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Abstract 

The powdery mildews (Ascomycota, Erysiphales) are a group of obligate biotrophic fungi found on 

nearly 10,000 angiosperm plant hosts globally including many that are important horticultural and 

agricultural plants. Infection can greatly reduce the appearance and vigour of the host therefore 

reducing attractiveness and yields significantly. A reliable and efficient method is required for 

unambiguous identification of these often cryptic species such that spread to new areas and/or new 

hosts can be detected rapidly and controlled early. This research aims to combine currently accepted 

techniques – host identification, fungal morphological analysis, DNA sequencing of the fungal rDNA 

ITS region – with sequencing of additional nuclear DNA regions in order to increase the reliability of 

the identification process via BLAST, DNA Barcoding, and phylogenetic reconstruction. Samples were 

collected through the Powdery Mildew Survey (a citizen science scheme), begun in 2014 and 

concluded in 2016. Generic fungal DNA primers were found to amplify non-powdery mildew species, 

some of which were mycoparasites, as well as powdery mildews, and were therefore not a useful 

technique for accurate identification of powdery mildews. Consequently specific primers were 

developed for the amplification of the Actin, β-tubulin, Chitin synthase, Mcm7, Translation 

elongation factor 1-α, and Tsr1 regions. Results indicate that several of these regions could be used 

alongside ITS to increase identification power (reliability and accuracy), with regions Mcm7 and β-

tubulin performing particularly well. These rapid diagnostic techniques could provide a valuable tool 

for plant quarantine, and plant breeding, particularly for greater security in the movement of plants 

and plant products in trade. 
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Chapter 1: Introduction 

1.1: Powdery mildews 

Powdery mildews (PMs) (Ascomycota, Erysiphales) are some of the most diverse and frequently 

encountered plant pathogenic fungi in the world (Braun, 1987). The 872 different species form a 

characteristic white talcum-powder like coating on the leaves, shoots, buds and fruits of 

approximately 10,000 different host plants (Braun, 1987) including many economically important 

crops such as grains, fruit trees, grapes and ornamentals (Figure 1.1). These obligate biotrophic fungi 

have historically posed problems for mycological taxonomists as many species are morphologically 

almost identical and require expert knowledge or molecular techniques to discriminate between 

them. 

 

Figure 1.1: Characteristic white talcum-powder-like colonies forming on the leaf surface of Geranium 
phaeum L. Photo by O. Ellingham. 
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1.2: The importance of fungal diseases 

Fungal infections of plants are hugely diverse in their morphology, biology, ecology, damage caused, 

and host plants infected. Fungi are known to infect plants in the majority of terrestrial environments, 

and can cause large-scale damage to natural ecosystems (Fisher et al., 2012) and farmed plants used 

in agriculture (Oerke, 2006), arboriculture (Pawsey, 1973), and horticulture (Verma & Sharma, 1999). 

Fungal diseases are key players in the continuous evolutionary arms-races of, and between, animals, 

plants, fungi and their competitors; infecting various hosts in order to transfer the flow of nutrients 

into their own cells. Damage can be quantified in terms of loss of ecosystem services and loss of crop 

production. The Food and Agriculture Organization (FAO) estimates that pests and diseases are 

responsible for about 25% of crop loss (Martinelli et al., 2015). This thesis will focus on the 

diagnostic techniques for identifying the fungal plant disease predicted to be one of the greatest 

threats to global, future food security (Bebber & Gurr, 2015): powdery mildew (Figure 1.2). 

 

Figure 1.2: PM is forecast to be the fungal plant pathogen with greatest future threat to food 
security. Here Blumeria graminis (DC.) Speer infects Triticum aestivum L. Photo by O. Ellingham. 
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1.3: Importance of powdery mildew 

The major economic impact of PMs is the result of just a handful of the overall diversity of species 

infecting our most important crops. As a result, PMs known to cause the most extensive crop 

damage are now well studied to the genome level (Spanu et al., 2010, Wicker et al., 2013, Jones et 

al., 2014). However, the majority of PM species are poorly known and there is little DNA sequence 

data available for them. PMs infect numerous plants important to horticulture and agriculture. The 

disease causes early defoliation, stunted growth, and discolouration or malformation of leaves, all 

resulting in decline of growth in infected plants, reduced aesthetic value, negative effects on yield 

quality (Zhang et al., 2005) and quantity (Conner et al., 2003) and reduction in product quality 

(Limkaisang et al., 2006, Mmbaga et al., 2016).  

Host plants are distributed globally, though the majority studied thus far are found in 

temperate regions. Studies have shown PM to adversely affect numerous abundant and 

economically important genera of plants in the Northern Hemisphere including, but not limited to 

Pisum (Munjal et al., 1963, Gritton & Ebert, 1975, Warkentin et al., 1996, Tiwari et al., 1997), 

Quercus (Manos et al., 1999), Fragaria (Xiao et al., 2001), Malus (Pessina et al., 2014), Prunus 

(Lalancette et al., 2014), Vitis (Fuller et al., 2014), and Cornus (Mmbaga et al., 2016), as well as many 

within the families Cucurbitaceae (Sitterly, 1978, McGrath & Thomas, 1996), Solanaceae (Kiss et al., 

2001, Lebeda et al., 2014), and Poaceae (Inuma et al., 2007, Jankovics et al., 2015). Barley and wheat 

PMs are major problems in the crop producing regions of Asia, North and East Africa, North and 

South America and northern Europe, causing a loss of yield up to 20% (Curtis et al., 2002). Similarly, 

PMs cause 10-15% yield loss in peppers grown in the USA each year (Sabaratnam, 2012).  

PMs in tropical or subtropical regions are less well studied than those of the temperate 

regions and, like all PMs, often lack the teleomorphic life stage; therefore their ecology and 

classification often remain uncertain (Limkaisang et al., 2006). The cultivated plants of tropical and 

subtropical regions that PMs infect are however economically important. These include, but are not 
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limited to, Hevea brasiliensis (Shaw, 1967), Bixa orellana (Peregrine & Siddiqi, 1972), Mangifera 

indica (Boesewinkel, 1980), Citrus spp. (Boesewinkel, 1981), Anacardium occidentale (Sijaona et al., 

2001), and Acacia spp. (Takamatsu et al., 2007). As a result billions are spent annually on resistant 

cultivars and fungicides intended to aid the control of PMs that infect economically important plants 

(Savary et al., 2012). 

Losses can be limited via a suite of varying prevention techniques including use of resistant 

plant varieties, application of fertilisers and fungicides at the right time and dose, and limiting the 

spread of potential detrimental fungi by monitoring the trade and transport of plants (Schrader & 

Unger, 2003). Each of these is aided by knowledge of fungal biology (life-cycle); in order to apply 

fungicides at the most efficient time and even detect the fungi in the first instance. Diagnostic 

techniques can therefore be of huge importance for detection and identification of potentially 

harmful plant diseases in order to develop the best coping strategies.  

The importation of plants to the UK for use in horticulture has inevitably brought associated 

pathogens. Horticulture makes up 1.7% of all retail sales (£9 billion to the economy each year as an 

industry), and employs 300,000 people (The Royal Horticultural Society, 2013). The annual value of 

UK grower production of herbaceous perennials is estimated at £97m (Denny, 2014). Gardening, a 

pastime enjoyed throughout the UK, is an aspect of horticulture which the masses can understand 

and therefore connect with. PMs with detrimental effects upon such a pursuit are therefore likely to 

produce emotive responses from hobbyists and this connection can be the starting point for 

knowledge dissemination from members of industry and research to wider audiences. Any threat to 

such a thriving industry and popular pastime should be considered seriously and give studies of PM 

great importance.  

PMs have been shown to regularly increase their host ranges and adapt to form new species 

(Schnathorst, 1959a, Ale-Agha et al., 2000, Kiss, 2005, Seko et al., 2008, Menardo et al., 2016). The 

approximately 80 different PM species found in the UK (Braun et al., 2014) seems to be an 
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underestimate, particularly when trade between countries is so common. Importation of exotic 

plants may bring with it invasive PMs but can also expose such exotics to PMs already present in the 

UK (Pettitt et al., 2010). Fast and effective identification of PM species is therefore important. 

Screening of exotic plants as they enter the UK for invasive PMs and knowing their potential host 

ranges could help to alleviate one of the many stresses on the horticultural industry.  

It is clear that amongst the wide-ranging detrimental effects resulting from PM infection, its 

significant economic impact makes it a disease worthy of further study. This has driven basic and 

applied research efforts in phytopathology for many years, and will continue to do so. The ability to 

diagnose and identify the species involved in infection is one aspect of the research into reducing 

PM economic impact. Such identification is critical to other aspects of disease treatment as it can 

enable targeted treatment and even initial prevention through breeding strategies and good 

growing practice. Investment in research into PM diagnostics and identification is therefore key to 

mitigating these economic impacts. This thesis will therefore focus on diagnostics of the PM; the first 

step towards controlling it. 

1.4: PM biology 

PM will rarely cause plant death as the biotrophic relationship between fungus and plant relies upon 

the survival of the plant in order for the fungus to continue to thrive and proliferate. The species 

most frequently reproduce asexually (this form is called the anamorph), and have been shown to 

disperse spores on the wind (Willocquet et al., 1998, Willocquet & Clerjeau, 1998, Willocquet et al., 

2008). However, PM species are able to produce both the anamorph and the sexual structures 

(known as the teleomorph) at any time. The teleomorphic structures aid with perennation through 

adverse conditions such as winter (Liyanage & Royle, 1976, Grove, 2004). Anamorphs and 

teleomorphs are often found separately meaning that they were previously classified as separate 

species. It is only since the 1981 Sydney Congress (Voss et al., 1983) that anamorph and teleomorph 

names have been united (names typified by an asexual morph were not permitted to be included in 
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a genus with a sexual type, and any such names were ruled as illegitimate); resulting in complete 

holomorphic descriptions (Hawksworth et al., 2011) and, thanks to molecular methods, to link 

anamorph and teleomorph,  the eventual end of dual nomenclature (Crous et al., 2015). 

1.5: Established Species Identification 

Species identification and classification provide the nomenclatural backbone of biology. 

Classification has traditionally been the specialist domain of taxonomists; each with knowledge of 

niche clades and a grounding in common names, naming systems and scientific binomials that are 

regularly changed and updated. Fungi were traditionally included in the study of botany and remain 

under the ICN (previously ICBN) – International Code of Nomenclature for algae, fungi, and plants. 

However, with the continuous progression of molecular biology comes the possibility of developing 

working systems for species identification in tandem with computer-based techniques; removing the 

necessity for such specialist knowledge and aiding the identification process. Numerous issues, 

crucial to biology (and the world), including but not limited to: biodiversity, biosecurity, food security, 

and pandemics rely on consistent, accurate identification of species in order to ensure that the most 

applicable and efficient methods are employed to combat global challenges that arise.  

Many of the 872 named PM species have features requiring specialist knowledge to separate 

them — particularly within clades of relatively fast-evolving, closely-related, phylogenetically-young 

species such as the tribe Erysiphaeae (Meeboon & Takamatsu, 2015a, Meeboon & Takamatsu, 

2015b, Meeboon & Takamatsu, 2015c, Takamatsu et al., 2015a, Takamatsu et al., 2015b) and the 

genus Golovinomyces (Takamatsu et al., 2013). Clear species boundaries are often lacking, making 

the discovery of life’s true diversity — differentiation of individual organisms as members of the 

same entity or not — problematic (Dayrat, 2005). 

Although PMs are easily recognised due to their characteristic talcum-powder-like 

appearance on plant surfaces, species level identifications are difficult when teleomorphs are 

available and can be impossible when anamorphs occur alone (Braun, 1987). Like other 
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microorganisms, PM therefore require a look beyond the limits of ordinary observation (Kimmerer, 

2003), using microscopes to view micro-features and molecular techniques in order to examine the 

building-blocks of life — DNA. While a correct species identification is not vital for initial prevention 

or immediate control, it becomes critical when determining the fate of imported plants in 

quarantine (Schrader & Unger, 2003), for modelling forecasting systems (Caffi et al., 2013), and 

resistance breeding (Debener & Byrne, 2014).  

The earliest identification methods for PM species involved the identification of host plants. 

However, varying host specificity from highly-specialised (host-specific) to generalist PMs means that 

identification is rarely possible based purely upon host identification. Salmon (1900) considered the 

PMs to be polyphagous fungi and used a very wide species concept: Erysiphe alphitoides has been 

shown to infect plants from a number of different families (Figure 1.3) (Desprez-Loustau et al., 2010). 

However, such generalist PMs can be considered outliers as the majority are specialised pathogens, 

with host ranges limited to a single family, genus, or species (Braun, 1995). For example, each one of 

five major groups within Golovinomyces is restricted to a tribe in the host family Asteraceae. 

Coevolution of PMs in association with their hosts seems plausible (Matsuda & Takamatsu, 2003) 

(Figure 1.4). PMs in the tribe  Blumerieae are the most extreme examples of host specialisations as 

they adapt within the species (intraspecifically) to infect individual cereal crops (Troch et al., 2014). 

These have been split into formae speciales which have been shown to develop specificity such that 

most can no longer infect other grasses (Table 1.1). 
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Table 1.1: General adaptation of Blumeria graminis formae speciales (ff.spp.) to cultivated cereal 
hosts*. 

Source hosts (origin of isolates) 
Inoculated host† 

Oat Barley Wheat Rye Triticale 

B. graminis f. sp. avenae +++ - - - - 

B. graminis f. sp. hordei - +++ - - - 

B. graminis f. sp. tritici ± ± +++ - + 

B. graminis f. sp. secalis - - ± +++ + 

B. graminis f. sp. 'triticale' - - ++ ± +++ 

*Based on Eshed and Wahl (1970), Wyand and Brown (2003), Walker et al. (2011), Troch (2012), 
Troch et al. (2014). 

†+, infection; –, no infection; more + corresponds to a higher aggressiveness. 

 

 

Figure 1.3: Phylogenetic relationships among species of the oak PM complex on Quercus spp. and 
non-oak hosts. An indication of the generalist nature of Erysiphe alphitodies. From Desprez-Loustau 
et al. (2010). 
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Figure 1.4: Branching order of the five major groups of Golovinomyces (A) indicated using the ITS 
and 28S regions and their corresponding host tribes of the Asteraceae (Anthemideae, Astereae, 
Carduoideae, Helenieae, Lactorideae) (B). The branching order of host and parasite is similar enough 
to hypothesise coevolution between the two. OG = outgroup. From Matsuda and Takamatsu (2003). 

Studies have shown that more than one species of PM can grow on a single host plant, on a 

single leaf at any given time (Cook et al., 2006, Takamatsu et al., 2009). Individual identifications 

based on a single host leaf can therefore be ambiguous as a second or third species may be 

overlooked in morphological and/or molecular analyses. Furthermore, PMs rarely exist alone 

(Topalidou & Shaw, 2015). Instead they are accompanied by a whole community of associated fungi 

and bacteria (Topalidou, 2014); an example of the ‘microbiome’ (Berendsen et al., 2012, Turner et 

al., 2013). Alongside PMs, an interesting fungal genus of this particular microbiome, Ampelomyces, 

have been shown to interact with the PMs as generalist mycoparasites (Szentivanyi et al., 2005, 

Pintye et al., 2015) and have even been trialled as a biocontrol agents against the action of PMs 

(Pintye et al., 2012). Early researchers thought of the mycoparasitic Ampelomyces as an extension of 

PMs, including their structures in their observations (Figure 1.5 (shown as spores exiting the 

Chasmothecium in number 3)) (Tulasne & Tulasne, 1863). 

These remarkably detailed early drawings (Figure 1.5) (Tulasne & Tulasne, 1863) show PM 

microscopic detail. Analysis of key features of both teleomorphic (Gadoury & Pearson, 1988) and 

anamorphic stages (Cook et al., 1997) have since been key to differentiation of the hundreds of PM 

species. Initially phylogenies and species characteristics were based solely on morphology of the 

teleomorph. However it was later found that anamorphic features, such as conidiogenesis type, 

conidia shape, and presence/absence of fibrosin bodies within conidia, were consistent with 
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molecular analyses and as such were accepted as more phylogenetically informative characteristics 

for evolutionary groupings (summarised in Braun (1987)). 

In 1997 Cook et al. used scanning electron microscopy (SEM) to analyse conidial structures in 

greater detail. They showed that patterns on conidial surfaces were consistent with accepted genera, 

thereby allowing identifications to be made in this way (Figure 1.6). This work is reproducible, 

though requires advanced and expensive equipment, time to carry out sample preparation, and 

samples of good quality in good condition in order to discern the different conidial surface patterns 

(To-anun et al., 2005).  



Chapter 1: Introduction 

11 
 

 

Figure 1.5: Illustrations of Tulasne and Tulasne (1863) showing the beautiful anamorphic (image 1) 
and teleomorphic (images 2-13) forms of PMs. 
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Figure 1.6: Scanning electron micrograph of turgid conidia with ‘striate' outer wall and ‘fibrillar' 
septa typical of the Oidium subgen. Striatoidium anamorph of Erysiphe. Here Neoerysiphe 
galeopsidis ex Stachys sylvatica showing a finely ribbed outer wall. Bar = 10 μm. From Cook et al. 
(1997). 

Morphological analyses have allowed substantial progress in species identification, 

relatedness, biology, and evolutionary history. Initial species delimitation of the current study would 

therefore be completed by examining host plants and fungal morphology. However, reapplication of 

these methods often can be problematic, requiring specific knowledge, and without measurement 

of multiple characters can leave ambiguities. The use of molecular technologies is helping to reduce 

such ambiguities but requires links to morphologically examined type material in order to enable 

interpretation. Increasingly specialised equipment is necessary for molecular studies, but costs per-

nucleotide of DNA sequence data have dropped and accuracy and ease of techniques are improving. 

It is therefore necessary to supplement morphological analyses with DNA data to understand 

patterns and processes behind PM biodiversity and thereby extrapolate highly resolved species 

delimitations and estimations of species histories.  
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Five PM genomes have been sequenced to date (Spanu et al., 2010, Wicker et al., 2013, 

Jones et al., 2014) and it is the intention of the global PM community to sequence a further 13 in the 

next five years as part of the Joint Genome Institute, Community Science Programme (JGI CSP). 

Genome sequencing however remains costly and still requires further research to develop a 

reproducible protocol for the diverse array of PMs difficult to culture (Kenyon et al., 1995, Nicot et 

al., 2002). Sequencing of short DNA fragments is considerably more achievable and has been used 

alongside phylogenetic and barcoding analyses for improved identification of numerous fungal 

groups including Cylindrocladium (Crous et al., 2000), Stemphylium (Câmara et al., 2002) Alternaria 

(Kang et al., 2002), Armillaria (Keča et al., 2006, Maphosa et al., 2006), Phytophthora (Schena et al., 

2008), Fusarium (Amatulli et al., 2010), Cladosporium (Bensch et al., 2012), Cercospora (Groenewald 

et al., 2013), Fomitopsis (Haight et al., 2016), Clavariaceae (Birkebak et al., 2016), and many more 

(Table 1.2). Currently the internal transcribed spacer (ITS) region has received most attention for 

successful identification of the broadest range of fungi, with the most clearly defined barcode gap 

between inter- and intra-specific variation (Schoch et al., 2014). However, in each of the fungal 

examples the ITS has been used as an ‘anchor’; complemented by additional ‘identifier’ regions.  

Table 1.2: Additional loci used in identification within fungal groups 

Fungal group Regions used for ID 

Cylindrocladium ITS, ß-tubulin 

Stemphylium ITS, Glyceraldehyde-3-phosphatedehydrogenase 

Alternaria ITS, Histone H3 

Armillaria ITS, IGS, Translation elongation factor 1-α gene (TEF1) 

Phytophthora ITS, Ypt1 

Fusarium ITS, TEF1 

Cladosporium ITS, Actin, TEF1 

Cercospora ITS, Actin, Calmodulin, Histone H3 and TEF1 

Clavariaceae ITS, RNA polymerase II (RPB2), 28S 

Fomitopsis ITS, TEF1, RPB2 
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Intensive sampling and analyses of PM morphology and genetics will further elucidate PM 

speciation and biodiversity. The result will be a more complete picture of PM species; integrating 

morphological, ecological, biogeographical, and DNA sequence data (Amalfi et al., 2012) to achieve 

the “integrative taxonomic approach” (Puillandre et al., 2012) or “consolidated species concept” 

(Quaedvlieg et al., 2014) recently highlighted within Ascomycota. The use of morphology and rDNA 

ITS to identify PM species will be explored in Chapter 3 while additional ‘identifiers’ will be explored 

in Chapters 4-7.  

1.5.1: Established relationships, phylogeny, and taxonomy 

Knowledge of the evolutionary development of current species helps to infer relationships between 

them. As stated previously in  section 1.5 early reconstructions were dependent upon morphological 

characteristics: initially those of the teleomorph and later of the anamorph due to its congruence 

with molecular findings (summarised in Braun (1987)). As a result the most complete phylogenies 

are based on ITS sequence data and help to clarify the evolution of morphological features 

(reviewed in Takamatsu (2013a)). These group the PM species into one family, five distinct tribes, 

and 16 holomorphic genera (and one asexual genus, Oidium) (Figure 1.7).  

 Each of these can then be traced back to early diverging ancestral genera: (Para)uncinula 

and Caespitotheca emerged from basal lineages restricted to the Pacific ring (Takamatsu, 2013b). 

These genera are therefore commonly used to root PM phylogenetic trees. From these narrow areas 

of Asia and South America Takamatsu (2013b) shows that sequential invasions and radiations of PM 

species to new locations have meant that large clades can be clearly defined by their geographical 

distributions and host plants as well as using molecular data. For example 65, rather over-replicated 

samples of ITS sequences of the genus Neoerysiphe were shown to follow this trend under 

phylogenetic analysis (Heluta et al., 2010). The three clades formed according to their hosts 

(Lamiaceae, Asteraceae, and Rubiaceae and Geraniaceae) and geographical origin (Global, New 

World and East Asia, and Eurasia respectively) (Figure 1.8). 
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Figure 1.7: Schematic of current PM phylogeny of tribes and genera. From Braun and Cook (2012). 
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Figure 1.8: Phylogenetic reconstruction of PMs based on ITS. From Heluta et al. (2010). 
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1.6: DNA sequence analyses 

1.6.1: NCBI GenBank Nucleotide BLAST 

With DNA data comes also an investigation into the most efficient and accurate analysis method. 

Existing online databases in the public domain, such as NCBI’s GenBank contain extensive datasets. 

For the PMs this has been used as a tool for putative identification when using a single region (ITS) of 

the PM genome. However this resource is far from complete and rarely 100% reliable (Kovács et al., 

2011). This is due to the quality of previously submitted sequences: numerous samples are 

incorrectly identified (Kovács et al., 2011). Other, potentially more informative regions of the PM 

genome remain understudied and as such have few representative samples available on this, or any 

similar database (Table 1.3). Current species identification via the use of the NCBI Basic Local 

Alignment Search Tool (BLAST) alone should not be relied on (Schoch et al., 2014).  

Table 1.3: Number of PM sequences available of regions examined in the current study from NCBI 
GenBank. 

Gene region Sequences available on GenBank 

ITS 2836 

Actin 164 

β-tubulin  419 

Calmodulin 58 

Chitin Synthase 82 

Elongation factor 1-α 135 

Mcm7 0 

Tsr1 0 

 

1.6.2: Phylogenetics 

Phylogenetic analysis of DNA sequence data can offer insight into species delimitations and the 

evolutionary relationships between species, identification of unknown isolates, and mapping of 

various character profiles against isolates (Guadet et al., 1989, O' Donnell et al., 1998a). Datasets 

should be well tailored and include predominantly well-characterised isolates; previously identified 

and preferably accompanied by isolate specific features such as host, geographic origin and 

pathogenicity. Discordance in classification schemes has been caused by misidentification of isolates 
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(Thrane, 2001) and this may increase difficulties associated with consistent species delimitation and 

obscure true evolutionary relationships between species (Kristensen et al., 2005). Usefully, 

sequences from different gene markers from the same organisms can be concatenated to produce a 

phylogenetic tree from more than one dataset. Phylogenies can then be constructed using the main 

techniques of distance, parsimony, likelihood, and Bayesian analyses (Harrison & Langdale, 2006). 

1.6.3: DNA barcoding 

DNA barcoding is a technique used to identify unknown isolates (Hebert et al., 2003a). A DNA 

barcode represents a unique DNA sequence pattern 400–800 nucleotides in length that can be 

quickly processed from thousands of specimens or cultures and unambiguously analysed by 

computer programmes to identify species. It uses DNA sequence data from specific regions and 

relies upon a barcode reference library. A barcode region should therefore be variable enough to 

resolve closely related species and short enough for easy experimental manipulation and low cost. 

The flanking regions should be well-conserved in order to facilitate the design of primers with high 

PCR and sequencing success (Dong et al., 2015).  

Barcoding for animal life identified the cytochrome c oxidase subunit 1 (COI) region of 

mitochondrial DNA which has enabled discrimination of closely allied species in all animal phyla 

(Hebert et al., 2003b). The maturase K (matK) region of plastid DNA has shown success in plant 

species discrimination, though often requires additional identifying regions to enable definite 

identification (CBOL Plant Working Group et al., 2009). From the fungal markers evaluated, the ITS 

appeared to be the main candidate because of its broad utility as a species marker in taxonomic and 

ecological studies and the ease of amplification across the kingdom. The ITS has since been proposed 

as a standard barcode for fungi (Schoch et al., 2012); consistently identifying many fungal genera 

(Schoch et al., 2014), but rarely enabling species identification. Identifying, secondary barcodes is 

therefore needed in such cases. These have frequently incorporated protein-coding genes, but have 
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varied depending on the genus investigated. Regions of PM DNA have, as yet, not been tested for 

their DNA barcoding efficacy. 

1.7: UK PM baseline review 

Many PMs come from the putative PM origin and centre of diversity, South East Asia (Takamatsu, 

2013b). This project however, focused purely on PMs of the UK. The diversity of PMs in the UK is less 

in number than that of the rest of the world (Braun & Cook, 2012), however to what degree has not 

previously been clarified. As cited in section 1.3: the Erysiphales database website of Braun et al. 

(2014) lists 82 PM species to have been found in the UK. This is a strong starting point, however 

supplementing this with additional trusted records (Royal Botanic Gardens Kew, 2016, British 

Mycological Society, 2017) makes for a greater existing number of species within the UK: 196 (Table 

1.4). 

Table 1.4: PM species previously recorded in the UK 

Genus 
Kew 
Fungarium 

Additional sp. from 
Erysiphales Database 

Additional sp. from 
BMS Fungal Records  

Combined 

Erysiphe 76 9 22 107 

Golovinomyces 5 8 9 22 

Arthrocladiella 1 0 0 1 

Neoerysiphe 4 0 0 4 

Phyllactinia 5 2 3 10 

Leveillula 0 1 1 2 

Sawadaea 2 0 0 2 

Podosphaera 14 8 11 33 

Blumeria 1 0 0 1 

Oidium 14 0 0 14 

Total 122 28 46 196 

PMs have been shown to have a UK-wide distribution (British Mycological Society, 2017, 

National Biodiversity Network, 2017). Collection of a wide array of samples for the current study in 

order to give a true representation of UK PMs would therefore require extensive sampling.  
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1.8: Aims 

Improving diagnostic techniques of PM, one of the greatest threat to global, future food security 

(Bebber & Gurr, 2015), will enable more efficient future control and accurate future monitoring. The 

study aimed to achieve this by diverse sample collection with the aid of a citizen science scheme. 

Diagnostically informative regions of the PM genome would subsequently be identified and 

reproducible protocols for sequencing them would be developed. New sequences would be linked to 

identified type accessions with established morphological and molecular techniques to ensure 

accuracy, before sequences would be deposited in a universally accessible database to enable 

samples to be compared to these new standards in future.  

Hypotheses were as follows: 

1. The launch and maintenance of a citizen science scheme will provide the project with 

sufficient number, quality, and diversity of PM samples to test the accuracy of established 

and newly developed identification techniques.  

2. The combination of established morphological analysis and sequencing of the ITS region will 

provide sufficient accuracy to identify PM species.  

3. Currently available molecular data will be sufficient for identification of diagnostically 

informative PM regions.  

4. Previously designed primers will enable amplification and sequencing of PM species from 

environmental samples. 

5. Currently available molecular data will be sufficient for design of primers specific to PMs 

such that amplification and sequencing will be reproducible.  

6. Candidate PM identifying regions will enable greater accuracy in identification of PM species.  
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Chapter 2: Sampling – The Powdery Mildew Citizen Science Scheme 

2.1: Introduction 

2.1.1: Citizen science 

2.1.1.1 Value, usage, and caution 

The involvement of volunteers in science is an increasingly popular approach to undertaking 

monitoring over much larger spatial and temporal extents and much finer resolutions than would 

otherwise be possible (Pocock et al., 2014). One way to obtain data is through citizen science, a 

research technique that enlists the public in gathering scientific information (Bhattacharjee & Boyce, 

2005). This has the potential to engage members of the public, industry, and government (funders 

and those who research may affect) directly in the science.  

Citizen science offers a great opportunity for connection between science and the public as 

volunteering participants feel they can then make a contribution to science and learn at the same 

time (Rotman et al., 2012). Crowd-sourcing is one element of citizen science. It is generally 

completed exclusively online; participants completing small, cognitive tasks of problem solving or 

pattern recognition (Pocock et al., 2014). Collection or recording of physical samples is a separate 

aspect of citizen science with its main benefit being the potential for collection of diverse datasets. 

Drawbacks include the potential for poor quality data and time taken for training participants, 

continued engagement, and continued feedback. Therefore the most successful citizen science 

schemes tend to be simple (Pocock et al., 2014).  

 Numerous studies have used the principle of citizen science; some of these have run for 

more than a hundred years. The Christmas Bird Count (Butcher & Niven, 2007) has been run since 

1900, the Botanical Society of Britain & Ireland’s Distribution Database (Botanical Society of Britain & 

Ireland, 2016) since pre-1930, and the British Mycological Society’s Fungal Records Database of 

Britain and Ireland since pre-1900. These latter two have devolved regional recorders compiling data 
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from local participants and contributing towards enhancing knowledge of UK plant and fungus 

species and their distributions. More recent projects such as the Conker Tree Science Project (Pocock 

& Evans, 2014) and the Starling Survey (University of Gloucestershire, 2016) have  sourced non-

expert data from across the UK, while the Living Ash Project has developed a suite of ways to 

contribute to aiding the survival of European ash trees (MacLean, 2014, Saunders et al., 2014, Sollars 

et al., 2017). Cape Citizen Science, a project run from South Africa, seems to be most similar to the 

current study as it sources Phytophthora samples from around the country in order to better 

understand the plant disease and educate participants at the same time (Hulbert, 2016). Additionally 

organisations such as Open Air Laboratories (OPAL) offer large-scale funding and programmes to 

increase public engagement with, and understanding of, the environment. Citizen scientists have 

participated in projects on climate change, invasive species, conservation biology, ecological 

restoration, water quality monitoring, population ecology (Silvertown, 2009), astronomy, and now 

fungal disease identification.  

2.1.1.2 Use in the project 

The aim of sampling in this study was to collect PMs spanning the order Erysiphales, from a broad 

range of hosts with a spread from across the UK. This enabled current identification methods to be 

tested and novel molecular methods for identification to be developed. If successful, this would fuel 

the development of fast, accurate identification which could take place when traded plants, valuable 

to UK horticulture, were suspected of spreading potentially harmful disease. A truly accurate 

method would be effective on all of the 872 PM species. Sampling therefore attempted to include 

multiple samples from each of the five Erysiphaceae tribes and more than one sample from each of 

the 16 PM genera (Braun & Cook, 2012) and enabled developed molecular markers to be tested. The 

196 PM species present in the UK (section 1.7) are found in each of the five tribes, but just nine of 

these 16 genera. Discovery of PM species not currently listed in the UK was possible, but it was 

unlikely that these would be from the six additional genera. Therefore collection of repeat samples 
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from nine PM genera spanning the five tribes was deemed sufficient. This was achieved with a UK-

wide citizen science scheme.  

Consultation of the decision framework of Pocock et al. (2014) (Figure 2.1) confirmed that a 

citizen science approach was appropriate for this project. The need for large scale sampling and lack 

of need for specialised equipment and specialist, public knowledge made it a good option. Thus a 

citizen science scheme requesting PM infected plant material from the public was the study’s main 

sampling technique. This offered a diverse array of samples from all over the UK over the space of 

the three years of collection. Of equal importance to sampling was augmenting the awareness and 

interest of the UK public. This was achieved through the offer of an identification service for UK PMs, 

concurrent with an explanatory, interactive blog, active social media accounts, and face-to-face 

interaction at horticultural shows, conferences, and specialist society meetings. 
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Figure 2.1: The decision framework for choosing and using citizen science. From Pocock et al., 2014. 
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2.2: Materials and methods 

2.2.1: Citizen science launch & engagement 

The Powdery Mildew Citizen Science Scheme was launched via online blog post on May 21st 2014. It 

was relaunched annually at the start of the UK spring season (March 3rd, 2015 and March 21st, 2016) 

(Appendix 1 for launch blog posts). The scheme was promoted through an array of printed and social 

media. This included society publications from the Royal Horticultural Society (RHS), British 

Mycological Society (BMS), Botanical Society of Britain & Ireland (BSBI), Plant Heritage (NCCPG), and 

British Society of Plant Pathology (BSPP), through social media platforms Twitter (@PowderyM) and 

Facebook and in person at shows and conferences. In 2016 the scheme became an optional practical 

activity in GCSE classrooms through support from Science & Plants for Schools (Appendix 2). 

 Feedback was delivered via email on receipt of samples stating that samples had been 

received and whether the samples were of sufficient quality to be identified. If so, this was followed 

up with a further email of detailed feedback of the information from the PM identification process. 

Completed individual records for each contributor were sent via email when results were ready in 

order to provide feedback and encourage repeat contributions. Annual collection results were 

published in a blog (Ellingham, 2017) towards the end of the season to inform contributors of the 

overall state of the project and the relevance of their own samples.  

2.2.2: Sample collection 

Collection of fresh samples was favoured to sourcing them from herbaria as it would ensure the PM 

study and methods developed from it were relevant to the current threats seen in UK horticulture. 

Herbaria collections were therefore not used. 

Before the launch of the scheme in 2014 samples were collected in 2013 from the University 

of Reading Harris Garden and RHS Garden Wisley. These were sites likely to contain plants common 

to other UK gardens, along with the associated microorganisms, and made for good model sites for 



Chapter 2: Sampling – The Powdery Mildew Citizen Science Scheme 

26 
 

initial sampling. Many of these plants were imported from other UK or European nurseries and may 

be exported in future. This made them possible sinks and sources of disease.  

Instructions to citizen science participants were clearly stated on a linked, supplementary 

blog post (Ellingham, 2017). In 2016 a printed handout was put together by Phil Smith of the BSPP 

for dissemination at events (Appendix 3). Instructions required participants to locate PM infected 

plant material in their locale, detach whole leaves from the infected plant, and send via mail in a 

slightly inflated, sealed bag. A grid reference/GPS/postcode of the sample’s collection site and email 

address of participant were also required and supplementary data such as host plant identity, 

images, and information of growing conditions were welcomed but not essential. Instructions 

purposefully excluded specific requirements for collection of particular host plants. It was felt that 

such direct instruction would reduce the likelihood of citizens participating. It was decided that PM 

from all hosts and all sites in the United Kingdom would be accepted in order to ensure maximum 

participation. Quality control (removing samples mistaken for PM and excluding samples arriving in 

poor condition or of a host already abundantly present in the dataset) would then occur on receipt 

of samples. Certain samples contributed by RHS members for identification by the RHS Advisory 

Service were forwarded to the scheme.  

Following receipt of PM on Heuchera sp. from RHS Garden Wisley in 2015, five samples of 

PM infected Tellima grandiflora were requested from Kew Fungarium. There was no previous record 

of PM infecting Heuchera sp. in the UK. Reliable, conspecific samples of the PM were therefore 

required for comparison. 

2.2.3: Sample handling 

Samples were processed on receipt. If host plants were native or naturalised to the UK, they were 

identified using the Vegetative Key to the British Flora (Poland & Clement, 2009). Samples were 

analysed morphologically (see section 3.2.2). Samples were then stored and labelled in 12 x 6 cm 

resealable, polyethene bags with 2 - 5 mm non-toxic silica gel (Figure 2.2). If a large amount of the 
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sample was present then it was also pressed in a standard herbarium press with newspaper and 

blotting paper (Figure 2.3). Collector, collector’s email, accession number, extraction code, collection 

site (GPS (latitude, longitude)) and generic site name (e.g. Kingston Upon Thames), host plant 

identity (host family, genus, and species), and potential PM species based on host identity were 

recorded in a Microsoft Excel Spreadsheet. Samples were transferred to fungarium packets made 

from A4 paper (Figure 2.4) and stored in fungarium drawers (Figure 2.5) in the University of Reading 

Herbarium (RNG) after initial molecular analyses (see section 3.2.3 and 3.2.4). 

 

Figure 2.2: Citizen science samples processed for storage in resealable bags with silica gel, ready for 
further analyses. Photo O. Ellingham. 
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Figure 2.3: Citizen Science sample processed for storage in herbarium press. Photo O. Ellingham. 
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Figure 2.4: Fungarium  packet for long term storage of PM samples. Photo O. Ellingham. 

 

Figure 2.5: Fungarium packets for storage in RNG. Photo O. Ellingham. 
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2.2.4: Culturing of PM samples 

PMs were cultured in the autumn of 2013 in order to achieve growth of clonal, single culture PM 

colonies. Successful growth would enable a lasting stock of PMs to be regularly sourced from 

colonies of few potential contaminants. Forty-eight seeds of Triticum aestivum ‘Cerco’, Hordeum 

vulgare ‘Golden Promise’, Cucumis sativus ‘Marketmore’, and Pisum sativum ‘Hurst Greenshaft’ 

were planted and grown in 5 x 5 cm plug trays in John Innes Compost No 1 and covered with 

vermiculite. Leaves emerged in 2-4 weeks and 25% of all whole leaves were harvested.  

Harvested leaves were added to collected leaves of Rhodonendron ‘Karen Tripitta’ and surface 

sterilised using 70% ethanol. Leaves were laid on water agar (5 g Agar Agar (Fisher Scientific), 900 ml 

RO water, and 100 ml Benzimidazol (1 g per litre)) in glass petri dishes of diameter 10 cm in a laminar 

flow hood. PM from infected detached leaf material of each individual host was then transferred 

onto detached leaves on water agar with an artist’s paint brush and lids were applied before storing 

in controlled environment of 20°C with day length of 14 hours. Signs of PM infection were recultured 

onto fresh leaf material after 21 days.  
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2.3: Results 

2.3.1: Samples received and social engagement 

A total of 596 PM infected samples were received (160 in 2014, 353 in 2015, and 83 in 2016) and 

added to the 43 samples collected in 2013. This made for a total of 639 samples (see Appendix 4). 90% 

of these were collected between June and October of each year (Figure 2.6). 

 

Figure 2.6: Number of PM samples collected each month during each year of study. 2013 
corresponds to samples collected by the researcher, 2014-2016 are those of citizen science 
collection.  

 Seventy-nine people contributed samples to the Powdery Mildew Citizen Science Scheme. 

Samples were contributed on more than one occasion by 42 people. Nine of these people 

contributed samples in two different years and two contributed in each of the three years the 

scheme ran. However, many more individuals than this have been engaged with the scheme. This 

has happened: at 12 conferences and society meetings, four horticultural shows, and two UK Fungus 

Days; in printed media via publications in The Rock Garden (Ellingham, 2016), The Plantsman (The 

Royal Horticultural Society, 2015b), and The Garden (The Royal Horticultural Society, 2015a, The 

Royal Horticultural Society, 2016), and on the BSBI (Marsh, 2014, Marsh, 2015, Marsh, 2016), BSPP 

(Ellingham, 2015b), and BMS (Ellingham, 2015a) websites; and on social media via the RHS Facebook 
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and Twitter accounts and the @PowderyM Twitter account, which has amassed 355 followers and 

tweeted 547 times (January, 2017).  

2.3.2: Sample distribution 

Samples from 2013 were collected exclusively from the University of Reading and RHS Garden 

Wisley (Figure 2.7). Samples from 2014, 2015, and 2016 were collected from across the UK (Figure 

2.8). The combination of all four years collection offered a UK-wide distribution (Figure 2.8) of 

samples for further analyses. Citizen science samples were received from the SE of England each 

year. This sampling bias was shifted due to contributions from the SW, East Anglia, Scotland and 

particularly the NW: in 2015 212 of the 353 samples came from a single contributor in the area 

around Merseyside (NW England).  

2.3.3: Host profiling 

Of the 639 PM samples, 638 host plants were identified at least to genus. The identity of the ten 

most frequently identifed plant families and genera from individual years and all years combined are 

shown in Figure 2.9. 

Of the identified samples 48 of the 191 families of flowering plants found in the UK (David, 

2010) and 134 of the 14,559 genera of the worlds flowering plants (The Plant List, 2010) were 

included. Ninety-six samples were contributed from the Rosaceae, largely from genera Rosa (22 

samples), Crataegus (17), Filipendula (11), Geum (11), and Prunus (11). Similarly, 77 Asteraceae 

samples largely of Taraxacum (20), Centaurea (9), Senecio (9), and Sonchus (9) were included. Of the 

47 Fabaceae samples Trifolium (14) was the most prominent genus, and Lamium (16) made up 

almost half of the 36 Lamiacae samples. The majority of the 46 Sapindaceae samples were Acer (41), 

and similarly the 34 Ranunculaceae samples were made up largely of Aquilegia (20). Selected host 

infections are shown in Figure 2.11. 

Fourteen samples of the Saxifragaceae were included. Amongst these were four samples of 

Heuchera sp.; a new record within the UK (Ellingham et al., 2016). 
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Figure 2.7: Distribution map of samples collected in 2013. Arrows show enlarged maps of local sites. 
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Figure 2.8: Distribution maps of citizen science samples from individual years (2014-16) and years 
2013-16 combined. 
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Figure 2.9: Bar charts showing the top 10 PM host plant families (blue) and genera (green) of 2013 (a, 
b), 2014 (c, d), 2015 (e, f), 2016 (g, h), and all years combined (j, h). 
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2.3.4: Culturing of PM samples 

Detached leaves regularly became infected with non-PM fungal contaminants (Figure 2.10). The 

method was inaccurate and inefficient, producing profuse growths of fungi such as Botrytis cinerea. 

 

Figure 2.10: Cultures of Rhodonendron ‘Karen Tripitta’ show evidence of damage to plant cells and 
profuse growth of Botrytis cinerea. 
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Figure 2.11: A selection of PM infected hosts: (a) unidentified PM on Monarda didyma, (b) 
Neoerysiphe galeopsidis on Acanthus spinosus, (c) E. pisi on Pisum sativum, (d) Podosphaera 
leucotricha on Malus domestica, (e) E. trifoliorum on Trifolium arvense, (f) E. aquilegiae on Aquilegia 
vulgaris, (g) E. berberidis on Berberis thunbergii, and (h) E. catalpae on Catalpa bignonioides.  
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2.4: Discussion 

2.4.1: Samples received and social engagement 

Citizen science schemes can receive hundreds to millions of new recordings (Silvertown, 2009). 

There is such scope due to variable inputs of time and money and different sorts of data being 

required for different schemes. The uptake of the Powdery Mildew Citizen Science Scheme 

(measured in number of contributors, number of samples, and number of engagements) falls 

towards the lower end of these. A citizen science project’s funding is likely to be an important factor 

in its success (Whitelaw et al., 2003) as this generally correlates to input of time, promotion, and 

continued maintenance (Conrad & Hilchey, 2011). With funding coming from a single PhD 

studentship and input largely from one person the number of samples and relatively small reach of 

this project are unsurprising. The aid of various British societies for promotion was invaluable as it 

enabled access to already established, potentially interested audiences. The launch and 

maintenance of this scheme has engaged hundreds of people with the important and problematic 

PM fungus and has resulted in the contribution of hundreds of PM samples to RNG; providing a 

unique snapshot into PM diversity in the UK. These provided the necessary samples on which to 

develop and test increasingly efficient identification techniques and as such, the scheme can be seen 

as a success.  

Initial aims of the scheme were to collect PMs from across all five tribes such that developed 

molecular methods could be tested on samples spanning the entire Erysiphales order (success is 

reviewed in Chapter 3). This was different from the majority of published PM research, which tends 

to focus on specific host plants such as cereal crops (Wyand & Brown, 2003, Troch et al., 2014), peas 

(Fondevilla et al., 2006, Fondevilla & Rubiales, 2012), crucifers (Adam et al., 1999), cucurbits (Sitterly, 

1978, Vela-Corcía et al., 2014), or grapes (Brewer & Milgroom, 2010, Brewer et al., 2011), to name a 

few. For these it is important to maintain a constant supply of infected research material. Therefore 

cultures are kept in field or greenhouse environments or on artificial growing media. In the case of 
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novel PM species identifications a subsample of closely related Erysiphales species are necessary in 

order to show clear species separation (Cho et al., 2014, Kabaktepe et al., 2017, Tang et al., 2017). 

This will regularly come as ITS sequence data, which is sourced from online databases and compared 

with the newly generated species sequence data in question. 

In terms of a national scale of sampling, the series of papers regarding PM phylogenetics 

(Meeboon et al., 2015, Meeboon & Takamatsu, 2015a, Meeboon & Takamatsu, 2015b, Meeboon & 

Takamatsu, 2015c) is most similar to this one. Meebon and Takamatsu relied on neglected, 

environmental collections dating back to 1993, supplemented by constant present-day collection, 

enabling a study of the 264 species recorded in Japan. Similarly, the present study required plenty of 

samples and plenty of DNA from them to develop and test new methods. This was achieved with 

collection of fresh samples for testing the accuracy of current identification techniques and was 

followed up with the development of novel methods to increase accuracy and efficiency of the 

process. Given the specificity of PM samples to their host plants, the 134 genera of plants collected 

from 48 families provide samples likely to host PM species ranging across all five tribes and multiple 

genera.  

The number of samples received increased from 2014 to 2015 due to increased publicity of 

the scheme. This level of outreach via article publication and presence at conferences and flower 

shows was maintained during 2016, however sample number declined. This is likely due to the 

weight of samples already present from previous years collections which resulted in the discard of 

numerous new samples. These were those of the top 10 most abundant genera; a saturation point 

had been reached for these, most common, PM host plants of the UK. It is not yet known whether 

abundance or diversity of PM samples received were sufficient testing the accuracy of established 

and newly developed identification techniques. This will be explored fully in Chapter 3. 

Sampling could have been more targeted, particularly during 2016, by communicating the 

need for particular host plants. Such directives should occur in future years of the scheme: samples 
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of the most common hosts have reached a saturation point, with little to no new information 

coming from their repeated collection. Collection of species already present in the dataset but 

lacking repeats and species known to be present in the UK but missing from the dataset should 

therefore be aimed for by requesting host plants likely to harbour particular PMs. 

 It is unknown if the peaks of received samples shown in the results were due to the greater 

prominence of PMs during these months or greater publicity for the scheme itself. It is clear that 

PMs are seasonal and that their main growing season is known to be when their angiosperm hosts 

are in leaf. The data of this project concurs with such seasonality, although it was not specifically 

designed to do so.  

2.4.2: Sample distribution 

The sampling sites of 2013 (University of Reading Harris Garden and RHS Garden Wisley) are sites of 

horticultural excellence containing plants common to UK gardens and wilder areas, along with their 

associated microorganisms. This is exemplified by seven of the top ten families over the whole study 

time being collected in 2013 (Figure 2.9a, j). RHS Garden Wisley, in particular, is a site at which 

import and export of plants via trade is common. Trade is one of the major sources of inoculum for 

plant diseases (Fisher et al., 2012); particularly diseases establishing themselves across physical 

borders which cannot be crossed easily, such as the English Channel. These sites can therefore be 

good indicators of new PM species, potentially threatening to UK horticulture.  

The use of a citizen science scheme for the collection of samples in 2014, 2015 and 2016 

allowed for the contribution of a greater diversity of plants and PMs. The scheme was promoted 

largely by the RHS who have a preponderance of members in SE England (The Royal Horticultural 

Society, 2013). We can therefore expect a bias of samples from this same area of the UK. The 

distribution maps show this to be the case, but the contributions of others from Scotland, SW 

England, East Anglia, and particularly Merseyside result in well balanced UK sampling. 
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2.4.3: Host profiling 

The use of citizen science was always likely to produce convenience sampling; it was not possible to 

control who contributed to the scheme as collectors contributed on a purely voluntary basis. 

Influencing which infected host plants caught their attention was also not possible. The convenience 

sampling resulted in a good representation of the British flora, with many of the most common UK 

species (The Plant List, 2010) amongst the samples.  

2.4.4: Culturing of PM samples 

This method was halted due to its inaccuracies and inefficiencies. This was in line with numerous 

culturing trials (Morrison, 1960, Kenyon et al., 1995, Álvarez & Torés, 1997, Nicot et al., 2002) which 

have rarely resulted in reproducible results. Efforts were instead concentrated on developing 

molecular markers from environmental PM samples collected from the citizen science scheme.  
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2.5: Conclusions 

The Powdery Mildew Citizen Science Survey proved to be a useful and fruitful method of PM 

sampling. Samples were collected from a broad array of flora within the UK, with certain well-known 

genera making up large amounts of the overall sampling. However, a saturation point for the most 

common host genera was quickly reached and thus a more targeted approach became necessary. 

Receipt of 134 host genera provided the basis for evaluation of current identification techniques. 

This collection has resulted in a much needed update of PM host records and their distribution 

within the UK. 

Promotion of the scheme via physical and online publications, and at horticultural shows 

and conferences drove increased popularity and knowledge of the scheme. However, a more diverse 

array of promotion methods could be used in future to reach a greater audience. Participation in 

trade shows and special interest groups, as well as more sustained online presence would have 

enabled this.  
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Chapter 3: Species Identification using established techniques 

3.1: Introduction 

Accurate identification of PM species can be a difficult task as many share morphological and 

molecular features. Methods to date have concentrated on analyses via host plant identification, 

fungal morphology, and more recently sequencing of genomic rDNA regions (see section 1.5 for 

greater detail). Prior to molecular works, monographs of the PMs were published based largely on 

the teleomorphic stage of the PM lifecycle and their available morphological characters (Salmon, 

1900, Braun, 1987). Further morphological characters have since been discovered including 

differences in the outline of conidial chains (Shin & La, 1993), differences in the conidial surface 

when viewed by Scanning Electron Microscopy (SEM) (Cook et al., 1997), the position of 

conidiophores on the mother cell (Shin & Zheng, 1998), shape and size of the penicillate cells in the 

upper half of chasmothecia of Phyllactinia (Shin & Lee, 2002), and details of the patterns of conidial 

germination (Cook & Braun, 2009). Descriptions of the anamorphic stage of the PM life cycle were 

also added to this; uniting sexual teleomorphs with their asexual anamorphic forms and resulting in 

complete holomorphic descriptions (Hawksworth et al., 2011). This, allied with the development of 

DNA based identification, has since coincided with the end of dual nomenclature for fungi (Crous et 

al., 2015) (see http://www.fungaltaxonomy.org). 

 The introduction of molecular methods provided further insight into the species and often 

resulted in new interpretations of their boundaries and relationships (Saenz & Taylor, 1999, Hirata et 

al., 2000, Mori et al., 2000, Matsuda & Takamatsu, 2003, Ito & Takamatsu, 2010). The ITS region has 

been used extensively in early phylogenetic studies, along with the small (18S) and large (28S) 

flanking ribosomal subunits (Bruns et al., 1991). The ribosomal repeat unit was a focus of the current 

study due largely to its large number of tandem copies and accompanying concerted evolution that 

allowed ease of amplification by PCR (Bruns et al., 1991). As such, it has formed the backbone of 

molecular analyses in the Erysiphales (Kovács et al., 2011, Wang et al., 2013) and fungi as a whole 
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(Schoch et al., 2009), and was proposed as the anchoring barcoding region for fungal identification 

(Schoch et al., 2012). 

Developments of PM knowledge have resulted in more detailed morphological descriptions 

of species and uncovered new taxa. Approximately 864 PM species are now recognised (Braun & 

Cook, 2012); an increase from 515 in 1987 (Braun). The efficiency and accuracy of identification of 

PM species has therefore been furthered, but scope for improvement still remains; discrepancies 

remain in the consistent separation via phylogenetic and barcoding analyses of closely-related, 

phylogenetically young species (Cunnington et al., 2004, Pirondi et al., 2015, Takamatsu et al., 

2015a). The trend in increasing numbers of species seen from 1987 to 2012 is therefore likely to 

continue as DNA based identification continues to develop. 

The aims were: 

- to assess the ability of currently accepted morphological techniques for identifying PM 

accessions to genus and species level; 

- to assess the ability of currently accepted molecular techniques for identifying PM 

accessions to genus and species level; 

- and to assess the ability of combining currently accepted techniques for identifying PM 

accessions to genus and species level.  
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3.2: Materials and methods 

3.2.1: Sample collection 

Samples were collected via the powdery mildew citizen science scheme (Chapter 2). All 596 of these 

samples were morphologically examined and 507 were successfully sequenced (Appendix 5). 

3.2.2: Morphological analyses 

Fungi were mounted on slides and imaged using the Leica DM2000 LED with associated Leica 

Application Suite. Putative species identity was based on Braun and Cook (2012). Conidiogenesis 

type, appressoria form, presence/absence of fibrosin bodies, and conidia size and shape were 

recorded in asexual forms (Figure 3.1). Chasmothecium size, shape, and colour, appendage length 

and form, and asci and associated ascospore number and size were recorded in sexual forms when 

present (Figure 3.2).  

3.2.3: DNA extraction 

DNA was extracted from 0.01-0.02g dry weight of infected leaf material. This was frozen using liquid 

nitrogen and ground with two tungsten carbide ball bearings and acid washed silica sand using the 

Qiagen TissueLyser II. The Qiagen DNeasy Plant Mini Kit protocol was then followed without 

modification. 

3.2.4: Polymerase chain reaction (PCR) and sequencing protocol 

PCR was performed using published PM specific primers (PMITS1 and PMITS2 (Cunnington et al., 

2003)). The conditions were 12.5 μl BioMix™ Red (Bioline), 0.5 μl BSA (10 ng μl-1), 0.875 μl of each 

primer at 10 ng μl-1, 9.25 μl RO water, and 1 μl of sample DNA at concentrations of 10-50 ng μl-1; in 

25 μl final volume. Cycling parameters were an initial denaturation step of 95 °C for five minutes, 

followed by 35 cycles of denaturation at 95 °C for 15 seconds, annealing at 56 °C for 20 seconds, and 

elongation at 72 °C for one minute and a final elongation at 72 °C for five minutes.  
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Figure 3.1: PM anamorphic structures: (a) pseudoidium conidiogenesis type; (b) nipple shaped 
appressoria; (c) nipple shaped appressorium; (d) euoidium conidiogenesis type; and (e) condidia 
with fibrosin bodies present. Bars = 20 um. Photos O. Ellingham. 

 

Figure 3.2: PM teleomorphic chasmothecial structures: (a) single ascus with 8 ascospores; (b) 
multiple asci with 5-6 ascospores and simple-mycelioid appendages; (c) uncinate-circinate, 
dichotomously branched appendages; (d) hyaline appendages with bulbous base; (e) helically 
twisted, uncinuloid appendages; and (f) club-shaped appendages. Bars = 20 um. Photos O. Ellingham. 
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The PCR products were separated by electrophoresis at 10V cm-1, for one hour, in 1% 

agarose gels in Tris base (pH 8.3), acetic acid and 100mM EDTA buffer (pH 8.0) (TAE) at 1x 

concentrate (Sambrook et al., 1989) and stained with ethidium bromide (0.5 μg ml-1) in 2014 and 

2015 and GelRed (Biotium) in 2016. HyperLadder™ 1kb (Bioline) was used to indicate product size. 

The gel was visualised on the T:Genius – Syngene UV transilluminator.  Single amplicons of more 

than 10 ng band-1 were then sent to Source BioScience in 2014 and 2015, and GATC in Germany in 

2016 for sequencing.  

 Complementary forward and reverse sequences generated in this study were assembled and 

manually edited using SeqMan Pro software (DNASTAR, Madison, WI, USA). These were submitted 

to GenBank with accession numbers KY653161 – KY653211 and KY660722 – KY661161 (Appendix 5). 

3.2.5: Species identification via the Basic Local Alignment Search Tool (BLAST) 

DNA sequences were copied into the NCBI GenBank Nucleotide BLAST and highly similar sequences 

(megablast) were searched for. The query cover and identity of closest matches were recorded with 

a 99% identity threshold for a definite identification of a PM species (Tang et al., 2017). 

3.2.6: Sequence alignment 

Sequence alignment of ITS data was performed using MUSCLE (Edgar, 2004) and manually edited to 

form the complete ITS dataset. This was treated in two ways. Firstly, the alignment was split into 

samples of the suspected species from three, well represented, PM tribes (Cystotheceae, 

Golovinomyceteae, and Erysipheae). Each alignment was saved separately and further edited to 

remove gaps. Secondly, samples from the complete dataset were compared by pairwise alignment 

and those with identical sequences were combined into single units in order to optimize 

computation time when analysing for the overall topology of the Erysiphales. Each alignment was 

deposited in TreeBASE (Accession S20958). 
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3.2.7: Phylogenetic analyses 

The optimal nucleotide substitution model was selected for each alignment via the AIC criterion 

(Akaike, 1974) using PAUP (Swofford, 2003) and the MrModelblock command (from MrModeltest 

(Nylander, 2004)). Bayesian inference (BI) was performed in MrBayes 3.1.2 (Ronquist & Huelsenbeck, 

2003). Stationarity using a plot of –ln was tested for, a 25% burn-in was used and all trees were 

rooted with the outgroup Blumeria graminis (“5_86_Blumeria_graminis_ex_Poa_trivialis”). All other 

variables followed default settings of BI. Parameter states and trees were stored every 10,000 

generations to avoid autocorrelation via a check using Excel. To ensure convergence was reached, 

the average standard deviation of split frequencies was monitored to ensure that it fell below 0.05, 

and trace files of all parameters were examined using Tracer v1.6 (Rambaut et al., 2015) to ensure 

proper mixing. Consensus of resultant trees was built and visualised using BayesTrees V1.3 

(http://www.evolution.reading.ac.uk/BayesTrees.html).  

For BI of the ITS dataset with duplicate DNA sequences removed the GTR+I+G model was 

used and was run for 10,000,000 generations. For BI of ITS samples of Cystotheceae the SYM+I+G 

model was used and was run for 5,000,000 generations. For BI of ITS samples of Golovinomyceteae 

the GTR+G model was used and was run for 5,000,000 generations. For BI of ITS samples of 

Erysipheae the GTR+I+G model was used and was run for 5,000,000 generations, at a temperature of 

0.2 in order to reach the reach the optimal solution most efficiently.  

3.2.8: DNA barcoding analysis 

Samples in the ITS sequence dataset were renamed, to species where possible, according to DNA 

sequence and morphological data from all previous analyses. The dataset was imported into Taxon 

DNA/SpeciesIdentifier 1.8 (Meier et al., 2006). The Species Summary, Pairwise Summary, Pairwise 

Explorer, Distance Analysis, Extreme Pairwise, Best Match/Best Close Match, All Species Barcodes, 

Cluster, and Overlap Analysis were calculated with pairwise distances using Kimura 2-parameter 

corrected distances (K2P) (Kimura, 1980). Resultant data were stored in a Word document. Pairwise 

http://www.evolution.reading.ac.uk/BayesTrees.html
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Summary results were imported into Microsoft Excel 2007. Bar plots were then generated from 

these data to compare the differences between intra- and interspecific distances. 
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3.3: Results 

3.3.1: PM identification 

All 596 PM samples were morphologically examined. 507 of these were successfully sequenced. 

Morphological examinations of 596 samples enabled identification to PM genus 80% of the time and 

to PM species 65% of the time. ITS sequencing of 507 samples enabled 461 of these to be identified 

to PM genus (91% of samples successfully sequenced and 77% of all 596 samples), however 

identification to PM species via BLAST was often not possible due to the intrageneric sequence 

similarity of PMs and incorrect records available in NCBI GenBank. Combining inferences from 

morphological examination with ITS sequence data enabled identification to PM genus in 94% of all 

samples and to PM species in 80% of all samples. The most commonly identified PM species are 

shown in Figure 3.3. 

 

Figure 3.3: Fifteen most common PM species of the study. 

 Identification of host plants resulted in immediate delimitation of potential PM species. For 

certain hosts this can mean a reduction from 864 potential species to one. Even so, morphological 

and ITS analyses were performed in order to back an identification up with additional data. The 

asexual form of PMs was observed in 95% of all samples and morphological analysis of the 
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associated structures was a reliably useful tool. Asexual features such as the combination of 

conidiogenesis type and presence/absence of fibrosin bodies in conidia were a crude method of 

initial delimitation to potential genera (Figure 3.4). The combination of pseudoidium conidiogenesis 

with no fibrosin bodies was common to Erysiphe and Phyllactinia. Euoidium conidiogenesis with no 

fibrosin bodies was common to Blumeria, and genera of the Golovinomyceteae (Arthrocladiella, 

Golovinomyces, and Neoerysiphe). Euoidium conidiogenesis with fibrosin bodies present was 

common to genera of the Cystotheceae (Podosphaera and Sawadaea). These features were 

supplemented with observations on conidial and appressorial shape where possible. Sexual forms 

were less common; observed in 20% of all samples. When observed, features such as the number of 

asci per chasmothecium, ascospores per ascus, and particularly appendage morphology were useful 

as they enabled delimitation to genus level (Figure 3.2). Combining available features with host 

identification enabled identification of PM to a single species 65% of the time. For the remaining 

samples it was known that more than one PM species with identical morphological features had 

been recorded on the given host. Therefore further analyses were required to identify the species. 

 A species formerly unreported in the UK was characterised (Ellingham et al., 2016). Detailed 

morphological analyses enabled the separation of potential PM taxa Podosphaera alpina and P. 

macrospora on Heuchera cultivars. Measurements of the mean dimensions of ascospores enabled 

final identification of P. macrospora when a lack of previous, accurate ITS sequence data meant that 

identification was not possible.  
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Figure 3.4: Diagrams of anamorphic forms of the PM genera sampled in the current study. 
Conidiogenesis type, conidial shape, and presence/absence of fibrosin bodies are evident. From 
Braun and Cook (2012). 

3.3.2: Phylogenetic analyses 

Removal of accessions with the same DNA sequence of the 507 sequenced resulted in a dataset of 

173 accessions covering each of the five PM tribes. The final alignment was 881 bp in length with 

370 variable sites (42%). BI of this overall PM phylogeny resulted in clear discrimination of each PM 

tribe represented by three or more accessions. Posterior probabilities (PPs) of the overall topology 

were high. Tribes Cystotheceae, Golovinomyceteae, and Erysipheae were monophyletic from the 

Blumeria root, with PP of 83%, 96%, and 99% respectively (Figure 3.5). However accessions of tribe 

Phyllactineae were polyphyletic; split between a monophyletic clade and that of the Cystotheceae. 

Apart from these Pyllactinia spp., each genus included in the sampling proved to be monophyletic as 

Podosphaera had 86% PP, Neoerysiphe had 100% PP, Arthrocladiella had 96% PP, Golovinomyces 

had 88% PP, and Erysiphe had 99% PP.  
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Figure 3.5: BI using 173 sequences of the ITS region. Green line separations show the three main 
sampled tribes and reference BI figures of the individual tribes. Accession names include accession 
code, PM name, and host identity. Posterior probabilities (PPs) above 75% are shown in blue and 
below in red. 
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3.3.2.1 Cystotheceae 

The division of the dataset into the Cystotheceae reduced it from 507 to 193 taxonomic units. BI of 

the resultant 738 bp region resulted in a split into two monophyletic groups from the rooted 

Blumeria graminis accession (Figure 3.6 & Figure 3.7). The clade comprising 37 accessions of 

Sawadaea had PP of 97% (Figure 3.6) and the clade comprising 155 accessions of Podosphaera had 

PP of 45% (Figure 3.6 & Figure 3.7). 

 Within the Sawadaea, S. tulasnei (two accessions with 99% PP) and S. bicornis (35 accessions 

with 94% PP) were shown to be monophyletic. S. bicornis split further according to host species: the 

clade comprising ten accessions with 98% PP on Acer campestre and the clade comprising 25 

accessions with 81% PP on Acer pseudoplatanus. 

 Within the Podospharea, P. tridactyla (five accessions with 98% PP), P. leucotricha (nine 

accessions with 100% PP), P. clandestina (18 accessions with 100% PP), P. amelanchieris (six 

accessions with 13% PP), and P. euphorbiae-helioscopiae (two accessions with 99% PP) were shown 

to be monophyletic. P. macrospora accessions (four accessions with 48% PP and 12 accessions with 

33% PP) were grouped together but paraphyletically amongst species of P. plantaginis and P. fusca.  

P. pannosa accessions were grouped into two separate, clades (four accessions with 43% PP and ten 

accessions with 20% PP). P. aphanis accessions formed a single main group (eight accessions with 80% 

PP). However five other accessions of P. aphanis were placed in other groupings of the Podosphaera.  

 The remaining Podosphaera species were scattered into four mixed groups. These were 

made up of: (1) P. fusca, P. plantaginis, P. macrospora, P. erigerontis-canadensis, and P. xanthii; (2) P. 

fugax, P. epilobi, and P. aphanis; (3) P. aphanis, P. filipendulae, P. ferruginea, P. dipsacacearum, P. 

macularis, and P. spiraeae; and (4) P. filipendulae and P. plantaginis respectively.  
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Figure 3.6: Part 1 of BI using 193 sequences from the Cysotheceae tribe of the ITS region. Accession 
names include accession code, PM name, and host identity. PPs above 75% are shown in blue and 
below in red. Green lines and names show species separation by phylogeny. 
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Figure 3.7: Part 2 of BI using 193 sequences from the Cysotheceae tribe of the ITS region. Accession 
names include accession code, PM name, and host identity. PPs above 75% are shown in blue and 
below in red. Green lines and names show species separation by phylogeny. 

  



Chapter 3: Species Identification using established techniques 

57 
 

3.3.2.2 Golovinomyceteae 

The division of the dataset into Golovinomyceteae resulted in 102 taxonomic units of a 753 bp 

region within the ITS region (Figure 3.8). BI of this dataset resulted in splitting of the three genera, 

from the rooted Blumeria graminis accession, into monophyletic groups. The three Arthrocladiella 

accessions were A. mougeotti found on Lycium barbarum and had PP of 100%, the 41 Neoerysiphe 

accessions had PP of 99%, and the 57 Golovinomyces accessions had PP of 36%. 

 Within the Neoerysiphe, all four species were shown to be monophyletic (Table 3.1). 

 Within the Golovinomyces, seven of the 11 putative taxa were monophyletic (Table 3.1). 

Potential groups of G. cichoracearum and G. sordidus were shown to arise polyphyletically. The G. 

cichoracearum sensu lato initially grouped into five separate clades: seven accessions on 

Asteraceous hosts (Cosmos, Cirsium, Osteopermum, Aster, and Solidago) with 61% PP which could be 

identified as G. asterum, two accessions on the Asteraceous Pilosella aurantiaca with 100% PP, six 

accessions found on Sonchus sp. with 100% PP which could be identified as G. sonchicola, two 

accessions on Verbascum (of the Scrophulareaceae) with 100% PP which could be identified as G. 

verbasci, and three accessions parasitising Senecio vulgaris with 85% PP which could be identified as 

G. fischeri or G. senecionis. The G. cynoglossi grouped into three separate clades: five accessions on 

Myosotis sp. with 96% PP, three more accessions found on Myosotis sp. with 100% PP, and five 

accessions parasitising the Boraginaceae (Symphytum, Pulmonaria, and Onosma) with 100% PP. 

Accessions 5_279 G. magnicellulatus ex Epilobium hirsutum, 4_81 G. cichoracearum ex Rosa gallica 

positioned within the G. sonchicola clade, and 5_43 G. cynoglossi ex Silene dioica are placed within 

groups of high PP, however, PM species of these species or genus have not been recorded on these 

hosts previously. 
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Table 3.1: Monophyletic PM groups from ITS data within the Golovinomyceteae. 

Species within group Number of Accessions PP of group* 

A. mougeotii 3 100 

N. galii 2 99 

N. nevoi 3 100 

N. geranii 5 100 

N. galeopsidis 31 99 

G. depressus 6 100 

G. biocellaris 1   

G. cichoracearum 2 

61 G. sp. 2 

G. asterum 3 

G. artemisiae 1   

G. cynoglossi 5 96 

G. cichoracearum 2 100 

G. magnicellulatus 5 100 

G. cynoglossi 3 100 

G. sonchicola 7 100 

G. orontii 6 

81 G. sp. 1 

G. cichoracearum 2 

G. verbasci 2 100 

G. fischeri 3 85 

G. cynoglossi 5 100 

*Groups with a single accession have no PP and are shaded in grey. 

    



Chapter 3: Species Identification using established techniques 

59 
 

 

Figure 3.8: BI using 102 sequences of the Golovinomyceteae tribe of the ITS region. Accession names 
include accession code, PM name, and host identity. PPs above 75% are shown in blue and below in 
red. Green lines and names show species separation by phylogeny. 
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3.3.2.3 Erysipheae 

The division of the dataset into Erysipheae resulted in 201 taxonomic units of 802 bp region within 

the ITS region. BI resulted in numerous splits of the single genus Erysiphe into various different 

species clades and species complexes (Figure 3.9 & Figure 3.10). Of the approximately 28 different 

Erysiphe species included in the analysis, 15 were shown to be monophyletic (Table 3.2). The 

remaining accessions grouped within monophyletic groups of different species (Table 3.2).  

Table 3.2: Monophyletic PM groups from ITS data within the Erysipheae. 

Species within group 
Number of 
Accessions 

PP of 
group 

E. prunastri 2 100 

E. adunca  6 100 

E. arcuata  3 100 

E. necator  3 100 

E. hedwigi  4 100 

E. symphoricarpi  2 100 

Erysiphe sp. ex Lonicera sp.  6 57 

E. elevata  5 98 

E. platani  3 94 

E. cruciferarum  7 97 

E. berberidis  11 96 

E. convolvuli 3 100 

E. buhrii 3 100 

E. polygoni 6 98 

E. heraclei 21 69 

E. aquilegiae  28 

87 

E. trifoliorum  1 

E. buhrii  1 

E. circaeae  3 

E. simulans  1 

E. catalpae  2 

E. alphitoides  22 

89 

E. platani 3 

E. euonymicola  9 

E. tortilis  1 

E. akebiae  3 

E. simulans  1 

E. trifoliorum  1 

E. trifoliorum 24 
57 

E. pisi  8 
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Figure 3.9: Part 1 of BI using 201 sequences of the Erysipheae tribe of the ITS region. Accession 
names include sample code, PM name, and host identity. PPs above 75% are shown in blue and 
below in red. Green line separations show species. 
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Figure 3.10: Part 2 of BI using 201 sequences of the Erysipheae tribe of the ITS region. Taxon names 
include sample code, PM name, and host identity. Posterior probabilities (PPs) above 75% are shown 
in blue and below in red. Green line separations show species. 



Chapter 3: Species Identification using established techniques 

63 
 

3.3.3: DNA barcoding analyses 

Intra and interspecific differences were quantified for the 507 samples and 35 species of the ITS 

region. This resulted in a total overlap of 17.08% of inter and intraspecific distances (from 0.0% to 

17.08%, covering 96.46% of all intra and interspecific but intrageneric sequences) (Figure 3.11). The 

samples with a mean of more than 5% intraspecific difference were P. clandestina, P. xanthii, P. 

plantaginis, P. tridactyla, P. leucotricha, P. epilobi, N. galeopsidis, G. depressus, G. sordidus, G. 

cichoracearum, G. cynoglossi, E. buhrii, E. adunca, E. aquilegiae, E. simulans, E. trifoliorum, E. pisi, 

and E. flexuosa. Of the interspecific, congeneric distances 48.7% (30,471 of 62,617) fell below 5%, 

69.8% of these were between samples of the Erysiphe and 26.9% were between samples of the 

Podosphaera. The congeneric, interspecific pair distances which were below 0.5% belonged to the 

pairs of species shown in Table 3.3. 

 

Figure 3.11: The frequency distribution of the intra and interspecific K2P distance values (barcoding 
gaps) of 507 ITS samples. A blue chevron (V) marks the mean intraspecific variation per locus and an 
orange asterisk (*) marks the mean interspecific variation per locus. 
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Table 3.3: Congeneric, interspecific pair distances below 0.5%  

Interspecific pairs below 0.5% 

P. clandestina P. dipsacacearum 

  P. xanthii 

  P. plantaginis 

  P. spiraeae 

  P. filipendulae 

  P. pannosa 

  P. leucotricha 

P. leucotricha P. amelanchieris 

  P. tridactyla 

P. erigerontis-canadensis P. xanthii  

  P. plantaginis  

  P. macrospora  

P. plantaginis  P. spiraeae 

  P. filipendulae 

P. macularis P. spiraeae 

  P. filipendulae 

P. aphanis P. spiraeae 

  P. filipendulae 

P. fusca  P. macrospora 

P. amelanchieris  P. tridactyla 

P. mors-uvae P. pannosa 

G. cichoracearum  G. sonchicola 

  G. orontii 

E. aquilegiae  E. buhrii 

  E. catalpae 

  E. trifoliorum 

  E. circaeae 

E. buhrii  E. circaeae 

  E. catalpae 

E. alphitoides  E. euonymicola 

  E. simulans 

  E. akebiae 

  E. tortilis 

E. akebiae E. tortilis 

  E. euonymicola 

E. euonymicola E. tortilis 

E. trifoliorum E. pisi 
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3.4: Discussion 

3.4.1: PM identification 

Numerous host plants have only a single PM species recorded to parasitise them. In such cases it 

was tempting to accept any PM present must be of that identity. However, due to the fast-evolving 

nature of PM species it was important to ensure that this was indeed the case.  

 With many different features possible to examine, morphological analyses can be extremely 

effective (Braun & Cook, 2012). However, morphological analyses of these features will often require 

samples to be in optimum condition; fresh and with both anamorph and teleomorph available for 

examination. Such characteristics were often not available because of lag time between sample 

collection and examination (while samples were in transit), collection by non-experts, and the 

tendency of PMs to reproduce asexually the majority of the time and sexually only when adverse 

conditions approach, meant that teleomorphs were rarely available for examination.  

 Regardless of potential shortcomings, the identification of PM accessions via morphological 

analyses has proven its utility; having enabled identifications to genus and species levels. 

Anamorphic features such as conidiogenesis type and conidial characteristics were readily available 

and characterisation enabled immediate delimitation of potential species. Similarly, teleomorphic 

feature characterisation aided in delimitation. However, teleomorphs were observed in just 20% of 

samples and thus cannot be relied upon.  

With the necessary time, apparatus, knowledge and quality of sample fungal morphology 

has been shown to enable fungal identification. Indeed, these studies underpin mycological 

taxonomy. This was proven by the identification via morphology of P. macrospora on Heuchera cvs. 

(Ellingham et al., 2016). The resultant sequence data will enable its future identification to be made 

exclusively via molecular comparisons. This has served to further highlight the necessity for 

morphological characterisation of taxa as an important baseline. This will remain critical as 

molecular characterisation continues. However, the eventual characterisation of multiple regions of 
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all PM species is an achievable aim. This has the potential to greatly reduce the ambiguities that 

have remained in 35% of cases in the present study after morphological characterisation  

 Sequencing of the ITS enabled augmentation of morphological analyses. In 33 cases (6.5% of 

sequenced samples) ITS analyses yielded contradictory results to those provided by morphological 

analyses. For ten of these samples ITS analyses identified species previously recorded on the host 

plant. This adds weight to the possibility of presence of more than one PM on the host plant (Cook 

et al., 2006);  a single species viewed using the microscope, and a separate species amplified and 

sequenced. The possibility of accidental mixing of samples was regularly ruled out as samples with 

questionable results were reanalysed. In such cases, multiple species were noted on stored 

Fungarium samples. Even so, this combination of techniques resulted in samples being identified to 

species 80% of the time and to genus 95% of the time and is consistent with literature showing the 

need for an additional method for discrimination of closely related PM species (Meeboon & 

Takamatsu, 2015a, Meeboon & Takamatsu, 2015c, Meeboon & Takamatsu, 2015b, Pirondi et al., 

2015, Takamatsu et al., 2015a). Confusion regarding PM species names was particularly evident 

when BLAST of the ITS was used for identification (Kovács et al., 2011). The result provided 

numerous different species of a single genus as well as additional samples of unrelated Fungi. 

Examples of unrelated fungal results yielded from BLAST were: Albugo laibachii (99% identity, 97% 

query cover) for a sample of G. cichoracearum, Helotiales (86%, 98%) for a sample of G. sordidus, 

Neofabraea (97%, 99%) for a sample of G. cynoglossi, and Tetracladium (98%, 91%) for a sample of 

Podosphaera. These are likely to have been amplified and sequenced from environmental samples 

and incorrectly identified. They are therefore difficult to trust.  

Schoch et al. (2014) investigated this shortfall of sequence databases, advising caution in 

reliance upon BLAST due to ‘dark taxa’ (Page, 2013, Page, 2016) and inaccuracy of naming (Nilsson et 

al., 2006, Bidartondo, 2008). Schoch et al. (2014) summarised that DNA sequence data should be 

tied to correct taxonomic names and clearly annotated specimen data (Wieczorek et al., 2012). Such 
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standards have been followed where possible in the current study as PM identification utilised 

currently accepted techniques alongside additionally informative regions, and specimens were 

preserved and stored in RNG (University of Reading Herbarium). 

3.4.2: Phylogenetic analyses 

The ITS repeat region has been used extensively in fungal identification and phylogenetic 

reconstructions (White et al., 1990, Bruns et al., 1991, Lieckfeldt & Seifert, 2000, James et al., 2001). 

The use of ITS in the PMs (Hirata & Takamatsu, 1996, Wang et al., 2013) is therefore unsurprising. 

The weaknesses of the ITS region have been shown in the literature (Takamatsu et al., 2015a) 

and confirmed in this chapter. Groupings of different species into inseparable clades is due to the 

lack of DNA sequence variation inherent in the ITS. Other species, grouped polyphyletically, such as 

G. cichoracearum and G. cynoglossi must be explained differently. G. cichoracearum s. lat. has been 

recorded previously as heterothallic (Schnathorst, 1959b), occurring on several hosts (Lebeda & 

Mieslerová, 2011), and grouped polphyletically (Matsuda & Takamatsu, 2003). Data of such previous 

groupings have remained artefacts in current PM knowledge. The characterisation of individual 

groups such as G. sonchicola, G. verbasci, and G. asterum, formerly known as G. cichoracearum is 

therefore another important aspect of the present study.  

Resolution of species is an important goal of taxonomists (Gürtler & Stanisich, 1996, CBOL 

Plant Working Group et al., 2009, Schoch et al., 2009, Medina et al., 2011, Ratnasingham & Hebert, 

2013). Within fungal taxonomy it has been stated that species resolution equates to the discovery, 

description, and classification of all species of Fungi; providing tools for their identification along the 

way (Hibbett et al., 2011). In order to achieve this, a mixture of broad- and narrow-scale studies is 

required, and analyses of particular narrow clades, such as the Erysiphales, require greater focus. 

Methods for greater resolution of newly-evolved, phylogenetically-close species are available and 

have been trialled within the Animalia and Plantae (Savolainen et al., 2000, Meier et al., 2006), as 

well as the Fungi (Taylor et al., 2000, Reeb et al., 2004, Tretter et al., 2013, Zelski et al., 2014). This 
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can be as simple as amplifying more variable parts of a genome. However, any recommended region 

must offer additional information to that already provided by the ITS. The regions flanking the ITS, 

particularly the 28S region, have been trialled and since adopted by certain researchers (Meeboon & 

Takamatsu, 2015a, Takamatsu et al., 2015b), however this has resulted in only slight improvements 

and polytomies remain in PM phylogenies. The search for new regions is well documented in certain 

clades (Tretter et al., 2013, Tretter et al., 2014b) but negative results are rarely shared (Fanelli, 2011) 

and thus little progress has been made within the PMs; identical regions may be trialled by different 

researchers with similar negative outcomes.  

However, the clear discrimination of all PM tribes, genera, and numerous species in this 

chapter and numerous papers to date confirm the strength and utility of ITS for Order-wide 

reconstruction of the relationships of hundreds of species. The identification of regions to 

complement or replace the ITS will enable a shift towards concatenated alignments (Medina et al., 

2011, Tretter et al., 2014a) resulting in increasingly accurate phylogenies of species trees rather than 

single-gene trees (Mallo & Posada, 2016).  

3.4.3: DNA barcoding analyses 

The K2P distribution graphs illustrate the intra and interspecific distances per locus corresponding to 

the barcoding gap (Hebert et al., 2003a). A useful barcoding locus should have no overlap between 

intra and interspecific K2P distances (Quaedvlieg et al., 2014). The analysis of ITS did not produce 

this gap. This contrasts with BI analyses which form numerous monophyletic groupings of distinct 

taxa and highlights the limitations of the barcoding technique (Rubinoff, 2006, Valentini et al., 2009). 

Failing a clear barcoding gap, a low K2P overlap is desired. The ITS has been proposed as a universal 

DNA barcode marker for Fungi (Schoch et al., 2012), the result of this chapter shows that although it 

is a good candidate for the PMs, the K2P overlap means that additional regions are required in order 

to further delimit closely related species. Similar DNA sequences of PM species within the ITS may be 

the result of clade barcodes mixing with cases where species barcodes are present. This result is 
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congruent with that of Quaedvlieg et al. (2014) who compared the ITS region with the ITS large 

subunit (LSU), β-tubulin, Actin, the second largest subunit of RNA polymerase II (RPB2), elongation 

factor 1-α (EF1-α), and Calmodulin for identification of the Teratosphaeriaceae. Both ITS and LSU 

were shown to have a higher K2P overlap than the other five loci tested and were therefore less 

suitable to serve as reliable identification loci. Numerous other studies have attempted to improve 

on ITS results (Reeb et al., 2004, Roe et al., 2010, Groenewald et al., 2013) using other DNA regions, 

with the LSU, small subunit (SSU), β-tubulin, Actin, RPB2, EF1-α, Mcm7, histone H3 gene (HIS), Chitin 

synthase (Chs), and Calmodulin regions regularly being trialled. However, within the PMs, few of 

these have been recorded in publications and only the ITS, LSU, SSU, and flanking regions of the ITS, 

D1 and D2, are used for phylogenetic reconstruction. More work is required in this field as there is 

currently no other region to compare this result with.   
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3.5: Conclusions 

The use of morphological analyses for the identification of PM fungi set a strong foundation which 

has since been complemented with rDNA ITS sequence data. The abundance, diversity, and quality 

of PM accessions received from the citizen science scheme have proven sufficient for testing these 

established identification techniques and it has been possible to consistently discriminate between 

PM tribes, genera, and a high proportion (ca. 80%) of PM species. The ITS region should be 

augmented with additional markers in order to improve analyses for fungal identification such as 

phylogenetic reconstruction and DNA barcoding. Implementation of such methods for species 

identification, alongside proactive testing of plant material entering the country, will enable species 

to be monitored with greater ease, efficiency, and accuracy. In turn, limiting the spread of 

potentially detrimental species.  
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Chapter 4: Augmenting current ID techniques with novel gene Mcm7 

4.1: Introduction 

The advent of fungal phylogenomics, gave rise to an increase in the use of single-copy protein-coding 

genes for resolving deep or species-level phylogenies by fungal systematists (Aguileta et al., 2008, 

Schmitt et al., 2009, Curto et al., 2012). Low-copy number nuclear genes, those which are not 

repeated or repeated only a few times, are useful because of their sometimes rapid evolutionary 

rate (Sang, 2002, Small et al., 2004, Choi et al., 2006). However, given the high evolutionary rate 

inherent in low-copy regions, developed markers may not work consistently through evolutionary 

time as the sites at which amplification begins are also subject to evolution and therefore may 

change. In cases of rapid speciation, genomic DNA may not have diverged sufficiently to resolve a 

phylogeny using a single locus (Beltrán et al., 2002, Seehausen et al., 2003). This has been shown to 

be the case in numerous clades (Reeb et al., 2004, Raja et al., 2011, Morgenstern et al., 2012), 

including the PMs (as shown in Chapter 3 and other PM publications including: Heluta et al. (2010), 

Kabaktepe et al. (2017)). However, multiple independent loci can often provide the necessary 

variability for reliable species identification via phylogenetic analyses and DNA barcoding (Beltrán et 

al., 2002, Sang, 2002) due to the greater level of sampling of the genome. New, easy to use, 

computer software and analytical phylogenetic methods have been developed to provide the 

capability for analyses using concatenated datasets (Murphy et al., 2001, Li et al., 2007, Rowe et al., 

2008, Edwards, 2009). 

Primers can be developed for amplification and sequencing of low-copy, highly variable 

regions providing relevant sequence data is available. This may come from sequenced genomes or 

through the use of generic primers, sourced from studies on closely related clades, for a targeted 

region. In the case of the PMs, potentially useful, understudied regions, can be mined from four 

published genomes (Blumeria graminis (Spanu et al., 2010), Erysiphe necator (Jones et al., 2014), and 

Erysiphe pisi and Golovinomyces orontii (Max Planck Institute for Plant Breeding Research)). Through 
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analyses of alignments of the PM genomes alongside closely-related Ascomycota, primers can be 

developed for exclusive amplification of PMs.  

Progress in this field has been largely driven by phylogenetic reconstructions of the PMs 

spanning the Erysiphaceae (Takamatsu et al., 2008a, Takamatsu et al., 2008b, Takamatsu, 2013b) 

and increasingly specific taxonomic levels (Inuma et al., 2007). Understanding of the evolution and 

relatedness of PM species has progressed from purely morphological observations to 

complementary studies of morphology and genomic DNA, and allowed phylogeographic theories to 

be developed and repeatedly tested (Brewer & Milgroom, 2010, Troch, 2012, Takamatsu et al., 

2016). Remaining discrepancies among phylogenies of the ITS region are highlighted in the literature 

(section 1.5) and confirmed in this study (section 3.3). The use of additional DNA regions in tandem 

with ITS can increase phylogenetic resolution and stability at multiple taxonomic levels.  A standard, 

broadly applicable, set of sequence markers would be a valuable resource in constructing robust PM 

phylogenies using only a few loci (Schmitt et al., 2009) without the expense of whole genome 

sequencing, while also informing studies of other fungi.  

Numerous different regions have been used routinely to identify fungal species and to infer 

evolutionary relationships within the ascomycete fungi. However, the protein-coding genes most 

commonly used, such as the β-tubulins, the elongation factor EF1-α, the γ -actin, heat shock proteins, 

chitinases, chitin synthases, RNA polymerases, dehydrogenases, and histones were not found in the 

list of the best-performing genes, for accurate phylogenetic reconstruction and discrimination of 

species, when tested against 246 single-copy orthologous genes extracted from 30 fungal genomes 

(Aguileta et al., 2008). Two single-copy orthologues, Mcm7 and Tsr1 (reviewed in chapter 6), 

outperformed all others in the study of Aguileta et al. (2008). These were trialled, alongside gene 

regions established for use in other fungal clades, for the PMs in this study. 

Mcm7 (minichromosome maintenance protein (Schoch et al., 2012)) is a gene coding for the 

replication licensing factor required for DNA replication, initiation, and cell proliferation (Moir et al., 
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1982). The protein encoded by this gene is one of the highly conserved mini-chromosome 

maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication 

(Kearsey & Labib, 1998). Since 2008 (Aguileta et al.) the phylogenetic utility of Mcm7 has been 

tested across the Ascomycota (Raja et al., 2011), and more specifically in the Eurotiomycetes, 

Lecanoromycetes, Leotiomycetes, Lichinomycetes and Sordariomycetes (Schmitt et al., 2009), 

Xanthoparmelia (Leavitt et al., 2011), Montanelia (Divakar et al., 2012), thermophilic fungi 

(Morgenstern et al., 2012), Geomyces (Minnis & Lindner, 2013), the Kickxellomycotina (Tretter et al., 

2013, Tretter et al., 2014b), and the Caliciaceae (Prieto & Wedin, 2016), amongst others.  

In this chapter the possibility of developing working markers for the Mcm7 region for PMs was 

investigated and the value of resultant data for phylogenetic reconstruction explored. The resolution 

of this region in DNA barcoding studies was compared with the standard ITS region.   
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4.2: Materials and methods 

4.2.1: Sample collection – The Powdery Mildew Citizen Science Scheme 

Samples were collected via the powdery mildew citizen science scheme (Chapter 2). One hundred 

and ninety-five of these were successfully amplified (Appendix 5) in the study outlined in this 

chapter. 

4.2.2: Putative species identification 

The techniques outlined in Chapters 2 and 3 formed the basis of the identities of PM species used in 

this chapter.  

4.2.3: DNA extraction 

The DNA extracted for initial PM species identification (Chapter 3) was used for these further 

analyses. 

4.2.4: Data mining for Mcm7 molecular markers 

PM genomes (Max Planck Institute for Plant Breeding Research, Spanu et al., 2010, Jones et al., 2014) 

were aligned with 22 closely related species (Table 4.1) in order to identify the location of the Mcm7 

region and then develop primers to trial in the amplification of samples. Primers were designed 

manually with the aid of the web-based software Primer-BLAST (Ye et al., 2012) and Primer3 

(Untergasser et al., 2012). The general primer-choice conditions were set for an optimal primer of 

approximately 20 bases, annealing temperature (Tm) of 60 °C, and GC % of around 50. Primer pairs 

were developed to produce amplicons with expected lengths of 400-600 bp. Some degenerate base 

pairs were necessary in order to match the diversity of PMs. To ensure the specificity of markers to 

PMs, potential marker sequences were compared with the alignment of nucleotide sequences using 

the search function in BioEdit 7.2.5 (Hall, 1999). If these matched sequences of non-PM samples, 

they were discounted. Particular attention was paid to the 3´ end of primers to ensure they 
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consisted of a sequence unique to the PMs (Innis et al., 1990). A total of 13 primers (five forward, 

eight reverse) were designed (Table 4.2) and ordered from Sigma-Aldrich. 

Table 4.1: Mcm7 sequences imported from GenBank for identification of Mcm7 region in PM 
genomes and design of PM specific primers 

Species GenBank Accession No. 

Bisporella citrina JN672971.1 

Chalara sp. KM495490.1 

Chalara sp. KM495491.1 

Chlorencoelia torta JN672985.1 

Cudoniella clavus JN672988.1 

Geomyces destructans KF212372.1 

Geomyces sp. KF212363.1 

Graddonia coracina JN672993.1 

Hymenoscyphus fructigenus JN672997.1 

Lachnellula sp. JN673005.1 

Lambertella hicoriae KF545473.1 

Lambertella subrenispora KF545466.1 

Lambertella viburni KF545443.1 

Lanzia sp. KF545444.1 

Leotiomycetes sp. KF545450.1 

Leotiomycetes sp. KF545458.1 

Leotiomycetes sp. KF545474.1 

Poculum sydowianum KF545465.1 

Rutstroemia cunicularia KF545445.1 

Rutstroemia firma KF545461.1 

Strossmayeria basitricha JN673019.1 

Vibrissea filisporia f. filisporia JN673023.1 
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Table 4.2: Primers designed for trialling amplification and sequencing of Mcm7 region of PMs 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean GC 

% 

Mcm7F1 F ACVTGTGATCGRTGYGGDTGTG 22 63.08 54.55 

Mcm7F2 F TGTGATCGRTGYGGDTGTGA 20 59.03 50 

Mcm7F3 F ACYTWYGSRCCMCTWAMYGAATG 23 59.01 43.48 

Mcm7F4 F CCMCTMAMYGAATGYCCHTC 20 56.83 50 

Mcm7F5 F CAACTRCAYCAYTCWACYCG 20 56.17 50 

      
   

Mcm7R1 R ATWGCYTTRAATCCDGTATA 20 51.55 35 

Mcm7R2 R AGRTATTCGTARATRTGTCC 20 48.6 35 

Mcm7R3 R TTGCKAGRTATTCGTARAT 19 50.89 36.84 

Mcm7R4 R TTGCKAGRTATTCGTARATRTGTCC 25 59.77 40 

Mcm7R5 R TGSCCATAWATTTCHGGRGCRATKGA 26 65.19 46.15 

Mcm7R6 R TGSCCATAWATTTCHGGRGC 20 58.51 50 

Mcm7R7 R CCATAWATTTCHGGRGCRATKGA 23 59.29 43.48 

Mcm7R8 R TCATYCCRTCRCCCATYTCYTTWG 24 62.57 50 

 

4.2.5: PCR and sequencing protocol 

PCR was carried out using the newly designed PM specific primers of the Mcm7 region (Table 4.2). 

All 40 possible combinations of these were trialled in 25 μl mixes of 12.5 μl BioMix™ Red (Bioline), 

0.75 μl BSA (10 ng μl-1), 0.875 μl of each primer at 10 ng μl-1, 9 μl RO water, and 1 μl of sample DNA 

at concentrations of 10-50 ng μl-1. Cycling parameters were adapted from Amrani and Corio-Costet 

(2006) with an initial denaturation step of 95 °C for five minutes, followed by 37 cycles of 

denaturation at 95 °C for 30 seconds, annealing at 60 °C for one minute, and elongation at 72 °C for 

one and a half minutes and a final elongation at 72 °C for five minutes. Four samples of DNA, 

spanning the PM clade and previously shown to have been successfully amplified and sequenced 

using PM specific ITS primers PMITS1 and PMITS2 (Cunnington et al., 2003) were initially trialled. 

The PCR products were separated and visualised as in 3.2.4. 

The four primer combinations exhibiting the highest amplification success (number of 

products x product strength) were Mcm7F1 and Mcm7R5, Mcm7F1 and Mcm7R7, Mcm7F2 and 

Mcm7R5, and Mcm7F2 and Mcm7R8. These were trialled at a gradient of annealing temperatures 
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from 52-62 °C. The most successful, single primer combination was Mcm7F2 and Mcm7R8 at an 

annealing temperature of 54 °C. This amplified a region of approximately 550 bp. Reducing the 

ambiguity of base pairs was trialled for greater accuracy in amplification and sequencing of the 

Mcm7 region and resulted in the design of primers Mcm7F2a and Mcm7R8a (Table 4.3). Reducing 

primer length in order to increase sequencing success was also trialled, resulting in the design of 

primers Mcm7F2seq and Mcm7R8seq (Table 4.3). Application of these modified primers produced 

sequences of lesser quality (this is discussed in section 4.4.1: Mcm7 amplification and sequencing). 

Primers Mcm7F2 and Mcm7R8 were therefore used in all future amplifications. Single amplicons 

were sequenced and assembled as in section 3.2.4. 

Table 4.3: Primers adapted from Mcm7F2 and Mcm7R8 for more efficient amplification and 
sequencing of Mcm7 products 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

Mcm7F2a F TGTGATCGGTGTGGGTGTGA 20 69.4 56 

Mcm7R8a R TCATTCCGTCGCCCATTTCTTTWG 24 59.8 57.5 

Mcm7F2seq F GADCAAGTNCCWGTDGG 17 50.3 53.9 

Mcm7R8seq R GCYTCYAARTAAGTRTC 17 45.7 41.2 

 

4.2.6: Sequence alignment 

Sequence alignment of Mcm7 data, and their complementary ITS sequences, was performed as in 

section 3.2.6. The dataset of 106 sequences of Mcm7 for which there were ITS equivalents was 

concatenated using Mesquite (Maddison & Maddison, 2017). The alignment files of the Mcm7 and 

the Mcm7 combined with the ITS rDNA were deposited in TreeBASE as S20952. 

4.2.7: Phylogenetic analyses 

Phylogenetic analyses were performed as in section 3.2.7.  

For BI of Mcm7 the HKY+I+G model was used and was run for 10,000,000 generations. For BI 

of the ITS accessions for which there were Mcm7 equivalents the GTR+I+G model was used and was 

run for 5,000,000 generations. For BI of Mcm7 accessions for which there were ITS equivalents the 
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HKY+G model was used and was run for 5,000,000 generations. For BI of the combined dataset (ITS 

and Mcm7) the separate models of individual datasets were used for each region and were run for 

5,000,000 generations, at a temperature of 0.1 in order to reach the optimal solution most 

efficiently.  

4.2.8: DNA barcoding analysis 

Accessions were renamed, to species where possible, according to results Mcm7 phylogenetic 

analysis. Datasets of all Mcm7 accessions, ITS accessions for which there were Mcm7 equivalents, 

Mcm7 accessions for which there were ITS equivalents, and concatenated ITS and Mcm7 accessions 

were analysed and treated as in section 3.2.8. 
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4.3: Results 

4.3.1: Mcm7 amplification and sequencing 

Nineteen of the 40 possible combinations of 13 primers (five forward and eight reverse) resulted in 

at least a single product from the five initial PM accessions trialled. The combination of Mcm7F2 and 

Mcm7R8 produced the most bands of greatest intensity (Figure 4.1). After optimisation of PCR, 84% 

of 299 trialled accessions resulted in a product being visualised using gel electrophoresis. Sequencing 

resulted in 187 of 251 (74.5%) accessions producing readable sequences. These were contributed to 

GenBank (Accession numbers KY786340 – KY786476 (presented in Appendix 5)). Sequencing worked 

in both forward and reverse directions, however forward sequences tended to be of poor quality. 

Those which were unsuccessful were characterised by weak reads, resulting in little or no sequence 

data, or messy reads, potentially contaminated with more than one PM species or additional 

conspecific fungi.  

 

Figure 4.1: Amplification of 550 bp product of Mcm7 with primers Mcm7F2 and Mcm7R8 with 
HyperLadder™ 1kb and negative control. 

 Samples were successfully amplified and sequenced from the Blumeria, Podosphaera, 

Sawadaea, Arthrocladiella, Golovinomyces, Neoerysiphe, and Erysiphe. Although DNA from 

accessions identified as Phyllactinia was amplified on two occasions, sequencing was never 

successful for the four accessions in the collection. 
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GenBank sequence data from the Mcm7 region of PMs is solely based upon available PM 

genomes (B. graminis, G. orontii, E. pisi, and E. necator). This dearth of GenBank data meant that 

identifications of PM samples based on NCBI GenBank Nucleotide BLAST were not possible. When 

BLAST was optimised for finding ‘highly similar sequences’ searches returned ‘no significant 

similarity’ 39% of the time (73 out of 187). All other sequences matched the Mcm7 region of various 

Ascomycetous fungi (including Botrytis, Chlorociboria, Collema, Cosmospora, Cudoniella, Lambertella, 

Lobothallia, Pertusaria, Strossmayeria, Tetrapisispora, and Trapelia) with identities and query covers 

ranging from 20-99% of the submitted sequence.  

4.3.2: Sequence alignment 

All 187 sequences were included in the initial sequence alignment. This was reduced to 151 

sequences as a result of poor sequence quality and short sequence reads. Included in this reduction 

were the only four sequences of Sawadaea Mcm7 DNA. Alignment resulted in a region of 604 bp. 

This was trimmed to 495 bp in order to remove gaps and poor quality sequence reads near the 

primer sites and leave sequences of equal size for later analyses. The region was 38.8% conserved. 

This compared to 75.6% in the ITS. There were 106 accessions with both Mcm7 and ITS sequences. 

Mcm7 sequences were concatenated with ITS (810 bp) for analysis resulting in 1315 bps. 

4.3.3: Phylogenetic analyses 

4.3.3.1 Mcm7 

BI of PM phylogeny using 151 samples of the 505 bp region within the Mcm7 region resulted in clear 

discrimination of each PM genus. Support for the overall topology was high. Tribes Cystotheceae (PP 

99%) and Erysipheae (PP 100%) were monophyletic (Figure 4.2 and Figure 4.3). However, genera of 

the Golovinomyceteae were grouped paraphyletically: Arthrocladiella and Golovinomyces shared an 

exclusive common ancestor but the Neoerysiphe were grouped as sister to the Erysipheae tribe. The 

node separating Neoerysiphe and Erysipheae from Arthrocladiella and Golovinomyces had a PP of 

92%. Each genus included in the sampling proved to be monophyletic and had high posterior 
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probability: Podosphaera (PP 100%), Arthrocladiella (PP 99%), Golovinomyces (PP 100%), 

Neoerysiphe (PP 99%), and Erysiphe (PP 99%).  

 Within the Cystotheceae (clade A) species of Podosphaera were shown to be distinct from 

each other. Samples 5_13 and 5_47R found on Malus sp. showed themselves to be closely related. 

This highlighted a previously incorrect identification; the closely related yet distinct species P. 

leucotricha and P. clandestina generally show a clear host divide, growing on species of the tribe 

Maleae and the genus Crataegus respectively. Podosphaera species occurring on Taraxacum 

officinale were not previously identified to species level due to the similarities of potential species P. 

xanthii and P. erigerontis-canadensis. They formed a cluster here which included sample 6_44 P. 

plantaginis on Plantago lanceolata and because of the single host and monophyletic clustering were 

identified conclusively as P. erigerontis-canadensis. Monophyletic groups are listed in Table 4.4. 

 Within the Golovinomyces, seven of the nine species included in the analysis were shown to 

be monophyletic (Table 4.4). Sample 5_267 on Monarda didyma was previously unidentified as it 

could have been either G. biocellaris or G. cichoracearum. As it is grouped monophyletically with G. 

depressus ex Salvia officinalis and separate from G. cichoracearum accessions, it is now identified as 

G. biocellaris.  G. cynoglossi appears to be polyphyletic, although the accessions form host-specific 

monophyletic groups: two separate groups ex Myosotis sp., of two and three accessions respectively, 

were monophyletic while three of the four remaining accessions (on Pulmonaria, Symphytum, and 

Silene) formed a separate monophyletic group. These could be two cryptic species; taxa that are 

morphologically identical to each other but belong to different species. 

 Neoerysiphe separated into four monophyletic species (Table 4.4). The varying accessions of 

N. galeopsidis showed no separation according to host species.  

 Tribe Erysipheae (clade C) separated into individual species. Of the 18 putative species 

included in the analysis, 13 were shown to be monophyletic (Table 4.4). The E. aquilegiae group, 18 

accessions (PP 100%), was paraphyletic; containing two other species (E. catalpae and E. circeae) 
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within it. There was no clear difference between var. aquilegiae found on Aquilegia sp. and Caltha 

palustris and var. rannunculi found on Delphinium sp. and Rannunculus repens. Further separations 

were observed as the Mcm7 region showed phylogenetic difference between E. heraclei on 

Heracleum (PP 93%) and Anthriscus (PP 16%). E. prunastri and E. necator were distinct and quite 

separate from the rest of the tribe. Species E. hyperici, E. ludens, and E. trifoliorum are known to be 

species with near identical appearance. It was not possible to show clear separation between these 

using ITS (section 3.3) however this is improved by the Mcm7 region; E. trifoliorum and E. hyperici 

are monophyletic while E. ludens is paraphyletic around the E. hyperici sample.  

 Sample 5_193R on Amelanchier lamarckii was identified as Podosphaera amelanchieris after 

morphological and ITS analyses. Its position in the Mcm7 phylogeny showed it to be amongst the 

Golovinomyces and specifically within the Golovinomyces sordidus species complex.  

 Long branches arose for accessions 5_14 Podosphaera_clandestina, 5_90R 

Podosphaerea_morsuvae, and 4_13R Erysiphe_alphitoides. Each of these accessions was grouped 

within the appropriate genus, and 4_13R Erysiphe_alphitoides within the appropriate species 

complex. These were excluded from barcoding analyses due to their clear difference from their 

closely related species.  

Particular identifications made after morphological and ITS analysis and after Mcm7 analysis 

were disparate. These were: 5_160 on Taraxacum officinale (identified as G. cichoracearum after 

morphological and ITS analysis, but as a Podosphaera species after amplification of Mcm7 DNA), 

5_179 on Plantago lanceolata (identified as P. plantaginis after morphological and ITS analysis, but 

as G. sordidus after amplification of Mcm7 DNA), and 5_193 on Amelanchier lamarckii (identified as 

P. amelanchieris after morphological and ITS analysis, but as a Golovinomyces species after 

amplification of Mcm7 DNA), and 5_249 on Plantago major (identified as E. cruciferarum after 

morphological and ITS analysis, but as G. sordidus after amplification of Mcm7 DNA).  
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Table 4.4: Monophyletic PM groups from Mcm7 data within the Erysiphales. 

Species within group Number of Accessions PP of group* 

P. macrospora 1   

P. erigerontis-canadensis 3 
55 

P. plantaginis 1 

P. leucotricha 2 100 

P. euphorbiae-helioscopiae 1   

P. dipsacearum 1   

P. epilobi 1   

A. mougeotii 1   

G. depressus 3 100 

G. cynoglossi 2 100 

G. biocellaris 2 100 

G. cichoracearum 1   

G. magnicellulatus 3 100 

G. cynoglossi 4 64 

G. sonchicola 4 100 

G. verbasci 1   

G. cynoglossi 3 78 

G. orontii 1   

G. sordidus 9 
52 

P. amelanchieris 1 

N. galii 3 100 

N. geranii 5 100 

N. nevoi 5 100 

N. galeopsidis 17 100 

E. prunastri 1   

E. necator 1   

E. hedwigii 1   

E. lonicerae 4 92 

E. aquilegiae 15 

100 E. catalpae 1 

E. circeae 1 

E. platani 1   

E. elevata 1   

E. alphitoides 13 
99 

E. euonymicola 6 

E. cruciferarum 3 100 

E. berberidis 4 100 

E. ludens 2 

100 E. hyperici 1 

E. trifoliorum 5 

E. buhrii 1   

E. heraclei 11 99 

*Groups with a single accession have no PP and are shaded in grey. 
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Figure 4.2: Part 1 of BI using 151 sequences of the Mcm7 region. Accession names include sample 
code, PM name, and host identity. PPs above 75% are shown in blue and below in red. Green lines 
and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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Figure 4.3: Part 2 of BI using 151 sequences of the Mcm7 region. Accession names include sample 
code, PM name, and host identity. PPs above 75% are shown in blue and below in red. Green lines 
and names show species separation by phylogeny. 
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4.3.3.2 Direct comparison of ITS and Mcm7 

BI of the PM phylogeny of 106 accessions of the Mcm7 region (Figure 4.5) resulted in an overall 

topology similar to that of the BI of the PM phylogeny of 106 accessions of the ITS region (Figure 4.4). 

The main differences came in the positioning of genera within the Golovinomyceteae (clade B). The 

Mcm7 phylogeny was similar to that of section 4.3.3.1 and as such Arthrocladiella, Golovinomyces, 

and Neoerysiphe were grouped paraphyletically with the Neoerysiphe being sister to the Erysipheae 

tribe. The ITS phylogeny showed Golovinomyceteae to be monophyletic (PP 92%). Both regions 

showed the Neoerysiphe within this tribe to be monophyletic and individual species were separated. 

The ITS phylogeny showed Arthrocladiella to be grouped between G. depressus and the remaining 

Golovinomyces species.  

 Comparison of the ITS and Mcm7 trees confirmed their relative variability as branch lengths 

varied. The mean branch length was greater in the Mcm7 tree than that of the ITS tree. This greater 

variation in sample sequences resulted in a shorter scale bar, longer individual branches and fewer 

polytomies in the Mcm7 tree. 

 The differential identifications of sample 5_160 as G. cichoracearum with ITS and a 

Podosphaera species with Mcm7, 5_179 as P. plantaginis via ITS and G. sordidus via Mcm7, 5_193 as 

P. amelanchieris when using ITS and a Golovinomyces species when using Mcm7, and 5_249 as E. 

cruciferarum via ITS and G. sordidus via Mcm7 resulted in their exclusion from the combined analysis. 

These accessions were renamed accordingly to their Mcm7 identity for Mcm7 TaxonDNA analyses. 
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Figure 4.4: BI using 106 sequences of the ITS region. Accession names include sample code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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Figure 4.5: BI using 106 sequences of the Mcm7 region. Accession names include sample code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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4.3.3.3 Combined ITS and Mcm7 phylogeny 

BI of PM phylogeny using 102 accessions of the combined 1315 bp region of the ITS and Mcm7 

regions resulted in clear discrimination of each PM genus. PP for the overall topology was high. 

Tribes Cystotheceae (Clade A) and Erysipheae (Clade C) were monophyletic, both with PP of 99% 

(Figure 4.6). However genera within the Golovinomyceteae (Clade B) tribe (Arthrocladiella, 

Golovinomyces, and Neoerysiphe) were paraphyletic: each genus was monophyletic but 

Arthrocladiella and Golovinomyces were paraphyletic to Neoerysiphe which was sister to the 

Erysipheae tribe. The node separating Neoerysiphe and Erysipheae from Arthrocladiella and 

Golovinomyces had PP of 94%. Each genus included in the sampling was shown to be monophyletic 

as Podosphaera (PP 99%), Arthrocladiella (PP 99%), Golovinomyces (PP 96%), Neoerysiphe (PP 100%), 

and Erysiphe (PP 99%).  

 Within the Golovinomyces, eight of the ten different species included in the analysis were 

shown to be monophyletic (Table 4.5). G. cynoglossi arose two separate times. The polyphyletic 

nature of G. cynoglossi could be related to its hosts, although two individual groups of two 

accessions on Myosotis sp. arose monophyletically (PP 99% and 100%), with an additional accession 

on Silene diocia as sister to G. sonchicola. Once again this shows support for a cryptic species.  

 Neoerysiphe continued to separate into four monophyletic species (Table 4.5). 

Of the the 15 putative Erysiphe species, 12 were shown to be monophyletic (Table 4.5). The 

E. aquilegiae group, 10 accessions (PP 99%), contained E. catalpae. There remained no clear 

difference between var. aquilegiae and var. rannunculi. Eight of the nine E. alphitoides accessions 

formed a monophyletic group. The ninth was polyphyletic to this group and sister to E. euonymicola. 

Similarly, one of the four E. trifoliorum accessions was grouped polyphyletically to the main group; 

sister to E. hypericic and E. ludens. Further separations were observed as the combined regions 

showed phylogenetic difference between E. heraclei on Heracleum (PP 100%) and Anthriscus (PP 

100%). 
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Table 4.5: Monophyletic PM groups from Mcm7 data within the Erysiphales. 

Species within group Number of Accessions PP of group* 

P. erigerontis-canadensis 1   

P. clandestina 1   

P. leucotricha 2 100 

P. euphorbiae-helioscopiae 1   

P. dipsacearum 1   

A. mougeotii 1   

G. depressus 3 100 

G. cynoglossi 2 100 

G. biocellaris 1   

G. cichoracearum 1   

G. magnicellulatus 3 100 

G. orontii 1   

G. sordidus 1   

G. verbasci 1   

G. cynoglossi 3 99 

G. sonchicola 3 100 

N. galii 2 99 

N. geranii 2 100 

N. nevoi 3 300 

N. galeopsidis 12 98 

E. prunastri 1   

E. necator 1   

E. lonicerae 4 100 

E. aquilegiae 10 
99 

E. catalpae 1 

E. elevata 1   

E. platani 1   

E. alphitoides 9 
96 

E. euonymicola 5 

E. berberidis 3 100 

E. trifoliorum 4 

100 E. hyperici 1 

E. ludens 2 

E. buhrii 1 
100 

E. heraclei 9 

*Groups with a single accession have no PP and are shaded in grey. 
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Figure 4.6: BI using 106 sequences of the ITS and Mcm7 regions combined. Accession names include 
accession code, PM name, and host identity. PPs above 75% are shown in blue and below in red. 
Green lines and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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4.3.4: DNA barcoding analysis 

4.3.4.1 Mcm7 

Intra and interspecific differences were quantified for the 146 accessions and 40 species of the 

Mcm7 region. This resulted in a total overlap of 17.88% (from 0.43% to 18.31%, covering 93.79% of 

all intra and interspecific but intrageneric sequences) (Figure 4.7a). Accessions with a mean of more 

than 5% intraspecific difference were G. sordidus, E. aquilegiae, and E. trifoliorum. There were 1,412 

interspecific, congeneric distances which fell below 5%; the most common of these were between 

accessions of the Erysiphe (82.9%) and Golovinomyces (16.8%). The only interspecific pair below 0.5% 

difference was E. aquilegiae and E. circeae. 

 

Figure 4.7: The frequency distribution of the intra and interspecific K2P distance values (barcoding 
gaps) of (a) 146 Mcm7 accessions, (b) 102 ITS accessions common to the ITS and Mcm7 regions, (c) 
102 Mcm7 accessions common to the ITS and Mcm7 regions, and (d) 102 accessions of the ITS and 
Mcm7 regions combined. Blue chevrons (V) mark the mean intraspecific variation per locus and 
orange asterisks (*) mark the mean interspecific variation per locus. 
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4.3.4.2 Direct comparison of ITS, Mcm7, and combined datasets 

4.3.4.2.1 ITS 

Intra and interspecific differences were quantified for the 104 accessions and 35 species of the ITS 

region. This resulted in a total overlap of 10.42% (from 0.0% to 10.42%, covering 89.48% of all intra 

and interspecific but intrageneric sequences) (Figure 4.7b). The only accessions with a mean of more 

than 5% intraspecific difference were G. cynoglossi. There were 2,756 interspecific, congeneric 

distances which fell below 5%; 98% of these were between accessions of the Erysiphe. The 

interspecific pairs which were below 0.5% difference were: E. aquilegiae and E. catalpae, and E. 

alphitoides and E. euonymicola. 

4.3.4.2.2 Mcm7 

Intra and interspecific differences were quantified for the 103 accessions and 34 species of the 

Mcm7 region. This resulted in a total overlap of 7.57% (from 0.61% to 8.18%, covering 61.82% of all 

intra and interspecific but intrageneric sequences) (Figure 4.7c). Accessions with a mean of more 

than 5% intraspecific difference were E. aquilegiae, E. trifoliorum, and G. cynoglossi. There were 896 

interspecific, congeneric distances which fell below 5%; 91% of these were between accessions of 

the Erysiphe. E. alphitoides and E. euonymicola, G. cynoglossi and G. sonchicola, and G. cynoglossi 

and G. orontii were the species pairs with closest interspecific congeneric distances falling between 

0.5%-1% difference. 

4.3.4.2.3 Combined ITS and Mcm7 

Intra and interspecific differences were quantified for the 101 accessions and 33 species of the 

combined ITS and Mcm7 regions. This resulted in a total overlap of 8.98% (from 0.33% to 9.31%, 

covering 86.47% of all intra and interspecific but intrageneric sequences) (Figure 4.7d). The only 

accessions with a mean of more than 5% intraspecific difference were G. cynoglossi. There were 

1,536 interspecific, congeneric distances fell below 5%; 97.5% of these were between accessions of 

the Erysiphe. The only interspecific pair below 0.5% difference was E. alphitoides and E. euonymicola. 
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4.4: Discussion 

4.4.1: Mcm7 amplification and sequencing 

Markers for this promising region and a protocol for their use were successfully designed. Given the 

dearth of previous sequence data for the Mcm7 region, it was vital to locate and identify the region 

using previously amplified samples of closely related, ascomycetous fungi. The use of 22 of these 

ensured that the region was accurately located and their alignment proves them to be reliably 

identified. After locating the region, primer design was reliant upon the accuracy of sequence data 

within the four available PM genomes. The challenge was then to ensure a designed primer would 

be specific only to the PMs, such that other fungi in the environmental sample of DNA were not 

amplified, and general enough to amplify and sequence the full diversity of PMs. This could not be 

guaranteed as sample genomes were of just three out of 12 genera: Blumeria, Erysiphe, and 

Golovinomyces genera. The use of ambiguous base pairs within the primers was necessary in order 

to maximise the likelihood of amplification and sequencing and it was hoped that these would also 

accommodate for the remaining PM genera whose DNA sequences were unknown at this point. 

Samples from the most common PM genera have been amplified and sequenced. The lack of success 

with Phyllactinia species may be due to sequencing error and must be trialled further. The primers 

must now be tested on herbarium specimens and rarer and more exotic PM genera and species such 

as Cystotheca, Pleochaeta, and Leveillula. 

 The amplification of multiple products in certain accessions may indicate that the primer 

combination is not as specific to PMs as hoped; amplifying additional accessions of congeneric or 

mycoparasitic fungi as well as the targeted PM. However, there was no correlation between the 

samples with faint additional bands sent for sequencing and poor sequence data. Instead poor 

sequence data proved to be associated with a weak initial product (signified by low intensity band 

on the agarose gel). Sequence data with multiple peaks present in trace files may have resulted from 

amplification of more than one PM species on a single host. This is exemplified by the four disparate 
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identifications of ITS and Mcm7 (section 4.3.3.1). There was evidence for preferential amplification 

of Golovinomyces spp. by the promising primers Mcm7F2 and Mcm7R8: accessions identified as P. 

plantaginis, P. amelanchieris, and E. cruciferarum based on morphology and ITS were identified as G. 

sordidus , Golovinomyces sp., and G. sordidus respectively when analysed with Mcm7. 

The reduction in ambiguous bases and length of Mcm7F2 and Mcm7R8 after additional 

sequence data was acquired resulted in a reduction in amplification and sequencing success. These 

adapted primers may require further optimisation. Design of alternate primers from the diverse 

alignment of data was problematic due to the low level of conservation in Mcm7; with no stretch 

proving to be better than that originally used for the design of Mcm7F2 and Mcm7R8. The proposed 

markers have been shown to consistently provide positive outcomes in amplification and sequencing. 

Their continued success should be monitored to ensure their efficacy.  

4.4.2: Phylogenetic analyses 

The Mcm7 region was useful for phylogenetic analyses, confirming the findings of Aguileta et al. 

(2008) and numerous other studies which had confirmed its utility in other fungal groups. 

Computation time is slow; a dataset of approximately 150 sequences of 500bp for 5,000,000 

generations taking approximately a day on a 3.20 GHz processor. The result was similar to accepted 

phylogenies of Braun and Takamatsu (2000). The main topological difference came in the placement 

of the Neoerysiphe. Based on morphology and ITS sequence data this has been known to be a clade 

within the tribe Golovinomyceteae. Combining Mcm7 with ITS sequence data did not resolve this 

placement, therefore confirming the close relationship of the Neoerysiphe and Erysiphe clades in the 

Mcm7 region. 

The combined regions performed well under BI. Species within a genus grouped together 

and as sister to their congenerics. The use of Mcm7 enabled greater discrimination of individual 

species: confirming the identity of certain accessions and enabling revisions elsewhere: particularly 

within Erysiphe (species E. trifoliorum, E. ludens, and E. hyperici) and Golovinomyces (species 
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G.cichoracearum, G.sonchicola, and G.verbasci). The greater sequence variation of Mcm7 than the 

ITS, resulted in longer branch lengths and greater inter- and intra-specific separation, which could be 

vital for resolving PM species complexes such as those in Phyllactinia species, G. cichoracearum, P. 

fuliginea, and P. tridactyla, in future. Greater sample numbers are needed of these clades in order to 

do so. 

No clear improvement of the resolution of relationships has been seen within species with 

numerous accessions yet: the E. heraclei remain clearly grouped as potential formae speciales onto 

different host plants in both Mcm7 and ITS analyses; E. aquilegiae accessions remain scattered 

between var. aquilegiae and var. ranunculi in both Mcm7 or ITS analyses; and N. galeopsidis 

accessions remain scattered between host genera in both Mcm7 and ITS analyses. Accession 5_113R 

consistently grouped amongst E. aquilegiae. This may be due to the close relationship of E. elevata 

and E. aquilegiae or Catalpa being host to more than one Erysiphe species (Cook et al., 2006). If so, 

this would be a new record of PM on this host.  

4.4.3: DNA barcoding analysis 

The K2P distribution graphs visualise the intra and interspecific distances per locus corresponding to 

the barcoding gap (Hebert et al., 2003a). An ideal barcoding locus should have no overlap between 

intra and interspecific K2P distances (Quaedvlieg et al., 2014). None of the analyses produced this 

gap. Failing this, a low K2P overlap is desired: the individual regions showed varying degrees of 

overlap of intra and interspecific distances. The ITS had a higher K2P overlap than the Mcm7 

suggesting the ITS was more conserved. This made it less suitable as a reliable identification locus for 

PM fungi across the whole scale of tested sequences.  The Mcm7 showed far greater natural 

variation within a species and between different species than the ITS and is therefore a strong 

candidate for efficient and reliable PM identification and population studies. As in numerous other 

fungal clades (Crous et al., 2000, Câmara et al., 2002, Kang et al., 2002, Keča et al., 2006, Maphosa et 

al., 2006, Schena et al., 2008, Amatulli et al., 2010, Bensch et al., 2012, Groenewald et al., 2013, 
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Birkebak et al., 2016, Haight et al., 2016), this region could then be used regularly as an additional 

‘identifier’ to the ‘anchor’ of the ITS (Kõljalg et al., 2013). This method is extremely efficient in 

computation time; taking just a few seconds to calculate intra and interspecific distances. 

 Extensive K2P overlaps across all analyses were the result of closely related species of 

Erysiphe and Golovinomyces having very similar sequences and wide variation within certain species. 

The difference within E. aquilegiae has been recognised previously as distinct varieties aquilegiae 

and ranunculi (Braun & Cook, 2012). However the difference within G. cynoglossi is thus far 

undocumented. 
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4.5: Conclusions 

The Mcm7 region has proved to be a valuable addition to the currently established techniques for 

the identification of PM fungi. Amplification and sequencing of the Mcm7 region was made possible 

by previous sequence data of PM genomes and Mcm7 regions of other fungi. BI and K2P analyses 

have helped to prove the utility of Mcm7 as an addition to ITS. Due to the historical weight of 

sequence data based around the ITS it has become a necessary tool for PM identification as samples 

are compared with this extensive library. However, Mcm7 has been shown to achieve a greater level 

of discrimination of PM species and genotypes than the ITS. This is shown in its greater branch 

length under BI and lower K2P overlap in DNA barcoding. If amplification success can be improved 

close to that of the ITS, then this region should be adopted for future identification of PM species, 

particularly those of closely-related, phylogenetically young, recently evolved species such as those 

in the genera Erysiphe, Golovinomyces, and Podosphaera. Adoption of such an efficient region, 

alongside other technologies, could help to support rapid identification techniques that, if 

implemented alongside greater screening, might limit the spread of potentially harmful plant 

diseases; major threats to the UK horticultural and agricultural industries.  
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Chapter 5: Augmenting current ID techniques with β-tubulin 

5.1: Introduction 

The identification of additional regions to complement the ITS is key to the improvement of the 

discrimination process of PM species (Inuma et al., 2007). Approaches have been developed to 

evaluate concatenated datasets for their phylogenetic utility (Murphy et al., 2001, Li et al., 2007, 

Rowe et al., 2008, Edwards, 2009). New data from potentially informative regions such as the Mcm7 

and β-tubulin regions alongside the ITS may then result in phylogenies that better reflect the species 

tree rather than simply gene trees (Mallo & Posada, 2016). Concatenated alignments of PM species 

have been shown to provide results of greater approximation to the probable evolutionary tree than 

individual regions (Medina et al., 2011, Tretter et al., 2014a).  

β-tubulin is a region which has received moderate attention within the field of fungal 

diagnostics (McKay et al., 1999, Fraaije et al., 2001) and more recently the PMs (Troch et al., 2014, 

Vela-Corcía et al., 2014). It is one of seven tubulins, which constitute a small family of globular 

proteins (McKean et al., 2001). In a eukaryotic cell, the most abundant members are α-tubulins and 

β-tubulins, the proteins that are the primary constituents of microtubules (Einax & Voigt, 2003). The 

β-tubulin gene is said to be conserved, with “at least 60 % amino acid similarity between the most 

distantly related lineages” (Juuti et al., 2005). It has been used as a molecular target in real-time PCR 

technologies for the accurate and reliable quantification of fungal DNA in environmental samples 

(Schena et al., 2004) and as a reference gene in quantitative gene expression analysis in fungi (Yan & 

Liou, 2006). More relevant to the current study is that this gene has been reported to amplify using 

universal primers for fungi (Glass & Donaldson, 1995). Its use as a molecular marker for addressing 

intraspecific genetic diversity at varying taxonomic levels for fungi (Ayliffe et al., 2001) and 

intraspecifically in population genetics studies of PM fungi (Cunnington et al., 2003, Inuma et al., 

2007, Brewer & Milgroom, 2010, Troch et al., 2014) are also promising for its diagnostic use in PMs. 
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Key to the success of β-tubulin when ITS can no longer successfully discriminate PM species 

is the greater divergence of its DNA sequences, due to a faster mutation rate (reported within the 

Blumeria graminis complex) (Wyand & Brown, 2003). This has also been reported in the 

phylogenetic relationships among Neofabraea species causing tree cankers and bull’s eye rot of 

apple (de Jong et al., 2001), and the Gibberella fujikuroi (Fusarium) species complex (O' Donnell et al., 

1998b). The intraspecific variation of β-tubulin is contested in the study of Pirondi et al. (2015) as it 

shows eight ‘housekeeping genes’ of Podosphaera xanthii to have near identical sequences. In this 

case genetic diversity within and among populations was very low and isolates did not group 

according to geographical origin, host plants, climate areas, cultivation systems or mating types. 

They therefore claim that such a result suggests a clonal population structure of this PM caused by 

reproduction predominantly by asexual reproduction.   

The potential for improving PM identification using an additional region, the Mcm7, has 

been shown in Chapter 4. Chapter 5 will continue to investigate the potential for complementing the 

morphological and ITS analyses which have become ubiquitous in PM identification. The study used 

accessions sourced from the Powdery Mildew Survey (Chapter 2).  

In this chapter the possibility of using primers sourced from the literature for the β-tubulin 

region for PMs was investigated. The possibility of developing new working markers for the β-tubulin 

region for PMs was also investigated and the value of resultant data for phylogenetic reconstruction 

explored. The resolution of this region in DNA barcoding studies was compared with the standard ITS 

region.   
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5.2: Materials and methods 

5.2.1: Sample collection – The Powdery Mildew Citizen Science Scheme 

Samples were collected via the powdery mildew citizen science scheme (Chapter 2). One hundred 

and nine of these were successfully amplified (Appendix 5) in the study outlined in this chapter. 

5.2.2: Putative species identification 

The techniques outlined in Chapters 2, 3, and 4 formed the basis of the identities of PM species used 

in this chapter.  

5.2.3: DNA extraction 

The DNA extracted for initial PM species identification (section 3.2.3) was used for these further 

analyses. 

5.2.4: Generic primer trials 

5.2.4.1 Sourcing primers 

Primers for the amplification of the β-tubulin region were sourced from previous publications (Glass 

& Donaldson, 1995, Ayliffe et al., 2001, Amrani & Corio-Costet, 2006, Brewer & Milgroom, 2010, 

Vela-Corcía et al., 2014) and ordered from Sigma-Aldrich (Table 5.1). 

Table 5.1: Generic primers sourced from literature for trialling amplification and sequencing of β-
tubulin region of PMs 

Primer 
name 

Direction Sequence (5' - 3') 
Reported 
Tm (°C) 

Product 
size (bp) 

Source 

Tub3 F GGCXAARGGXCAYTAYACXGA 
58 600 

Amrani and Corio-
Costet (2006) Rtub4 R TGYTGXGTXARYTCXGGXAC 

tubA F GCRTCYTGRTAYTGYTGRTAYTC 
58 1000 Ayliffe et al. (2001) 

tubB R TGGGCNAARGGNCAYTAYACNGA 

Bt2c F CAGACTGGCCAATGCGTA 
56 500 

Brewer and 
Milgroom (2010) Bt2d R AGTTCAGCACCCTCGGTGTA 

Bt2a F GGTAACCAAATCGGTGCTGCTTTC 
58-68 402 

Glass and 
Donaldson (1995) Bt2b R ACCCTCAGTGTAGTGACCCTTGGC 

BtubF F ATGCGTGAAATTGTTCATCT 
N/A 1800 

Vela-Corcía et al. 
(2014) BtubR R TTATTCTTCCGGTTGCATGGGTG 
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5.2.4.2 PCR and sequencing 

Amplification of the five primer combinations was trialled according to published protocols (Glass & 

Donaldson, 1995, Ayliffe et al., 2001, Amrani & Corio-Costet, 2006, Brewer & Milgroom, 2010, Vela-

Corcía et al., 2014). The PCR products were separated and visualised as in section 3.2.4.  

 Multiple products per sample were consistently amplified (Figure 5.1). Individual bands were 

excised, purified using the QIAquick Gel Extraction Kit, and sent to Source BioScience via courier for 

sequencing. 

 

Figure 5.1: Amplification of 600 bp product of β-tubulin with primers Tub3 and Rtub4 before 
optimisation of PCR protocol. 

Annealing, and extension temperatures of PCR protocols were explored using gradient PCR 

and MgCl2 concentrations were increased in increments of 0.25mM up to 1mM in order to optimise 

amplification for single products. Single products were amplified for the primer combinations Tub3 

and Rtub4 and tubA and tubB (Figure 5.2) with the PCR protocol from Amrani and Corio-Costet 

(2006) at an annealing temperature of 58°C and 0.5mM MgCl2. Products of more than 10ng per band 

of preliminary sample amplifications, lacking strong additional amplified products, were purified 

using the QIAquick PCR Purification Kit and sent to Source BioScience via courier for sequencing.  
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Figure 5.2: Amplification of 1000 bp product of β-tubulin with primers tubA and tubB after 
optimisation of PCR protocol. 

 Complementary forward and reverse sequences generated in this study as in section 3.2.4. 

This resulted in products of 470-590 bp for Tub3 and Rtub4 and 850-920 bp for tubA and tubB. NCBI 

GenBank Nucleotide BLAST was performed on samples. The results showed no significant similarity 

to β-tubulin PM sequences. Instead results showed similarity to contaminants from the 

environmental accessions such as: Passalora fulva, Sclerotinia sclerotiorum, Sclerotinia homeocarpa, 

Didymium squamulosum, and Phaeosphaeria avenaria.  

5.2.5: Data mining for β-tubulin molecular markers 

PM genomes (Max Planck Institute for Plant Breeding Research, Spanu et al., 2010, Jones et al., 2014) 

were aligned with two fungal species (Cistella spicicola (GenBank Accession No. GU727565.1) and 

Melampsora lini (GenBank Accession No. AF317682.1) and 12 PM samples in order to identify the 

location of the β-tubulin region and then develop primers to trial in the amplification of samples. A 

total of 14 primers (seven forward, seven reverse) were designed (Table 5.2) and ordered as in 

section 4.2.4.  
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Table 5.2: Primers designed for trialling amplification and sequencing of β-tubulin region of PMs. 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

BtubF1 F GTTCACCTCCARACTGGCCAATG 23 62.42 52.17 

BtubF2 F AAYCARATYGGDGCYGCNTTCT 22 60.88 45.45 

BtubF3 F GAAYGTWTAYTTYAAYGAGGT 21 49.04 28.57 

BtubF4 F TGTGAYTGTCTTCARGG 17 48.33 41.18 

BtubF5 F ATGATGGCDACMTTYTCRGTTGT 23 61.67 43.48 

BtubF6 F TGTATGAGRACDTTRAAGCT 20 54.11 40 

BtubF7 F GGTGTRACYACHTGTCT 17 48.97 47.06 

      
   

BtubR1 R AGCTTYAAHGTYCTCATACA 20 55.85 45 

BtubR2 R AGACADGTDGTYACACC 17 50.39 47.06 

BtubR3 R ACCATGTTAACHGCYAAYTT 20 55.45 40 

BtubR4 R AAWCCAACCATRAARAARTG 20 47.86 25 

BtubR5 R GAVGCWGCCATCATRTTYTT 20 49.36 41.18 

BtubR6 R GTRAATTGATCHCCRACRCG 20 57.44 50 

BtubR7 R TCCATYTCRTCCATTCCTTC 20 54.19 45 

 

5.2.6: PCR and sequencing protocol 

PCR was carried out using the newly designed PM specific primers of the β-tubulin region (Table 5.2). 

The 31 possible combinations expected to amplify a product of more than 200 bp were trialled in 25 

μl mixes of 12.5 μl BioMix™ Red (Bioline), 0.5 μl BSA (10 ng μl-1), 0.875 μl of each primer at 10 ng μl-1, 

9.25 μl RO water, and 1 μl of sample DNA at concentrations of 10-50 ng μl-1. Cycling parameters 

were adapted from Amrani and Corio-Costet (2006) with an initial denaturation step of 95 °C for five 

minutes, followed by 37 cycles of denaturation at 95 °C for 30 seconds, annealing at 55 °C for one 

minute, and elongation at 72 °C for one and a half minutes and a final elongation at 72 °C for five 

minutes. Three samples of DNA, spanning the PM clade and previously shown to have been 

successfully amplified and sequenced using PM specific ITS primers PMITS1 and PMITS2 (Cunnington 

et al., 2003), were trialled initially. 

The PCR products were separated and visualised as in section 3.2.4.  
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The seven primer combinations exhibiting the highest amplification success (number of 

products x product strength) were BTF1 and BTR2, BTF1 and BTR3, BTF1 and BTR6, BTF5 and BTR6, 

BTF5 and BTR7, BTF6 and BTR6, and BTF6 and BTR7. These were trialled for amplification of five 

different samples of DNA, spanning the PM clade and previously shown to have been successfully 

amplified and sequenced using PM specific ITS primers PMITS1 and PMITS2 (Cunnington et al., 2003). 

The three primer combinations exhibiting the highest amplification success were BTF1 and BTR3, 

BTF1 and BTR6, and BTF5 and BTR7.These were trialled at a gradient of annealing temperatures 

from 53-62 °C. The most successful temperature was 55 °C. The three primer combinations were 

then trialled with seven new samples at this optimised annealing temperature. The most successful 

primer combination was BTF5 and BTR7. This amplified a region of approximately 800 bp. Reducing 

the degeneracy of base pairs was trialled for greater accuracy in amplification and sequencing of the 

β-tubulin region and resulted in the design of primers BTF5a, BTF5b, and BTR7a (Table 5.3). 

Application of these modified primers produced greater amplification success and sequences of 

greater quality. Primer combination BTF5b and BTR7a was best and was used in all future 

amplifications with an annealing temperature of 55 °C. Single amplicons were sequenced and 

assembled as in section 3.2.4. 

Table 5.3: Primers adapted from BTF5 and BTR7 for more efficient amplification and sequencing of 
β-tubulin products 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

BtubF5a F ATGATGGCSACATTTTCGGTTGT 23 61.63 43.48 

BtubF5b F ATGATGGCSSACATTTTCGGTTGT 24 63.68 45.83 

      
   BtubR7a R TCCATTTCGTCCATTCCTTC 20 55.44 45 
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5.2.7: Sequence alignment 

Sequence alignment of β-tubulin data, and their complementary ITS sequences, was performed as in 

section 3.2.6. The dataset of 85 sequences of β-tubulin accessions for which there were ITS 

equivalents was concatenated using Mesquite (Maddison & Maddison, 2017). The alignment files of 

the β-tubulin and the β-tubulin combined with the ITS rDNA were deposited in TreeBASE as S20944. 

5.2.8: Phylogenetic analyses 

Phylogenetic analyses were performed as in section 3.2.7.  

For BI of each separate data set (all β-tubulin accessions, ITS accessions for which there were 

β-tubulin equivalents, and β-tubulin accessions for which there were ITS equivalents) the GTR+I+G 

model was used and was run for 5,000,000 generations. For BI of the combined dataset (ITS and β-

tubulin) the separate models of individual datasets were used for each region and were run for 

5,000,000 generations.  

5.2.9: DNA barcoding analysis 

Datasets of all β-tubulin accessions, ITS accessions for which there were β-tubulin equivalents, β-

tubulin accessions for which there were ITS equivalents, and concatenated ITS and β-tubulin 

accessions were analysed and treated as in section 3.2.8. 
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5.3: Results 

5.3.1: β-tubulin amplification and sequencing 

Seventeen of the 31 possible combinations of 14 primers (seven forward and seven reverse) resulted 

in amplification of at least a single product from the three initial PM samples trialled. The 

combination of BTF5 and BTR7 produced the most bands of greatest intensity, this was refined to 

make BTF5b and BTR7a (Figure 5.3). After optimisation of PCR, 74% of 146 trialled samples in 2014 

resulted in a product being visualised using gel electrophoresis. Sequencing resulted in 115 of 116 

samples producing readable sequences. In 2016 18% of 82 trialled samples produced a product 

which could be visualised using gel electrophoresis. Sequencing resulted in seven of 15 samples 

producing readable sequences. These were contributed to GenBank (Accession numbers KY786690 – 

KY786781 (presented in Appendix 5)). Sequencing worked in both forward and reverse directions in 

2014, but only in reverse, via the BTR7a primer, in 2016. Those which were unsuccessful were 

characterised by weak reads, resulting in little or no sequence data, or messy reads, potentially 

contaminated with more than one PM species or additional conspecific fungi.  

 

Figure 5.3: Amplification of 800 bp product of β-tubulin with primers BTF5b and BTR7a with 
HyperLadder™ 1kb and negative control. 
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 Samples were successfully amplified and sequenced from the Blumeria, Podosphaera, 

Sawadaea, Phyllactinia, Arthrocladiella, Golovinomyces, Neoerysiphe, and Erysiphe genera.  

 β-tubulin sequence data from the PMs is sparse in GenBank; the 419 sequences available 

(April 2017) are from the following PM species: Blumeria graminis, Podosphaera fusca, 

Golovinomyces orontii, Oidium heveae, Erysiphe pisi, Erysiphe necator (called Uncinula necator in 

sequences on GenBank), Erysiphe syringae-japonicae, Erysiphe ligustri, and Erysiphe syringae. This 

dearth of GenBank data meant that identifications of PM samples based on BLAST were not possible. 

When BLAST was optimised for finding ‘highly similar sequences’ searches matched the nine PM 

species present with identities of 95-100% and sequence cover of 80-99% of the submitted sequence. 

BLAST also returned best matches to non-PM samples such as Cercophora, Chaetomidium, Monilinia, 

Neofabraea, Peziza, and Botryotinia; identities matching 65-99% and covering 77-98% of the 

submitted sequence. 

5.3.2: Sequence alignment 

All 115 sequences were included in the initial sequence alignment. This was reduced to 103 

sequences as a result of poor sequence quality and short sequence reads. The full breadth of PM 

genera in the present study were included in this. Alignment resulted in a region of 824 bp. This was 

trimmed to 768 bp in order to remove gaps and poor quality sequence reads near the primer sites 

and leave sequences of equal size for later analyses. The region was 50.6% conserved. This 

compared to 75.6% in the ITS and 38.8 % in the Mcm7. There were 85 accessions with both β-tubulin 

and ITS sequences. β-tubulin sequences were concatenated with ITS (881 bp) for analysis resulting in 

1649 bps. 

5.3.3: Phylogenetic analyses 

5.3.3.1 β-tubulin 

BI of PM phylogeny using 103 accessions of the 768 bp region within the β-tubulin region resulted in 

separation of the genera as expected after ITS and Mcm7 analyses. However multiple outliers were 
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also evident. Support for the overall topology was moderate. Tribes Cystotheceae (clade A, PP 98%), 

Phyllactinieae (PP 63%), and Erysipheae (clade C, PP 67%) were monophyletic (Figure 5.4). Genera of 

the Golovinomyceteae tribe (Arthrocladiella, Golovinomyces, and Neoerysiphe) were grouped 

paraphyletically with Arthrocladiella and Golovinomyces as sister to the Erysipheae tribe. The node 

separating Arthrocladiella, Golovinomyces and Erysipheae from Neoerysiphe had a PP of 92%. Each 

genus included in the sampling showed strong support: Sawadaea (PP 100%), Podosphaera (PP 99%), 

Arthrocladiella (PP 96%), Golovinomyces (PP 100%), Neoerysiphe (PP 99%), and Erysiphe (PP 67%), 

however S. tulasnei was grouped amongst Podosphaera spp., Oidium longipes grouped between 

Golovinomyces spp., accessions of E. pisi were more closely related to the B. graminis outgroup than 

any other accession, and accessions of E. lonicerae, E. polygoni, and E. elevata were also grouped 

amongst Podosphaera spp.  

 Within the Cystotheceae (clade A), Podosphaera species did not form polytomies and 

intraspecific variation was evident. Five of the 11 putative species included in the analysis were  

monophyletic (Table 5.4). Five P. fugax accessions grouped with a P. mors-uvae accession with 98% 

PP and five P. erigerontis-canadensis accessions grouped with three P. xanthii accessions and four 

outliers (S. tulasnei, E. lonicerae, E. polygoni, and E. elevata). A fourth P. xanthii accession was 

separate from these; the host Senecio jacobaea is also known to harbour P. senecionis and P. 

pericallidis and the accession is therefore likely to be one of these two species. Two accessions of P. 

tridactyla on Prunus spp. were paraphyletic. 

 Phyllactinia fraxini was the only accession representative of the Phyllactinieae. This was 

monophyletic and placed between the Cystotheceae and Golovinomyceteae.  

 Within the Golovinomyceteae (clade B), Neoerysiphe (four accessions of N. galeopsidis (PP 

100%) were monophyletic. There was a single accession from Arthrocladiella (A. mougeotti) which 

was grouped alone. The only Oidium accession was grouped amongst four Golovinomyces accessions. 

Within this group all four taxa were monophyletic (Table 5.4). 
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 Tribe Erysipheae (clade C) separated into individual species. Of the 19 putative species, 17 

were monophyletic (Table 5.4). E. aquilegiae separates into the two known varieties var. aquilegiae 

and var. ranunculi. Accessions on Fabaceae hosts and Hypericum are not completely resolved: two E. 

ludens ex Lathyrus spp., an E. hyperici ex Hypericum sp., three E. trifoliorum ex Trifolium spp., and an 

E. intermedia ex Lupinus sp. are grouped together (PP 98%). Within this group the E. trifoliorum and 

E. intermedia are monophyletic with PP of 58%.  
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Table 5.4: Monophyletic PM groups from β-tubulin data within the Erysiphales. 

Species within group Number of Accessions PP of group* 

S. bicornis 5 100 

P. clandestina 1   

P. filipendulae 3 99 

P. fugax 5 
98 

P. mors-uvae 1 

P. macrospora 1   

P. xanthii 1   

P. plantaginis 1   

P. erigerontis-canadensis 5 

27 

P. xanthii 3 

S. tulasnei 1 

E. lonicerae 1 

E. polygoni 1 

E. elevata 1 

Ph. fraxini 1   

N. galeopsidis 4 100 

A. mougeotii 1   

G. montagnei 1   

O. longipes 1   

G. cichoracearum 2 100 

G. sordidus 1   

E. adunca 1   

E. arcuata 1   

E. necator 1   

E. hedwigii 1   

E. aquilegiae 14 99 

E. platani 1   

E. elevata 1   

E. akebiae 3 94 

E. alphitoides 6 89 

E. cruciferarum 1   

E. berberidis 4 100 

E. ludens 2 

98 
E. hyperici 1 

E. trifoliorum 3 

E. intermedia 1 

E. convolvuli 2 100 

E. buhrii 1   

E. polygoni 2 100 

E. heraclei 9 100 

*Groups with a single accession have no PP and are shaded in grey. 
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Figure 5.4: BI using 103 sequences of the β-tubulin region. Accession names include accession code, 
PM name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and 
names show species separation by phylogeny. Orange boxes denote PM tribes. 
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5.3.3.2 Direct comparison of ITS and β-tubulin 

BI of the PM phylogeny of 85 accessions of the β-tubulin region (Figure 5.6) resulted in an overall 

topology very similar to that of the BI of the PM phylogeny of 85 accessions of the ITS region (Figure 

5.5). Differences came in the positioning of genera within the Cystotheceae (clade A) and 

Golovinomyceteae (clade B). Both phylogenies were similar to that of section 4.3.3.1. The ITS 

phylogeny showed Golovinomyceteae to be monophyletic (PP 92%). Both regions showed the 

Neoerysiphe within this tribe to be monophyletic and individual species were separated. The ITS 

phylogeny showed Arthrocladiella to be grouped between G. depressus and the remaining 

Golovinomyces species.  

 β-tubulin performed better when discriminating between certain closely related species: E. 

akebiae and E. alphitoides separate monophyletically while they are clustered together in the ITS 

phylogeny; and the same is true of E. ludens, E. hyperici, E. trifoliorum, and E. intermedia. Neither 

region manages to discriminate between P. erigerontis-canadensis and P. xanthii; these species are 

grouped together in both analyses.  

 Comparison of the ITS and β-tubulin trees showed that, despite their relative variability (24.4% 

and 49.4% variable respectively), mean branch length was similar. 

 Accession 4_89 was identified as E. aquilegiae with ITS and a potential Leveillula taurica with 

β-tubulin and 4_86 was identified as P. tridactyla via ITS and E. prunastri via β-tubulin. These 

accessions were renamed accordingly to their β-tubulin identity for β-tubulin TaxonDNA analyses. 
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Figure 5.5: BI using 85 sequences of the ITS region. Accession names include accession code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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Figure 5.6: BI using 85 sequences of the β-tubulin region. Accession names include accession code, 
PM name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and 
names show species separation by phylogeny. Orange boxes denote PM tribes. 
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5.3.3.3 Combined ITS and β-tubulin phylogeny 

BI of PM phylogeny using 85 accessions of the combined 1649 bp region of the ITS and β-tubulin 

regions resulted in clear discrimination of PM genera. Support for the overall topology was high. All 

tribes were monophyletic: Phyllactinieae (one accession), Golovinomyceteae (clade B), nine 

accessions (PP 96%), Cystotheceae (clade A), 22 accessions (PP 94%), and Erysipheae (clade C), 51 

accessions (PP 94%) (Figure 5.7). When outliers (in this case accessions with disparate identifications 

based on ITS and β-tubulin) were excluded, each genus included in the sampling was shown to be 

monophyletic: Phyllactinia (one accession), Neoerysiphe (PP 100%), Arthrocladiella (one accession), 

Golovinomyces (PP 100%), Sawadaea (PP 99%), Podosphaera (PP 94%), and Erysiphe (PP 94%). 

 Species remained monophyletic with the exception of P. xanthii and P. erigerontis-

canadensis and E. trifoliorum and E. intermedia. The latter pair had been resolved by β-tubulin but 

was clustered in this combined analysis. The newly resolved monophyly with β-tubulin of E. akebiae 

and E. alphitoides and E. ludens and E. hyperici are maintained. 
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Figure 5.7: BI using 85 sequences of the ITS and β-tubulin regions combined. Accession names 
include accession code, PM name, and host identity. PPs above 75% are shown in blue and below in 
red. Green lines and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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5.3.4: DNA barcoding analysis 

5.3.4.1 β-tubulin 

Intra and interspecific differences were quantified for the 102 accessions and 39 species of the β-

tubulin region. This resulted in a total overlap of 15.12% (from 0.0% to 15.12%, covering 73.67% of 

all intra and interspecific but intrageneric sequences) (Figure 5.8a). Accessions with a mean of more 

than 5% intraspecific difference were E. aquilegiae, and P. xanthii. There were 510 interspecific, 

congeneric distances which fell below 5%; the most common of these were between accessions of 

the Erysiphe (86.3%) and Podosphaera (12.9%). The only interspecific pair below 0.5% difference was 

P. erigerontis-canadensis and P. xanthii. 

 

Figure 5.8: The frequency distribution of the intra and interspecific K2P distance values (barcoding 
gaps) of (a) 102 β-tubulin accessions, (b) 82 ITS accessions common to the ITS and β-tubulin regions, 
(c) 82 β-tubulin accessions common to the ITS and β-tubulin regions, and (d) 82 accessions of the ITS 
and β-tubulin regions combined. Blue chevrons (V) mark the mean intraspecific variation per locus 
and orange asterisks (*) mark the mean interspecific variation per locus. 
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5.3.4.2 Direct comparison of ITS, β-tubulin, and combined datasets 

5.3.4.2.1 ITS 

Intra and interspecific differences were quantified for the 82 accessions and 35 species of the ITS 

region. This resulted in a total overlap of 7.13% (from 0.0% to 7.13%, covering 81.44% of all intra and 

interspecific but intrageneric sequences) (Figure 5.8b). The only accessions with a mean of more 

than 5% intraspecific difference were E. trifoliorum. There were 1,264 interspecific, congeneric 

distances which fell below 5%; 94.6% of these were between accessions of the Erysiphe. The 

interspecific pairs which were below 0.5% difference were: E. aquilegiae and E. trifoliorum, E. 

alphitoides and E. akebiae, and P. erigerontis-canadensis and P. xanthii. 

5.3.4.2.2 β-tubulin 

Intra and interspecific differences were quantified for the 82 accessions and 35 species of the β-

tubulin region. This resulted in a total overlap of 7.62% (from 0.0% to 7.62%, covering 37.76% of all 

intra and interspecific but intrageneric sequences) (Figure 5.8c). The only accessions with a mean of 

more than 5% intraspecific difference were E. aquilegiae. There were 356 interspecific, congeneric 

distances which fell below 5%; 90.4% of these were between accessions of the Erysiphe and 9.6% 

were between accessions of the Podosphaera. The only interspecific pair below 0.5% difference was 

P. erigerontis-canadensis and P. xanthii. 

5.3.4.2.3 Combined ITS and β-tubulin 

Intra and interspecific differences were quantified for the 82 accessions and 35 species of the 

combined ITS and β-tubulin regions. This resulted in a total overlap of 11.04% (from 0.0% to 11.04%, 

covering 72.47% of all intra and interspecific but intrageneric sequences) (Figure 5.8d). No 

accessions had a mean of more than 5% intraspecific difference. There were 552 interspecific, 

congeneric distances fell below 5%; 92.4% of these were between accessions of the Erysiphe and 7.6% 

were between accessions of the Podosphaera. The interspecific pairs which were below 0.5% 

difference were: P. erigerontis-canadensis and P. xanthii and E. alphitoides and E. akebiae. 
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5.4: Discussion 

5.4.1: β-tubulin amplification and sequencing 

Markers for this promising region and a protocol for their use were successfully designed. As 

sequence data for the β-tubulin region are available for just nine PM species, it was vital to locate 

and identify the region using previously amplified samples. The use of two fungal species alongside 

the available PMs ensured that the region was accurately located. The ease of alignment proves 

them to be reliably identified as samples from this region. After locating the region, primer design 

was reliant upon the accuracy of sequence data within the nine available PM species. The challenge 

was then to ensure a designed primer would be specific only to the PMs, such that other Fungi in the 

environmental sample of DNA were not amplified, and general enough to amplify and sequence the 

full diversity of PMs. This could not be guaranteed as sample species were of the Blumeria, Erysiphe, 

Oidium, and Golovinomyces genera; just three holomorphic genera out of 16. 

 The amplification of multiple products in certain accessions may indicate that the primer 

combination is not as specific to PMs as hoped; amplifying additional samples of conspecific or 

mycoparasitic fungi as well as the targeted PM. However, there was no correlation between the 

samples with faint additional bands sent for sequencing and poor sequence data. Instead poor 

sequence data proved to be associated with a weak initial product (signified by low intensity band 

on the TAE gel). Messy sequence data may have resulted from amplification of more than one PM 

species on a single host. This is exemplified by the disparate identifications of ITS and β-tubulin: 

samples identified as E. aquilegiae and P. tridactyla based on host, fungal morphology, and ITS were 

identified as Leveillula taurica and E. prunastri respectively when analysed with β-tubulin; these 

identifications are in line with their respective known host ranges.  

Samples from the most common PM genera have been amplified and sequenced. This 

includes underrepresented genera such as the Arthrocladiella and Phyllactinia, which failed to 
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amplify in the Mcm7 region (Chapter 4). The primers must now be tested on herbarium specimens 

and rarer and more exotic PM genera and species such as the Cystotheca, Pleochaeta, and Leveillula. 

The use of degenerate base pairs within the primers was necessary in order to maximise the 

likelihood of amplification and sequencing as these would also accommodate for the remaining PM 

genera whose DNA sequences were unknown at this point. The most successful initial primer 

combination contained three ambiguous bases in the 23 base pair forward primer (BTF5) and two in 

the 20 base pair reverse primer (BTR7). The reduction of ambiguity when the primers were refined 

(to just one and zero ambiguous bases respectively) resulted in increased amplification and 

sequencing success when first trialled. However, the huge reduction in sequencing success from 

2014 (74% success) to 2016 (18% success) could have been a result of over-refinement of these 

primers. This could be tested by focusing on amplification and sequencing success rates within 

particular genera and examining existing sequence data for variability at the priming site. The 

existing data show a spread of unsuccessful amplifications from Podosphaera, Sawadaea, 

Golovinomyces, Neoerysiphe, and Erysiphe; across the full spread of available genera. The β-tubulin 

alignment generated from the current study shows variability at the beginning of sequence reads; 

the priming site. This is to be expected close to primer binding sites making conclusions ambiguous. 

However, the bases refined within refined primers BTF5b and BTR7a are complementary to those in 

the final alignment. As such a switch back to unrefined primers BTF5 and BTR7 did not improve this 

success rate. 

The β-tubulin region codes for the globular proteins (McKean et al., 2001) making up 

microtubules (Einax & Voigt, 2003). This functionality means that the region is subject to ongoing 

evolution (Li et al., 2004), but at a rate slower than that of non-coding regions (Holst-Jensen et al., 

1997, Ponting et al., 2009). The sequence of base pairs targeted by the designed primers may 

therefore vary from species to species and over time.  This may result in the loss of PCR and 

sequencing success evident in the current study. However, fungal evolution is not rapid enough to 
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satisfy this (Berbee & Taylor, 2001, Hirsh & Fraser, 2001). It is therefore hypothesised that the 

change of sequencing companies and their PCR product requirements (from Source BioScience 

requiring less than 10 μl to GATC requiring at least 20 μl) was the most significant factor in the 

reduced success of sequencing. Anecdotal evidence has since arisen of further poor quality 

sequences from the company GATC. This was particularly the case when samples were purified by 

GATC rather than by the researcher. Further studies are needed to resolve this issue. However, 

future studies may make use of either primer combination BTF5 and BTR7 or BTF5b and BTR7a. Their 

continued success or failure should be monitored to ensure their efficacy, as the sequences within 

this region of PMs will evolve further over time.  

5.4.2: Phylogenetic analyses 

The β-tubulin region was useful for phylogenetic analyses and produced a result similar to accepted 

phylogenies of Braun and Takamatsu (2000). Like the Mcm7, β-tubulin was able to discriminate 

between samples indistinguishable by the ITS. Continued research into the region is likely to 

continue to elucidate other species which can be resolved using a region such as this. The study 

therefore concurs with numerous others within fungal systematics (Ayliffe et al., 2001, Cunnington 

et al., 2003, Inuma et al., 2007, Brewer & Milgroom, 2010), which promote its usage. Computation 

time for BI is similarly slow to that of Chapter 4 (and all other phylogenetic analyses of large 

datasets). The main drawback of the β-tubulin region proved to be that of potentially erroneously 

sequenced data. For certain accessions such as 4_36 on Catalpa bignonioides it is possible that the β-

tubulin primers may have favourably amplified a coexisiting sample of Podosphaera catalpae rather 

than the Erysiphe elevata identified by  morphological and ITS analyses. Each of the other outlying 

samples cannot be explained in this way as no species matching the sample’s placement within the 

phylogeny have been recorded on the respective hosts. These could therefore be multiple copies of 

the β-tubulin gene (Cleveland et al., 1981).  
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The combined regions performed well under BI. Species grouped together and as sister to 

their congenerics. The use of β-tubulin enabled greater discrimination of individual species: 

confirming the identity of certain accessions and enabling revisions elsewhere: particularly within 

the Erysiphe (species E. trifoliorum, E. ludens, and E. hyperici). Accessions within this chapter have 

also shown clear divide between E. aquilegiae var. aquilegiae and var. ranunculi. However, this is 

true for both β-tubulin and ITS.  

5.4.3: DNA barcoding analysis 

None of the analyses within this chapter produced the barcoding gap between intra and interspecific 

K2P distances (Quaedvlieg et al., 2014). However, the low K2P overlap desired was evident in the β-

tubulin region as it covered just 37.76% of all intra and interspecific distances; lower than analyses of  

the ITS (81.44%) and the concatenated β-tubulin and ITS (72.47%) analyses. This is further 

highlighted by the 1,264 interspecific, congeneric distances which fell below 5% in ITS barcoding 

analysis in comparison to 356 in β-tubulin analysis and 552 when the regions are combined. This was 

also superior to the result from the Mcm7 region, which had covered just 61.82% of all intra and 

interspecific and 896 interspecific, congeneric distances below 5% for a dataset of the same size. The 

β-tubulin region also showed greater variation within a species and between different species than 

the ITS and is therefore another strong candidate for efficient and reliable PM identification. Like the 

Mcm7 reviewed in Chapter 4, it could therefore be used regularly as an additional ‘identifier’ to the 

‘anchor’ of the ITS (Kõljalg et al., 2013).  

The extensive K2P overlaps were once again evident across all analyses; this time the result 

of closely related species of the Erysiphe and Podosphaera having very similar sequences and wide 

variation within certain species. The difference within E. aquilegiae, recorded previously as distinct 

varieties (Braun & Cook, 2012), is again evident through β-tubulin analysis. 

The similarity of E. alphitoides and E. akebiae is clear from ITS analysis, but has been 

resolved with β-tubulin. These species parasitise hosts of different plant families (Fagaceae and 
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Ranunculaceae respectively) and the similarity of these PM species is therefore interesting. It is likely 

that one of these species evolved as the result of a host jump (Matsuda & Takamatsu, 2003) onto its 

new host family. There is an apparently strong affinity between oaks and Erysiphales. More than 50 

PM species are listed on oaks in various regions of the world in the Systematic Mycology and 

Microbiology Laboratory Fungus-Host Database (Farr et al., 2010), one of these is E. alphitoides. As 

such, there is a great deal of research on the Quercus – E. alphitoides relationship (Limkaisang et al., 

2006, Takamatsu et al., 2007, Topalidou, 2008, Desprez-Loustau et al., 2010) but relatively little 

about the Akebia – E. akebiae relationship (Garibaldi et al., 2004, Li et al., 2010, Siahaan & 

Takamatsu, 2016). E. alphitoides and E. akebiae are consistently grouped closely to each other. The 

species have been separated via β-tubulin analysis, however the present study cannot elucidate 

which species may be derived. A molecular clock (Takamatsu & Matsuda, 2004, Takamatsu et al., 

2008a, Takamatsu et al., 2010) approach is necessary for such inferences. 

The similarity of P. erigerontis-canadensis and P. xanthii is previously documented (Braun, 

1987, Braun, 1995) and was evident from analysis of ITS. This is backed up by β-tubulin as this 

superior barcoding region also fails to separate the species. A lack of accessions of P. xanthii from 

the Mcm7 region meant that its resolution of these species went untested. The separation of 

putative P. xanthii ex Senecio jacobea shows that this may well be a separate species: P. senecionis. 

PMs ex Hieracium spp. of the current study were previously identified as P. xanthii due to 

morphological and ITS identification of a Podosphaera and the generalist nature of this species. 

Otherwise the only previous record of PM ex Hieracium spp. is G. cichoracearum (Braun & Cook, 

2012). However, due to the lack of separation from P. erigerontis-canadensis under both barcoding 

and phylogenetic analyses and the lack of previous records of Podosphaera on Hieracium the two 

accessions of PM on Hieracium  can now be putatively identified as P. erigerontis-canadensis as well; 

a new record of PM-host relationship [yet to be published]. This species has been documented to be 

separate from closely related P. fusca (Ito & Takamatsu, 2010) and contain several formae speciales; 

this requires further gene sequence analyses as well as cross-infection assays such as those 
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described in Whipps et al. (1998) and Vági et al. (2007) in order to describe the highly specific forms 

of the species. 

 The new reference sequences generated from this study for the β-tubulin region and 

efficient computation of results could be paired with new technologies outlined in Chapter 10 to 

increase speed and efficiency of plant-disease diagnostics. This would enable superior control 

against harmful new PM diseases entering the country and causing economic losses to the 

horticultural and agricultural industries.    
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5.5: Conclusions 

The β-tubulin region has proved to be another valuable addition to the currently established 

techniques for the identification of PM fungi. Although generic primers were unable to produce PM 

sequences, newly designed, PM specific primers aided in generating multiple PM β-tubulin 

sequences. BI and K2P analyses of these sequences have helped to prove the utility of β-tubulin as 

an addition to ITS, and Mcm7. The historical weight of sequence data continues to favour the ITS and 

thus it remains a necessary tool for PM identification and will continue to be an intermediary to 

other fungal species. However, like Mcm7, β-tubulin has achieved a greater level of discrimination of 

PM species. The region also maintains the previously accepted overall phylogenetic topology of PMs 

under BI. Amplification success has, at times been close to the level of success seen in PCR of ITS, 

however this must be trialled and optimised further in order to consistently amplify and sequence 

PM DNA. Providing this occurs, this region could be adopted for future identification of PM species, 

particularly those of closely-related, phylogenetically young, recently evolved species such as those 

in the Podosphaera, Golovinomyces, and Erysiphe genera.  
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Chapter 6: Augmenting current ID techniques with novel gene Tsr1 

6.1: Introduction 

The wide use of protein-coding genes in inferring evolutionary relationships among the ascomycete 

fungi and PMs has shown variable performance from gene to gene (Aguileta et al., 2008). Meta-

analysis of studies which aimed to compare the utility of different genes has shown definitions of 

phylogenetic informativeness to vary from study to study. This is largely due to the varying methods 

employed for testing gene phylogenetic utility. However, Aguileta et al. (2008) managed to compare 

gene based trees to an ideal tree, Townsend (2007) used character rates projected backwards in 

time applied to ascomycetous taxa, Collins et al. (2005) used base compositional stationarity, and 

Graybeal (1994) used empirical saturation plots. From these studies it became clear that different 

genes behave differently and offer varying utility for discovering older or younger divergences. These 

largely showed protein-coding genes to be more informative than ribosomal genes, but an identical 

method of assessment of regions would enable more meaningful comparisons. However, Aguileta et 

al. (2008) showed several protein-coding genes used routinely in fungal phylogenetic studies to 

perform poorly when tested against single-copy homologous genes from fungal genomes. Two 

single-copy homologues of protein coding gene loci outperformed all other protein-coding genes in 

their study. These were MS456 (Mcm7 (recommended in Chapter 4)) and MS277 (Tsr1 (studied in 

this Chapter)). 

Continued analysis of such new genes to compare their diagnostic utility with regions 

currently in use can help to improve robustness and resolution of phylogenetic and barcoding 

analyses among ascomycete fungi and improve cost management of molecular studies (Raja et al., 

2011). The number of loci required to resolve a phylogeny can vary greatly (Lemmon & Lemmon, 

2013). Hundreds of loci may be necessary for certain clades depending on factors, such as 

population size, time between speciation events, and properties of the loci being considered (Leaché 

& Rannala, 2010, Knowles & Kubatko, 2011, Liu & Yu, 2011). As DNA sequencing becomes more 
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common in phylogenetics, excess data of questionable utility may quickly arise. It is therefore 

important to be selective of regions to sequence and analyse; those offering the most efficient steps 

towards species resolution should be targeted. Due to varying evolution rates inherent within 

different loci, only a subset of loci are suitable targets for phylogenetic questions. Knowledge and 

evidence of precisely which genes or regions of genomes sequenced in future are useful for certain 

questions is therefore becoming increasingly important as data begins to exceed the rate at which it 

can be analysed appropriately (Lemmon & Lemmon, 2013). This knowledge will ease the process of 

separating phylogenetically informative data from non-informative data. Hence, while Chapter 4 

tested the efficacy of Mcm7 for PM diagnostics, this chapter will continue the investigation by 

analysing the region Tsr1 in an identical fashion. 

Tsr1 is a gene required for rRNA accumulation during biogenesis of the ribosome (Gelperin 

et al., 2001). Since its phylogenetic utility was highlighted in 2008, it has been tested and proven 

across a wide range of Pezizomycotina (Eurotiomycetes, Lecanoromycetes, Leotiomycetes, 

Lichinomycetes and Sordariomycetes (Schmitt et al., 2009)), the Kickxellomycotina (Tretter et al., 

2013), and Lasallia (Sadowska-Deś et al., 2013) amongst few others. Schmitt et al. (2009) in 

particular showed Tsr1 was able to resolve both large and fine scale phylogenetic relationships and 

that sequences were alignable across a wide range of unrelated taxa while having sufficient 

variability to resolve within-genus relationships. However, hypervariable introns were evident and 

greatly reduced phylogenetic utility of the region (Schmitt et al., 2009). 

In this chapter the possibility of developing working markers for the Tsr1 region for PMs was 

investigated and the value of resultant data for phylogenetic reconstruction explored. The resolution 

of this region in DNA barcoding studies was compared with the standard ITS region. 
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6.2: Materials and methods 

6.2.1: Sample collection – The Powdery Mildew Citizen Science Scheme 

Samples were collected via the powdery mildew citizen science scheme (Chapter 2). Eighty-eight of 

these were successfully amplified (Appendix 5) in the study outlined in this chapter. 

6.2.2: Putative species identification 

The techniques outlined in Chapters 2, 3, and 4 formed the basis of the identities of PM species used 

in this chapter.  

6.2.3: DNA extraction 

The DNA extracted for initial PM species identification (section 3.2.3) was used for these further 

analyses. 

6.2.4: Data mining for Tsr1 molecular markers 

PM genomes (Max Planck Institute for Plant Breeding Research, Spanu et al., 2010, Jones et al., 2014) 

were aligned with eight closely related species (Table 6.1) in order to identify the location of the Tsr1 

region and then develop primers to trial in the amplification of samples. A total of 14 primers (eight 

forward, six reverse) were designed (Table 6.2) and ordered as in section 4.2.4.  

Table 6.1: Tsr1 sequences imported from GenBank for identification of Tsr1 region in PM genomes 
and design of PM specific primers 

Species GenBank Accession No. 

Ceratocystis adiposa KC590615.1 

Ceratocystis coerulescens KC590618.1 

Ceratocystis platani KC590627.1 

Ceratocystis smalleyi KC590632.1 

Neurospora crassa XM_951859.2 

Verticillium dahliae XM_009657978.1 

Thielaviopsis australis KC405314.1 

Thielaviopsis basicola KC405318.1 
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Table 6.2: Primers designed for trialling amplification and sequencing of Tsr1 region of PMs 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

Tsr1F1 F GGWGTCTTACTRGAYGAYCAYCATTA 26 59.51 42.31 

Tsr1F2 F GGWGTCTTACTRGAYGAYCA 20 53.08 45 

Tsr1F3 F TCTTACTRGAYGAYCAYCATTA 22 53.59 36.36 

Tsr1F4 F CTRCAYCCAMAAGTDCTRGC 20 56.05 50 

Tsr1F5 F CGGTAYCGAGGAYTRAAGAG 20 55.1 50 

Tsr1F6 F TGCTVCGYCATGARCAWAA 19 54.58 42.11 

Tsr1F7 F AGYTCYGAYTAYCCRGARCC 20 58.3 55 

Tsr1F8 F ATMAARTCTAAARCYGA 17 41.17 23.53 

      
   Tsr1R1 R TTWTGYTCATGRCGBAGCA 19 60.45 52.63 

Tsr1R2 R GGYTCYGGRTARTCRGARCT 20 58.3 55 

Tsr1R3 R TCRGYTTTAGAYTTKAT 17 44.15 29.41 

Tsr1R4 R ACGRGRTCCGCAYTGWAG 18 58.72 61.11 

Tsr1R5 R AYGCGYTTAGCAATYACYCT 20 57.92 45 

Tsr1R6 R AGYTGYAGDGCCTTRAACCAWTC 23 60.62 47.83 

 

6.2.5: PCR and sequencing protocol 

PCR was carried out using the newly designed PM specific primers of the Tsr1 region (Table 6.2). All 

36 possible combinations expected to amplify a product of more than 200 bp were trialled in 25 μl 

mixes of 12.5 μl BioMix™ Red (Bioline), 0.5 μl BSA (10 ng μl-1), 0.875 μl of each primer at 10 ng μl-1, 

9.25 μl RO water, and 1 μl of sample DNA at concentrations of 10-50 ng μl-1. Cycling parameters 

were adapted from Amrani and Corio-Costet (2006) with an initial denaturation step of 95 °C for five 

minutes, followed by 37 cycles of denaturation at 95 °C for 30 seconds, annealing at 56 °C for one 

minute, and elongation at 72 °C for one and a half minutes and a final elongation at 72 °C for five 

minutes. Four samples of DNA, spanning the PM clade and previously shown to have been 

successfully amplified and sequenced using PM specific ITS primers PMITS1 and PMITS2 (Cunnington 

et al., 2003), were initially trialled. 

The PCR products were separated and visualised as in section 3.2.4.  
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The five primer combinations exhibiting the highest amplification success (number of 

products x product strength) were Tsr1F1 and Tsr1R5, Tsr1F1 and Tsr1R6, Tsr1F2 and Tsr1R5, Tsr1F2 

and Tsr1R6, and Tsr1F3 and Tsr1R6. These were trialled with five new PM samples previously shown 

to have been successfully amplified and sequenced using PM specific ITS primers with the same PCR 

protocol as before. The most successful, single primer combination was Tsr1F1 and Tsr1R6. This 

amplified a region of approximately 1150 bp. The combination was trialled at a gradient of annealing 

temperatures from 50-60 °C with 52 °C amplifying a strong, single product most frequently. 

Reducing the degeneracy of base pairs and length of primer was attempted for greater accuracy in 

amplification and sequencing of the Tsr1 region and resulted in the design of primers Tsr1R6a and 

Tsr1R6b (Table 6.3). Reducing primer length further for sequencing was also trialled, resulting in the 

design of primers Tsr1F1seq and Tsr1R6seq (Table 6.3). Application of these modified primers 

produced sequences of lesser quality (this is discussed in section 6.4.1). Primers Tsr1F1 and Tsr1R6 

were therefore used in all future amplifications. Single amplicons were sequenced and assembled as 

in section 3.2.4. 

Table 6.3: Primers adapted from Mcm7F2 and Mcm7R8 for more efficient amplification and 
sequencing of Mcm7 products 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

Tsr1R6a F AGYTGYAGGGSCCCTGAACCATTC 24 66.2 50 

Tsr1R6b R TGYAGGGSCCCTGAACCATTC 21 60.4 52.38 

      
   Tsr1F1seq F CCAGATGATGARYYYGA 17 48.2 47.1 

Tsr1R6seq R CARGTRAGYGGTGCCAC 17 55.1 61.8 
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6.2.6: Sequence alignment 

Sequence alignment of Tsr1 data, and their complementary ITS sequences, was performed using 

MUSCLE (Edgar, 2004), manually edited such that all bases were in the correct amino acid reading 

frame. The dataset of 60 sequences of Tsr1 for which there were ITS equivalents was concatenated 

using Mesquite (Maddison & Maddison, 2017). The alignment files of the Tsr1 and the Tsr1 

combined with the ITS rDNA were deposited in TreeBASE as S20955. 

6.2.7: Phylogenetic analyses 

Phylogenetic analyses were performed as in section 3.2.7.  

For BI of Tsr1 the HKY+I+G model was used and was run for 5,000,000 generations. For BI of 

the ITS accessions for which there were Tsr1 equivalents the SYM+G model was used and was run 

for 5,000,000 generations. For BI of Tsr1 accessions for which there were ITS equivalents the 

HKY+I+G model was used and was run for 5,000,000 generations. For BI of the combined dataset (ITS 

and Tsr1) the separate models of individual datasets were used for each region and were run for 

3,000,000 generations.  

6.2.8: DNA barcoding analysis 

Datasets of all Tsr1 accessions, ITS accessions for which there were Tsr1 equivalents, Tsr1 accessions 

for which there were ITS equivalents, and concatenated ITS and Tsr1 accessions were analysed and 

treated as in section 3.2.8. 
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6.3: Results 

6.3.1: Tsr1 amplification and sequencing 

Fifteen of the 36 possible combinations of 14 primers (eight forward and six reverse) resulted in at 

least a single product from the five initial PM samples trialled. The combination of Tsr1F1 and Tsr1R6 

(Figure 6.1) produced the most bands of greatest intensity. After optimisation of PCR, 291 (76%) of 

385 trialled samples resulted in a product being visualised using gel electrophoresis. Sequencing 

resulted in 83 (64%) of the 130 samples sent for sequencing producing readable sequences. 

However, this could be broken down to 79 (75%) of 105 samples successfully sequenced in 2015 and 

just four (16%) of 25 samples successfully sequenced in 2016. These were contributed to GenBank 

(Accession numbers KY786477 – KY786550 (presented in Appendix 5)). Sequencing worked in both 

forward and reverse directions. Just six (24%) of 25 samples sent for sequencing in 2016 produced 

sequences and only two of these were longer than 400 bp. Across the whole study period, those 

which were unsuccessful were characterised by weak reads, resulting in little or no sequence data, 

or messy reads, potentially contaminated with more than one PM species or additional conspecific 

fungi.  

 

Figure 6.1: Amplification of 1150 bp product of Tsr1 with primers Tsr1F1 and Tsr1R6 with 
HyperLadder™ 1kb and negative control. 

 Accessions were successfully amplified and sequenced from the Podosphaera, Sawadaea, 

Golovinomyces, Neoerysiphe, and Erysiphe genera. Accessions were amplified but failed to produce 



Chapter 6: Augmenting current ID techniques with novel gene Tsr1 
 

134 
 

readable sequences from genera Blumeria, Phyllactinia and Arthrocladiella, potentially due to the 

specificity of the used primers.  

GenBank sequence data from the Tsr1 region of PMs is based solely upon available PM 

genomes (B. graminis, G. orontii, E. pisi, and E. necator). This dearth of GenBank data meant that 

identifications of PM accessions based on BLAST were not possible. When BLAST was optimised for 

finding ‘highly similar sequences’ searches returned ‘no significant similarity’ 90% of the time (75 out 

of 83) and matched the Tsr1 region of various ascomycete fungi (including Aspergillus, Fusarium, 

Glarea, Metarhizium, and Sphaerulina) with identities and query covers ranging from 20-99% of the 

submitted sequence.  

6.3.2: Sequence alignment 

All 83 sequences were included in the initial sequence alignment. This was reduced to 77 sequences 

as a result of poor sequence quality and short sequence reads. Alignment resulted in a region of 

1258 bp. This was trimmed to 1058 bp in order to remove gaps and poor quality sequence reads 

near the primer sites and leave sequences of equal size for later analyses. The region was 23.8% 

conserved for all species, 34.2% conserved within tribe Cystotheceae, 36.7% conserved within tribe 

Golovinomyceteae, and 53.0% conserved within tribe Erysipheae. This compared to 75.6% in the ITS, 

38.8 % in the Mcm7, and 50.6% in the β-tubulin. There were 60 accessions with both Tsr1 and ITS 

sequences. Tsr1 sequences were concatenated with ITS (791 bp) for analysis resulting in 1849 bps. 

6.3.3: Phylogenetic analyses 

6.3.3.1 Tsr1 

BI of PM phylogeny using 77 samples of the 1258 bp region within the Tsr1 region resulted in clear 

discrimination of each PM genus. The Cystotheceae (Clade A) (PP 100%) and Erysipheae (Clade C) (PP 

100%) had strong support (Figure 6.2). Genera of the Golovinomyceteae (Clade B) (Arthrocladiella, 

Golovinomyces, and Neoerysiphe) were underrepresented; with just four accessions. However the 

tribe also had strong support (PP 100%). Accessions of Golovinomyces and Neoerysiphe were 
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grouped paraphyletically, alongside two suspected outlying accessions of P. clandestina. Within 

clade B, the three accessions were shown to be monophyletic (Table 6.4). However a previously 

unidentified accession on Arctium minus also grouped within the clade and is therefore most likely 

to be G. depressus. Such identification would mean that the two accessions of G. depressus were 

polyphyletic. A second N. galeopsidis accession grouped amongst the Erysiphe spp. 

 Within the Cystotheceae (clade A), Podosphaera species formed few polytomies. Five of the 

ten taxa were shown to be monophyletic (Table 6.4). While three of the four accessions of P. fugax 

were monophyletic, the fourth was sister to this group and the three accessions of P. pannosa. 

Accession 5_77 ex Rosaceae was newly identified as P. tridactyla and the three accessions of this 

species were paraphyletically grouped within this tribe. Accession 5_109 ex Filipendula ulmaria can 

now be identified as P. filipendulae rather than P. spiraeae. This accession forms a cluster with P. 

aphanis (PP 54%). Three accessions previously identified as Sawadaea spp. were positioned in clade 

C, amongst the Erysiphe spp. and three accessions previously identified as P. clandestina were 

positioned in clade B and C.   

 The Erysipheae (clade C) separated largely into individual species. Nine of the 14 taxa were 

monophyletic (Table 6.4). A large clade based largely on E. alphitoides (12 accessions) also included E. 

euonymicola (four accessions), E. lonicerae (two accessions), and E. aquilegiae (one accession), as 

well as outlying accessions of P. clandestina (one accession), S. bicornis (two accessions), and N. 

galeopsidis (one accession). An accession of E. buhrii was grouped amongst ten accessions of E. 

heraclei. 
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Table 6.4: Monophyletic PM groups from Tsr1 data within the Erysiphales. 

Species within group Number of Accessions PP of group* 

P. tridactyla 2 

96 

P. leucotricha 3 

P. aphanis 5 

P. filipendulae 1 

P. epilobi 1 

P. mors-uvae 2 100 

P. fugax 4 
41 

P. pannosa 3 

G. depressus 1   

G. verbasci 1   

N. galeopsidis 1   

E. arcuata 1   

E. necator 1   

E. lonicerae 1   

E. alphitoides 12 

100 

E. euonymicola 4 

P. clandestina 1 

E. aquilegiae 1 

S. bicornis 2 

N. galeopsidis 1 

E. platani 1   

E. cruciferarum 4 100 

E. berberidis 1   

E. pisi 1   

E. ludens 1   

E. trifoliorum 3 89 

E. heraclei 10 
100 

E. buhrii 1 

*Groups with a single accession have no PP and are shaded in grey. 
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Figure 6.2: BI using 77 sequences of the Tsr1 region. Accession names include accession code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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6.3.3.2 Direct comparison of ITS and Tsr1 

BI of the PM phylogeny of 60 accessions of the Tsr1 region (Figure 6.4) resulted in an overall 

topology similar to that of the phylogeny of 60 accessions of the ITS region (Figure 6.3). The main 

difference was the number of outliers. As in Figure 6.2, Figure 6.4 also placed two accessions of P. 

clandestina within the Golovinomyceteae (clade B), an accession of P. clandestina, E. aquilegiae, N. 

galeopsidis, and three accessions of S. bicornis within tribe Erysipheae (clade C). Each of these 

accessions was positioned as expected, amongst its congenerics in Figure 6.3. 

 The remaining differences regard the grouping of accessions of different species: ITS 

outperforms Tsr1 as it shows clear separation between E. heraclei and E. buhrii, as well as E. 

lonicerae and E. aquilegiae from the E. alphitoides – E. euonymicola group. However, unlike ITS, Tsr1 

separates E. platani from this E. alphitoides – E. euonymicola group. Neither region consistently 

separates E. alphitoides from E. euonymicola. 
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Figure 6.3: BI using 60 sequences of the ITS region. Accession names include accession code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 



Chapter 6: Augmenting current ID techniques with novel gene Tsr1 
 

140 
 

 

Figure 6.4: BI using 60 sequences of the Tsr1 region. Accession names include accession code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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6.3.3.3 Combined ITS and Tsr1 phylogeny 

BI of PM phylogeny using 60 accessions of the combined 1849 bp region of the ITS and Tsr1 regions 

resulted in clear discrimination of each PM genus (Figure 6.5). The Cystotheceae (A) (PP 98%) and 

Erysipheae (C) (PP 84%) were monophyletic. Outlying accessions for Tsr1 remained problematic: the 

similarity of Tsr1 sequences of an accession of P. clandestina, E. aquilegiae, N. galeopsidis, and three 

accessions of   S. bicornis resulted in their placement at the base of the Erysipheae (clade C). Two 

accessions of P. clandestina remained within the Golovinomyceteae (clade B). 

 Within the Cystotheceae (clade A), Podosphaera species formed few polytomies. Seven of 

the 11 taxa were monophyletic (Table 6.5). Newly identified P. filipendulae remains grouped with 

the P. aphanis and  three of the four P. aphanis accessions are grouped together while the fourth 

forms a polyphyletic sister group. The three accessions previously identified as Sawadaea spp. and 

one of P. clandestina were positioned at the base of the Erysipheae (clade C), and two accessions of 

P. clandestina remain grouped amongst the Cystotheceae (clade A).   

 Within Erysipheae (clade C) nine of the 13 taxa remain separated into monopyletic groups of 

individual species (Table 6.5). Groupings of E. alphitoides (seven accessions), and E. euonymicola 

(four accessions) sit at the base of numerous monophyletic taxa with two accessions of E. lonicerae 

placed monophyletically either side of it. Seven accessions of E. heraclei form a monophyletic group 

with one of E. buhrii. 
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Table 6.5: Monophyletic PM groups from Tsr1 data within the Erysiphales. 

Species within group Number of Accessions PP of group* 

P. clandestina 2 97 

P. leucotricha 2 100 

P. aphanis 1   

P. aphanis 3 
100 

P. filipendulae 1 

P. tridactyla 2 99 

P. epilobi 1   

P. mors-uvae 2 100 

P. fugax 2 99 

P. pannosa 3 100 

S. bicornis 3 97 

G. depressus 1   

G. verbasci 1   

N. galeopsidis 1   

E. aquilegiae 1   

E. lonicerae 1   

E. lonicerae 1   

E. arcuata 1   

E. necator 1   

E. platani 1   

E. heraclei 7 
100 

E. buhrii 1 

E. cruciferarum 4 97 

E. berberidis 1   

E. pisi 1   

E. ludens 1   

E. trifoliorum 2 100 

*Groups with a single accession have no PP and are shaded in grey. 
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Figure 6.5: BI using 60 sequences of the ITS and Tsr1 regions combined. Accession names include 
accession code, PM name, and host identity. PPs above 75% are shown in blue and below in red. 
Green lines and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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6.3.4: DNA barcoding analysis 

6.3.4.1 Tsr1 

Intra and interspecific differences were quantified for the 73 accessions and 28 species of the Tsr1 

region. This resulted in a total overlap of 22.73% (from 0.3% to 23.04%, covering 86.52% of all intra 

and interspecific but intrageneric sequences) (Figure 6.6a). Accessions with a mean of more than 5% 

intraspecific difference were S. bicornis, P. leucotricha, P. pannosa, P. aphanis, P. clandestina, E. 

alphitoides, and E. lonicerae. There were 432 interspecific, congeneric distances which fell below 5%; 

the most common of these were between accessions of the Erysiphe (62.5%) and Podosphaera 

(37.5%). The only interspecific pair below 0.5% difference was E. alphitoides and E. euonymicola. 

 

Figure 6.6: The frequency distribution of the intra and interspecific K2P distance values (barcoding 
gaps) of (a) 73 Tsr1 accessions, (b) 60 ITS accessions common to the ITS and Tsr1 regions, (c) 60 Tsr1 
accessions common to the ITS and Tsr1 regions, and (d) 60 accessions of the ITS and Tsr1 regions 
combined. Blue chevrons (V) mark the mean intraspecific variation per locus and orange asterisks (*) 
mark the mean interspecific variation per locus. 
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6.3.4.2 Direct comparison of ITS, Tsr1, and combined datasets 

6.3.4.2.1 ITS 

Intra and interspecific differences were quantified for the 60 accessions and 26 species of the ITS 

region. This resulted in a total overlap of 1.42% (from 0.14% to 1.56%, covering 11.06% of all intra 

and interspecific but intrageneric sequences) (Figure 6.6b). There were no accessions with a mean of 

more than 5% intraspecific difference. The largest mean intraspecific difference was 1.57% in P. 

aphanis. There were 1,078 interspecific, congeneric distances which fell below 5%; the most 

common of these were between accessions of the Erysiphe (77.7%) and Podosphaera (22.3%). The 

only interspecific pair below 0.5% difference was E. alphitoides and E. euonymicola. 

6.3.4.2.2 Tsr1 

Intra and interspecific differences were quantified for the 60 accessions and 26 species of the Tsr1 

region. This resulted in a total overlap of 25.58% (from 0.3% to 25.89%, covering 88.61% of all intra 

and interspecific but intrageneric sequences) (Figure 6.6c). Accessions with a mean of more than 5% 

intraspecific difference were S. bicornis, P. tridactyla, P. leucotricha, P. pannosa, P. aphanis, P. 

clandestina, E. alphitoides, and E. lonicerae. There were 310 interspecific, congeneric distances 

which fell below 5%; the most common of these were between accessions of the Erysiphe (55.5%) 

and Podosphaera (44.5%). The only interspecific pair below 0.5% difference was E. alphitoides and E. 

euonymicola. 

6.3.4.2.3 Combined ITS and Tsr1 

Intra and interspecific differences were quantified for the 60 accessions and 26 species of the 

combined ITS and Tsr1 regions. This resulted in a total overlap of 6.38% (from 0.41% to 6.8%, 

covering 68.96% of all intra and interspecific but intrageneric sequences) (Figure 6.6d). There were 

no accessions with a mean of more than 5% intraspecific difference. The largest mean intraspecific 

differences were 4.5% in E. alphitoides and P. leucotricha. There were 594 interspecific, congeneric 

distances that fell below 5%; the most common of these were between accessions of the Erysiphe 
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(80.5%) and Podosphaera (19.5%). The only interspecific pair below 0.5% difference was E. 

alphitoides and E. euonymicola. 
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6.4: Discussion 

6.4.1: Tsr1 amplification and sequencing 

Markers for this region and a protocol for their use were successfully designed. Given the dearth of 

previous sequence data for the Tsr1 region, it was vital to locate the region within available PM 

genomes using samples of closely related, ascomycetous fungi.  Tsr1 sequences from other fungi 

ensured that the region was accurately located and their alignment proves them to be reliably 

identified. The available PM genomes have proven to be of great use for design of PM primers for 

each region tested thus far; Tsr1 was no exception as NCBI GenBank Nucleotide megaBLAST showed 

amplified and sequenced samples to match those of the same region of other Ascomycetes. The 

specificity of designed primers could not be guaranteed as sample genomes covered just three out 

of 12 genera: Blumeria, Erysiphe, and Golovinomyces. The use of degenerate base pairs within the 

primers was necessary in order to maximise the likelihood of amplification and sequencing and it 

was hoped that these would also accommodate for the remaining PM genera whose DNA sequences 

were unknown at this point. Samples from the most common PM genera have been amplified and 

sequenced. The lack of success with Phyllactinia and Arthrocladiella spp. may be due to sequencing 

error and must be trialled further. Amplification and sequencing of a wider array of accessions is 

necessary in order to fully evaluate the performance of the protocol and primers designed in the 

current study. Tests on herbarium specimens and rarer and more exotic PM genera and species such 

as the Cystotheca, Pleochaeta, and Leveillula, will complete the evaluation. 

 Amplification of multiple products in most accessions before optimisation may indicate that 

the primer combination is not as specific to PMs as hoped; amplifying additional accessions of 

conspecific or mycoparasitic fungi as well as the targeted PM. This was overcome through 

optimisation of the PCR. Reduction of ambiguity and length within the primer pair Tsr1F1 and Tsr1R6 

after additional sequence data was acquired, resulted in a reduction in amplification and sequencing 

success; potentially due to the variability within the region. Primer refinement should be trialled 
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further with primers designed for individual PM tribes if necessary. Throughout 2015 the proposed 

markers were shown to consistently provide positive outcomes in amplification and sequencing. 

However, a change of sequencing company in 2016 and their PCR product requirements (from 

Source BioScience requiring less than 10 μl to GATC requiring at least 20 μl) affected sequencing 

success significantly, as discussed in Chapter 5. 

6.4.2: Phylogenetic analyses 

Analyses of the Tsr1 region resulted in a phylogeny close to that expected and therefore confirmed 

the findings of studies evaluating this region (Aguileta et al., 2008, Schmitt et al., 2009, Sadowska-

Deś et al., 2013, Tretter et al., 2013), however, whether it improves on established regions such as 

the ITS is debatable. Phylogenetic computation time is similarly slow to other phylogenetic analyses 

of this size (see Chapter 4) and although the result was similar to accepted phylogenies of Braun and 

Takamatsu (2000) certain differences are evident. The overall topology is similar to that of the 

accepted ITS region. However, sequences previously identified as P. clandestina, N. galeopsidis, and 

S. bicornis were shown grouped in unexpected positions within the phylogeny. Their new positions 

were unlikely to be indicative of sequencing of alternative PM species, as their hosts have not been 

known to harbour the species inferred. Mixing or contamination of accessions could explain the 

erroneous sequence of N. galeopsidis. However, this was tested for and unexpected results 

remained on all three P. clandestina and all three S. bicornis accessions inferred another meaningful 

explanation; the accessions may have also hosted additional PM species. Two of the P. clandestina 

accessions were grouped within tribe Golovinomyceteae, as sister to N. galeopsidis, while the third 

was placed within the E. alphitoides – E. euonymicola group. Two S. bicornis accessions were placed 

within the E. alphitoides – E. euonymicola group, while the third was most closely related to E. 

cruciferarum. Product sizes after amplification and sequencing of these accessions are similar to 

those of all other amplified and sequenced PM samples, therefore discounting erroneous sequences 

of alternative Fungi. Presence of alternative copies of the Tsr1 gene are also unlikely to explain these 

discrepancies, as the region is known to be single-copy (Gelperin et al., 2001, Aguileta et al., 2008). 
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This was confirmed via observation of the whole genome alignments. The hypervariable nature of 

the region is therefore the most plausible explanation. This has been cited in the past and is 

therefore known to be the most problematic feature of the region when considering it for 

phylogenetic reconstruction (Schmitt et al., 2009).  

Tsr1 showed evidence that it was inferior to ITS for phylogenetic reconstruction. Although 

the overall Tsr1 phylogeny was accurate, it did not perform better than the ITS at any phylogenetic 

level and grouped closely related Erysiphe and Podosphaera spp. together when ITS showed them to 

be distinct. Combined BI of ITS and Tsr1 was superior to that of the Tsr1 alone, but inferior to the ITS 

as indistinct groupings remnant from Tsr1 and sequences of hypervariable samples resulted in a less 

accurate, less resolved phylogeny. Due to its variability, Tsr1 may be able to improve the resolution 

of closely related species of unsampled PM genera, however its current performance within the 

Podosphaera and Erysiphe genera shows little to no evidence to support this. This is contrary to the 

findings of Schmitt et al. (2009) who predicted Tsr1 to perform as well as Mcm7 within the 

Ascomycetes and both to be superior to other regions in current usage. Along with Mcm7, the 

variable nature of Tsr1 should set it apart from commonly used ribosomal markers, such as ITS or the 

mitochondrial small subunit (mtSSU); all these regions have the power to resolve phylogenetic 

relationships at generic levels, but ribosomal markers are likely to yield ambiguous and saturated 

alignments, when used to compare distantly related taxa. The use of Tsr1 alongside the routinely 

used dataset of ITS failed to improve the power of phylogenetic resolution for PM fungi. The use of 

sequences from the distantly related taxon Homo sapiens as outgroups by Aguileta et al. (2008) has 

indicated that Tsr1 might be useful for phylogenetic studies outside of the fungal kingdom. This 

should be tested further, however the current result implies it to perform worse than other tested 

experimental and established regions. 
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6.4.3: DNA barcoding analysis 

None of the analyses within this chapter produced the barcoding gap between intra and interspecific 

K2P distances (Quaedvlieg et al., 2014). The low K2P overlap desired for a useful barcoding region 

was more evident in ITS than the experimental region Tsr1. This was characterised by the large 

intraspecific variation of Tsr1 resulting in 88.6% of sample sequences overlapping with up to 25% 

variation both intra- and interspecifically. This compares with just 11.0% of ITS samples overlapping 

with just 1% variation and 69% of combined ITS and Tsr1 samples overlapping with 6.4% variation. 

This result shows ITS to be the most suitable region for DNA barcoding, therefore agreeing with its 

proposal as a universal barcode for Fungi (Schoch et al., 2012). However, Chapters 3, 4, and 5 do not 

substantiate this result and thus the sampling within this chapter has resulted in a favourable 

barcoding result for the ITS. This result is due to the hypervariable nature of Tsr1 (Schmitt et al., 

2009) compared to the highly conserved nature of ITS (Takamatsu et al., 2015a); neither is a suitable 

barcoding region. Great variability is seen intra- and interspecifically in Tsr1. Species known 

commonly to lack clear boundaries due to their intraspecific variation and interspecific similarities, 

such as E. alphitoides, are included in those contributing to the high level of K2P overlap. Other 

species, which usually show clear separation from conspecifics, thanks to conserved intraspecific 

sequences, such as S. bicornis, P. tridactyla, P. leucotricha, P. pannosa, P. aphanis, P. clandestina, 

and E. lonicerae are also included in this.  

 This result contrasts with the few studies to have explored the utility of Tsr1 (Schmitt et al., 

2009, Sadowska-Deś et al., 2013, Tretter et al., 2013). This is largely down to the  ‘hypervariability’ of 

Tsr1 sequences, particularly within the Cystotheceae which showed just one third of all bases to be 

conserved; far less than half the bases conserved within the Erysipheae. 
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6.5: Conclusions 

The Tsr1 region has proved to be a far less valuable addition than regions Mcm7 and β-tubulin for 

improvements to PM diagnostics. Amplification and sequencing of the Tsr1 region was made 

possible by previous sequence data of PM genomes and Tsr1 regions of other fungi. However, the 

success of this process has varied across the years of study, potentially due to varying sequencing 

protocols of different sequencing companies. Obtained Tsr1 sequences result in a topology similar to 

that accepted for PMs. However, numerous outliers were also sequenced and BI was therefore less 

accurate than that of the established ITS region. ITS also outperforms Tsr1 when analysed for K2P 

overlap. With greater time and resources the Tsr1 region may prove to be useful for differentiation 

of closely related PM species and differentiation of species complexes. However, regions Mcm7 and 

β-tubulin should receive greater initial attention due to their greater performance on all levels.  
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Chapter 7: Augmenting current ID techniques with Actin 

7.1: Introduction 

Many fungal ascomycetous clades have been shown to require numerous regions to fully resolve 

phylogenies (Trierveiler-Pereira et al., 2014, Trouillas et al., 2015, Birkebak et al., 2016). This chapter 

will continue to explore potential regions for improving this process.  

 The Actin gene is typically a highly expressed gene (McElroy et al., 1990) with a coding 

region of at least 1000 bp (Reece et al., 1992). It is conserved throughout the eukaryotes and its 

function in host plants has been shown to be a major contributor to non-host resistance; exemplified 

by studies in Arabidopsis (Yun et al., 2003) and barley (Opalski et al., 2005). Due to its variation over 

time, the region has received attention as a molecular clock gene for studies examining organism 

phylogeny (Reece et al., 1992) and has proven to be superior to ITS to identify closely related taxa of 

ascomycetous yeasts (Daniel & Meyer, 2003), genera of the Mucorales and Mortierellales (Voigt & 

Wöstemeyer, 2001), and Candida species (Daniel et al., 2001). It has also been used for deep level 

phylogenies (Baldauf et al., 2000, Voigt & Wöstemeyer, 2000). Other studies however, have shown 

Actin gene sequences to be insufficient for the differentiation of sugar beet pathogen species 

(Weiland & Sundsbak, 2000) and not to provide species-level resolution in Mycosphaerella (Hunter 

et al., 2006).  

The phylogenetic use of Actin within the PMs is yet to be quantified. The research reported 

in this chapter therefore aimed at investigating the potential of Actin DNA sequences for 

complementing the morphological and ITS analyses which have become ubiquitous in PM 

identification. The study used accessions sourced from the Powdery Mildew Survey (Chapter 2). 

The possibility of using primers sourced from the literature for the Actin region for PMs was 

investigated in this chapter. The possibility of developing new working markers for the Actin region 

for PMs was also investigated and the value of resultant data for phylogenetic reconstruction 
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explored. Finally, the resolution of this region in DNA barcoding studies was compared with the 

standard ITS region. 
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7.2: Materials and methods 

7.2.1: Sample collection – The Powdery Mildew Citizen Science Scheme 

Samples were collected via the powdery mildew citizen science scheme (Chapter 2). One hundred 

and eighty eight of these were successfully amplified (Appendix 5) in the study outlined in this 

chapter. 

7.2.2: Putative species identification 

The techniques outlined in Chapters 2, 3, and 4 formed the basis of the identities of PM species used 

in this chapter.  

7.2.3: DNA extraction 

The DNA extracted for initial PM species identification (section 3.2.3) was used for these further 

analyses. 

7.2.4: Generic primer trials 

7.2.4.1 Sourcing primers 

Primers for the amplification of the Actin region were sourced from previous publications (Carbone 

& Kohn, 1999, Weiland & Sundsbak, 2000)  and ordered from Sigma-Aldrich (Table 7.1). 

Table 7.1: Generic primers sourced from literature for trialling amplification and sequencing of Actin 
region of PMs 

Primer 
name 

Direction Sequence (5' - 3') 
Reported 
Tm (°C) 

Product 
size (bp) 

Source 

ACT-512F F ATGTGCAAGGCCGGTTTCGC 
61 300 

Carbone and 
Kohn (1999) ACT-783R R TACGAGTCCTTCTGGCCCAT 

5FWDACT F GTATGTGCAAGGCCGGTTT 
50-55 1200 

Weiland and 
Sundsbak (2000) MIDREVACT R ATGAGGCAGACCTAGCCACCAAG 
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7.2.4.2 PCR and sequencing 

Amplification of the two sourced primer combinations was trialled according to published protocols 

(Carbone & Kohn, 1999, Weiland & Sundsbak, 2000). The PCR products were separated and 

visualised as in section 3.2.4.  

 Multiple products per sample were consistently amplified (Figure 7.1). Individual bands were 

excised, purified using the QIAquick Gel Extraction Kit, and sent to Source BioScience via courier for 

sequencing. 

 

Figure 7.1: Amplification of 300 bp product of Actin with primers ACT-512F and ACT-783R before 
optimisation of PCR protocol. 

Annealing and extension temperatures of PCR protocols were explored using gradient PCR in 

order to optimise amplification for single products. Single products were amplified for the primer 

combinations ACT-512F and ACT-783R with PCR protocol from Amrani and Corio-Costet (2006) at an 

annealing temperature of 60°C (Figure 7.2). Products of more than 10ng per band of preliminary 

sample amplifications, lacking strong additional amplified products, were purified using the QIAquick 

PCR Purification Kit and sent to Source BioScience via courier for sequencing.  
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Figure 7.2: Amplification of 300 bp product of Actin with primers ACT-512F and ACT-783R after 
optimisation of PCR protocol. 

 Complementary forward and reverse sequences generated in this study were assembled and 

manually edited using MegAlign software (DNASTAR, Madison, WI, USA). This resulted in products of 

240-300 bp for ACT-512F and ACT-783R. NCBI GenBank Nucleotide BLAST for highly similar 

sequences (megablast) was performed on samples. The results showed no significant similarity to 

Actin PM sequences. Instead results showed similarity to contaminants from the environmental 

samples such as: Ramularia vizellae, Botrytis fuckeliana, Leotiomycetes spp., and Lophodermium 

australe.  

7.2.5: Data mining for Actin molecular markers 

PM genomes (Max Planck Institute for Plant Breeding Research, Spanu et al., 2010, Jones et al., 2014) 

were aligned with six closely related fungal species (Table 7.2) and seven PM samples in order to 

identify the location of the Actin region. Primers were then developed to trial in the amplification of 

accessions. A total of 13 primers (eight forward, five reverse) were designed (Table 7.3) and ordered 

as in section 4.2.4.  
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Table 7.2: Actin sequences imported from GenBank for identification of Actin region in PM genomes 
and design of PM specific primers 

Species GenBank Accession No. 

Lambertella himalayensis KF545190.1 

Sclerotinia sclerotiorum KF545187.1 

Rutstroemia echinophila KF545176.1 

Lanzia sp. KF545147.1 

Ciboria amentacea KF545177.1 

Leotiomycetes sp. KF545191.1 

 

Table 7.3: Primers designed for trialling amplification and sequencing of Actin region of PMs 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

ActF1 F CGTGTTGACATGGCTGGYCGTGATTT 26 68.29 53.85 

ActF2 F TAGCWGARCGYGGCTATAC 19 56.43 52.63 

ActF3 F AAAGARAARYTKTGTTACGTDGC 23 61.3 37 

ActF4 F CTATTGGWAAYGARMGATTYCG 22 62.22 41 

ActF5 F CTYGGYCTCGAAAGYGGTGGYATTC 25 61.18 56 

ActF6 F GAAAGYGGTGGYATTCATGT 20 60.07 47.62 

ActF7 F CAGACCGTATGCAGAAAG 18 57.4 50 

ActF8 F GCWCCATCRTCCATGAAGGTC 21 60.07 52.38 

            

ActR1 R CTTTCTGCATACGGTCTG 18 57.4 50 

ActR2 R GACCTTCATGGAYGATGGWTC 21 58.72 52.38 

ActR3 R CWGAGTACTTTCKCTCRGGCGG 22 60.11 55 

ActR4 R GAGAGATGCAAGAATAGATCCACC 24 65.7 46 

ActR5 R CTTGYTTRGAAATCCACATYTGCTG 25 64.12 42 

 

7.2.6: PCR and sequencing protocol 

PCR was carried out using the newly designed PM specific primers of the Actin region (Table 7.3). All 

16 possible combinations of primers more than 250 bp apart were trialled in 25 μl mixes of 12.5 μl 

BioMix™ Red (Bioline), 0.5 μl BSA (10 ng μl-1), 0.875 μl of each primer at 10 ng μl-1, 9.25 μl RO water, 

and 1 μl of sample DNA at concentrations of 10-50 ng μl-1. Cycling parameters were adapted from 

Amrani and Corio-Costet (2006) with an initial denaturation step of 95 °C for five minutes, followed 

by 37 cycles of denaturation at 95 °C for 30 seconds, annealing at 60 °C for one minute, and 

elongation at 72 °C for one and a half minutes and a final elongation at 72 °C for five minutes. Three 
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samples of DNA, spanning the PM clade and previously shown to have been successfully amplified 

and sequenced using PM specific ITS primers PMITS1 and PMITS2 (Cunnington et al., 2003), were 

initially trialled. 

The PCR products were separated and visualised as in section 3.2.4.  

The two primer combinations exhibiting the highest amplification success (number of 

products x product strength) were ActF1 and ActR3 and ActF1 and ActR4. These were trialled for 

amplification of 18 different samples of DNA, spanning the PM clade and previously shown to have 

been successfully amplified and sequenced using PM specific ITS primers PMITS1 and PMITS2 

(Cunnington et al., 2003). The most successful primer combination was ActF1 and ActR3. This 

amplified a region of approximately 500 bp. Reducing the degeneracy of base pairs was trialled for 

greater accuracy in amplification and sequencing of the Actin region and resulted in the design of 

primers ActF1a, ActR3a, and ActR3b (Table 7.4). Application of these modified primers produced 

greater amplification success and sequences of greater quality. Primer combination ActF1a and 

ActR3b was best and was used in all future amplifications with an annealing temperature of 60 °C. 

Single amplicons were sequenced and assembled as in section 3.2.4. 

Table 7.4: Primers adapted from ActF1 and ActR3 for more efficient amplification and sequencing of 
Actin products 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

ActF1a F CGTGTTGACATGGCTGGTCGTGATTT 26 66.16 50 

            

ActR3a R CAGAGTACTTTCGCTCGGGCGG 22 65.38 63.64 

ActR3b R TCAGAGTACTTTCGCTCGGGCGG 23 66.47 60.87 
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7.2.7: Sequence alignment 

Sequence alignment of Actin data, and their complementary ITS sequences, was performed as in 

section 3.2.6. The dataset of 125 accessions of Actin for which there were ITS equivalents was 

concatenated using Mesquite (Maddison & Maddison, 2017). The alignment files of the Actin and 

the Actin combined with the ITS rDNA were deposited in TreeBASE as S20956. 

7.2.8: Phylogenetic analyses 

Phylogenetic analyses were performed as in section 3.2.7.  

For BI of Actin the GTR+I+G model was used and was run for 10,000,000 generations. For BI 

of the ITS accessions for which there were Actin equivalents the SYM+I+G model was used and was 

run for 5,000,000 generations. For BI of Actin accessions for which there were ITS equivalents the 

GTR+I+G model was used and was run for 5,000,000 generations. For BI of the combined dataset (ITS 

and Actin) the separate models of individual datasets were used for each region and were run for 

10,000,000 generations, at a temperature of 0.8 in order to reach the reach the optimal solution 

most efficiently.  

7.2.9: DNA barcoding analysis 

Datasets of all Actin accessions, ITS accessions for which there were Actin equivalents, Actin 

accessions for which there were ITS equivalents, and concatenated ITS and Actin accessions were 

analysed and treated as in section 3.2.8.  
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7.3: Results 

7.3.1: Actin amplification and sequencing 

Thirteen of the 16 possible combinations of 13 primers (eight forward and five reverse) resulted in at 

least a single product from the three initial PM accessions trialled. The combination of ActF1a and 

ActR3b produced the most bands of greatest intensity. After optimisation of PCR, 211 (93%) of 226 

trialled samples resulted in a product being visualised using gel electrophoresis (Figure 7.3). 

Sequencing resulted in 146 (86%) of 170 samples producing readable sequences of at least 200 bp. 

Forty-two of these produced poor sequences when initially sequenced. They therefore required 

altered sequencing protocols which resulted in longer sequences of greater quality. These were 

contributed to GenBank (Accession numbers KY786551 – KY786689 (presented in Appendix 5)). 

Sequencing worked in both forward and reverse directions. Those which were unsuccessful were 

characterised by short, weak reads. Samples were successfully amplified and sequenced from the 

Blumeria, Podosphaera, Sawadaea, Phyllactinia, Arthrocladiella, Golovinomyces, Neoerysiphe, and 

Erysiphe genera.  

 

Figure 7.3: Amplification of 500 bp product of Actin with primers ActF1a and ActR3b with 
HyperLadder™ 1kb and negative control. 
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GenBank sequence data from the Actin region of PMs is solely based upon PM genomes B. 

graminis and E. necator. This dearth of GenBank data meant that identifications of PM samples 

based on NCBI GenBank Nucleotide BLAST were not possible. When BLAST was optimised for finding 

‘highly similar sequences’ searches returned ‘no significant similarity’ 6% of the time (9 out of 146). 

All other sequences matched the Actin region of various Ascomycetous fungi (including Alternaria, 

Botrytis, Exophiala, Fusarium, Kluyveromyces, Nectria, Sarocladium, and Trichoderma) with identities 

and query covers ranging from 64-99% of the submitted sequence.  

7.3.2: Sequence alignment 

All 188 sequences were included in the initial sequence alignment. This was reduced to 187 

sequences as a result of poor sequence quality. Alignment resulted in a region of 598 bp. This was 

trimmed to 508 bp in order to remove gaps and poor quality sequence reads near the primer sites 

and leave sequences of equal size for later analyses. The region was 27.2% conserved. This 

compared to 75.6% in the ITS. There were 124 accessions with both Actin and ITS sequences. Actin 

sequences were concatenated with ITS (874 bp) for analysis resulting in 1382 bps. 

7.3.3: Phylogenetic analyses 

7.3.3.1 Actin 

BI of the PM phylogeny using 187 samples of the 508 bp region within the Actin region resulted in 

phylogenies of low support. The majority of species were grouped polyphyletically across the entire 

phylogeny. Separation of accessions into three groupings similar to the large PM tribes Cystotheceae 

(clade A), Golovinomyceteae (clade B) (Figure 7.4), and Erysipheae (clade C) (Figure 7.5), clear in 

phylogenies of the ITS phylogeny, was apparent, however numerous outliers and low support meant 

that very little significance could be drawn from these. The single accession of tribe Phyllactinieae 

(4_70 Phyllactinia fraxini) showed evidence of monophyly as it was grouped alone.  

A putative clade of species predominantly of the Golovinomyceteae (clade B) had a PP of 58% 

(Figure 7.4). Within this clade A. mougeotii, four accessions (PP 98%), O. longipes (one accession), G. 
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cichoracearum (one accession), and G. fischeri, two accessions (PP 100%) were monophyletic. The 

remaining accessions true to the tribe (G. cynoglossi (two accessions), G. sordidus (thee accessions), 

G. sonchicola (three accessions), and G. orontii (five accessions)) were polyphyletic. Six accessions on 

hosts of Plantago spp. previously identified as G. sordidus (three accessions) and P. plantaginis (two 

accessions), as well as one unidentified accession, were grouped monophyletically. The clade also 

included two accessions of E. heraclei and lacked all Neoerysiphe accessions seen within the group 

when ITS, Mcm7, β-tubulin, and Tsr1 regions are used. 

A putative clade of species predominantly of the Cysotheceae (clade A) had a PP of 33% 

(Figure 7.4). Species of Podosphaera, Neoerysiphe, Golovinomyces, Sawadaea, and Erysiphe were 

scattered throughout this clade. The species did not cluster together and the Neoerysiphe, 

Golovinomyces, and Erysiphe are not normally considered part of it.  

A putative clade of species predominantly of the Erysipheae (clade C) had a PP of 95% 

(Figure 7.5). The base of this clade included various species of Posphaera, Sawadaea, Neoerysiphe, 

Golovinomyces, and Erysiphe. Erysiphe clades and support are presented in Table 7.5. 
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Table 7.5: Monophyletic PM groups from Actin data within the Erysiphe. 

Species within group Number of Accessions PP of group* 

E. arcuata 2 100 

E. lonicerae 2 100 

E. hedwigi 1   

E. lycopsidis  1   

E. berberidis 2 100 

E. cruciferarum 1   

E. convolvuli 3 100 

E. buhrii 1   

E. polygoni 2 100 

E. heraclei 10 85 

E. catalpae  1 
99 

E. aquilegiae  9 

E. intermedia  1 
100 

E. trifoliorum  3 

E. euonymicola  2 
28 

E. akebiae  3 

E. tortilis  1 
40 

E. alphitoides  10 

*Groups with a single accession have no PP and are shaded in grey. 
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Figure 7.4: Part 1 of BI using 187 sequences of the Actin region. Accession names include accession 
code, PM name, and host identity. PPs above 75% are shown in blue and below in red. Green lines 
and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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Figure 7.5: Part 2 of BI using 187 sequences of the Actin region. Accession names include accession 
code, PM name, and host identity. PPs above 75% are shown in blue and below in red. Green lines 
and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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7.3.3.2 Direct comparison of ITS and Actin 

BI of the PM phylogeny of 124 samples of the Actin gene (Figure 7.7) resulted in an overall topology 

very different to that of the BI of the PM phylogeny of 124 samples of the ITS region (Figure 7.6). 

While the ITS phylogeny performed as expected, with clear separation of PM tribes and genera and 

strong support for monophyletic groups, the Actin phylogeny performed similarly to that of section 

7.3.3.1.  

Three rough clades were observed in the Actin phylogeny and tended towards the groupings 

of the PM tribes Cystotheceae (clade A), Golovinomyceteae (clade B) (Figure 7.4), and Erysipheae 

(clade C) (Figure 7.5). These once again included numerous unexpected, confusing, and erroneous 

samples. Clade C, the Erysipheae is made up largely of species of Erysiphe, but also includes four 

Podosphaera of various species, two N. galeopsidis accessions, three S. bicornis accessions, and an 

accession of G. cichoracearum. Many Erysiphe accessions are positioned in clades A and B. Clade B, 

the Golovinomyceteae is made up largely of species of Arthrocladiella and Golovinomyces, but also 

includes an accession of E. heraclei, and two accessions of P. plantaginis ex Plantago spp. which can 

be identified as G. sordidus. The clade has no Neoerysiphe spp. Clade A, the Cysotheceae is made up 

largely of species of Podosphaera and Sawadaea but also includes 11 accessions of Neoerysiphe spp., 

six accessions of Golovinomyces spp., and six accessions of Erysiphe spp. Many Podosphaera and 

Sawadaea accessions are positioned in clades B and C. Accessions within this clade are scattered 

with no clear relationships and low support.  

Three clear clades were seen in the ITS phylogeny: Cystotheceae (Clade A) (PP 72%), 

Golovinomyceteae (Clade B) (PP 99%), and Erysipheae (Clade C) (PP 77%). Each genus was 

monophyletic and all species, apart from the 15 presented in Table 7.6 were monophyletic. 
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Table 7.6: Non-monophyletic PM species from ITS data within the Erysiphales.  

PM species 

P. erigerontis-canadensis 

P. xanthii 

P. plantaginis 

G. cynoglossi 

G. chicoracearum 

G. sonchicola 

G. orontii 

G. fischeri 

G. verbasci 

E. aquilegiae 

E. trifoliorum 

E. catalpae 

E. alphitoides 

E. euonymicola 

E. akebiae 
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Figure 7.6: BI using 124 sequences of the ITS region. Accession names include accession code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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Figure 7.7: BI using 124 sequences of the Actin region. Accession names include accession code, PM 
name, and host identity. PPs above 75% are shown in blue and below in red. Green lines and names 
show species separation by phylogeny. Orange boxes denote PM tribes. 
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7.3.3.3 Combined ITS and Actin phylogeny 

BI of PM phylogeny using 102 samples of the combined 1315 bp region of the ITS and Actin regions 

resulted in a phylogeny with the accuracy of the ITS region combined with numerous artefacts of the 

inaccuracies of the variable Actin region (Figure 7.8).  

 Unresolved ITS samples P. erigerontis-canadensis, P. plantaginis, P. xanthii, G. cynoglossi, G. 

cichoracearum, G. sonchicola, G. orontii, E. aquilegiae, E. catalpae, E. alphitoides, E. euonymicola, 

and E. akebiae remained unresolved. In contrast, after satisfactory resolution via the ITS, samples of 

P. tridactyla, P. macrospora, P. senecionis, P. clandestina, P. fugax, P. filipendulae, S. bicornis, and E. 

tortilis became unresolved within larger groups of their genera or polyphyletic across different 

genera. The Podosphaera, Golovinomyces, and Erysiphe genera remained clustered within their 

expected tribes, close to other closely related congeneric species. Improvement was seen in the 

resolution of accessions of G. fischeri, G. verbasci, and E. trifoliorum, which were monophyletic via 

analysis of the concatenated ITS, Actin dataset. 
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Figure 7.8: BI using 124 sequences of the ITS and Actin regions combined. Accession names include 
accession code, PM name, and host identity. PPs above 75% are shown in blue and below in red. 
Green lines and names show species separation by phylogeny. Orange boxes denote PM tribes. 
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7.3.4: DNA barcoding analysis 

7.3.4.1 Actin 

Intra and interspecific differences were quantified for the 187 accessions and 53 species of the Actin 

region. This resulted in a total overlap of 47.94% (from 0.0% to 47.94%, covering 99.94% of all intra 

and interspecific but intrageneric sequences) (Figure 7.9a). Numerous accessions had a mean of 

more than 5% intraspecific difference. Accessions below this threshold were E. alphitoides, E. 

akebiae, E. arcuata, E. polygoni, E. berberidis, E. convolvuli, E. elevata, E. lonicerae, E. heraclei, E. 

necator, P. tridactyla, P. fugax, S. bicornis, A. mougeotti, G. sordidus, and G. orontii. There were 502 

interspecific, congeneric distances which fell below 5%; the most common of these were between 

accessions of the Erysiphe (52.2%), Golovinomyces (36.7%), and Podosphaera (10.8%). Interspecific 

pairs below 0.5% difference were P. xanthii and P. dipsacacearum, P. xanthii and P. fugax, P. xanthii 

and P. tridactyla, E. platani and E. azelaeae, E. alphitoides and E. euonymicola, E. alphitoides and E. 

akebiae, E. alphitoides and E. tortilis, and G. biocellaris and G. cichoracearum. 

 

Figure 7.9: The frequency distribution of the intra and interspecific K2P distance values (barcoding 
gaps) of (a) 187 Actin accessions, (b) 124 ITS accessions common to the ITS and Actin regions, (c) 124 
Actin accessions common to the ITS and Actin regions, and (d) 124 accessions of the ITS and Actin 
regions combined. Blue chevrons (V) mark the mean intraspecific variation per locus and orange 
asterisks (*) mark the mean interspecific variation per locus. The greater than 20% value reaches 
1,240 on (a) and 587 on (c). 
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7.3.4.2 Direct comparison of ITS, Actin, and combined datasets 

7.3.4.2.1 ITS 

Intra and interspecific differences were quantified for the 124 accessions and 50 species of the ITS 

region. This resulted in a total overlap of 21.3% (from 0.0% to 21.3%, covering 98.99% of all intra and 

interspecific but intrageneric sequences) (Figure 7.9b). Accessions with a mean of more than 5% 

intraspecific difference were E. polygoni, E. trifoliorum, P. tridactyla, N. galeopsidis, and G. cynoglossi. 

There were 1,728 interspecific, congeneric distances which fell below 5%; the most common of 

these were between accessions of the Erysiphe (79.2%), Golovinomyces (9.0%), and Podosphaera 

(11.0%). The interspecific pairs which were below 0.5% difference were: E. alphitoides and E. tortilis, 

E. alphitoides and E. euonymicola, E. alphitoides and E. akebiae, E. euonymicola and E. akebiae, E. 

euonymicola and E. tortilis, E. aquilegiae and E. catalpae, E. euonymicola and E. tortilis, P. xanthii and 

P. plantaginis, P. xanthii and P. erigerontis-canadensis, and G. cichoracearum and G. sonchicola. 

7.3.4.2.2 Actin 

Intra and interspecific differences were quantified for the 124 accessions and 50 species of the Actin 

region. This resulted in a total overlap of 33.8% (from 0.0% to 33.8%, covering 98.34% of all intra and 

interspecific but intrageneric sequences) (Figure 7.9c). Numerous accessions had a mean of more 

than 5% intraspecific difference. Accessions below this threshold were E. aquilegiae, E. alphitoides, E. 

akebiae, E. polygoni, E. berberidis, E. convolvuli, E. heraclei, P. fugax, S. bicornis, G. cichoracearum, 

and G. orontii. There were 276 interspecific, congeneric distances which fell below 5%; the most 

common of these were between accessions of the Erysiphe (62.3%), Golovinomyces (22.5%), and 

Podosphaera (10.9%). Interspecific pairs below 0.5% difference were P. clandestina and P. fugax, E. 

platani and E. azelaeae, E. alphitoides and E. euonymicola, E. alphitoides and E. akebiae, and E. 

alphitoides and E. tortilis. 
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7.3.4.2.3 Combined ITS and Actin 

Intra and interspecific differences were quantified for the 124 accessions and 50 species of the 

combined ITS and Actin regions. This resulted in a total overlap of 20.73% (from 0.09% to 20.83%, 

covering 95.06% of all intra and interspecific but intrageneric sequences) (Figure 7.9d). Accessions 

with a mean of more than 5% intraspecific difference were E. aquilegiae, E. polygoni, E. heraclei, E. 

trifoliorum, P. clandestina, P. aphanis, P. pannosa, P. plantaginis, P. xanthii, P. filipendulae, P. fugax, 

P. tridactyla, S. bicornis, N. galeopsidis, G. cichoracearum, and G. cynoglossi. There were 632 

interspecific, congeneric distances that fell below 5%; the most common of these were between 

accessions of the Erysiphe (82.6%), Golovinomyces (8.2%), and Podosphaera (7.9%). The interspecific 

pairs which were below 0.5% difference were: E. alphitoides and E. tortilis, E. alphitoides and E. 

euonymicola, E. alphitoides and E. akebiae, E. euonymicola and E. akebiae, E. akebiae and E. tortilis, 

E. euonymicola and E. tortilis. 
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7.4: Discussion 

7.4.1: Actin amplification and sequencing 

Markers for this region and a protocol for their use were successfully designed. Given the dearth of 

previous sequence data for the Actin region, it was vital to locate and identify the region using 

previously amplified samples of closely related, ascomycetous fungi. The use of six of these ensured 

that the region was accurately located and the four available PM genomes ensured primers could be 

designed accurately.  

Accessions were consistently amplified and sequenced; however, it was not certain whether 

the primers were specific to PMs. Lack of PM Actin sequences available in GenBank meant that 

accurate, informative BLAST was not possible. However, the consistent amplification and sequencing 

of numerous products of a similar size and their alignment with available PM genomes indicated that 

they were indeed Actin of PMs. The variation of accessions within the region was shown to be far 

greater than for ITS (and other analysed regions) via BI and K2P analyses. Favourable sequencing of 

Golovinomyces sp. was evident for accessions found on Plantago sp. as accessions previously 

identified as a mixture of G. sordidus and P. plantaginis were shown to be similar through both BI 

and K2P analyses; accessions of G. sordidus had therefore been amplified and sequenced each time.  

7.4.2: Phylogenetic analyses 

The grouping of samples from Plantago spp. enabled identification of these accessions to species 

level (G. sordidus). Otherwise, the Actin region proved to be largely uninformative for phylogenetic 

analyses. These findings are therefore in line with studies suggesting it to be insufficient for 

differentiation of fungal species (Weiland & Sundsbak, 2000, Evans, 2014). Combining Actin with ITS 

resulted in a phylogeny far more similar to that expected and managed to resolve a few extra PM 

species to that of the phylogeny built purely on ITS sequence data. However, the fact that the 

combined phylogeny was less resolved than one of ITS with many additional discrepancies meant 

that it could not even be proposed as an additional identifier to the anchoring ITS (Kõljalg et al., 
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2013). The variation within the region, within genera and within species has resulted in this inability 

to produce informative phylogenetic data. It will be interesting to analyse the utility of Actin when 

combined with other, more informative, regions (such as the Mcm7 and β-tubulin); its large 

variation of seemingly uninformative DNA may help to generate a fully resolved phylogeny when 

analysed alongside regions of greater individual phylogenetic utility.  

7.4.3: DNA barcoding analysis 

None of the analyses produced the barcoding gap (Hebert et al., 2003a) related to a good barcoding 

region (Quaedvlieg et al., 2014). The Actin region showed a greater level of intraspecific variation 

than the ITS, and that of all regions tested thus far. For a coding region, conserved throughout all 

eukaryotes and known to be involved in non-host resistance (Yun et al., 2003, Opalski et al., 2005), 

Actin varies more than other studies have reported; both within and between PM species. This 

variation is rarely informative of species limits. It is not a good barcoding region. 

Extensive K2P overlaps across all analyses, particularly those including Actin data, were the 

result of closely related species of the Podosphaera, Golovinomyces, and Erysiphe and the great 

variation of DNA bases within this region.  
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7.5: Conclusions 

Previously designed generic primers were unable to produce PM sequences, however newly 

designed, PM specific primers aided in generation of multiple PM Actin sequences. These sequences 

have thus far proved not to be the solution for PM diagnostics. While a small amount of informative 

data has been revealed in the region, the amplification and sequencing of numerous questionable 

results from previously identified accessions has been shown through both BI and K2P analyses. This 

is coupled with the high level of variation within PM tribes, genera, and species for this region. Its 

greatest utility may be as a complementary region to other, more individually informative regions. 

This will be explored in Chapter 9.  
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Chapter 8: Failed augmentation of current ID techniques with novel 

DNA gene regions 

8.1: Introduction 

In addition to the regions trialled in previous chapters three further regions were trialled and 

abandoned due to lack of suitable results: Calmodulin, Chitin synthase (Chs), and Translation 

elongation factor 1 alpha (EF1-α). 

Calmodulin is a multifunctional intermediate calcium-binding messenger protein expressed 

in all eukaryotic cells (Stevens, 1983). The region is intronless and encodes a protein of 148 amino 

acid residues (444 bp) (LeJohn, 1989). Calmodulin has been shown to be important in defence of 

host plants against pathogens such as PMs (Panstruga, 2005) as loss of calmodulin binding in the 

plant can halve the ability of the mildew resistance locus (MLO) to negatively regulate defence 

against PM in vivo (Kim et al., 2002). PCR-based techniques for Calmodulin have been used as a 

powerful diagnostic method for distinguishing mycotoxigenic fungi involved in food spoilage at a 

species level with species-specific primers (Edwards et al., 2002). Phylogenies based on the 

Calmodulin gene have also aided species diagnostics in Gibberella (O’ Donnell et al., 2000), Fusarium 

(Mulè et al., 2004), Penicillia (Wang & Zhuang, 2007), Sporothix (Madrid et al., 2009, Romeo et al., 

2011), and Aspergillus (Samson et al., 2014); all ascomycete fungi. 

Chitin is a major component of the fungal cell wall. Its production from glucose involves 

approximately six enzyme-catalysed reactions; Chs catalyses the last of these reactions (Zhang et al., 

2000). Thus potential inhibitors of Chs activity can affect antifungal activity (Debono & Gordee, 

1994). Plant pathogenic fungi normally have multiple Chs genes (Kong et al., 2012), each of 

approximately  600 bp (Roberts et al., 1986). The variation of these genes among certain Fungi have 

shown the region to have potential taxonomic use (Mehmann et al., 1994). The conservation of 

specific motifs in the core region of Chs across all eukaryotes except plants suggest that it originated 
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before the so-called `crown kingdoms' (Fungi, Plantae, Animalia, Alveolates (comprising ciliates, 

dinoflagellates and apicomplexans), and Stramenopiles (where diatoms, oomycetes, labyrinthulids, 

brown algae and chrysophytes are included) (Sogin et al., 1996, Van de Peer & De Wachter, 1997)) 

(Ruiz-Herrera et al., 2002). Separation of these eukaryotic groups occurred approximately 1 billion 

years ago, it may be concluded that Chs have their origin as a branch of antique L-glycosyl-

transferases, once the plant kingdom had diverged about this time. Later diversification within the 

Fungi has resulted in varying copies within different fungal groups and has enabled phylogenetic 

studies to yield promising results in dermatophyte species (Kano et al., 1997) and Magnaporthe 

oryzae (Kong et al., 2012). Within the PMs each Chs gene has been shown to be present as single 

copies within the barley powdery mildew genome (Zhang et al., 2000). 

EF1-α is a highly conserved gene region coding for enzymatic delivery of aminoacyl tRNAs to 

the ribosome. It exhibits low rates of amino acid substitutions and is a single or low copy number 

gene (Roger et al., 1999). As such it has been shown to produce promising results in phylogenetic 

studies of Fusarium (O' Donnell et al., 1998a, Seifert & Lévesque, 2004, Kristensen et al., 2005, 

Amatulli et al., 2010), Mycosphaerella (Hunter et al., 2006), Armillaria (Maphosa et al., 2006), the 

entire Basidiomycota phylum (Matheny et al., 2007), and across the four Kingdoms of Eukaryota 

(Baldauf et al., 2000). 

In this chapter samples from the Powdery Mildew Survey (Chapter 2) were used to 

investigate the possibility of using primers sourced from the literature for the Calmodulin, Chs, and 

EF1-α regions for amplification of PMs. The possibility of developing new working markers for these 

regions for PMs was also investigated and the value of resultant data for phylogenetic 

reconstruction explored. The resolution of this region in DNA barcoding studies was compared with 

the standard ITS region. 
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8.2: Materials and methods 

8.2.1: Accessions 

Accessions were collected via the powdery mildew citizen science scheme (Chapter 2). The DNA 

extracted for initial PM species identification (section 3.2.3) was used for the amplification of the 

different regions trialled in this chapter. 

8.2.2: Generic primer trials 

8.2.2.1 Sourcing primers 

Primers for the amplification of the Calmodulin, Chs, and EF1-α genes were sourced from previous 

publications (Carbone & Kohn, 1999, O’ Donnell et al., 2000, Brewer & Milgroom, 2010) and ordered 

from Sigma-Aldrich (Table 8.1). 

Table 8.1: Generic primers sourced from literature for trialling amplification and sequencing of 
Calmodulin, Chs and EF1-α regions of PMs. 

Region 
Primer 
name 

Direction Sequence (5' - 3') 
Product 
size (bp) 

Source 

Calmodulin CAL-228F F GAGTTCAAGGAGGCCTTCTCCC 
500 

Carbone and 
Kohn (1999)   CAL-737R R CATCTTTCTGGCCATCATGG 

  CL11 F ACCATGATGGCGGCAAG 
400 

O’ Donnell et 
al. (2000)   CL22 R TCCTTCATCTTGCGCGCC 

Chs CHS-79F F TGGGGCAAGGATGCTTGGAAGAAG 
300 

Carbone and 
Kohn (1999) 

 
CHS-354R R TGGAAGAACCATCTGTGAGAGTTG 

EF1-α EF 1-5 F ATAGCGACGATGAGCTGCTT 
500 

(Brewer & 
Milgroom, 

2010) 
  EF 1-6 R TCGAAAAGGTTTGTTGCAGA 

  EF1-728F F CATCGAGAAGTTCGAGAAGG 
350 

Carbone and 
Kohn (1999)   EF1-986R R TACTTGAAGGAACCCTTACC 
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8.2.2.2 PCR and sequencing 

Amplification of the sourced primer combinations was trialled for each region according to published 

protocols (Carbone & Kohn, 1999, O’ Donnell et al., 2000, Brewer & Milgroom, 2010). The PCR 

products were separated and visualised as in section 3.2.4. 

 Multiple products per sample were amplified consistently for each region. Individual bands 

were excised, purified using the QIAquick Gel Extraction Kit, and sent to Source BioScience via 

courier for sequencing. Annealing and extension temperatures and primer, DNA, and magnesium 

concentrations of PCR protocols were explored in order to optimise amplification for single products. 

Single products were rarely amplified.  

8.2.3: Data mining for molecular markers 

PM genomes (Max Planck Institute for Plant Breeding Research, Spanu et al., 2010, Jones et al., 2014) 

were aligned with closely related fungal species in order to identify the location of the regions and 

then develop primers to trial in the amplification of samples. The Calmodulin and Chs regions did not 

show sufficient variability from closely related ascomycete fungi for development of PM specific 

primers. For the EF1-α region, a total of nine primers (five forward, four reverse) were designed 

(Table 8.2) and ordered as in section 4.2.4.  

Table 8.2: Primers designed for trialling amplification and sequencing of EF1-α region of PMs 

Primer name Direction Sequence (5' - 3') Length 
Mean 

Tm (°C) 
Mean 
GC % 

EF1aF1 F TCACATYAAYGTGGTCGTSATCGG 24 63.19 50 

EF1aF2 F GAAYTMGGAAAAGGATCYTTC 21 51.6 38.1 

EF1aF3 F GACAAGCTWAAGGCMGARCG 20 59.96 50 

EF1aF4 F CATYGCDGCYGGTACYGGTG 20 61.09 60 

EF1aF5 F GGTGTYAARCARTTRATYGTYGC 23 61.02 47.83 

            

EF1aR1 R CACCRGTACCRGCHGCRATG 20 61.09 60 

EF1aR2 R GCRACRATYAAYTGYTTRACACC 23 61.02 47.83 

EF1aR3 R ACATCYTGDARWGGKAGRCG 20 58.52 55 

EF1aR4 R CGTGATGCATTTCBACVGAYTT 22 61.8 50 
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8.2.4: PCR and sequencing protocol 

PCR was conducted using the newly designed PM specific primers of the EF1-α region (Table 8.2). All 

10 possible combinations of primers more than 400 bp apart were trialled in 25 μl mixes of 12.5 μl 

BioMix™ Red (Bioline), 0.5 μl BSA (10 ng μl-1), 0.875 μl of each primer at 10 ng μl-1, 9.25 μl RO water, 

and 1 μl of sample DNA at concentrations of 10-50 ng μl-1. Cycling parameters were adapted from 

Amrani and Corio-Costet (2006) with an initial denaturation step of 95 °C for five minutes, followed 

by 37 cycles of denaturation at 95 °C for 30 seconds, annealing at 60 °C for one minute, and 

elongation at 72 °C for one and a half minutes and a final elongation at 72 °C for five minutes. Three 

samples of DNA, spanning the PM clade and previously shown to have been successfully amplified 

and sequenced using PM specific ITS primers PMITS1 and PMITS2 (Cunnington et al., 2003), were 

initially trialled. 

The PCR products were separated and visualised as in section 3.2.4.  

The three primer combinations exhibiting the highest amplification success (number of 

products x product strength) were EF1aF1 and EF1aR1, EF1aF1 and EF1aR2, and EF1aF1 and EF1aR4. 

These were trialled for amplification of four different samples of DNA, spanning the PM clade and 

previously shown to have been successfully amplified and sequenced using PM specific ITS primers 

PMITS1 and PMITS2 (Cunnington et al., 2003). After amplification of multiple products extension and 

annealing temperatures and concentrations of primer, DNA and magnesium were explored. No 

combination was shown to consistently produce a single product and the region was therefore 

explored no further.  
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8.3: Results 

After attempted optimisation of PCR protocols amplification success using generic primers of all 

three regions remained low (Table 8.3). Single bands of expected PM length of the most successful 

region, Chs, were sequenced and resulted in products of 100-300 bp. Identification using BLAST 

returned non-PM ascomycete fungi such as, Alternaria, Arthrogpahis, Aureobasidium, Drechslera, 

Mycosphaerella, and Pyrenophora with sequence identities of 82-100% and sequence query covers 

of 83-92%.  

Table 8.3: PCR results of Calmodulin, Chs, and EF1-α regions.  

Region 
Generic primer 
combination 

Number of 
accessions 

trialled 

Number of samples producing: 

Multiple 
bands 

Single 
bands 

Single bands of 
expected PM length 

Calmodulin 
CAL-228F & CAL-737R 27 16 8 3 

CL11 & CL22 14 10 2 1 

Chs CHS-79F & CHS-354R 27 11 13 13 

EF1-α  
EF 1-5 & EF 1-6 27 25 0 0 

EF1-728F & EF1-986R 14 9 1 0 
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8.4: Discussion 

Regions Calmodulin, Chs, and EF1-α have each been shown to be useful for fungal diagnostics in 

numerous publications (Kano et al., 1997, O' Donnell et al., 1998a, Baldauf et al., 2000, O’ Donnell et 

al., 2000, Mulè et al., 2004, Seifert & Lévesque, 2004, Kristensen et al., 2005, Hunter et al., 2006, 

Maphosa et al., 2006, Matheny et al., 2007, Wang & Zhuang, 2007, Madrid et al., 2009, Amatulli et 

al., 2010, Romeo et al., 2011, Kong et al., 2012, Samson et al., 2014). Data for these regions have not 

been obtained in the present study and therefore previous assertions of the utility of their DNA 

cannot be challenged. However, part of the utility of a region is down to its ease of amplification and 

sequencing (Quaedvlieg et al., 2014) and the current study can therefore strengthen claims that 

Calmodulin, Chs, and EF1-α are not optimal regions for PM diagnostics. The current chapter has 

highlighted: the three regions in question do not amplify PMs when generic ascomycete primers are 

used; it was not possible to design primers specific to Calmodulin or Chs of the PMs; and primers 

designed for amplification of EF1-α did not produce single products. These failures can be put down 

to the environmental nature of sourced samples (Martin & Rygiewicz, 2005, Bellemain et al., 2010) 

meaning that PM conspecific ascomycete fungi were preferentially amplified. The problems may be 

overcome through the use of single culture PM specimens gained from cloning or culturing. However, 

culturing trials (Morrison, 1960, Kenyon et al., 1995, Álvarez & Torés, 1997, Nicot et al., 2002) have 

rarely resulted in reproducible results (section 2.3.4) and cloning can be a protracted process, 

particularly when the rapid PM diagnostics sought from the current study are considered.  
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8.5: Conclusion 

The low amplification success of regions Calmodulin, Chs, and EF1-α via the use of generic 

ascomycete primers means that they have been of little use to the current study. Sequence variation 

of the PM Calmodulin and Chs regions was insufficient to allow design of primers intended to 

specifically amplify them. Although EF1-α seemed to offer sufficient variation from PM conspecifics 

and primers were therefore deemed sufficiently specific in design, amplification of environmental 

samples sourced from the PM citizen science scheme also resulted in multiple products and 

preferential amplification of non-PM ascomycetes. This was not solved by PCR optimisation.  

Given sufficient sequence data, the regions may be useful as PM identifiers, however the 

failure to amplify single products with any primer combination has meant that research ceased for 

each region. Resources were instead spent on generating DNA sequence data of successfully 

amplified regions Mcm7, β-tubulin, Tsr1, and Actin alongside ITS. 
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Chapter 9: Combined analyses 

9.1: Introduction 

Phylogenies of protein coding genes and rRNAs often conflict as currently available protein data for 

phylogenetic reconstructions have regularly included uneven taxonomic sampling, wide disparities in 

evolutionary rates among lineages, and/or inadequate characterisation at the risk of combining 

paralogues in a single analysis (Manso-Silván et al., 2007, Medina et al., 2011, Tretter et al., 2014b, 

Trierveiler-Pereira et al., 2014). Combining regions aims to overcome these flaws and result in 

greater precision of species resolution, in order to reflect the ideal species tree, more accurately 

than when accounting for regions alone as single gene phylogenetic trees (Medina et al., 2011, 

Tretter et al., 2014b, Mallo & Posada, 2016). Data from regions generated in Chapters 3-7 were 

therefore combined to produce multi-gene phylogenies. 

It has been shown that many loci may be necessary for resolution of certain clades (Leaché 

& Rannala, 2010, Knowles & Kubatko, 2011, Liu & Yu, 2011), particularly when DNA may not have 

diverged sufficiently to resolve a phylogeny using a single locus (Beltrán et al., 2002, Seehausen et al., 

2003). Multiple independent loci have often been shown to provide the necessary variability for 

reliable species identification (Beltrán et al., 2002, Sang, 2002) using software and analytical 

phylogenetic methods for analysing concatenated datasets (Murphy et al., 2001, Li et al., 2007, 

Rowe et al., 2008, Edwards, 2009). 

The diagnostic utility of each combination of the regions trialled in the current study must 

therefore be quantified by phylogenetic and barcoding analyses. The current study used data 

generated in individual chapters, initially sourced from material from the Powdery Mildew Survey 

(Chapter 2). This chapter investigated the possibility of developing phylogenies most similar to an 

ideal species tree in which tribes and genera have monophyletic roots and the species within them 

are clearly separated, using each combination of the five regions. Combinations of regions were also 
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tested in order to assess which were most informative for barcoding analyses at generic and species 

levels.   
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9.2: Materials and methods 

9.2.1: Sampling 

DNA sequence data generated in Chapters 3-7 were used in this chapter.  

9.2.2: Sequence alignment 

Sequence alignments of ITS, Mcm7, β-tubulin, Tsr1, and Actin, were concatenated in the 22 different 

combinations remaining (see concatenated regions in Table 9.1 & Table 9.2), after combinations of 

individual regions with ITS in each chapter, using Mesquite (Maddison & Maddison, 2017). This tool 

combined identically named accessions from different datasets. Initial concatenation of 

combinations of two regions resulted in numbers considered too low to allow sufficient analyses of 

the hundreds of potential PM species including those known to be closely related and therefore 

difficult to discriminate (Table 9.1). Therefore sample names were simplified within sequence 

alignments of ITS, Mcm7, β-tubulin, Tsr1, and Actin data: accession number and host data were 

removed, while PM species name identified by the techniques outlined in previous chapters 

remained and were augmented with additional identifying numbers 1 - n (n = the number of samples 

of any one PM species in a given alignment) such that accessions confirmed as conspecific based on 

data from morphology, ITS and at least one other DNA region were combined to provide complete 

DNA datasets for  most species studied regardless of whether they came from the same original 

accession or not (Table 9.1). Concatenated alignments were then manually edited such that gaps 

without data did not remain and those displayed in section 9.3: Results were deposited in TreeBASE 

(Accession S20957). The method was repeated for all combinations of three, four, and five regions 

(Table 9.2).  
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Table 9.1: Numbers of samples concatenated for combinations of two regions combined when 
concatenated by sample (Original names) and PM species (Simplified names). 

Concatenated regions Original names Simplified names 

Mcm7, β-tubulin 4 55 

Mcm7, Tsr1 28 43 

Mcm7, Actin 11 78 

β-tubulin, Tsr1 3 35 

β-tubulin, Actin 66 73 

Tsr1, Actin 6 46 

 

Table 9.2: Number of taxa and characters concatenated for combinations of three, four, and five 
regions 

Number 
of regions 

Concatenated regions 
Number 
of taxa 

Characters per region 
Total 

characters 

3 ITS, Mcm7, β-tubulin 55 771, 495, 754 2020 

  ITS, Mcm7, Tsr1 43 770, 495, 1043 2308 

  ITS, Mcm7, Actin 74 775, 496, 506 1777 

  ITS, β-tubulin, Tsr1 34 769, 759, 1044 2572 

  ITS, β-tubulin, Actin 71 817, 757, 501 2075 

  ITS, Tsr1, Actin 40 777, 1050, 502 2329 

  Mcm7, β-tubulin, Tsr1 26 494, 753, 1024 2271 

  Mcm7, β-tubulin, Actin 47 497, 752, 498 1747 

  Mcm7, Tsr1, Actin 27 493, 1025, 494 2012 

  β-tubulin, Tsr1, Actin 29 756, 1050, 498 2304 

4 ITS, Mcm7, β-tubulin, Tsr1 26 767, 492, 750, 1025 3034 

  ITS, Mcm7, β-tubulin, Actin 48 771, 493, 754, 500 2518 

  ITS, Mcm7, Tsr1, Actin 27 766, 493, 1025, 494 2778 

  ITS, β-tubulin, Tsr1, Actin 32 769, 758, 1043, 498 3068 

  Mcm7, β-tubulin, Tsr1, Actin 25 493, 751, 1043, 492 2760 

5 ITS, Mcm7, β-tubulin, Tsr1, Actin 25 767, 492, 750, 1024, 492 3525 
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9.2.3: Phylogenetic analyses 

Phylogenetic analyses were performed as in section 3.2.7.  

Separate models were specified for each dataset within concatenated alignments and were: 

GTR+I+G for ITS, HKY+G for Mcm7, GTR+G for β-tubulin, GTR+I+G for Tsr1, and GTR+I+G for Actin. 

Analyses of two combined regions were run for 10,000,000 generations. Analyses of three, four, and 

five combined regions were run for 5,000,000 generations. The most suitable tree had, in each case, 

been reached after said number of generations. 

 Two phylogenetic approaches are known in measuring corroboration: taxonomic 

congruence and total evidence (Yassin et al., 2010). Resultant data of the 50% majority rule 

consensus tree were analysed for accuracy by measuring corroboration with an ideal species or total 

evidence tree (TET). Corroboration among data sets for a particular node is indicated by replication 

of that node in topologies derived from the separate data sets to infer taxonomic congruence 

(Miyamoto & Fitch, 1995). Phylogenies inferred for each combination of regions were compared to 

the TET and relative consensus fork indexes (RCFI) from 0 to 1 were estimated to give the proportion 

of nodes shared (Colless, 1980).  

9.2.4: DNA barcoding analyses 

Concatenated datasets of all possible combinations of ITS, Mcm7, β-tubulin, Tsr1, and Actin were 

analysed and treated as in section 3.2.8. Total overlap of inter- and intra-specific distances and their 

overlap with 5% error margins on both ends were recorded in order to allow comparison between 

region combinations. Barcoding analyses are usually accession and not taxon based due to the 

necessity of measuring within-taxon variability. However, this was included to enable an additional 

analysis of datasets and within-taxon variability will therefore be within-species variability in the 

current analyses. 
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9.3: Results 

9.3.1: Sequence alignment 

Concatenation of identical accessions of all combinations of two regions resulted in datasets of 4, 28, 

11, 3, 66, and 6 taxa (Table 9.1). Given the great diversity of PM species and repeats of particular 

species within the dataset (such as P. clandestina, S. bicornis, N. galeopsidis, E. alphitoides, E. 

aquilegiae, E. trifoliorum, and E. heraclei) the current accessions were considered inadequate as 

closely related PM species rarely remained within the datasets. Combining samples of different 

origin but the same species resulted in larger concatenated datasets (Table 9.1 & Table 9.2) which 

provided more informative phylogenetic results and barcoding results providing within-species 

rather than within-taxon variability. 

9.3.2: Phylogenetic analyses 

Phylogenetic reconstruction of concatenated datasets produced phylogenies of varying accuracy 

(Table 9.3). Samples were identified in Chapter 3 using the combination of established techniques 

for host identification, fungal morphology, and BLAST, BI, and K2P analyses of rDNA ITS sequence 

data with 80% success rate of applying a name to an accession. Of the remaining 20%, 6% were 

misidentified as species closely related to their actual identity, 5% could not be identified beyond 

being a PM, and 9% were identified no further than genus. An update of species identities based 

upon data gathered in subsequent chapters has shown that 88% of samples within the complete ITS 

phylogeny of Chapter 3 were positioned accurately as samples thought to be conspecific were 

grouped and nodes were regularly replicated from the TET (RCFI = 0.88). This benchmark has been 

improved upon in the individual use of the Mcm7 region (RCFI = 0.974), as well as numerous 

combinations of regions (Table 9.3). Further improvement upon the Mcm7 phylogeny was observed 

when combining the three regions ITS, Mcm7, and Tsr1 (RCFI = 0.977) (Figure 9.1 & Table 9.3), in 

which the E. alphitoides – E. euonymciola complex was the only part of the topology to remain 

unresolved. RCFI reached 1 when combining the four regions of ITS, Mcm7, β-tubulin, and Tsr1 



Chapter 9: Combined analyses 

192 
 

(Figure 9.2 & Table 9.3) and ITS, Mcm7, β-tubulin, and Actin (Figure 9.3 & Table 9.3) as well as when 

all five regions were combined (Figure 9.4 & Table 9.3).  

Table 9.3: Comparative success of all region combinations for phylogenetic reconstruction of PM 
samples. 

Number of regions Regions Samples in analysis RCFI 

1* ITS 175 or 507 0.879 or 0.886 

  Mcm7 151 0.974 

  β-tubulin 103 0.874 

  Tsr1 77 0.857 

  Actin 187 0.684 

2 ITS, Mcm7* 106 0.972 

  ITS, β-tubulin* 85 0.953 

  ITS, Tsr1* 60 0.850 

  ITS, Actin* 124 0.798 

  Mcm7, β-tubulin 55 0.927 

  Mcm7, Tsr1 43 0.930 

  Mcm7, Actin 78 0.949 

  β-tubulin, Tsr1 35 0.857 

  β-tubulin, Actin 73 0.808 

  Tsr1, Actin 46 0.870 

3 ITS, Mcm7, β-tubulin 55 0.909 

  ITS, Mcm7, Tsr1 43 0.977 

  ITS, Mcm7, Actin 74 0.973 

  ITS, β-tubulin, Tsr1 34 0.853 

  ITS, β-tubulin, Actin 71 0.887 

  ITS, Tsr1, Actin 40 0.875 

  Mcm7, β-tubulin, Tsr1 26 0.923 

  Mcm7, β-tubulin, Actin 47 0.936 

  Mcm7, Tsr1, Actin 27 0.926 

  β-tubulin, Tsr1, Actin 27 0.889 

4 ITS, Mcm7, β-tubulin, Tsr1 26 1.000 

  ITS, Mcm7, β-tubulin, Actin 48 1.000 

  ITS, Mcm7, Tsr1, Actin 27 0.963 

  ITS, β-tubulin, Tsr1, Actin 32 0.906 

  Mcm7, β-tubulin, Tsr1, Actin 23 0.870 

5 ITS, Mcm7, β-tubulin, Tsr1, Actin 25 1.000 

*Phylogenies taken from their respective Chapters. 

Orange text displays values of greater accuracy than the ITS. 
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Figure 9.1: BI using 43 sequences of three regions combined (ITS, Mcm7, and Tsr1). Accession names 
include PM name with additional identifying numbers 1 — n. PPs above 75% are shown in blue and 
below in red. Green lines and names show species separation by phylogeny. Orange boxes denote 
PM tribes. 
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Figure 9.2: BI using 26 sequences of four regions combined (ITS, Mcm7, β-tubulin, and Tsr1). 
Accession names include PM name with additional identifying numbers 1 — n. PPs above 75% are 
shown in blue and below in red. Green lines and names show species separation by phylogeny. 
Orange boxes denote PM tribes. 
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Figure 9.3: BI using 48 sequences of four regions combined (ITS, Mcm7, β-tubulin, and Actin). 
Accession names include PM name with additional identifying numbers 1 — n. PPs above 75% are 
shown in blue and below in red. Green lines and names show species separation by phylogeny. 
Orange boxes denote PM tribes. 
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Figure 9.4: BI using 25 sequences of five regions combined (ITS, Mcm7, β-tubulin, Tsr1, and Actin). 
Accession names include PM name with additional identifying numbers 1 — n. PPs above 75% are 
shown in blue and below in red. Green lines and names show species separation by phylogeny. 
Orange boxes denote PM tribes. 
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9.3.3: DNA barcoding analyses 

Inter- and intra-specific differences were quantified for combined species accessions for each 

possible combination of the five regions. A barcoding gap (clear separation of inter- and intra-

specific distances) was not observed within any combination of regions (Table 9.4). However, 

addition of 5% error margin to both ends of sequences resulted in concatenated regions Mcm7, β-

tubulin, Tsr1 and ITS, Mcm7, β-tubulin, Tsr1 displaying the desired gap (Figure 9.5 & Table 9.5). 

The ITS region has been used extensively for PM and fungal diagnostics. Chapter 3 of the 

current study produced sequence overlap of 17.1% between inter- and intra-specific taxa which 

included 96.5% of all taxa or 6.5% including 70.1% of all taxa when 5% error margins were added. 

This benchmark was improved upon by the Mcm7 and β-tubulin regions (Figure 9.5, Table 9.4, & 

Table 9.5). Furthermore, concatenation of various region combinations has been shown to enhance 

species discrimination when using DNA barcoding analyses. Evidence shows the most promising of 

these are likely to be combinations of Mcm7, β-tubulin and ITS, Mcm7, β-tubulin, Actin as the 

overlap of similar inter- and intra-specific sequences includes the least accessions (41.9% for both 

combinations (Table 9.4)). Results for these two concatenations remain promising when 5% error 

margins are added (Table 9.5).  
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Figure 9.5: Total overlap and overlaps with 5% error margins of concatenated regions of PM 
accessions by DNA barcoding. *Abbreviated regions combinations: I = ITS, M = Mcm7, β = β-tubulin, 
T = Tsr1, and A = Actin. 
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Table 9.4: Total overlap of inter- and intra-specific distances of all region combinations. 

Concatenated regions 
Total overlap 

Total overlap (%) 
% covering all inter- and 
intra-specific accessions 

ITS 17.08 (from 0.0 to 17.08) 96.46 

Mcm7 17.89 (from 0.41 to 18.31) 93.89 

β-tubulin 15.12 (from 0.0 to 15.12) 73.67 

Tsr1 23.16 (from 0.3 to 23.47) 87.22 

Actin 47.94 (from 0.0 to 47.94) 99.94 

ITS, Mcm7 8.97 (from 0.33 to 9.31) 86.47 

ITS, β-tubulin 11.04 (from 0.0 to 11.04) 72.47 

ITS, Tsr1 6.38 (from 0.41 to 6.8) 68.96 

ITS, Actin 20.73 (from 0.09 to 20.83) 95.06 

Mcm7, β-tubulin 6.97 (from 1.05 to 8.02) 41.87 

Mcm7, Tsr1 36.05 (from 0.61 to 36.66) 88.27 

Mcm7, Actin 20.95 (from 1.05 to 22.0) 94.94 

β-tubulin, Tsr1 31.49 (from 1.07 to 32.56) 86.19 

β-tubulin, Actin 23.27 (from 0.66 to 23.93) 84.54 

Tsr1, Actin 56.8 (from 1.27 to 58.07) 94.26 

ITS, Mcm7, β-tubulin 7.39 (from 1.05 to 8.44) 63.08 

ITS, Mcm7, Tsr1 22.5 (from 0.6 to 23.1) 87.5 

ITS, Mcm7, Actin 9.18 (from 1.03 to 10.21) 79.4 

ITS, β-tubulin, Tsr1 19.82 (from 1.68 to 21.5) 82.55 

ITS, β-tubulin, Actin 20.43 (from 0.42 to 20.86) 89.71 

ITS, Tsr1, Actin 32.25 (from 0.98 to 33.24) 92.52 

Mcm7, β-tubulin, Tsr1 21.25 (from 2.12 to 23.37) 80.3 

Mcm7, β-tubulin, Actin 7.21 (from 3.08 to 10.29) 51.2 

Mcm7, Tsr1, Actin 30.56 (from 1.15 to 31.72) 91.69 

β-tubulin, Tsr1, Actin 26.24 (from 2.66 to 28.91) 88.63 

ITS, Mcm7, β-tubulin, Tsr1 14.06 (from 3.1 to 17.17) 67.77 

ITS, Mcm7, β-tubulin, Actin 5.05 (from 3.34 to 8.39) 41.86 

ITS, Mcm7, Tsr1, Actin 20.77 (from 0.96 to 21.73) 91.69 

ITS, β-tubulin, Tsr1, Actin 17.18 (from 3.24 to 20.43) 81.91 

Mcm7, β-tubulin, Tsr1, Actin 19.1 (from 2.84 to 21.95) 82.41 

ITS, Mcm7, β-tubulin, Tsr1, Actin 13.32 (from 3.44 to 16.77) 70.78 

Orange text displays values of total overlap less than 10; the most promising concatenated regions 
for DNA barcoding. 

Green text displays values of low overlap cover of inter-and intra-specific accessions; the most 
promising concatenated regions for DNA barcoding.  
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Table 9.5: Total overlap with 5% error margins on both ends of inter- and intra-specific distances of 
all region combinations. 

Concatenated regions 
Total overlap with 5% error margins on both ends 

% Overlap 
% covering all inter- and 
intra-specific accessions 

ITS 6.57 (from 1.58 to 8.16) 70.14 

Mcm7 6.03 (from 2.16 to 8.2) 51.79 

β-tubulin 2.66 (from 3.68 to 6.34) 18.45 

Tsr1  11.68 (from 2.16 to 13.85) 72 

Actin 33.41 (from 3.46 to 36.88 93.33 

ITS, Mcm7  0.85 (from 2.38 to 3.23) 13.29 

ITS, β-tubulin 6.52 (from 3.3 to 9.82) 64.87 

ITS, Tsr1 4.87 (from 1.93 to 6.8) 62.06 

ITS, Actin 15.98 (from 3.11 to 19.09) 85.96 

Mcm7, β-tubulin  1.47 (from 4.24 to 5.71) 15.02 

Mcm7, Tsr1 3.68 (from 1.8 to 5.49) 25.15 

Mcm7, Actin 11.33 (from 4.36 to 15.7) 69.83 

β-tubulin, Tsr1 1.77 (from 3.57 to 5.35) 14.11 

β-tubulin, Actin 10.23 (from 4.24 to 14.48) 55.68 

Tsr1, Actin 33.67 (from 4.94 to 38.61) 80.89 

ITS, Mcm7, β-tubulin 2.06 (from 3.94 to 6.01) 12.56 

ITS, Mcm7, Tsr1 2.38 (from 1.45 to 3.84) 8.64 

ITS, Mcm7, Actin 4.46 (from 3.95 to 8.41) 48.01 

ITS, β-tubulin, Tsr1 0.81 (from 3.67 to 4.48) 5.6 

ITS, β-tubulin, Actin 4.69 (from 4.39 to 9.09) 43.12 

ITS, Tsr1, Actin 24.46 (from 4.09 to 28.55) 89.39 

Mcm7, β-tubulin, Tsr1 0.44 (from 4.36 to 3.92) 0 

Mcm7, β-tubulin, Actin 2.6 (from 5.41 to 8.02) 24.55 

Mcm7, Tsr1, Actin  6.09 (from 4.37 to 10.47) 59.86 

β-tubulin, Tsr1, Actin 23.63 (from 5.27 to 28.91) 78.78 

ITS, Mcm7, β-tubulin, Tsr1 0.86 (from 4.1 to 3.23) 0 

ITS, Mcm7, β-tubulin, Actin 1.72 (from 4.75 to 6.47) 20.48 

ITS, Mcm7, Tsr1, Actin 3.2 (from 4.38 to 7.58) 49.05 

ITS, β-tubulin, Tsr1, Actin 15.43 (from 5.0 to 20.43) 75.27 

Mcm7, β-tubulin, Tsr1, Actin 16.68 (from 5.26 to 21.95) 70.85 

ITS, Mcm7, β-tubulin, Tsr1, Actin 1.02 (from 4.89 to 5.92) 18.1 

Orange text displays values of total overlap with 5% error margins less than five; the most promising 
concatenated regions for DNA barcoding. 

Green text displays values of low overlap cover of inter-and intra-specific accessions; the most 
promising concatenated regions for DNA barcoding.  
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9.4: Discussion 

9.4.1: Sequence alignment 

Initial concatenation of proposed markers from identical accessions yielded final sequence 

alignments of low numbers of accessions. Given that the total number of PM species identified 

globally is almost 900 and those recorded in the UK number 196, these small datasets were 

inadequate as they regularly failed to include the closely-related species that the study aimed to 

improve discrimination of. The novel nature of PM markers used within the current study meant that 

generated data could not be supplemented by using sequences from online sequence databases. 

Sourcing outgroups or additional related taxa from databases such as GenBank is standard practice 

for numerous phylogenetic, barcoding, biogeographic and other such studies reliant upon sequence 

data. The grouping of identical species from separate accessions in order to gain additional 

concatenated sequences to analyse was therefore considered the best solution to this issue of a 

dearth of data. The result was datasets of far greater size than otherwise possible which could offer 

more species comparisons during data analysis.  

9.4.2: Phylogenetic analyses 

Present day PM (Wang et al., 2013, Meeboon & Takamatsu, 2015b, Meeboon & Takamatsu, 2017b) 

and fungal (Alvarado et al., 2016, Barge et al., 2016, Birkebak et al., 2016) phylogenetic analyses rely 

upon the ITS as an informative anchoring region. It has been necessary to supplement ITS data with 

additional identifying regions, which have come from across the fungal genome (Crespo et al., 2007, 

Faircloth et al., 2012, Quaedvlieg et al., 2013, de Campos-Santana et al., 2016). However, PM studies 

have most recently begun to rely upon a flanking region of the ITS — 28S (Meeboon et al., 2015, 

Meeboon & Takamatsu, 2015a, Meeboon & Takamatsu, 2015b, Meeboon & Takamatsu, 2015c, 

Meeboon & Takamatsu, 2017a, Meeboon & Takamatsu, 2017b). This addition has improved species 

resolution across the Order, however discrepancies show further improvement is still possible, and 

even necessary (Meeboon et al., 2015, Meeboon & Takamatsu, 2015a, Meeboon & Takamatsu, 
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2015b, Meeboon & Takamatsu, 2015c, Meeboon & Takamatsu, 2017a). Concatenation of regions in 

the current study has been shown to improve PM phylogenetic resolution by more than 10%; certain 

region concatenations resolving 100% of accessions. 

 The reduction in number of accessions within datasets of concatenated regions is likely to 

have been a positive influence on phylogenetic accuracy; species difficult to resolve using molecular 

or phylogenetic methods, such as E. euonymicola, lacked the required spread of data from additional 

regions and were therefore not included in certain analyses. In the current study a trade-off 

between number of regions concatenated and number of accessions within the resultant dataset is 

therefore evident. However, the step to 100% accuracy, in certain cases, shows great promise. 

Future studies hoping to employ additional regions in order to reproduce results of the current study 

in order to gain the greatest possible accuracy must also be aware of a trade-off between additional 

costs from additional sequencing and the diminishing increases in accuracy gleaned from each 

additional region. This is highlighted in examples of phylogenetic resolution from the ITS (RCFI = 

0.88), to ITS and Mcm7 (RCFI = 0.972), to ITS, Mcm7, and Tsr1 (RCFI = 0.977), to ITS, Mcm7, Tsr1, and 

β-tubulin (RCFI = 1). However, such a trade-off is likely to be overcome with the use of next-

generation sequencing (Rizzo & Buck, 2012). 

Various region combinations yielded similarly positive results and the next logical step was 

to discount certain regions, in favour of those with the greatest utility. Regions such as Actin, which 

when analysed alone, seem to be poor candidates, are particularly challenging as they can become 

ideal ‘identifiers’ when combined with certain other region combinations. The sub-optimal 

consensus tree of the Actin region lacked phylogenetic resolution; a result of its great inter- and 

intra-specific diversity. This was easily resolved when combined with other phylogenetic regions 

shown to provide greater phylogenetic resolution.  
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When analysed alone, β-tubulin was shown to produce a phylogeny with similar accuracy to 

that of the ITS (Chapter 5 & Table 9.3), whereas it tended to reduce the accuracy of phylogenies 

when combined with all combinations of the other four regions (with the exception of Actin).  

Analyses of the Mcm7 region have proven consistently to produce phylogenies similar to 

those expected, regardless of the additional regions they are combined with. Future phylogenies of 

PMs, and fungi in general, should consider this region in the search for greater reliability and 

accuracy from phylogenetics. As ever, further studies are required to test the performance of region 

combinations on a greater diversity of accessions. 

9.4.3: DNA barcoding analyses 

While the ITS region has been proposed as the universal fungal barcode (Schoch et al., 2012), it 

cannot accurately identify species in many genera of plant-pathogenic fungi (e.g., Alternaria, 

Botryosphaeria, Calonectria, Cercospora, Diaporthe, Fusarium, Ilyonectria, Teratosphaeria, etc.). 

However, it has been shown to consistently reach at least the generic level (Schoch et al., 2014). The 

necessity for additional regions is therefore widely accepted within DNA barcoding practice (Steciow 

et al., 2014, Crous et al., 2015, Mallo & Posada, 2016). Due to the lack of crossover of sequence data 

from individual PM accessions (see Appendix 5), conspecific accessions were combined such that 

there were few intra-accessional distances typical of DNA barcoding analyses; these were replaced 

by intra-specific distances. Although this is a breach of the regular barcoding technique, combining 

identical species has ensured that the results remain relevant. 

Regions trialled in the present study have shown promise for diagnostic practices by 

increasing the number of resolved PM species accessions. Regions β-tubulin and Mcm7 improved 

barcoding results seen in the ‘universal fungal barcoding region’ ITS (Schoch et al., 2012) by showing 

evidence of consistent, reproducible, unambiguous species discrimination for rapid data processing 

by computer programmes (in this case the TaxonDNA/SpeciesIdentifier 1.8). These should be 

considered for future barcoding analyses of the PMs and the wider fungal clade.  
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9.5: Conclusions 

PM DNA regions have been concatenated and trialled, using BI and DNA barcoding analyses, for their 

combined species diagnostic utility. Results show clear improvements from the existing benchmark 

set by the fungal and PM standard region — the ITS. Additional costs associated with sequencing and 

analysing additional regions can be justified by the greater accuracy of PM species discrimination 

which comes as a result of augmentation of the ITS region. While β-tubulin outperforms other 

regions when analysed for barcode potential, the Mcm7 region outperforms all other regions, 

including the ITS, for phylogenetic reconstruction via BI, and all regions apart from β-tubulin as a 

species barcode. As such, the Mcm7 region is deemed to be the most suitable region to complement 

the ITS. Given, the accuracy of the Mcm7 region when analysed alone, there is also a case for using it 

exclusively; instead of the ITS. However, the quantity of ITS sequence data already deposited within 

online sequence databases, ensures that it will remain a necessary marker for fungal diagnostics and 

particularly to allow comparison of potential novel species to past accessions.  
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Chapter 10: General Discussion 

10.1: Introduction 

PMs continue to have substantial detrimental effects on important global crops (Curtis et al., 2002, 

Sabaratnam, 2012) such as cereals (Rabbinge et al., 1985, Liu & Shao, 1995, Curtis et al., 2002), 

vegetables (Sabaratnam, 2012, Zheng et al., 2013), ornamentals (Denny, 2014),  fruit trees 

(Boesewinkel, 1980, Boesewinkel, 1981, Polk et al., 1997, Sijaona et al., 2001, Jones & Aldwinckle, 

2002) and amenity trees (Cook et al., 2004). The ability to improve the identification process of the 

different species known to cause such damage will continue to aid control and monitoring. Key 

aspects of this include targeted defence against specific PMs (Kim et al., 2002, Pessina et al., 2014, 

Jiang et al., 2016) and limiting pathogen spread (Bebber et al., 2014); both practices are aided by 

accurate and efficient diagnostics. Diagnostic practices and taxonomic detail have increased as PM 

biology, host ranges, distributions, and phylogenetic relationships are better understood and as a 

result, new PM species continue to be described (Ale-Agha et al., 2008, Tang et al., 2017). However, 

a global inventory is incomplete, with numerous more PM fungi likely to be found in understudied 

tropical regions (Limkaisang et al., 2006) and detailed descriptions of holomorphic PMs still lacking 

for the majority of described species. The identification of informative molecular markers can 

augment current information in order to increase reliability of species determination.  

 The current study enlisted volunteer help to contribute PM accessions affecting their own 

gardens and immediate surroundings to enable broad-scale sample collection. The efficacy of 

established identification techniques for PM species discrimination was then examined and attempts 

to improve the process were explored. Protocols for obtainment of additional PM accession data 

from seven, previously neglected, regions were developed with varying success. Resultant data were 

then analysed for their PM species diagnostic utility using established methods of analyses, also with 

varying success.  
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10.2: Sampling 

PM accession collection from the University of Reading campus and RHS Garden Wisley was 

supplemented by the three year Powdery Mildew Survey. This provided a more complete 

understanding of PM presence across the UK through a range of accessions of plants hosting PMs 

potentially novel to the host, the study, the country, or the world. Greater effort in publicising the 

scheme successfully increased public awareness of the effect of PMs, and the need for samples to 

improve diagnostics; peak sampling coming in the autumn of 2014 and the summer of 2015 when 

the scheme was promoted at numerous flower shows and science fairs, as well as within relevant 

specialist society publications.  

The success of the current citizen science scheme shows the great potential for further, 

similar scientific sampling projects and highlights the willingness of the public to engage with science. 

Small-scale, independent citizen science schemes, such as this, have become more achievable as 

social media platforms ensure the possibility of immediate connection to potential audiences. This 

aspect of scheme promotion was well utilised with regular blogs and online outreach, however, the 

physical outreach could have been improved by organising collection events and being present at 

applicable society outreach events. A strong case study of scientific outreach is that of Cape Citizen 

Science from South Africa, which aims to develop local knowledge of Phytophthora in order to keep 

natural areas healthy. Public engagement and communication of the project uses a suite of online 

and printed media as well as through organising collecting days and highlights the fact that, through 

these means of sampling, anyone can contribute to science (Hulbert, 2016). 

Distribution data generated from the current project was submitted to the National 

Biodiversity Network Atlas (National Biodiversity Network, 2017) and the British Mycological Society 

checklist of fungi of the British Isles (British Mycological Society, 2017). Such contributions have 

provided the project with a legacy; serving as references for future studies and highlighting the 

presence of PMs across the UK. 
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Future success could be achieved simply by continuing to promote and maintain it. This 

would present an ideal opportunity to collect data over a large spatial and temporal extent, by 

continuing to log the distributions of currently known PMs of the UK and identifying new PMs as 

threats to native flora. The scheme could include a mobile-friendly app in future such as that used by 

the OPAL Tree Health Survey (OPAL Forest Research FERA, 2017) in order to pin the sample and its 

later identification to its specific location and enable updates to species presence and distribution 

data. However, such developments may have a negative impact on contributions, as participants 

begin to believe it to be obligatory to possess the app in order to contribute.  

Creating projects similar to Cape Citizen Science and the Powdery Mildew Survey is achievable. 

Project convenors may alter the studied pathogen and location of study in order to increase 

knowledge of specific plant diseases in the UK, PMs in other countries, or specific plant diseases in 

other countries. Given appropriate and prompt feedback on receipt of samples, contributors will 

continue to provide further samples and feel that the project is worthwhile. Any future citizen 

science based study should ensure feedback of this nature in order to maximise the possibility of 

receiving repeat samples from specific collectors.  

10.3: Species identification using established techniques 

Analysis of host plants (Chapter 2), fungal morphology, and ITS sequence data (Chapter 3) in the 

current study enabled PM species identification in 80% of samples. Despite the sequence data 

currently available in GenBank for the ITS region, many accessions such as those on Heuchera cvs. 

(Ellingham et al., 2016) yielded ambiguous results due to a lack of previous ITS data and a lack of 

variability in deposited ITS data. This was the case for the majority of PM accessions; requiring prior 

knowledge of expected PM species in order to select potential appropriate ITS matches from the 

database. Morphology and host data were therefore required in order to identify PM species; 

morphological measurements (specifically asexual spore dimensions) enabled the Heuchera PM 

species to be identified. Linking such precise, repeat morphological measurements to sequence data 
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may enable future identifications to be made from this ITS data, providing it is unique to the PM 

species. ITS data of P. macrospora ex Heuchera was therefore submitted to the NCBI GenBank along 

with all other PM ITS sequences generated and will serve as references for future PM identifications.  

Twenty percent of accessions could not be identified from the combination of host, 

morphological and ITS data due to shared fungal morphological features as well as ITS rDNA and the 

nomenclatural and taxonomic limitations of certain closely-related, newly separated taxa. Of these, 

the most common issue was a lack of resolution beyond genera as species were too similar to tell 

apart. This was evident in phylogenetic reconstructions and was consistent with the literature, which 

has frequently highlighted examples of different PM species with indistinguishable ITS rDNA 

(Takamatsu et al., 1999, Khodaparast et al., 2012). This serves to further highlight the urgent need 

for robust, multi-gene phylogenies to clarify species limits and their lineages. 

Cases in which this is evident arise within Podosphaera and particularly Erysiphe. The 

multitude of species within these groups (approximately 90 and 380 respectively) and their relatively 

recent adaptive radiations (Takamatsu & Matsuda, 2004, Takamatsu et al., 2010) mean that species 

have not had sufficient time for consistent molecular divergence within the ITS. There are therefore 

numerous cases within the PMs of ‘compound’ species such as G. cichoracearum (Matsuda & 

Takamatsu, 2003, Lebeda & Mieslerová, 2011), or P. erigerontis-canadensis (Braun & Cook, 2012) 

particularly within the Erysiphe such as E. trifoliorum (Braun & Cook, 2012). These may prove to 

merit finer delimitation, into formae speciales or varieties for instance, however these are not 

recognised by the Botanical Code (Voss et al., 1983). ‘Cryptic species’, different forms 

indistinguishable by most means (Hebert et al., 2004, Saito et al., 2016), are also found in the PMs. 

Examples include G. cynoglossi shown in the current study to be separated by molecular analyses. It 

would be of great interest to investigate the signature enabling the Erysipheae to readily jump to 

new hosts (Matsuda & Takamatsu, 2003). If a gene or suite of genes responsible for this were 

identified, they could be silenced in order to limit the capacity of PMs to spread to new hosts.  
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In contrast the Phyllactinieae clade and accessions within it were consistently discriminated, 

potentially due to the low number of collected accessions of the few species in the study. Many 

more Golovinomyceteae accessions were collected, but these were also consistently discriminated. 

The rate of diversification since the clade arose from other PMs approximately 40 million years ago 

(Takamatsu et al., 2008a) has been relatively slow; with just 57 extant species (one Arthrocladiella, 

45 Golovinomyces, and 11 Neoerysiphe). 

As in the present study, previous efforts to test the barcoding ability of the ITS have proved 

its variable diagnostic utility across different fungal genera (Crous et al., 2015). The ability of even 

short reads to identify certain fungal species, as in the study of Min and Hickey (2007), has not been 

shown in this study. Longer reads, including fragments spanning the ITS2, the LSU-D1 and LSU-D2 

domains as in Stockinger et al. (2010), or additional genetic markers as in Irinyi et al. (2015) may 

therefore be required for reliable species identification. Future studies are likely to use next-

generation approaches in order to enable diagnostics. These will generate the sequence data 

needed for comparison with past studies concurrently with additional data. Studies analysing the 

diagnostic utility of DNA regions as additional identifiers will help explore and elucidate the 

taxonomic and phylogenetic uncertainties currently evident. 

10.4: Improving PM diagnostics 

It is demonstrated in this thesis that sequencing of regions additional to the ITS considerably aids 

unambiguous species identifications. The 18S (Saenz et al., 1994, To-anun et al., 2005), β-tubulin 

(Inuma et al., 2007, Seko et al., 2010), Chs (Seko et al., 2010), and 28S (Takamatsu & Matsuda, 2004, 

Meeboon & Takamatsu, 2017b) regions have been used in the past with varying success. Similarly, 

the regions Chs, Calmodulin, EF1-α, Actin, Tsr1, β-tubulin, and Mcm7 trialled in the current study 

have offered varying levels of useful, additional diagnostic data to the ITS.  

 The wealth of fungal rDNA data available from previous studies initially ensured that 

appropriate regions were identified and could be evaluated for potential diagnostic utility. All 
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regions trialled in the current study, apart from the Mcm7 and Tsr1, have been widely used for 

increasingly refined identification of species within other fungal clades (Table 10.1). Generic primers 

were therefore sourced with ease, but their use favoured amplification of fungi other than the PMs 

within the environmentally sourced DNA (Martin & Rygiewicz, 2005, Bellemain et al., 2010). 

Alignment of the Calmodulin and Chs gene regions provided insignificant variability between PM 

species and their fungal conspecifics for attempts at specific primer design (Chapter 8). The other 

candidate genes, including Mcm7 and Tsr1, provided numerous priming sites with potential 

specificity to PMs. Developed primers of EF1-α consistently amplified multiple products and the 

gene was therefore excluded from later amplifications (Chapter 8). However, optimal primers and 

protocols were developed for reproducible amplification and sequencing of the four remaining gene 

regions. 

 The Actin gene (Chapter 7) was amplified and sequenced with the greatest success 

(approximately 90% of samples), but provided negligible identification utility to complement the ITS. 

The region was just 30% conserved and similar to the studies of Weiland and Sundsbak (2000) and 

Hunter et al. (2006) did not enable species discrimination. Phylogenetic reconstructions produced 

sub optimal results as genera and species were scattered throughout the topology. Although the 

study of Quaedvlieg et al. (2014) showed Actin to provide important barcoding data, the current 

analyses showed inter- and intra-specific distances to be mixed such that similar sequences could 

have been from accessions of the same species, but equally different genera of different tribes. This 

uncertainty may be a result of the amplification and latter sequencing of a different PM species 

present in the leaf microbiome to those amplified by most other regions. However, it is more likely 

to be due to sequencing of substantially different copies, pseudogenes or paralogous copies, of the 

Actin gene may have been sequenced from different accessions of particular PM species.  
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Table 10.1: Well resolved fungal clades of previous studies. 

Fungal clade Reference 

Armillaria   Maphosa et al. (2006) 

Aspergillus   Samson et al. (2014) 

Basidiomycota   Matheny et al. (2007) 

Caliciaceae   Prieto and Wedin (2016) 

Candida   Daniel et al. (2001) 

Dermatophyte species   Kano et al. (1997) 

Eurotiomycetes, Lecanoromycetes, 
Leotiomycetes, Lichinomycetes and 
Sordariomycetes  

 Schmitt et al. (2009) 

Geomyces   Minnis and Lindner (2013) 

Gibberella/Fusarium  

O' Donnell et al. (1998a), O' Donnell et al. (1998b), O’ 
Donnell et al. (2000), Mulè et al. (2004), Seifert and 
Lévesque (2004), Kristensen et al. (2005), Amatulli et al. 
(2010)  

Kickxellomycotina  Tretter et al. (2013), Tretter et al. (2014b)  

Lasallia   Sadowska-Deś et al. (2013) 

Magnaporthe oryzae   Kong et al. (2012) 

Montanelia   Divakar et al. (2012) 

Mucorales and Mortierellales   Voigt and Wöstemeyer (2001) 

Mycosphaerella   Hunter et al. (2006) 

Neofabraea   de Jong et al. (2001) 

Penicillia   Wang and Zhuang (2007) 

Sporothix  Madrid et al. (2009), Romeo et al. (2011)  

Thermophilic fungi   Morgenstern et al. (2012) 

Xanthoparmelia   Leavitt et al. (2011) 

Amplification and sequencing of the Tsr1 gene (Chapter 6) was successful approximately 70% 

of the time and was significantly affected by alteration of sequencing companies from 2014 and 

2015 to 2016. This is likely due to the optimisation of initial protocols to the low volume 

requirements of Source BioScience. An alteration of PCR product volume required for sequencing 

with GATC meant that the optimised PCR protocol had to be adjusted for a greater final volume. 

Resultant DNA data enabled identification of 86% of accessions to species level, when accompanied 

by host, morphological, and ITS data (a 6% improvement from established techniques). Schmitt et al. 

(2009) showed the region to be alignable across different fungal orders (“a wide range of unrelated 

taxa”) and at the same time have sufficient variability to resolve within-genus relationships, however 

PM sequences proved to be difficult to align, particularly as a result of hypervariable regions also 
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identified by Schmitt et al. (2009). Studies investigating the utility of Tsr1 have regularly failed to 

compare these data with established regions, such as the ITS (Schmitt et al., 2009, Tretter et al., 

2013). However the study of Sadowska-Deś et al. (2013) confirmed that ITS has insufficient 

variability for intraspecific studies within populations and the use of protein-coding genes, 

particularly Tsr1 (and Mcm7), may enable assessments of variability within and among populations. 

This region offers useful additional information to aid in species discrimination and thus could be 

used as an identifier, alongside the ITS. However phylogenetic and barcoding analyses from the 

current study showed it was not as informative as other trialled regions and resolved few additional 

species when analysed alone and combined with the ITS. 

Sequencing of the β-tubulin gene (Chapter 5) was also affected by the change of sequencing 

companies. However, resultant data showed evidence of the high efficacy of the region as a reliable 

identification locus for PM fungi across the whole scale of tested sequences via DNA barcoding and 

concurs with the study of Quaedvlieg et al. (2014). Direct comparison of β-tubulin with other tested 

regions showed it to be the best candidate as a reliable marker for barcoding analyses of PM. 

However, the result did not produce a barcoding gap and thus PM species of Podosphaera and 

particularly Erysiphe remained mixed. Phylogenetic analyses proved β-tubulin was as informative as 

ITS and augmented barcoding ability and phylogenetic resolution of the ITS when the two were 

concatenated. The region is therefore a strong candidate as a PM identifier to be used alongside 

currently established techniques. 

For the Mcm7 gene (Chapter 4) 80% of accessions trialled were successfully amplified and 

sequenced. While the ability of Mcm7 to discriminate inter- and intra-specific distances was little 

better than the ITS, the combination of Mcm7 and ITS reduced the overlap of inter- and intra-

specific distances to less than 10% of accessions. Phylogenetic analyses proved the great potential of 

Mcm7 for improving PM diagnostics; resolving 97% of all accessions as expected from an ideal tree. 

The region could be adopted to aid future identification of PM species. 
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While Mcm7 has shown the greatest accuracy at solving current phylogenetic discrepancies, 

β-tubulin proved superior for DNA barcoding. Region concatenation (Chapter 9) can improve 

diagnostics and factors, such as population size, time between speciation events, and properties of 

the loci must be considered (Leaché & Rannala, 2010, Knowles & Kubatko, 2011, Liu & Yu, 2011) as 

the number of loci required to resolve a phylogeny can vary greatly (Lemmon & Lemmon, 2013). 

When concatenated and analysed the Mcm7 and β-tubulin regions were amongst the best 

performing combinations for DNA barcoding analyses. Phylogenetic analyses showed Mcm7 to be 

the most accurate single region. Accuracy was improved when combining the region with ITS and 

Tsr1 and reached 100% when combining these three regions with either β-tubulin or Actin. 

The difference in results between phylogenetic and barcoding techniques is particularly 

interesting. Bayesian analyses of the current study have generally provided high species resolution 

with good PPs and yet the barcoding results have been poor; rarely providing unambiguous 

discrimination between inter- and intra-specifics. It is uncommon for a barcoding region to offer 

sufficient phylogenetic signal to resolve evolutionary relationships, especially at deeper levels 

(Hajibabaei et al., 2006). The opposite is also true of phylogenetically informative regions and thus 

the hope that the same region could offer increased certainty for PM species identifications through 

both methods may have been poorly founded.  

Greater discrimination of accessions when using Bayesian analyses rather than barcoding is 

not uncommon (Rubinoff et al., 2006, Heimeier et al., 2010, Dai et al., 2012). The difference, evident 

in computational time, stems from the use one of the most basic phylogenetic methods available 

(simple pairwise distances interpreted through clustering to produce tree-like representations of 

species clusters (Neighbour Joining phenograms)) in typical barcoding. This has led to sustained 

criticism that barcoding uses bad phylogenetic practice and therefore its conclusions are suspect 

(e.g., Will and Rubinoff (2004)). The Bayesian method enlisted in the current study for phylogenetic 

reconstruction also has limitations as posterior probability may support false phylogenetic 
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hypotheses (Douady et al., 2003) and ambiguous data has been shown to have deleterious effects 

on topological conservation (Lemmon et al., 2009), however, BI has been shown to require less 

computation time than other molecular systematic methods such as maximum parsimony and 

maximum likelihood (Leaché & Reeder, 2002, Douady et al., 2003) and incorporates appropriate 

models into any analysis (Posada & Buckley, 2004). 

However, on balance, BI has produced results with far greater utility than that of DNA 

barcoding. The nature of the barcoding analysis means that outliers such as incorrectly identified PM 

species, a potential result of more than one PM infecting a single host, can easily skew resulting 

data. It is therefore rarely useful as the sole analysis tool. Instead DNA barcoding of PMs and similar 

phylloplane fungi can serve as an initial tool for taxa placement into tribes and genera and taxa 

selection before later analyses. In this way, appropriate accessions could be selected for BI of 

individual clades of closely related taxa (Hajibabaei et al., 2007). 

Mcm7, β-tubulin, Tsr1, and Actin have each augmented the accuracy of diagnostics as 

additional informative features by enabling greater discrimination of closely related PMs. However, 

the Mcm7 region has proven to be the single most informative region; bettering ITS-based results 

such that it could be considered as an ITS alternative. Nevertheless, more research is required in this 

field in order to evaluate whether the Mcm7 region is superior to other regions and whether analysis 

of this region alone can precede others when whole genome sequences become easily producible. 

Identifications have also served to further understanding of the specificity of PMs. It is 

understood that more than 90% of PMs are specific to an individual genus or species of plant host 

(Braun & Cook, 2012). These can be considered specialist pathogens. Why pathogens would stray 

from a generalist nature to limit themselves to just a few potential hosts is debatable, but there are 

likely to be trade-offs impeding optimal adaptation to several host species at the same time (Van 

Tienderen, 1991, Barrett & Heil, 2012, Bruns et al., 2014). These trade-offs may be constraints or a 

lower coevolutionary rate when tracking a particular host species (Whitlock, 1996). Therefore, if a 
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principal host is sufficiently abundant, specialist species may be advantaged as they can exploit their 

hosts more efficiently (Soler et al., 2009) and will therefore be the most common type. Generalist 

PMs have been considered to be uncharacteristically abundant amongst biotrophic pathogens with 

species such as the E. alphitoides (Desprez-Loustau et al., 2010), E. trifoliorum, G. orontii, P. 

erigerontis-canadensis known to occur on numerous host plants spanning different plant families. 

However, with ever greater detailed gleaned from studies, the similarities tying such forms to a 

single denomination become more distinguished and studies therefore begin to separate PM species 

into separate species, varieties, or formae speciales. This is perfectly exemplified within the current 

study as initial morphological investigations point the researchers towards a specific PM clade. Data, 

such as the rDNA ITS, then augment initial data and can confirm initial delimitations, however, 

ambiguities remain and similar accessions can easily be attributed to the same clade. It is only with 

further investigation, in this case the sequencing of additional regions, that such delimitations are 

proved insufficient and PMs occurring on a specific host family, shown to appear morphologically 

the same, and possess similar ITS rDNA are in fact more than one species.  

10.5: Future work 

Knowledge of the regions shown to be diagnostically informative in the current study, Tsr1, Mcm7, 

and β-tubulin, and efficient computation of results via DNA barcoding and BI will aid in future 

unambiguous identification of PM species from around the world. These stable, reproducible 

methods for PM identification will aid in field trials for resistant agricultural and horticultural plant 

varieties. Currently, specific PM species known to infect a host are targeted in the development of 

host resistance (for example E. pisi infecting Pisum sativum). The possibility of additional PM species 

infecting a host (for example E. trifoliorum and E. baeumleri infecting Pisum sativum (Fondevilla et 

al., 2011, Fondevilla & Rubiales, 2012)) can therefore confuse comparisons of infection methods of 

PM on susceptible and resistant varieties. Efficient and accurate PM identification at various stages 

of field trials will therefore enable comprehensive conclusions of host resistance to be made. 
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Furthermore, promotion of PM resistance loci of hosts such as the MLO (Jørgensen, 1992) may be 

specific to certain PMs. Identification of PM species within trials is therefore critical.  

Numerous pathogens other than PM are also threatening global food security and 

biodiversity. Phytophthora is a pertinent pathogen known to cause disease in numerous plant 

species worldwide. This is a genus of hundreds of plant destroying Oomycetes (Brasier, 2009) which 

also require the ITS for identification of genera and species (Martin et al., 2012, Scibetta et al., 2012). 

Like PM identification, Phytophthora identification faces similar pitfalls due to reliance on the ITS 

region (Kang et al., 2010, Scibetta et al., 2012). Studies furthering potential markers for species 

diagnostics within this problematic clade, as well as numerous others, could therefore aid in disease 

prevention in multiple host-disease relationship examples. This would in turn greatly reduce 

pressures on plants important for agriculture, horticulture, and biodiversity.  

Improved efficacy and accuracy of diagnostically useful molecular markers of plant 

pathogens could be paired with new technologies such as lateral flow microarrays (Carter & Cary, 

2007) or direct PCR (Werle et al., 1994) and on-site sequencing of targeted regions using nanopore 

technologies such as the MinION (Eisenstein, 2012, Mikheyev & Tin, 2014, Mitsuhashi et al., 2017). 

These could offer a fast and efficient method for disease identification for plant health practitioners. 

If put into practice, they would boost the identification of old and new PM species on old and new 

hosts in the field and provide border checkpoints at main points of entry such as those working with 

the government’s Animal and Plant Health Agency (APHA) with an augmented toolkit for ensuring 

new, unwanted threats to the UK horticultural and agricultural industries do not enter the country.  

The sequences generated from this study were deposited in the NCBI GenBank and will 

serve as references for future PM identifications (providing the regions come into common usage). 

Ultimately, a comprehensive database of accurately identified sequences is central to the molecular 

identification of PMs. The generation of sequence data for multiple gene regions, using a range of 

PM samples from varying geographic distributions, has enabled progress towards this long-term aim. 
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Knowledge of different elements of the PM genome and their utility for varying purposes will aid in 

future genome characterisation when next generation methods are likely to come into common 

usage. In order to aid this, PMs spanning the globe and their entire Order should be sequenced, with 

particular attention on species complexes of the Podosphaera and Erysiphe, such as that of E. 

euonymicola - alphitoides highlighted in the current study or the oak PM complex from Feau et al. 

(2012), in order to complete a holistic study of PMs of the world; their taxonomy and phylogeny, and 

their evolutionary history.  

The ITS region has historically underpinned fungal diagnostics, and due to the present 

quantity of ITS sequence data deposited within online sequence databases, is likely to continue to do 

so. The β-tubulin region can offer additional diagnostic utility to the PM identification process; 

serving as an ‘identifier’. The Mcm7 offers greater promise though and could replace the ITS. While 

much work remains, the results obtained in the current study have confirmed that molecular 

techniques show promise in the major effort of documenting and understanding the diversity of PMs 

by using diagnostics. Implementation of the methods outlined in the current study has the potential 

to limit economic damage caused to horticultural and agricultural industries as well as biodiversity. 
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Appendix 1: Powdery Mildew Survey launch blog posts from 2014, 2015, and 2016. 
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Appendix 2: Science and Plants for Schools - The powdery mildew survey - teacher and student notes 
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Appendix 3: BSPP printed flyer disseminated at trade fairs. 
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Appendix 4: Accessions of the study 

Study accession Host ID Date Site Final PM ID 

OE2013PM1 Malus domestica 06/07/2013 Harris Garden, University of Reading Podosphaera leucotricha 

OE2013PM2 Mahonia aquifolium 09/08/2013 RHS Wisley Erysiphe berberidis 

OE2013PM3 Carpinus betulus 09/08/2013 RHS Wisley Erysiphe arcuata 

OE2013PM4 Quercus robur 09/08/2013 RHS Wisley Erysiphe alphitoides 

OE2013PM5 Ribes sanguineum 09/08/2013 RHS Wisley Podosphaera mors-uvae 

OE2013PM6 Geranium sp. 09/08/2013 RHS Wisley Neoerysiphe geranii 

OE2013PM7 Acer pseudoplatanus 12/08/2013 Harris Garden, University of Reading Sawadaea bicornis 

OE2013PM8 Thunbergia alata 15/08/2013 
Whiteknights House, University of 
Reading 

Golovinomyces orontii 

OE2013PM9 Mahonia x wagneri 16/08/2013 Harris Garden, University of Reading Erysiphe berberidis 

OE2013PM11 Cydonia sp. 16/08/2013 Harris Garden, University of Reading Podosphaera leucotricha 

OE2013PM12 Cucurbita maxima 16/08/2013 RHS Wisley Golovinomyces orontii 

OE2013PM13 Amelanchier lamarckii 16/08/2013 Harris Garden, University of Reading 
Podosphaera 
amelanchieris 

OE2013PM14 Silenesp. 17/08/2013 Harris Garden, University of Reading Erysiphe buhrii 

OE2013PM15 Verbascumsp. 20/09/2013 RHS Wisley Golovinomyces verbasci 

OE2013PM16 Sonchus oleraceus 23/09/2013 Harris Garden, University of Reading 
Golovinomyces 
sonchicola 

OE2013PM17 Trifolium arvense 23/09/2013 Trial Plots, University of Reading Erysiphe trifoliorum 

OE2013PM18 Pisum sp. 23/09/2013 Trial Plots, University of Reading Erysiphe pisi 

OE2013PM19 Trifolium pratense 23/09/2013 RHS Wisley Erysiphe trifoliorum 

OE2013PM21 Aquilegia vulgaris 23/09/2013 Harris Garden, University of Reading Erysiphe aquilegiae 

OE2013PM22 Amelanchier canadensis 23/09/2013 RHS Wisley 
Podosphaera 
amelanchieris 

OE2013PM23 Populus sp. 23/09/2013 Wilderness Area, University of Reading Erysiphe adunca 

OE2013PM24 Monarda sp. 02/10/2013 Harris Garden, University of Reading 
Golovinomyces 
biocellaris 

OE2013PM25 Phlox paniculata 02/10/2013 Harris Garden, University of Reading 
Golovinomyces 
magnicellulatus 

OE2013PM26 Anthriscus sylvestris 04/10/2013 RHS Wisley Erysiphe heraclei 

OE2013PM27 Heracleum sphondylium 04/10/2013 Harris Garden, University of Reading Erysiphe heraclei 

OE2013PM28 Stachys byzantina 04/10/2013 Harris Garden, University of Reading Neoerysiphe galeopsidis 

OE2013PM29 Circaea lutetiana 04/10/2013 Harris Garden, University of Reading Erysiphe circaeae 

OE2013PM30 Plantago major 04/10/2013 Wilderness Area, University of Reading Golovinomyces sordidus 

OE2013PM31 Poaceae sp. 04/10/2013 Harris Garden, University of Reading Erysiphe sp 

OE2013PM32 Geum urbanum 04/10/2013 Harris Garden, University of Reading Podosphaera aphanis 

OE2013PM33 Senecio vulgaris 07/10/2013 Wilderness Area, University of Reading Golovinomyces fischeri 

OE2013PM34 Aster novi-belgii 07/10/2013 Harris Garden, University of Reading Golovinomyces asterum 

OE2013PM35 Rosa sp. 07/10/2013 Harris Garden, University of Reading Podosphaera pannosa 

OE2013PM36 Geranium sp. 13/10/2013 RHS Wisley Neoerysiphe geranii 

OE2013PM37 Aquilegia sp. 13/10/2013 RHS Wisley Erysiphe aquilegiae 

OE2013PM38 Aesculus sp. 13/10/2013 Wilderness Area, University of Reading Erysiphe flexuosa 

OE2013PM39 Mitellasp. 13/10/2013 RHS Wisley Podosphaera macularis 

OE2013PM40 Verbascumsp. 13/10/2013 RHS Wisley Golovinomyces verbasci 

OE2013PM41 Acer pseudoplatanus 16/10/2013 Wilderness Area, University of Reading Sawadaea bicornis 

OE2013PM42 
Phlox paniculata 'Peacock 
White' 

05/11/2013 RHS Wisley 
Golovinomyces 
magnicellulatus 
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OE2013PM43 Salix caprea 11/11/2013 
Trial Greenhouses, University of 
Reading 

Erysiphe adunca 

OE2014PM1 Trifolium pratense 04/03/2014 
Trial Greenhouses, University of 
Reading 

Erysiphe trifoliorum 

OE2014PM2 Lamium amplexicaule 14/04/2014 
Experimental plots, University of 
Reading 

Neoerysiphe galeopsidis 

OE2014PM3 Lamium purpureum 14/04/2014 
Experimental plots, University of 
Reading 

Neoerysiphe galeopsidis 

OE2014PM4 Senecio vulgaris 14/04/2014 
Experimental plots, University of 
Reading 

Golovinomyces fischeri 

OE2014PM5 Myosotis arvensis 30/04/2014 Harris Garden, University of Reading 
Golovinomyces 
cynoglossi 

OE2014PM6 Geranium sp. 09/05/2014 Harris Garden, University of Reading Podosphaera fugax 

OE2014PM7 Taraxacum officinale 12/05/2014 Christchurch Road, Reading 
Podosphaera 
erigerontis-canadensis 

OE2014PM8 Hordeum vulgare 14/05/2014 
Experimental plots, University of 
Reading 

Blumeria graminis 

OE2014PM9 Sonchus oleraceus 14/05/2014 
Harborne building, University of 
Reading 

Golovinomyces 
sonchicola 

OE2014PM10 Lamium sp. 09/06/2014 RHS Wisley Neoerysiphe galeopsidis 

OE2014PM11 Geranium sp. 09/06/2014 RHS Wisley Podosphaera fugax 

OE2014PM12 Quercus robur 09/06/2014 RHS Wisley Erysiphe alphitoides 

OE2014PM13 Wisteria sinensis 09/06/2014 RHS Wisley Erysiphe alphitoides 

OE2014PM14 Carpinus betulus 09/06/2014 RHS Wisley Erysiphe arcuata 

OE2014PM15 Pulmonaria sp. 09/06/2014 RHS Wisley 
Golovinomyces 
cynoglossi 

OE2014PM16CS Acanthus spinosus 09/06/2014 Alexandra Road, Reading Neoerysiphe galeopsidis 

OE2014PM17CS Centaurea montana 12/06/2014 Shades of Green, Stirling 
Golovinomyces 
depressus 

OE2014PM18CS Symphytum sp. 12/06/2014 Shades of Green, Stirling 
Golovinomyces 
cynoglossi 

OE2014PM19CS Tellima grandiflora 12/06/2014 Shades of Green, Stirling 
Podosphaera 
macrospora 

OE2014PM20CS Myosoits sp. 12/06/2014 Shades of Green, Stirling 
Golovinomyces 
cynoglossi 

OE2014PM21CS Lycium barbarum 13/06/2014 Lincoln 
Arthrocladiella 
mougeotii 

OE2014PM22CS Lycium barbarum 16/06/2014 31 Sea Crest Road, Lee-on-the-Solent 
Arthrocladiella 
mougeotii 

OE2014PM23CS Persicaria amplexicaulis 16/06/2014 31 Sea Crest Road, Lee-on-the-Solent Erysiphe polygoni 

OE2014PM24CS 
Lonicera periclymenum 
'Graham Thoms' 

16/06/2014 31 Sea Crest Road, Lee-on-the-Solent Erysiphe lonicerae 

OE2014PM25 Acer platanoides 16/06/2014 Wilderness area, University of Reading Sawadaea tulasnei 

OE2014PM26CS Centaurea montana 17/06/2014 Moray 
Golovinomyces 
depressus 

OE2014PM27CS Heracleum sphondylium 18/06/2014 Maidstone Erysiphe heraclei 

OE2014PM28CS Verbena bonariensis 22/06/2014 Blackpool Golovinomyces orontii 

OE2014PM29CS Knautia 'melton hybrid' 23/06/2014 Blackpool 
Podosphaera 
dipsacearum 

OE2014PM30CS 
Berberis thunbergii 
atropurpurea 

23/06/2014 Merseyside Erysiphe berberidis 

OE2014PM31 Akebia quinata 23/06/2014 Luckmore Drive, Reading Erysiphe akebiae 

OE2014PM32CS Heracleum sphondylium 24/06/2014 Suttons Park Avenue, Reading Erysiphe heraclei 

OE2014PM33CS Filipendula ulmaria 25/06/2014 Middlesborough 
Podosphaera 
filipendulae 

OE2014PM34 Akebia quinata 02/07/2014 
Whiteknights House, University of 
Reading 

Erysiphe akebiae 

OE2014PM35 Trifolium sp. 07/07/2014 RHS Wisley Erysiphe trifoliorum 

OE2014PM36 Catalpa bignonioides 07/07/2014 RHS Wisley Erysiphe elevata 

OE2014PM37 Aquilegia vulgaris 09/07/2014 Harris Garden, University of Reading Erysiphe aquilegiae 
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OE2014PM38 Akebia quinata 14/07/2014 Secret Garden, University of Reading Erysiphe akebiae 

OE2014PM39 Mahonia aquifolium 17/07/2014 Harris Garden, University of Reading Erysiphe berberidis 

OE2014PM40CS Geranium rotundifolium 31/07/2014 Earley Gate, University of Reading Podosphaera fugax 

OE2014PM41CS Verbena bonariensis 06/08/2014 Chippenham, Wiltshire   

OE2014PM42CS 
Rosa 'Madame Alfred 
Carrière' 

17/08/2014 London Podosphaera pannosa 

OE2014PM43CS Clematis Perle d'Azur' 17/08/2014 London Erysiphe aquilegiae 

OE2014PM44CS Clematis sp. 17/08/2014 London Erysiphe aquilegiae 

OE2014PM45 Monarda sp. 20/08/2014 Harris Garden, University of Reading 
Golovinomyces 
biocellaris 

OE2014PM46 Catalpa bignonioides 07/07/2014 RHS Wisley Neoerysiphe galeopsidis 

OE2014PM47CS Prunus laurocerasus 26/08/2014 Allcroft Road, Reading Podosphaera tridactyla 

OE2014PM48CS Calystegia silvatica 26/08/2014 Allcroft Road, Reading Erysiphe convolvuli 

OE2014PM49CS Pentaglottis sempervirens 26/08/2014 Allcroft Road, Reading Erysiphe lycopsidis 

OE2014PM50CS Cucurbita pepo 04/08/2014 Farnborough Golovinomyces orontii 

OE2014PM51CS Quercus robur 04/08/2014 Farnborough Erysiphe alphitoides 

OE2014PM52 Heracleum sphondylium 28/08/2014 
West side of Whiteknights Lake, 
University of Reading 

Erysiphe heraclei 

OE2014PM53CS Acer campestre 02/09/2014 St. Andrews Sawadaea bicornis 

OE2014PM54CS Sonchus asper 02/09/2014 St. Andrews 
Golovinomyces 
sonchicola 

OE2014PM55CS Taraxacum officinale 02/09/2014 St. Andrews 
Podosphaera 
erigerontis-canadensis 

OE2014PM56CS Trifolium pratense 07/09/2014 
APD, University of Reading, University 
of Reading 

Erysiphe trifoliorum 

OE2014PM57CS Senecio jacobaea 07/09/2014 
APD, University of Reading, University 
of Reading 

Podosphaera senecionis 

OE2014PM58CS Plantago major 07/09/2014 
APD, University of Reading, University 
of Reading 

Golovinomyces sordidus 

OE2014PM59CS Platanus x hispanica 07/09/2014 
Wilderness area, University of Reading, 
Whiteknights Campus 

Erysiphe platani 

OE2014PM60CS Quercus robur 11/09/2014 Kerry Erysiphe alphitoides 

OE2014PM61CS Quercus robur 11/09/2014 Kerry Erysiphe alphitoides 

OE2014PM62CS Calystegia sepium 15/09/2014 
Pepper Lane entrance, University of 
Reading 

Erysiphe convolvuli 

OE2014PM63 Acer sp. 16/09/2014 Kew Gardens Sawadaea bicornis 

OE2014PM64CS Cucurbita pepo 17/09/2014 Pennant, Wales Golovinomyces orontii 

OE2014PM65CS Heracleum sphondylium 17/09/2014 Pennant, Wales Erysiphe heraclei 

OE2014PM66CS Mentha sp. 17/09/2014 Pennant, Wales 
Golovinomyces 
biocellaris 

OE2014PM67CS Quercus robur 17/09/2014 Pennant, Wales Erysiphe alphitoides 

OE2014PM68CS Silene dioica 17/09/2014 Pennant, Wales Erysiphe buhrii 

OE2014PM69CS Taraxacum agg. 17/09/2014 Pennant, Wales 
Podosphaera 
erigerontis-canadensis 

OE2014PM70CS Fraxinus excelsior 13/09/2014 Foxlease, Hampshire Phyllactinia fraxini 

OE2014PM71CS Salix sp. 13/09/2014 Foxlease, Hampshire Erysiphe adunca 

OE2014PM72CS Rhododendron sp. 13/09/2014 Foxlease, Hampshire Erysiphe azaleae 

OE2014PM73CS Acer campestre 14/09/2014 Whiteknights Lake Sawadaea bicornis 

OE2014PM74CS Vitis vinifera 21/09/2014 Dereham, Norfolk Erysiphe necator 

OE2014PM75CS Cucurbita pepo 21/09/2014 Dereham, Norfolk Golovinomyces orontii 

OE2014PM76CS Heracleum sp. 21/09/2014 Dereham, Norfolk Erysiphe heraclei 

OE2014PM77CS Lamium album 21/09/2014 Dereham, Norfolk Neoerysiphe galeopsidis 

OE2014PM78CS Lamium purpureum 21/09/2014 Dereham, Norfolk Neoerysiphe galeopsidis 
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OE2014PM79CS Lupinus sp. 21/09/2014 Dereham, Norfolk Erysiphe intermedia 

OE2014PM80CS Senecio vulgaris 21/09/2014 Dereham, Norfolk Pm sp 

OE2014PM81CS Rosa gallica 21/09/2014 Dereham, Norfolk Pm sp 

OE2014PM82CS Acer campestre 21/09/2014 Dereham, Norfolk Sawadaea bicornis 

OE2014PM83CS Cornus sericea 21/09/2014 Dereham, Norfolk Erysiphe tortilis 

OE2014PM84CS Quercus robur 21/09/2014 Dereham, Norfolk Erysiphe alphitoides 

OE2014PM85CS Polygonum sp. 21/09/2014 Dereham, Norfolk Erysiphe polygoni 

OE2014PM86CS Prunus spinosa 21/09/2014 Dereham, Norfolk Podosphaera tridactyla 

OE2014PM87CS Aster amellus 21/09/2014 Dereham, Norfolk Golovinomyces asterum 

OE2014PM88CS Crataegus monogyna 21/09/2014 Dereham, Norfolk 
Podosphaera 
clandestina 

OE2014PM89CS Aquilegia vulgaris 21/09/2014 Dereham, Norfolk Erysiphe aquilegiae 

OE2014PM90CS Trifolium pratense 21/09/2014 Dereham, Norfolk Erysiphe trifoliorum 

OE2014PM91CS Origanum vulgare 21/09/2014 Dereham, Norfolk Pm sp 

OE2014PM92CS Hieracium sp. 21/09/2014 Dereham, Norfolk Podosphaera xanthii 

OE2014PM93CS Viburnum lantana 21/09/2014 Dereham, Norfolk Erysiphe hedwigii 

OE2014PM94CS Lamium album 21/09/2014 Martiott's Way, Norfolk Neoerysiphe galeopsidis 

OE2014PM95CS Quercus robur 21/09/2014 Martiott's Way, Norfolk Erysiphe alphitoides 

OE2014PM96CS Plantago major 21/09/2014 Martiott's Way, Norfolk Golovinomyces sordidus 

OE2014PM97CS Acer campestre 21/09/2014 Martiott's Way, Norfolk Sawadaea bicornis 

OE2014PM98CS Hieracium sp. 21/09/2014 Martiott's Way, Norfolk Podosphaera xanthii 

OE2014PM99CS Filipendula ulmaria 23/09/2014 JIC, UEA 
Podosphaera 
filipendulae 

OE2014PM100CS Plantago major 23/09/2014 JIC, UEA Pm sp 

OE2014PM101CS Plantago lanceolata 23/09/2014 JIC, UEA Podosphaera plantaginis 

OE2014PM102CS Heracleum sp. 23/09/2014 JIC, UEA Erysiphe heraclei 

OE2014PM103CS Quercus robur 23/09/2014 JIC, UEA Erysiphe alphitoides 

OE2014PM104CS Lactuca sp. 23/09/2014 JIC, UEA 
Golovinomyces 
cichoracearum 

OE2014PM105CS Vinca sp. 23/09/2014 Royal Holloway University, London Golovinomyces orontii 

OE2014PM106CS Aquilegia vulgaris 24/09/2014 Eastern Avenue, Reading Erysiphe aquilegiae 

OE2014PM107CS Aquilegia vulgaris 24/09/2014 Eastern Avenue, Reading Erysiphe aquilegiae 

OE2014PM108CS Convolvulus sp. 25/09/2014 Royal Holloway University, London Erysiphe convolvuli 

OE2014PM109 Ranunculus repens 26/08/2014 Harborne Bulding, University of Reading Erysiphe aquilegiae 

OE2014PM110CS Petunia sp. 26/08/2014 Luckmore Drive, Reading Euoidium longipes 

OE2014PM111CS Lamium album 30/09/2014 Newbury Neoerysiphe galeopsidis 

OE2014PM112CS Alliaria petiolata 30/09/2014 Newbury Erysiphe cruciferarum 

OE2014PM113CS Verbascum thapsus 30/09/2014 APD, University of Reading Golovinomyces verbasci 

OE2014PM114CS Plantago media 01/10/2014 APD, University of Reading Podosphaera plantaginis 

OE2014PM115CS Taraxacum officinale 01/10/2014 APD, University of Reading 
Podosphaera 
erigerontis-canadensis 

OE2014PM116CS Veronica persica 01/10/2014 APD, University of Reading Golovinomyces orontii 

OE2014PM117CS Senecio vulgaris 02/10/2014 
Experimental plots, University of 
Reading 

Golovinomyces fischeri 

OE2014PM118CS Senecio vulgaris 02/10/2014 
Experimental plots, University of 
Reading 

Golovinomyces fischeri 

OE2014PM119CS Marrubium vulgare 02/10/2014 Martiott's Way, Norfolk Neoerysiphe galeopsidis 

OE2014PM120CS Polygonum aviculare 02/10/2014 Dereham, Norfolk Erysiphe polygoni 

OE2014PM121CS Acer campestre 06/10/2014 Unviersity of Reading campus Sawadaea bicornis 



Appendices 

257 
 

OE2014PM122CS Heracleum sphondylium 06/10/2014 Unviersity of Reading campus Erysiphe heraclei 

OE2014PM123CS Plantago major 06/10/2014 Unviersity of Reading campus Pm sp 

OE2014PM124CS Acer pseudoplatanus 06/10/2014 East Tuddenham Sawadaea bicornis 

OE2014PM125CS Centaurea montana 06/10/2014 East Tuddenham 
Golovinomyces 
montagnei 

OE2014PM126CS Heracleum sphondylium 06/10/2014 Hockering Erysiphe heraclei 

OE2014PM127CS Artemisia sp. 06/10/2014 Hockering 
Golovinomyces 
artemisiae 

OE2014PM128CS Hypericum sp. 06/10/2014 Hockering Erysiphe hyperici 

OE2014PM129CS Trifolium campestre 06/10/2014 Hockering Erysiphe trifoliorum 

OE2014PM130CS Cirsium arvense 04/10/2014 Warwick services M40 
Golovinomyces 
montagnei 

OE2014PM131CS Ranunculus repens 04/10/2014 Warwick services M40 Erysiphe aquilegiae 

OE2014PM132CS Taraxacum officinale 04/10/2014 Leighton Buzzard, Bedfordshire 
Podosphaera 
erigerontis-canadensis 

OE2014PM133CS Senecio vulgaris 04/10/2014 Leighton Buzzard, Bedfordshire Golovinomyces fischeri 

OE2014PM134CS Sonchus asper 04/10/2014 Leighton Buzzard, Bedfordshire 
Golovinomyces 
sonchicola 

OE2014PM135CS Polygonum aviculare 04/10/2014 Leighton Buzzard, Bedfordshire Erysiphe polygoni 

OE2014PM136CS Lathyrus odoratus 12/10/2014 3 Princes Street, Norwich Erysiphe trifoliorum 

OE2014PM137CS Pisum sp. 18/10/2014 Burscough Erysiphe pisi 

OE2014PM138CS Pisum sp. 18/10/2014 Chorley, Lancashire Erysiphe pisi 

OE2014PM139CS Aquilegia vulgaris 18/10/2014 Lancashire Erysiphe aquilegiae 

OE2014PM140 Polygonum aviculare 21/10/2014 Dereham, Norfolk Erysiphe polygoni 

OE2014PM141CS Aquilegia vulgaris 18/10/2014 Yorkshire Erysiphe aquilegiae 

OE2014PM142CS Lamium amplexicaule 18/10/2014 Yorkshire Neoerysiphe galeopsidis 

OE2014PM143CS 
Solenostemon 
scutellarioides  

24/10/2014 RHS Wisley 
Golovinomyces 
biocellaris 

OE2014PM144CS Lathyrus odoratus 28/10/2014 Grove Road, Legihton Buzzard Erysiphe trifoliorum 

OE2014PM145CS Corylus avellana 29/10/2014 Northcourt Avenue, Reading Phyllactinia guttata 

OE2014PM146CS Ranunculus repens 29/10/2014 South Kesteven, Peterborough Erysiphe aquilegiae 

OE2014PM147CS Aquilegia vulgaris 29/10/2014 South Kesteven, Peterborough Erysiphe aquilegiae 

OE2014PM148CS Myosotis arvensis 29/10/2014 South Kesteven, Peterborough 
Golovinomyces 
cynoglossi 

OE2014PM149CS Plantago coronopus 29/10/2014 Dawlish, Devon Golovinomyces sordidus 

OE2014PM150CS Syringa sp. 29/10/2014 
West Deeping Churchyard, 
Peterborough 

Erysiphe syringae 

OE2014PM151CS Lamium album 02/11/2014 Hessle, East Yorkshire Neoerysiphe galeopsidis 

OE2014PM152CS Salix aurita 12/11/2014 Redlands Road, Reading Erysiphe adunca 

OE2014PM153CS Corylus avellana 12/11/2014 Tower Hill, London Phyllactinia guttata 

OE2014PM154CS Aesculus x carnea 12/11/2014 Pymmes Park, London Erysiphe flexuosa 

OE2014PM155CS Betula papyrifera 12/11/2014   Phyllactinia betulae 

OE2014PM156CS Betula pendula 16/11/2014 Swinely Forest Phyllactinia betulae 

OE2014PM157CS Catalpa speciosa 16/11/2014   Erysiphe elevata 

OE2014PM158CS Osteospermum jucundum 16/11/2014   
Golovinomyces 
cichoracearum 

OE2014PM159CS Veronica chamaedrys 16/11/2014   Golovinomyces orontii 

OE2014PM160CS Geranium x magnificum 16/11/2014   Neoerysiphe geranii 

OE2015PM1CS 
Wisteria brachybotrys 
'Murasaki-kapitan' 

01/08/2014 RHS Garden Hyde Hall Erysiphe alphitoides 

OE2015PM2CS 
Wisteria frutescens 
'Amethyst Falls' 

01/08/2014 RHS Wisley Erysiphe alphitoides 
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OE2015PM3CS Heuchera 'Caramel' 17/01/2015 RHS Wisley 
Podosphaera 
macrospora 

OE2015PM4CS Heuchera 'Galaxy' 17/01/2015 RHS Wisley 
Podosphaera 
macrospora 

OE2015PM5CS Lamium purpureum 14/01/2015 Sonning, Reading University Farm Neoerysiphe galeopsidis 

OE2015PM6CS Prunus laurocerasus 24/01/2015 South Tottenham, London Podosphaera tridactyla 

OE2015PM7CS 
Hedera algeriensis 'Gloire 
de Marengo' 

24/01/2015 South Tottenham, London   

OE2015PM8CS Viburnum tinus 24/01/2015 South Tottenham, London Erysiphe hedwigii 

OE2015PM9CS Verbascum thapsus 14/03/2015 Whiteknights campus Golovinomyces verbasci 

OE2015PM10CS Euphorbia peplus 22/03/2015 Maiden Erleigh School, Reading 
Podosphaera 
euphorbiae-helioscopiae 

OE2015PM11CS Mahonia aquifolium 16/03/2015 Northcourt Avenuce, Reading Erysiphe berberidis 

OE2015PM12CS Galium aparine 16/03/2015 Northcourt Avenuce, Reading Neoerysiphe galii 

OE2015PM13CS Malus domestica 30/04/2015 St. Albans Podosphaera leucotricha 

OE2015PM14CS Crataegus monogyna 30/04/2015 Widnes 
Podosphaera 
clandestina 

OE2015PM15CS Taraxacum officinale 04/05/2015 Hayle, Cornwall 
Podosphaera 
erigerontis-canadensis 

OE2015PM16CS Stachys arvensis 05/05/2015 Sonning Neoerysiphe galeopsidis 

OE2015PM17CS Lamium amplexicaule 05/05/2015 Sonning Neoerysiphe galeopsidis 

OE2015PM18CS Rosa banksiae 05/05/2015 Lucton, Leominster, Herefordshire Podosphaera pannosa 

OE2015PM19CS Acanthus spinosus 09/05/2015 Colchester Neoerysiphe galeopsidis 

OE2015PM20CS Plantagolanceolata 10/05/2015 Crown Place, Reading Golovinomyces sordidus 

OE2015PM21CS Lamium purpureum 10/05/2015 Sonning, Reading University Farm Neoerysiphe galeopsidis 

OE2015PM22CS Ballota nigra 10/05/2015 Sonning, Reading University Farm Neoerysiphe galeopsidis 

OE2015PM23CS Sonchus oleraceus 10/05/2015 Upper Readlands Road, Reading 
Golovinomyces 
sonchicola 

OE2015PM24CS Prunus laurocerasus 11/05/2015 Northcourt Avenuce, Reading Podosphaera pannosa 

OE2015PM25CS Taraxacum officinale 11/05/2015 Tickenor Drive, Finchampstead Neoerysiphe nevoi 

OE2015PM26CS Geum sp. 11/05/2015 Tickenor Drive, Finchampstead Podosphaera aphanis 

OE2015PM27CS Myosotis arvensis 11/05/2015 Tickenor Drive, Finchampstead 
Golovinomyces 
cynoglossi 

OE2015PM28CS Euonymus sp. 10/05/2015 Kingston Upon Thames Erysiphe euonymicola 

OE2015PM29CS Aquilegia vulgaris 16/05/2015 Chester Zoological Gardens Erysiphe aquilegiae 

OE2015PM30CS Lonicera periclymenum 26/05/2015 Newport, Saffron Walden Erysiphe lonicerae 

OE2015PM31CS Centaurea montana 26/05/2015 Newport, Saffron Walden 
Golovinomyces 
depressus 

OE2015PM32CS Pulmonaria sp. 26/05/2015 Newport, Saffron Walden 
Golovinomyces 
cynoglossi 

OE2015PM33CS Onosma sp. 26/05/2015 Newport, Saffron Walden 
Golovinomyces 
cynoglossi 

OE2015PM34CS Quercus robur 27/05/2015 Burghfield Common, Berkshire Erysiphe alphitoides 

OE2015PM35CS Geum urbanum 27/05/2015 Burghfield Common, Berkshire Podosphaera aphanis 

OE2015PM36CS Lonicera periclymenum 27/05/2015 Burghfield Common, Berkshire Erysiphe lonicerae 

OE2015PM37CS Epilobium parviflorium 27/05/2015 SBS, Whiteknights Podosphaera epilobii 

OE2015PM38CS Prunus laurocerasus 27/05/2015 South Croydon, Surrey Podosphaera tridactyla 

OE2015PM39CS Quercus robur 28/05/2015 APD, Whiteknights Campus Erysiphe alphitoides 

OE2015PM40CS Euonymus japonicus 28/05/2015 APD, Whiteknights Campus Erysiphe euonymicola 

OE2015PM41CS Euonymus japonicus 28/05/2015 APD, Whiteknights Campus Erysiphe euonymicola 

OE2015PM42CS Geum urbanum 22/05/2015 Runcorn, Cheshire Podosphaera aphanis 

OE2015PM43CS Silene dioica 25/05/2015 Woolton, Liverpool 
Golovinomyces 
cynoglossi 
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OE2015PM44CS Symphoricarpos albus 25/05/2015 Woolton, Liverpool Erysiphe symphoricarpi 

OE2015PM45CS Acanthus spinosus 25/05/2015 Woolton, Liverpool Neoerysiphe galeopsidis 

OE2015PM46CS Crataegus monogyna 25/04/2015 Woolton, Liverpool 
Podosphaera 
clandestina 

OE2015PM47CS Malus pumila 26/05/2015 Halebank, Widnes Podosphaera leucotricha 

OE2015PM48CS Rosa multiflora 26/05/2015 Halebank, Widnes Podosphaera pannosa 

OE2015PM49CS Geranium phaeum 01/06/2015 Elmfield Gardens, Newbury Podosphaera fugax 

OE2015PM50CS Pulmonaria sp. 01/06/2015 Elmfield Gardens, Newbury 
Golovinomyces 
cynoglossi 

OE2015PM51CS Lonicera sp. 02/06/2015 Allerton, Liverpool Erysiphe lonicerae 

OE2015PM52CS Acer campestre 03/06/2015 Allerton, Liverpool Sawadaea bicornis 

OE20153PM53CS Ribes sanguineum 04/06/2015 Allerton, Liverpool Podosphaera mors-uvae 

OE2015PM54CS Stachys byzantina 04/06/2015 Woolton, Liverpool Neoerysiphe galeopsidis 

OE2015PM55CS Acanthus mollis 07/06/2015 Briggswath, Whitby Neoerysiphe galeopsidis 

OE2015PM56CS Rosa  'Dorothy Perkins' 08/06/2015 Tiverton, Devon Podosphaera pannosa 

OE2015PM57CS Myosotis sp. 08/06/2015 Tickenor Drive, Finchampstead 
Golovinomyces 
cynoglossi 

OE2015PM58CS Geranium phaeum 08/06/2015 Elmfield Gardens, Newbury Podosphaera fugax 

OE2015PM59CS Pilosella aurantiaca 08/06/2015 Hayle, Cornwall 
Golovinomyces 
cichoracearum 

OE2015PM60CS Rosa sp. 08/06/2015 Tiverton, Devon Podosphaera pannosa 

OE2015PM61CS Euonymus japonicus 07/06/2015 Crosby, Merseyside Erysiphe euonymicola 

OE2015PM62CS Geum urbanum 07/06/2015 Crosby, Merseyside Podosphaera aphanis 

OE2015PM63CS Crataegus monogyna 07/06/2015 Crosby, Merseyside 
Podosphaera 
clandestina 

OE2015PM64CS Malus sylvestris 07/06/2015 Crosby, Merseyside Podosphaera leucotricha 

OE2015PM65CS Sisymbrium officinale 08/06/2015 Runcorn, Cheshire Erysiphe cruciferarum 

OE2015PM66CS Unknown 08/06/2015 Liverpool, Merseyside Neoerysiphe galeopsidis 

OE2015PM67CS Potentilla litoralis 11/06/2015   Podosphaera aphanis 

OE2015PM68CS 
Salvia officinalis 
'Purpurascens' 

11/06/2015 Knaphill, Woking 
Golovinomyces 
biocellaris 

OE2015PM69CS Myosotis arvensis 11/05/2015 Tickenor Drive, Finchampstead 
Golovinomyces 
cynoglossi 

OE2015PM70CS Taraxacum officinale 13/06/2015 Liverpool, Merseyside 
Podosphaera 
erigerontis-canadensis 

OE2015PM71CS Taraxacum officinale 13/06/2015 Liverpool, Merseyside 
Podosphaera 
erigerontis-canadensis 

OE2015PM72CS Prunus laurocerasus 13/06/2015 Liverpool, Merseyside Podosphaera tridactyla 

OE2015PM73CS Plantago major 14/06/2015 St. Helens, Merseyside Not PM 

OE2015PM74CS Ribes sanguineum 14/06/2015 St. Helens, Merseyside Podosphaera mors-uvae 

OE2015PM75CS Rubus fruticosus 14/06/2015 St. Helens, Merseyside Podosphaera aphanis 

OE2015PM76CS Epilobium hirsutum 14/06/2015 St. Helens, Merseyside Podosphaera epilobii 

OE2015PM77CS Unknown 14/06/2015 St. Helens, Merseyside Podosphaera leucotricha 

OE2015PM78CS Geranium phaeum 14/06/2015 St. Helens, Merseyside Podosphaera fugax 

OE2015PM79CS Quercus robur 14/06/2015 St. Helens, Merseyside Erysiphe alphitoides 

OE2015PM80CS Quercus robur 15/06/2015 Runcorn, Cheshire Erysiphe alphitoides 

OE2015PM81CS Crataegus monogyna 15/06/2015 Runcorn, Cheshire 
Podosphaera 
clandestina 

OE2015PM82CS Quercus robur 15/06/2015 Runcorn, Cheshire Erysiphe alphitoides 

OE2015PM83 Malus domestica 19/06/2015 Harris Garden, University of Reading Podosphaera leucotricha 

OE2015PM84CS Mespilus germanica 19/06/2015 Thorpe Marsh, Norwich Podosphaera leucotricha 

OE2015PM85CS Filipendula ulmaria 19/06/2015 Thorpe Marsh, Norwich Podosphaera 
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filipendulae 

OE2015PM86CS Poa trivialis 19/06/2015 Colwich Crickworks, Staffordshire Blumeria graminis 

OE2015PM87CS Rosa sp. 21/06/2015 Elstead, near Guildford Podosphaera pannosa 

OE2015PM88CS Centaurea montana 21/06/2015 Allonby, Cumbria Not PM 

OE2015PM89CS Myosotis laxa 21/06/2015 Silloth, Cumbria 
Golovinomyces 
cynoglossi 

OE2015PM90CS Ribes sanguineum 21/06/2015 Maryport, Cumbria Podosphaera mors-uvae 

OE2015PM91CS Vicia sativa 21/06/2015 Allonby, Cumbria Erysiphe sp. 

OE2015PM92CS Euonymus japonicus 22/06/2015 Maryport, Cumbria Erysiphe euonymicola 

OE2015PM93CS Heracleum sphondylium 22/06/2015 Maryport, Cumbria Not PM 

OE2015PM94CS Myosotis arvensis 22/06/2015 Maryport, Cumbria 
Golovinomyces 
cynoglossi 

OE2015PM95CS Acer pseudoplatanus 22/06/2015 Maryport, Cumbria Sawadaea bicornis 

OE2015PM96CS Acer pseudoplatanus 22/06/2015 Maryport, Cumbria Sawadaea bicornis 

OE2015PM97CS Spiraea sp. 19/06/2015 Cabra, Ireland Podosphaera spiraeae 

OE2015PM98CS Geum urbanum 24/06/2015 Woodford Gree, Essex Podosphaera aphanis 

OE2015PM99CS 
Berberis thunbergii 
atropurpurea 

24/06/2014 Silloth, Cumbria Erysiphe berberidis 

OE2015PM100CS Acer pseudoplatanus 24/06/2014 Crosscanonby, Cumbria Sawadaea bicornis 

OE2015PM101CS Filipendula ulmaria 24/06/2014 Crosscanonby, Cumbria 
Podosphaera 
filipendulae 

OE2015PM102CS Ribes sanguineum 26/06/2015 Workington, Cumbira Podosphaera mors-uvae 

OE2015PM103CS Acer pseudoplatanus 26/06/2015 Workington, Cumbira Sawadaea bicornis 

OE2015PM104CS Filipendula ulmaria 27/06/2015 Maryport, Cumbria 
Podosphaera 
filipendulae 

OE2015PM105CS Holcus lanatus 27/06/2015 Maryport, Cumbria Blumeria graminis 

OE2015PM106CS Raphanus maritiums 27/06/2015 Maryport, Cumbria Not PM 

OE2015PM107CS Achillea millefolium 27/06/2015 Maryport, Cumbria Not PM 

OE2015PM108CS Chenopdoium vulvaria 27/06/2015 Maryport, Cumbria Not PM 

OE2015PM109CS Filipendula ulmaria 28/06/2015 Cockermouth, Cumbria 
Podosphaera 
filipendulae 

OE2015PM110CS Acer pseudoplatanus 28/06/2015 Cockermouth, Cumbria Sawadaea bicornis 

OE2015PM111CS Sonchus arvensis 28/06/2015 Cockermouth, Cumbria Neoerysiphe nevoi 

OE2015PM112CS Phleum sp. 28/06/2015 Cockermouth, Cumbria Blumeria graminis 

OE2015PM113CS Catalpa bignonioides 30/06/2015 Harris Garden, University of Reading Erysiphe catalpae 

OE2015PM114CS Anthriscus sylvestris 27/06/2015 Maryport, Cumbria Erysiphe heraclei 

OE2015PM115CS Heracleum sphondylium 27/06/2015 Maryport, Cumbria Not PM 

OE2015PM116CS Crataegus monogyna 28/06/2015 Cockermouth, Cumbria 
Podosphaera 
clandestina 

OE2015PM117CS Vicia sp. 29/06/2015 Mawbray, Cumbria Not PM 

OE2015PM118CS Senecio jacobaea 29/06/2015 Mawbray, Cumbria Not PM 

OE2015PM119CS Crataegus monogyna 29/06/2015 Mawbray, Cumbria 
Podosphaera 
clandestina 

OE2015PM120CS Senecio jacobaea 29/06/2015 Allonby, Cumbria Not PM 

OE2015PM121CS Vitis vinifera 30/06/2015 Adams Road, Cambridge Erysiphe necator 

OE2015PM122CS Plantago lanceolata 30/06/2015 Whitehaven, Cumbria Golovinomyces sordidus 

OE2015PM123CS Centaurea nigra 01/07/2015 Siddick, Cumbria Not PM 

OE2015PM124CS Filipendula ulmaria 01/07/2015 Siddick, Cumbria 
Podosphaera 
filipendulae 

OE2015PM125CS Vicia cracca 01/07/2015 Siddick, Cumbria Not PM 

OE2015PM126CS Cerastium fontanum 01/07/2015 Siddick, Cumbria Not PM 
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OE2015PM127CS Crataegus monogyna 01/07/2015 Siddick, Cumbria 
Podosphaera 
clandestina 

OE2015PM128CS Malus pumila 01/07/2015 Siddick, Cumbria Podosphaera leucotricha 

OE2015PM129CS Vicia cracca 01/07/2015 Siddick, Cumbria 
Podosphaera 
clandestina 

OE2015PM130CS Plantago major 01/07/2015 Siddick, Cumbria Pm sp 

OE2015PM131CS Silene dioica 02/07/2015 Siddick, Cumbria Not PM 

OE2015PM132CS Delphinium sp. 02/07/2015 Farnborough Erysiphe aquilegiae 

OE2015PM133CS Rosa  'Dorothy Perkins' 03/07/2015 Tiverton, Devon Podosphaera pannosa 

OE2015PM134CS Symphytum sp. 07/07/2015 Wigston, Leicester 
Golovinomyces 
cynoglossi 

OE2015PM135CS Dipsacus sp. 07/07/2015 Wigston, Leicester 
Podosphaera 
dipsacearum 

OE2015PM136CS Prunus laurocerasus 06/07/2015 South Tottenham, London Podosphaera tridactyla 

OE2015PM137CS Artemisia vulgaris 03/07/2015   Not PM 

OE2015PM138CS Heracleum sphondylium 03/07/2015 Maidstone Erysiphe heraclei 

OE2015PM139CS Amelanchier lamarckii 05/07/2015 Harris Garden 
Podosphaera 
amelanchieris 

OE2015PM140CS Aquilegia  sp. 05/07/2015 Chester Zoological Gardens Erysiphe aquilegiae 

OE2015PM141CS Lonicera sp. 05/07/2015 Newport, Saffron Walden Erysiphe lonicerae 

OE2015PM142CS Lupinus sp. 05/07/2015 Dereham, Norfolk Erysiphe intermedia 

OE2015PM143CS Centaurea montana 05/07/2015 Newport, Saffron Walden 
Golovinomyces 
depressus 

OE2015PM144CS Delphinium sp. 05/07/2015 Farnborough Erysiphe aquilegiae 

OE2015PM145CS Pulmonaria sp. 06/07/2015 Newport, Saffron Walden 
Golovinomyces 
cynoglossi 

OE2015PM146CS Fragaria x ananassa 07/07/2015 South Tottenham, London Podosphaera aphanis 

OE2015PM147CS Rosa sp. 07/07/2015 Tiverton, Devon Podosphaera pannosa 

OE2015PM148CS Aquilegia sp. 07/07/2015 Chester Zoological Gardens Erysiphe aquilegiae 

OE2015PM149CS Lychnis coronaria 07/07/2015   Erysiphe buhrii 

OE2015PM150CS Rosa sp. 07/07/2015 Tiverton, Devon Podosphaera pannosa 

OE2015PM151CS Aster nova-belgii 07/07/2015 Dereham, Norfolk 
Golovinomyces asterum 
var. asterum 

OE2015PM152CS Cucurbita pepo 07/07/2015 Farnborough Golovinomyces orontii 

OE2015PM153CS Phlox paniculata 07/07/2015 Harris Garden 
Golovinomyces 
magnicellulatus var. 
magnicellulatus 

OE2015PM154CS Acer sp. 11/07/2015 Worcester Park, Kingston Sawadaea bicornis 

OE2015PM155CS Plantago major 11/07/2015 Liverpool, Merseyside Golovinomyces sordidus 

OE2015PM156CS Taraxacum officinale 11/07/2015 Liverpool, Merseyside 
Podosphaera 
erigerontis-canadensis 

OE2015PM157CS Aquilegia sp. 12/07/2015 Liverpool, Merseyside Erysiphe aquilegiae 

OE2015PM158CS Acer pseudoplatanus 12/07/2015 Widnes, Halton Sawadaea bicornis 

OE2015PM159CS Arctium minus 12/07/2015 Widnes, Halton 
Golovinomyces 
depressus 

OE2015PM160CS Taraxacum officinale 13/07/2015 Runcorn, Cheshire 
Golovinomyces 
cichoracearum 

OE2015PM161CS Quercus robur 13/07/2015 Runcorn, Cheshire Erysiphe alphitoides 

OE2015PM162CS Aquilegia sp. 13/07/2015 Streatham Hill, London Erysiphe aquilegiae 

OE2015PM163CS Arctium minus 14/07/2015 Hundleton, Pembroke Not PM 

OE2015PM164CS Heracleum sphondylium 14/07/2015 Hundleton, Pembroke Erysiphe heraclei 

OE2015PM165CS Quercus robur 14/07/2015 Hundleton, Pembroke Erysiphe alphitoides 

OE2015PM166CS Lotus pedunculatus 14/07/2015 Hundleton, Pembroke 
Podosphaera 
clandestina 
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OE2015PM167CS Lycium barbarum 14/07/2015 Wigston, Leicester 
Arthrocladiella 
mougeotii 

OE2015PM168CS 
Rosa 'Paul's Himalayan 
Musk' 

14/07/2015 Cornwall Podosphaera pannosa 

OE2015PM169CS Fragaria x ananassa 14/07/2015 Liverpool, Merseyside Podosphaera aphanis 

OE2015PM170CS Stachys sylvatica 14/07/2015 Liverpool, Merseyside Neoerysiphe galeopsidis 

OE2015PM171CS Acer pseudoplatanus 14/07/2015 St. Helens, Merseyside Sawadaea bicornis 

OE2015PM172CS Ranunuculus acris 16/07/2015 Liverpool, Merseyside Erysiphe aquilegiae 

OE2015PM173CS Quercus robur 16/07/2015 Liverpool, Merseyside Erysiphe alphitoides 

OE2015PM174CS Cirsium arvense 16/07/2015 Liverpool, Merseyside Not PM 

OE2015PM175CS Anthriscus sylvestris 16/07/2015 Liverpool, Merseyside Erysiphe heraclei 

OE2015PM176CS Acer pseudoplatanus 16/07/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PM177CS Filipendula ulmaria 16/07/2015 Blyth, Northumberland 
Podosphaera 
filipendulae 

OE2015PM178CS Heracleum sphondylium 19/07/2015 Hundleton, Pembroke Erysiphe heraclei 

OE2015PM179CS Plantago lanceolata 20/07/2015 Crown Place, Reading Podosphaera plantaginis 

OE2015PM180CS Crataegus monogyna 20/07/2015 Widnes 
Podosphaera 
clandestina 

OE2015PM181CS Acer campestre 20/07/2015 Allerton, Liverpool Sawadaea bicornis 

OE2015PM182CS Artemisia vulgaris 20/07/2015   
Golovinomyces 
artemisiae 

OE2015PM183CS Quercus robur 20/07/2015 Hundleton, Pembroke Erysiphe alphitoides 

OE2015PM184CS Eupatorium cannabinum 20/07/2015   
Golovinomyces 
circumfusus 

OE2015PM185CS Prunus spinosa 20/07/2015 Liverpool, Merseyside Erysiphe prunastri 

OE2015PM186CS Symphoricarpos albus 20/07/2015 Woolton, Liverpool Erysiphe symphoricarpi 

OE2015PM187CS Rosa canina 20/07/2015 Cornwall Podosphaera pannosa 

OE2015PM188CS Acer pseudoplatanus 20/07/2015 St. Helens, Merseyside Sawadaea bicornis 

OE2015PM189CS Acer pseudoplatanus 20/07/2015 St. Helens, Merseyside Sawadaea bicornis 

OE2015PM190CS Ranunuculus repens 20/07/2015 Liverpool, Merseyside Erysiphe aquilegiae 

OE2015PM191CS Euonymus sp. 21/07/2015 Preston Erysiphe euonymicola 

OE2015PM192CS Crataegus monogyna 21/07/2015 Liverpool, Merseyside 
Podosphaera 
clandestina 

OE2015PM193CS Amelanchier lamarckii 22/07/2015 Runcorn, Cheshire 
Podosphaera 
amelanchieris 

OE2015PM194CS Silene dioica 22/07/2015 Runcorn, Cheshire Erysiphe buhrii 

OE2015PM195CS Plantago lanceolata 23/07/2015 Angelsey, North Wales Golovinomyces sordidus 

OE2015PM196CS Silene dioica 23/07/2015 Angelsey, North Wales Erysiphe buhrii 

OE2015PM197CS Crataegus monogyna 23/07/2015 Angelsey, North Wales 
Podosphaera 
clandestina 

OE2015PM198CS Platanus x hispanica 25/07/2015 Victoria Tower Gardens, London Erysiphe platani 

OE2015PM199CS Epilobium parviflorium 27/07/2015 Shinfield, Reading Podosphaera epilobi 

OE2015PMCS200 Viola tricolor 29/07/2015 Sidcup, London Golovinomyces orontii 

OE2015PMCS201 Aquilegia vulgaris 29/07/2015 Sidcup, London Erysiphe aquilegiae 

OE2015PMCS202 Lonicera japonica 'Halliana' 29/07/2015 Sidcup, London Erysiphe lonicerae 

OE2015PMCS203 Centaurea montana 05/08/2015 Boston Not PM 

OE2015PMCS204 Lapsana communis 05/08/2015 Allerton Allotments, Liverpool Neoerysiphe nevoi 

OE2015PMCS205 Crataegus monogyna 06/08/2015 Old Hall, Warrington 
Podosphaera 
clandestina 

OE2015PMCS206 Viburnum opulus 06/08/2015 Leigh, Lancs. Erysiphe hedwigii 

OE2015PMCS207 Filipendula ulmaria 06/08/2015 Leigh, Lancs. 
Podosphaera 
filipendulae 
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OE2015PMCS208 Prunus spinosa 06/08/2015 Leigh, Lancs. Erysiphe prunastri 

OE2015PMCS209 Quercus robur 06/08/2015 Leigh, Lancs. Sawadaea bicornis 

OE2015PMCS210 Acer pseudoplatanus 06/08/2015 Leigh, Lancs. Sawadaea bicornis 

OE2015PMCS211 Anthriscus sylvestris 09/08/2015 Stockport, Cheshire Erysiphe heraclei 

OE2015PMCS212 Alliaria petiolata 09/08/2015 Stockport, Cheshire Erysiphe cruciferarum 

OE2015PMCS213 Quercus robur 09/08/2015 Stockport, Cheshire Erysiphe alphitoides 

OE2015PMCS214 Circaea lutetiana 09/08/2015 Stockport, Cheshire Erysiphe circaeae 

OE2015PMCS215 Crataegus monogyna 09/08/2015 Stockport, Cheshire 
Podosphaera 
clandestina 

OE2015PMCS216 Rosa canina 09/08/2015 Stockport, Cheshire Podosphaera pannosa 

OE2015PMCS217 Geranium pratense 09/08/2015 Stockport, Cheshire Neoerysiphe geranii 

OE2015PMCS218 Brassica sp. 09/08/2015 Stockport, Cheshire Erysiphe cruciferarum 

OE2015PMCS219 Acer pseudoplatanus 09/08/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS220 Taraxacum officinale 09/08/2015 Liverpool, Merseyside 
Podosphaera 
erigerontis-canadensis 

OE2015PMCS221 Acer pseudoplatanus 09/08/2015 Stockport, Cheshire Sawadaea bicornis 

OE2015PMCS222 Heracleum sphondylium 09/08/2015 Stockport, Cheshire Erysiphe heraclei 

OE2015PMCS223 Epilobium hirsutum 09/08/2015 Stockport, Cheshire Podosphaera epilobi 

OE2015PMCS224 Plantago major 09/08/2015 Liverpool, Merseyside Golovinomyces sordidus 

OE2015PMCS225 Sonchus oleraceus 09/08/2015 Stockport, Cheshire 
Golovinomyces 
sonchicola 

OE2015PMCS226 Symphytum xuplandicum 10/08/2015 Liverpool, Merseyside 
Golovinomyces 
cynoglossi 

OE2015PMCS227 Pilosella aurantiaca 10/08/2015 Liverpool, Merseyside 
Golovinomyces 
cichoracearum 

OE2015PMCS228 Aquilegia sp. 10/08/2015 Liverpool, Merseyside Erysiphe aquilegiae 

OE2015PMCS229 Lycium barbarum 11/08/2015 Liverpool, Merseyside 
Arthrocladiella 
mougeotii 

OE2015PMCS230 Malus pumila 11/08/2015 Liverpool, Merseyside Podosphaera leucotricha 

OE2015PMCS231 Trifolium pratense 11/08/2015 Liverpool, Merseyside Erysiphe trifoliorum 

OE2015PMCS232 Anthyllis vulneria 11/08/2015 Liverpool, Merseyside Erysiphe trifoliorum 

OE2015PMCS233 Polygonum aviculare 11/08/2015 Liverpool, Merseyside Erysiphe polygoni 

OE2015PMCS234 Acer pseudoplatanus 11/08/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS235 Hypericum sp. 12/08/2015 Liverpool, Merseyside Erysiphe hyperici 

OE2015PMCS236 Brassica sp. 12/08/2015 Liverpool, Merseyside Erysiphe cruciferarum 

OE2015PMCS237 Euonymus japonicus 12/08/2015 Liverpool, Merseyside Erysiphe euonymicola 

OE2015PMCS238 Geum urbanum 12/08/2015 Liverpool, Merseyside Podosphaera aphanis 

OE2015PMCS239 Acer pseudoplatanus 12/08/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS240 Aesculus indica 12/08/2015 Liverpool, Merseyside Erysiphe flexuosa 

OE2015PMCS241 Acer pseudoplatanus 12/08/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS242 Heracleum sphondylium 12/08/2015 Liverpool, Merseyside Erysiphe heraclei 

OE2015PMCS243 Filipendula ulmaria 12/08/2015 Liverpool, Merseyside 
Podosphaera 
filipendulae 

OE2015PMCS244 Epilobium hirsutum 12/08/2015 Liverpool, Merseyside Podosphaera epilobi 

OE2015PMCS245 Unknown 12/08/2015 Liverpool, Merseyside   

OE2015PMCS246 Acer  sp. 13/08/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS247 Acer  sp. 13/08/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS248 Quercus robur 16/08/2015 Edgbarrow Woods Erysiphe alphitoides 

OE2015PMCS249 Plantago major 16/08/2015 Edgbarrow Woods 
Erysiphe cruciferarum & 
Golovinomyces sordidus 
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OE2015PMCS250 Sisymbrium officinale 16/08/2015 Edgbarrow Woods Erysiphe cruciferarum 

OE2015PMCS251 Arctium minus 17/08/2015 Fairfield Road, Widnes 
Golovinomyces 
depressus 

OE2015PMCS252 Brassica sp. 17/08/2015 Fairfield Road, Widnes Erysiphe cruciferarum 

OE2015PMCS253 Plantago major 17/08/2015 Fairfield Road, Widnes Golovinomyces sordidus 

OE2015PMCS254 Aquilegia sp. 17/08/2015 Fairfield Road, Widnes Erysiphe aquilegiae 

OE2015PMCS255 Crataegus monogyna 17/08/2015 Fairfield Road, Widnes 
Podosphaera 
clandestina 

OE2015PMCS256 Euonymus japonicus 17/08/2015 Fairfield Road, Widnes Erysiphe euonymicola 

OE2015PMCS257 Amelanchier lamarckii 17/08/2015 Fairfield Road, Widnes 
Podosphaera 
amelanchieris 

OE2015PMCS258 Arctium minus 17/08/2015 Fairfield Road, Widnes 
Golovinomyces 
depressus 

OE2015PMCS259 Lathyrus odoratus 17/08/2015 Liverpool, Merseyside Erysiphe trifoliorum 

OE2015PMCS260 Heracleum sphondylium 17/08/2015 Fairfield Road, Widnes Erysiphe heraclei 

OE2015PMCS261 Acer pseudoplatanus 17/08/2015 Fairfield Road, Widnes Sawadaea bicornis 

OE2015PMCS262 Sonchus oleraceus 17/08/2015 Fairfield Road, Widnes 
Golovinomyces 
cichoracearum 

OE2015PMCS263 Vitis vinifera 18/08/2015 Sherfield Drive, Reading Erysiphe necator 

OE2015PMCS264 Platanus x acerifolia 10/08/2015 Aylesbury Erysiphe platani 

OE2015PMCS265 Melilotus altissimus 15/08/2015 Marsworth Erysiphe trifoliorum 

OE2015PMCS266 Trifolium pratense 16/08/2015 Slough Erysiphe trifoliorum 

OE2015PMCS267 Monarda didyma 20/08/2015 Chilton, Didcot 
Golovinomyces 
biocellaris 

OE2015PMCS268 Catalpa bignonioides 01/09/2015 Campus Central, University of Reading Erysiphe elevata 

OE2015PMCS269 Matricaria discoidea 06/09/2015 Wilderness Road, Reading Podosphaera fusca 

OE2015PMCS270 Aquilegia vulgaris 07/09/2015 Harris Garden, University of Reading Erysiphe aquilegiae 

OE2015PMCS271 Geranium phaeum 07/09/2015 Harris Garden, University of Reading Neoerysiphe geranii 

OE2015PMCS272 Phlox paniculata 07/09/2015 Harris Garden, University of Reading 
Golovinomyces 
magnicellulatus var. 
magnicellulatus 

OE2015PMCS273 Malus domestica 07/09/2015 Harris Garden, University of Reading Podosphaera leucotricha 

OE2015PMCS274 Stachys byzantina 07/09/2015 Harris Garden, University of Reading Neoerysiphe galeopsidis 

OE2015PMCS275 Quercus robur 07/08/2015 Gran Canaria Erysiphe alphitoides 

OE2015PMCS276 
Berberis thunbergii 
atropurpurea 

20/08/2015 Parkfield, Buckinghamshire Erysiphe berberidis 

OE2015PMCS277 Euonymus sp. 20/08/2015 Parkfield, Buckinghamshire Erysiphe euonymicola 

OE2015PMCS278 Quercus robur 07/09/2015 Liverpool, Merseyside Erysiphe alphitoides 

OE2015PMCS279 Epilobium hirsutum 07/09/2015 Liverpool, Merseyside 
Golovinomyces 
magnicellulatus 

OE2015PMCS280 Aesculus hippocastanum 07/09/2015 Liverpool, Merseyside Erysiphe flexuosa 

OE2015PMCS281 Lactuca muralis 07/09/2015 Liverpool, Merseyside 
Golovinomyces 
cichoracearum 

OE2015PMCS282 Heracleum sphondylium 07/09/2015 Liverpool, Merseyside Erysiphe heraclei 

OE2015PMCS283 Verbascum sp. 07/09/2015 Liverpool, Merseyside Golovinomyces verbasci 

OE2015PMCS284 Acer pseudoplatanus 07/09/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS285 Solidago canadensis 07/09/2015 Liverpool, Merseyside 
Golovinomyces asterum 
var. solidaginis 

OE2015PMCS286 Unknown 07/09/2015 Liverpool, Merseyside Podosphaera fusca 

OE2015PMCS287 Epilobium ciliatum 08/09/2015 Colney Woods Burial Ground, Norfolk Podosphaera epilobii 

OE2015PMCS288 Quercus sp. 08/09/2015 
Thickthorn Roundabout, Norwich, 
Nofolk 

Erysiphe alphitoides 

OE2015PMCS289 Humulus lupulus 09/09/2015 Thurlton, Norfolk Podosphaera macularis 
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OE2015PMCS290 Geum urbanum 09/09/2015 Thurlton, Norfolk Podosphaera aphanis 

OE2015PMCS291 Acer sp. 10/09/2015 Vauxhall Drive, Woodley Sawadaea tulasnei 

OE2015PMCS292 Taraxacum officinale 11/09/2015 
Experimental plots, University of 
Reading 

Podosphaera 
erigerontis-canadensis 

OE2015PMCS293 Myosotis arvensis 11/09/2015 
Experimental plots, University of 
Reading 

Golovinomyces 
cynoglossi 

OE2015PMCS294 Lamium sp. 11/09/2015 
Experimental plots, University of 
Reading 

Neoerysiphe galeopsidis 

OE2015PMCS295 Mahonia aquifolium 11/09/2015 
Experimental plots, University of 
Reading 

Erysiphe beberidis 

OE2015PMCS296 Trifolium pratense 11/09/2015 
Experimental plots, University of 
Reading 

Erysiphe trifoliorum 

OE2015PMCS297 Lupinus sp. 12/09/2015 Dereham, Norfolk Erysiphe intermedia 

OE2015PMCS298 Lathyrus odoratus 13/09/2015 Bramcote, Nottingham Erysiphe trifoliorum 

OE2015PMCS299 Trifolium campestre 13/09/2015 Everton, Liverpool, Merseyside Erysiphe trifoliorum 

OE2015PMCS300 Plantago lanceolata 13/09/2015 Everton, Liverpool, Merseyside Podosphaera plantaginis 

OE2015PMCS301 Quercus cerris 16/09/2015 St. Helens, Merseyside Erysiphe alphitoides 

OE2015PMCS302 Acer sp. 18/09/2015 Liverpool, Merseyside Sawadaea bicornis 

OE2015PMCS303 Geranium sp. 20/09/2015 Pennant, Credigion Neoerysiphe geranii 

OE2015PMCS304 Trifolium dubium 20/09/2015 Pennant, Credigion Erysiphe trifoliorum 

OE2015PMCS305 Myosotis arvensis 20/09/2015 Pennant, Credigion 
Golovinomyces 
cynoglossi 

OE2015PMCS306 Mentha sp. 20/09/2015 Pennant, Credigion 
Golovinomyces 
biocellatus 

OE2015PMCS307 Cucurbita pepo 24/09/2015 Eden Project, Cornwall Golovinomyces orontii 

OE2015PMCS308 Cosmos sp. 24/09/2015 Eden Project, Cornwall 
Golovinomyces 
cichoracearum 

OE2015PMCS309 Lamium sp. 25/09/2015 
Experimental plots, University of 
Reading 

Neoerysiphe galeopsidis 

OE2015PMCS310 Berberis sp. 25/09/2015 Chestlion Farm, Clanfield Erysiphe berberidis 

OE2015PMCS311 Populus sp. 25/09/2015 Botley Wood, Hampshire Erysiphe adunca 

OE2015PMCS312 Taraxacum officinale 04/10/2015 Barkham, Wokingham 
Podosphaera 
erigerontis-canadensis 

OE2015PMCS313 Aquilegia sp. 04/10/2015 Barkham, Wokingham Erysiphe aquilegiae 

OE2015PMCS314 Euphorbia peplus 04/10/2015 Barkham, Wokingham 
Podosphaera 
euphorbiae-helioscopiae 

OE2015PMCS315 
Wisteria frutescens 
'Amethyst Falls' 

08/10/2015 Addington Road, Reading Erysiphe alphitoides 

OE2015PMCS316 Crataegus monogyna 08/10/2015 Whiteknights Lake, Reading 
Podosphaera 
clandestina 

OE2015PMCS317 Taraxacum officinale 08/10/2015 
Harborne Building, University of 
Reading 

Podosphaera 
erigerontis-canadensis 

OE2015PMCS318 Delphinium sp. 08/10/2015 Harris Garden, University of Reading Neoerysiphe geranii 

OE2015PMCS319 Taraxacum officinale 08/10/2015 Whiteknights Lake, Reading 
Podosphaera 
erigerontis-canadensis 

OE2015PMCS320 Geranium sp. 08/10/2015 
Harborne Building, University of 
Reading 

Podosphaera fugax 

OE2015PMCS321 Taraxacum officinale 08/10/2015 Whiteknights Lake, Reading 
Podosphaera 
erigerontis-canadensis 

OE2015PMCS322 Rosa canina 08/10/2015 Whiteknights Lake, Reading Podosphaera pannosa 

OE2015PMCS323 Trifolium pratense 08/10/2015 Whiteknights Lake, Reading Erysiphe trifoliorum 

OE2015PMCS324 Heracleum sphondylium 08/10/2015 Whiteknights Lake, Reading Erysiphe heraclei 

OE2015PMCS325 Rosa canina 07/10/2015 Llandover, Carmarthenshire Podosphaera pannosa 

OE2015PMCS326 Tellima grandiflora 01/06/2011 
Kew, Royal Botanic Gardens, 
Rhododendron Dell, Surrey 

Podosphaera 
macrospora 

OE2015PMCS327 Tellima grandiflora 20/06/2011 
Kew, Royal Botanic Gardens, Compt. 
323, Surrey 

Podosphaera 
macrospora 

OE2015PMCS328 Tellima grandiflora 02/09/2011 Glasbury, Lower Penylan, Breconshire 
Podosphaera 
macrospora 
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OE2015PMCS329 Tellima grandiflora 23/07/2013 Brandon Wood, Warwickshire 
Podosphaera 
macrospora 

OE2015PMCS330 
Tellima grandiflora 
'purpurea' 

12/08/2013 
Kew, Royal Botanic Gardens, Cambrigde 
Cottage, Surrey 

Podosphaera 
macrospora 

OE2015PMCS331 Fraxinus excelsior 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Phyllactinia fraxini 

OE2015PMCS332 Salix aurita 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe adunca 

OE2015PMCS333 Acer campestre 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Sawadaea bicornis 

OE2015PMCS334 Plantago lanceolata 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Podosphaera plantaginis 

OE2015PMCS335 Symphoricarpos albus 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe symphoricarpi 

OE2015PMCS336 Aquilegia vulgaris 25/10/2015 Woolton, Liverpool Erysiphe aquilegiae 

OE2015PMCS337 Quercus robur 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe alphitoides 

OE2015PMCS338 Populus sp. 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe adunca 

OE2015PMCS339 Prunus spinosa 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Podosphaera tridactyla 

OE2015PMCS340 Plantago major 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Golovinomyces sordidus 

OE2015PMCS341 Taraxacum officinale 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Podosphaera 
erigerontis-canadensis 

OE2015PMCS342 Quercus cerris 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe alphitoides 

OE2015PMCS343 Acer pseudoplatanus 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Sawadaea bicornis 

OE2015PMCS344 Taraxacum officinale 25/10/2015 Woolton, Liverpool 
Podosphaera 
erigerontis-canadensis 

OE2015PMCS345 Symphytum officinale 25/10/2015 Woolton, Liverpool 
Golovinomyces 
cynoglossi 

OE2015PMCS346 Crataegus monogyna 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Podosphaera 
clandestina 

OE2015PMCS347 Pilosella aurantiaca 25/10/2015 Woolton, Liverpool 
Golovinomyces 
cichoracearum 

OE2015PMCS348 Rosa canina 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe simulans 

OE2015PMCS349 Stachys sylvatica 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Neoerysiphe galeopsidis 

OE2015PMCS350 Urtica dioica 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe urticae 

OE2015PMCS351 Plantago major 25/10/2015 Woolton, Liverpool Golovinomyces sordidus 

OE2015PMCS352 Artemisia vulgaris 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Golovinomyces 
artemisiae 

OE2015PMCS353 Ranunuculus repens 25/10/2015 
Spile Island, Lower Church Street, 
Widnes 

Erysiphe aquilegiae var. 
ranunculi 

OE2016PMCS1 Heuchera 'Caramel' 07/03/2016 RHS Wisley 
Podosphaera 
macrospora 

OE2016PMCS2 Verbena bonariensis 27/03/2016 Stratford, London Podosphaera sp. 

OE2016PMCS3 Verbena bonariensis 27/03/2016 Stratford, London Pm sp 

OE2016PMCS4 Geranium sp. 17/05/2016 Wilderness Road, Reading Podosphaera fugax 

OE2016PMCS5 Anthriscus sylvestris 17/05/2016 Greensward Lane, Arborfield Cross Erysiphe heraclei 

OE2016PMCS6 Ranunculus repens 17/05/2016 Greensward Lane, Arborfield Cross Erysiphe aquilegiae 

OE2016PMCS7 Euonymus sp. 26/05/2016 Wembley, London Erysiphe euonymicola 

OE2016PMCS8 Heuchera 'Caramel' 01/06/2016 Whiteknights Campus, Reading 
Podosphaera 
macrospora 

OE2016PMCS9 Mahonia moseri 12/06/2016 Derby Erysiphe berberidis 

OE2016PMCS10 Acanthus mollis 15/06/2016 Hartington Road, London Neoerysiphe galeopsidis 

OE2016PMCS11 Euonymus kiautschovicus 17/06/2016 Food Sciences, Whiteknights Campus Erysiphe euonymicola 

OE2016PMCS12 Sonchus arvensis 20/06/2016 Southampton Street, Reading Neoerysiphe nevoi 
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OE2016PMCS13 Galium aparine 20/06/2016 Southampton Street, Reading Neoerysiphe galii 

OE2016PMCS14 Tellima grandiflora 20/06/2016 Southampton Street, Reading 
Podosphaera 
macrospora 

OE2016PMCS15 Berberis thunbergii 26/06/2016 Christchurch Road, Reading Erysiphe berberidis 

OE2016PMCS16 Catalpa bignonioides 05/07/2015 Campus Central, Whiteknights Erysiphe catalpae 

OE2016PMCS17 Acanthus mollis 05/07/2015 Lee, Devon Neoerysiphe galeopsidis 

OE2016PMCS18 Geum urbanum 05/07/2015 Lee, Devon Podosphaera aphanis 

OE2016PMCS19 x Heucherella  05/07/2015 Lee, Devon 
Podosphaera 
macrospora 

OE2016PMCS20 Cucurbita pepo 05/07/2015 Guiseley, Leeds Golovinomyces orontii 

OE2016PMCS21 
Cucurbita pepo 'Atena 
Polka F1' 

05/07/2015 Guiseley, Leeds Golovinomyces orontii 

OE2016PMCS22 Rosa 'Dorothy Perkins' 06/07/2016 Ramsey St. Mary's, Ramsey Podosphaera pannosa 

OE2016PMCS23 Acer pseudoplatanus 08/07/2016 Horns Drove, Rownhams Sawadaea bicornis 

OE2016PMCS24 Geum urbanum 08/07/2016 Horns Drove, Rownhams Podosphaera aphanis 

OE2016PMCS25 Alliaria petiolata 08/07/2016 Horns Drove, Rownhams Erysiphe cruciferarum 

OE2016PMCS26 Euphorbia sp. 29/07/2016 Tang, N. Yorkshire 
Podosphaera 
euphorbiae-helioscopiae 

OE2016PMCS27 Pisum sativum 20/07/2016 Eden Project, Cornwall Erysiphe pisi 

OE2016PMCS28 Salvia mellifera 20/07/2016 Eden Project, Cornwall 
Golovinomyces 
biocellaris 

OE2016PMCS29 Monarda didyma 20/07/2016 Eden Project, Cornwall 
Golovinomyces 
biocellaris 

OE2016PMCS30 Rosa 'Black Baccara' 05/08/2016 Thornton-Cleveleys Podosphaera pannosa 

OE2016PMCS31 Plantago maritima 30/07/2016 Eyemouth, Berwickshire Pm sp 

OE2016PMCS32 Rosa canina 30/07/2016 Eyemouth, Berwickshire Podosphaera pannosa 

OE2016PMCS33 Crataegus monogyna 30/07/2016 Eyemouth, Berwickshire 
Podosphaera 
clandestina 

OE2016PMCS34 Rosa rugosa 30/07/2016 Eyemouth, Berwickshire Podosphaera pannosa 

OE2016PMCS35 Lamium album 04/08/2016 Lamberton, Berwickshire Neoerysiphe galeopsidis 

OE2016PMCS36 Filipendula ulmaria 02/08/2016 Greenlaw, Berwickshire 
Podosphaera 
filipendulae 

OE2016PMCS37 Acer campestre 02/08/2016 Chirnside, Berwickshire Sawadaea bicornis 

OE2016PMCS38 Ajuga reptans 04/08/2016 Studham, Dunstable Neoerysiphe galeopsidis 

OE2016PMCS39 Geranium phaeum 04/08/2016 Studham, Dunstable Podosphaera fugax 

OE2016PMCS40 Plantago major 04/08/2016 Stokeinteignhead, Newton Abbot Golovinomyces sordidus 

OE2016PMCS41 Acer campestre 04/08/2016 Stokeinteignhead, Newton Abbot Sawadaea bicornis 

OE2016PMCS42 Centranthus ruber 04/08/2016 Mill Lane, Teignmouth 
Golovinomyces 
valerianae 

OE2016PMCS43 Epilobium palustre 07/08/2016 Balerno, Midlothian Podosphaera epilobii 

OE2016PMCS44 Plantago lanceolata 07/08/2016 Balerno, Midlothian Podosphaera plantaginis 

OE2016PMCS45 Lathyrus pratensis 07/08/2016 Balerno, Midlothian Erysiphe trifoliorum 

OE2016PMCS46 Geum urbanum 09/08/2016 Eyemouth, Berwickshire Podosphaera aphanis 

OE2016PMCS47 Lamium purpureum 10/08/2016 Lamberton, Berwickshire Neoerysiphe galeopsidis 

OE2016PMCS48 Calendula officianalis 10/08/2016 Lamberton, Berwickshire Podosphaera xanthii 

OE2016PMCS49 Crepis paludosa 14/08/2016 Threepwood Moss 
Podosphaera 
erigerontis-canadensis 

OE2016PMCS50 Plantago maritima 15/08/2016 Eyemouth, Berwickshire Golovinomyces sordidus 

OE2016PMCS51 Caltha palustris 15/08/2016 Lamberton, Berwickshire Erysiphe aquilegiae 

OE2016PMCS52 Dipsacus fullonum 15/08/2016 Lamberton, Berwickshire 
Podosphaera 
dipsacearum 

OE2016PMCS53 Viburnum tinus 16/08/2016 Foxton Dr, Alnwick Erysiphe hedwigii 
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OE2016PMCS54 Acanthus mollis 16/08/2016 Leigh-on-Sea Neoerysiphe galeopsidis 

OE2016PMCS55 Mahonia sp. 16/08/2016 Leigh-on-Sea Erysiphe beberidis 

OE2016PMCS56 Phlox paniculata 16/08/2016 Leigh-on-Sea Podosphaera collomiae 

OE2016PMCS57 Sanguisorba officianalis 19/08/2016 Bowden, Roxburgshire Podosphaera ferruginea 

OE2016PMCS58 Odontites vernus 19/08/2016 Bowden, Roxburgshire Not PM 

OE2016PMCS59 Potentilla erecta 19/08/2016 Eildon Hills, Melrose Podosphaera aphanis 

OE2016PMCS60 Prunus lusitanica 23/08/2016 Kelso Podosphaera tridactyla 

OE2016PMCS61 Lathyrus pratensis 26/08/2016 Lindean Moor, Selkirk Erysiphe trifoliorum 

OE2016PMCS62 Rosa 'Dorothy Perkins' 30/08/2016 Carlisle, Cumbria Erysiphe simulans 

OE2016PMCS63 Polygonum aviculare 05/09/2016 Thorpe Marsh, Norwich Erysiphe polygoni 

OE2016PMCS64 Epilobium hirsutum 04/09/2016 Portmoak, Fife Podosphaera epilobii 

OE2016PMCS65 Pisum sativum 05/09/2016 Lamberton, Berwickshire Erysiphe pisi 

OE2016PMCS66 Centaurea cyanus 05/09/2016 Lamberton, Berwickshire 
Golovinomyces 
depressus 

OE2016PMCS67 Taraxacum officinale 07/09/2016 Lamberton, Berwickshire 
Podosphaera 
erigerontis-canadensis 

OE2016PMCS68 Lupinus sp. 09/09/2016 Pitlochry, Mid-Perth Erysiphe intermedia 

OE2016PMCS69 Hypericum sp. 09/09/2016 Pitlochry, Mid-Perth Erysiphe hyperici 

OE2016PMCS70 Lonicera sp. 10/09/2016 Kincraig, East Inverness Erysiphe lonicerae 

OE2016PMCS71 Ribes sp. 10/09/2016 Newtonmore, East Inverness Podosphaera mors-uvae 

OE2016PMCS72 Acer campestre 11/09/2016 Balavil, Kingussie Sawadaea bicornis 

OE2016PMCS73 Aesculus sp. 11/09/2016 Balavil, Kingussie Erysiphe flexuosa 

OE2016PMCS74 Circaea lutetiana 16/09/2016 Harestanes, Roxburghshire Erysiphe circaeae 

OE2016PMCS75 Stachys sylvatica 16/09/2016 Burnmouth. Berwickshire Neoerysiphe galeopsidis 

OE2016PMCS76 Vicia sylvatica 16/09/2016 Burnmouth. Berwickshire Erysiphe pisi 

OE2016PMCS77 Trifolium campestre 16/09/2016 Burnmouth. Berwickshire Erysiphe pisi 

OE2016PMCS78 Pisum sativum 'R' 22/09/2016 
Science and Advice for Scottish 
Agriculture, Edinburgh 

Erysiphe pisi 

OE2016PMCS79 Pisum sativum 'R' 22/09/2016 
Science and Advice for Scottish 
Agriculture, Edinburgh 

Erysiphe pisi 

OE2016PMCS80 Pisum sativum 'R' 22/09/2016 
Science and Advice for Scottish 
Agriculture, Edinburgh 

Erysiphe pisi 

OE2016PMCS81 Pisum sativum 'S' 22/09/2016 
Science and Advice for Scottish 
Agriculture, Edinburgh 

Erysiphe pisi 

OE2016PMCS82 Pisum sativum 'S' 22/09/2016 
Science and Advice for Scottish 
Agriculture, Edinburgh 

Erysiphe pisi 

OE2016PMCS83 Pisum sativum 'S' 22/09/2016 
Science and Advice for Scottish 
Agriculture, Edinburgh 

Erysiphe pisi 
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Appendix 5: Regional GenBank Accessions* 

Study accession 
GenBank accession 

ITS Mcm7 β-tubulin Tsr1 Actin 

OE2013PM1 KY660725         

OE2013PM2 KY660742         

OE2013PM3 KY660744         

OE2013PM4 KY660747         

OE2013PM5 KY660723         

OE2013PM6 KY660731         

OE2013PM7 KY660727         

OE2013PM8 KY660736         

OE2013PM9           

OE2013PM11 KY660726         

OE2013PM12           

OE2013PM13 KY660729         

OE2013PM14 KY653205         

OE2013PM15 KY660738         

OE2013PM16 KY660735         

OE2013PM17 KY660746         

OE2013PM18 KY660750         

OE2013PM19 KY660739         

OE2013PM21 KY660748         

OE2013PM22 KY660724         

OE2013PM23 KY660741         

OE2013PM24           

OE2013PM25 KY660733         

OE2013PM26 KY660740         

OE2013PM27 KY660749         

OE2013PM28 KY660730         

OE2013PM29 KY653200         

OE2013PM30           

OE2013PM31 KY653161         

OE2013PM32 KY660728         

OE2013PM33 KY660732         

OE2013PM34 KY660737         

OE2013PM35           

OE2013PM36           

OE2013PM37 KY653187         

OE2013PM38 KY660745         

OE2013PM39           

OE2013PM40           

OE2013PM41 KY660722         

OE2013PM42 KY660734         

OE2013PM43 KY660743         
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OE2014PM1 KY660798   KY786690   KY786551 

OE2014PM2 KY660849   KY786691   KY786552 

OE2014PM3 KY660837       KY786553 

OE2014PM4 KY660782   KY786692   KY786554 

OE2014PM5 KY660769       KY786555 

OE2014PM6 KY660816         

OE2014PM7 KY660813         

OE2014PM8     KY786693     

OE2014PM9 KY660770 KY786340     KY786556 
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OE2016PMCS57 KY661130         

OE2016PMCS58           

OE2016PMCS59 KY661147         

OE2016PMCS60           

OE2016PMCS61 KY661160         

OE2016PMCS62 KY653196         

OE2016PMCS63 KY661154         

OE2016PMCS64 KY661124         

OE2016PMCS65 KY653208     KY786550   

OE2016PMCS66 KY661155         

OE2016PMCS67 KY661158         

OE2016PMCS68 KY661132         

OE2016PMCS69           

OE2016PMCS70           
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OE2016PMCS71           

OE2016PMCS72           

OE2016PMCS73           

OE2016PMCS74 KY653198         

OE2016PMCS75 KY661156         

OE2016PMCS76 KY661137         

OE2016PMCS77 KY661145         

OE2016PMCS78           

OE2016PMCS79           

OE2016PMCS80 KY653209         

OE2016PMCS81 KY653210         

OE2016PMCS82 KY661159         

OE2016PMCS83           

*Shaded cells have no sequence data.  

 


