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Abstract

The interdependency between the evolution of counterparty credit quality and the underly-

ing risk factor(s) driving the value of a derivative contract has led to wrong way/right way

risk, which could have a significant impact on the exposure and CVA profiles of OTC deriva-

tives portfolios. Traditional approaches in modelling counterparty credit risk are mainly

classified into Merton-type structural models and reduced form models. However, the for-

mer suffers from the drawback that the default probabilities generated from the model are

not consistent with the market implied ones while the latter fails to offer a reasonable eco-

nomic rationale and is of limited asset-credit correlation structures.

This thesis is dedicated to the modelling of wrong way/right way risk of fixed income

derivatives based on the Bessel bridge approach proposed by Davis and Pistorius (2010).

I begin with a brief review of the existing literature on counterparty credit risk modelling

with a focus on structural and reduced-form approaches and pointing out the advantages

and disadvantages of both methods. Then in the second part of the thesis, we go through

the technical details of inverse first-passage time problem of the credit index process and

Bessel bridge approach. We apply the unilateral version of the default framework to an

FX-Hull-White hybrid setting for the exchange rate and correlated interest rates to establish

a joint FX-credit unilateral default model. An extension to the bilateral version of the joint

FX-credit default model without identifying the joint distribution density function of the

two credit index processes conditional on default is presented in the third part of the thesis

and extensive numerical analysis are conducted in the expected positive exposure profiles

of a cross currency swap contract for various sets of FX-credit and default correlation sce-
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narios. The impact of wrong way/right way risk illustrated are plausible . For the final main

topic of thesis, we work on CVA of Bermudan swaptions. A multi-curve interest rate frame-

work with stochastic basis spreads are developed, into which the unilateral Bessel bridge

approach based joint interest rate-credit model is integrated and least-square Monte-Carlo

simulation is applied to compute CVA with the presence of wrong way/right way risk.
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Chapter 1

Introduction

1.1 Motivation

Counterparty risk is the risk taken by an investor entering into financial transactions with

one (or more) counterparties, varying among sovereign entities, corporates, hedge funds,

insurance companies having a relevant default probability. It can be seen as an integration

of two sources of risks: credit risk, which reflects the likelihood of not only counterparty

default but also one’s own default, and market risk, which determines the size of either the

investor’s exposure upon default of the counterparty or vice and versa. The bilateral nature

of default and the uncertainty of future exposure in OTC derivatives transactions are the

two features that differentiate counterparty risk from traditional form of credit risk, where

sovereigns and banks are assumed to be almost default-free and mainly corporate loans and

bonds with fixed economic loss upon default are considered. The volume of outstanding

OTC derivatives has grown exponentially over the past 20 years. These derivatives have

played an important role in the financial markets in terms of transferring risk and creat-

ing connections among markets and market participants. However, the privately negotiated

feature between counterparties of OTC derivatives leaves these contracts subject to counter-

party risk when a party to an OTC derivatives contract may fail to perform on its contractual
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obligations, causing losses to the other party. High-profile defaults of Bear Stearns and

Lehman Brothers during the financial crisis have intensified concerns about counterparty

risk embedded in OTC bank-to-bank and bank-to-corporate derivatives transactions and

the ever-increasing interconnectedness within the financial system has significantly compli-

cated risk quantification. Furthermore, from the regulatory perspective, Basel III Accord

mentions that in addition to the default risk capital requirements for counterparty credit risk

determined based on the standardised or internal ratings-based (IRB) approaches for credit

risk (specified in Basel II), a bank must add a capital charge to cover the risk of mark-to-

market losses on the expected counterparty risk (such losses being known as credit value

adjustments, CVA) to OTC derivatives. In particular, banks must demonstrate, at least quar-

terly, that the stress period coincides with a period of increased CDS or other credit spreads

(deterioration in credit qualities) - such as loan or corporate bond spreads - for a represen-

tative selection of the bank’s counterparties with traded credit spreads and how it would

affect the counterparty exposure model calibration and capital calculation, which makes the

valuation and hedging of CVA with wrong way risk a strategic issue.

It is usually assumed in the conventional approach to measuring counterparty risk that

the credit quality of the counterparties involved in the transaction is independent of the

underlying asset value driving the counterparty exposure. However, lessons from the Asian

financial crisis and the US sub-prime mortgage crisis have led to a consensus that major

systemic or economic shocks can be exacerbated by potential counterparty related funding

stress and subsequent credit quality deterioration. Therefore it is of great importance for

risk modellers to quantify the impact of dependency between credit and market risk factors,

which requires joint modelling of the credit quality of counterparties as well as underlying

asset values.

The effect of asset-credit correlation is most commonly manifested in the form of

wrong way risk (WWR), which arises when the value of the exposure to a certain coun-

terparty is adversely correlated with the credit quality of that counterparty. Specifically, in

our work we focus on general or conjectural wrong way risk, where the credit quality of
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the counterparty may for non-specific reasons be held to be correlated with macroeconomic

factors that also affect the value of derivatives transactions. An example of transaction with

wrong way risk can be a USD/Baht cross currency swap contract (where the USD/Baht pair

is quoted as x units of Thai Baht per US dollar) executed in March 1997 between a US

bank with investment grade credit rating and a poorly capitalized Thai bank with high level

of dollar denominated debt on its balance sheet. In March 1998, the Asia financial crisis

triggered sharp swings in the FX market which resulted in severe declines in the value of

baht against dollar. The rising debt servicing cost led to the deterioration of the Thai bank’s

credit quality while the currency movement increased the US bank’s exposure to the Thai

bank dramatically. In this case, even if you hold the Thai Baht denominated notional as a

source of collateral, the value of the notional falls rapidly while your counterparty exposure

is actually increasing due to the depreciation of Thai Baht, and hence the notional alone

is insufficient in compensating your loss should the counterparty default. The reciprocal

case where the value of the exposure is positively correlated with the credit quality of the

counterparty is referred to as right way risk (RWR). An example of transaction can be that

a bank sells a call option written on its own stock. Negative outlook or downgrade of the

bank’s credit status will be reflected in the drop of bank’s share price, which could reduce

the value of the call option and hence the bank’s exposure to the option buyer.

1.2 Review of Counterparty Risk Modelling Framework

Established methods on modelling counterparty risk primarily fall into two categories: i)

Merton-type/structural approach; ii) reduced-form approach. We now give an overview of

the existing literatures on the two approaches.

1.2.1 Structural Default Models

First, the structural default approach initiated by Merton (1974), where a firm defaults if,

at the time of servicing the debt, its asset value is below its outstanding debt value. The
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Merton’s model is later extended by Black and Cox (1976) who allow default to occur at

any time throughout the life of the contract and model the time of default as the first time the

ratio of firm’s share price and the its debt value falls below a deterministic time-dependent

barrier. The case of an exogenously specified constant default barrier is also considered

(see, for example, Kim et al. (1993); Longstaff and Schwartz (1995)). Under the first-

passage time framework, the value of the firm’s equity can be regarded as a call option

written on the firm’s asset and struck at its debt value that is knocked-out at time of default.

Modelling the debt by a zero-coupon bond with deterministic interest rate and the equity

value by a geometric Brownian motion with constant drift and volatility, the default time

distribution is equal to that of the first-passage time of a Brownian motion below the default

barrier. Dependence between entities can be simply incorporated and an economic rationale

behind default is offered as the model is linked to a company’s fundamentals.

Further extensions of the first-passage time model to multi-dimensional versions are

led by Zhou (2001a); Patras (2006); Haworth et al. (2008); Valuzis (2008) and several other

researchers, where correlated lognormal dynamics for two firms’ balance sheets are speci-

fied and analytical formulas for their joint survival probability distribution are derived using

the eigenvalue expansion technique. However, the classical Brownian motion asset value

model fails to explain high short-term CDS spreads observed in the market as the pre-

dictability of default event under such model leads to almost zero near term default probabil-

ity for non-distressed firms. Improvements surrounding this issue have considered including

non-linear or random default barrier (see, for example, Avellaneda and Zhu (2001); Brigo

and Tarenghi (2005); Brigo and Morini (2006); Brigo et al. (2011b)) and jump diffusion

into asset value dynamics (see, for example, Zhou (2001b); Sepp (2006); Lipton and Sepp

(2009); Fiorani et al. (2010); Lipton and Savescu (2012, 2013)). Furthermore, the class of

Lévy processes is also being explored to replace the Brownian motion when modelling of

asset value (see, for example, Cariboni and Schoutens (2007); Baxter (2007); Ballotta and

Fusai (2014)).

4



1.2. REVIEW OF COUNTERPARTY RISK MODELLING FRAMEWORK

1.2.2 Reduced-Form Default Models

The second major family of joint asset-credit models belong to the reduced form approach

where default is modelled through an exogenous stochastic intensity process independent

of the information arising from the default-free market. Leung and Kwok (2005) model

default intensities as deterministic constants with default indicators of other names as feeds.

The exponential triggers of the default times are taken to be independent and default corre-

lation results from the cross feeds, although there is no explicit modelling of credit spread

volatility and as a result may underestimate CVA. Brigo and Pallavicini (2008) propose

CIR stochastic intensity processes, which are used for default intensities dynamics of the

counterparty and the underlying reference entity and default correlation is modelled with a

Gaussian copula function. They find that both default correlation and credit spread volatili-

ties have a relevant and structured impact on the adjustment. The approach is further applied

by Brigo and Chourdakis (2009) for the counterparty risk valuation of energy-commodity

swaps and by Brigo and Capponi (2010) who extend it to the bilateral CVA valuation of

CDS portfolios and derive a symmetric mathematical expression for the CVA where the

two counterparties will agree on the value of CVA. Another category of research focuses on

modelling wrong way risk by correlating the driving risk factors with the default intensity

process, Pykhtin (2012) presents an algorithm that converts the unconditional distribution

of netting-set-level exposure generated by an arbitrary Monte Carlo simulation process to

an exposure at default (EAD) measure that consistently incorporates general WWR under

the asymptotic single risk factor (ASRF) framework. Lipton and Shelton (2012) present an

affine jump-diffusion framework for calculating the prices of credit default swaps (CDSs)

with and without credit value adjustments (CVA) to account for counterparty risk. Closed-

form expressions for the CVA in this framework are obtained in the limit of pure diffusion,

and an expansion of the Green function in powers of the jump intensity is applicable in

the general case. They show that in order to generate sufficient correlation to capture this

so-called wrong-way risk, simultaneous jumps in the credit spreads of buyer, seller and ref-

erence entity are required. Other notable literatures include Ghamami and Goldberg (2014),

Ghamami and Carr (2015); Li and Mercurio (2015). Alternative methods for wrong way
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risk modelling such as scenario weighting (see, for example, Turlakov (2013); Glasserman

and Yang (2015)) or adjusting default probability in the independence based CVA formula

(see, for example Hull and White (2012) that captures wrong way risk by expressing the

stochastic intensity of a counterparty default time in terms of the financial institution’s credit

exposure to the counterparty) are also proposed.

1.3 Original Contributions

In this thesis, we focus on the counterparty risk modelling of fixed income derivatives, with

a particular emphasis on explicitly modelling and quantifying the impact of wrong way/right

way risk on counterparty exposure profiles and CVAs. In Chapter 2, we present a unilat-

eral version of a structural default model for modelling counterparty risk of FX forwards

and cross currency swaps using the Bessel bridge approach proposed by Davis and Pisto-

rius (2010). By combining the multi-currency framework with the unilateral default model,

we establish a joint FX-credit default model that is able to capture the impact of exchange

rate-credit correlation on the counterparty exposure measured by various risk metrics such

as expected positive exposures and potential future exposures. The FX-credit correlation

can be easily incorporated onto the driving Brownian motions of the exchange rate. Fur-

thermore, the stochastic nature of the interest rate processes allows for the introduction of

additional correlation structures between the interest rate and counterparty credit qualities

and the model is tractable for the counterparty risk modelling of other FX-rates hybrid

derivatives.

In Chapter 3, we extend our model to the bilateral version of the FX-credit default

framework. Following Chapter 1, the credit index processes of two counterparties are intro-

duced and their respective default times are modelled as inverse first-passage time problems.

However, instead of trying to identify joint default distribution of the two counterparties

conditional on the first-to-default counterparty through sophisticated numerical methods

and jointly simulate the two credit index processes. We take a simpler yet efficient approach
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by simulating the assumed first-to-default counterparty in terms of three-dimensional Bessel

bridges and extract the path of the non-default counterparty through their correlated Brow-

nian motions. Even though the joint conditional default probabilities cannot be explicitly

derived, our approach is flexible in simulating counterparty exposures. Extensive numerical

analysis are carried out and studied on the impact of the various correlation scenarios be-

tween the counterparty credit quality and the exchange rate, the investor credit quality and

the exchange rate and the default correlation between the two counterparties.

In the final chapter, we work on Bermudan swaption CVAs with the presence of wrong

way/right way risks. We establish a multi-curve interest rate framework with stochastic

basis spreads, which is in line with post-crisis market practice in the treatment of interest

rate modelling. Furthermore, we successfully integrate the Bessel bridge default model

where wrong way/right way risk can be modelled explicitly into the multi-curve interest

rate framework and come up with an approximation for the CVA of Bermudan swaptions.

The model is robust and computationally efficient to capture the impact of wrong way/right

way risk on the expected positive exposures and CVAs of Bermudan swaptions.

1.4 General Valuation of Counterparty Credit Risk

We begin by introducing the general valuation of counterparty credit risk in the unilateral

and bilateral default cases. Let us refer to the two parties engaging in a generic derivative

transaction subject to default risk as investor ("I") and counterparty ("C") and address valu-

ation as seen from the point of view of the investor so that the cash flow received by investor

will be positive whereas cash flows paid by investor will be seen as negative.

1.4.1 Risk-Neutral Framework in the Credit Derivatives Market

We place ourselves in a probability space (Ω,F , {Ft}t≥0,Q), where {Ft}t≥0 is the filtra-

tion modelling the whole market information flow and we assume there exists a risk-neutral

7
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measure Q1. Let us denote by T the maturity of the transaction, by Π(t, T ) the money

market account B(t) discounted contractual cashflows until maturity subject to no default

and by V (t, T ) the default-free value of the contract known with certainty at current time t,

which can also be written as V (t, T ) = EQ[Π(t, T )|Ft]. For more details, refer to Schön-

bucher (2003).

To set up a risk-neutral framework, we denote default time as τ , the survival indicator

function I(t) = 1 if τ > t and I(t) = 0 if τ ≤ t. The default-free zero-coupon bonds

(ZCB) with all maturities T > t are defined as

P (t, T ) = price of ZCB paying 1 at T. (1.1)

and the defaultable zero-coupon bonds with all maturities T > t are defined as

PD(t, T ) = price of defaultable ZCB if τ > t. (1.2)

To ensure no-arbitrage we must require that the defaultable zero-coupon bond is always

worth less than its corresponding default-free zero-coupon bond. And the bond prices are

a decreasing, non-negative function of maturity T . A risk-neutral probability of an event

A at time T is simply the state price of a security that pays 1 at time T if A occurs, which

is EQ[DF (T ) ∗ 1A], where DF is the money market account discount factor. Standard

procedure on how to convert from real world probability measure to risk-neutral measure

based on Girsanov theorem will not be detailed here.

1.4.2 Unilateral Counterparty Risk

Suppose that the investor is default-free while the counterparty is defaultable2 and denote τC

the default time of the counterparty and ΠD(t, T ) the contractual cash flows until maturity

discounted back to time t and subject to counterparty default risk, then we have the default-
1In the credit derivatives market, there may not be a unique risk-neutral measure
2It does not only refer to bankruptcy. The cross of barrier zero refers to any credit event specified in the

CDS contract that the model is calibrated to
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risky value of the contract V D(t, T ) at time t conditional on {t < τC ≤ T}:

V D(t, T ) = EQ[ΠD(t, T )|Ft] =EQ[Π(t, T )|Ft]

− (1−RC)EQ[EQ[1{t<τC=s≤T}D(t, s)V (s, T )+|Fs]|Ft]

= EQ[Π(t, T )|Ft]

− (1−RC)EQ[1{t<τC≤T}D(t, τC)V (τC , T )+|Ft]

(1.3)

where V + = max(0, V ), D(t, s) is the stochastic discount factor at time t with maturity s

and RC3 is the recovery rate that is exchanged as a proportion of the net present value of

the contract upon default of the counterparty. The second component in equation 1.3 is the

adjustment to the default-free value of the contract accounting for counterparty default. For

proof of the formula, see Brigo and Masetti (2006).

Similarly, we can also consider the case where the investor is defaultable while the

counterparty is default-free with analogous notations, then the corresponding default-risky

value V D(t, T ) at time t conditional on {t < τI ≤ T} is :

V D(t, T ) = EQ[ΠD(t, T )|Ft] =EQ[Π(t, T )|Ft]

+ (1−RI)EQ[EQ[1{t<τI=s≤T}D(t, s)V (s, T )−|Fs]|Ft]

= EQ[Π(t, T )|Ft]

+ (1−RI)EQ[1{t<τI≤T}D(t, τI)V (τI , T )−|Ft] (1.4)

where V − = max(0,−V ) and RI is the recovery rate that is exchanged as a proportion of

the net present value of the contract upon default of the investor. The second component in

equation 1.4 can be seen as the investor’s gain in the transaction owing to its own default.
3The recovery rate here ignores the difficulty involved in the real world determination of recovery in credit

derivatives, e.g. CDS, like time delays, dealer polls and delivery options. For simplicity, we assume constant
recovery rates in the thesis throughout.
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1.4.3 Bilateral Counterparty Risk

Unilateral counterparty risk neglects the fact that an investor may default prior to the coun-

terparty and that the counterparty may also default prior to the investor before the contract

expires worthless, in whichever case the latter default event will become irrelevant. Further-

more, the investor or the counterparty may actually gain from their own possible default.

For more details on the symmetric argument, see, for example, Brigo et al. (2011c).

We define stopping time

τ = min{τI , τC} (1.5)

as the first-to-default time of both the investor and the counterparty. If τ > T , neither the

investor or the counterparty has defaulted throughout the life of the contract. If t < τ ≤ T ,

then either the investor or the counterparty has defaulted and the corresponding default-risky

value of the contract V D(t, T ) at time t is

V D(t, T ) = EQ[ΠD(t, T )|Ft] =EQ[Π(t, T )|Ft]

+ (1−RI)EQ[EQ[1{τI=s≤min{T,τC}}D(t, s)V (s, T )−|Fs]|Ft]

− (1−RC)EQ[EQ[1{τC=s≤min{T,τI}}D(t, s)V (s, T )+|Fs]|Ft]

= EQ[Π(t, T )|Ft]

+ (1−RI)EQ[D(t, τI)1{τI≤min{T,τC}}V (τI , T )−|Ft]

− (1−RI)EQ[D(t, τC)1{τC≤min{T,τI}}V (τC , T )+|Ft].

(1.6)

The second and the third components of equation 1.6 together form the bilateral price ad-

justments, which could change sign due to the offsetting nature when the credit quality of

the investor worsens while that of the counterparty improves. The value of the contract sub-

ject to bilateral default risk can be expressed in terms of the default-free value plus a long

position in a zero strike European put option on V (τ, T ) minus a short position in a zero

strike European call option on V (τ, T ). It can be observed from this formula that if there’s

no default throughout the life of the transaction the problem reduces to the risk-neutral val-
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uation of the contract in a default-free setting. For proof of the formula, see Brigo and

Capponi (2010).

In general, the credit exposure to a particular counterparty arises not from a single

transaction but several ones. For any particular market scenario, some of these transactions

will have positive, and others negative value. In the event of counterparty bankruptcy or

any other relevant event of default specified in the relevant agreement if accelerated (i.e.

effected), all transactions or all of a given type are netted (i.e. set off against each other)

at market value or, if otherwise specified in the contract or if it is not possible to obtain a

market value, at an amount equal to the loss suffered by the non-defaulting party in replacing

the relevant contract. The alternative would allow the liquidator to choose which contracts

to enforce and which not to (and thus potentially "cherry pick"). There are international

jurisdictions where the enforceability of netting in bankruptcy has not been legally tested.

Netting is usually considered at portfolio of trades and it’s out of the scope of this thesis as

we consider counterparty risk at single trade level.

1.4.4 Counterparty Risk Measures

Next, we introduce several statistical quantities that have been frequently used in measuring

counterparty risk. First of all, the potential future exposure (PFE) computed at time t of the

defaultable contract value V D(t) is defined as:

PFE(α, t) = inf{x : P(V D(t) ≤ x) ≥ α}, (1.7)

where α is the specified level of the confidence interval (usually at 95% or 97.5%) and P

is the probability distribution of V D(t). Based on equation 1.6 , we refer to Cesari et al.

(2009) and introduce two fundamental bilateral counterparty risk measures being widely

used in the financial industry to monitor risks of financial institutions.

Second, the unilateral adjusted modified expected positive exposure (EPEmod) condi-
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tional on earlier counterparty default at time τC = s > 0, defined as

EPEmods = 1
P (t, s)E

Q[D(t, s)V (s, T )+|Fs]. (1.8)

similarly, the unilateral adjusted modified expected negative exposure (ENEmod) condi-

tional on earlier investor default at time τI = s > 0, defined as

ENEmods = 1
P (t, s)E

Q[D(t, s)V (s, T )−|Fs]. (1.9)

To further reflect the possible change of sign nature of bilateral counterparty risk ex-

posure, we define the bilateral expected positive exposure (BEPE) from the point of view of

the investor as

BEPEmods = EPEmods − ENEmods , (1.10)

which can later be used to quantify the impact of asset-credit correlation and default corre-

lation on the investor’s effective exposure towards the counterparty.

Notice that the modified versions of EPEs and ENEs are introduced such that we can

quantify the impact of asset-credit correlation and default correlation on the future exposure

of the contract. Furthermore, both measures are defined under the risk-neutral measure to

allow for potential hedges and the computation of CVA, DVA and bilateral CVA. However,

these two measures can also be calculated under the real measure using historical analysis

in risk management applications. For more information regarding choice of measure, the

reader is referred to, for example, Cesari et al. (2009).

The structure of the remainder of the thesis is organized as follows. In Chapter 2,

we introduce in detail the Bessel bridge approach where the counterparty default time is

modelled in terms of an inverse first-passage time (IFPT) problem and how the credit index

process is specified such that the default time distribution is calibrated exactly to the market

CDS quotes of certain counterparty. In particular, the conditional law of the credit index

process upon default is shown to be equal to that of the corresponding three-dimensional
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Bessel bridge process, which can be then efficiently simulated in terms of three independent

Brownian bridges. The asset price dynamics conditional on default can be subsequently

expressed directly in terms of the credit index process such that the asset-credit correlation

is explicitly incorporated and the joint simulation of the asset price and credit index process

can be conducted in a computationally efficient manner. We integrate the unilateral default

model into a stochastic foreign exchange setting, where the correlation between FX rate and

interest rates are also considered, to establish a unilateral joint FX-credit default model. We

then apply our framework to FX forward and cross currency swap contracts and calculate

their expected positive exposure and potential future exposure profiles for various asset-

credit correlation scenarios. Numerical examples are presented to illustrate the impact of

wrong way/right way risk throughout the life of the contracts.

Chapter 3 extends the unilateral joint FX-credit default model to the bilateral case

where not only the counterparty but the investor can also default. In this context, the model

is further developed such that the correlation between the counterparty credit quality and

the exchange rate, the correlation between the investor credit quality and the exchange rate

and the default correlation between the two parties are explicitly incorporated. We apply

the model to study the expected positive/negative exposures of cross currency swaps upon

default at a particular time for various wrong way/right way and default correlation scenar-

ios.

In Chapter 4, we study Bermudan swaption CVA with presence of wrong way risk. A

multi-curve interest rate framework for the valuation of interest rate swaps by modelling

the overnight-index-swap (OIS) rate and the Xibor4-OIS spreads explicitly is built partly

based on Mercurio and Xie (2012), where Xibor (interbank money market rate) is a generic

notation for Libor-like interest rates. Specifically, standard Hull-White short rate model is

used to model OIS rate and 1-factor lognormal model is used to model the basis spreads.

Since the OIS (overnight index swap rate) is considered to be a better proxy of risk-free

rate compared to Xibor, which has credit risk and liquidity risk premiums and hence is
4A generic notation for interbank offer rate in various markets.
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higher than risk-free rates, we believe it’s reasonable to assume positive Xibor-OIS spreads.

Although the Euribor-OIS spread briefly went negative in 2009 due to the crisis, we consider

such scenario to be rare and counterintuitive and hence do not consider such scenario in

this thesis. Finally, least-square regression based approach is used to obtain the optimal

exercise boundary of the Bermudan swaptions. Since the basis spreads are a proxy of credit

risk premium, the asset-credit correlation is imposed on the evolution of the basis spreads

with a given tenor and the counterparty credit quality, from which a joint interest rate-credit

default model is established based on Bessel bridge approach. . Numerical examples on

expected positive exposure profiles and CVAs with various wrong way/right way correlation

scenarios are studied to illustrate the impact of wrong way/right way risk on Bermudan

swaption CVAs.
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Chapter 2

Unilateral Counterparty Risk

Modelling of FX Derivatives

2.1 Chapter Overview

As mentioned in the previous chapter, in many of the derivatives transactions, the evolution

of the counterparty credit quality is correlated with the underlying asset price(s) and hence

should be treated as a source of risk that is to be taken into account when valuing a transac-

tion or calculating counterparty exposures. In this chapter, a joint FX-credit unilateral de-

fault framework where wrong way/right way correlation is explicitly modelled is developed

partially based on the theoretical foundations established in Davis and Pistorius (2010). The

model follows a similar economic rationale of the traditional Merton-type approach where

the evolution of counterparty credit quality is modelled in terms of a distance-to-default

process and default can actually be observed.

The traditional Merton-type approach assumes that a firm’s asset value is driven by a

lognormal diffusion and the firm defaults at the time of debt maturity if the notional of the

debt exceeds the asset value. His ideas were extended by several researchers, notably by

Black and Cox (1976), who propose the idea of continuous default barrier such that default
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can occur at any time throughout the life of the contract. Due to the predictability of default

event in these approaches, the probability of a non-distressed firm defaulting in the near

term is often close to zero. To address this, the subsequent structural default approaches

model credit spread volatility and incorporate curvilinear barriers (see, for example, Hull

and White (2001) and Blanchet-Scalliet et al. (2011)). One desirable feature of these first-

passage time approaches is that default event of a counterparty is observable, which is in

line with market intuition as the credit quality of a counterparty evolves gradually and hence

the asset-credit correlation can be naturally incorporated. However, the default barrier is

explicitly specified and consequently either numerical methods are applied to solve for the

default barrier or analytically solvable lognormal dynamics with constant parameters are

introduced and as a result, their models cannot fit the term structure of CDS spreads implied

by the market exactly, thus often incurring a bias in their risk calculation.

Hull and White (2001) approach the problem by modelling the time of default as the

first time the Brownian motion driving the asset value hits a specified time-dependent bar-

rier and show that the barrier can be chosen such that the model is calibrated exactly to

the market CDS spreads. This approach is also characterized as the inverse first-passage

time (IFPT) problem where given a certain distribution the time-dependent barrier needs to

be numerically retrieved such that the first hitting time of a stochastic process across the

barrier follows that distribution. Numerical solutions of this generally non-linear boundary

have been developed by Cheng et al. (2006) who apply free-boundary-problem-techniques,

Zucca and Sacerdote (2009) who analyse a Monte Carlo approximation method and a

method based on the discretization of the Volterra integral equation satisfied by the boundary

derived in Peskir (2002) and Jaimungal et al. (2009) who utilize integral equation theories.

Chen et al. (2011) prove the existence and uniqueness of the IFPT of an arbitrary continu-

ous distribution function for a diffusion process with smooth and bounded coefficients and

a strictly positive volatility function. A related "smoothed" version of the IFPT problem

is also studied in Ettinger et al. (2014), where for any prescribed life-time they prove the

unique existence of a continuously differentiable boundary for which a standard Brownian

motion killed at a rate that is given function of this boundary has the prescribed life-time.
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Since the application of numerical methods can sometimes be computationally inten-

sive and for a certain class of distribution functions no closed-form solution is available,

Davis and Pistorius (2010) consider a variation of the problem by replacing the time-

dependent barrier with a flat barrier equal to zero and derive an explicit solution to an

inverse first-passage time problem of a linear time-inhomogeneous Brownian motion to

zero for any default time distribution having a density. They show that with an appropri-

ate specification of the initial distribution and the time-dependent drift and volatility being

taken proportional to the hazard rate of the given distribution the model is calibrated ex-

actly to the market CDS quotes. They show further that the law of asset value conditional

on first-passage occurring at a particular time in the future can be identified in terms of

time-changed three-dimensional Bessel bridge processes, by which the asset value condi-

tional on default is directly driven among others. The Lévy extension of this approach is

developed in Davis and Pistorius (2015). On the hand, although the reduced-form models

can be calibrated exactly to the survival probabilities implied from CDS quotes, the asset-

credit correlations that can be modelled is of very limited scope and the lack of economic

interpretation make them unappealing.

The model we propose follows the framework proposed by Davis and Pistorius (2010)

that retains the structural default modelling advantages that distance-to-default is explic-

itly modelled such that the evolution of the counterparty credit quality is observable; and

meanwhile our model is capable of being calibrated exactly to the market implied survival

probabilities of a certain counterparty. However, in spite of the rich literatures on counter-

party risk modelling of single name CDSs and single currency interest rate swaps whose

counterparty exposures are mainly driven by a single source of underlying, i.e. the CDS

spread of the reference entity for the former and Xibor rates for the latter. Few of them

pay attention to hybrid derivatives especially cross currency swaps whose counterparty ex-

posures are driven by the exchange rate, cross currency basis spread, domestic and foreign

periodic interest rate payments combined with the possible correlations between each of the

two, which could make the modelling of wrong way risk much more complicated. Further-

more, asset-credit dependency is frequently treated as an implicit requirement though there
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has been a genuine interest after the financial crisis in detecting and measuring its effect

explicitly. The main contribution of this chapter is to provide a joint FX-credit structural

default model to explicitly capture wrong way risk of cross currency swaps. To place a spe-

cific focus on counterparty risk modelling, we simplify the matter by containing ourselves

within the pre-crisis single curve interest rate framework when it comes to the pricing of

FX derivatives, under which we construct a multi-currency model composed of one-factor

lognormal exchange rate dynamics correlated with domestic and foreign interest rates spec-

ified by one-factor Hull-White (1FHW) models respectively. The exchange rate dynamics

conditional on default are derived and expressed directly in terms of the distance-to-default

process, which can be efficiently simulated as a three-dimensional Bessel bridge process.

Finally, we conduct case studies on two hypothetical cross currency swap contracts traded

between a US financial institution assumed to be default-free and Nomura International as-

sumed to be defaultable. Monte Carlo simulation is applied to compute EPEs and PFEs

of the contract for various exchange rate-credit correlation scenarios to quantify the impact

of wrong way/right way risk on the counterparty exposure. It can be shown that wrong

way/right way risk could have significant impact on the counterparty exposure calculation.

2.2 IFPT Problem and Main Results

In this section, we briefly go through the theory of IFPT problem and summarize the results

obtained in Davis and Pistorius (2010).

For a given cumulative distribution function P with density f defined on the positive

half line, the canonical inverse first-passage time problem is formulated to search for a

boundary b(t) : R+ → [−∞,+∞] such that the first-passage time τYb of a real valued

Markov process Y with right-continuous left-limit paths and initial distribution µ across
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b(t) follows the given distribution P :

P (τYb ≤ t) = P (t), t ∈ (0,+∞),

τYb = inf{t ∈ (0,+∞) : Y (t) ∈ (−∞, b(t))}.

As mentioned in the previous chapter, the identification of the boundary b(t) often involves

numerical schemes, hence a modification of the formulation is considered in Davis and

Pistorius (2010) with the following definition:

Definition 2.2.1. For a continuous probability distribution function P with density f on R+

and a given Markov process X with right-continuous and left limit paths, the inverse first-

passage time problem is to find a probability measure µ on (R+,B(R+)) and an increasing

continuous function I : R+ → [0,+∞] such that for the time-changed process Y = X◦I =

{(X ◦ I)(t), t ∈ R+} the first-passage time into the negative half-line (−∞, 0) follows

distribution P:

P (τY0 ≤ t) = P (t), t ∈ (0,+∞),

τY0 = inf{t ∈ (0,+∞) : Y (t) ∈ (−∞, 0)}.

Let (Ω,F ,P) be the probability space, a specific family of linear Gaussian processes starting

from an independent random point A ∼ F is considered in their work:

Y (t) = A+
∫ t

0
νσ2(s)ds+

∫ t

0
σ(s)dW (s), Y (0) = A, t > 0, ν 6= 0, (2.1)

where σ : R+ → R is a function such that

I(t) :=
∫ t

0
σ2(s)ds <∞, t > 0 (2.2)

and Y is in law equal to the time-changed Brownian motion {X(I(t)), t ≥ 0}:

X(t) = A+ νt+W (t). (2.3)
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The randomization of A is embedded into Y such that conditional on Y (0) = A the distri-

bution P of the first time Y crosses the zero should satisfy the following:

P (t) = P[τY0 ≤ t] =
∫ ∞

0
P[τY0 ≤ t|A = a]F (da). (2.4)

It is shown that by taking the Laplace-Stieltjes transform of P in t:

LP (q) =
∫ ∞

0
EP[e−qτY0 |A = a]F (da) =

∫ ∞
0

e−aΦ(q)F (da), Φ(q) = ν +
√
ν2 + 2q,

(2.5)

given that q = φ(θ) = 1
2θ

2 − νθ, F must satisfy

LP (φ(θ)) = LF (θ), (2.6)

which indicates that the left-hand side of equation 2.6 is strictly monotone as a function

of θ. They show that randomization can be defined in terms of a two-parameter family

of probability distributions {F (ν)
λ } that is employed for the embedding of the exponential

distribution with parameter λ > 0:

F
(ν)
λ (dx)
dx

=

 2λxe−x
√

2λ, ν = −
√

2λ,
2λ

θ+−θ− (eθ+x − eθ−x), ν < −
√

2λ,

where θ± = ν ±
√
v2 − 2λ, an explicit solution of Y is found through the specification of

its time-dependent drift and volatility function in the following theorem:

Theorem 2.2.1. Suppose that P is a continuous probability distribution function with den-

sity f , define the hazard function

γ(t) = f(t)
1− P (t) (2.7)

and for a fixed λ > 0, specify σ2 as

σ2(t) = γ(t)
λ
, (2.8)
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then P(τY0 ≤ t) = P (t) for all t ∈ (0,∞).

Proof. For proof see Davis & Pistorius (2010).

In the application of counterparty risk modelling, the default event of an institution

can be modelled as the first hitting time of its credit index process Y across zero. By taking

the implied volatility function of the credit index process to be proportional to the hazard

rate function of the institution’s risk-neutral default probability distribution, which is itself

implied from market CDSs, the default model is ensured to exactly match the given CDS

quotes.

2.3 Bessel Bridge Approach for Wrong Way Risk Modelling

Given the specification of the credit index process in the previous section, we now introduce

the Bessel bridge approach proposed in Davis and Pistorius (2010) to obtaining the condi-

tional distributions of the credit index process and the driving underlying asset price process

upon default and how wrong way risk is explicitly embedded in the underlying asset price

dynamics directly in terms of the credit index process.

2.3.1 Credit Index Process Conditional on Default

First of all, the identification of the law of credit index process conditional on hitting the

zero barrier at time τY0 = s > 0 involves the application of the Doob h-transform of Y .

To achieve this, it is the prerequisite to introduce the Cameron-Martin-Girsanov change of

measure theory as follows:

Theorem 2.3.1 (Cameron-Martin-Girsanov Theorem). Let (X(t),Ω,F , {F(t) = σ({X(q) :

q ≤ t})},P) relate to the space for Brownian motion on Rn. Suppose that c(t) is an
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{F(t+)} previsible Rn-valued process such that

ζ(t) = exp(
∫ t

0
c(q)dX(q)− 1

2

∫ t

0
|c(q)|2dq) (2.9)

defines a martingale ζ if c(t) is a bounded process. Then there exists a unique measure Q

on (Ω,F) such that

dQ
dP
|F(t) = ζ(t), ∀t > 0, (2.10)

and under Q

X̃(t) = X(t)−
∫ t

0
c(q)dq (2.11)

defines a Brownian motion relative to {F(t+)}.

Proof. For proof see Rogers and Williams (2000, Chapter IV.6).

Now suppose that (X(t),Ω,F , {F(t)} = σ({X(q) : q ≤ t}),P) is a Brownian motion

starting from zero under the state space R, we define the Brownian transition density p as

p(t, t+ t′;u, v) = P (X(t+ t′) = v|X(t) = u) (2.12)

and a strictly positive space-time regular h : R+ × R→ (0,∞) as

h(t, u) = P (X(T ) ∈ R|X(t) = u), t ≤ T, (2.13)

where h(0, 0) = 1 is assumed without loss of generality. The conditioned semi-group

p̂(t, t+ t′;u, v) = P (X(t+ t′) = v|X(t) = u, X(T ) ∈ R) is easily computed from p and

22



2.3. BESSEL BRIDGE APPROACH FOR WRONG WAY RISK MODELLING

h:

p̂(t, t+ t′;u, v) = P (X(t+ t′) = v; X(T ) ∈ R|X(t) = u)
P (X(T ) ∈ R|X(t) = u) = p(t, t+ t′;u, v)h(t+ t′, v)

h(t, u) .

(2.14)

In fact, p̂(t, t+ t′;u, v) is indeed a Markov kernel satisfying

∫
v
p̂(t, t+ t′;u, v)dv = 1 (2.15)

if, for t ≥ 0, t′ > 0, u ∈ R,

h(t, u) =
∫
v
p(t, t+ t′;u, v)h(t+ t′, v)dv = E[h(t+ t′, X(t+ t′))|X(t) = u]. (2.16)

This leads to the change of measure from P to Q on (Ω,F) where the Radon-Nikodym

derivative is

dQ
dP
|F(t) = Z(t) ≡ h(t,X(t)) (2.17)

and the coordinate process X̃ under Q is a non-homogeneous Markov process with transi-

tion density p̂. Apply Itô’s lemma to the P-martingale Z(t), we have:

dZ(t) = 1
h(0, 0){h

′(t,X(t))dX(t) + [ḣ(t,X(t)) + 1
2h
′′(t,X(t))]dt}, (2.18)

where a dot denotes a derivative with respect to t and a prime denotes a derivative with

respect to X . Since Z(t) is a P-martingale, the drift term in equation 2.18 must vanish,

along with equation 2.17, we have

dZ(t) = Z(t)h
′(t,X(t))
h(t,X(t)) dX(t). (2.19)
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Based on Theorem 2.3.1, it can be concluded that the coordinate process X̃(t) under Q:

X̃(t) = X(t)−
∫ t

0

h′(q,X(q))
h(q,X(q)) dq (2.20)

is a Q-Brownian motion. For more details, please refer to Rogers and Williams (2000).

The Cameron-Martin-Girsanov theorem is applied in Davis and Pistorius (2010), where

the conditional distribution of the credit index process Y hitting the zero barrier at time

s > 0, P (τY0 = s|Y (0) = A), can be seen as the Doob h-transform of a time-changed

Brownian motion starting from A > 0 with the h-function given by

hY (I(t), A) = P (τY0 ∈ s− dt|Y (0) = A)/dt = σ2(s)A√
2π(I(s)− I(t))3 e

− (A+νI(t))2
2(I(s)−I(t)) , t ∈ (0, s),

(2.21)

with I(t) =
∫ t

0 σ
2(q)dq such that there exists a non-homogeneous Markov process η =

(η(t), t ∈ [0, s]), for any set L ∈ FYt , the sigma field generated by {Y (q)}q≤t, we have

P h(η(t) ∈ L|η(0) = A) = P (Y (t) ∈ L|Y (0) = A), where the Radon-Nikodym derivative

is

dPh

dP
|FY (t) = hY (I(s)− I(t), Y (t))

hY (0, A) . (2.22)

Since

h′Y (I(t), Y (t))
hY (I(t), Y (t)) = [ 1

Y (t) −
Y (t)

I(s)− I(t) ]σ2(t), (2.23)

we have an SDE for η of the form:

dη(t) = [ 1
η(t) −

η(t)
I(s)− I(t) ]σ2(t)dt+ dW (t), t ∈ (0, s), (2.24)

η(0) = A,

where A ∼ F
(ν)
λ and is independent of W , a standard Brownian motion. Furthermore, to
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identify the distribution of η, the following definition is introduced:

Definition 2.3.1 (Bessel Process). Fix an integar d ≥ 2, letW = {(W1, ...,Wd), F(t)}0≤t<∞

and {Px}x∈Rd be a d-dimensional Brownian family on some measurable space (Ω,F). The

process R = {R(t) = ‖W (t)‖, R(0) = ‖x‖, F(t)}0≤t<∞:

R(t) ,
√

(W1(t))2 + ...+ (Wd(t))2, t ∈ [0,∞), (2.25)

together with the family of measures {P̂r}r≥0 , {Pr,0,...,0}r≥0 on (Ω,F) is called a Bessel

family with dimension d. For fixed r ≥ 0, R on (Ω,F , P̂r) is a Bessel process with dimen-

sion d starting at r.

Next, if we replaceW with a d-dimensional Brownian bridgeZ = {(Z1, ..., Zd), F̃(t)}0≤t<∞

defined in {Py}y∈Rd starting from y ∈ Rd:

Z(t) = y(s− t)
s

+B(t)− t

s
B(s), t ∈ [0, s], (2.26)

where B is a d-dimensional Brownian motion. The resulting process R̃ = {R̃(t) =

‖Z(t)‖, F̃(t)}0≤t<∞:

R̃(t) ,
√

(Z1(t))2 + ...+ (Zd(t))2, t ∈ [0, s], (2.27)

is called a d-dimensional Bessel bridge. Let d = 3, by applying Ito’s lemma to R̃, it can be

shown that the three-dimensional Bessel bridge satisfies the SDE of the form:

dR̃(t) = [ 1
R̃(t)

− R̃(t)
s− t

]dt+ dW (t), (2.28)

where W is a 3-dimensional Brownian motion. Combined with the SDE satisfied by η, it

is proved in Davis and Pistorius (2010) that η is actually in law equal to the corresponding
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time-changed 3-dimensional Bessel bridge (R̃(I(t)), t ∈ [0, s)):

dR̃(I(t)) = [ 1
R̃(I(t))

− R̃(I(t))
I(s)− I(t) ]σ2(t)dt+ dW (t), t ∈ (0, s), (2.29)

R̃(I(0)) = A, A ∼ F (ν)
λ .

Since η is in law equal to Y conditional on τY0 = s > 0, the credit index process Y solves

the following SDE:

dY (t) = ( 1
Y (t) −

Y (t)∫ s
t σ

2(q)dq )σ2(t)dt+ σ(t)dB(t), t ∈ (0, s), Y (0) = A, (2.30)

where A ∼ F νλ is independent of B. Based on Bertoin et al. (1999), the path of Y can then

be simulated as (R̃(I(t)), t ∈ [0, s]) by replacing s → I(s), t → I(t), dt → σ2(t)dt and

exploiting the relation between the three-dimensional Bessel bridge and Brownian bridges

as follows:

Y (t) = R̃(t) =

√
(A(s− t)

s
+ Z1(t))2 + Z2

2 (t) + Z2
3 (t), (2.31)

where Zi, i = 1, 2, 3, are independent 0→ 0 Brownian bridges:

dZi(t) = −Zi(t)
s− t

dt+ dBi(t) (2.32)

and Bi are independent Brownian motions.

2.3.2 Unilateral Joint Asset-Credit Modelling via Bessel bridges

Next, the focus is turned to the establishment of a joint asset-credit model to quantify wrong

way/right way risk. To achieve this, characterization of the joint probability distribution of

the stochastic process (Y (t), S(t), t ≤ s) conditional on default (τY0 = s > 0) is required,

where S is the asset value dynamics.

Based on Davis and Pistorius (2010), the conditional law of asset value dynamics is
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identified by correlating its driving Brownian motion with the credit index process Y as fol-

lows. DenoteW = {(W1, ...,Wd), F(t)}0≤t<∞ as a d-dimensional Brownian motion with

correlation matrix Σ = (ρij)di,j=1 defined on a filtered probability space (Ω,F , {Ft}t≥0,P).

For time horizon T > s, we model the corresponding d-dimensional asset value process

S = (S1, ..., Sd) as the Ito-diffusion driven by W :

dSi(t)
Si(t)

= µi(t)dt+
d∑
j=1

vij(t)dWj(t), S(0) = s(0), (2.33)

for {Ft}t≥0-adapted processes µi(t) and vij(t), Σi,j
∫ T

0 {|µi(t)|+ |vij(t)|2}dt <∞, P-a.s.

Let the Brownian motion W correlate with the Brownian motion driving the credit index

process, B(t), [B,Wi] = ρit, t ≥ 0, which can also be expressed as

B(t) =
∫ t

0

1
σ(s)dY (s)− ν

∫ t

0
σ(s)ds. (2.34)

Denote ρ = (ρ1, ..., ρd) as the row-vector of correlations and Q = (Qik)di,k=1 as the

Cholesky decomposition of the matrix Σ − ρρ′, it is shown that W may be expressed in

terms of d+ 1 independent Brownian motions B,B∗, ..., Bd:

Wi(t) = ρiB(t) +
d∑

k=1
QikBk(t) (2.35)

and subsequently the asset value dynamics can be expressed directly in terms of Y (t):

dSi(t)
Si(t)

= [µi(t)−νσ(t)ρi]dt+
1
σ(t)

d∑
j=1

vij(t)ρjdY (t)+
d∑

j,k=1
vij(t)QjkdBk(t), Si(0) = si(0).

(2.36)

Therefore, the asset-credit correlation effect is captured by linking the credit index

process and the asset price process, where wrong way/right way risk can be quantified with

a chosen risk metric calculated by jointly simulating Y and S given a set of asset-credit

correlation scenarios.
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2.4 Unilateral Joint FX-Credit Default Model

In this section, we present a multi-currency framework with correlated interest rates for the

valuation of FX derivatives and calibrate it to the market quotes of interest rate caps and FX

call options. We then integrate the counterparty default model with Bessel bridges into the

multi-currency framework to establish a unilateral joint FX-credit default model, where the

credit index process is calibrated to the market CDS quotes.

2.4.1 FX-Hull-White Hybrid Model

First of all, we follow similarly to Brigo and Alfonsi (2005) and consider the short rate pro-

cess as the sum of a deterministic function and a mean-reverting Markovian process. As a

specific example, we restrict ourselves to the USDJPY FX framework. We define probabil-

ity spaces (Ω,F , {Ft}t≥0,Q$) and (Ψ,G, {Gt}t≥0,QU), where {Ft}t≥0 and {Gt}t≥0 are

the filtrations modelling the US and Japanese market information respectively, Q$ and QU

are the US and Japanese risk-neutral measures generated by their money market accounts

numeraires defined below:

B$(t) = e
∫ t

0 r$(s)ds, BU(t) = e
∫ t

0 rU(s)ds, t ≥ 0, (2.37)

where {r$(t)}t≥0 and {rU(t)}t≥0 are stochastic interest rate processes adapted to {Ft}t≥0

and {Gt}t≥0. The dollar and yen discount factors are then expressed as:

D$(t) = 1
B$(t) , DU(t) = 1

BU(t) (2.38)

and the values of dollar and yen zero-coupon bonds (ZCBs) for maturity T at time t are

P$(t, T ) = EQ$ [e−
∫ T
t
r$(s)ds|Ft], PU(t, T ) = EQU [e−

∫ T
t
rU(s)ds|Gt], (2.39)

which serve as numeraires of US and Japanese T -forward measures QT $
and QTU

.
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2.4. UNILATERAL JOINT FX-CREDIT DEFAULT MODEL

Under the specified probability spaces, the corresponding short rate processes are given

as follows:

r$(t) = θ$(t) + y$(t), r$(0) > 0, (2.40)

rU(t) = θU(t) + yU(t), rU(0) > 0, (2.41)

dy$(t) = −ay$(t)dt+ σ$dW
Q$

$ (t), σ$ > 0, y$(0) = 0, (2.42)

dyU(t) = −byU(t)dt+ σUdW
QU

U (t), σU > 0, yU(0) = 0, (2.43)

where θ$(t) and θU(t) are deterministic functions fitted to the initial term structures of dol-

lar and yen interest rates, WQ$

$ (t) and WQU

U (t) are standard Brownian motions under Q$

and QU, a and b determine the speed of mean reversion and σ$ and σ$ are the diffusion

coefficients. It’s important to note that the theoretical possibility of having negative inter-

est rates under Hull-White model is a clear drawback; however such probability is almost

negligible in practice.

For the USDJPY exchange rate process S(t), we follow Frey and Sommer (1996) and

Sippel and Ohkoshi (2002), assuming that it follows lognormal dynamics under QU:

dS(t)
S(t) = (rU(t)− r$(t))dt+ σSdW

QU

S (t), S(0) > 0, (2.44)

where WQU

S (t) is a Brownian motion under QU and σS is the implied FX volatility. Since

the instrument we consider in the thesis is cross currency swap, a linear product with no

volatility skew exposure, such exchange rate specification is more tractable and feasible for

implementation purposes. More sophisticated FX models with stochastic volatility com-

ponent may be more realistic from an FX perspective but will not improve our setup in a

meaningful way.

For convenience, we consider all the dynamics under QU, where we need to derive the

risk-neutral dynamics of y$(t) under QU. Given the short rate dynamics specified as above,

it can be observed that {r$(t)}t≥0 and {rU(t)}t≥0 are both linear in their state variables

y$(t) and y$(t) respectively. First of all, we introduce the following result.
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2.4. UNILATERAL JOINT FX-CREDIT DEFAULT MODEL

Lemma 2.4.1. The prices of dollar and yen zero coupon bonds at time t with maturity T

are:

P$(t, T, y$(t)) = exp{A$(t, T )− C$(t, T )y$(t)}, (2.45)

PU(t, T, yU(t)) = exp{AU(t, T )− CU(t, T )yU(t)}, (2.46)

where

A$(t, T ) = log P$(0, T )
P$(0, t) +

σ2
$

2a3 [−3
2 + 2e−a(T−t) − 1

2e
−2a(T−t) + 2(e−at − e−aT )− 1

2(e−2at − e−2aT )],

AU(t, T ) = log PU(0, T )
PU(0, t) + σ2

U

2b3 [−3
2 + 2e−b(T−t) − 1

2e
−2b(T−t) + 2(e−bt − e−bT )− 1

2(e−2bt − e−2bT )],

C$(t, T ) = 1− e−a(T−t)

a
,

CU(t, T ) = 1− e−b(T−t)

b
.

Proof. For the proof see Pelsser (2000, Chapter 5).

Furthermore, by applying the Heath-Jarrow-Morton arbitrage-free argument from Heath

et al. (1992), we have the following result.

Lemma 2.4.2. The dollar and yen zero coupon bond pricesP$(t, T, y$(t)) andPU(t, T, yU(t))

with maturity T at time t satisfy the following SDEs:

dP$(t, T, y$(t))
P$(t, T, y$(t)) = r$(t)dt− σ$C$(t, T )dWQ$

$ (t), (2.47)

dPU(t, T, yU(t))
PU(t, T, yU(t)) = r$(t)dt− σUCU(t, T )dWQU

U (t). (2.48)

Proof. For proof see Musiela and Rutkowski (2006, Chapter 4).

Now assume that the risk-neutral dynamics of the dollar zero coupon bond priceP$(t, T, y$(t))

under QU is specified as

dP$(t, T, y$(t))
P$(t, T, y$(t)) = µ(t)dt− σ$C$(t, T )dWQU

$ (t), (2.49)
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2.4. UNILATERAL JOINT FX-CREDIT DEFAULT MODEL

where µ(t) is a time-dependent deterministic function currently unknown and WQU

$ (t) is a

standard Brownian motion under QU. Lemma 2.4.3 provides the risk-neutral dynamics of

y$(t) under QU:

Lemma 2.4.3. Under the yen risk-neutral measure QU, the yen denominated asset S(t)P$(t, T, y$(t))

discounted by BU(t):

S̃(t) = S(t)P$(t, T, y$(t))
BU(t) (2.50)

should be a martingale. By using Ito’s product rule the drift of the dollar zero coupon bond

price dynamics under QU can be expressed as

µ(t) = r$(t)− σ$σSρS,$ (2.51)

and hence

dy$(t) = (−ay$(t)− σ$σSρS,$)dt+ σ$dW
QU

$ (t), (2.52)

where dWQU

$ (t) = dWQ$

$ (t) + σSρS,$dt.

Proof. For proof see Shreve (2004, Chapter 9).

Finally, since the exchange rate process is correlated with both the dollar and yen short

rate processes:

dWQU

S (t)dWQU

U (t) = ρS,Udt, ρS,U ∈ (−1, 1), (2.53)

dWQU

$ (t)dWQU

S (t) = ρS,$dt, ρS,$ ∈ (−1, 1), (2.54)

dWQU

$ (t)dWQU

U (t) = ρ$,Udt, ρ$,U ∈ (−1, 1), (2.55)

and the full correlation matrix of the Brownian motionsWQU

S (t),WQU

$ (t),WQU

U (t) is given

by
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2.4. UNILATERAL JOINT FX-CREDIT DEFAULT MODEL

M =


1 ρS,$ ρS,U

ρS,$ 1 ρ$,U

ρS,U ρ$,U 1

 .

To guarantee that the correlation matrix is positive semi-definite, the following constraints

are imposed on the three correlation parameters:

ρS,Uρ$,U −
√

1− ρ2
S,U − ρ2

$,U + ρ2
S,Uρ

2
$,U ≤ ρS,$ ≤ ρS,Uρ$,U +

√
1− ρ2

S,U − ρ2
$,U + ρ2

S,Uρ
2
$,U,

ρS,$ρ$,U −
√

1− ρ2
S,$ − ρ

2
$,U + ρ2

S,$ρ
2
$,U ≤ ρS,U ≤ ρS,$ρ$,U +

√
1− ρ2

S,$ − ρ
2
$,U + ρ2

S,$ρ
2
$,U,

ρS,UρS,$ −
√

1− ρ2
S,U − ρ2

S,$ + ρ2
S,Uρ

2
S,$ ≤ ρ$,U ≤ ρS,UρS,$ +

√
1− ρ2

S,U − ρ2
S,$ + ρ2

S,Uρ
2
S,$.

2.4.2 Exchange Rate Dynamics Conditional on Default

Under our multi-currency framework, we assume a non-zero correlation between the the

exchange rate process S and the credit index process Y and it can be shown that conditional

on default the former can be expressed directly in terms of the latter.

Given the specification of the multi-currency framework with correlated short rates in

the previous section, the integral form solution of S under QU at time t ≥ 0 for a future

time point T > t can be expressed as:

S(T ) = S(t) exp{
∫ T

t
[rU(s)− r$(s)]ds+ σS [WQU

S (T )−WQU

S (t)]}, (2.56)

where

∫ T

t
rU(s)ds = ln PU(0, t)

PU(0, T ) + yU(t)CU(t, T ) + 1
2[VU(0, T )− VU(0, t)] + σU

∫ T

t
CU(s, T )dWQU

U (s),∫ T

t
r$(s)ds = ln P$(0, t)

P$(0, T ) + y$(t)C$(t, T ) + 1
2[V$(0, T )− V$(0, t)]−

∫ T

t
σ$σSρ$,UC$(s, T )ds

+ σ$

∫ T

t
C$(s, T )dWQU

$ (s),
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with VU(t, T ) and V$(t, T ) expressed as

VU(t, T ) = σ2
U

b2
[T − t+ 2

b
e−b(T−t) − 1

2be
−2b(T−t) − 3

2b ],

V$(t, T ) =
σ2

$
a2 [T − t+ 2

a
e−a(T−t) − 1

2ae
−2a(T−t) − 3

2a ].

On the other hand, the evolution of the credit quality of the counterparty is modelled as the

credit index process Y :

Y (T ) = A+
∫ T

0
νσ2(s)ds+

∫ T

0
σ(s)dWQU(s), Y (0) = A, T > 0, (2.57)

where A ∼ F
(ν)
λ and WQU(t) is a standard Brownian motion under QU. Since WQU

can

be expressed by Y as

WQU(T ) =
∫ T

0

1
σ(s)dY (s)− ν

∫ T

0
σ(s)ds, (2.58)

the dependency between the exchange rate process S and the credit index process Y can be

incorporated by correlating WQU
with WQU

S such that 〈WQU
,WQU

S 〉T = ρS,Y T , ρS,Y ∈

−1, 1). Furthermore, since the exchange rate process is correlated with the two short rate

processes as specified in the previous section by the estimated full correlation matrix, we

can now expand the matrix to incorporate the correlation structure between the Brownian

motions W̃(t) = [WQU

S (t), WQU

$ (t), WQU

U (t), WQU(t)]ᵀ:

dW̃(t)(dW̃(t))ᵀ =



1 ρS,$ ρS,U ρS,Y

ρS,$ 1 ρ$,U 0

ρS,U ρ$,U 1 0

ρS,Y 0 0 1


.

It is important to note that the positive semi-definite condition of the correlation matrix

must be satisfied, which requires that the determinants of the matrix and all of its leading

principal minor matrices must be non-negative and therefore the following constraint needs
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to be imposed on ρS,Y :

−

√√√√1− ρ2
S,$ − ρ

2
S,U − ρ2

$,U + 2ρS,$ρS,Uρ$,U

1− ρ2
$,U

≤ ρS,Y ≤

√√√√1− ρ2
S,$ − ρ

2
S,U − ρ2

$,U + 2ρS,$ρS,Uρ$,U

1− ρ2
$,U

.

(2.59)

We can then express the Brownian motions (WQU
,WQU

S ,WQU

U ,WQU

$ ) in terms of a linear

transformation of four independent standard Brownian motions (WQU
,WQU

1 ,WQU

2 ,WQU

3 ):

WQU

S (T ) = ρS,YW
QU(T ) +

√
1− ρ2

S,YW
QU

1 (T ), (2.60)

WQU

U (T ) = ρ1W
QU

1 (T ) + ρ2W
QU

2 (T ),

WQU

$ (T ) = ρ3W
QU

1 (T ) + ρ4W
QU

2 (T ) + ρ5W
QU

3 (T ),

where

ρ1 = ρS,U√
1− ρ2

S,Y

, ρ2 =

√√√√1−
ρ2
S,U

1− ρ2
S,Y

, ρ3 =
ρS,$√

1− ρ2
S,Y

, (2.61)

ρ4 =
ρ$,U(1− ρ2

S,Y )− ρS,UρS,$√
(1− ρ2

S,Y − ρ2
S,U)(1− ρ2

S,Y )
, ρ5 =

√√√√1− ρ2
4 −

ρ2
S,$

1− ρ2
S,Y

.

The Brownian motion driving the exchange rate process under measure QU conditional

on default can be further expressed directly in terms of the credit index process1. Given

equation 2.58, we have

WQU

S (T ) =
∫ T

0

ρS,U
σ(s)dY (s)− νρS,U

∫ T

0
σ(s)ds+

√
1− ρ2

S,YW
QU

1 (T ), (2.62)

1To clarify, empirical evidence (for example, Russian default in 1997) suggests that there’s a negative cor-
relation between the exchange rate (especially among emerging market currencies) and the credit quality of a
company. Usually a depreciating currency leads to the deterioration in the credit quality of a large corporate
entity, which happens almost simultaneously. Our modelling objective is to capture the negative correlation
between the two suggested by empirical evidence, rather than the causation, and we’re not stating that deterio-
rating credit quality leads to a weakening currency, as it is usually the other way round.
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combining equation 2.60, the exchange rate process S(T ) can be rearranged as

S(T ) = S(t) exp{MU(t, T )−M$(t, T )− 1
2(σS)2(T − t) +

∫ T

t
[σ$σSρS,$C$(s, T )− νσSρS,Y σ(s)]ds}

+ σS
√

1− ρ2
S,YW

QU

1 (T − t) + σU

∫ T

t
CU(s, T )dWQU

U (s)− σ$

∫ T

t
C$(s, T )dWQU

$ (s)

+
∫ T

t

σSρS,Y
σ(s) dY (s)

= S(t) exp{MU(t, T )−M$(t, T )− 1
2(σS)2(T − t) +

∫ T

t
[σ$σSρS,$C$(s, T )− νσSρS,Y σ(s)]ds}

+ σS
√

1− ρ2
S,YW

QU

1 (T − t) + σU

∫ T

t
CU(s, T )d[ρ1W

QU

1 (s) + ρ2W
QU

2 (s)]

− σ$

∫ T

t
C$(s, T )d[ρ3W

QU

1 (s) + ρ4W
QU

2 (s) + ρ5W
QU

3 (s)] +
∫ T

t

σSρS,Y
σ(s) dY (s)

= S(t) exp{MU(t, T )−M$(t, T )− 1
2(σS)2(T − t) +

∫ T

t
[σ$σSρS,$C$(s, T )− νσSρS,Y σ(s)]ds}

+
∫ T

t
[σS

√
1− ρ2

S,Y + ρ1σUCU(s, T )− ρ3σ
$C$(s, T )]dWQU

1 (s)

+
∫ T

t
[ρ2σ

UCU(s, T )− ρ4σ$C$(s, T )]WQU

2 (s)−
∫ T

t
ρ5σ$C$(s, T )dWQU

3 (s) +
∫ T

t

σSρS,Y
σ(s) dY (s),

(2.63)

where

MU(t, T ) = ln PU(0, t)
PU(0, T ) + yU(t)CU(t, T ) + 1

2[VU(0, T )− VU(0, t)],

M$(t, T ) = ln P$(0, t)
P$(0, T ) + y$(t)C$(t, T ) + 1

2[V$(0, T )− V$(0, t)].

2.4.3 Calibration of Multi-Currency Framework

Based on Brigo and Mercurio (2007, Chapter 3), under the Hull-White short rate model

with mean reversion rate a and the short rate volatility coefficient σ, closed-form pricing

formula for an interest rate cap with strike K, maturity T and notional N at time t can be
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expressed as follows:

Cap(t, T,N,K) = N
n∑
i=1

[P (t, ti−1)Φ(−hi + σip)− (1 +Kτi)P (t, ti)Φ(−hi)], (2.64)

σip = σ

√
1− e−2a(ti−ti−1)

a
B(ti−1, ti), B(ti−1, ti) = 1

a
[1− e−a(ti−ti−1)],

hi = 1
σip

ln P (t, ti)(1 +Kτi)
P (t, ti−1) +

σip
2 ,

where P (t, ti) is the zero coupon bond price, {ti}, i = 1, ..., n are the payment dates,

τi = ti − ti−1 and Φ is the cumulative standard normal distribution function.

The parameters of the dollar and yen short rate processes are a, σ$ and b, σU, we

calibrate the two pairs to the implied volatilities of at-the-money (ATM) dollar and yen caps

with maturities up to thirty years respectively on 28th April 2014, summarized in Table

2.4.1:

Maturity ATM Yen Cap Implied Volatility ATM Dollar Cap Implied Volatility
1y 0.6295 0.5735
2y 0.7385 0.7215
3y 0.7772 0.618
4y 0.8068 0.518
5y 0.752 0.4538
6y 0.6743 0.4047
7y 0.6198 0.3763
8y 0.5585 0.3495
9y 0.514 0.332

10y 0.483 0.3198
12y - 0.2957
15y - 0.2703
20y - 0.2452
25y - 0.2388
30y - 0.2343

Table 2.4.1: ATM Yen cap and ATM Dollar cap implied volatility quotes on 28th April
2014. Data Source: Bloomberg

Following the least square calibration procedures taken in Brigo and Mercurio (2007, Chap-

ter 3), we set the range of the mean reversion rates a, b to be in the interval [0.001, 0.1] and
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the range of the volatility parameters to be in the interval (0, 1), the values of the parameters

are:

a = 0.0906, σ$ = 0.0116, b = 0.0397, σU = 0.0061.

The calibration of the USDJPY exchange rate dynamics involves pricing options writ-

ten on the USDJPY exchange rate with maturity T and strike K at time t, whose value is

by market standard expressed as:

V (t, S(t), r$(t), rU(t)) = EQU

t [ BU(t)
BU(T ) max(S(T )−K, 0)+], (2.65)

with BU(t) given in equation 2.37. To reduce the complexity of the pricing problem, we

move from the yen risk-neutral measure generated by the yen money market account to the

yen forward measure where the numeraire is the yen zero coupon bond. Given ST (t) =

S(t) P$(t,T )
PU(t,T ) , by switching from the QU to the forward FX measure QT

U
, we have

V (t, ST (t)) = PU(t, T )EQTU

t [max(ST (T )−K, 0)+]. (2.66)

In order to arrive at a closed-form pricing formula for V (t, ST (t)), we need to deter-

mine the dynamics of the forward exchange rate ST (t). Following Grzelak and Oosterlee

(2011), we first apply Ito’s Lemma to ST (t):

dST (t) = P$(t, T )
PU(t, T )dS(t) + S(t)

PU(t, T )dP$(t, T )− S(t) P$(t, T )
(PU(t, T ))2dPU(t, T )

+ S(t) P$(t, T )
(PU(t, T ))3 (dPU(t, T ))2 + 1

PU(t, T )dS(t)dP$(t, T )

P$(t, T )
(P$(t, T ))2dPU(t, T )dS(t)− S(t)

(PU(t, T ))2dPU(t, T )dP$(t, T ) (2.67)

and plug the risk-neutral dynamics of S(t), P$(t, T ) and PU(t, T ) under QU into equation
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2.67, the forward exchange rate dynamics under QU will then become:

dST (t)
ST (t) = σUCU(t, T )[σUCU(t, T )− ρS,UσS − ρ$,Uσ$C$(t, T )]dt

+σSdWQU

S (t)− σUCU(t, T )dWQU

U (t) + σ$C$(t, T )dWQU

$ (t). (2.68)

Since the forward exchange rate process ST (t) is a martingale under QTU
, we then switch

again from QU to QTU
, which implies that all processes originally under QU will change

their dynamics.

Lemma 2.4.4. Under the yen T -forward measure QTU
, the forward exchange rate dynam-

ics become

dST (t)
ST (t) = σSdW

TU

S (t)− σUCU(t, T )dW TU

U (t) + σ$C$(t, T )dW TU

$ (t), (2.69)

where

dW TU

S (t) = dWQU

S (t)− ρS,UσUCU(t, T )dt,

dW TU

U (t) = dWQU

U (t)− σUCU(t, T )dt,

dW TU

$ (t) = dWQU

$ (t)− ρ$,UσUCU(t, T )dt, (2.70)

and correspondingly the short rate dynamics will become

r$(t) = θ$(t) + y$(t), r$(0) > 0, (2.71)

rU(t) = θU(t) + yU(t), rU(0) > 0,

dy$(t) = (−ay$(t)− σ$σSρS,$ + σ$σUρ$,UCU(t, T ))dt+ σ$dW
TU

$ (t),

dyU(t) = (−byU(t) + σUCU(t, T ))dt+ σUdW
TU

U (t).

Proof. For proof see Grzelak and Oosterlee (2011).

It can be observed in equation 2.69 that through change of measure the forward exchange

rate dynamics no longer depends explicitly on the two short rate processes. Denote a random
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variable S as the sum of three correlated, normally distributed random variables, A ∼

N(µA, v2
A), B ∼ N(µB, v2

B) and C ∼ N(µC , v2
C), it is easily proved that S remains

normal with its mean µS equal to µS = µA + µB + µC and the variance v2
S equal to

v2
S = v2

A + v2
B + v2

C + 2ρA,BvAvB + 2ρA,CvAvC + 2ρB,CvBvC . (2.72)

Therefore, the forward exchange rate dynamics can be rearranged further to:

dST (t)
ST (t) = σTF (t, T )dW TU

F (t), (2.73)

where

σTF (t, T ) = [σ2
S + (σUCU(t, T ))2 + (σ$C$(t, T ))2 + 2ρS,UσUCU(t, T )σS − 2ρS,$σ$C$(t, T )σS

− 2ρ$,UσUσ$CU(t, T )C$(t, T )]
1
2 (2.74)

and W TU

F (t) is a standard Brownian motion under QTU
. Since the change of measure only

involves the change of the drift term of the dynamics, the full correlation matrix is retained

such that:

dW TU

F (t)dW TU

U (t) = ρS,Udt,

dW TU

F (t)dW T $

$ (t) = ρS,$dt,

dW TU

$ (t)dW TU

U (t) = ρ$,Udt.

The integral form solution of ST (T ) can then be easily obtained:

ST (T ) = ST (t) exp(−1
2

∫ T

t
σTF (u, T )2du+

∫ T

t
σTF (u, T )dW TU

F (u)) (2.75)

and the closed-form pricing formula for FX call option can be expressed as:

V (t, ST (t)) = PU(t, T )[ST (t)Φ(d1)−KΦ(d2)], (2.76)
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where

d1,2 =
log(S

T (t)
K )

Γ(t, T )
√
T − t

± 1
2Γ(t, T )

√
T − t,

Γ(t, T )2 = 1
T − t

∫ T

t
σTF (u, T )2du. (2.77)

Before fitting equation 2.76 to the ATM USDJPY FX call options data observed on

28th April 2014 summarized in Table 2.4.2, it is essential to estimate the correlation pa-

rameters ρS,U, ρS,$ and ρ$,U. As indicated in Piterbarg (2006), the correlation parameters

are typically chosen either by historical estimation or from occasionally observed prices of

’quanto’ interest rate derivatives (payoff settled in one currency but linked to rates in an-

other currency). Since the latter is usually illiquid and consequently subject to data gaps,

we decide to estimate the correlation matrix based on historical observations of USDJPY

exchange rate and interest rates given a specific time horizon. We choose the 5-year time

horizon between 28th April 2009 and 28th April 2014 and obtain the estimated values of

the correlation parameters2 as follows:


1 ρS,$ ρS,U

ρS,$ 1 ρ$,U

ρS,U ρ$,U 1

 =


1 −0.33 −0.56

−0.33 1 0.51

−0.56 0.51 1

 .

Given the calibrated parameters for the short rate dynamics in the previous section

and the estimated correlation parameters, the only parameters left to be calibrated is the

volatility coefficient σS of the exchange rate process. Given the spot USDJPY exchange

rate on 28th April 2014 is 102.5, we can then fit the pricing formula of the FX call option

in equation 2.76 to the market data and obtain σS = 0.066.
2The correlation parameters are estimated using the standard Pearson approach. The standard errors are

computed with formula SE =
√

1−ρ2

n−2 , where n is the number of observations, n = 1260. The corresponding
standard errors for ρS,$, ρS,U, ρ$,U are hence 0.026614781, 0.023358681, 0.024251924 respectively.
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Maturity ATM USDJPY FX Implied Volatility
0.25y 0.0706
0.5y 0.0785
1y 0.0877

1.5y 0.518
2y 0.0929
3y 0.1059
5y 0.1254
7y 0.1488

10y 0.1685

Table 2.4.2: ATM USDJPY FX call option implied volatility quotes on 28th April 2014.
Data Source: Bloomberg

2.4.4 Calibration of Risk-Neutral Default Time Distribution

To calibrate the credit index process Y , we consider credit default swaps (CDSs), which

is a contracts written on a reference entity "RN" ensuring protection of its default. Given

maturity T , a CDS involves two counterparties "PB" the protection buyer and "PS" the pro-

tection seller exchanging periodic cash flows, i.e., in the premium leg "PB" makes constant

payment c to "PS" on fixed dates {tk}k=0,...,n, αk = tk − tk−1, tn = T while in the pro-

tection leg in case of default of the reference entity "RN" on the underlying bond before T ,

"PS" will be liable to pay "PB" the unrecovered value of the bond equal to 1 − RR at the

time of default τRN ∈ (tk−1, tk], where RR ∈ (0, 1) is the recovery rate of the underly-

ing bond issued by "RN". Assuming that the CDS contract used for calibration is immune

from default risk from both the protection buyer and seller, we consider a simplified CDS

valuation formula based on Bielecki and Rutkowski (2002):

(1−RR)
n∑
k=1

P (t, tk)αk(Ḡ(tk−1)− Ḡ(tk)) =
n∑
k=1

P (t, tk)αkḠ(tk)π, (2.78)

where P (t, tk) is the zero coupon bond price associated with maturity tk and Ḡ(tk) =

1−G(tk), which can be interpreted as the survival probability of the reference entity before

tk. It is important to note that, for convenience, we choose two counterparties based in the

same credit market. The treatment of quanto adjustment effects involved in calibrating CDS
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contracts written on a foreign counterparty but settled in the domestic currency is out of the

scope of this thesis.

From Theorem 2.2.1, we know that Ḡ can be further expressed in terms of the hazard

function of the market implied risk-neutral default probability distribution:

Ḡ(t) = exp(−
∫ t

0
γ(s)ds), (2.79)

where the piece-wise constant hazard function γ(t) of the default time distribution defined

as

γ(t) = γk, tk ≤ t < tk+1 (2.80)

can be bootstrapped from G and the volatility function of the credit index process can be

expressed as

σ2(t) = γ(t)
λ
, tk ≤ t < tk+1 (2.81)

given a reasonable value of λ, used as a scaling factor for numerical stability purposes in

case the short term hazard rates are too high, leading to chopping and unrealistic evolution

of the credit index process. In this thesis, we set λ = 1, which is the benchmark case that the

variance of the credit index process is equal to the corresponding hazard rate (instantaneous

forward default rate) of the counterparty) at time t. This is reasonable as the hazard rate is a

measure of default intensity and should in turn correspond to the strength of the credit index

variance. This means that given the market CDS term structure of a certain counterparty,

we are able to back out the piece-wise constant values of the hazard function, from which

the corresponding piece-wise constant implied volatility function of the credit index process

can be obtained. We now consider a numerical example on Nomura International given its

market CDS data observed on 28th April 2014 in Table 2.4.3:

The resulting implied hazard function γ and the implied piece-wise constant volatilities of

the credit index process Y are illustrated in Figure 2.4.1 and Figure 2.4.2 respectively.
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Maturity Par CDS Spreads
0.5y 0.00246
1y 0.00261
2y 0.00388
3y 0.00539
4y 0.00792
5y 0.00973
7y 0.01213

10y 0.0137

Table 2.4.3: Market CDS term structure of Nomura International on 28th April 2014.

Figure 2.4.1: Implied hazard function calibrated to 8 CDS quotes on Nomura International
for maturities ranging from 6 months to 10 years.

2.4.5 Bootstrapping of Survival Curves

In this section, we discuss the bootstrap methods for the survival probability curve of a

counterparty. We follow O’Kane (2011), where the interpolation is done on the logarithm of

the survival probability, which can be described as exponentially interpolating the survival

probability. We define

f(t) = −ln(Ḡ(t)). (2.82)
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Figure 2.4.2: Implied volatilities of the credit index process calibrated to 8 CDS quotes on
Nomura International for maturities ranging from 6 months to 10 years.

Based on equation 2.79, we have

f(t) =
∫ t

0
γ(s)ds. (2.83)

We therefore can write

γ(t) = ∂f(t)
∂t

. (2.84)

We can therefore write this interpolation scheme for time t? in terms of f(t?) by differenti-

ating the standard linear interpolation function of f(t):

f(t?) = (tn − t?)f(tn−1) + (t? − tn−1f(tn))
tn − tn−1

(2.85)

and obtain

γ(t?) = ∂f(t?)
∂t?

= f(tn)− f(tn−1)
tn − tn−1

. (2.86)

Since γ(t?) does not depend on t?, this interpolation scheme shows that γ(t?) is constant be-

tween the interpolation limits, which indicates that linear interpolation of the log of survival

probability is equivalent to assuming piece-wise constant forward default rate γ(t). There-
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Figure 2.4.3: Interpolated default probability curve generated from CDS quotes of Nomura
International on 28th April 2014.

fore, constant continuously compounded forward default rate at time t?, tn−1 < t? < tn

as

γ(t?) = γ(tn−1) = 1
tn − tn−1

ln(Ḡ(tn−1)
Ḡ(tn)

). (2.87)

The formula for the survival probability at time t? is therefore

Ḡ(t?) = Ḡ(tn−1) exp((t? − tn−1)γ(tn−1)). (2.88)

This ensures no arbitrage between the interpolation points as γ(t) ≥ 0 such that Ḡ(tn) ≤

Ḡ(tn−1). For more details, please refer to O’Kane (2011). Figure 2.4.3 is the interpolated

default probability curve for Nomura International given the CDS quotes on 28th April

2014.

2.5 Numerical Tests

In this section, we perform numerical examples of our joint FX-credit model and quantify

the impact of wrong way correlation on the counterparty exposure of FX derivatives through

various risk measures. We will continue to use the values of the model parameters having

been calibrated to market data on 28th April 2014 in the previous sections. First of all,
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we introduce the two FX derivatives we consider in the numerical examples, which are FX

forwards and cross currency swaps.

2.5.1 Comparison with Hull and White (2001)

Since our approach is a further development of the inverse first-passage time approach. It

would be necessary to compare with a similar approach, for example Hull and White (2001).

Under their approach, the credit index process is assumed to be a standard Brownian motion

starting from 0, with variance 1 per year. The default barrier is explicitly bootstrapped such

that given a discrete set of default times, the first time the credit index process crosses the

barrier level yields a distribution equal to the market implied default probability density. As

a numerical example, we choose to bootstrap the default barrier of Nomura International

given the CDS quotes on 28th April 2014 provided in Table 2.4.3. In order to make the

default barrier close to the continuous case, we set 1000 default points with time step 0.05

(years) up to 10 year period, see Figure 2.5.1 the bootstrapped default barrier. The MAT-

LAB running time for bootstrapping the default barrier only is 3140 seconds (≈ 53 min).

First of all, the drawback of this approach is accuracy as numerical methods are applied to

approximate the continuous integral and solve for the barrier level that renders the proba-

bility generated by the model to be equal to the market implied one in the discrete case.

And interpolation or extrapolation scheme will have to be used to obtain the intermediate

barrier levels in between the discrete default time points, leading to further inaccuracy and

even arbitrage opportunities. Furthermore, the default barrier is generated based on the as-

sumption that the credit index process follows a normal distribution, which is not the case in

reality and consequently the default barrier generated is not a true reflection of the distance

to default and capital structure of the company, leading to bias in counterparty exposure

calculations. Third, the more default points you introduce to smoothen the default barrier,

the longer it will take to bootstrap the default barrier.

With our approach, a fixed zero barrier is chosen, which avoids the explicit bootstrap-

ping of the default barrier while maintaining an exact calibration to the market implied
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Figure 2.5.1: Implied Default barrier generated from CDS quotes of Nomura International
on 28th April 2014, based on Hull and White (2001) approach.

default probability distribution of any form, not limited to normal. In addition, the volatility

of the credit index process is calibrated to the piece-wise constant hazard rates of the default

time distribution, which is more realistic and flexible and the random starting point offers

an extra degree of freedom.

2.5.2 FX Forward

An FX forward contract is an agreement to purchase or sell a set amount of a foreign cur-

rency at a specified priceK for settlement at a predetermined time T in the future. The strike

price K is usually set to be equal to the at-the-money forward exchange rate at inception

ST (0):

ST (0) = S(0) ∗ 1 + T ∗Rd(0, T )
1 + T ∗Rf (0, T ) , (2.89)

where Rd(0, T ) and Rf (0, T ) are the domestic and foreign zero rates for maturity T .

Specifically, the yen and dollar zero rates for maturity T in our example. The payoff of

the FX forward at maturity T is:

V (T ) = S(T )−K. (2.90)
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2.5.3 Cross Currency Swap

A cross currency swap (CCS), also referred to as cross currency interest rate swap, is an

agreement between two counterparties, "A" and "B", to exchange interest rate payments

denominated in two different currencies periodically. Unlike single currency interest rate

swaps, a CCS involves actual exchange of notionals in the two currencies at both inception

and expiration. Specifically, for constant notional CCSs the notional to be exchanged at

expiry is based on the exchange rate at inception while for Mark-to-Market (MtM) CCSs

the notional is reset periodically using the prevailing spot exchange rate.

Since cross currency basis spreads are involved in floating-for-floating cross currency

swaps and the treatment of such spreads has become increasingly sophisticated since the

2007-2008 financial crisis where increased liquidity and credit risks caused the spreads to

widen significantly and behave in a quite volatile fashion, to simplify the matter, we consider

fixed-for-fixed cross currency swap, where periodic fixed rate payments denominated in two

different currencies are exchanged. Specifically, given the currency pair USDJPY and the

contract maturity T , we assume that party "A" is the yen payer while party "B" is the dollar

payer, we denote the USDJPY exchange rate process as S(t) and the quarterly payment

dates as {Ti}ni=0, with T0 = 0, Tn = T and δi = Ti−Ti−1, the cash flows of the trade from

the point of view of party "A" can be described as follows:

• At T0 = 0, pay dollar notional N$
0 , receive yen notional NU

0 = S(0)N$
0

• At Ti, i = 1, ..., n, receive N$
0 δiK

$ and pay NU
0 δiK

U quarterly, where K$ and KU

are the constant dollar and yen fixed payment rate agreed at T0 such that the contract

is entered into at zero cost

• At Tn = T , receive dollar notional N$
0 , pay back the yen notional NU

0
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2.5.4 Cross Currency Swap Valuation Formula

Suppose we are at time t ∈ (Tj−1, Tj ], j = 1, ..., n, according to Brigo et al. (2013), the

mark-to-market value of the fixed-for-fixed cross currency swap V (t) denominated in yen

terms from the point of view of the yen payer can be expressed as

V (t) = EQU

t [N$
0

n∑
i=j

S(Ti)K$δie
−

∫ Ti
t

rU(s)ds −NU
0

n∑
i=j

KUδie
−

∫ Ti
t

rU(s)ds

+ (−NU
0 + S(Tn)N$

0 )e−
∫ Tn
t

rU(s)ds]

= N$
0

n∑
i=j

E
TU
i

t [S(Ti)]K$δiPU(t, Ti)−NU
0

n∑
i=j

KUδiPU(t, Ti)

+ (−NU
0 + E

TU
n

t [S(Tn)]N$
0 )PU(t, Tn), (2.91)

where EQU

t and ET
U
i

t are conditional expectations taken under QU and QTU
i respectively.

Since the forward USDJPY exchange rate process S(t, Ti) = S(t) P$(t,Ti)
PU(t,Ti) is a martingale

under QTU
i , equation 2.91 can be rearranged as

V (t) = N$
0

n∑
i=j

S(t, Ti)K$δiPU(t, Ti)−NU
0

n∑
i=j

KUδiPU(t, Ti)

+ (−NU
0 + S(t, Tn)N$

0 )PU(t, Tn). (2.92)

Furthermore, define for the dollar leg

K$
Ti

=


K$

S(0) , i = j + 1, ..., n− 1
K$+ 1

δi
S(0) , i = n
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then we have

V (t) = NU
0 [N

$
0

NU
0

n∑
i=j

S(t, Ti)K$δiPU(t, Ti)−
n∑
i=j

KUδiPU(t, Ti)

+ (−1 + S(t, Tn)N
$
0

NU
0

)PU(t, Tn)]

= NU
0 [ 1
S(0)

n∑
i=j

S(t, Ti)K$δiPU(t, Ti)−
n∑
i=j

KUδiPU(t, Ti)

+ (−1 + S(t, Tn)
S(0) )PU(t, Tn)]

= NU
0 [

n∑
i=j

S(t, Ti)K$
Ti
δiPU(t, Ti)−

n∑
i=j

KUδiPU(t, Ti)− PU(t, Tn)]. (2.93)

Finally, define for the yen leg

KU
Ti =


KU, i = j + 1, ..., n− 1

KU + 1
δi
, i = n

and we have

V (t) = NU
0 [

n∑
i=j

S(t, Ti)K$
Ti
δiPU(t, Ti)−

n∑
i=j

KU
TiδiPU(t, Ti)]

= NU
0 [

n∑
i=j

S(t)K$
Ti
δiP$(t, Ti)−

n∑
i=j

KU
TiδiPU(t, Ti)]. (2.94)

As can be seen in equation 2.94, V (t) is driven by the USDJPY exchange rate process and

the two interest rate processes driving the values of the dollar and yen ZCBs.

2.5.5 Case Study I

In this case study, we consider a 5-year FX forward contract traded on 28th April 2014

between a US financial institution assumed to be default-free, taking a long position in the

FX forward and Nomura Securities assumed to be defaultable, taking a short position in

the FX forward. Since the FX forward can only be settled at maturity, the default can only

occur at time τY0 = 5Y and we are able to estimate the counterparty exposure from the
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perspective of the US financial institution through Monte-Carlo simulations. We consider

a set of exogenously specified correlation scenarios (ρS,Y = −0.5,−0.3, 0,+0.3,+0.5)

between the credit index process and the exchange rate process and illustrate the impact of

varying correlations on PFEs and EPEs.

We depict the histograms of the Monte Carlo approximations of the contract value

conditional on default at time τY0 = 5Y for each correlation scenario. In Figure 2.5.2(a)-

2.5.2(b), it can be observed that in the case of negative exchange rate-credit correlations

(wrong way risk), ρS,Y = −0.5,−0.3 where as the credit quality of Nomura Securities

deteriorates the counterparty exposure increases, the probability distribution of the counter-

party exposure tends to have fatter right tail and correspondingly the US financial institution

is expected to have larger expected positive exposure compared to that of the zero correla-

tion case in Figure 2.5.4, where the credit quality of Nomura Securities is independent of

the exchange rate process. As ρS,Y gradually increases to positive levels (right way risk),

ρS,Y = 0.3, 0.5 as shown in Figure 2.5.3(a)-2.5.3(b) where as the credit quality of Nomura

Securities deteriorates the counterparty exposure diminishes, the probability distribution of

the counterparty exposure begins to move towards the negative territory and there is an

increasing likelihood that the US financial institution will have negative counterparty expo-

sure to Nomura International. Hence, it can be observed that the expected positive exposure

will decrease as exchange rate-credit correlation increases from zero to positive levels.

Next, we compute the PFEs of the cross currency swap contract from the perspective

of the US financial institution at confidence interval α equal to 97.5% and 2.5% respectively

across the same set of exchange rate-credit correlation scenarios. Along with the EPEs, we

observe in Figure 2.5.5 that the three set of quantities are all decreasing as the exchange

rate-credit correlation increases, which is in line with intuition.
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(a) ρS,Y = −0.5 (b) ρS,Y = −0.3

Figure 2.5.2: Histograms of simulated exposure of 5-year USDJPY FX forward contract
with strike K = 95 at T = 5Y when ρS,Y = −0.5 and ρS,Y = −0.3.

(a) ρS,Y = 0.3 (b) ρS,Y = 0.5

Figure 2.5.3: Histograms of simulated exposure of 5-year USDJPY FX forward contract
with strike K = 95 at T = 5Y when ρS,Y = 0.3, 0.5.

(a) Histogram

Figure 2.5.4: Histograms of simulated exposure of 5-year USDJPY FX forward contract
with strike K = 95 at T = 5Y when ρS,Y = 0.

52



2.5. NUMERICAL TESTS

Figure 2.5.5: EPEs and PFEs of the 5-year USDJPY FX forward contract across correlation
scenarios (ρS,Y = −0.5,−0.3, 0,+0.3,+0.5).

2.5.6 Case Study II

The second case study involves a hypothetical 5-year fixed-for-fixed USDJPY cross cur-

rency swap with unit notional traded between the same counterparties on the same date

as in the first case study. The fixed swap rates for the dollar and yen leg are set to be

K$ = 1.5% and KU = 1.38% respectively. Here, given the same set of exchange rate-

credit correlation scenarios (ρS,Y = −0.5,−0.3, 0,+0.3,+0.5), we compute the EPEs and

PFEs with α = 97.5%, 2.5% of the contract value on a quarterly basis throughout the life

of the contract, assuming that default occurs on one of the payment dates.

First of all, as shown in Figure 2.5.6(a), in the cases of negative exchange rate-credit

correlations, ρS,Y = −0.5,−0.3 (wrong way risk) illustrated in the top two lines, the EPEs

upon default are higher compared to that of the corresponding zero and positive correlation

scenarios across time. Furthermore, if the counterparty defaults early during the life of the

contract (e.g. τY = 0.25), it can be observed that for ρS,Y = −0.5,−0.3 respectively EPE

goes up dramatically higher compared to the cases where the counterparty defaults at a later

time during the life of the contract. The reason for this is that an early default time would
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mean the credit quality of the counterparty deteriorates to default status more rapidly within

a very short period of time, resulting in downward leaps of greater magnitudes for the credit

index process and the negative dependence relationship between the credit index process

and the exchange rate process indicates that the exchange rate will rise significantly, driving

the EPE up. The opposite phenomenon can be observed in the case of positive correlations,

ρS,Y = 0.3, 0.5 where early default leads to considerably lower EPEs compared to default

occurring at a later payment date. Finally, unlike interest rate swaps where there is no actual

exchange of notional, cross currency swap contracts do involve notional exchanges at both

the inception and maturity with the latter contributing predominantly to the counterparty

exposure. Therefore, if default occurs at the maturity of the contract, the US financial

institution is expected to have non-zero EPE to Nomura Securities. Similar observations

can be found for PFEs with 97.5% confidence interval as shown in Figure 2.5.7.

Regarding the PFEs with 2.5% confidence interval, since they represent the left tail

region of the probability distribution of the simulated counterparty exposures, it can be

observed in Figure 2.5.8 that the PFEs are lower than that of their counterparts in Figure

2.5.7 and the case where ρS,Y = 0.5, illustrated in the bottom line of Figure 2.5.8, provides

the US financial institution with the lowest PFEs 2.5% throughout the life of the contract.

2.6 Conclusions

In this chapter, we have developed a joint model for the exchange rate and counterparty de-

fault risk, which enables us to capture unilateral wrong way/right way risk of cross currency

swap trades given an exogenously specified set of exchange rate-credit correlation scenar-

ios. We take the first step by establishing a multi-currency framework for cross currency

swap valuation based on FX-Hull-White hybrid model with correlated one-factor short in-

terest rate processes. We assume constant parameters for the short rate and exchange rate

dynamics and calibrate them to ATM interest rate caps and vanilla FX options data observed

in the market on the same specific date correspondingly. The correlation between the short
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(a) Wrong Way Expected Positive Exposure

(b) Right Way Expected Positive Exposure

Figure 2.5.6: EPEs of the 5-year USDJPY fixed-for-fixed cross currency swap computed on
a quarterly basis across exchange rate-credit correlation scenarios.

rate processes and their correlations with the exchange rate are obtained by historical esti-

mation.

Secondly, we follow Davis & Pistorius (2010) to model the default time of counter-

party as the first passage time of a credit index process crossing the zero barrier. With
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(a) Wrong Way Potential Future Exposure 97.5%

(b) Right Way Potential Future Exposure 97.5%

Figure 2.5.7: PFEs 97.5% of the 5-year USDJPY fixed-for-fixed cross currency swap com-
puted on a quarterly basis across exchange rate-credit correlation scenarios.

the appropriate specification of the initial distribution of the random starting point, time-

dependent drift and volatility component, the default time distribution of the counterparty

generated by the model is consistent with one implied from the market CDS term structure

of the counterparty. It is shown that the law of the credit index process conditional on de-

fault occurring at τY can be identified in terms of a time-changed three-dimensional Bessel
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Figure 2.5.8: PFEs 2.5% of the 5-year USDJPY fixed-for-fixed cross currency swap com-
puted on a quarterly basis across exchange rate-credit correlation scenarios.

bridge with the same starting point as Y . The exchange rate process conditional on default

can be expressed directly in terms of the time-changed three-dimensional Bessel bridge.

Finally, we conduct case studies on two hypothetical cross currency swap contracts

traded between a US financial institution assumed to be default-free and Nomura Interna-

tional assumed to be defaultable. Monte Carlo simulation is applied to compute EPEs and

PFEs of the contract for various exchange rate-credit correlation scenarios to quantify the

impact of wrong way/right way risk on the counterparty exposure.

It can be illustrated in the numerical examples that negative asset-credit correlation

can have a significant impact on the counterparty exposure profiles compared with the case

where such correlation is taken the value zero. The simultaneous occurance of currency

devaluation and counterparty credit quality deterioration is properly captured as shown in

the EPE/PFE profiles. Furthermore, our comparision with Hull and White (2001) shows that

our model is more efficient as no numerical identification of the default barrier is required

and more accurate since the default probabilities generated are calibrated exactly to the

market implied ones.
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Chapter 3

Bilateral Counterparty Risk

Modelling of Cross Currency Swaps

3.1 Chapter Overview

Soon after the financial crisis, given the high profile defaults of Bear Stearns, Lehman Broth-

ers and write-downs associated with insurance purchased from monoline insurance compa-

nies, there has been an increasing trend of considering the bilateral nature when quantifying

counterparty risk. A clear advantage of doing so is that it will dampen the effect of credit

spread increases by offsetting the MTM losses arising from increases in required reserves

held against some proportion of expected and unexpected losses taking into account hedges.

This will in turn require financial institutions to attach economic value to its own defaults

and cause a derivatives portfolio with counterparty risk to be more valuable than the equiv-

alent risk-free positions. For example, Citigroup, in its press release on its first-quarter

revenues, reported a positive MTM due to its worsened credit quality: "Revenues also in-

cluded... a net $2.5 billion positive CVA on derivative positions, excluding monolines,

mainly due to the widening of Citi’s CDS spreads." Gregory (2009) discusses the bilat-

eral pricing of counterparty risk and presents an approach that accounts for default of both
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parties. He argues that the unilateral treatment of counterparty risk neglects the fact that an

institution may default before its counterparty, in which case the counterparty default would

become irrelevant. In addition, the institution actually gains following its own default as it

will pay its counterparty only a fraction of the contract value. Interestingly, a simplified

formula for bilateral risk that is often used in the industry, which, instead of considering

the full bilateral CVA framework as in the previous articles, is based on subtracting the uni-

lateral CVAs from the point of view of the party who is doing the calculation. The reason

why the simplified formula is appealing is that it allows one to compute a bilateral CVA

adjustment by resorting to unilateral ones. This way one needs not implement a bilateral

CVA system, but only needs to combine the output of a unilateral CVA one. The problem

with this approach is that it ignores the fact that upon first to default of either party, closeout

proceedings are started and the transaction is closed. Consequently, it involves inconsistent

scenarios in the two terms. With the simplified formula, DVA payout term may still be

considered even in a scenario where the counterparty defaults first and the transaction will

be closed with a solvent investor. Brigo et al. (2011a) compare the correct one and the one

neglecting the first to default check and closeout in detail and find that a sizeable difference

between the two formulas are obtained even assuming no credit spread volatility or wrong

way risk in the CVA model. The bilateral issue is further studied by the work of Brigo and

Capponi (2010), which restrict the analysis to CDSs as the underlying portfolio. Motivated

by Brigo and Chourdakis (2009) who partially address the issue of modelling credit spread

volatility and wrong way risk but only deal with unilateral and asymmetric counterparty

risk, the authors rectify the issue by considering bilateral nature of counterparty risk. Based

on the possibility of bilateral defaults, they derive a symmetric mathematical expression for

bilateral CVA, where both counterparty can agree on its value.

In this chapter, we generalize the unilateral counterparty default framework proposed

in Chapter 1 to the bilateral version to capture the impact of the following three correlations

embedded in a foreign exchange setting. Similar to Brigo and Capponi (2010), we extend

the unilateral FX-credit dependency between the exchange rate and the counterparty quality

to capture the following correlations:
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• Dependence between default of the counterparty and default of the investor

• Dependence between the underlying asset value and the credit quality of the counter-

party

• Dependence between the underlying asset value and the credit quality of the investor

The three dependence structures are explicitly incorporated onto the credit index processes

of the two counterparties and the exchange rate dynamics such that the range of asset-credit

and default correlations that can be captured are enriched. Furthermore, This is one of the

main contributions of the chapter as opposed to the existing reduced-form approaches where

the bilateral asset-credit dependencies are usually captured through a Copula function and

based on the choice of the function the range of correlation that can be captured is often

limited (e.g. Gaussian Copula).

We model the credit quality of the investor and counterparty as credit index processes

in the form of two linear time-inhomogeneous Brownian motions and their times of default

as the first-passage times the credit index processes down-cross zero respectively. Given

the explicit solution of the IFPT problem derived in Davis and Pistorius (2010), it can be

easily shown that our model yields an exact calibration to the CDS quotes for the investor

and counterparty. To model the default correlation between the investor and counterparty,

one would usually attempt to identify the bivariate joint default time distribution. How-

ever, results for the first-passage time problem of correlated Brownian motions are scarce

and fragmentary and many require computationally intensive numerical schemes to approx-

imate the joint density function (see, for example, Metzler (2010); Sacerdote et al. (2016)).

We propose a comparatively simple approach by imposing the default correlation onto the

Brownian motions driving the two credit index processes and express them as a linear trans-

formation of a vector of two independent Brownian motions through Cholesky decompo-

sition. Specifically, to model first-to-default of either the investor or the counterparty at a

particular time s > 0 in the future, we simulate the credit index process of the assumed

first-to-default party in terms of its corresponding three-dimensional time-changed Bessel

bridge hitting zero for the first time. We then show that it can be used to retrieve the cor-
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responding path of the credit index process of the other party which may have or have not

defaulted prior to time s via their correlated driving Brownian motions and we only con-

sider cases where the other party has not defaulted at time s. In this setting, dependence

between the two credit index processes and the asset value dynamics can be incorporated by

introducing correlations between their driving Brownian motions and it can be shown that

the asset value dynamics at time s can be effectively expressed directly in terms of the credit

index process of the first-to-default party. A major contribution of this framework is that

there is no need finding the joint default probability distribution function of the two credit

index processes. With the traditional structural approaches, this often involves sophisticated

PDE systems and heavy numerical methods to derive joint default distribution and bilateral

counterparty exposure and CVA formulas. A joint asset-credit model is then built under

a foreign exchange setting to quantify the impact of the previously mentioned three cor-

relations on the modified expected positive/negative exposure (EPEmod/ENEmod) from the

point of view of the investor and the counterparty. Numerical examples shows that both

counterparty risk measures are sensitive to default correlation and FX-credit dependency

structures. Therefore, our approach provides a tractable and flexible way of capturing the

impact of wrong way/right way risk and default correlations in exposure and CVA calcula-

tions for FX derivatives.

3.2 Bilateral Joint Asset-Credit Modelling via Bessel bridges

Let us model the credit quality of the investor and the counterparty as credit index processes

YI and YC defined as follows:

YI(t) = AI +
∫ t

0
νIσ

2
I (s)ds+

∫ t

0
σI(s)dBI(s), YI(0) = AI , t ∈ (0, T ], (3.1)

YC(t) = AC +
∫ t

0
νCσ

2
C(s)ds+

∫ t

0
σC(s)dBC(s), YC(0) = AC , t ∈ (0, T ], (3.2)

where AI ∼ F νIλI and AC ∼ F νCλC are independent of BI and BC respectively and the

two credit index processes are correlated via their driving Brownian motions [BI , BC ]t =
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ρI,Ct, t > 0. Through Cholesky decomposition, BI and BC can be expressed in terms of a

linear transform of a vector of independent Brownian motions:

BI(t) = ρI,CBC(t) +
√

1− ρI,CB∗(t), (3.3)

where B∗ is a Brownian motion independent of BC . Since

dYI(t) = νIσ
2
I (t)dt+ σI(t)dBI(t), YI(0) = AI , t ∈ (0, T ], (3.4)

dYC(t) = νCσ
2
C(t)ds+ σC(t)dBC(t), YC(0) = AC , t ∈ (0, T ], (3.5)

and

dBI(t) = 1
σI(t)

dYI(t)− νIσI(t)dt, (3.6)

dBC(t) = 1
σC(t)dYC(t)− νCσC(t)dt. (3.7)

By integrating both sides of the above two equations, BI and BC can be expressed in terms

of YI and YC respectively as

BI(t) =
∫ t

0

1
σI(s)

dYI(s)− νI
∫ t

0
σI(s)ds, (3.8)

BC(t) =
∫ t

0

1
σC(s)dYC(s)− νC

∫ t

0
σC(s)ds. (3.9)

Suppose that the counterparty defaults at time τC = s, s ∈ (t, T ], by which time the

investor may or may not have defaulted, given the conditional law of the credit index process

on default identified in the previous section, YC conditional on τC = s is in law equal to

that of the three-dimensional Bessel bridge satisfying the SDE:

dYC(t) = ( 1
YC(t) −

YC(t)∫ s
t σ

2
C(u)du

)σ2
C(t)dt+ σC(t)dBC(t), t ∈ (0, s), YC(0) = AC

(3.10)
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and simulated as

YC(t) =
√

[AC(IC(s)− IC(t)
IC(s) + Z2

1 (IC(t))]2 + Z2
2 (IC(t)) + Z2

3 (IC(t)), (3.11)

whereZi, i = 1, 2, 3, are independent 0→ 0 Brownian bridges defined in 2.32 and IC(t) =∫ t
0 σC(u)du.

For each simulated path of YC , we can obtain the corresponding path of BC through

equation 2.58 and then by independently simulating the path ofB∗ we can generate the path

of the Brownian motion driving the investor’s credit index up to time s via equation 3.3:

BI(t) = ρI,CBC(t) +
√

1− ρ2
I,CB∗(t)

= ρI,C [
∫ t

0

1
σC(s)dYC(s)− νC

∫ t

0
σC(s)ds] +

√
1− ρ2

I,CB∗(t), (3.12)

and then based on equation 3.1 we can retrieve the path of YI , which may have not or have

crossed zero at time s, see Figure 3.2.1 for the sample paths of credit index processes of

the investor and the counterparty. When we calculate the counterparty exposure from the

investor point of view, we only pick the cases where YI has not crossed zero at time s.

Similarly, suppose that the investor defaults at time τI = s, s ∈ (t, T ], we can also retrieve

the path of the credit index process of the counterparty from that of the investor. Again we

will pick the cases where YC has not crossed zero at time s to calculate the investor’s default

exposure from the counterparty point of view.

Figure 3.2.1: Sample paths of investor and counterparty credit index processes, conditional
on counterparty default at time 2Y.
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Hence, instead of identifying the joint distribution density function of YI and YC

through computationally intensive numerical methods and jointly simulating their paths,

the model is constructed such that the path of one party’s credit index process conditional

on default at a particular time can be simulated, based on which the corresponding path

of the other party’s credit index process can be extracted through their correlated driving

Brownian motions.

We now show how to characterize the conditional law of the asset price dynamics on

first-to-default and embed the asset-credit dependencies associated with both the investor

and the counterparty. Let us follow the asset value dynamics specified in equation 2.33.

Now that the d-dimensional Brownian motion driving the asset price is correlated with BI

and BC respectively, with [BI ,Wi] = ρI,it and [BC ,Wi] = ρC,it, t > 0. The correspond-

ing row-vector correlation are denoted by ρI = (ρI,1, ..., ρI,d) and ρC = (ρC,1, ..., ρC,d). If

we denote Bx, x = I, C, as the Brownian motion driving the credit index process Yx of the

first-to-default party that defaults at a particular time τx = s, s ∈ (t, T ], and the associated

asset-credit correlation as ρx = (ρx,1, ..., ρx,d), then W can be expressed in terms of d+ 2

independent Brownian motions Bx, B∗, B1, ..., Bd by

Wi(t) = ρx,iBx(t) + ρ∗iB∗(t) +
d∑

k=1
QikBk(t), i = 1, ..., d, (3.13)

where ρ∗i = ρy,i−ρI,Cρx,i√
1−ρ2

I,C

, ρy,i is the asset-credit correlation associated with the non-default

party and Q = (Qik)di,k=1 is the Cholesky decomposition of the matrix Σ − ρxρ
′
x −

ρ∗ρ
′
∗, ρ∗ = (ρ∗1, ..., ρ∗d). The asset price dynamics can now be expressed in terms of the

credit index process of the first-to-default party Yx and the independent Brownian motions

B∗, B1, ..., Bd as:

dSi(t)
Si(t)

= [µi(t)− νxσx(t)ρx,i]dt+ 1
σx(t)

d∑
j=1

vij(t)ρx,jdYx(t) +
d∑
j=1

vij(t)ρ∗jdB∗(t) +
d∑

j,k=1
vij(t)QjkdBk(t),

S(0) = s(0). (3.14)

where the asset-credit correlation associated with the investor and the counterparty is em-
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bedded through the credit index process of the first-to-default party Yx and the independent

Brownian motion B∗ defined as part of the linear transform in equation 3.3.

3.3 Application to Foreign Exchange Setting

In this section, we will apply our bilateral IFPT model with Bessel bridges to the foreign

exchange setting established in Chapter 1. We integrate our bilateral default model into the

multi-currency framework and establish a joint FX-credit bilateral default model.

3.3.1 Calibration of Risk-Neutral Default Time Distribution

First of all, we model the credit quality of the investor and the counterparty as two credit

index processes YI and YC as in section 3.2. In order to specify the volatility functions σI(t)

and σC(t), t ≥ 0 such that the default time distribution of the investor and the counterparty

is consistent with the market, we need to obtain the market implied risk-neutral default

probability distributions and back-out the implied hazard rate functions, to which σI(t) and

σC(t) are taken proportional as in equation 2.8.

In this paper, we consider Daiwa Securities and Nomura Securities as the investor and

the counterparty respectively and obtain their market CDS quotes observed on 28th April

2014, given in Table 3.3.1. Both recovery rates are set to be RR = 35%. The implied

piece-wise constant hazard functions γI(t) and γC(t), t ≥ 0 are displayed in Figure 3.3.1a

and 3.3.2a respectively. As an example, we also set λI = 1 and λC = 1, the corresponding

implied volatility functions σI(t) and σC(t), t ≥ 0 are displayed in Figure 3.3.1b and

3.3.2b.
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Maturity Daiwa Securities CDS Par Spreads Nomura Securities CDS par Spreads
0.5y 0.0017 0.00246
1y 0.00234 0.00261
2y 0.00334 0.00388
3y 0.0046 0.00539
4y 0.0057 0.00792
5y 0.00705 0.00973
7y 0.00978 0.01213
10y 0.01183 0.0137

Table 3.3.1: Market CDS term structures of Daiwa Securities and Nomura Securities on
28th April 2014. Data Source: Bloomberg

(a) Implied Hazard Rate (b) Implied Credit Index Volatility

Figure 3.3.1: Implied hazard rate and credit index volatility term structure from par CDS
spreads of Daiwa Securities observed on 28th April 2014.

(a) Implied Hazard Rate (b) Implied Credit Index Volatility

Figure 3.3.2: Implied hazard rate and credit index volatility term structure from par CDS
spreads of Nomura Securities observed on 28th April 2014.
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3.3.2 Exchange Rate Dynamics Conditional on First-to-Default

For simplicity, we assume that the credit index processes YI and YC are correlated with the

exchange rate process and independent of the two interest rate processes though additional

correlation structure can be introduced if necessary. As in section 3.2, we denote the credit

index processes of the first-to-default and non-default parties as Yx, x = I, C, Yy, y = I, C,

x 6= y and the respective asset-credit correlation as ρx,S , ρy,S ∈ (−1, 1). We also assume

that the driving Brownian motions WI and WC are both defined under the yen risk-neutral

measure QU such that the default probabilities of the dollar counterparty implied from the

yen risk-neutral measure are consistent with those from the dollar risk-neutral measure.

Based on equation 3.12 and 3.14, we can express the Brownian motions driving Yx,

Yy, S, r$, rU as

WQU

x (t) =
∫ t

0

1
σx(s)dYx(s)− νx

∫ t

0
σx(s)ds, x = I, C, (3.15)

WQU

y (t) = ρI,CW
QU

x (t) +
√

1− ρ2
I,CW

QU

∗ (t), y = I, C, x 6= y, (3.16)

WQU

S (t) = ρx,SW
QU

x (t) + ρ1W
QU

∗ (t) +
√

1− ρ2
x,S − ρ2

1W
QU

1 (t), (3.17)

WQU

U (t) = ρ2W
QU

1 (t) +
√

1− ρ2
2W

QU

2 (t), (3.18)

WQU

$ (t) = ρ3W
QU

1 (t) + ρ4W
QU

2 (t) + ρ5W
QU

3 (t), (3.19)

where WQU

∗ , WQU

1 , WQU

2 , WQU

3 , WQU

4 are independent Brownian motions under QU and

ρ1 = ρy,S − ρI,Cρx,S√
1− ρ2

I,C

, ρ2 = ρS,d√
1− ρ2

x,S − ρ2
1
, ρ3 = ρS,f√

1− ρ2
x,S − ρ2

1
,

ρ4 =
ρd,f (1− ρ2

1 − ρ2
x,S)− ρS,dρS,f√

(1− ρ2
1 − ρ2

x,S − ρ2
S,d)(1− ρ2

1 − ρ2
x,S)

, ρ5 =
√

1− ρ2
3 − ρ2

4.

The full correlation matrix of Brownian motions WQU

x , WQU

y , WQU

S ,WQU

U ,WQU

$ is now
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H =



1 ρS,$ ρS,U ρS,Yx ρS,Yy

ρS,$ 1 ρ$,U 0 0

ρS,U ρ$,U 1 0 0

ρS,Yx 0 0 1 ρI,C

ρS,Yy 0 0 ρI,C 1


,

where constraints on ρS,$, ρS,U, ρ$,U are imposed in the previous chapter, additional con-

straints should also be imposed on ρS,Yx , ρS,Yy , ρI,C to ensure positive semi-definiteness.

Specifically, given

−

√
β

α
≤ ρS,Yx ≤

√
β

α
, (3.20)

−1 < ρI,C < 1, (3.21)

we have

ρI,CρS,Yx −

√
(ρ2
I,C − 1)(ρ2

S,Yx
− β

α
) ≤ ρS,Yy ≤ ρI,CρS,Yx +

√
(ρ2
I,C − 1)(ρ2

S,Yx
− β

α
),

(3.22)

or given

−

√
β

α
≤ ρS,Yx ≤

√
β

α
, (3.23)

−

√
β

α
≤ ρS,Yy ≤

√
β

α
, (3.24)

we have

αρS,YxρS,Yy −
√

(αρ2
S,Yx
− β)(αρ2

S,Yy
− β)

β
≤ ρI,C ≤

αρS,YxρS,Yy +
√

(αρ2
S,Yx
− β)(αρ2

S,Yy
− β)

β
,

(3.25)

where α = 1− ρ2
$,U and β = 1− ρ2

S,U − ρ2
S,$ − ρ

2
$,U + 2ρ$,UρS,UρS,$.

Assume we are at time t, conditional on default at time τ = s > t, the integral form of
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the exchange rate process can be expressed as

S(s) = S(t) exp{
∫ s

t
[rU(u)− r$(u)]du+ σS [WQU

S (s)−WQU

S (t)]}. (3.26)

Referring to Brigo and Mercurio (2007), we have

∫ s

t
rU(u)du = ln 1

PU(t, s) + yU(t)CU(t, s) + 1
2VU(t, s) + σU

∫ s

t
CU(u, s)dWQU

U (u),

(3.27)∫ s

t
r$(u)du = ln 1

P$(t, s) + y$(t)C$(t, s) + 1
2V$(t, s)−

∫ s

t
σ$σSρ$,UC$(u, s)du

+ σ$

∫ s

t
C$(u, s)dWQU

$ (u),

where

VU(t, s) = σ2
U

b2
[s− t+ 2

b
e−b(s−t) − 1

2be
−2b(s−t) − 3

2b ],

V$(t, s) =
σ2

$
a2 [s− t+ 2

a
e−a(s−t) − 1

2ae
−2a(s−t) − 3

2a ].

Given further that

WQU

x (s) =
∫ s

t

1
σx(u)dYx(u)− νx

∫ s

t
σx(u)du, Yx(s) = 0, Yx(t) = Ax ∼ F νxλx , (3.28)

the Brownian motion driving the exchange rate process under measure QU conditional on

default can be further expressed directly in terms of the credit index process of the default

party:

WQU

S (s) =
∫ s

t

ρx,S
σx(u)dYx(u)− νxρx,S

∫ s

t
σx(u)du+ ρ1W

QU

∗ (s) +
√

1− ρ2
x,S − ρ2

1W
QU

1 (s),

(3.29)
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we can then express the exchange rate process as

S(s) = S(t) exp{MU(t, s)−M$(t, s)− 1
2σ

2
S(s− t) +

∫ s

t
[σ$σSρS,$C$(u, s)− νxσSρx,Sσx(u)]du

+ ρ1W
QU

∗ (s− t) + σS
√

1− ρ2
x,S − ρ2

1W
QU

1 (s− t) + σU

∫ s

t
CU(u, s)dWQU

U (u)− σ$

∫ s

t
C$(u, s)dWQU

$ (u)

+
∫ s

t

σSρx,S
σx(u) dYx(u)}. (3.30)

Substitute equations 3.18-3.19 into equation 3.30, we have

S(s) = S(t) exp{MU(t, s)−M$(t, s)− 1
2σ

2
S(s− t) +

∫ s

t
[σ$σSρS,$C$(u, s)− νxσSρx,Sσx(u)]du

+ ρ1W
QU

∗ (s− t) + σS
√

1− ρ2
S,Y − ρ2

1W
QU

1 (s− t) + σU

∫ s

t
CU(u, s)d[ρ2W

QU

1 (u) +
√

1− ρ2
2W

QU

2 (u)]

− σ$

∫ s

t
C$(u, s)d[ρ3W

QU

1 (u) + ρ4W
QU

2 (u) + ρ5W
QU

3 (u)] +
∫ s

t

σSρx,S
σx(u) dYx(u)}

= S(t) exp{MU(t, s)−M$(t, s)− 1
2σ

2
S(s− t) +

∫ s

t
[σ$σSρS,$C$(t, s)− νxσSρx,Sσx(u)]du

+
∫ s

t
[σS

√
1− ρ2

x,S − ρ2
1 + ρ2σUCU(u, s)− ρ3σ$C$(u, s)]dWQU

1 (u) +
∫ s

t
[
√

1− ρ2
2σUCU(u, s)− ρ4σ$C$(u, s)]dWQU

2 (u)

−
∫ s

t
ρ5σ$C$(u, s)dWQU

3 (u) + ρ1W
QU

∗ (s− t) +
∫ s

t

σSρx,S
σx(u) dYx(u)}, (3.31)

where

MU(t, s) = ln 1
PU(t, s) + yU(t)CU(t, s) + 1

2VU(t, s),

M$(t, T ) = ln 1
P$(t, s) + y$(t)C$(t, s) + 1

2V$(t, s).

3.4 Numerical Results

In this section, we conduct numerical case studies of our bilateral joint FX-Credit default

model with applications to the calculation of the modified EPEs and ENEs of cross currency

swaps. Specifically, we consider Daiwa Securities as the investor and Nomura Securities as

the counterparty entering into a hypothetical fixed-for-fixed USDJPY cross currency swap

of unit notional on 28th April 2014, with the former being the yen payer and the latter being
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the dollar payer. Note that we continue to use the model parameters calibrated to market

data in previous sections and the EPEs and ENEs are calculated from the point of view of

the investor (Daiwa Securities).

3.4.1 Case Study I

First of all, we study how bilateral counterparty default differs from the unilateral default in

terms of the expected positive exposure conditional on first-to-default of the counterparty

at a particular time in the future (τC = Y 2.5 for example). Assume the default correlation

between the investor and counterparty ρI,C = 0.3 and the correlation between the investor

and the exchange rate ρI,S = 0, given a set of scenarios of the correlation between the

counterparty credit quality and the exchange rate ρC,S = −0.5, −0.3, 0, 0.3, 0.5, we ob-

serve in Figure 3.4.1 a similar pattern as in the case of unilateral counterparty default that

both the unilateral adjusted and bilateral EPEs defined in equation 1.8 and 1.10 are higher

for high negative levels of ρC,S (wrong way risk) and lower for high positive levels of ρC,S

(right way risk). Furthermore, we observe that the unilateral adjusted EPE is lower than

the corresponding EPE in the case of unilateral counterparty default. This is due to the fact

that possible default of the investor decreases the joint probability of first-to-default of the

counterparty and the underlying cross currency swap having positive value upon default.

As it is also shown in Figure 3.4.1, the bilateral EPE is further lower than the correspond-

ing unilateral adjusted EPE since the increasing joint probability of first-to-default of the

investor and the underlying cross currency swap having negative value drives up the unilat-

eral adjusted ENE component defined in equation 1.9 of the bilateral EPE. Therefore, we

can conclude that by considering the investor’s own default the EPE to the counterparty is

reduced compared to that of the unilateral counterparty default case.
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Figure 3.4.1: EPE profile of a 5-year fixed-for-fixed USDJPY cross currency swap from
the point of view of Daiwa Securities conditional on first-to-default of Nomura Securities
at t = 2.5 (years). Trade date: 28th April 2014, yen payer: Daiwa Securities, dollar payer:
Nomura Securities, KU = 1.38%, K$ = 1.5%, S(0) = 102.5, NU

0 = 1, ρI,C = 0.3,
ρI,S = 0, ρC,S = {−0.5, −0.3, 0, 0.3, 0.5}. Table 3.4.1 is the corresponding summary of
the correlation scenarios, numerical results and the standard errors of EPE simulations.

ρC,S Unilateral EPE (±1
2 Confidence Interval) Standard Error

-0.5 0.69 (±0.007) 0.004
-0.3 0.31 (±0.002) 0.001

0 0.022 (±0.0003) 0.0001
0.3 0.0018 (±9E-5) 5E-5
0.5 0.0008 (±6E-5) 3E-5

(ρI,C , ρC,S , ρI,S) Unilateral Adjusted EPE (±1
2 Confidence Interval) Standard Error

(0.3, -0.5, 0) 0.47 (±0.04) 0.002
(0.3, -0.3, 0) 0.22 (±0.002) 0.0009

(0.3, 0, 0) 0.018 (±0.0002) 0.0002
(0.3, 0.3, 0) 0.0017 (±9E-5) 5E-5
(0.3, 0.5, 0) 0.0007 (±6E-5) 3E-5

Table 3.4.1: Summary of the correlation scenarios, numerical results and the standard error
of unilateral and unilateral adjusted EPE simulations.

3.4.2 Case Study II

For a fixed level of ρC,S as ρI,C rises the unilateral adjusted EPE begins to decrease. This is

because a higher default correlation indicates a lower joint probability of first-to-default of
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counterparty and the underlying cross currency swap having positive value upon default and

hence the investor’s EPE to the counterparty should be correspondingly lower. Such pattern

can be illustrated in Figure 3.4.2 and it can also be observed that the effect of increasing

default correlation is particularly strong for high negative levels of ρC,S but less so for high

positive levels of ρC,S . This is because high positive levels of ρC,S has already kept the joint

probability of first-to-default of counterparty and the underlying cross currency swap having

positive value very low that a rise in default correlation alone will have a limited impact on

the unilateral adjusted EPE. These patterns can be further illustrated in the histograms of

the exposures upon first-to-default of the counterparty for a range of correlation scenarios

presented in Figure A.0.1-A.0.5.

Figure 3.4.2: Unilateral adjusted EPE profile of a 5-year fixed-for-fixed USDJPY cross
currency swap from the point of view of Daiwa Securities conditional on first-to-default
of Nomura Securities at t = 2.5 (years). Trade date: 28th April 2014, yen payer: Daiwa
Securities, dollar payer: Nomura Securities, KU = 1.38%, K$ = 1.5%, S(0) = 102.5,
NU

0 = 1, ρI,S = 0, ρC,S = {−0.5, −0.3, 0, 0.3, 0.5}, ρI,C = {0, 0.3, 0.5, 0.75}. Table
3.4.2 is the corresponding summary of the correlation scenarios, numerical results and the
standard errors of EPE simulations.

With respect to unilateral adjusted ENE, we observe in Figure 3.4.3 that for a fixed

level of ρC,S an increase in the default correlation leads to a decrease in unilateral adjusted

ENE since from the point of view of the investor the counterparty is becoming more likely

to default, which results in a lower joint probability of first-to-default of investor and the un-
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ρC,S Unilateral EPE (±1
2 Confidence Interval) Standard Error

-0.5 0.69 (±0.007) 0.004
-0.3 0.31 (±0.002) 0.001

0 0.022 (±0.0003) 0.0001
0.3 0.0018 (±9E-5) 5E-5
0.5 0.0008 (±6E-5) 3E-5

(ρI,C , ρC,S , ρI,S) Unilateral Adjusted EPE (±1
2 Confidence Interval) Standard Error

(0, -0.5, 0) 0.68 (±0.006) 0.003
(0, -0.3, 0) 0.31 (±0.002) 0.001

(0, 0, 0) 0.021 (±0.0003) 0.0002
(0, 0.3, 0) 0.0017 (±9E-5) 4E-05
(0, 0.5, 0) 0.0007 (±6E-5) 3E-05

(0.3, -0.5, 0) 0.47 (±0.04) 0.002
(0.3, -0.3, 0) 0.22 (±0.002) 0.0009

(0.3, 0, 0) 0.018 (±0.0002) 0.0002
(0.3, 0.3, 0) 0.0017 (±9E-5) 5E-5
(0.3, 0.5, 0) 0.0007 (±6E-5) 3E-5
(0.5, -0.5, 0) 0.34 (±0.003) 0.0016
(0.5, -0.3, 0) 0.16 (±0.0015) 0.0007

(0.5, 0, 0) 0.015 (±0.0002) 0.0001
(0.5, 0.3, 0) 0.0017 (±9E-5) 5E-05
(0.5, 0.5, 0) 0.0007 (±6E-5) 3E-05

(0.75, -0.5, 0) 0.23 (±0.002) 0.0012
(0.75, -0.3, 0) 0.11 (±0.001) 0.0006

(0.75, 0, 0) 0.012 (±0.0002) 0.0001
(0.75, 0.3, 0) 0.0016 (±9E-5) 4E-05
(0.75, 0.5, 0) 0.0007 (±5E-5) 3E-05

Table 3.4.2: Summary of the correlation scenarios, numerical results and the standard errors
of unilateral and unilateral adjusted EPE simulations.

derlying cross currency swap having negative value upon default. Furthermore, it is shown

that the unilateral adjusted ENE is higher when the counterparty credit quality is more nega-

tively correlated with the exchange rate and lower when they are more positively correlated.

This is because a negative correlation between the survival counterparty and the exchange

rate increases the joint probability of first-to-default of the investor and the underlying cross

currency having negative value upon default. The corresponding histograms of the expo-

sures conditional on first-to-default of the investor are presented in Figure A.0.6-A.0.10.

In Figure 3.4.4 we observe that for a fixed level of ρI,C the bilateral EPE is higher for

high negative levels of ρC,S as wrong way risk dominates, leading to a higher weighting of
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Figure 3.4.3: Unilateral adjusted ENE profile of a 5-year fixed-for-fixed USDJPY cross
currency swap from the point of view of Daiwa Securities conditional on first-to-default
of Nomura Securities at t = 2.5 (years). Trade date: 28th April 2014, yen payer: Daiwa
Securities, dollar payer: Nomura Securities, KU = 1.38%, K$ = 1.5%, S(0) = 102.5,
NU

0 = 1, ρI,S = 0, ρC,S = {−0.5, −0.3, 0, 0.3, 0.5}, ρI,C = {0, 0.3, 0.5, 0.75}. Table
3.4.3 is the corresponding summary of the correlation scenarios, numerical results and the
standard errors of ENE simulations.

the unilateral adjusted EPE component and lower for high positive levels of ρC,S as right

way risk dominates, leading to a lower weighting of the unilateral adjusted EPE compo-

nent and the bilateral EPE even changing sign. In addition, for a more negative level of

ρC,S and a positive bilateral EPE, rising default correlation leads to a decreasing bilateral

EPE while for a more positive level of ρC,S and a negative bilateral EPE, rising default

correlation leads to an increasing bilateral EPE. Specifically, when ρC,S is negative, domi-

nant wrong way risk yields a higher weighting for the unilateral adjusted EPE component,

which is more sensitive to rising default correlation as described previously and decreases

more sharply than the corresponding unilateral adjusted ENE component, while for positive

levels of ρC,S , right way risk yields a more dominant unilateral adjusted ENE component,

which is more sensitive to rising default correlation and decreases more sharply than the

corresponding unilateral adjusted EPE component. From an intuitive perspective, when the

investor is more likely to have a net positive exposure towards the counterparty, the counter-

party is understood to be more likely to default first. A rising default correlation increases
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(ρI,C , ρC,S , ρI,S) Unilateral Adjusted ENE (±1
2 Confidence Interval) Standard Error

(0, -0.5, 0) 0.095 (±0.0006) 0.0003
(0, -0.3, 0) 0.094 (±0.0006) 0.0003

(0, 0, 0) 0.094 (±0.0006) 0.0003
(0, 0.3, 0) 0.094 (±0.0006) 0.0003
(0, 0.5, 0) 0.093 (±0.0006) 0.0003

(0.3, -0.5, 0) 0.083 (±0.0006) 0.0003
(0.3, -0.3, 0) 0.082 (±0.0006) 0.0003

(0.3, 0, 0) 0.081 (±0.0005) 0.0003
(0.3, 0.3, 0) 0.08 (±0.0005) 0.0003
(0.3, 0.5, 0) 0.079 (±0.0005) 0.0003
(0.5, -0.5, 0) 0.072 (±0.0005) 0.0003
(0.5, -0.3, 0) 0.072 (±0.0005) 0.0003

(0.5, 0, 0) 0.07 (±0.0005) 0.0003
(0.5, 0.3, 0) 0.069 (±0.0005) 0.0003
(0.5, 0.5, 0) 0.068 (±0.0005) 0.0003

(0.75, -0.5, 0) 0.06 (±0.0005) 0.0003
(0.75, -0.3, 0) 0.059 (±0.0005) 0.0003

(0.75, 0, 0) 0.058 (±0.0005) 0.0003
(0.75, 0.3, 0) 0.057 (±0.0005) 0.0003
(0.75, 0.5, 0) 0.057 (±0.0005) 0.0003

Table 3.4.3: Summary of the correlation scenarios, numerical results and the standard errors
of unilateral adjusted ENE simulations.

the probability of the first-to-default of the investor and hence the gain from the investor’s

own default reduces the exposure upon default of the counterparty. On the other hand, when

investor is more likely to have a net negative exposure towards the counterparty upon first-

to-default of the counterparty, which can be seen as a gain for the investor as it is more

likely to default. A rising default correlation increases the possibility of the first-to-default

of the counterparty and hence raises the investor’s exposure to the counterparty.

3.4.3 Case Study III

In this case study, we analyze the impact of the correlation between the investor and the

exchange rate and the default correlation on the unilateral adjusted EPE, ENE and bilateral

EPE. Here, we assume ρC,S = 0 and consider different scenarios of the correlation between

the investor and the exchange rate and the default correlation, ρI,S = −0.5, −0.3, 0, 0.3,
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Figure 3.4.4: Bilateral EPE of a 5-year fixed-for-fixed USDJPY cross currency swap at
t = 2.5 (years) observed on 28th April 2014. KU = 1.38%, K$ = 1.5%, S(0) = 102.5,
NU

0 = 1, ρI,S = 0, ρC,S = {−0.5, −0.3, 0, 0.3, 0.5}, ρI,C = {0, 0.3, 0.5, 0.75}.

0.5, ρI,C = 0, 0.3, 0.5, 0.75. First, as shown in Figure 3.4.5, for any fixed level of ρI,S the

unilateral adjusted EPE decreases with rising default correlation as the joint probability of

the first-to-default of the investor and the underlying cross currency swap having positive

value upon default decreases. We also observe that for a fixed level of ρI,C the unilateral

adjusted EPE increases with ρI,S since a higher positive correlation between the investor

and the exchange rate leads to a higher joint probability of counterparty default and the

underlying cross currency swap having positive value upon default, and vice versa for high

negative levels of ρI,S . The histograms of the exposures conditional on first-to-default of

the counterparty are presented in Figure A.0.11-A.0.15.

Regarding the unilateral adjusted ENE, we observe in Figure 3.4.7 that for a given level

of ρI,C , the unilateral adjusted ENE is lower for high negative levels of ρI,S in which case

the default of the investor leads to the underlying cross currency swap having more positive

value upon default. Similarly, it is higher for high positive levels of ρI,S in which case

the default of the investor drives the underlying cross currency swap to have more negative

value upon default. Furthermore, for a fixed level of ρI,S , an increase in the default correla-

tion leads to correspondingly lower unilateral adjusted ENE due to increasing likelihood of
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(ρI,C , ρC,S , ρI,S) Unilateral Adjusted EPE (±1
2 Confidence Interval) Standard Error

(0, 0, -0.5) 0.02 (±0.0003) 0.0002
(0, 0, -0.3) 0.021 (±0.0003) 0.0002

(0, 0, 0) 0.021 (±0.0003) 0.0002
(0, 0, 0.3) 0.021 (±0.0003) 0.0002
(0, 0, 0.5) 0.021 (±0.0003) 0.0002

(0.3, 0, -0.5) 0.017 (±0.0003) 0.0001
(0.3, 0, -0.3) 0.017 (±0.0003) 0.0001

(0.3, 0, 0) 0.018 (±0.0003) 0.0002
(0.3, 0, 0.3) 0.018 (±0.0003) 0.0002
(0.3, 0, 0.5) 0.019 (±0.0003) 0.0002
(0.5, 0, -0.5) 0.015 (±0.0003) 0.0001
(0.5, 0, -0.3) 0.015 (±0.0003) 0.0001

(0.5, 0, 0) 0.015 (±0.0003) 0.0001
(0.5, 0, 0.3) 0.016 (±0.0003) 0.0001
(0.5, 0, 0.5) 0.016 (±0.0003) 0.0001

(0.75, 0, -0.5) 0.012 (±0.0002) 0.0001
(0.75, 0, -0.3) 0.012 (±0.0002) 0.0001

(0.75, 0, 0) 0.013 (±0.0002) 0.0001
(0.75, 0, 0.3) 0.013 (±0.0002) 0.0001
(0.75, 0, 0.5) 0.014 (±0.0002) 0.0001

Table 3.4.4: Summary of the correlation scenarios, numerical results and the standard errors
of unilateral adjusted EPE simulations.
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Figure 3.4.5: Unilateral adjusted EPE profile of a 5-year fixed-for-fixed USDJPY cross
currency swap from the point of view of Daiwa Securities conditional on first-to-default
of Nomura Securities at t = 2.5 (years). Trade date: 28th April 2014, yen payer: Daiwa
Securities, dollar payer: Nomura Securities, KU = 1.38%, K$ = 1.5%, S(0) = 102.5,
NU

0 = 1, ρC,S = 0, ρI,S = {−0.5, −0.3, 0, 0.3, 0.5}, ρI,C = {0, 0.3, 0.5, 0.75}. Table
3.4.4 is the corresponding summary of the correlation scenarios, numerical results and the
standard errors of EPE simulations.

counterparty default and it can be seen that this effect is more pronounced for high positive

levels of ρI,S when the joint probability of first-to-default of the investor and the underlying

cross currency swap having negative value is kept very low and is less sensitive to rising

default correlation. Similarly to case study II, it can also be observed that the unilateral

adjusted ENE is lower than the corresponding unilateral ENE. The histograms of the expo-

sures conditional on first-to-default of the investor are presented in Figure A.0.16-A.0.20.

Finally, as shown in Figure 3.4.7, for a given level of ρI,C , the bilateral EPE is higher

when the investor and the exchange rate are more negatively correlated and lower when

they are more positively correlated. This is because for high negative levels of ρI,S tends to

lead to a more positive value of the cross currency swap and hence a lower weighting of the

unilateral adjusted ENE component?as ρI,S becomes more positive, first-to-default of the

investor tends to lead to a more negative value of the cross currency swap and hence a higher

weighting for the unilateral adjusted ENE component. Similar to case study II, we also

observe that for a more negative level of ρI,S and a positive bilateral EPE to the counterparty,
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ρI,S Unilateral ENE (±1
2 Confidence Interval) Standard Error

-0.5 0.008 (±0.0002) 0.0001
-0.3 0.016 (±0.0003) 0.0001

0 0.095 (±0.0005) 0.0003
0.3 0.3 (±0.001) 0.0005
0.5 0.41 (±0.001) 0.0006

(ρI,C , ρC,S , ρI,S) Unilateral Adjusted ENE (±1
2 Confidence Interval) Standard Error

(0, 0, -0.5) 0.008 (±0.0001) 9E-5
(0, 0, -0.3) 0.016 (±0.0002) 0.0001

(0, 0, 0) 0.093 (±0.0005) 0.0002
(0, 0, 0.3) 0.3 (±0.001) 0.0005
(0, 0, 0.5) 0.4 (±0.001) 0.0006

(0.3, 0, -0.5) 0.008 (±0.0002) 1E-4
(0.3, 0, -0.3) 0.016 (±0.0003) 0.0001

(0.3, 0, 0) 0.081 (±0.0005) 0.0002
(0.3, 0, 0.3) 0.24 (±0.001) 0.0005
(0.3, 0, 0.5) 0.33 (±0.001) 0.0007
(0.5, 0, -0.5) 0.008 (±0.0002) 0.0001
(0.5, 0, -0.3) 0.0015 (±0.0003) 0.0001

(0.5, 0, 0) 0.07 (±0.0005) 0.0003
(0.5, 0, 0.3) 0.2 (±0.001) 0.0005
(0.5, 0, 0.5) 0.27 (±0.001) 0.0007

(0.75, 0, -0.5) 0.008 (±0.0002) 0.0001
(0.75, 0, -0.3) 0.014 (±0.0003) 0.0001

(0.75, 0, 0) 0.059 (±0.0005) 0.0003
(0.75, 0, 0.3) 0.15 (±0.001) 0.0005
(0.75, 0, 0.5) 0.21 (±0.001) 0.0007

Table 3.4.5: Summary of the correlation scenarios, numerical results and the standard errors
of unilateral and unilateral adjusted ENE simulations.
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Figure 3.4.6: Unilateral adjusted ENE profile of a 5-year fixed-for-fixed USDJPY cross
currency swap from the point of view of Daiwa Securities conditional on first-to-default
of Daiwa Securities at t = 2.5 (years). Trade date: 28th April 2014, yen payer: Daiwa
Securities, dollar payer: Nomura Securities, KU = 1.38%, K$ = 1.5%, S(0) = 102.5,
NU

0 = 1, ρI,S = 0, ρC,S = {−0.5, −0.3, 0, 0.3, 0.5}, ρI,C = {0, 0.3, 0.5, 0.75}. Table
3.4.5 is the corresponding summary of the correlation scenarios, numerical results and the
standard errors of ENE simulations.

as the default correlation rises the bilateral EPE decreases while for a more positive level

of ρI,S and a negative bilateral EPE to the counterparty, rising default correlation leads to

a higher bilateral EPE. This is because when ρI,S becomes more negative, the unilateral

adjusted EPE component is more sensitive to rising default correlation and decreases more

sharply than the corresponding unilateral adjusted ENE component, while for more positive

levels of ρI,S , the unilateral adjusted ENE is more sensitive to rising default correlation

and decreases more sharply than the corresponding unilateral adjusted EPE component.

Intuitively, if the investor tends to have a net positive exposure to the counterparty, the

counterparty is more likely to default and rising default correlation increases the probability

of the first-to-default the investor and therefore reduces the exposure to the counterparty

upon its default. On the other hand, if the investor tends to have a net negative exposure to

the counterparty, the investor is more likely to default and rising default correlation increases

the probability of counterparty default and hence increases the investor’s exposure to the

counterparty.
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Figure 3.4.7: Bilateral EPE of a 5-year fixed-for-fixed USDJPY cross currency swap at
t = 2.5 (years) observed on 28th April 2014. KU = 1.38%, K$ = 1.5%, S(0) = 102.5,
NU

0 = 1, ρC,S = 0, ρI,S = {−0.5, −0.3, 0, 0.3, 0.5}, ρI,C = {0, 0.3, 0.5, 0.75}.

3.4.4 Conclusion

We extend the unilateral joint FX-credit default model to incorporate bilateral counterparty

default. To achieve this, we impose the default correlation on the driving Brownian mo-

tions of the two credit index processes and express them in terms of independent Brownian

motions through Cholesky decomposition. Conditional on the default of the counterparty

(investor) at a particular time t in the future, we simulate the path of its credit index process

conditional on hitting zero at t via Bessel bridges and back out the path of the credit index

process of the investor (counterparty) through their correlated driving Brownian motions.

The first-to-default of the counterparty (investor) will then be modelled by picking the cases

where the credit index process of the investor (counterparty) has not hit zero prior to time

t. Hence, instead of identifying the joint probability distribution of the two-dimensional

Bessel bridges through computationally extensive numerical schemes, we are able to obtain

the paths of the two credit index processes by simply simulating the credit index process of

the default counterparty.

Next, we integrate the bilateral default setting into a multi-currency framework with

correlated interest rates. The exchange rate is modelled as a lognormal geometric Brownian
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motion with constant volatility while the interest rate processes are modelled as Hull-White

dynamics. We then show that the exchange rate process conditional on default happening

at time t can be expressed directly in terms of the credit index process of the default coun-

terparty and independent Brownian motions such that the correlation between the exchange

rate and the investor (counterparty) can be explicitly incorporated.

Finally, we apply our bilateral joint FX-credit model to a hypothetical fixed-for-fixed

USDJPY cross currency swap entered into by Daiwa Securities and Nomura Securities and

quantify the impact of the correlation between the exchange rate and the investor (counter-

party) and the default correlation between the investor and the counterparty through expo-

sure metrics such as modified EPEs and ENEs through numerical case studies.

It can be shown in the numerical examples that in the bilateral setting, the possibility

of default of both counterparty tends to offset the expected positive exposure towards either

counterparty compared with the exposure profiles in the unilateral case. This is very impor-

tant in CVA calculations as the bilateral nature of default will influence the amount CVA

and DVA to be charged. Furthermore, the impact of asset-credit correlation is significant

to both counterparties and the flexibility offered by our model in terms of the way the cor-

relations are embedded and the efficiency in the joint simulation of credit index processes

provides a powerful tool for counterparty risk management.
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Chapter 4

Bermudan Swaption CVA and

Wrong Way Risk

4.1 Chapter Overview

Based on Basel (1988) and Basel (2005) regimes, the regulatory landscape has gone a step

further through Basel (2010) to call for the need of enhanced sensitivity of credit risk mea-

surement. Specifically, capital requirements have been directly associated with more ad-

vanced counterparty risk metrics such as Credit Value Adjustment (CVA) used to compen-

sate for the loss due to counterparty default and Debt Value Adjustment (DVA) intended

as the additional benefit of one’s own default, and more recently the potential volatility of

the value at risk (VaR) of CVA in conjunction with stress testing under extreme market

scenarios. The introduction of CVA and DVA requires corporates engaging in derivatives

transactions for hedging purposes to undertake proper hedge accounting for counterparty

risk in the valuation of over-the-counter (OTC) derivatives (see IASB, 2011, for example).

According to Basel Committee on Banking Supervision, roughly two-thirds of credit coun-

terparty losses during the financial crisis were due to credit value adjustment losses and only

one-third were due to actual defaults, which highlights the necessity of having a uniform
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evaluation methodology for CVA and DVA and how to allocate them to individual hedges.

Given that the notional of outstanding over-the-counter (OTC) derivatives has over the last

two decades grown exponentially, mainly due to the increase in OTC interest rate deriva-

tives, any rates trading desk entering an OTC deal will face the risk that the counterparty

at a future date may default and cannot fulfil its payment obligations. Therefore the bank

needs to estimate the total risk it is facing with respect to a particular counterparty and to

keep a capital buffer i.e., the capital requirement, to cover for losses due to a default. Figure

4.1.1 illustrates the Bank for International Settlements (BIS) semi-annual market survey of

outstanding OTC derivatives from June 1998 through December 2013. As of December

2013, the total amount of outstanding notional in OTC derivatives was 710.2 trillion USD,

with 584.4 trillion USD in interest rate derivatives.

Figure 4.1.1: The notional amounts (in trillions of US dollars) outstanding of OTC deriva-
tives by risk category from BIS semi-annual survey, June 1998 through December 2013.

In this chapter, we aim to provide a solid framework for the CVA calculation of Bermu-

dan swaptions. To achieve this, there are two main issues that we need to consider. First,

estimating CVA charges requires an underlying model to compute simulated counterparty

exposures at default dates and therefore makes it a model dependent quantity. Before the

financial crisis, it was standard market practice to price and hedge interest rate derivatives

for a given currency under a single-curve framework, usually established by bootstrapping

a single yield curve from liquidly traded vanilla interest rate instruments of various maturi-

ties and the corresponding forward rates, discount factors and numeraires were all generated

85



4.1. CHAPTER OVERVIEW

Figure 4.1.2: 3-month Libor-OIS spread since June 2008

from this single curve. Unfortunately, the pre-crisis approach has become obsolete and is no

longer consistent with the current market conditions in several aspects. First and foremost,

it does not capture the widening basis swap spreads that are now much larger than those of

the pre-crisis period, see Figure 4.1.2 for example. This is mainly attributed to the credit

or liquidity driven, non-negligible divergence between similar rates with the same maturity

that used to chase each other closely (e.g. 3-month OIS rate vs 3-month deposit rate), swap

rates based on different payment frequencies of the underlying floating legs and rates based

on different underlying tenors (e.g. 1-month Libor vs 3-month Libor) which reflects higher

liquidity risk suffered by financial institutions and the corresponding preference for receiv-

ing payments with higher frequency, see Figure 4.1.3 for example. Second, the post-crisis

interest rate markets have been segmented into sub areas corresponding to instruments with

distinct underlying rate tenors, characterized, in principle, by different dynamics (e.g. short

rate processes) and the classic no-arbitrage condition is no longer satisfied. Finally, a unique

discounting curve is needed where two identical future cash flows of different origins must

have the same present value. Earlier developments such as Tuckman and Porfirio (2003)

and Boenkost and Schmidt (2005) had already pointed to the weakness of the single curve

framework even before the crisis but without providing a theoretically sound alternative.

As pioneer attempts, Henrard (2007, 2010) splits risk-free discounting from Libor rate
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Figure 4.1.3: Libor rates of tenor 1M, 3M, 6M, 12M since the crisis

fixing and assumes constant or deterministic basis spreads, but he fails to consider each for-

ward rate as a single asset without investigating the complex dynamics involved by liquidity

and credit risks in a practical way. Morini (2009) is to our knowledge the first paper to ad-

dress this problem and develop a theoretical foundation that motivates the divergence of

rates outlined above. To this end, he introduces a stochastic default probability to account

for counterparty risk and, assuming no liquidity risk and that the risk in the forward rate

agreements (FRAs) exceeds that in the Libor rates, obtains patterns similar to the market

observations. Bianchetti (2010) as a further development proposes the first sound multi-

curve framework to price single currency interest rate derivatives.

Recent literatures have gone beyond the simplistic constant or deterministic spread

hypothesis. In particular, Kenyon (2010) models both the discounting curve and the forward

curves with short rate dynamics but, beyond the fact that the short rate is ill-defined for

the forward curves, his approach is arbitrage-free only for zero basis spread. Mercurio

(2009) uses a full Libor market model on both curves, of which full parameterization of the

volatility functions is required. Alternatively, Mercurio (2010) takes a different approach

by jointly modelling the basis spread explicitly with a stochastic volatility function and

the discounting curve with Libor market model. A similar approach is also considered by

Mercurio and Xie (2012) who model the discounting curve with Hull-White model and the

additive forward basis spread as a function of the forward OIS rate and a stochastic basis
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factor. Semi-analytical pricing formulas for European swaptions are derived in their work.

This approach is not only computationally tractable but is also able to ensure a positive basis

spread as seen in the market.

Henrard (2013) follows a similar path by modelling the stochastic basis spread ex-

plicitly but develops a multiplicative spread model and use it to price short-term interest

rate (STIR) futures and their options. Fujii et al. (2011) model the stochastic basis spread

with HJM framework but no examples of dynamics or corresponding explicit pricing for-

mulas for calibration instruments are obtained. A hybrid method is studied by Moreni

and Pallavicini (2014) who model the discounting curve with a HJM framework and the

forward curve via Libor market like approach. The spread is modelled implicitly as the

difference of the two curves. Given the parsimonious nature of their model, the spread is

modelled implicitly by the same stochastic process than the rate level and thus not fully

stochastic. Crépey et al. (2012, 2015) are the latest contributions to go along the path of

using HJM type multi-curve framework driven by Lévy process and the latter apply it to

the CVA and other funding cost calculations of interest rate derivatives through reduced

form methodologies. Other developments have also been done in various directions, these

include Chibane and Sheldon (2009), Ametrano and Bianchetti (2009), Andersen and Piter-

barg (2010) and Pallavicini and Tarenghi (2010) just to mention a few. However, literature

concerning Bermudan swaptions under multi-curve framework have been scarce. Given

that a valid interest rate modelling framework in line with market practice is a key building

block in CVA calculations, one of the main objectives of this chapter is to establish such a

framework for Bermudan swaption valuation.

Furthermore, although there are an extensive literature regarding CVA methodolo-

gies, which notably include Canabarro and Duffie (2003), Picoult (2005), Pykhtin and Zhu

(2006), Gregory (2010) and Brigo et al. (2013), few focus on Bermudan swaptions and tra-

ditional approaches rarely take into account the embedded correlation between the evolution

of counterparty credit quality and the market risk factors driving the underlying exposure

of the contract. For example, Karlsson et al. (2014) apply the stochastic bundling grid ap-
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proach to compute Bermudan swaption CVA but they assume default to be independent

of both the portfolio value and the numeraires. Empirical evidences from the Asia finan-

cial crisis in the late 1990s and the recent US subprime mortgage crisis suggest that these

correlations affect the derivative price and the subsequent hedging strategy significantly.

According to the International Swap and Derivatives Association (ISDA), when the

exposure to a counterparty is adversely correlated with the credit quality of that counter-

party (also known as wrong way risk, WWR) and these two effects tend to happen together,

then that co-dependence will generally increase the CVA on the contract and it will make

the CVA larger than when the effects were independent. Hence, an increasing amount of

work has been done to model asset-credit correlation in CVA calculations, which can usu-

ally be divided into the following categories: i) Modelling of stochastic intensity of default

and its correlation with driving market risk factors, notable literatures include Rosen and

Saunders (2012) who model wrong way risk with an ordered-scenario copula model allow-

ing for the performance of multiple CVA calculations for sensitivities, stress testing and

value-at-risk (VaR), Ghamami and Goldberg (2014) who consider reduced-form CVA mod-

els that include Hull-White formulations, El Hajjaji and Subbotin (2015) whose model is

based on a doubly stochastic default process with the default intensities proxied by credit

spreads, Boenkost and Schmidt (2015) who aim for a "correlation adjustment" to account

for wrong way risk by introducing the correlation between the interest rate curve and haz-

ard rate changes as a main input in the CVA formula without additional simulations needed,

Carr and Ghamami (2015) who develop path-independent probabilistic valuation formulas

that have closed-form solution or can lead to computationally efficient pricing schemes by

imposing restrictions on the dynamics of the risk-free rate and the stochastic intensities of

the counterparties’ default times. The main advantage of the reduced form method is that the

default probabilities generated by the model are consistent with the ones implied from mar-

ket CDS spread quotes, but it lacks economic rationale and the dependency structures are

limited; ii) Structural approaches with correlations between asset and counterparty credit

quality dynamics. In this context, the correlation between asset and the counterparty firm

value dynamics is easy to incorporate, offering an economic interpretation behind default.
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However, the default probabilities generated from traditional first-passage time models are

not consistent with market implied ones. Relevant contributions include Redon (2006) who

gives an analytical method based on the Merton type model by correlating the Brownian

motions used to model mark-to-market and default, Lipton and Sepp (2009) who propose

a jump diffusion approach, Lipton and Savescu (2012, 2013) who employs the Eigen func-

tion expansion technique combined with finite element method and obtain a semi-analytical

expression for CVA and DVA, and Ballotta and Fusai (2014) who model the asset price and

firm value dynamics with normal inverse Gaussian processes; iii) Modelling dependence

between default times and exposures at different observation dates using Copula models,

like Pykhtin and Rosen (2010), Boukhobza and Maetz (2012), Pykhtin (2012), Cherubini

(2013), Böcker and Brunnbauer (2014) and Lee and Capriotti (2015); iv) Adjusting de-

fault probability functions in the independence-based CVA formula as in Hull and White

(2012); v) Introducing jump diffusions at time of default to model gap risk or default risk in

emerging currencies or other risk factors such as Pykhtin and Sokol (2012) and ?; iv) Us-

ing alternative methods including scenario weighting, for example, Finger (2000), Turlakov

(2013) and Glasserman and Yang (2015), modelling simultaneous defaults as in ? and in-

troducing jumps at default to quantify the impact of wrong way correlation like Li and

Mercurio (2015). Since analytical pricing formulas for Bermudan swaptions are not avail-

able and Monte-Carlo simulation is usually required, also we are going to work under the

multi-curve framework, correctly correlating counterparty credit quality with various inter-

est rate dynamics, thus establishing a computationally efficient joint asset-credit model is

another key objective of our work.

In this chapter, we follow similarly as Mercurio (2009, 2010) and Mercurio and Xie

(2012) to model stochastic additive basis spreads explicitly along with the OIS discounting

curve and express the corresponding (forward) Libor fixing in terms of the sum of the two.

In market practice (see Pallavicini and Tarenghi (2010) for example), the OIS curve and the

forward Libor curves are constructed as the following: 1) for the short end of the curve (i.e.

tenors up to 48m), to achieve smoothness we use OIS swap rate quotes as the levels at the

corresponding nodes of the curve and interpolate/extrapolate it using cubic spline method;
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2) for the mid-to-long end of the curve(i.e. tenors greater than or equal to 5Y), we calibrate

the curve to fixed-for-floating, floating-for-floating interest rate swaps by using the 3-month

Libor curve as the base curve. Taking market quotes of the Libor swap rates and intra-

currency basis swap spreads as inputs, the forward Libor index curves and the OIS curve

are solved simultaneously using appropriate root-finding algorithms. To model the OIS

curve, we choose the Hull-White short rate dynamics for the discounting curve of a given

currency. With respect to the basis spread, we make a simplified assumption that the spread

evolution is independent of the discounting curve and model the forward basis spread with a

given tenor for various maturities in terms of a one-factor lognormal process with zero drift.

The multi-curve model can be easily calibrated to interest rate caps through modifications

of the cap pricing formulas developed in Mercurio (2010). Once this is done, we apply

the standard Longstaff-Schwartz algorithm under our multi-curve framework to obtain the

optimal exercise boundary of Bermudan swaption. Then, to account for wrong way risk, we

follow Davis and Pistorius (2010) to model the default time of a certain financial entity as the

first time a time-changed Brownian motion (credit index process) down crosses zero and the

conditional law upon default of the credit index process is equal to that of the corresponding

three-dimensional Bessel bridge. Given that the basis spreads are a reflection of credit and

liquidity risk and that a widening of the spreads is a manifestation of credit and liquidity

squeeze in the systemic mare economic environment, we correlate the credit index process

with the driving Brownian motion of the basis spreads instead of that of the OIS curve and

jointly simulate them conditional on default at certain dates given the value of the asset-

credit correlation. Finally, Monte Carlo simulation is used to compute expected positive

exposures (EPE) at default dates and subsequently the CVAs. The main contribution of

this chapter is that it is the first paper to study CVA calculation of Bermudan swaption

under the multi-curve framework with wrong way/right way risk embedded. Furthermore,

conditional on default at a certain time in the future, the default probabilities generated by

the model can be calibrated exactly to the market implied ones from CDSs and the credit

index process can be easily simulated via Bessel bridges, which can in turn be correlated

easily with the Libor-OIS spread dynamics such that the impact of rising Libor-OIS spread
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and falling counterparty credit quality can be quantified by CVAs against a range of asset-

credit correlation scenarios. The rest of the chapter is organized as follows. In section 2, we

introduce the definitions of EPE and CVA. In section 3, we establish the multi-curve interest

rate modelling framework with stochastic basis spreads. In section 4, we revisit the standard

Longstaff-Schwartz algorithm in the valuation of American style options. In section 5, we

construct the joint asset-credit default model via Bessel bridges. In section 6, we conduct

numerical studies on Bermudan swaptions and illustrate the impact of wrong way risk on

their CVA and EPEs. We conclude in section 7.

4.2 Credit Value Adjustment

CVA is the market value of counterparty credit risk, i.e., the difference between the risk-

free contract value and the value taking into account the counterparty’s default probability.

Denoting the recovery rate of the counterparty as RC , we expect to be compensated from

the contract should the counterparty default, if the time horizon of the contract is T , then

following Cesari et al. (2009), the CVA at time 0 is defined as:

CV A0,T = (1−RC)
∫ T

0
EQ[D(0, u)E(u)|τC = u]dPD(u). (4.2.1)

Since we take into account the correlation between counterparty default and the underlying

asset value, numerical methods will be required for accurate calculation of CVA. However,

for convenience, we would like to introduce the simplified approximation of CVA defined

as below:

CV A0,T ≈ (1−RC)
∫ T

0
EQ[ 1

P (0, u)D(0, u)E(u)]P (0, u)dPD(u),

≈ (1−RC)
∫ T

0
P (0, u)EPEudPD(u), (4.2.2)
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where EPEu = EQ[ 1
P (0,u)D(0, u)E(u)],

or

CV A0,T ≈ (1−RC)
∫ T

0
EQ[D(0, u)E(u)]dPD(u),

≈ (1−RC)
∫ T

0
EPEDu dPD(u), (4.2.3)

where EPEDu = EQ[D(0, u)E(u)], PD(t) is the risk-neutral default probability of the

counterparty before time t usually defined as:

PD(t) = 1− exp{−
∫ t

0
γ(u)du}, (4.2.4)

and γ(t) is the hazard rate function or the instantaneous credit spread. Such default distri-

bution of the counterparty is bootstrapped from its corresponding market CDS quotes. For

discrete time grid 0 = T0 < T1 < ... < Tn = T of the observation dates equation 4.2.3 can

be further approximated in the discrete time space as:

CV A0,T ≈ (1−RC)Σn−1
i=0 P (0, Ti)EPETi(PD(Ti+1)− PD(Ti)), (4.2.5)

or

CV A0,T ≈ (1−RC)Σn−1
i=0 EPE

D
Ti(PD(Ti+1)− PD(Ti)). (4.2.6)

Hence, CVA can be seen as a weighted average of EPEs at different observation dates with

the weights given by the default probabilities.

4.3 Multi-Curve Framework with Stochastic Basis Spreads

In this section, we establish the multi-curve interest rate framework with stochastic basis

spreads.
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4.3.1 Assumptions and Notations

Based on Mercurio (2010), we assume a single currency multi-curve framework where dis-

tinct discount and forward curves indexed by different tenors (x = 1m, 3m, 6m, ...) are

constructed. To comply with the credit support annex (CSA) agreement, we assume the

discount curve to be the OIS zero-coupon curve as the credit risk embedded in an overnight

loan can be deemed to be negligible, and the discount factor at time t for maturity T

to be DOIS(t, T ). The OIS zero-coupon bond price can be then defined as PD(t, T ) =

EQ
t [DOIS(t, T )].

Given a tenor x and a discrete time grid 0 = T0 < T1 < ... < Tn = T , with

x = Ti − Ti−1, i = 1, ..., n, the OIS forward rate can be defined as:

F xD(t, Ti−1, Ti) = 1
τxi

[PD(t, Ti−1)
PD(t, Ti)

− 1], (4.3.1)

where τxi is the year fraction for (Ti−1, Ti]. The pricing measures are associated with those

of the OIS curve. Denote QT
D the T -forward measure with the associated numeraire being

the OIS zero-coupon bond PD(t, T ), the forward Libor rate for time interval [Ti−1, Ti] is

defined as:

L(t, Ti−1, Ti) = ETiD [Lx(Ti−1, Ti)|Ft], (4.3.2)

where Lx(Ti−1, Ti) is the spot Libor rate fixed at Ti−1 for the maturity Ti. Lx(t, Ti−1, Ti)

is the fixed rate to be exchanged for the spot Libor rate Lx(Ti−1, Ti) so that the forward rate

agreement (FRA) is entered at zero cost.

Following Mercurio (2010)and Mercurio and Xie (2012), we model the basis swap

spreads explicitly and express the forward Libor rate in terms of the forward OIS rate and

the basis swap spreads:

Lx(t, Ti−1, Ti) = Sx(t, Ti−1, Ti) + F x(t, Ti−1, Ti). (4.3.3)

This choice is more realistic as the Libor curves are usually built as a spread over the OIS
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curve and therefore it is reasonable to model Sx(t, Ti−1, Ti) as positive stochastic processes,

preserving the positive sign of the basis spreads which is typically observed in the market.

4.3.2 Model Dynamics

We now assume suitable dynamics for F x(t, Ti−1, Ti) and Sx(t, Ti−1, Ti) under the corre-

sponding OIS Ti-forward measure QTi
D , i = 1, ..., n.

The OIS curve is assumed to follow the Hull-White short rate dynamics (see Mercurio

and Xie (2012)) as follows:

r(t) = θ(t) + y(t),

dy(t) = −κy(t)dt+ σdWQ(t), y(0) = 0, (4.3.4)

where θ(t) is a deterministic function defined as:

θ(t) = − ∂

∂T
logPD(0, t) + σ2

2κ2 (1− e−κt)2, (4.3.5)

such that the model is consistent with the initial OIS rate term structure, κ is the constant

mean reversion rate, σ is the constant implied volatility and WQ is a standard Brownian

motion under measure Q. The OIS discount factor at time t for maturity T can then be

defined as:

DOIS(t, T ) = exp{−
∫ T

t
r(u)du}, (4.3.6)

where

∫ T

t
r(u)du = y(t)B(t, T ) + ln PD(0, t)

PD(0, T ) + 1
2[M(0, T )−M(0, t)] + σ

∫ T

t
B(u, T )dWQ(u),

(4.3.7)

B(t, T ) = 1
κ

[1− e−κ(T−t)], (4.3.8)

M(t, T ) = σ2

κ2 [T − t+ 2
κ
e−κ(T−t) − 1

2κe
−2κ(T−t) − 3

2κ ], (4.3.9)
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and the OIS zero-coupon bond price is defined as:

PD(t, T ) = EQ[exp−
∫ T

t
r(u)du|Ft]. (4.3.10)

Also, the closed-form solution is known to be:

PD(t, T ) = exp{A(t, T )−B(t, T )y(t)}, (4.3.11)

where

A(t, T ) = log PD(0, T )
PD(0, t) + σ2

2κ3 [−3
2 + 2e−κ(T−t) − 1

2e
−2κ(T−t) + 2(e−κt − e−κT )− 1

2(e−2κt − e−2κT )].

It is important to note that such specification of the OIS rate is consistent with the initial

term structure of the OIS curve. At time t = 0, A(0, T ) = logPD(0, T ), the zero-coupon

bond prices are simply equal to the market implied zero-coupon bond prices at time zero.

However, the mean reversion rate parameter can be alternatively estimated in the real proba-

bility measure using historical date, while the volatility parameter still needs to be calibrated

to interest rate caps. For Sx(t, Ti−1, Ti), we follow Mercurio and Xie (2012)’s example and

assume a one-factor lognormal stochastic process with zero-drift as follows:

dSx(t, Ti−1, Ti) = ηxS
x(t, Ti−1, Ti)dZQ

x (t), (4.3.12)

where ηx is the constant spread volatility for all maturities Ti, i = 1, ..., n given tenor x

and ZQ
x is a standard Brownian motion under measure Q independent of WQ. In Mercurio

(2010), the stochastic basis spreads are assumed to have a stochastic volatility function for

more accurate calibration to market data and pricing of interest rate derivatives. Further-

more, given tenor x the forward basis spreads for various maturities are driven by their own

Brownian motions and are correlated with the forward OIS rate. Since the main objective

of this chapter is CVA calculation with specific focus on wrong way risk, we tend to choose

relatively simple dynamics for the forward OIS rate and the basis spreads so that wrong way

risk can be easily incorporated. Therefore, we assume parallel movement of forward basis
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swap spreads across various maturities and a constant volatility parameter for a given tenor

x.

4.3.3 Caplet Pricing

For the calibration of our multi-curve framework, we choose interest rate caps as calibration

instruments.

Consider a caplet written on the x-tenor Libor rate Lx(Ti−1, Ti) at strike rate K and

notional N , which pays out at time Ti:

V Cplt
i (Ti) = Nx[Lx(Ti−1, Ti)−K]. (4.3.13)

Under our multi-curve framework, the caplet price at time t ≤ Ti is given by:

V Cplt
i (t) = NxPD(t, Ti)EQTiD {[Lx(Ti−1, Ti)−K]+|Ft}. (4.3.14)

With application of tower property of conditional expectations, we have:

V Cplt
i (t) = NxPD(t, Ti)EQTiD {[F x(Ti−1, Ti−1, Ti) + Sx(Ti−1, Ti−1, Ti)−K]+|Ft}

= NxPD(t, Ti)EQTiD {[F x(Ti−1, Ti−1, Ti)− (K − Sx(Ti−1, Ti−1, Ti))]+|Ft}

= NxPD(t, Ti)EQTiD {EQTiD {[F x(Ti−1, Ti−1, Ti)− (K − u)]+|Sx(Ti−1, Ti−1, Ti) = u}|Ft}.

(4.3.15)

Following similarly as in Mercurio (2010), the inner and outer conditional expectations are

calculated thanks to the independence between the OIS forward rate F x(Ti−1, Ti−1, Ti) and

the forward basis swap spread Sx(Ti−1, Ti−1, Ti):

V Cplt
i (t) = NxPD(t, Ti)

∫ +∞

−∞
EQTiD {[F x(Ti−1, Ti−1, Ti)− (K − u)]+|Ft}fSx(Ti−1)(u)du,

(4.3.16)
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where fSx(Ti−1) is the density function of the basis swap spread at time t Sx(Ti−1, Ti−1, Ti).

Since the support of fFx(Ti−1), the density function of the forward OIS rateF x(Ti−1, Ti−1, Ti)

at time t, is the positive half-line, the above equation can be further derived as:

V Cplt(t) = NxPD(t, Ti)[
∫ K

−∞
EQTiD {[F x(Ti−1, Ti−1, Ti)− (K − u)]|Ft}fSx(Ti−1)(u)du

+
∫ +∞

K
[F x(t, Ti−1, Ti)− (K − u)]fSx(Ti−1)(u)du]

= N

∫ K

0
Cplt(t,K − u;Ti−1, Ti)fSx(Ti−1)(u)du

+ xPD(t, Ti)(F x(t, Ti−1, Ti)−K)QSx(Ti−1)(t,K)

+ xPD(t, Ti)
∫ ∞
K

ufSx(Ti−1)(u)du, (4.3.17)

where the last integral

∫ ∞
K

ufSx(Ti−1)(u)du = Sx(t, Ti−1, Ti)Φ(
ln Sx(t,Ti−1,Ti)

K + 1
2η

2
x(Ti−1 − t)

ηx
√
Ti−1 − t

), (4.3.18)

and

Cplt(t,K;Ti−1, Ti) = xPD(t, Ti)[F x(t, Ti−1, Ti)Φ(d1)−KΦ(d2)],

d1 =
ln Fx(t,Ti−1,Ti)

K + 1
2σ

2(Ti−1 − t)
σ
√
Ti−1 − t

,

d2 = d1 − σ
√
Ti−1 − t,

QSx(Ti−1)(t,K) = Φ(
ln Sx(t,Ti−1,Ti)

K − 1
2η

2
x(Ti−1 − t)

ηx
√
Ti−1 − t

),

fSx(Ti−1)(u) = exp{−1
2

(ln u
Sx(t,Ti−1,Ti) + 1

2η
2
x(Ti−1 − t))2

η2
x(Ti−1 − t)

},

with Φ the cumulative standard normal distribution function. In equation 4.3.17, the first

integral can be calculated via numerical integration as an approximation of the definite inte-

gral. Specifically, we use Gauss-Legendre quadrature (see Abramowitz and Stegun (1964)

for more details).

An interest rate cap is composed of a series of interest rate caplets at strike K and
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notional N , therefore the price of an interest rate cap at time t is subsequently equal to the

sum of the underlying caplet prices:

V Cap(t) = Σn
i=1V

Cplt
i (t). (4.3.19)

4.3.4 A Example of Calibration to Market Data

We now give an example on calibrating our multi-curve framework to interest rate caps

across various maturities in the US market as of 28th April 2014. The calibrated parameters

are:

κ = 0.088, σ = 0.0114, ηx = 0.1642. (4.3.20)

Table 4.3.1 summarizes the strikes and implied volatilities of at-the-money (ATM) dollar

caps with maturities up to thirty years.

Maturity ATM Strike ATM Implied Volatility
1y 0.27% 0.5735
2y 0.57% 0.7215
3y 1.05% 0.618
4y 1.51% 0.518
5y 1.87% 0.4538
6y 2.16% 0.4047
7y 2.38% 0.3763
8y 2.56% 0.3495
9y 2.71% 0.332

10y 2.83% 0.3198
12y 3.02% 0.2958
15y 3.21% 0.2703
20y 3.37% 0.2452
25y 3.43% 0.2387
30y 3.46% 0.2342

Table 4.3.1: ATM Dollar cap implied volatility quotes on 28th April 2014. Data Source:
Bloomberg

99



4.4. PRICING BERMUDAN SWAPTION WITH LEAST SQUARE METHOD

4.4 Pricing Bermudan Swaption with Least Square Method

In this section, we revisit the classical Longstaff-Schwartz Algorithm used to price Bermudan-

type options. First of all, we introduce the definition of Bermudan swaptions.

4.4.1 Bermudan Swaption

Given a discrete time grid 0 = T0 < T1 < ... < Tn = T , x = Ti − Ti−1, i = 0, ..., n,

a payer swaption maturing at time Tk, k ≥ 1, gives the holder the right to enter an vanilla

interest rate swap (IRS) at time Tk with the first reset date being Tk and payment dates

being Tk+1,..., Tn at the fixed rate K and notional N . Under our pre-specified multi-curve

framework, the value of a payer swap at time t ≤ Tk is given by:

V (t) = EQ[NxΣn−1
i=k exp{−

∫ Ti+1

t
r(u)du}[Lx(Ti, Ti+1)−K]|Ft]

= NxΣn−1
i=k E

Q[exp{−
∫ Ti+1

t
r(u)du}[Lx(Ti, Ti+1)−K]|Ft] (4.4.1)

= NxΣn−1
i=k PD(t, Ti+1)EQ

Ti+1
D [Lx(Ti, Ti+1)−K|Ft]

= NxΣn−1
i=k PD(t, Ti+1)[Lx(t, Ti, Ti+1)−K]

= NxΣn−1
i=k PD(t, Ti+1)[F x(t, Ti, Ti+1) + Sx(t, Ti, Ti+1)−K], (4.4.2)

given equation 4.3.1 and the closed-form solution of the forward basis spreads Sx(t, Ti, Ti+1),

we have

V (t) = N [PD(t, Tk)− PD(t, Tn)] +NxΣn−1
i=k PD(t, Ti+1)[Sx(0, Ti, Ti+1) exp{−1

2η
2
xt+ ηxZ

Q
x (t)} −K]

= N [PD(t, Tk)− PD(t, Tn)] +N exp{−1
2η

2
xt+ ηxZ

Q
x (t)}xΣn−1

i=k PD(t, Ti+1)Sx(0, Ti, Ti+1)

−NKxΣn−1
i=k PD(t, Ti+1). (4.4.3)

100



4.4. PRICING BERMUDAN SWAPTION WITH LEAST SQUARE METHOD

The corresponding values of the forward swap rate Sxk,n(t) and annuityAxk,n(t) at time t are

given by:

Sxk,n(t) =
PD(t, Tk)− PD(t, Tn) + exp{−1

2η
2
xt+ ηxZ

Q
x (t)}xΣn−1

i=k PD(t, Ti+1)Sx(0, Ti, Ti+1)
xΣn−1

i=k PD(t, Ti+1)
,

(4.4.4)

Axk,n(t) = xΣn−1
i=k PD(t, Ti+1). (4.4.5)

Based on Brigo and Mercurio (2007), Bermudan swaptions are defined as follows:

Definition 4.4.1. (Bermudan Swaption) A (payer) Bermudan swaption is a swaption char-

acterized by three dates Tk < Th < Tn, giving the holder the right to enter an IRS at any

time Tl in-between Tk and Th, with the first reset date Th and the last payment date Tn at

the fixed rate K. Thus the start and length of the option depend on the instant Tl when the

option is exercised.

Given the lock-out period, i.e., a no-exercise period up to time Tk, a payer Bermudan

swaption with fixed coupon K and notional N , exercised at time Tl corresponds to the

value:

U(Tl) = NAxl,n(Tl)[Sxl,n(Tl)−K]. (4.4.6)

The present value at time 0 of the Bermudan swaption is the supremum taken over all

discrete stopping times τ of all conditional expected discounted payoffs:

V (0) = sup
τ
EQ[exp{−

∫ τ

0
r(u)du}U(τ)|Fτ ]. (4.4.7)

The value at arbitrary exercise date Ti ≥ Tl is the maximum of the conditional continuation

value H(Ti) and the intrinsic value of the Bermudan swaption U(Ti):

V (Ti) = max(H(Ti), U(Ti)), (4.4.8)

where H(Tn) = 0. The continuation value H(Ti) is the conditional expected option value
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at time Ti+1:

H(Ti) = EQ[exp{−
∫ Ti+1

Ti

r(u)du}V (Ti+1)|FTi ]. (4.4.9)

Remark. In this thesis, the Bermudan swaptions we consider are assumed to be of cash-

settled type. Hence the investor will only have counterparty exposure upon exercising the

contract and there will be no further exposure going forward and the counterparty risk

is of unilateral nature. The standard market practice of pricing cash-settled Bermudan

swaptions may vary depending on the market they are traded. Specifically, in the Euro

market the annuity is actually defined in terms of the swap rate Sxl,n(Tl):

Axl,n(Tl) = xΣn−1
i=l

1
(1 + Sxl,n(Tl))Ti+1−Tl

, (4.4.10)

in order to simplify the determination of cash settlement. However, such discounting is not

used in the US market where the traditional payoff as in equation 4.4.6 is preserved. For

simplicity and to avoid confusion, we assume that the difference in the prices obtained from

the two discounting methods is minimal enough to ignore and treat Bermudan swaptions as

the ones in the US market. For more details, see Brigo and Mercurio (2007).

4.4.2 Least Squares Method

As seen above, the valuation of Bermudan swaptions is an optimal exercise problem solved

by backward induction, starting from the last exercise date Tn−1, recursively repeating equa-

tion 4.4.8 and 4.4.9 until time 0. The most common method to solve such optimal exercise

method is the least squares method initially introduced by Carriere (1996) and is a simu-

lation based method used to approximate the continuation value H(Ti) through parametric

functions. One of the notable works of this method is by Longstaff and Schwartz (2001),

where the parametric functions are approximated using least square regression such that the

estimated continuation value H̃(Ti) is given by:

H̃(Ti) = ΣR
d=0θi,dφd(Xi), (4.4.11)
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where θi,d, d = 0, ..., R is a set of parameters for the set of basis functions φd, d = 0, ..., R

and Xi is the explanatory variable driving the holding value at time Ti. The objective of the

method is to choose parameters θi,d at each exercise date so that the linear combination of

the basis functions best approximates H(Ti).

Applying this approach involves choosing a suitable parametric family of basis func-

tions, as mentioned in Glasserman et al. (2004). For our purposes, we believe it is suffi-

cient to choose the ones that are complete and linearly independent and hence we follow

Longstaff and Schwartz (2001) to choose weighted Laguerre polynomials defined as:

φ0(x) = e−
x
2 ,

φ1(x) = e−
x
2 (1− x),

φ2(x) = e−
x
2 (1− 2x+ x2

x
),

φd(x) = e−
x
2
ex

d!
∂d

∂xd
(xde−x),

where d is the degree of dimension. The problem now reduces to minimizing the expected

squared error with respect to the parameters θi,d:

ε = E[(H(Ti)− ΣR
d=0θi,dφd(Xi))2]. (4.4.12)

It is important to note that for CVA calculation we do not set restrictions on the paths based

on whether the Bermudan swaption is ITM or not. In addition, to avoid oversight bias, we

generated a second set of paths for Xi and the basis functions approximated from the first

set of paths will be used for obtaining the exercise boundary.

By differentiating the right hand side of equation 4.4.12 with respect to θi,d and set the

result equal to zero, we have:

E[E[H(Ti)φd(Xi)]] = ΣR
d=0E[φd(Xi)φs(Xi)]. (4.4.13)
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Now we define matrix formulation

(Mφφ)d,s = E[φd(Xi)φs(Xi)], (4.4.14)

where Mφφ is a non-singular R×R matrix with (d+ 1)s entry and

(MV φ)d = E[E[H(Ti)φd(Xi)]] = E[H(Ti)φd(Xi)], (4.4.15)

where MV φ is a R-vector with (d+ 1)th entry. θi is then given by:

θi = M−1
φφMV φ. (4.4.16)

To obtain the value of elements of θi, Monte Carlo simulation is applied, Mφφ and MV φ

can be estimated as follows:

(M̃φφ)d+1,s = 1
b

Σb
j=1φd(Xi,j)φs(Xi,j), (4.4.17)

(M̃V φ)d+1 = 1
b

Σb
q=1φd(Xi,q)H(Xi,q, Ti), (4.4.18)

where b is the number of simulated paths for Xi. Then at each downstream node, a second

set of paths for Xi is generated, which we denote as X̃i, the continuation value H(Ti) can

be estimated:

H(Ti) ≈ θᵀi φ(X̃i), (4.4.19)

where φ(X̃i) = (φ0(X̃i), ..., φR(X̃i)ᵀ.

Based on Chapter 8 of Glasserman et al. (2004), the regression-based algorithm can be

summarized as follows:

• Generate b paths of n time steps.

• Simulate b independent paths {X1,j , ..., Xn,j}, j = 1, ..., b.

• Set Vj(Tn) = Uj(Tn) as the terminal conditional for path j.
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• Work backwards: for i = n− 1, ..., 1,

– given the simulated value ofXi,j , j = 1, ..., b, calculate the estimates of (M̃φφ)(d+1)s

and (M̃V φ)d+1;

– invert to find θi,j = M̃−1
φφM̃V φ.

• Simulate a second set of {X1,j , ..., Xn,j}, j = 1, ..., b, and denote it as {X̃1,j , ..., X̃n,j},

j = 1, ..., b.

• Set Vj(Ti) = Ũj(Ti), j = 1, ..., b, i = 1, ..., n, where Ũj(Ti) is generated via X̃i,j .

• Work backwards, for i = n− 1, ..., 1,

– Calculate the estimated continuation value H̃j(Ti) = θᵀi φ(X̃i,j), j = 1, ..., b;

– Set

Ṽj(Ti) = max(Ũj(Ti), H̃j(Ti)), j = 1, ..., b,

if Ũj(Ti) > H̃j(Ti), Ṽj(Ti) = Ũj(Ti), otherwise Ṽj(Ti) = Ṽj(Ti+1)∗DF (∆t),

DF (∆t) is the discount factor for time period ∆t;

• Until time T0, we have an optimal exercise boundary along all the simulated paths of

Xi,j , i = 1, ..., n. Set Ṽ (T0) = (Ṽ1(T1) + ...+ Ṽb(T1)) ∗DF (∆t)/b.

In this context, the interest rate is assumed to be constant and therefore the discount factor

for all maturities is also constant. However, as we will see in our case, we assume stochastic

interest rates and hence simulation of the paths of the discount factors will be conducted.

Another important issue in implementing the Longstaff-Schwartz algorithm is to choose the

suitable explanatory variables X and the dimension of the parametric functions R. This is

essential in avoiding overfitting with an overly rich set of parametric functions and getting a

closer estimate of the exercise boundary as mentioned in Piterbarg (2003). Simple paramet-

ric families not only make the algorithm more robust but also reduce the number of paths

required to achieve convergence. Furthermore, in choosing suitable explanatory variable(s),

given equation 4.4.6, we observe that the swap rate Sxl,n(Tl) and the annuity Axl,n(Tl) are
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the dominant factors in driving the exercise/continuation value of the Bermudan swaption

at arbitrary exercise date Tl. In equation 4.4.4, we can also observe that the formula of

the swap rate Sxl,n(Tl) incorporates information of the OIS zero-coupon bonds, the overall

level of the stochastic basis spreads and the annuity and therefore we believe that the swap

rate alone is influential enough to act as the explanatory variable along with the parametric

families we defined earlier.

4.5 Joint Interest Rate-Credit Model via Bessel Bridges

In this section, we establish the joint interest rate-credit model to incorporate wrong way/right

way risk into the multi-curve valuation framework for Bermudan swaptions.

4.5.1 Counterparty Risk Modelling via Bessel Bridges

In order to integrate the default model into the multi-curve framework, we need to identify

the joint distribution of the multi-curve dynamics and the credit index process upon default.

For the credit index process Y (t), given that it is a time-changed Brownian motion

{X(I(t)), t > 0} defined in equation 2.3, it has been shown in Davis and Pistorius (2010)

that conditional on counterparty default at time τYC = s > 0, Y is in law equal to that of a

three-dimensional Bessel bridge process from A → 0 conditional on τX0 = I(s) such that

Y (t) solves the following SDE:

dY (t) = ( 1
Y (t) −

Y (t)∫ s
t σ

2(u)du)σ2(t)dt+ σ(t)dB(t), t ∈ (0, s), Y (0) = A, (4.5.1)

where A ∼ F νλ is independent of B. Paths of Y conditional on default at τYC = s > 0

can be simulated in terms of the three-dimensional Bessel bridge by replacing s → I(s),

t → I(t), dt → σ2(t)dt and exploiting the relation between the three-dimensional Bessel
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bridge and a Brownian bridge:

Y (t) =

√
(A(s− t)

s
+ Z1(t))2 + Z2

2 (t) + Z2
3 (t), (4.5.2)

where Zi, i = 1, 2, 3, are independent 0→ 0 Brownian bridges:

dZi(t) = −Zi(t)
s− t

dt+ dBi(t) (4.5.3)

where Bi are independent Brownian motions.

Since the Libor rate is decomposed into the OIS rate and the basis swap spread in our

multi-curve framework, it is essential that we determine whether we should impose wrong

way risk onto the OIS rate or the basis swap spreads. Based on Sengupta and Tam (2008)

and Thornton (2009), the OIS rate is a measure of the market expectation of the overnight

federal funds rate and there is little default risk embedded in the OIS market since overnight

index swaps do not involve exchange of principals as payments are exchanged only at the

maturity when one party pays the net rate obligation (i.e. the difference between the term

OIS rate and the geometric average of the overnight federal funds rate over the term of the

contract) to the other. However, on the other hand, the Libor-OIS spread is assumed to be a

measure of the health of financial institutions because it reflects what financial institutions

believe is the risk of default associated with lending to others and remains a barometer of

the fear of financial institution insolvency. Between August 2007 and December 2008, em-

pirical evidence shows that there was a sharp rise in the Libor-OIS spreads of various tenors

(e.g. 1-month, 3-month, 6-month) compared with pre-crisis levels, especially following the

announcement of bankruptcy of Bear Stearns and Lehman Brothers, highlighting the dis-

tress in the banking industry and money markets. Therefore, we believe that the Libor-OIS

spread is more sensitive to the deterioration of counterparty credit quality and wrong way

risk should be incorporated into the joint evolution of the Libor-OIS spread and the counter-

party credit quality. Given the dynamics of the stochastic forward Libor-OIS spread defined

in equation 4.3.12, the driving Brownian motion ZQ
x (t) can be expressed directly in terms
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of the credit index process Y (t) and an independent Brownian motion B′(t):

B(t) =
∫ t

0

1
σ(u)dY (u)− ν

∫ t

0
σ(u)du, (4.5.4)

ZQ
x (t) = ρC,SB(t) +

√
1− ρ2

C,SB
′(t),

= ρC,S(
∫ t

0

1
σ(u)dY (u)− ν

∫ t

0
σ(u)du) +

√
1− ρ2

C,SB
′(t), (4.5.5)

where ρC,S is the correlation between Y (t) and Sx(t, Ti−1, Ti). Hence, the integral form of

the forward basis spread conditional on default at τYC = s > 0 can be expressed as:

Sx(t, Ti−1, Ti) = Sx(0, Ti−1, Ti) exp{−1
2η

2
x + ηxρC,S

1
σ(u)dY (u)−ηxρC,Sν

∫ t

0
σ(u)du+

+ ηx
√

1− ρ2
C,SB

′(t)}.

(4.5.6)

4.6 Numerical Results

In this section, we study numerical examples to show the model performance and illustrate

how wrong way/right way risk impacts EPEs and CVAs of Bermudan swaptions.

4.6.1 Setup

Under our multi-curve framework, the short rate and basis spread dynamics are calibrated to

the interest rate cap quotes in the US market on 28th April 2014 and the model parameters

are summarized in section 4.3.4. We assume the counterparty entering into the Bermudan

swaption transaction to be Citigroup and the unilateral counterparty default model is cali-

brated to the CDS quotes of Citigroup for maturities up to 10 years in the US market on 28th

April 2014 (see Table 4.6.1). The calibrated piece-wise constant implied hazard rate γ(t)

and the corresponding credit index volatility σ(t) are plotted against maturities in Figure

4.6.1a and Figure 4.6.1b respectively.
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For the Least-Square regression used to obtain the optimal exercise boundary of the

Bermudan swaption, we use weighted Laguerre polynomials of degree d = 1 for 100000

simulations as the regression results for degree d = 2 or above are less stable and the

number of simulations will increase with the degree of the polynomials.

For Bermudan swaptions, we consider cash settled types with 5-year maturity 1-year

lockout period and 10-year maturity 5-year lockout period respectively. We set the notional

to be $100000 and the strike rate to be K = 0.01%. The number of Monte-Carlo simula-

tions we run is 100000. The date for EPE and CVA calculations is on 28th April 2014. We

vary the correlation between the counterparty credit quality and the Libor-OIS basis spreads,

ρC,S = {−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5} and see how it impacts EPEs and CVAs.

Maturity (years) Citigroup CDS Par Spreads
0.5y 0.0024
1y 0.0031
2y 0.0043
3y 0.0060
4y 0.0080
5y 0.0097
7y 0.012
10y 0.014

Table 4.6.1: Market CDS term structures of Citigroup on 28th April 2014. Data Source:
Bloomberg

(a) Implied Hazard Rates (b) Credit Index Volatility

Figure 4.6.1: Implied hazard rate and credit index volatility term structures from par CDS
spreads of Citigroup observed on 28th April 2014.
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4.6.2 EPE and PFE

Figures 4.6.3-4.6.5 illustrate the EPE profiles of cash-settled Bermudan swaptions with 5-

year maturity 1-year lockout, 10-year maturity 1-year lockout and 10-year maturity 5-year

lockout. At most fixed time t, the EPE is higher when ρC,S is more negative and lower as

ρC,S becomes more positive. This is because when the counterparty credit quality deteri-

orates, negative correlation between the counterparty credit quality and basis spread will

cause the basis spreads across maturities to go up and increase the value of the underly-

ing swap, leading to higher counterparty exposure, while a positive correlation between the

counterparty credit quality and the basis spread will cause the basis spreads across matu-

rities to fall and decrease the value of the underlying swap, leading to lower counterparty

exposure. However, towards the periods where the 3M forward Libor-OIS spread implied

from interest rate instruments is very low, see Figure 4.6.2, such effect is less evident. This

Figure 4.6.2: The 3M USD forward Libor-OIS spread on 28th April 2014. Data Source:
Bloomberg

is because the forward Libor-OIS spread is two low and consequently the variability and

evolution of the OIS rate tends to outweigh the effect of the forward Libor-OIS spreads. For

each fixed ρC,S , the EPEs tend to decrease through time since the earlier the counterparty

defaults the longer the maturity of the underlying swap is should the holder exercise the

Bermudan swaption given that the swap is in the money, and the higher the value of swap’s
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outstanding payments, leading to higher counterparty exposure. The later the counterparty

defaults, the shorter the maturity of the underlying swap and hence the fewer the outstanding

payments leading to lower counterparty exposure. Similar patterns can be observed for the

potential future exposure profiles of the three Bermudan swaptions considered, see Figure

4.6.6-4.6.8.

Figure 4.6.3: The EPE of a cash-settled Bermudan swaption with 5-year maturity and
1-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

Figure 4.6.4: The EPE of a cash-settled Bermudan swaption with 10-year maturity
and 1-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.
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Figure 4.6.5: The EPE of a cash-settled Bermudan swaption with 10-year maturity
and 5-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

Figure 4.6.6: The 97.5% PFE of a cash-settled Bermudan swaption with 5-year matu-
rity and 1-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

4.6.3 CVA

Figures 4.6.9-4.6.11 illustrate the CVAs for the three Bermudan swaption trades we con-

sider. It is shown that if ρC,S is more negative where wrong way risk dominates, the CVA

charge will be higher since the deterioration of the counterparty credit quality leads to higher

counterparty exposure upon default and hence a higher CVA will be charged on the counter-
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Figure 4.6.7: The 97.5% PFE of a cash-settled Bermudan swaption with 10-year matu-
rity and 1-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

Figure 4.6.8: The 97.5% PFE of a cash-settled Bermudan swaption with 10-year matu-
rity and 5-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

party. Conversely, the CVA will decrease as ρC,S becomes more positive where right way

risk dominates and reduces the counterparty exposure upon default, hence a lower CVA will

be charged on the counterparty. Furthermore, for each fixed ρC,S , we observe that the CVA

charged for the 5-year Bermudan swaption is lower than the one charged for the 10-year

Bermudan swaption since the latter has more outstanding payments and hence higher coun-

terparty exposure. Furthermore, given the same maturity, the shorter the lock-out period,
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the higher the corresponding CVA charged on the counterparty given a correlation scenario.

This is because the more exercise dates the Bermudan swaption has, the more likely the in-

vestor will be exposed to counterparty risk, the joint probability that the Bermudan swaption

ending in the money and counterparty defaults increases, leading to higher CVA, and this is

especially evident when the wrong way correlation is negative since wrong way correlation

also increases the likelihood of counterparty default.

Figure 4.6.9: The CVA of a cash-settled Bermudan swaption with 5-year maturity and
1-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

4.7 Conclusion

In this chapter, we establish an efficient and dynamic model to calculate cash-settled Bermu-

dan swaption CVA taking into consideration the impact of wrong way/right way risk. First

of all, in the wake of the financial crisis, the traditional single curve framework used in

most of the literature concerning Bermudan swaptions has become obsolete and therefore

we construct a multi-curve interest rate framework for the valuation of Bermudan swap-

tions, explicitly modelling the OIS curve (discounting curve) and the basis swap spreads.

The OIS rate is assumed to follow one-factor Hull-White dynamics while the stochastic for-

ward basis spread for a given tenor is modelled as a driftless one-factor lognormal process
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Figure 4.6.10: The CVA of a cash-settled Bermudan swaption with 10-year maturity
and 1-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

Figure 4.6.11: The CVA of a cash-settled Bermudan swaption with 10-year maturity
and 5-year lockout period on 28th April 2014. K = 1%, N = $100000, ρC,S =
{−0.5,−0.4,−0.2, 0, 0.2, 0.4, 0.5}.

with a constant volatility parameter for all maturities. The standard Least-Square regression

method is then used to obtain the optimal exercise boundary of the Bermudan swaptions.

Next, we introduce the counterparty default model which is able to capture wrong

way/right way risk in an explicit manner. Specifically, we follow Davis and Pistorius (2010)

to model the default time as the first time the credit index process crosses zero, where the

115



4.7. CONCLUSION

random starting point, the drift and volatility function of the credit index process are prop-

erly characterized as the solution to the corresponding inverse first-passage time problem

such that the default time distribution implied by the model is consistent with the ones im-

plied from the market CDS quotes. Conditional on default at a particular time, the credit

index process can be simulated in terms of a three dimensional Bessel bridge. The asset-

credit correlation is imposed onto the evolution of the credit index process and the forward

basis spreads. Numerical examples of cash-settle Bermudan swaptions have been studied

and it is shown the wrong way/right way risk could lead to significant adjustment in the

value of expected positive exposures and CVAs. It can be shown in the numerical exam-

ples that when the Libor-OIS spread is high the impact of negative asset-credit correlation

is evident and this is a very desirable modelling feature during periods of market stress as

the exposure profiles and CVA will be more senstive to the widening of Libor-OIS spreads.

Future extensions of have distinct spread dynamics can be incorporated, which offers a

comprehensive approach to capture the impact of Libor-OIS spreads of various tenors. Fur-

thermore, the impact of asset-credit correlation on CVA of Bermudan swaptions of various

maturities and lock-out periods under multi-curve framework is analyzed and it is shown

that worng way risk could increase the CVA charge significantly and this is especially true

at portfolio level with high notionals of the trades.
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Chapter 5

Conclusion

In this thesis, we study counterparty risk modelling of fixed income derivatives with a spe-

cific focus on wrong way risk.

In Chapter 2, we have developed a joint model for the exchange rate and counter-

party default risk based on Davis and Pistorius (2010), which enables us to capture uni-

lateral wrong way/right way risk of FX forward and cross currency swap trades given an

exogenously specified set of exchange rate-credit correlation scenarios. Compared to the

canonical Hull and White (2001) approach, our model can be calibrated exactly to the mar-

ket implied default probabilities without having to numerically bootstrapp a default barrier.

Our joint FX-Hull-White hybrid modelling framework can be easily extended to incorporate

correlation structures between interest rates and counterparty credit quality. Numerical ex-

amples of expected positive exposures and potential future exposures with wrong way/right

way risk embedded show that FX-credit correlation can have a significant impact on coun-

terparty risk quantifications than traditional models which treat wrong way/right way risk

often implicitly, as they can increase or decrease expected positive exposures and potential

future exposures.

In Chapter 3, in light of empirical evidences that both counterparty of a trade may

default, we naturally extend our joint FX-credit default model to the bilateral version.
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An efficient way of jointly simulating the credit index processes of two counterparties is

proposed where no identification of the condtional first-to-default joint distribution of the

two-dimensional time-changed Brownian motio with drifts is required. Under the bilateral

framework, the FX-credit correlations with both counterparties and the default correlation

between the two counterparties can be easily incorporated and their impact can be quantified

through EPE calculation of cross currency swaps against a range of correlation scenarios.

As shown, based on the perspective of each counterparty, the three correlations may have

counterbalancing effects in EPEs and ENEs, which provides a delicate tool for CVA and

DVA calculations.

Finally, in Chapter 4, we consider our unilateral default model together with a multi-

curve interest rate model with stochastic basis spreads to formulate a framework for Bermu-

dan swaptions CVA calculations with wrong way/right way risk embedded. The interest rate

framework is built in terms of a Hull-White short rate dynamics capturing the evolution of

the overnight-index-swap (OIS) rate and a one-factor lognormal process with zero drift to

model the stochastic Libor-OIS basis spreads, such that the Libor rate is expressed as the

sum of the two. Since the Libor-OIS spread is a measure of liquidity and credit risk in the

interbank market, the wrong way correlation is imposed between the credit index process

and the forward Libor-OIS spread. Our approach is the first to incorporate wrong way/right

way risk in the calculation of CVA of Bermudan swaptions under the post-crisis multi-curve

interest rate framework. The model is applied to calculate CVAs of Bermudan swaptions

with different maturities and lock-out periods and wrong way/right way risk are properly

quantified against various correlation scenarios.
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Appendix A

Histograms of EPEs and ENEs in

Chapter 3

(a)
ρC,S = −0.5

(b) ρI,C = 0,
ρI,S = 0, ρC,S = −0.5

(c) ρI,C = 0.3,
ρI,S = 0, ρC,S = −0.5

(d) ρI,C = 0.5,
ρI,S = 0, ρC,S = −0.5

(e) ρI,C = 0.75,
ρI,S = 0, ρC,S = −0.5

Figure A.0.1: Histograms of the exposures of the 5-year fixed-for-fixed USDJPY cross
currency swap from the point of view of Daiwa Securities conditional on first-to-default
of Nomura Securities at t = 2.5 (years). Unilateral Case: ρC,S = −0.5. Bilateral Case:
ρC,S = −0.5, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.
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(a)
ρC,S = −0.3

(b) ρI,C = 0,
ρI,S = 0, ρC,S = −0.3

(c) ρI,C = 0.3,
ρI,S = 0, ρC,S = −0.3

(d) ρI,C = 0.5,
ρI,S = 0, ρC,S = −0.3

(e) ρI,C = 0.75,
ρI,S = 0, ρC,S = −0.3

Figure A.0.2: Histograms of the exposures of the 5-year fixed-for-fixed USDJPY cross
currency swap from the point of view of Daiwa Securities conditional on first-to-default
of Nomura Securities at t = 2.5 (years). Unilateral Case: ρC,S = −0.3. Bilateral Case:
ρC,S = −0.3, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.
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(a)
ρC,S = 0

(b) ρI,C = 0,
ρI,S = 0, ρC,S = 0

(c) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0

(d) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0

(e) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0

Figure A.0.3: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Nomura Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρC,S = 0. Bilateral Case: ρC,S = 0, ρI,S = 0,
ρI,C = {0, 0.3, 0.5, 0.75}.

(a)
ρC,S = 0.3

(b) ρI,C = 0,
ρI,S = 0, ρC,S = 0.3

(c) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0.3

(d) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0.3

(e) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0.3

Figure A.0.4: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Nomura Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρC,S = 0.3. Bilateral Case: ρC,S = 0.3, ρI,S = 0,
ρI,C = {0, 0.3, 0.5, 0.75}.
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(a)
ρC,S = 0.5

(b) ρI,C = 0,
ρI,S = 0, ρC,S = 0.5

(c) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0.5

(d) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0.5

(e) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0.5

Figure A.0.5: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Nomura Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρC,S = 0.5. Bilateral Case: ρC,S = 0.5, ρI,S = 0,
ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = 0, ρC,S = −0.5

(b) ρI,C = 0.3,
ρI,S = 0, ρC,S = −0.5

(c) ρI,C = 0.5,
ρI,S = 0, ρC,S = −0.5

(d) ρI,C = 0.75,
ρI,S = 0, ρC,S = −0.5

Figure A.0.6: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = −0.5, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = 0, ρC,S = −0.3

(b) ρI,C = 0.3,
ρI,S = 0, ρC,S = −0.3

(c) ρI,C = 0.5,
ρI,S = 0, ρC,S = −0.3

(d) ρI,C = 0.75,
ρI,S = 0, ρC,S = −0.3

Figure A.0.7: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Nomura Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = −0.3, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.
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(a) ρI,C = 0,
ρI,S = 0, ρC,S = 0

(b) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0

(c) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0

(d) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0

Figure A.0.8: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Nomura Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = 0, ρC,S = 0.3

(b) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0.3

(c) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0.3

(d) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0.3

Figure A.0.9: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = −0.3, ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = 0, ρC,S = 0.5

(b) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0.5

(c) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0.5

(d) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0.5

Figure A.0.10: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.
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(a) ρI,C = 0,
ρI,S = −0.5, ρC,S = 0

(b) ρI,C = 0.3,
ρI,S = −0.5, ρC,S = 0

(c) ρI,C = 0.5,
ρI,S = −0.5, ρC,S = 0

(d) ρI,C = 0.75,
ρI,S = −0.5, ρC,S = 0

Figure A.0.11: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = −0.5, ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = −0.3, ρC,S = 0

(b) ρI,C = 0.3,
ρI,S = −0.3, ρC,S = 0

(c) ρI,C = 0.5,
ρI,S = −0.3, ρC,S = 0

(d) ρI,C = 0.75,
ρI,S = −0.3, ρC,S = 0

Figure A.0.12: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = −0.3, ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = 0, ρC,S = 0

(b) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0

(c) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0

(d) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0

Figure A.0.13: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = 0, ρI,C = {0, 0.3, 0.5, 0.75}.
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(a) ρI,C = 0,
ρI,S = 0.3, ρC,S = 0

(b) ρI,C = 0.3,
ρI,S = 0.3, ρC,S = 0

(c) ρI,C = 0.5,
ρI,S = 0.3, ρC,S = 0

(d) ρI,C = 0.75,
ρI,S = 0.3, ρC,S = 0

Figure A.0.14: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = 0.3, ρI,C = {0, 0.3, 0.5, 0.75}.

(a) ρI,C = 0,
ρI,S = 0.5, ρC,S = 0

(b) ρI,C = 0.3,
ρI,S = 0.5, ρC,S = 0

(c) ρI,C = 0.5,
ρI,S = 0.5, ρC,S = 0

(d) ρI,C = 0.75,
ρI,S = 0.5, ρC,S = 0

Figure A.0.15: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. ρC,S = 0, ρI,S = 0.5, ρI,C = {0, 0.3, 0.5, 0.75}.

(a)
ρI,S = −0.5

(b) ρI,C = 0,
ρI,S = −0.5, ρC,S = 0

(c) ρI,C = 0.3,
ρI,S = −0.5, ρC,S = 0

(d) ρI,C = 0.5,
ρI,S = −0.5, ρC,S = 0

(e) ρI,C = 0.75,
ρI,S = −0.5, ρC,S = 0

Figure A.0.16: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρI,S = −0.5. Bilateral Case: ρC,S = 0, ρI,S = −0.5,
ρI,C = {0, 0.3, 0.5, 0.75}.
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(a)
ρI,S = −0.3

(b) ρI,C = 0,
ρI,S = −0.3, ρC,S = 0

(c) ρI,C = 0.3,
ρI,S = −0.3, ρC,S = 0

(d) ρI,C = 0.5,
ρI,S = −0.3, ρC,S = 0

(e) ρI,C = 0.75,
ρI,S = −0.3, ρC,S = 0

Figure A.0.17: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρI,S = −0.3. Bilateral Case: ρC,S = 0, ρI,S = −0.3,
ρI,C = {0, 0.3, 0.5, 0.75}.

(a)
ρI,S = 0

(b) ρI,C = 0,
ρI,S = 0, ρC,S = 0

(c) ρI,C = 0.3,
ρI,S = 0, ρC,S = 0

(d) ρI,C = 0.5,
ρI,S = 0, ρC,S = 0

(e) ρI,C = 0.75,
ρI,S = 0, ρC,S = 0

Figure A.0.18: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρI,S = 0. Bilateral Case: ρC,S = 0, ρI,S = 0,
ρI,C = {0, 0.3, 0.5, 0.75}.

126



(a)
ρI,S = 0.3

(b) ρI,C = 0,
ρI,S = 0.3, ρC,S = 0

(c) ρI,C = 0.3,
ρI,S = 0.3, ρC,S = 0

(d) ρI,C = 0.5,
ρI,S = 0.3, ρC,S = 0

(e) ρI,C = 0.75,
ρI,S = 0.3, ρC,S = 0

Figure A.0.19: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρI,S = 0.3. Bilateral Case: ρC,S = 0, ρI,S = 0.3,
ρI,C = {0, 0.3, 0.5, 0.75}.

(a)
ρI,S = 0.5

(b) ρI,C = 0,
ρI,S = 0.5, ρC,S = 0

(c) ρI,C = 0.3,
ρI,S = 0.5, ρC,S = 0

(d) ρI,C = 0.5,
ρI,S = 0.5, ρC,S = 0

(e) ρI,C = 0.75,
ρI,S = 0.5, ρC,S = 0

Figure A.0.20: Histograms of the exposures of a 5-year fixed-for-fixed USDJPY cross cur-
rency swap conditional on first-to-default of Daiwa Securities at t = 2.5 (years) observed
on 28th April 2014. Unilateral Case: ρC,S = 0.5. Bilateral Case: ρC,S = 0, ρI,S = 0.5,
ρI,C = {0, 0.3, 0.5, 0.75}.
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