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Abstract 

Learning and using additional languages can result in structural changes in the brain. However, 

the time course of these changes, as well as the factors the predict them, are still not well 

understood. In this longitudinal study we test the effects of bilingual immersion on brain 

structure of adult sequential bilinguals not undergoing any language training, who were scanned 

twice, three years apart. We observed significant increases in grey matter volume in the lower 

left cerebellum, mean white matter diffusivity in the frontal cortex, and reshaping of the left 

caudate nucleus and amygdala and bilateral hippocampus. Moreover, both prior length of 

immersion and L2 age of acquisition were significant predictors of volumetric change in the 

cerebellum. Taken together, these results indicate that bilingualism-induced neurological 

changes continue to take place across the lifespan and are strongly related to the quantity and 

quality of bilingual immersion, even in highly-immersed adult bilingual populations. 

 

  



Introduction 

Since the early 2000s, an increasing amount of evidence has amassed suggesting that 

bilingualism has an impact on brain structure (Bialystok, 2016a; Pliatsikas, 2019),  with a 

smaller amount of studies even suggesting an impact on the brain’s default functionality 

(Pliatsikas & Luk, 2016). This impact has tended to be measured as a function of differences 

between bilingual and monolingual populations in cross-sectional designs. As might be expected 

given the nature of this type of research (see Bak, 2016 for discussion), results have been 

inconsistent across studies. Indeed, there is variability in terms of location of structural 

differences in the brain (e.g. hippocampus (Mårtensson et al., 2012), versus supramarginal gyrus 

(SMG) (Mechelli et al., 2004), versus the left inferior frontal gyrus (Mohades et al., 2012)), and 

directionality of changes (e.g., increased versus decreased grey matter volume (Klein, Mok, 

Chen, & Watkins, 2014) and/or white matter integrity (Gold, Johnson, & Powell, 2013)).  

García-Pentón et al. (2016) offer a convincing view of why such inconsistencies likely occur. 

Even allowing for the fact that the application of neuroimaging methodologies within 

bilingualism studies is relatively recent, and, therefore, not abundant, García-Pentón et al. argue 

that non-trivial issues emerge from the lack of standardized protocols across labs. For example, 

they highlight that higher sample sizes, a consensus of standard scanning procedures across labs 

and establishing more universal, and better vetting/selection criteria within subject populations 

are key factors contributing to the dearth of consistency. While we do not disagree with such 

suggestions per se, it is not clear that dealing with them alone would have the overall effect of 

teasing out the signal we aim to capture from the noise that muddies it (Bialystok, 2016b). Others 

have argued that another major contribution to the inconsistency of findings in the literature 

likely stems from treating bilingualism as a monolithic variable. Acknowledging that 



bilingualism itself is a fluid, complex and dynamic experience is a necessary first step, but 

acknowledging this alone is not sufficient to deal its contribution to the constituency problem. 

The nature of the bilingual experience, comprising a dynamic continuum of co-varying factors, 

must be dealt with methodologically (Bialystok, 2016a; Kroll & Chiarello, 2016; Luk & 

Bialystok, 2013). After all, if it is the experience of bilingualism that gives rise to adaptive 

change in the brain then it logically follows that various permutations of the bilingual experience 

should have measurably different outputs.  

Although the link between structural changes in the brain and bilingualism is not fully 

understood, the pattern that emerges is becoming increasingly clear: bilingualism has some type 

of an effect on the structure of the brain. It seems reasonable that some aspects of the individual 

experience of being bilingual—factors that vary across individuals and/or whole subgroups—

contribute to the ultimate explanation of the variance noted. Under such a view, we should assess 

specific factors within the bilingual experience—primarily the ones that differentiate types of 

bilinguals such as age of acquisition (AoA), immersion in the language(s), patterns of using the 

languages, level of code-switching, relative proficiency in both languages, the social milieu, 

etc.—with respect to potential effects on the brain. To date, exceedingly few studies have 

attempted to correlate experience-based factors to structural changes in the adult bilingual brain 

(e.g. Pliatsikas, DeLuca, Moschopoulou, & Saddy, 2017) and none have done so with a 

longitudinal design. Such a design will help determine whether these factors, and if so which, are 

likely to explain the observed variability among various bilingual subgroups. Doing so can: (i) 

reveal that the present literature is less messy than a current snapshot might suggest, (ii) uncover 

the mechanisms by which changes occur because of bilingualism, (iii) render more precise 

predictions for where in the brain we might find effects, if at all, and (iv) for which bilingual 



individuals/groups. In sum, we submit that the ultimate explanation for why replication is an 

issue in the field may be due to the fact that bilingual samples/cohorts are not adequately 

measured in terms of relevant experience-based factors that would provide the link between 

bilingualism and its neurological effects.  

Given the above discussion, we used various experience-based variables as predictors of 

structural changes in the brain and we focus on one in particular—immersion in the L2 context—

because it turns out to be (along with L2 AoA) predictive for individual differences in changes in 

the bilingual brain. Immersion is an excellent factor to begin the unpacking of the catch-all label 

“bilingual” as often used in the neuroimaging literature for several reasons.  First, immersion is a 

valid proxy for many things such as access to high quantity of language input, the high quality of 

input (because a majority of it will come from native speakers), and crucially opportunity to use 

both languages. The proxy of immersion thus has a clear effect on the relative juxtaposition of 

activation of both languages relative to the inhibitory control needed to keep cross-linguistic 

influence to a minimum, which has been argued to be a likely contributor to ensuing changes in 

both bilingual behavior and anatomical changes to the brain (Marian & Spivey, 2003; Spivey & 

Marian, 1999; Thierry & Wu, 2007). Moreover, the study presented in this paper has an 

additional value.  To our knowledge it is the first study to tackle this issue in a longitudinal 

manner in adults that do not undergo any kind of L2 training1; that is, testing the same 

individuals more than once with no less than 3 years in between scans. Whereas other studies 

have used a cross-sectional methodology, we will be able to verify changes within the same 

bilingual brains over time as their period of active immersion in a naturalistic L2 native 

community increases.  

Background literature 



L2 AoA has often been used as a proxy for the total amount of time one is exposed 

to/uses the additional language, and has also been used to investigate optimal or critical periods 

in brain’s plasticity with respect to L2 acquisition (see Berken, Gracco, & Klein, 2017 for 

review). L2 AoA has been found to relate to increased cortical grey matter (GM) volume, e.g. in 

the left SMG in bilinguals (Mechelli et al., 2004), cortical thickness in the left and right inferior 

frontal gyrus (IFG) and the superior parietal lobe in bilinguals (Klein et al., 2014), and GM 

density in the left putamen, posterior insula, bilateral occipital cortex, and right dorsolateral 

prefrontal cortex, and bilateral premotor cortex (Berken, Gracco, Chen, & Klein, 2016). Effects 

of L2 AoA have also been found to manifest as increased fractional anisotropy (FA), a common 

index for measuring white matter (WM) integrity, in various language related tracts including the 

left inferior fronto-occipital fasciculus (IFOF) (Mohades et al., 2012; Rossi, Cheng, Kroll, Diaz, 

& Newman, 2017). More recently, AoA has also been found to affect resting state connectivity 

(Berken, Chai, Chen, Gracco, & Klein, 2016; Kousaie, Chai, Sander, & Klein, 2017) (Table 1). 

<Table 1 about here>  

Informative as it is, the use of L2 AoA as a predictor of brain changes might be 

insufficient, for two main reasons: First, cut-off points between early and late bilingualism, very 

common in earlier studies, are often defined on some arbitrary age criterion, with great 

variability among studies. Second, simply reporting AoA does not imply active and continuous 

L2 usage, which in turn might be crucial for any observed brain restructuring. Indeed, it is 

possible that brain reorganization in bilinguals is in part, if not fully, due to the continuous 

language switching demands for bilinguals, rather than the mere acquisition of an L2. To this 

end, L2 immersion, or the amount of time spent in a naturalistic L2 environment, has more 

recently been examined as a potential  key factor (Stein, Winkler, Kaiser, & Dierks, 2014), taken 



here as a proxy for continuous and intensive exposure to- and use of the L2 (Pliatsikas & 

Chondrogianni, 2015). Comparing highly immersed to non-immersed sequential bilinguals of 

comparable L2 proficiency, and to monolinguals, Pliatsikas, DeLuca, Moschopoulou, & Saddy 

(2017) reported expansions in the globus pallidus, putamen, and thalamus for the highly 

immersed bilinguals, but only some limited restructuring in the caudate nucleus for the bilingual 

group with limited immersion. L2 immersion has also been found to affect WM integrity in 

language-related pathways. Comparing late-acquired, immersed, L2 learners of English to a 

monolingual control group, Pliatsikas, Moschopoulou, & Saddy (2015) reported increased 

integrity in several WM tracts including bilaterally the corpus callosum, IFOF, uncinate 

fasciculus (UF), and superior longitudinal fasciculus (SLF). Crucially this group exhibited 

patterns of WM increase in a similar manner to elderly lifelong bilinguals (Luk, Bialystok, Craik, 

& Grady, 2011; Olsen et al., 2015), also pointing to effects of immersion that are independent of 

the L2 AoA. Kuhl and colleagues (2016), have also reported WM adaptations in response to L2 

immersion: specifically mean diffusivity (MD) in anterior tracts of the left hemisphere were 

modulated by increased L2 exposure (listening), whereas production (speaking) was found to 

modulate FA values in the posterior section of the left hemisphere. Finally, volumetric increases 

in the cerebellum in bilinguals have been linked with increased exposure/proficiency in the non-

native language, and were correlated with more efficient grammatical processing, which was also 

native-like in terms of functional activation of the cerebellum (Pliatsikas, Johnstone, & Marinis, 

2014a, 2014b). 

Although technically not a factor that describes the bilingual experience, but rather is a 

consequence thereof, L2 proficiency has also been examined as a potential predictor of 

neuroplasticity in bilinguals (Abutalebi, Canini, Della Rosa, Green, & Weekes, 2015; Nichols & 



Joanisse, 2016). Increased L2 proficiency has been found to relate to GM volume increases in 

regions such as the anterior cingulate cortex (ACC) in ageing bilingual populations (Abutalebi et 

al., 2015), and WM and functional adaptations in a variety of regions in bilingual adults (Nichols 

& Joanisse, 2016). Moreover, GM density in the cerebellum has been found to relate to levels of 

semantic and phonemic fluency in both languages for bilingual adults (Grogan, Green, Ali, 

Crinion, & Price, 2009). It is worth noting here that all results corresponding to different 

measures of proficiency are inextricably related to the measure itself, in the absence of an 

objective, or at least commonly agreed, way to measure proficiency. It is therefore possible that 

these effects only reflect the acquisition of the particular skill that the chosen proficiency 

measure taps on or is more reflective of the fact that increased proficiency is likely to correlate 

with multiple sub-factors of L2 language use and exposure. 

Two proposals have attempted to model the processes of neural adaptation: the Adaptive 

Control Hypothesis (ACH) (Abutalebi & Green, 2016; Green & Abutalebi, 2013), and the 

Bilingual Anterior to Posterior and Subcortical Shift (BAPSS) model (Grundy, Anderson, & 

Bialystok, 2017). The ACH discusses brain adaptation as a result of linguistic experience by 

proposing that the brain adapts to the conversational/linguistic contexts in which one is engaged 

routinely, including both single and dual language contexts (Green, 2011). These contexts call on 

varying subsets of cognitive control, including planning, inhibitory, and engagement processes 

(Green & Abutalebi, 2013). As modulated by changes to experience, a reshaping of cortical and 

subcortical structures occurs, including the left inferior frontal gyrus (LIFG) left caudate, 

putamen, and thalamus. The cerebellum is also implicated, forming part of the language control 

network with the LIFG, caudate, and putamen via the thalamus (Abutalebi & Green, 2016). The 

BAPSS model examines the overarching effect of bilingual/non-native language use through 



time. It states that initial stages of contact with an additional language incur reliance on frontal 

areas, due to increased demands on working memory and several language/executive control 

processes. As L2 exposure and proficiency increase, reliance on, and use of, the frontal regions 

shifts to subcortical and posterior regions. Naturalistic linguistic immersion is an ideal 

environment in which to test the models, given the opportunity of continuous and sustained 

exposure to the additional language (Grundy et al., 2017). However, both theories have mostly 

based their predictions on the synthesis of a huge variety of functional and structural brain data 

which have come either from cross-sectional studies comparing bilinguals to monolinguals, or 

from studies that report significant correlations between indices of brain structure and function 

and self-reported demographic variables. Longitudinal studies would be an ideal method to 

examine how specific experience-based factors of bilingualism manifest in the brain, and 

crucially how they change through time. Given the main comparison is within-subjects, changes 

to experience can be isolated and thus examined directly without necessarily collapsing other 

aspects of bilingualism across one another (Luk & Pliatsikas, 2016; Wong, Yin, & Brien, 2016). 

A handful of studies in the past decade have examined neuroplastic effects of L2 acquisition and 

use from a longitudinal perspective. Notably, all the available longitudinal studies have focused 

on the brain outcomes of intensive training programs to participants that were newly acquiring an 

L2. 

Several studies have found cortical GM volume to be affected during the acquisition of 

the L2 (Bellander et al., 2016; Mårtensson et al., 2012; Osterhout et al., 2008; Stein et al., 2012). 

For example Mårtensson et al. (2012) studied effects of initial stages L2 acquisition in military 

interpreters undergoing a 10-month intensive language training course. They report significant 

increases in GM volumes in the left superior temporal gyrus (STG), left medial frontal gyrus 



(MFG), and right hippocampus (RHC) after three months, the extent of which correlated with 

proficiency (subjects’ course performance). Differences in WM integrity have also been found as 

a result of L2 acquisition and/or use over a range of time periods, from hours (Hofstetter, 

Friedmann, & Assaf, 2016) to 12-18 months (Hosoda, Tanaka, Nariai, Honda, & Hanakawa, 

2013). A recent study by Mamiya and colleagues examined the relationship of white matter 

tracts, immersion in an L2 environment, and genetic factors related to the growth of WM 

integrity (Mamiya, Richards, Coe, Eichler, & Kuhl, 2016). Regarding effects of immersion, 

increases in FA values in the right SLF were positively correlated with both time spent in the 

language course and proficiency measures. These values were also found to decline after the 

course was completed.  

While the results are encouraging, available studies only present a partial picture in terms 

of relating structural change to L2 acquisition and use, for a variety of reasons: First, they 

primarily examine early stages of L2 acquisition or use (Mamiya et al., 2016; Stein et al., 2012); 

second, they examine the effects of intensive linguistic training (Hofstetter et al., 2016; Hosoda 

et al., 2013; Mårtensson et al., 2012), thus report brain adaptations to experiences that stem from 

a highly controlled linguistic environment. Third, and perhaps most important, the majority of 

these studies focused on one aspect of L2 acquisition, very often vocabulary acquisition, so they 

do not account for the full repertoire of both L2 acquisition and L2 control (lexicon, grammar, 

phonology, pragmatics) which immersion in an L2-speaking environment brings about. To date, 

only one study has longitudinally examined the effects of naturalistic language use on the brain. 

Mohades et al. (2015) compared simultaneous bilingual with early sequential bilingual (mean 

AoA: 3 years) and monolingual children at two points, (two years apart) across several language-

related WM pathways. They report that sequential bilinguals had the greatest increases in mean 



FA values in the left IFOF after the two-year period, while the simultaneous bilinguals displayed 

the highest overall FA values in this region at the second scan. Other than that, no study has 

longitudinally examined the effect of naturalistic immersion on neural plasticity, especially in 

already-proficient bilingual adults over a long-term period. 

The present study 

The aim of this study is to examine the effects of naturalistic linguistic immersion on 

brain structure in adult bilinguals over an extended period. Highly proficient non-native speakers 

of English were scanned three years apart while residing in the UK. Importantly, these 

participants did not undergo any linguistic training in their L2 or any other language during their 

immersion period, but had been continuous residents in the L2-dominant environment. We 

specifically examined potential changes in language demographics, neural structure, and 

functional connectivity over the three-year period. We also assessed whether any changes in the 

brain were potentially predicted by differences in linguistic experience- specifically overall 

length of immersion, L2 proficiency, and L2 AoA.  

Given  results of previous studies showing effects of L2 immersion (e.g. Pliatsikas et al., 

2017), we predict neuroplastic changes to occur, largely in either the cerebellum or subcortical 

regions, specifically the putamen, thalamus, and globus pallidus (Berken et al., 2016; Grogan et 

al., 2009; Pliatsikas et al., 2014b; Pliatsikas et al., 2017), as processing/production efficiency 

increases with prolonged, sustained, exposure to the non-native language (Grundy et al., 2017). 

We would also predict higher FA values in WM tracts connecting the subcortical structures with 

posterior regions including the cerebellum (Abutalebi & Green, 2016; Grundy et al., 2017). With 

respect to cortical GM, we do not predict any significant changes, given the majority of reported 

effects were seen in non-immersed bilingual subjects or those acquiring their L2 (e.g. 



Mårtensson et al., 2012; Mechelli et al., 2004; Osterhout et al., 2008). Finally, we wanted to test 

whether any observed changes in structural connectivity are related to changes in functional 

connectivity, as evidence suggests (Luk, Bialystok, et al., 2011), so we included a resting state 

fMRI scan. 

Materials and methods 

Participants 

Twenty-six healthy bilingual participants that had already been scanned for previous 

projects were invited back three years later2. The inclusion criterion was continuous residence in 

the UK between the two testing points. Of these, nine participated in this study (8 females; Mage 

35.33 years, SD 8.12) and the two scanning sessions were approximately three years apart 

(average time between Visits 1 and 2: 3.22 years; SD= 0.12). At Visit 1, the participants had a 

variety of L1s, were already residing in the UK (Mlength residence: 134 months, SD 111.7 

months, range= 4 months to 196 months), and they reported an average AoA of L2 English of 

10.5 years (SD 4.6) (See Table 2 for details). 

<Table 2 about here> 

Procedure, Data Acquisition, and Analysis 

In both Visits, prior to their scan participants were assessed for their English proficiency 

via the Oxford Quick Placement Test (QPT) (Geranpayeh, 2003). The same scanning protocol 

was implemented for both Visits 1 and 2. Brain images were collected with a 3.0-Tesla Siemens 

MAGNETOM Trio MRI scanner with Syngo software and 32-channel Head Matrix coil. T1-

weighed MPRAGE (Magnetization Prepared Rapid Gradient Echo) images were collected from 

each participant (192 sagittal slices, 1 mm slice thickness, in-plane resolution 250 x 250, 



acquisition matrix of 246 x 256 mm, echo time (TE) = 3.02 ms, repetition time (TR) = 2020ms, 

inversion time = 900ms, flip angle = 9°). The scan lasted approximately 10 minutes. T2-

weighted Diffusion-Tensor Imaging (DTI) images were also collected (60 transversal slices, 

2mm slice thickness, acquisition matrix 256 x 256, in-plane resolution 128 x 128, 2 averages, 

TE= 93ms, TR= 8200ms). The scan lasted approximately 11 minutes. A resting-state Echo 

Planar Imaging (EPI) sequence was also run for each participant (200 volumes, 56 transversal 

slices, 3mm slice thickness, in-plane resolution 64x64, acquisition matrix of 192x192mm, TE= 

30ms, TR= 3000ms, flip angle= 90°). This scan lasted approximately 10 minutes. The MRI 

scanning session did not involve any tasks. However, subjects were advised to keep their eyes 

open during the resting-state scan.  

T1-weighted images were pre-processed with the FSL_anat software pipeline in FSL 

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). Images were reoriented to the 

Montreal Neurological Institute (MNI)-152 orientation, automatically cropped, bias-field 

corrected, and non-linearly-registered to MNI space. Grey matter volume was calculated via the 

voxel-based morphometry (VBM) pipeline in FSL (Ashburner & Friston, 2000). Pre-processed 

images were brain extracted and grey matter segmented. A study specific template was then 

created using the average of the GM images. Native GM images were registered to this template, 

and modulated to correct for local expansions and contractions due to the non-linear component 

of registration. They were spatially smoothed with an isotropic Gaussian Kernel of 3mm. A 

voxel-wise general linear model (GLM) was applied to test for differences between Visits 1 and 

2, using permutation-based non-parametric testing. Two contrasts were examined: Visit 2>Visit 

1 and Visit 1>Visit 2 to assess directionality of any significant differences; that is, whether any 

differences were increased or decreased GM volume between the two sessions. Corrections for 



multiple comparisons across the brain were done using threshold-free cluster enhancement 

(TFCE) (Smith & Nichols, 2009).  

For the subcortical structures, a vertex-based analysis was applied via the FIRST 

software package of FSL (Patenaude, Smith, Kennedy, & Jenkinson, 2011). Several structures 

were extracted including the bilateral hippocampus, amygdala, thalamus, globus pallidus, 

putamen, and caudate nucleus. Although changes in the amygdala have not been reported in the 

bilingual literature, we decided to add them to this analysis due to the close proximity and 

relationship with the hippocampus (Schumann, 1990, 2001). Quality of the extractions was then 

assessed. No images were discarded. The resulting images were then submitted to vertex 

analyses. Per standard procedure, each structure underwent a 6 degrees of freedom rigid body 

transformation to study-specific template in standard space. The vertex coordinates of 

individuals were then projected onto the average coordinates of the two scanning scans. For each 

participant, this created maps signifying positive (outside the surface) or negative (inside the 

average surface) values for each structure. Finally, the values were analyzed using a voxel wise 

GLM (Smith & Nichols, 2009). The contrasts examined were Visit 2> Visit 1 and Visit 1> Visit 

2, to examine what changes occurred (both expansions and contractions) between the two 

scanning points. Age and sex were included in the model as covariates of no interest. Corrections 

for multiple comparisons using were done via the Randomise pipeline within FIRST (Winkler, 

Ridgway, Webster, Smith, & Nichols, 2014). This created maps of within-groups differences, 

thresholded at p<0.05.  

For the analysis of structural connectivity, we looked at FA and MD values across the 

brain as the most commonly used indices of white matter integrity. FA and MD values were 

calculated using the FDT (Behrens et al., 2003) and TBSS (Smith et al., 2006) pipelines within 



FSL. Images were corrected for head motion and eddy-current distortions, then a diffusion-tensor 

model was fit for each voxel of the corrected data, using DTIFIT. This resulted in individual FA 

and MD images for each participant from Visits 1 and 2 respectively. Using TBSS, the FA 

images were (in a combined process) non-linearly registered to a standard space FA target image 

and affine-transformed to MNI standard space. This resulted in a 4D image which consisted of 

each FA image from the participants. An FA skeletonisation program was used to create an FA 

skeleton that included the voxels identified as white matter (WM) in each FA image, thresholded 

at 0.2. MD images were then nonlinearly registered to standard space and were then warped and 

registered into a single 4D file which was projected onto the mean FA skeleton. Finally, a 

within-groups voxel wise analysis was applied to test for differences between Visit 1 and 2 for 

the FA and MD data respectively. The contrasts examined were Visit 2>Visit 1 and Visit 1>Visit 

2, to assess the directionality of the changes. Age and sex were included in the model as nuisance 

covariates. This resulted in a whole-brain t-statistical image of significant differences in FA and 

MD between the two scan points.  

For the resting-state data, we conducted an independent components analysis (ICA), as 

this offers a data-driven approach to analysis, and mitigates the risks of potential biases in the 

data imposed by the more traditional seed-based resting state analysis (for discussion see 

Beckmann & Smith, 2004). The data were analyzed using the Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC) pipeline within FSL 

(Beckmann & Smith, 2004, 2005). Resting-state data was preprocessed including motion 

corrections, corrections for field distortions, and registered to standard space. The processed 

datasets were then decomposed into spatial and temporal components using a multi-session 

temporal concatenation. This process involves the concatenation of all subjects’ preprocessed 4D 



datasets, which subsequently are submitted to an independent components analysis. This 

generates a series of spatial maps which correspond to common components across each subject. 

Once components were established, these were submitted to group-level analysis via the 

dual_regression pipeline within FSL (Beckmann, Mackay, Filippini, & Smith, 2009). This 

involves a two-stage process in which the group-level spatial maps (common components) are 

regressed into each subject’s 4D dataset to render a series of time courses. The time courses are 

in turn regressed into the same dataset to create a subject-specific set of spatial maps. These 

spatial maps are then compared across subjects via a within-subjects GLM, assessing Visit 

2>Visit 1 and Visit 1>Visit 2, with age and sex included in the model as nuisance covariates. 

Correction for family-wise error was done with Randomise permutation testing (Winkler et al., 

2014).  

Results 

Proficiency 

We first looked at whether the participants’ proficiency changed as a function of 

linguistic immersion. Results of a Wilcoxon’s signed rank test showed that no significant change 

in the QPT scores occurred over the three-year period (Mdifference=3.481%, SD=12.03, 

p=.515). However, this is not surprising, as our participants were already at a proficiency ceiling 

at Visit 1, as measured by their performance on the QPT (Table 2). Spearman’s Rho correlations 

between immersion (time spent in the UK at Visit 1), English (L2) proficiency (QPT score at 

Visit 1), and L2 AoA showed a marginally significant correlation for immersion and proficiency, 

rs=.661, p=.053. None of the other correlations approached significance (proficiency and AoA: 

rs=-.371, p=.325; AoA and immersion: rs=-.017, p=.996). Finally, we also observed that the 

proficiency x immersion correlation disappeared at Visit 2 (rs=.085, p=.753).  



Grey Matter  

Results of voxel-based morphometry (VBM) analysis showed a significant, corrected, 

increase in GM volume for Visit 2 over Visit 1 in the lower VIIb region of the left cerebellum 

(peak coordinates-32, -68, -58; 115 voxels; p=.033) (Fig 1). No significant decreases (Visit 

1>Visit 2) were found. We assessed the normality of the distribution of the extracted volume 

changes within the cerebellum. This was done to ensure that the effect was not being driven 

artificially by a small portion of the participant sample. A Shapiro-Wilk test showed the changes 

in GM volume to be normally distributed (p=.887), with no outliers.  

<Figure 1 about here> 

Our subcortical analysis produced no significant effects in the corrected results from the 

permutation analysis, which is not surprising given the sample size. Significant (uncorrected) 

contractions and expansions from the vertex analysis were thresholded at p<0.002 to account for 

multiple comparisons (dividing the target significance threshold by the number of tests run (24- 

two tests per 12 structures). Expansions and contractions were found in several structures, 

including a contraction in the left caudate nucleus, a contraction in the left amygdala, a small 

expansion and larger contraction in the ventral anterior portion of the right hippocampus, and a 

contraction the dorsal anterior portion of the left hippocampus. Table 3 illustrates these effects. 

Changes in the putamen, globus pallidus or the thalamus did not survive thresholding.  

<Table 3 about here> 

White Matter  

No significant differences of FA values (increase or decrease) were found between Visits 

1 and 2 for any WM tracts. Significant, corrected, increases in MD values were found in two 



clusters in the left forceps minor (-20, 44, 3, cluster size: 174 1 mm3 voxels; and -19, 34, 16, 

cluster size: 27 1 mm3 voxels). These effects are illustrated in Figure 2. 

<Figure 2 about here> 

Resting State Networks 

No significant differences (increase or decrease) were found in functional connectivity 

for any resting state networks between Visits 1 and 2.  

Regression Analyses  

To determine the role of the subjects’ language experience in shaping brain structure, we 

ran multiple regression analyses on the affected brain regions using immersion (months of 

residence in the UK at Visit 1) and L2 AoA as predictor variables, and age and sex as nuisance 

covariates. Specifically, the volumetric change in the cerebellum and the MD change in forceps 

minor were analyzed respectively with the above predictors.  Given that proficiency at Visit 1 

was found to correlate with length of immersion, it was not included in the final model to avoid 

issues of multicollinearity. 

The model was found to significantly predict the longitudinal cerebellar GM increase, 

F(4,4)=10.73, p<0.021, R2=.829. Specifically, L2 AoA was found to negatively correlate with 

the cerebellar increase (β=-.815, p=.0066) and length of immersion was found to positively 

correlate with it (β=1.391, p=.00815) suggesting that the greater the immersion, and the younger 

the AoA, the more plastic the cerebellum became. Figure 3 illustrates this. The model did not 

significantly predict the changes in MD values in forceps minor (all ps>0.1).   

<Figure 3a, b about here> 



Discussion 

The working hypothesis of this paper has been that it is not bilingualism per se, but 

potentially particular variables (and not others) related to the dynamics of the bilingual 

experience that induce anatomical brain changes.  If on the right track, the interplay of certain 

experience-based variables and their relative weight should correlate to individual subject and 

cross-aggregate differences outcomes in individual studies and, by extension, explain at least 

some of the disparities across the literature. Herein, bilingual subjects were scanned twice with a 

three-year interval between scans while residing in the UK. Recall that there was a range of 

exposure in the same L2 immersion environment at Visit 1 (range= 4 months to 12 years), 

however, all subjects share a crucially common experience, that is, the same amount of time in 

between Visits 1 and 2.  Also recall that our analysis was focused on change that took place from 

the point of each individual’s own baseline (change between Visit 1 and 2), which crucially did 

not coincide to any major change in the lifestyle and/or experiences of our participants (e.g. 

arrival in the UK), or at least any change that applied to the entire sample. 

Several changes were seen between the two scan points: a significant increase in grey 

matter volume was found in the lower left cerebellum, and reshaping in several subcortical 

structures including the (bilateral) hippocampus, left amygdala, and left caudate. Moreover, we 

observed a significant increase in MD values within the left forceps minor. These results add to a 

growing body of literature supporting the role of linguistic immersion in neuroplasticity related 

to bilingualism (Kuhl et al., 2016; Pliatsikas et al., 2017, 2015). Taken together, the grey matter 

adaptations support aspects of both the BAPSS model (Grundy et al., 2017) and ACH (Abutalebi 

& Green, 2016). The changes in the cerebellum, forceps minor, caudate, and hippocampus show 



an overall adaptation within the language control network towards a more automated system of 

processing and production in the L2, as demonstrated below. 

 The increase in cerebellar GM volume partly replicates findings from previous work 

comparing bilinguals with limited immersion to age-matched monolinguals (Pliatsikas et al., 

2014b) – specifically the same region of the cerebellum was found to expand for both studies. 

The cerebellar expansion over the three year period is in line with aspects of the BAPSS and 

ACH models- specifically that the increased reliance on subcortical/posterior structures in the 

language control network is commensurate with increased time spent intensively using the L2 

(Abutalebi & Green, 2016; Grundy et al., 2017), which in turn leads to increases in GM volume 

in these areas. It should be noted that the BAPSS model does not explicitly include the 

cerebellum in the posterior structures that are implicated in the shift with increased L2 exposure. 

However, the cerebellum has been implicated in several functions related to language including 

automated processing of grammatical rules in one’s non-native language (Pliatsikas et al., 2014b; 

Ullman, 2004), language control between the L1 and L2 (Filippi et al., 2011), and articulatory 

processes for bilinguals (Frenck-Mestre, Anton, Roth, Vaid, & Viallet, 2005; Grogan et al., 

2009). The connection with the time spent using the L2 is corroborated by the correlations with 

both L2 AoA and immersion seen in the multiple regression. The negative correlation with L2 

AoA suggests that the earlier one acquires their L2 the greater plasticity in the cerebellum may 

be predicted. Similarly, the positive correlation between immersion and the cerebellar increase 

indicates that the longer one is immersed in the environment of the L2, the more likely they are 

to experience change in this region. The cerebellar expansion related to L2 AoA and immersion, 

appears to support an account of increased reliance on the cerebellum, as processing and 



production in the L2 becomes more automated. In any case, the present pattern of effects 

suggests that the more experienced in an L2 one is, the more plastic the cerebellum becomes.  

The reduction in the left caudate likely indicates a decreased switching cost between the 

participants’ languages (Elmer, Hänggi, & Jäncke, 2014). The caudate has been implicated in a 

number of control processes in bilingual language processing and production (Abutalebi & 

Green, 2016; Luk, Green, Abutalebi, & Grady, 2011). The reduction found in the caudate may 

thus reflect an optimization of the system to the language control demands within the immersion 

environment. An alternative explanation for thiscomes from the Conditional Routing model 

(Stocco, Yamasaki, Natalenko, & Prat, 2014), which suggests that increased automation in 

language switching and selection occurs in cortical regions, thus decreasing demand on the 

caudate, resulting in contractions. Similarly, recall that both expansions and contractions within 

the right hippocampus were found. It should be noted that the ventral anterior contraction in the 

right hippocampus overlaps with the expansion found by Bellander and colleagues (2016), who 

report the increased GM volume in the right hippocampus to be predicted by number of hours 

spent acquiring new words. In the case of the immersed bilinguals, the contraction likely 

indicates a return to baseline from an expansion at the first stages of L2 acquisition and/or 

immersion (e.g. Bellander et al., 2016; Mårtensson et al., 2012).  The contraction in the right 

hippocampus may also be evidence for proceduralization within the L2 (Pliatsikas et al., 2014b; 

Ullman, 2004). Increased reliance on the procedural system in the processing and production in 

the non-native language, thus increased use on the cerebellum, would entail decreased use of the 

declarative memory systems, thus a decreased use of the hippocampus, leading to contractions in 

this structure.  



The contraction in the left amygdala was not predicted, as it has not been typically 

reported in studies about bilingualism-induced structural changes, nor is it typically implicated in 

language processing and control in bilinguals (see e.g. Abutalebi & Green, 2016; Grundy et al., 

2017; Stocco & Prat, 2014). The only exception is Li and colleagues (2017), who found 

increased GM volume in the left amygdala/hippocampus for older bimodal bilinguals who were 

active daily users of both languages. It has been proposed that the amygdala forms part of a 

corticofugal pathway for memory formation, and plays a role in regulation, stimulus appraisal, 

and motivation (based on emotional valence) in the formation of new memories in L2 acquisition 

(Schumann, 1990, 2001). The contraction in the amygdala, then, indicates a lower reliance on 

short-term/declarative memory formation procedures, in line with the contractions found in the 

hippocampus. However, a lack of neurolinguistic data currently exist to support this 

interpretation. It is also worth reiterating that the effects found in the hippocampus, caudate, and 

amygdala were found did not survive correction for multiple comparisons, thus should be 

interpreted with caution.  

No differences were seen in the globus pallidus, putamen, or thalamus during the three 

year period, which is not in line with our predictions (Berken, Gracco, et al., 2016; Burgaleta, 

Sanjuán, Ventura-Campos, Sebastián-Gallés, & Ávila, 2016; Pliatsikas et al., 2017). This lack of 

difference between Visits 1 and 2 for these structures can be interpreted as no change in the 

reliance on them during this period. Demographically, our group is highly similar to the group in 

Pliatsikas et al. (2017), which reported structural changes in both structures for bilinguals vs. 

monolinguals. If the thalamus is crucial in selecting among lexical and semantic alternatives 

(Abutalebi & Green, 2016; Llano, 2013), the absence of any longitudinal structural changes 

probably reflects that the control needs did not change between Visit 1 and Visit 2, which is to be 



expected as in both cases our participants were immersed in the same environment. The putamen 

has been implicated in phonological monitoring in bilingual language production (Abutalebi et 

al., 2013). Similarly to the thalamus, the lack of change in the putamen indicates that the 

demands on the underlying system will not have changed. Finally, a similar explanation may also 

be given for the absence of change in the globus pallidus: that the demands on semantic control 

and selection would not have changed, even after periods of extensive immersion. An alternative 

explanation for the lack of changes in these structures might be that the selection and monitoring 

mechanisms were already optimized at Visit 1 and, as the relevant cognitive demands did not 

change between visits, the structure of the implicated regions remained stable.  This would align 

with tenets of the ACH (Abutalebi & Green, 2016), specifically that continued plasticity of given 

brain regions would be dependent on changes in language use and/or exposure. 

No significant changes in FA values were found in any region of the brain. This finding 

is not in line with the proposals of the BAPSS model (Grundy et al., 2017), which would predict 

increased use of subcortical to posterior tracts, and thus increased myelination in those tracts 

linking the subcortical structures to those regions. It is important again to remember that our 

group in this study was demographically very similar to the group from Pliatsikas et al. (2015), 

meaning that higher levels of FA can already be assumed at Visit 1, as an effect of continuous 

prior exposure. What we didn’t find here is further FA increase or decrease within participants. 

An explanation for this lack of changes could be the same as the one for the absence of thalamic 

effects: the same needs for efficient communication between brain areas applied to both test 

points, so an already optimized system retained its structure. Not only would this explain the lack 

of FA decreases in Visit 2, but also reconciles with the fact that increased FA persists even in 

older bilinguals compared to monolinguals, while other effects typically disappear. In the same 



vein, the lack of increases in FA might reflect either that the system has reached and maintained 

the appropriate level of “reinforcement” needed to deal with the demands of the bilingual 

experience, or more simply, that there are physical constraints in white matter restructuring, that 

have now been reached. The small increases in MD in the forceps minor are less readily 

explainable. Forceps minor is the most anterior part of the corpus callosum, which projects to the 

frontal lobes, and has been associated with executive control (Kuhl et al., 2016). While several 

anterior and medial parts of the corpus callosum are shown to increase their FA and/or volume as 

a result of bilingualism (Coggins, Kennedy, & Armstrong, 2004; Felton et al., 2017; Pliatsikas et 

al., 2015), changes in the MD of the forceps minor have only been reported in two studies: 

Cummine & Boliek (2013) reported decreased MD values for bilinguals vs. monolinguals in the 

left forceps minor, while Kuhl et al. (Kuhl et al., 2016) reported negative correlations between 

MD in this region and the bilinguals’ residence in the L2 speaking country, in that the smaller the 

immersion the larger the MD values. Higher MD values are typically explained as higher white 

matter diffusivity, which might signify reduced myelination. With this in mind, an interesting 

pattern emerges: the participants in both Cummine & Boliek and Kuhl et al. studies were at 

initial stages of L2 immersion, and showed increases in myelination, expressed as decreases in 

MD (but not increases in FA). On the other hand, our highly immersed participants showed small 

increases in MD but not decreases in FA. Although the exact correspondence between FA and 

MD is not fully understood, it appears that initial immersion causes changes in the MD of frontal 

areas, which are crucial for cognitive control. With increased immersion, it appears that overall 

diffusivity is also increased, possibly reflecting less reliance in the region because efficient 

control of languages has been achieved, while the directionality of the diffusivity, which is better 

expressed by the FA, remains unchanged. This suggestion is congruent with the BAPPS 



prediction of reduced reliance in frontal regions as an effect of L2 immersion. Nevertheless, 

more research is needed to understand the complex relationships between the FA and the MD, 

and how these are affected by the bilingual experience. 

No significant differences in resting-state connectivity were seen between Visits 1 and 2. 

As this analysis was exploratory, we did not have any specific predictions about how the resting-

state networks would change between Visits 1 and 2.  

It is also worth noting that L2 proficiency was not found to increase between visits. 

Regarding change in proficiency, it is prudent to note a few things that render the lack of effects 

less surprising. Firstly, the participants were already highly proficient in English at the point of 

Visit 1 (see ‘participants’ section for details). Given that L2 learners tend to show ceiling effects 

in ultimate attainment that differ from typical monolingual acquisition (see Long, 2007; 

Rothman, 2008 for opposing views on how to interpret such finds), their initial proficiency was 

likely high enough that continued immersion effects would not result in changes as measured by 

the QPT. In this context then, we need to keep in mind what the QPT and measures like it are, 

and what its purpose is in our study. The QPT is designed to gauge so-called global proficiency 

and such measures tend to focus on properties of the formal grammar, especially lexical-

semantic knowledge, as opposed to colloquial language, overall verbal fluency and other 

language aspects that are likely to be positively affected by continued immersion, even in the 

case someone has a highly proficient grammar at the outset. By grammar we are referring to the 

set of underlying mental representations and rules that form the computational system enabling 

an individual to comprehend (decode linguistic information received) and produce (encoding 

information onto language specific forms to be uttered) intended messages for any given 

language. The purpose of a proficiency measure is most crucial at Visit 1 to get an initial 



baseline, ensure a minimum level of proficiency for inclusion in a study, and for purposes of 

comparison across studies (present and future ones) who have similar subject profiles, including 

L2 proficiency. Were there to be a measure that could tease apart gains in the above-mentioned 

domains of language use for L2 learners, we might expect three additional years of immersion 

would show considerable gains. The fact that there is no observed increase in proficiency, 

despite clear changes to the brain in the same time span, already suggests that measures like the 

QPT are unable to capture the full picture of what is going on. Although L2 grammatical 

knowledge as measured by the QPT can reach a ceiling effect for such measurement, clearly 

continued exposure is still having significant effects that would otherwise not be captured, save 

for the use of different methodologies that are more fine-grained (such as MRI). For these 

reasons, and because linguistic immersion and proficiency are not independent to each other, as 

our results showed, we chose not to include proficiency as a predictor in our models.  

This said, from a linguistic perspective it is not clear why proficiency per se would 

predict differences, provided that we are looking at individuals with at least a minimum level of 

exposure to and proficiency in the L2 (both serving as proxies for opportunity to develop a 

mental L2 grammar). This is evidenced by the correlation between length of L2 immersion and 

proficiency levels at Visit 1 and the fact that this correlation disappears after the three year 

immersion period, as by then all would have surpassed the minimum threshold. Even more 

important, however, is the fact that when one has high degrees of verbal fluency in an L2, even if 

extremely different from what natives of the target grammar display, it is regarded as a complete 

grammar itself, referred to in the literature as interlanguage (Selinker, 1972). The basic idea is 

that at any given point in L2 development, the L2 grammar is a full grammar, much like it is for 

children developing their L1. If on the right track, then L2 proficiency is merely a measure of 



how native-like one is on a continuum, not a measure of how complete (in the sense of being 

considered a mental computational grammar itself) the developing system is. In this sense, the 

activation vs. inhibition tension that likely underlies changes to the bilingual brain (behavioral 

and anatomical) starts and is functionally much earlier than might otherwise be expected. The 

brain does not know when a grammar is target-like, it simply knows when there is a need to 

inhibit a competing system regardless of its stage of development. From such a perspective then, 

it is not clear that relative proficiency should matter. This is, of course an empirical question.  

Taken together, our results show that immersive bilingualism continuously affects the 

structure of a dynamic system including the cerebellum, the hippocampus and the basal ganglia, 

as well as the integrity of the white matter, even after years of bilingual immersion. The reported 

patterns generally support the predictions of the BAPSS model and ACH, with some potential 

modifications. The expansions in the cerebellum and the reshaping/contractions in the caudate 

nucleus and hippocampus, and potentially the MD increase in the forceps minor, serve as 

neurological markers of increased efficiency and automation of processing and production in the 

L2 (Abutalebi & Green, 2016; Booth, Wood, Lu, Houk, & Bitan, 2007; Filippi et al., 2011; 

Pliatsikas et al., 2017), while the overall stability of the white matter diffusivity across the entire 

brain, paired with the structural stability of the thalamus and the putamen, suggest that the 

language control demands persist irrespective of the amount of L2 immersion. Future work 

should consider the cerebellum as a key structure in brain adaptation to L2 exposure and use, 

particularly at later stages of development.  

 An obvious limitation of our study was the high attrition rate of participants between 

Visits 1 and 2, thus our sample size ended up being fairly low (n=9). Nevertheless, the cerebellar 

and MD effects survived statistical corrections even with such a small sample, such that they are 



nonetheless reliable. A larger group at Visit 2 would have probably produced more robust 

findings in both cortical and subcortical regions. The GMV increase in the cerebellum would 

likely remain, along with decreases in GMV in frontal regions (Grundy et al., 2017). The 

contractions in the caudate and hippocampus would likely also remain. Finally, we might have 

expected to see modulation in white matter integrity in pathways connecting the cerebellum to 

the basal ganglia and frontal regions. However, these predictions require further investigation 

with an appropriate number of participants. Future longitudinal studies should strive to 

implement appropriate strategies in order to retain a greater number of participants in their final 

cohort. This of course likely requires a larger number of participants at the outset since attrition 

is common in studies like this, especially given a duration of three years between testing 

sessions. Future studies should also incorporate an extensive behavioral battery tapping at both 

executive functions and language abilities in L1 and L2, in order to study how these change as a 

factor of immersion, and whether they are linked with the observed structural changes.  

 Finally, a control group was not reported in this study, for several reasons. Despite our 

attempts to test a monolingual native-English speaking cohort as the control group (see footnote 

1), we would still treat any findings with caution. Inclusion of such a cohort represents a 

comparative fallacy in examining specific neural effects of linguistic immersion, as these cannot 

be teased apart from any other effects related to the bilingual experience more generally. In other 

words, if we included a control group of this kind our null hypothesis would have been that the 

observed effects should appear in both language groups, or that the cerebellum continues to 

expand for everyone, no matter the language status. However, we certainly don’t have such a 

prediction, but we do have the valid prediction that the cerebellum reshapes as a result of the 

bilingual experience. Since our participants act as their own controls, we fail to see what the 



addition of a monolingual control group could add to the narrative. Conversely, the appropriate 

control group to use here, and the one we would suggest for future studies, would have been a 

highly-proficient bilingual cohort living in a country where their L2 (in this case English) is not 

the dominant language for communication, which would allow for the examination of effects of 

linguistic immersion independent of other potentially conflating experiences in bilingualism. 

Second- recall that the bilingual cohort in this was not homogeneous- they exhibited both a range 

of AoAs of English and length of immersion at Visit 1, and furthermore stemmed from a variety 

of professions. It is increasingly likely, then, that the one major commonality in their experiences 

(and thus neural outcomes) could be related to linguistic immersion within the three-year 

(longitudinal) period. Potential alternative explanations of our findings would include them being 

a result of major lifestyle changes in our participants’ lives that might induce neural adaptations, 

such as taking up a sport or learning a musical instrument. To the best of our knowledge no such 

activity was taken up by all of our participants after Visit 1. Other potential causes of structural 

changes include ageing, which is hard to establish given the wide age range of our sample (and 

the fact that we added age as a covariate in our models), major changes of environment, such as 

recent migration, and the emotional imbalance it may bring about, which clearly does not apply 

to our already immersed participants, and major changes in general quality of life. The latter is a 

very broad concept encompassing a variety of factors (socioeconomic status, family experiences, 

education, general health), which is difficult (if not impossible) to test systematically; still, any 

changes to quality of life would have to apply to all of our participants (and to an entire control 

group for that matter) in order to produce these group effects. 

Conclusions 



In this study—the first to look at the longitudinal effects of L2 immersion in a group of 

highly proficient adult bilinguals—we showed that L2 exposure and use continue to impact brain 

structure beyond acquisition and initial stages of use. Crucially, bilingualism (and immersion 

where it applies) is a dynamic process in which brain adaptations are modulated through time by 

exposure and changes in efficiency of production and processing. Our approach and results also 

support current arguments that future research should move away from traditional cross-sectional 

comparative (bilingual vs. monolingual) designs, and turn its attention to the experience of 

bilingualism itself, with a focus on experience-based factors to be used as predictors in assessing 

the specific impact of bilingualism on brain structure and function. Although exceedingly 

difficult to shift towards true longitudinal studies where change can be tracked within individuals 

as the dynamics of bilingualism unfold over time, the sacrifices (e.g., numbers of participants in 

light of attrition, the temporal length of the studies themselves, etc.) one will need to make will 

be overshadowed by the increased precision and comparability that intragroup comparisons 

provide. 
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Footnotes 
 
1 To our knowledge, there is only one other study that is longitudinal and not a training study, 

however, this was done with children and not adults. Mohades et al. (2015) is explained in 

greater detail below. 

 



                                                                                                                                                                                           

 

2 A group of monolingual native English-speaking participants (n=25, 14 female, Mage 28.16, SD 

5.3) were also scanned initially as a control group and were also invited to this study. Of them, 

only six participants (4 female, Mage 33yrs, SD 2.38) returned for Visit 2. The same analytical 

procedure was applied to this group as for the bilingual participants, and no significant neural 

changes across the longitudinal period were found for this group. Although this is not a surprise 

finding, and it would have indeed been our prediction, we do not discuss this cohort in detail 

primarily due to the small sample size, but also for several additional reasons, which are covered 

in the Discussion section.  

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 


