marine sources of organic aerosols and
related processes (Gantt et al., 2015) which, if included,
would act as an important source of ice-nucleating particles
(Vergara-Temprado et al., 2017) and pre-industrial aerosols
(Gordon et al., 2017), which would weaken the aerosol forc-
ing (Carslaw et al., 2013). However, our perturbed parameter
ranges were to some extent intended to encompass the uncer-
tainty caused by those structural deficiencies we were aware
of. The values in the tails of the aerosol ERF pdf are likely
to be the result of setting multiple parameters important for
aerosol ERF to extreme values, which are also likely to cause
extreme present-day ToA flux values and be considered im-
plausible when compared to observations (Sect. 3.5).

Figure 1 also shows the separate effects of the 18 com-
bined aerosol parameters and the 9 combined physical at-
mosphere model uncertainties. Neglecting the uncertainty in
aerosol parameters (by setting them to their median values
in all model variants) results in a 95 % credible aerosol ERF
interval of −1.98 to −1.04 W m−2, whilst neglecting uncer-
tainty in atmospheric parameters results in a credible inter-
val of −2.00 to −0.90 W m−2. Summary statistics of forcing

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
Aerosol ERF (W m 2)

(a) 

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
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Aerosol parameters only
Combined parameters
Myhre at. al, (2013)
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ERFACI (W m 2)

(c) 

Figure 1. Probability density functions of 1850–2008 (a) aerosol
ERF, (b) ERFARI and (c) ERFACI. Each sample contains 270 000
emulator-derived model variants informed by the expert-elicited
prior probability distributions of parameter values. Samples with
aerosol and atmospheric parameter uncertainties neglected (Table 1)
were obtained by setting each neglected parameter to its median
value in the corresponding pdf. Ninety-percent credible intervals
from Myhre et al. (2013) are presented as red horizontal lines, with
best estimates marked using crosses. Our 95 % credible intervals
are presented in black, and the sample median is presented using a
cross.

from these samples are presented in Table 2. The distribution
of aerosol ERF (as well as ERFARI and ERFACI) is wider
and flatter (has a larger variance) in the combined sample
than the distributions of atmosphere-only and aerosol-only
sampled values. This suggests that important interactions be-
tween atmospheric and aerosol parameters cause the most
extreme aerosol ERF values. The effects of the aerosol and
physical model uncertainties do not have an additive effect
on the aerosol ERF uncertainty because of compensating ef-
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Table 2. Summary statistics for the pdfs of 1850–2008 aerosol ERF, ERFARI and ERFACI presented in Fig. 1. Perturbations to atmospheric
and/or aerosol parameters cause the uncertainty in model output in each case. All values are in watts per metre (W m−2). For all samples
the null hypotheses of equivalent means or standard deviations are rejected at the 99 % confidence level using Welch’s t (Welch, 1947) and
Bartlett (Snedecor and Cochran, 1989) tests respectively.

Sample Perturbations Mean Standard 95 % credible Credible
deviation interval range

ERF Atmosphere and aerosol −1.46 0.38 (−2.18, −0.71) 1.46
Atmosphere only −1.51 0.25 (−1.98, −1.04) 0.94
Aerosol only −1.47 0.29 (−2.01, −0.90) 1.11

ERFARI Atmosphere and aerosol −0.03 0.08 (−0.19, 0.13) 0.31
Atmosphere only 0.00 0.04 (−0.08, 0.08) 0.16
Aerosol only −0.02 0.07 (−0.16, 0.11) 0.27

ERFACI Atmosphere and aerosol −1.42 0.41 (−2.20, −0.61) 1.59
Atmosphere only −1.51 0.29 (−2.04, −0.96) 1.08
Aerosol only −1.43 0.30 (−1.99, −0.85) 1.14

fects between the groups of parameters. These results show
that both atmospheric and aerosol parameter perturbations
are required to comprehensively sample model uncertainty.
The main atmospheric and aerosol sources of aerosol ERF
uncertainty are identified in Sect. 3.2.1.

3.1.1 Uncertainty in ERFACI

Maps of the means and standard deviations of ERFACI re-
sulting from perturbations to our 27 atmospheric and aerosol
parameters are presented in Fig. 2. Forcings stronger than
−3.5 W m−2 are concentrated over anthropogenic aerosol
sources (particularly Asia, America and Europe) and in ma-
rine stratocumulus regions (Atlantic Ocean, North Pacific
Ocean and the South Pacific Ocean off the South American
coast). The standard deviation of ERFACI is largest (up to
6 W m−2) in the same regions and is typically of the same
order of magnitude as the mean regional value. The spa-
tial distribution of mean ERFACI is very similar to the At-
mospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP) multi-model mean pattern (Shindell et al.,
2013). However, the magnitudes of forcing differ, particu-
larly over remote marine regions. For example, our mean
ERFACI is stronger than −5 W m2 over much of the North
Pacific Ocean, whereas the ACCMIP mean aerosol ERF in
the Pacific is stronger than −3.5 W m2 only in coastal re-
gions near to anthropogenic sources. These strong remote
marine ERFACI values go some way to explaining the differ-
ences in global mean ERFACI between our sample (around
−1.4 W m2) and the ACCMIP multi-model mean (around
−0.9 W m2). In part, the magnitude of our ERFACI values are
caused by the above-cloud aerosol adjustment (Ghan, 2013).
Our model has a relatively weak cloud liquid water path re-
sponse to aerosols (Ghan et al., 2016; Malavelle et al., 2017),
which suggests that our very negative marine forcing values

are not caused by an overly strong aerosol second indirect
effect.

3.1.2 Uncertainty in ERFARI

Figure 3 shows the spatial pattern of mean ERFARI and
its standard deviation. Global mean ERFARI is near zero
(95 % credible range: −0.19 to 0.13 W m−2; Fig. 1; Ta-
ble 2). Although the possibility of a globally positive ERFARI
has previously been considered unlikely (Boucher et al.,
2013), it has important implications for our understanding
of interactions between absorbing aerosols, cloud processes
and boundary-layer dynamics. The near-zero global mean
ERFARI results from the cancellation of positive and nega-
tive regional forcings. Positive mean ERFARI values (up to
10 W m−2) occur in regions where carbonaceous aerosols of-
ten overlie relatively high-albedo clouds (continental Asia
and off the west coasts of Africa and South America). It
is in these regions that the standard deviation of ERFARI is
also largest (up to 5 W m−2). Light-absorbing aerosols above
cloud heat the local atmosphere, which can suppress convec-
tion and affect cloud cover. This is important for calculat-
ing the ERFARI from our simulations because we account for
above-cloud scattering and absorption of aerosols in line with
Ghan (2013). Neglecting the effects of above-cloud aerosols
in the ERFARI produces no positive values for this forcing
component (95 % credible interval: −0.69 to −0.24; Yosh-
ioka et al., 2018). Therefore, the magnitude of ERFARI over
Asia, Africa and South America (where it is positive and
reduces cloud cover) determines the sign of global mean
ERFARI.
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Figure 2. (a) Mean and (b) standard deviation for 1850–2008 ERFACI forcing. Values were calculated using output from 270 000 emulator-
derived model variants at the individual pixel level once degraded to N48 model resolution. These samples of model variants are informed
by the expert-elicited parameter pdfs.

Figure 3. (a) Mean and (b) standard deviation of 1850–2008 ERFARI forcing. Values were calculated using output from 270 000 emulator-
derived model variants at the individual pixel level. These samples of model variants are informed by the expert-elicited parameter pdfs.

3.2 Sources of uncertainty in aerosol ERF and its
components

3.2.1 Sources of uncertainty in global mean ERFACI

Figure 4 summarises the causes of variance (sometimes re-
ferred to as the “main effects”) in global mean ERFACI,
ERFARI and aerosol ERF. Natural aerosol emissions (here,
predominantly Sea_Spray, DMS and BB_Diam) persist as
important sources of industrial-period ERFACI uncertainty,
as in previous studies of several climate models (Wilcox
et al., 2015) and the aerosol-only component of a global
model (Carslaw et al., 2013). Here, natural aerosols are re-
sponsible for around 63 % of the proportion of ERFACI vari-
ance caused by aerosol parameters, compared to 45 % of
the variance in aerosol–cloud–albedo effect forcing in the
absence of rapid atmospheric adjustments (Carslaw et al.,
2013). However, by far the largest source of uncertainty is the
Rad_Mcica_Sigma parameter. This cloud radiation parame-
ter affects the spatial homogeneity of simulated clouds, alter-
ing (amongst other things) reflected radiation, tropospheric

temperature profiles and cloud amount (Sect. 3.3). Therefore,
by altering the radiative state of clouds in the pre-industrial
and present-day atmospheres, Rad_Mcica_Sigma affects un-
certainty in the simulated change in cloud radiative state (the
ERFACI). Model process parameters Sig_W and C_R_Correl
cause uncertainty in ERFACI by altering the efficiency of
the cloud droplet activation and deposition processes respec-
tively. Other parameters cause a small amount of the ERFACI
uncertainty but only in individual months. Therefore, the six
parameters and associated processes identified here are the
key to understanding the uncertainty in the global, annual
mean ERFACI in HadGEM.

3.2.2 Sources of uncertainty in global mean ERFARI

The sources of global mean ERFARI variance are summarised
in Fig. 4b. Parameters related to the emission and radia-
tive properties of carbonaceous absorbing aerosols (BC_RI,
OC_RI and BB_Ems) are amongst the largest sources of
ERFARI variance in all months. However, the emission flux
of carbonaceous aerosols (BB_Ems) and the radiative prop-
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Figure 4. Percentage contributions to variance in global, monthly and annual mean 1850–2008 (a) ERFACI, (b) ERFARI and (c) aerosol
ERF. Each bar contains only those parameters that cause at least 3 % of the variance, and interactions between parameters are neglected.
Therefore, the percentage of variance accounted for is less than 100 %. The monthly and annual median values and 95 % credible intervals
(from the 270 000 model variants) are displayed in the top panel. The monthly median values are connected in bold, and the credible intervals
are shaded grey.

Figure 5. (a) Mean and (b) standard deviation of 1978–2008 aerosol ERF. Values were calculated using output from 270 000 emulator-
derived model variants at the individual pixel level. These samples of model variants are informed by the expert-elicited parameter pdfs.

www.atmos-chem-phys.net/18/9975/2018/ Atmos. Chem. Phys., 18, 9975–10006, 2018



9988 L. Regayre et al.: Aerosol ERF uncertainty and constraint

erties of organic carbonaceous aerosols (OC_RI) cause much
more of the ERFARI variance in high-emission months (Jun–
Aug) than they do in the annual mean. In other months
with lower concentrations of carbonaceous aerosols, uncer-
tainty in anthropogenic emissions (here, Anth_SO2) is the
largest source of global mean ERFARI variance. Anthro-
pogenic emissions affect the ERFARI by influencing aerosol
properties in the present-day atmosphere. Other parameters
(notably, Rad_Mcica_Sigma and Sig_W) affect the balance
between ERFACI and ERFARI by altering cloud radiative
properties which are important for calculating above-cloud
aerosol effects (Ghan, 2013). Rad_Mcica_Sigma and Sig_W
are the only parameters identified as important causes of un-
certainty in both ERFACI and ERFARI.

3.2.3 Sources of uncertainty in industrial-period global
mean aerosol ERF

The aerosol ERF is the sum of the ERFACI and ERFARI.
Therefore, the sources of aerosol ERF variance are also
sources of variance in the forcing components. The causes
of aerosol ERF variance are summarised in Fig. 4c. Aerosol
ERF shares more sources of variance with ERFACI than with
ERFARI because ERFACI is the stronger and more uncer-
tain forcing component (Fig. 1). Natural aerosol emissions
(Sea_Spray, DMS and BB_Diam) and model process pa-
rameters (Sig_W and C_R_Correl) collectively cause over
half of the aerosol ERF variance. Each of these key param-
eters causes a similar proportion of the aerosol ERF and
ERFACI variances. However, the cloud radiation parameter
(Rad_Mcica_Sigma) causes more of the ERFACI variance
(around 35 %) than aerosol ERF variance (less than 30 %),
despite also causing around 25 % of the ERFARI variance.
This suggests that the ERFACI and ERFARI responses to
Rad_Mcica_Sigma are of opposite sign and thus partially
cancel in the aerosol ERF calculation. The other main differ-
ence between sources of aerosol ERF and ERFACI variance
comes from anthropogenic emissions. Anthropogenic emis-
sion uncertainty (Anth_SO2) causes up to 10 % of the aerosol
ERF variance in all months. However, Anth_SO2 only causes
a small percentage of the ERFACI variance in a few months.
Therefore, this parameter’s contribution to aerosol ERF vari-
ance is predominantly through its influence on the ERFARI
component of forcing.

3.2.4 Sources of uncertainty in multi-decadal aerosol
ERF

The causes of aerosol radiative forcing uncertainty are known
to depend on the anthropogenic emission period examined
(Carslaw et al., 2013; Regayre et al., 2014). A more detailed
understanding of the causes of uncertainty in aerosol ERF
requires sensitivity analyses over multiple time periods. In
this section, we examine the pattern of uncertainty in multi-
decadal (1978–2008) aerosol ERF, identify the main causes

of uncertainty in multi-decadal aerosol ERF and discuss how
these results inform our understanding of aerosol ERF on
longer timescales.

Figure 5 shows the spatial pattern of mean aerosol ERF
and its standard deviation over the 1978–2008 period. Global
anthropogenic sulfate emissions peaked in the late 1970s
(Lamarque et al., 2010) and then decreased in Europe and
North America as a result of clean-air legislation, but in-
creased significantly in Asia (Smith et al., 2011). Therefore,
there are distinct regions of positive and negative aerosol
ERF in the 1978–2008 period. The cancellation of the re-
gional aerosol ERFs of opposite sign causes a near-zero
global mean aerosol ERF (95 % credible range of −0.6 to
0.8 W m−2). Over continental land masses, the aerosol ERF
standard deviation is largest (between 0.5 and 5 W m−2) in
regions of substantial mean aerosol ERF (absolute mean
larger than around 1 W m−2). The aerosol ERF standard de-
viation is larger than around 0.3 W m−2 over most marine
regions and is largest over regions of persistent stratocumu-
lus cloud, even when the mean forcing is near-zero (e.g. off
the west coast of South America). This suggests the sign of
recent-decadal aerosol ERF forcing is uncertain over those
regions.

The sources of variance in aerosol ERF and its compo-
nents over the 1978–2008 period are summarised in Fig. 6.
The sign of the aerosol ERF over the 1978–2008 period is
uncertain for much of the year and is only definitively nega-
tive in the Northern Hemisphere summer. The cancellation of
positive and negative regional aerosol ERFs has three main
implications for the global mean sensitivity analysis. Firstly,
not all of the causes of regional aerosol ERF will be evident
in the global mean analysis (Regayre et al., 2015). Never-
theless, the causes of uncertainty in global mean 1978–2008
aerosol ERF will inform our understanding. Secondly, the
causes of global mean aerosol ERF uncertainty are season-
ally dependent because changes in the magnitude of incom-
ing solar radiation determine the relative importance of re-
gional uncertainties. Thirdly, the competing regional effects
cause the total variance accounted for by individual param-
eters to be much less than 100 % (as low as 55 % in some
months), with many parameters causing only a small amount
(around 5 %) of the variance. This suggests that important
interactions between multiple parameters in multiple regions
have been causing much of the global mean aerosol ERF
variance in recent decades.

There are multiple ways in which the causes of aerosol
ERF uncertainty in the 1978–2008 period differ from those
in the 1850–2008 period. Firstly, natural aerosol emission
parameters have little influence on recent-decadal aerosol
ERF uncertainty because the global mean 1978–2008 aerosol
ERF depends more linearly on changing anthropogenic emis-
sions than the 1850–2008 aerosol ERF (Carslaw et al., 2013).
Secondly, the cloud radiation parameter Rad_Mcica_Sigma
causes very little (less than 3 %) of the 1978–2008 aerosol
ERF variance. The reduced importance of this parameter as
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Figure 6. Percentage contributions to variance in 1978–2008 global, monthly and annual mean (a) ERFACI, (b) ERFARI and (c) aerosol
ERF. Figure features are identical to Fig. 4.

a cause in aerosol ERF uncertainty results from the cancel-
lation of regional aerosol ERFs of opposite sign, which also
depends on the linearity of the multi-decadal aerosol ERF
response to anthropogenic emission changes. Thirdly, in the
1978–2008 period anthropogenic and model process param-
eters are a larger source of aerosol forcing uncertainty, as in
previous analysis of this period (Regayre et al., 2014). Here,
uncertainty in the deposition rates of aerosols and aerosol
precursor gases account for most (around 20 % each) of the
multi-decadal aerosol ERF variance. The aerosol process pa-
rameter Cloud_pH causes another 10 % of the 1978–2008
aerosol ERF variance. The anthropogenic emission param-
eter Anth_SO2 and other model process parameters (Sig_W,
Rain_Frac and BC_RI) each cause only a small amount
(around 3 %) of the variance.

3.3 Sources of uncertainty in ToA radiative flux

Identifying the sources of ToA reflected short-wave radiation
(RSR) uncertainty will inform our understanding of how ra-
diative flux measurements can help to constrain the aerosol
ERF uncertainty (Lohmann and Ferrachat, 2010) because
the aerosol ERF is essentially the aerosol-forced change in

RSR between the pre-industrial (or 1978) and present-day at-
mospheres (plus additional small changes in outgoing long-
wave radiation). The causes of present-day ToA RSR vari-
ance are summarised in Fig. 7 and are very similar in the
pre-industrial and 1978 atmospheres (not shown).

The dominant source of ToA RSR uncertainty is the cloud
radiation parameter Rad_Mcica_Sigma, which was also the
dominant parameter for the pre-industrial to present-day
aerosol ERF. Uncertainty in this parameter alone causes over
60 % of the RSR variance by altering the total cloud albedo.
The dominant role of this cloud radiative parameter in caus-
ing uncertainty in the ToA radiative flux and aerosol ERF
suggests that constraining this parameter to a very narrow
range should constrain the uncertainty in radiative fluxes
(Haerter et al., 2009; Lohmann and Ferrachat, 2010) and con-
sequentially in aerosol ERF (Lee et al., 2016). But of course,
there are a number of other parameters (Dbsdtbs_Turb_0,
Ent_Fac_DP, Sig_W and C_R_Correl) that cause ToA RSR
uncertainty by altering the amount and/or albedo of clouds
in the model. The mechanisms for altering cloudiness and
therefore the ToA radiative flux are different for each param-
eter. The Dbsdtbs_Turb_0 parameter causes around 10 % of
the ToA RSR variance by altering the mixing rate of clean
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Figure 7. Percentage contributions to variance in present-day (2008) global, monthly and annual mean ToA (a) cloudy-sky RSR, (b) clear-sky
RSR and (c) RSR. Figure features are identical to Fig. 4.

and cloudy air masses. Increasing the proportion of dry air
in clouds has a dramatic effect on the amount of low-altitude
cloud simulated in the model, making Dbsdtbs_Turb_0 the
dominant cause of uncertainty in low-altitude cloud frac-
tion (Fig. 8). The Ent_Fac_Dp, Sig_W and C_R_Correl pa-
rameters each cause around 5 % of the RSR variance. The
Ent_Fac_Dp parameter affects the strength of convection,
which also alters precipitation rates and the vertical distri-
bution of simulated clouds. Sig_W controls the activation
of cloud condensation nuclei into cloud droplets (affecting
droplet effective radius and cloud albedo), and C_R_Correl
alters the rate of cloud droplet accretion by precipitating
raindrops. The only parameter to cause ToA RSR variance
(around 10 %) by directly altering atmospheric aerosol con-
centrations is Sea_Spray.

Figure 9 summarises the relative contributions of atmo-
spheric and aerosol parameters to uncertainty in global mean
values of present-day ToA RSR (from Fig. 7) and aerosol
ERFs over the periods 1978–2008 (Fig. 6) and 1850–2008
(Fig. 4). Atmospheric parameters cause the majority (around
80 %) of the variance in present-day ToA radiative flux,
but only around 30 % of the variance in 1850–PD aerosol

ERF and less than 10 % of the 1978–PD aerosol ERF vari-
ance. The rest of the uncertainty is attributable to the aerosol
model. This disparity arises because contributions to vari-
ance in aerosol ERF depend on how parameters influence the
atmosphere’s response to the change in anthropogenic emis-
sions, whilst RSR variance depends on how they influence
the state of the atmosphere.

3.4 Identifying the sources of uncertainty at the
regional level

3.4.1 Regional sources of uncertainty

Regional forcings can be important drivers of global and re-
gional climate change (Chalmers et al., 2012; Booth et al.,
2012; Bollasina et al., 2013; Shindell et al., 2013; Kirt-
man et al., 2013; Villarini and Vecchi, 2013; Allen et al.,
2014). Furthermore, important sources of aerosol forcing
uncertainty may be overlooked if regional sensitivity anal-
ysis results are neglected (Regayre et al., 2015). Examin-
ing how these sources of regional forcing uncertainty com-
bine to cause uncertainty in global mean forcing uncer-
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Figure 9. The relative contributions from atmospheric and aerosol
parameters to variance in ToA radiative fluxes and aerosol effective
radiative forcing over the 1978–2008 and 1850–2008 periods.

tainty will inform our understanding of how to best obser-
vationally constrain the uncertainty. We identified regions
of substantial aerosol ERF (ensemble mean stronger than
around −2.5 W m−2) for more in-depth analysis (Table 3 and
Fig. 10). Emulators of regional-mean aerosol ERF and its
components were created so that the key causes of variance
in each region could be identified (Fig. 11).

The main causes of regional aerosol ERF uncertainty
are often those parameters that cause global mean uncer-
tainty. However, there are substantial differences between
regions. Some parameters are important causes of global

(a)
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Figure 10. Maps of contributions to variance in (a) 1850–2008
aerosol ERF and (b) present-day (2008) ToA RSR from atmo-
spheric and aerosol parameters. Each pixel contains a box that is
shaded in proportion to the amount of variance caused by each
source of uncertainty.

mean aerosol ERF uncertainty because they cause a small
amount (at least 5 %) of the uncertainty in nearly all re-
gions. For example, the DMS parameter causes around 5 %
of the aerosol ERF variance in most regions and consequen-
tially causes around 15 % of the global mean variance. The
cloud radiation parameter Rad_Mcica_Sigma (which causes
nearly 30 % of the industrial-period aerosol ERF variance)
also causes aerosol ERF variance in most regions. But the
amount of regional aerosol ERF variance accounted for by
this parameter ranges from less than 3 % (R9) to around 35 %
(R2, R3, R4).

Other parameters are important causes of global mean
aerosol ERF uncertainty despite being important causes of
uncertainty in only around half of the regions examined.
For example, the Sea_Spray parameter (which causes nearly
20 % of the global mean aerosol ERF variance) is by far the
largest source (around 60 %) of aerosol ERF variance in the
North Pacific (R1) and causes between 10 and 30 % of the
variance in several other marine regions. However, in tropi-
cal marine regions (R6 and R10) and regions containing con-
tinental land mass (R3, R8 and R11) Sea_Spray causes less
than 3 % of the aerosol ERF variance. The land-based re-
gions (R3, R8, R11) are also where the cloud updraft param-
eter Sig_W causes aerosol ERF variance. The importance of
Sig_W over continents suggests cloud albedo is most sensi-
tive to uncertainty in updraft velocity in the most polluted re-
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Table 3. Latitude and longitude boundaries for regions R1–R11. Some regional averages are filtered to include only marine or non-marine
data.

Region Description Filter Latitudes Longitudes

R1 North Pacific Marine 32.5 to 54 144 to −125
R2 East Pacific stratocumulus deck Marine 16 to 41 −146 to −104
R3 Canada All 45 to 73 −115 to −61
R4 South-east Pacific stratocumulus deck Marine −26 to 1 −98 to −70
R5 North Atlantic Marine 27 to 59 −53 to −12
R6 South-east North Atlantic Marine 8.5 to 26 −44 to −17
R7 Arctic Marine 61 to 89 −33 to 57
R8 Europe All 37.5 to 71.5 −12 to 41
R9 South-east Atlantic stratocumulus deck Marine −18 to 3 −16 to 13
R10 North Indian Ocean Marine 5.5 to 23 63 to 94
R11 China Land 21 to 40 98 to 123
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Figure 11. Sources of variance (a, b, c) and grouped atmospheric and aerosol contributions to variance (d, e, f) for 1850–2008 annual mean
(a, d) aerosol ERF, (b, e) ERFARI and (c, f) ERFACI for the 11 regions defined in Table 3 and highlighted in Fig. 10.

gions where cloud droplet concentrations are updraft-limited
(Reutter et al., 2009; Sullivan et al., 2016).

Anth_SO2 makes its greatest contribution to aerosol ERF
uncertainty in tropical marine regions (R6 and R10) by caus-
ing uncertainty in ERFARI. The Anth_SO2 parameter also
causes up to 40 % of the ERFARI variance near anthropogenic
sources (R3 and R8) and up to 30 % in outflow regions (R1,

R2, R5). However, these substantial causes of ERFARI vari-
ance translate into small (less than 10 %) causes of aerosol
ERF variance in most regions. The aerosol deposition pa-
rameter (Dry_Dep_Acc) also causes more of the regional
ERFARI variance (up to 45 %) than regional aerosol ERF
variance (less than 15 %). However, despite being an im-
portant cause of 1850–2008 aerosol ERF uncertainty in sev-
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eral regions, the dry-deposition parameter is not an important
cause of global mean aerosol ERF uncertainty over this pe-
riod (Fig. 4c).

The importance of carbonaceous aerosol parameters
(Carb_BB_Ems, Carb_BB_Diam, BC_RI and OC_RI) as
causes of aerosol ERF uncertainty is highly region de-
pendent. Uncertainty in the emission flux of carbonaceous
aerosols Carb_BB_Ems causes between 25 and 45 % of the
ERFARI variance in and near biomass burning regions (R4,
R7 and R9). However, this only translates into a cause of
aerosol ERF uncertainty in regions R7 and R9 where the
Carb_BB_Ems parameter also causes uncertainty in ERFACI.
Uncertainty in the size of emitted carbonaceous absorbing
aerosols (Carb_BB_Diam) is more important as a cause of
uncertainty in ERFACI than in ERFARI because it determines
the capacity for carbonaceous aerosols to act as cloud con-
densation nuclei. Therefore, Carb_BB_Diam predominantly
causes aerosol ERF variance (up to 15 %) in the cloudiest re-
gions (R1, R5, R6 and R9). Uncertainty in the radiative prop-
erties of carbonaceous aerosols (BC_RI and OC_RI) collec-
tively causes ERFARI variance in almost all regions. How-
ever, uncertainty in aerosol ERF is affected by these param-
eters only over China (R11) and near to India (R10). Over
China the anthropogenic emission parameter (Anth_SO2) is
surpassed by the BC_RI and OC_RI parameters as causes
of ERFARI and aerosol ERF uncertainty, despite carbona-
ceous aerosols making up a relatively small proportion of
aerosol emissions in these regions (Granier et al., 2011). The
BC_RI parameter causes around 50 % of the ERFARI vari-
ance and around 25 % of the variance in aerosol ERF in
China. However, anthropogenic emissions do cause uncer-
tainty in ERFARI and aerosol ERF in the Pacific (an outflow
region for Chinese emissions). Near India, uncertainty in
BC_RI and OC_RI cause around 30 and 10 % of the aerosol
ERF variance respectively and cause a smaller amount (be-
tween 5 and 10 %) of variance in each of the forcing compo-
nents. Despite being important sources of forcing uncertainty
at the regional level, Carb_BB_Diam is the only parameter
related to carbonaceous aerosols which causes uncertainty in
global, annual mean aerosol ERF.

Figure 11d–f show that atmospheric parameters combined
can cause up to around 50 % of the regional aerosol ERF vari-
ance despite causing only around 30 % of the global mean
aerosol ERF variance. However, there are multiple regions
where uncertainty in the physical atmosphere parameters
causes less than 20 % of the aerosol ERF variance. Where
atmospheric parameters are an important source of regional
aerosol ERF uncertainty, the Rad_Mcica_Sigma parameter
is almost always the most important. On its own, uncertainty
in Rad_Mcica_Sigma causes over 20 % of the aerosol ERF
variance in coastal Pacific regions (R2 and R4) as well as
continental regions (R3 and R8). The atmospheric param-
eter controlling the accretion rate of aerosols by raindrops
(C_R_Correl) causes around 10 % of the aerosol ERF vari-
ance in several tropical or sub-tropical regions off the west-

ern coast of continents (R2, R4, R6 and R9). These are all re-
gions of persistent stratocumulus cloud where cloud albedo
is highly susceptible to changes in aerosol concentrations
and size distributions. The clear- and cloudy-air mixing pa-
rameter Dbsdtbs_Turb_0 causes between 5 and 10 % of the
variance in aerosol ERF and its components in the North-
ern Hemisphere regions of persistent stratocumulus cloud
(R2 and R6) but not in Southern Hemisphere regions (R4
and R9). This suggests that the relatively polluted Northern
Hemisphere stratocumulus clouds are more sensitive to the
sub-grid mixing of clear- and cloudy air masses. In tropical
regions (R6, R9 and R10) the convective parameter Mparwtr
causes a small amount (3 to 5 %) of the aerosol ERF vari-
ance. This parameter alters the timing of precipitation and
therefore affects cloud and aerosol amount, and the ERFACI
near the Equator, where convective instability and precipi-
tation are greatest. The regions where physical atmosphere
parameters cause the least aerosol ERF variance are either
near to anthropogenic emission sources (R9, R10 and R11)
or downwind of them (R1 and R7).

These results show that the relative importance of individ-
ual parameters as sources of uncertainty differs between re-
gions. However, the most important causes of global mean
aerosol ERF uncertainty also cause uncertainty at the re-
gional level.

3.5 Observational constraint of the aerosol ERF
uncertainty

3.5.1 Effect of ToA RSR constraint on aerosol ERF
uncertainty

We now explore the extent to which present-day measure-
ments of global mean ToA RSR could in principle help to
constrain the change in flux between two time periods (the
aerosol ERF), which was previously explored by Lohmann
and Ferrachat (2010), who perturbed four physical atmo-
sphere parameters. We expect some constraint of aerosol
ERF uncertainty based on the common causes of uncertainty
in ToA RSR and aerosol ERF. Observational constraint of
a model output variable can lead to constraint of the uncer-
tain parameters. Therefore, when two model output variables
share common causes of uncertainty, we can expect that con-
straint of one output will lead to constraint of the other. Our
approach of drawing large samples of 1 million parameter
combinations from model emulators (using uniform pdfs for
each parameter, Sect. 2.3) enables this link through the uncer-
tain parameters to be understood, which is not possible just
from a perturbed parameter ensemble alone (e.g. Lohmann
and Ferrachat, 2010).

Our analysis reveals substantial overlap in the combi-
nations of parameters causing uncertainty in 1850–2008
aerosol ERF and present-day ToA RSR. The parameters
Rad_Mcica_Sigma, Sea_Spray, C_R_Correl and Sig_W ac-
count for about 60 % of the aerosol ERF uncertainty and
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about 80 % of the ToA flux uncertainty. It is important to
note that it is irrelevant for the observational constraint pro-
cess that the ToA flux is much larger than the aerosol ERF.
The important factor is that their uncertainties are caused by
common uncertain parameters, so constraint of one of them
will constrain the other through the constraint of the plausi-
ble parameter ranges and relationships.

Figure 12 shows the effect of constraining the mod-
elled present-day global, annual mean RSR to within
±0.25 W m−2 of 98.3 W m−2, the multi-year average of ob-
servations from the Clouds and the Earth’s Radiant En-
ergy System (CERES; Loeb et al., 2009). The ±0.25 W m−2

represents within-CERES product uncertainty (Loeb et al.,
2012) and neglects multiple other sources of satellite ob-
servational uncertainty (Loeb et al., 2009; Hartmann et al.,
2013). We also neglect uncertainty caused by unknown
model structural errors (Goldstein and Rougier, 2004; Sexton
et al., 2012; Stier et al., 2013), observation representative-
ness errors (Schutgens et al., 2017) and the emulators them-
selves (Oakley and O’Hagan, 2004) which are of the same
order of magnitude as the observational uncertainty. There-
fore, our RSR observational constraint provides an upper
bound on the potential reduction in aerosol ERF uncertainty.
This tight constraint eliminates 97 % of the model variants,
and the observationally constrained RSR range is less than
2 % of the original unconstrained range. Consequently, the
smaller set of model variants also predicts reasonably con-
strained 1978 and 1850 RSR ranges (Fig. 12a). However, de-
spite reducing the plausible parameter space by 97 % and the
RSR range by 98 %, the impact on the aerosol ERF uncer-
tainty is more modest (Fig. 12b and c). The effect of applying
the RSR observational constraint is to rule out 1850–2008
aerosol ERF values lower than around −2.4 W m−2, which
represents around 15 % of the original aerosol ERF range
(−2.7, −0.7 W m−2). However, the 95 % credible range is
only reduced by around 10 % because the distribution of
aerosol ERFs in the constrained sample is skewed towards
weaker forcings and the upper bound of the credible interval
(−0.6 W m−2) is larger (Table 4). This reduction in aerosol
ERF range is much less than the 56 % reduction found by
Lohmann and Ferrachat (2010) based on a set of 169 per-
turbed parameter simulations (compared to our 1 million
model variants). We discuss the reasons for this modest re-
duction in aerosol ERF uncertainty in Sect. 3.5.2 and 3.5.3.

3.5.2 Constraining the relationships between the
aerosol ERF and uncertain parameters

Figure 13 shows how aerosol ERF is related to the values of
the four main causes of aerosol ERF uncertainty before and
after applying the observational constraint. There are clear
relationships between the aerosol ERF and the individual
parameters, but they are highly uncertain (even in the con-
strained sample) because there are many compensating er-
rors among the other parameters (i.e. many ways to combine

the parameters to get the same ToA RSR but very different
aerosol ERF, Fig. 12). This diversity of credible model vari-
ants would be overlooked had we perturbed parameters indi-
vidually, as is the case with one-at-a-time perturbation exper-
iments (e.g. Gettleman, 2015).

For each of the 1 million model variants in our uncon-
strained sample, individual parameter values were drawn
from uniform distributions with ranges defined by the expert-
elicited pdfs. Therefore, prior to applying the observational
constraint, the model variants were evenly dispersed across
every two-dimensional parameter sub-space. We are there-
fore able to quantify the effect of the observational constraint
on the plausibility of individual and combined parameter val-
ues.

The cloud radiation parameter Rad_Mcica_Sigma is neg-
atively correlated with the ToA radiative flux, and this
leads to a positive correlation with aerosol ERF: increas-
ing its value decreases the simulated cloud albedo and
hence the ToA RSR. But ToA RSR is more sensitive to
Rad_Mcica_Sigma in the present-day atmosphere than in
the pre-industrial (because higher aerosol concentrations in-
crease the cloud albedo), so increasing the parameter value
weakens the aerosol ERF. Figure 13 shows that low values of
Rad_Mcica_Sigma (less than around 0.4 in the scaled range
0 to 1) are inconsistent with the observed RSR. The propor-
tion of model variants with Rad_Mcica_Sigma values less
than 0.4 drops from 40 % in the unconstrained sample to just
8 % in the constrained case. In other words, the observational
constraint suggests the plausible lower limit of this parameter
is higher than we assumed in our expert elicitation. We can
therefore state that the strongest aerosol ERFs are also im-
plausible (as shown in Fig. 12) because they are associated
with low values of Rad_Mcica_Sigma.

Figure 13 also shows that the aerosol ERF is weaker for
larger Sea_Spray and DMS values. An abundance of natural
aerosols increases background (pre-industrial) atmospheric
aerosol concentrations and limits the influence of anthro-
pogenic aerosol emissions on clouds and radiation (Carslaw
et al., 2013). Figure 13 shows that the observed ToA radiative
flux is more consistent with low emissions of natural aerosols
(the density of Sea_Spray values larger than 0.5 decreases
from 50 to 44 % after constraint of the ToA flux). The de-
creased likelihood of higher natural aerosol emissions in the
constrained sample suggests that the weakest aerosol ERF
values are less congruent with observed ToA RSR. However,
there remain many observationally plausible model variants
with high natural aerosol emissions.

The largest values of the cloud updraft parameter (Sig_W)
are also less plausible in the constrained sample (Fig. 13;
27 % of the sample are larger than 0.7, instead of 30 %).
This suggests that present-day RSR observations are more
consistent with lower vertical velocities, but the largest val-
ues cannot be ruled out completely because of the way that
other compensating parameters affect RSR. Lower values of
Sig_W weaken the aerosol ERF by reducing cloud droplet
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Figure 12. (a) Observationally constrained present-day ToA RSR and the values of 1978 and 1850 ToA RSR and (b) 1978–2008 and
(c) 1850–2008 aerosol ERF values from matching model variants. For each output variable the black lines show 95 % credible intervals
of the unconstrained 1-million-member sample of model variants. The black box contains all model variants within ±0.25 W m−2 of the
CERES-observed global annual mean present-day ToA RSR value. Purple boxes represent the 95 % credible intervals of values obtained
using model variants (parameter combinations) in the observationally constrained sample. Output from the simulation with all parameters
set to their median values is shown as dots. The median 1850–2008 aerosol ERF from the observationally constrained sample is displayed as
a diamond.

Table 4. Present-day ToA RSR constraints and the resulting 95 % credible intervals of 1850 RSR and 1850–2008 aerosol ERF (W m−2) for
the unconstrained and constrained samples.

Constraint Sample size 2008 RSR 1850 RSR 1850–2008 ERF 1850–2008
ERF credible

range

Unconstrained 1 000 000 (88.9, 120.1) (87.5, 118.0) (−2.65, −0.68) 1.97
CERES (98.3 ± 0.25 W m−2) 20 127 (98.05, 98.55) (94.2, 99.3) (−2.37, −0.59) 1.78
CERES North Pacific 108 493 (89.6, 106.8) (88.0, 105.1) (−2.25, −0.53) 1.72
(162.8 ± 3.3 W m−2)
Combined constraint 4699 (98.1, 98.5) (95.7, 97.8) (−2.30, −0.56) 1.74

concentrations primarily in the present-day polluted atmo-
sphere, because cloud droplet activation is more sensitive to
Sig_W in the present-day atmosphere than in the aerosol-
limited pre-industrial atmosphere. Therefore, observational
constraint of ToA radiative flux reduces the likelihood of
weak aerosol ERFs through a constraint of the distribution
of Sig_W values.

3.5.3 Constraining the relationships between uncertain
parameters

Figure 13 also shows the important parameter inter-
dependencies revealed by observationally constraining the
ToA radiative flux. The Rad_Mcica_Sigma and Sea_Spray

parameters are positively correlated in the observationally
constrained sample. For example, a modelled ToA RSR con-
sistent with observations can be achieved using high val-
ues of Rad_Mcica_Sigma (which decreases cloud albedo)
and relatively high values of Sea_Spray (which increases
cloud albedo). In other words, these parameters have com-
pensating effects on the ToA radiative flux. The same com-
pensation applies to the aerosol ERF: the weakest ERFs in
our pdf (larger than around −1 W m−2) are associated with
high Rad_Mcica_Sigma and high Sea_Spray values. How-
ever, the RSR and aerosol ERF depend on these two param-
eters in quite different ways. Higher Rad_Mcica_Sigma val-
ues weaken the aerosol ERF by reducing the present-day ToA
RSR, whilst higher Sea_Spray values weaken the aerosol
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Figure 13. Probability density distributions of aerosol ERF and the parameters Rad_Mcica_Sigma, Sea_Spray, DMS and Sig_W in the
unconstrained sample (first column, a–d) and in the sample constrained to match the observed global annual mean RSR (second column,
e–h). Probability density distributions of parameter values are shown for the constrained sample (i–n). Colour bars labelled a–n correspond
with the sub-figures and show the percentage of each sample within each pixel. Some colour bars apply to multiple panels.

ERF by increasing present-day RSR. Hence, constraining the
relationship between the two largest sources of aerosol ERF
uncertainty using observations of present-day RSR has not
drastically reduced the aerosol ERF uncertainty.

The cloud droplet activation parameter (Sig_W) is also
positively correlated with Rad_Mcica_Sigma in the obser-
vationally constrained sample (Fig. 13). As with sea spray
emissions, higher values of Sig_W increase cloud albedo
and compensate for the effect of high Rad_Mcica_Sigma
values on ToA RSR. These parameters both exert a greater
influence on present-day cloud radiative properties; in the
case of Sig_W, cloud radiative properties are more suscep-
tible to this parameter in the present-day simulations be-
cause cloud droplet activation is more likely to be updraft-
limited (rather than aerosol-limited) in an anthropogeni-
cally polluted atmosphere. Therefore, in contrast to the
Sea_Spray and Rad_Mcica_Sigma relationship, the Sig_W
and Rad_Mcica_Sigma parameters have additive (not com-
pensating) effects on aerosol ERF. Parameters with additive
effects on the aerosol ERF are more susceptible to the ef-

fects of model equifinality. Therefore, the relationship be-
tween aerosol ERF and Sea_Spray is better constrained than
the relationship between aerosol ERF and Sig_W.

The Sig_W and Sea_Spray parameters both act to counter
the effect of Rad_Mcica_Sigma on cloud albedo in the con-
strained sample. Therefore, the density of model variants
with simultaneously large (above around 0.6) Sig_W and
Sea_Spray values is lower in the constrained sample (down
from 16 to 11 %). No such restrictions apply to simultane-
ously small values (less than 0.4) of these two parameters.
In fact the proportion of simultaneously small Sig_W and
Sea_Spray in the sample increases from 16 to 19 % after ap-
plying the constraint which rules out other parts of param-
eter space. This suggests that in simulations with low nat-
ural aerosol emissions and low cloud droplet activation ef-
ficiency, there are multiple other contributing factors keep-
ing the ToA RSR in agreement with observations. For ex-
ample, by limiting the mixing rates of clear and cloudy air
masses, a low value of the Dbsdtbs_Turb_0 parameter (an
important source of ToA RSR uncertainty) can compensate
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for the decrease in cloud droplet concentrations caused by
a low value of the cloud droplet activation parameter. A re-
placement source of aerosols large enough to act as cloud
condensation nuclei is also required to compensate for low
natural aerosol emissions. There are multiple ways in which
this could be achieved. For example, a low value of the dry-
deposition velocity parameter Dry_Dep_Acc (known to be
important for cloud active aerosol concentrations; Lee et al.,
2013) increases the atmospheric lifetime of aerosols, allow-
ing them to grow in size and activate to form cloud droplets,
even in a low-activation-efficiency simulations.

The DMS parameter has no obvious relationships with
the other main sources of aerosol ERF uncertainty in the
constrained sample. This is despite DMS affecting aerosol
ERF in the same regions as other key parameters and caus-
ing aerosol ERF uncertainty through a similar mechanism
to Sea_Spray. In other words, higher values of DMS and
Sea_Spray suppress the aerosol ERF by increasing back-
ground (1850) aerosol concentrations. Therefore, the value
of the DMS parameter is more likely (54 % of the time) to be
small (lower than 0.5) when the value of Sea_Spray is high
(above 0.8). In summary, model variants with high values of
both of the important natural aerosol emission parameters are
less likely to be consistent with the observed ToA RSR.

These results highlight the importance of understanding
the potential causes of equifinality when interpreting results
from such a complex model (Beven and Freer, 2001). Reduc-
ing the remaining uncertainty in global mean aerosol ERF
will require observations which further constrain the rela-
tionships between aerosol ERF and the key sources of un-
certainty.

3.5.4 Regional constraint of global mean aerosol ERF
uncertainty

Our overall aim is to constrain the uncertainty in global
annual mean aerosol ERF because the total ERF is com-
monly used to quantify the multi-model diversity in histor-
ically forced changes to the climate (Myhre et al., 2013;
p. 661). However, regional variations in aerosol forcing can
be important drivers of climate variability (Chalmers et al.,
2012; Booth et al., 2012; Bollasina et al., 2013; Shindell
et al., 2013; Kirtman et al., 2013) and can contribute to
global mean forcing uncertainty in complex ways (Regayre
et al., 2015). Therefore we now use satellite observations of
the North Pacific (region R1; latitude: 32–54◦ N; longitude:
125◦ W–144◦ E; the largest regional contribution to global
mean aerosol ERF) ToA RSR from July to further constrain
annual, global mean aerosol ERF uncertainty.

The regionally averaged CERES-observed ToA RSR is
162.8 W m−2 (CERES, 2017) with an estimated uncertainty
of ±2 % (Hartmann et al., 2013, 2.3.1, p. 181). The origi-
nal sample of 1 million model variants is reduced to around
10 % by applying the North Pacific July mean RSR constraint
and to just 0.5 % of the original sample by applying both the

global mean and North Pacific constraints together (Table 4).
In combination with the global mean observation, the North
Pacific RSR constraint has little additional effect on the cred-
ible forcing ranges (−2.30 to −0.56 W m−2 compared to
−2.37 to −0.59 W m−2). The range of plausible aerosol ERF
values has been further reduced by only around 2 %. This
suggests that the regional observation has provided little ad-
ditional constraint on the relationships between aerosol ERF
and the main sources of uncertainty (Fig. S1 in the Supple-
ment).

4 Conclusions

We sampled the uncertainty in 18 aerosol and 9 atmospheric
parameters within a single global climate model, identified
the important causes of aerosol ERF uncertainty and con-
strained this uncertainty using ToA radiative flux measure-
ments. The credible range of aerosol ERF values in our
original sample of 1 million model variants is −2.65 to
−0.68 W m−2 when we assume the parameter values have
equal likelihood of being at any point in the elicited ranges.
The aerosol ERF uncertainty decreases when we constrain
global mean ToA RSR (−2.37 to −0.59 W m−2) and when
we constrain both North Pacific and global RSR (−2.30 to
−0.56 W m−2). These results suggest that additional con-
straint of aerosol ERF uncertainty could be achieved using
multiple regional ToA flux observations. However, a greater
reduction (25 %) in the aerosol ERF uncertainty (95 % cred-
ible range, −2.18 to −0.71 W m−2) can be achieved by ap-
plying probability distributions to the parameters based on
expert elicitation (Sect. 3.1). These results suggest that the
strongest aerosol ERF values (about 20 % of the uncon-
strained range) can be considered implausible based on ex-
pert opinion and observational evidence.

Our results reveal that aerosol parameters take a domi-
nant role over atmospheric parameters as the leading cause
of aerosol ERF uncertainty over the industrial period and in
recent decades. Atmospheric parameters cause the majority
(over 80 %) of the uncertainty in present-day ToA reflected
short-wave radiation but only around 30 % of the aerosol
ERF variance. A handful of the aerosol and atmospheric pa-
rameters that we have examined dominate the uncertainty in
global mean aerosol ERF. A cloud radiation parameter, natu-
ral aerosol emissions and model process parameters that af-
fect cloud droplet formation and removal are the key sources
of global mean aerosol ERF uncertainty over the industrial
period. The most important causes of 1978–2008 aerosol
ERF uncertainty are model process parameters controlling
the deposition rates of aerosols and aerosol precursor gases.
Our analysis shows that uncertainties in aerosol parame-
ters are of secondary importance for determining present-
day ToA radiative flux, but they are a much more important
source (over half) of the uncertainty in the change in atmo-
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spheric radiative balance (the aerosol ERF) on multi-century
and multi-decadal timescales.

Uncertainty in the ERFARI component of forcing (−0.19
to 0.13 W m−2) is largely caused by parameters related
to carbonaceous aerosols. However, these parameters con-
tribute little to uncertainty in the total aerosol ERF, which
is dominated by uncertainty in the ERFACI component of
forcing (−2.20 to 0.61 W m−2) in our analyses. In our sim-
ulations light-absorbing aerosols heat the local atmosphere
above clouds, suppress convection and affect cloud cover.
However, we do not represent all of the processes that deter-
mine the magnitude of carbonaceous aerosol forcing. For ex-
ample, we neglect the deposition of absorbing aerosols onto
high-albedo land surfaces. Therefore, despite the large uncer-
tainties in our carbonaceous aerosol parameters, our global
mean ERFARI uncertainty range does not span the range of
values found by Bond et al. (2013).

At the regional level, uncertainty in aerosol ERF is pre-
dominantly caused by the same parameters that cause global
mean aerosol ERF uncertainty. Some parameters such as the
cloud radiation parameter Rad_Mcica_Sigma and the natu-
ral aerosol emission parameter DMS are important for global
mean aerosol ERF uncertainty because they cause at least a
small amount (5 %) of the uncertainty in nearly all regions.
Other important causes of global mean aerosol ERF uncer-
tainty (Sea_Spray, Sig_W and Anth_SO2) are amongst the
largest causes of the aerosol ERF uncertainty in some regions
(marine, polluted and polluted-marine regions respectively)
but cause very little of the uncertainty elsewhere. We show
that because carbonaceous aerosols only cause aerosol ERF
uncertainty in high-emission months and in regions close to
emission sources, most of the carbonaceous aerosol param-
eters (with the exception of Carb_BB_Diam) are not impor-
tant for global, annual mean aerosol ERF uncertainty.

One important source of ERFACI uncertainty we did not
include in our study is the autoconversion rate of cloud drops
into raindrops (Michibata and Takemura, 2015; Malavelle
et al., 2017; Toll et al., 2017). Were we to include the au-
toconversion rate as an additional source of uncertainty, the
credible range of aerosol ERFs would be larger. If the au-
toconversion rate were an important cause of uncertainty in
both ToA flux and aerosol ERF, the constraint on ERF uncer-
tainty would likely be stronger. However, if autoconversion
were to affect ToA flux and aerosol ERF in different ways
or to different extents, then including this additional source
of uncertainty may amplify the equifinality problem by in-
troducing another important degree of freedom. The addi-
tional uncertainty from autoconversion could be constrained
to a large extent using collocated observations of changes in
liquid water path, cloud fraction and aerosol concentrations.
We expect such observations of cloud-aerosol relationships
will be particularly useful for constraining a model’s ability
to represent transitions between cloud regimes, and we plan
to test their efficacy as constraints in the next phase of our
research.

A well-constrained multi-decadal historical aerosol ERF
would provide more policy-relevant information on near-
term temperature change than industrial-period ERF, which
remains challenging to constrain (Hawkins et al., 2017).
Constraining recent-decadal aerosol ERF uncertainty may
prove to be an easier task than constraining uncertainty in
industrial-period forcing because the multi-decadal uncer-
tainty is caused by model process parameters that could
be observed directly. Global mean aerosol ERF in re-
cent decades has depended more linearly on changing an-
thropogenic emissions than industrial-period aerosol ERF.
Therefore, the causes of aerosol ERF uncertainty in recent
decades (1978–2008) are model deposition rates (model pro-
cess parameters) and anthropogenic emissions, whilst the
1850–2008 aerosol ERF is most sensitive to natural aerosol
emissions (which collectively cause around 63 % of the
aerosol contribution to ERFACI variance). The magnitude of
global mean aerosol forcing on the decadal timescale de-
pends on the combination of uncertain positive and nega-
tive regional forcings (Regayre et al., 2015; Fig. 5). Hence,
projects designed to improve our understanding of the state
and behaviour of aerosol–cloud–radiation interactions on re-
gional scales and within specific cloud regimes will aid ef-
forts to constrain global mean forcing. In summary, reducing
the uncertainty in aerosol ERF will require a much deeper
understanding of how the uncertainties in state variables and
model parameters, as well as the relationships between them,
combine at the regional and global levels in complex global
climate models. We develop our understanding of the po-
tential to constrain regional aerosol ERF uncertainty using
multiple observable quantities (e.g. aerosol optical depth and
aerosol concentrations) in Johnson et al. (2018).

Climate models are routinely tuned to match present-day
ToA radiative fluxes (in conjunction with multiple other ob-
servational metrics) so as to ensure accurate characterisation
of the state of the atmosphere (Kay et al., 2012; Mauritsen
et al., 2012; Flato et al., 2013; Hourdin et al., 2017). Our
sensitivity analysis shows that the ToA radiative flux and
the 1850–2008 aerosol ERF share common sources of uncer-
tainty. Therefore, observational constraint of ToA flux repre-
senting just 0.5 % of the model’s prior range has reduced the
95 % credible interval of our simulated global mean aerosol
ERF by around 10 %. These results counter the belief that ob-
servations of ToA reflected short-wave radiation should not
constrain the aerosol ERF (because RSR values are 2 orders
of magnitude larger than the aerosol ERF). However, com-
prehensively sampling model uncertainty provides a densely
populated multi-dimensional parameter space which con-
nects the observed value (RSR) to the model variable of in-
terest (the aerosol ERF). The RSR observation constrains the
parameter space and in doing so constrains the aerosol ERF
uncertainty. However, we caution that the constraint will only
be robust if all relevant parameters affecting RSR have been
explored.
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Our results show that the plausible ranges of individual pa-
rameters as well as the relationships between them are con-
strained by present-day observations, thereby substantially
reducing the model parameter space that can be considered
observationally plausible. We use RSR observations with a
small observational uncertainty to demonstrate their poten-
tial use as a constraint on aerosol ERF uncertainty. However,
despite a very large reduction in plausible parameter space,
the effectiveness of the observational constraint is modest be-
cause it is hampered by compensating effects between mul-
tiple uncertain parameters, which results in multiple equally
plausible solutions (sometimes referred to as “equifinality”;
Beven and Freer, 2001; Lee et al., 2016). The challenge now
is to find optimum combinations of constraints that overcome
this problem using a more robust framework that accounts for
all quantifiable sources of uncertainty (Sexton et al., 2012;
Williamson et al., 2013). For aerosol ERF this means simul-
taneously constraining aerosols, clouds, and radiation state
variables as well as the relationships between them so as
to constrain uncertainty in the change of state on multiple
timescales.

By highlighting how different parameters and processes
control the change in planetary radiative balance in a single
state-of-the-art model, our results suggest that compensat-
ing effects between groups of uncertain parameters and as-
sociated processes are one important reason why uncertainty
in aerosol ERF has persisted through several generations of
climate model development. Given the huge range of inter-
acting processes and uncertainties, it is highly unlikely that
single observational constraints (as employed in so-called
emergent constraint studies; e.g. Cherian et al., 2014) will
enable a robust reduction in aerosol ERF uncertainty. Our re-
sults, combined with those of other studies that have compre-
hensively sampled model uncertainties (Calisto et al., 2014;
Lee et al., 2016; Ghan et al., 2016), suggest that reducing
aerosol ERF uncertainty further will require the simultaneous
application of a large number of observational constraints
(Sanderson, 2010; Sexton et al., 2012; Collins et al., 2012;
Reddington et al., 2017) covering polluted and pristine en-
vironments (Carslaw et al., 2013; Hamilton et al., 2014) and
targeting the specific processes and relationships identified
here.
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