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Summary 29 

 Plant functional ecology requires the quantification of trait variation and its 30 

controls. Field measurements on 483 species at 48 sites across China were used to 31 

analyse variation in leaf traits, and assess their predictability. 32 

 Principal components analysis (PCA) was used to characterize trait variation, 33 

redundancy analysis (RDA) to reveal climate effects, and RDA with variance 34 

partitioning to estimate separate and overlapping effects of site, climate, life-form 35 

and family membership. 36 

 Four orthogonal dimensions of total trait variation were identified: leaf area (LA), 37 

internal-to-ambient CO2 ratio (χ), leaf economics spectrum traits (specific leaf 38 

area (SLA) versus leaf dry matter content (LDMC) and nitrogen per area (Narea)), 39 

and photosynthetic capacities (Vcmax, Jmax at 25˚C). LA and χ covaried with 40 

moisture index. Site, climate, life form and family together explained 70% of trait 41 

variance. Families accounted for 17%, and climate and families together 29% 42 

LDMC and SLA showed the largest family effects. Independent life-form effects 43 

were small.  44 

 Climate influences trait variation in part by selection for different life forms and 45 

families. Trait values derived from climate data via RDA showed substantial 46 

predictive power for trait values in the available global data sets. Systematic trait 47 

data collection across all climates and biomes is still necessary. 48 

 49 

Key words: climate, leaf economics spectrum, multivariate analysis, photosynthetic 50 

capacity, phylogeny, plant functional traits. 51 
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Introduction 53 

Functional traits generally do not vary independently, but show broadly predictable 54 

patterns of covariation (Armbruster et al., 1996; Watson et al., 2016). The covariation 55 

of traits may mean that traits share genetic controls, or that they have related roles in 56 

community assembly and function (Wright et al., 2007; Fajardo et al., 2011). 57 

Quantifying the covariation of vegetative traits and their controls is important for an 58 

understanding of how plants drive ecosystem processes and determine the responses 59 

of ecosystems to environmental change (Wright et al., 2007; Shipley et al., 2011; 60 

Swenson 2013; van Bodegom et al., 2014; Kong et al., 2014; Kraft et al., 2015). 61 

Although a number of large-scale studies have quantified both trait covariation (e.g. 62 

Wright et al., 2004; Armbruster et al., 2014; Peiman & Robinson, 2017) and 63 

trait-environment relationships,(e.g. Wright et al., 2005; Harrison et al., 2010; Liu et 64 

al., 2012; Maire et al., 2015; Meng et al., 2015), a number of general issues await 65 

resolution. These include: 66 

(1) The dimensionality of trait space – that is, the extent to which combinations of 67 

different traits are independent, versus belonging to a set of covarying traits as 68 

exemplified by the leaf economics spectrum (LES) (Wright et al., 2004, 2005). The 69 

intrinsic dimensionality of traits is the minimum number of independent axes that 70 

adequately describe the functional variation among species, and is therefore an 71 

important quantity in comparative ecology (Laughlin, 2014). 72 

(2) The extent to which trait variation is determined by climate, versus the 73 

co-existence of multiple trait values in the same climate (Adler et al., 2013; 74 

Valladares et al., 2015).  75 

(3) The extent to which trait variation and trait-environment correlations are linked to 76 

‘hard-wired’ physiognomic (life-form) and/or phylogenetic differences among species, 77 

and the role of environment in selecting among life forms and clades (Díaz et al., 78 

2013; Ackerly, 2009; Donovan et al., 2014). 79 



The dimensionality question has received attention in plant functional ecology partly 80 

because of the universal nature of the LES, which is considered as the outcome of a 81 

tradeoff between resource acquisition and conservation – representing different 82 

general strategies for existence, rather than adaptations to environment (Wright et al., 83 

2007; Kong et al., 2014; Reich, 2014). An early synthesis led to a proposal for four 84 

trait dimensions indexed by leaf mass per area and lifespan (i.e. the LES), seed mass 85 

and seed output, leaf and twig size, and plant height (Westoby et al., 2002). Wright et 86 

al. (2007) found three independent trait dimensions represented by specific leaf area 87 

(SLA), seed/fruit size and leaf size in seven neotropical forests. The most extensive 88 

study (in terms of the number of species considered) to date was by Díaz et al. (2016), 89 

who showed that variation among species in height, stem specific density, leaf mass 90 

per area, seed mass, and nitrogen per unit mass (Nmass) could be reduced to two 91 

dimensions, the first indexing plant size, the second the LES. However, these various 92 

studies have considered only a limited set of traits or combined information from 93 

disparate sources, and did not attempt to quantify the climatic or phylogenetic controls 94 

on traits. 95 

In this paper, we examine a suite of leaf traits, using co-located measurements to 96 

quantify the contributions of climate, site, life form and phylogeny to trait variation at a 97 

large geographic scale. Our analysis is based on an extensive data set (Wang et al., 98 

2018), containing information on multiple leaf traits from different regions of China. 99 

We focused on seven leaf traits that together capture many functions of plants (Table 100 

S1). The traits considered include four commonly measured traits: leaf area (LA), 101 

specific leaf area (SLA), leaf dry matter content (LDMC) and leaf nitrogen per unit 102 

area (Narea), and also three traits that determine photosynthetic rates: maximum 103 

carboxylation rate (Vcmax) and maximum electron transport rate (Jmax), derived from 104 

gas exchange measurements in the field, and the ratio of intercellular to ambient 105 

carbon dioxide (CO2) concentration (often denoted as ci:ca but called χ here following 106 

Prentice et al., 2014) derived from leaf stable carbon isotope (δ13C) measurements. 107 



We used multivariate analysis to quantify the dimensionality of variation in this set of 108 

traits, and the nature and dimensionality of trait-climate relationships. We used 109 

variance partitioning to attribute trait variations (for all traits, and each trait separately) 110 

to differences among sites, climate variations across sites, and distinctions among life 111 

forms and plant families. We finally applied the trait-climate relationships derived 112 

from the data set to various global datasets for specific traits, in order to assess their 113 

generality and potential wider application. 114 

Materials and methods 115 

Dataset description 116 

The data are derived from the China Plant Trait Database (Wang et al., 2018), which 117 

contains information on morphological, physical, chemical and photosynthetic traits 118 

from 122 sites and provides information on more than 1215 species. The database was 119 

designed to provide comprehensive sampling of different vegetation types and 120 

climates. It employs a standardized taxonomy and includes information on life form, 121 

plant family, site location, elevation, and climate. LA, SLA, Narea, LDMC and leaf 122 

δ13C data from multiple species were available at 48 sites, including 483 species 123 

altogether, distributed through the eastern half of China (Fig. 1a, Table S2). The sites 124 

from northeastern China are distributed along an aridity gradient (Prentice et al., 125 

2011), including steppes, grasslands and temperate deciduous broadleaf forests. The 126 

sites from southwestern China represent tropical and subtropical evergreen broadleaf 127 

forests, and tropical dry woodlands. Temperate deciduous forests in central China and 128 

boreal forests in the far north of China were also included. Collectively these data 129 

cover the principal climatic and vegetation zones of the region (Fig. 1b). At each site, 130 

a stratified sampling strategy ensured that measurements were available for the main 131 

species in each canopy stratum, including up to 25 species of trees. Species were 132 

classified by life form as trees, small trees, lianas, shrubs, forbs and graminoids. 133 

Bamboos, herbaceous climbers, geophytes and pteridophytes were present only in 134 



small numbers in the dataset and were not included in our analysis. Fig. S1 shows 135 

frequency distributions of each trait within each life form for forest and non-forest 136 

sites. Table S3 lists the total number of samples in each class.  137 

Details of trait measurement methods can be found in Wang et al. (2018). LA, SLA, 138 

Narea and LDMC were measured on samples collected in the field following standard 139 

protocols (Cornelissen et al., 2003). LA was taken as the projected area of a leaf, or 140 

leaflet in the case of compound leaves. Vcmax was calculated from the light-saturated 141 

rate of net CO2 fixation at ambient CO2 (Asat) using the so-called one-point method, 142 

which provides a rapid and effective alternative to the measurement of a full A-ci 143 

curve (De Kauwe et al., 2016). Jmax was calculated from the light-saturated rate of net 144 

CO2 fixation at high CO2 (Amax). Both Vcmax and Jmax were adjusted to a standard 145 

temperature of 25oC using the methods proposed by Niinemets et al. (2014). The 146 

adjusted values are called Vcmax25 and Jmax25. Leaf 13C measurements were converted 147 

to 13C discrimination and thence to χ, eliminating the effects of latitude and sampling 148 

year as described in Cornwell et al. (2017): 149 

𝛿13𝐶𝑎𝑖𝑟,1992 = 𝑎 ∗ (sin (𝜑 ∗
𝜋

180
))

2

+ sin (𝜑 ∗
𝜋

180
) − 𝑐           (1)      150 

where φ is latitude and a, b and c are parameters estimated by regression with values a 151 

= 0.0819, b = 0.0983 and c = 7.7521 (Cornwell et al., 2017), and 152 

𝛿13𝐶𝑎𝑖𝑟 = 𝛿13𝐶𝑎𝑖𝑟,1992 + 𝑔(𝑦 − 1992)                        (2) 153 

where 𝑦 is the sampling year and g = –0.0467, and     154 

𝜒 =  (𝛿13𝐶𝑎𝑖𝑟 − 𝛿13𝐶𝑝𝑙𝑎𝑛𝑡 − 𝑎′)/(𝑏′ − 𝑎′)                        (3)   155 

where a' is the discrimination against 13CO2 during diffusion through stomata (4.4‰) 156 

and b' is the discrimination against 13CO2 during carboxylation (27‰) (Farquhar et al., 157 

1982). Cernusak et al. (2013) showed that about 80% of the variation in instantaneous 158 



gas exchange measurements of χ could be accounted for by a linear relationship to δ13C, 159 

supporting the use of equation (3). Estimates of χ based on δ13C measurements are used 160 

here, however, because they reflect longer-term growth conditions better. 161 

Three bioclimate variables adequately represent the controls on vegetation structure 162 

and composition across China (Wang et al., 2013). These are the accumulated 163 

photosynthetically active radiation during the thermal growing season (PAR0), defined 164 

as the period when daily temperature is above 0oC; the daily mean temperature during 165 

the thermal growing season (mGDD0); and the ratio of mean annual precipitation to 166 

annual equilibrium evapotranspiration (moisture index, MI), calculated using SPLASH 167 

(Davis et al., 2017). The primary data for the calculation of these bioclimatic variables 168 

were derived from 1814 meteorological stations (740 stations with data from 1971 to 169 

2000, the rest from 1981 to 1990), interpolated to 1 km resolution with elevation as a 170 

covariate using ANUSPLIN V4.37 (Hutchinson 2007). 171 

Gap filling 172 

Photosynthetic measurements were only available for 14 sites in the China Plant Trait 173 

Database; however, these sites comprise 53% of the species represented in the data set. 174 

Photosynthetic measurements were not available for the temperate forests of 175 

Changbai Mountain, and the Inner Mongolia grasslands. In order to allow multivariate 176 

analysis of a larger data set, Vcmax values for species at these sites were gap-filled 177 

using a back-propagation neural network using LMA, Narea, LA, χ and moisture index 178 

(MI) as predictors (newff function in Matlab 2010a). The neural network is a 179 

machine learning technique that often provides better performance than conventional 180 

statistical methods for this type of application (Paruelo et al., 1997; Papale et al., 2003; 181 

Moffat et al., 2010). The data were divided into two parts: a calibration data set used 182 

to determine the weights in the neural network (75% of data points), and a validation 183 

data set used to assess the network performance (25% of data points). The method 184 

achieved an acceptable accuracy with R2 = 0.49 between observed and predicted 185 



values for the calibration data set and 0.50 for the validation data set. Jmax values were 186 

then estimated from Vcmax values using a linear regression fitted to data from all sites 187 

where both Asat and Amax were measured. The regression equation used for gap-filling 188 

is ln Jmax,25 = –0.0221 mGDD0 + 0.7329 ln Vcmax,25 + 2.0362 (R2 = 0.75, P < 0.01). 189 

Multivariate analysis and variance partitioning 190 

Principal components analysis (PCA) and redundancy analysis (RDA) are powerful 191 

multivariate analysis techniques with many ecological applications (White et al., 2005; 192 

Maire et al., 2015; Scheibe et al., 2015). As a dimensionality reduction technique, 193 

PCA projects a set of data on correlated variables on to a series of composite, 194 

uncorrelated variables called principal components (James et al., 1990). In RDA, 195 

these variables are chosen to maximize the extent of their correlation with a set of 196 

predictor variables (Borcard et al., 1992) and are therefore described as “constrained” 197 

axes of variation. RDA also extracts further “unconstrained” axes, which are the 198 

principal components of the variation that remains after the fitted effects of the 199 

predictor variables have been removed. Here, PCA is used to analyse trait covariation; 200 

RDA is used to analyse the relationships of trait variation to climate variables; and the 201 

unconstrained axes of RDA are used to characterize the residual (within-site) variation 202 

in traits. These analyses were performed using the vegan package in R (Oksanen et 203 

al., 2017). LA was square-root transformed before analysis to yield a linear measure of 204 

leaf size. χ was logit-transformed (logit χ = ln [χ/(1 – χ)]). All other traits (including 205 

√LA) were natural log-transformed. All traits were thus converted to dimensionless 206 

quantities in the range (, ), allowing PCA and RDA to be carried out using the 207 

covariance matrix among traits with no need for further standardization. Each trait 208 

thereby has its ‘natural’ weight in the analysis. For log-transformed variables, this 209 

treatment implies that a trait with, say, 10-fold variation has twice the weight of a trait 210 

with 5-fold variation. The weight can be quantified by the standard deviation of the 211 

transformed variables (ln √LA: 1.17, ln SLA: 0.50, ln LDMC: 0.38, ln Narea: 0.59, ln 212 



Vcmax25: 0.58, ln Jmax25: 0.48, logit χ: 1.37; see also Table 3). PCA and RDA were 213 

repeated using only the species-site combinations for which actual (as opposed to 214 

gap-filled) photosynthetic trait data were available (Figs S2-S4, Tables S4-S5). 215 

Variation partitioning quantifies the amount of variation in a predicted quantity (in 216 

multiple regression) or set of quantities (in RDA) that can be explained by different 217 

groups of predictors (Legendre & Legendre, 2012). We used the Legendre method 218 

(Legendre & Anderson, 1999; Peres-Neto et al., 2006; Meng et al., 2015), which 219 

explicitly accounts for correlations between groups by distinguishing unique and 220 

overlapping contributions from each group. The results are most conveniently 221 

displayed as Venn diagrams. The method was used here with RDA to assign trait 222 

variation to components linked to climate, sites, life forms, families, and the 223 

intersections of these controls. 224 

Trait prediction  225 

We evaluated the predictive power of the fitted trait-climate relationships in the RDA 226 

analysis, first on the data set as a whole and then using a cross-validation approach 227 

(Picard & Cook, 1984; Kohavi 1995). We performed five iterations, in which 80% of 228 

the data was used for training and 20% retained for validation. The average 229 

root-mean-squared error (RMSE) across all five trials provides the final measure of 230 

goodness-of-fit.  231 

The general predictive power of the trait-climate relationships was then tested using 232 

four independent global trait data sets: leaf economics traits (SLA, LDMC, Narea) from 233 

Wright et al. (2004); √LA from Wright et al. (2017); photosynthetic traits (Vcmax25 , 234 

Jmax25) from De Kauwe et al. (2016), including data from Bahar et al. (2017); and χ 235 

from Cornwell et al. (2017) (Table S6). Each of these data sets provides geolocated 236 

site-based measurements across continents, vegetation types and climates (Figure S5). 237 

We derived climate variables for each site from the nearest 10-minute grid cell in the 238 



CRU 2.0 dataset (New et al. 2002), which provides long-term monthly means of 239 

temperature, precipitation, and sunshine duration for the standard period 1961-1990. 240 

PAR0, mGDD0, and MI were calculated in the same way as for the sites in China, using 241 

SPLASH to calculate MI (Davis et al., 2017). 242 

We screened out measurements from sites in the global data sets where MI > 1.4 or 243 

mGDD0 < 10 because these are beyond the limits of the climates sampled in China. 244 

Some of the δ13C measurements in Cornwell et al. (2017) are < –30‰. We assume that 245 

these reflect incomplete mixing of CO2 between the free atmosphere and the forest 246 

understorey. We excluded these measurements. The number of sites and individual 247 

measurements from each global data set used to test the climate-trait predictions is 248 

shown in Table S6. Trait values at each global site were directly predicted from climate 249 

inputs, using the RDA model previously derived from the data in China. Ordinary 250 

least-squares regression was used to compare observed (y) with predicted (x) trait 251 

values. 252 

Results 253 

Four dimensions of trait variation 254 

PCA of traits from all species and sampling sites revealed four independent axes of trait 255 

variation (Fig. 2, Table 1). The first four principal components together account for 95% 256 

of total trait variation. The first two axes are dominated by LA and χ, orthogonal to one 257 

another. These two axes together account for 79% of total trait variation: this large 258 

fraction draws attention to the large span of variability in these traits, especially leaf 259 

area. The third axis, accounting for 11% of total trait variation, primarily represents the 260 

LES, with SLA opposed to Narea and LDMC. The plot of axis 3 against axis 4, which 261 

accounts for 6% of total trait variation, shows that Vcmax and Jmax vary closely together, 262 

but orthogonally to the LES.  263 



Analysis based on sites with complete data only (Fig. S2, Table S4) shows that the first four 264 

principal components have similar explanatory power to the main analysis (93%) and, 265 

although the axes are rotated with respect to the axes derived from the larger data set, they 266 

show the same four dimensions of variation with LA, LES, photosynthetic capacity and χ 267 

varying independently of one another. The patterns of trait covariation can also be seen 268 

by examining the matrix of pairwise correlations between traits (Fig. S6). The 269 

differences between Fig. S6(a) based on the gap-filled data set, and Fig. S6(b) based 270 

on sites with complete data, show the (slight) effect of gap-filling. Vcmax and Jmax are 271 

highly correlated (0.84) before gap filling. The largest difference is that the negative 272 

correlations of both Vcmax and Jmax with leaf area increase due to the gap filling. This 273 

evidently does not contradict our inference from PCA on the gap-filled data set, i.e. 274 

that photosynthetic capacities are largely uncorrelated with the other traits.  275 

Trait variation related to climate 276 

The three bioclimatic variables together account for 37% of trait variation (Table 2). 277 

Three successive RDA axes (Fig. 3, Table 2) describe the patterns of trait variation 278 

with climate, and show that the between-site patterns of trait covariation imposed by 279 

climatic gradients differ from those found in the data set as a whole. The first RDA 280 

axis is overwhelmingly dominant, and is related to the gradient of MI from 281 

desert-steppe to moist forests. LA and χ vary together along this gradient, with both 282 

large leaves and large χ characteristic of wetter environments. The second RDA axis 283 

accounts for 2% of trait variation, and is related to the covariation of mean 284 

growing-season temperature and total growing-season light availability along the 285 

latitudinal gradient from the boreal zone to the tropics. Trait variation on this axis 286 

resembles the LES: warmer, higher irradiance climates are characterized by plants 287 

with lower SLA, higher LDMC and higher Narea. The third RDA axis accounts for 288 

only 0.4% of trait variation. Analysis based on sites with complete data only (Fig. S3, 289 

Table S5) shows the same patterns. 290 



Residual trait variation, unrelated to climate 291 

The unconstrained axes (or residual principal components) calculated by RDA after 292 

climatic differences among sites have been accounted for (Fig. 4, Table 2) provide 293 

insight into trait variation that is expressed within sites and across all climates. The 294 

patterns of this residual variation, as shown by the first four unconstrained axes, are 295 

similar to the patterns shown by the principal components of the whole data set (Fig. 2, 296 

Table 1), with evidence for four independent dimensions of variation associated with 297 

successive components dominated by χ, LA, LES traits and photosynthetic capacities, 298 

respectively. Analysis based on sites with complete data only (Fig. S4, Table S5) 299 

shows the same four dimensions. 300 

The same general patterns of non-climate-related trait covariation are also clear on 301 

inspection of the partial correlations among transformed trait values, after the effects 302 

of climatic predictors have been removed (Fig. 5). Deeper colours in Fig. 5 indicate 303 

larger absolute magnitudes of correlation. The traits can be seen to fall into four 304 

blocks: one comprising Vcmax and Jmax (positively correlated), one comprising the 305 

traits that contribute to the LES (SLA negatively correlated with LDMC and Narea), χ, 306 

and LA. While χ shows almost no correlation with any of the other traits, LA is 307 

weakly negatively correlated with Vcmax and Jmax (Fig. 5), as is SLA. 308 

Multiple controls of trait variation 309 

Venn diagrams (Fig. 6) summarize the percentage contributions of climate, site, life 310 

form and family (including intersecting contributions) to total trait variation, and to 311 

variation in each separate trait. The intersection regions represent trait variation that 312 

cannot be unambiguously attributed to one control or another, because of correlations 313 

among the controls. For example, substantial intersections between climate and family 314 

occur because these controls are not independent: different families are selected for in 315 

different climates. Anomalously large values are highlighted in bold in Fig. 6 and one 316 



anomalously small value indicated by italics. No values are shown for climate 317 

independently of site, because differences in climate are determined by site locations. 318 

Table 3 also shows the total percentage of variance associated with each control 319 

(including intersections with other controls). 320 

Considering the variation among all traits together (Fig. 6), climate, site, family and 321 

life form jointly account for 70% of total trait variance. The most important features 322 

of the partitioning are (1) the joint effect of climate with family (23%), which is the 323 

dominant driver of trait variation in this dataset; (2) the substantial fraction of 324 

variance due to family alone (17%), independent of climate or life form; and (3) the 325 

fact that most of the total variance associated with life form (16%) is also linked to 326 

climate (8%). There is some additional effect of climate independent of family (8%); 327 

and some effect of site independent of climate (12%), which is presumably related to 328 

edaphic or microclimatic factors. 329 

The partitioning of trait variance for individual traits (Fig. 6) generally resembles that 330 

for all traits. However, 48% of total trait variation in LDMC is linked to family, and 331 

41% linked to family independent of other controls. Only 4% of the variation in 332 

LDMC is linked to climate, and none to climate and family together. For SLA, 41% of 333 

total trait variation is linked to family (with 14% linked to family and life form 334 

together independent of other controls); 15% is linked to climate, but only 4% to 335 

climate and family together. These anomalies indicate a particularly strong 336 

phylogenetic component to variation in LDMC and, to a lesser extent, SLA. The 337 

unexplained variation is greater for Vcmax25 (47%) and Jmax25 (41%) than for the other 338 

traits. 339 

After climate, site and family effects have been accounted for, the remaining 340 

(independent) contribution of life form to trait variation is small. The total life-form 341 

contribution is < 10% for all traits except LA and χ, and the unique contribution of life 342 

form independent of all other controls is very slight, < 2.5% for all traits. Forbs and 343 



graminoids show different ranges of trait values in forest and non-forest vegetation 344 

(Fig. S1). Specifically, SLA and LDMC of forbs and graminoids decrease between 345 

forests and non-forests while Narea, Vcmax and Jmax increase. That is, for all these traits, 346 

life forms occupying the understorey in forest vegetation become more ‘tree-like’ in 347 

non-forest vegetation, suggesting that these traits are more determined by the light 348 

environment than by any intrinsic difference among life forms. 349 

Worldwide prediction of traits based on the observed climate-trait relationships  350 

The RDA analyses show that climate (including indirect effects mediated by selection 351 

for life forms and families) is the major determinant of trait variation for most of the 352 

traits examined, except for LDMC and SLA, which show a substantial independent 353 

phylogenetic component. This generalization is supported by predictions of the mean 354 

site values for each trait (Fig S7). At species level, the adjusted R2 between observed 355 

and predicted values for LDMC is only 0.08, and for SLA 0.16 (Table S7), while the 356 

relationship is better for other traits – from 0.24 for Vcmax25 to 0.52 for √LA. The 357 

average adjusted R2 across traits is 0.28. Partitioning the data into woody and 358 

non-woody components has little impact on the quality of the prediction for most traits, 359 

but prediction of LDMC and SLA is better for non-woody than woody species (Table 360 

S7). Although predictability is imperfect, because of the (demonstrated) influence of 361 

non-climatic factors on all of the traits, these analyses nonetheless show that it is 362 

possible to predict all four dimensions of trait variation, to first order, from climate. 363 

The prediction of trait values in global data sets provides a more stringent test of the 364 

universality of the derived climate-trait relationships (Fig. 7, Table 4). At site level, 365 

the lowest adjusted R2 value between observed and predicted trait values is again for 366 

LDMC (0.01), but for SLA it is 0.31. For other traits, adjusted R2 ranged from 0.25 367 

(Jmax) to 0.34 (√LA). The average across traits is 0.31, excluding LDMC. The 368 

observed values for ln Vcmax25 tend to be higher than the predicted values, whereas the 369 

observed values of ln SLA tend to be lower than the predicted values (Fig. 7). 370 



However the regression slopes for these traits are not significantly different from 371 

unity (Table 4). The OLS regression slopes for ln √LA, Jmax25 and ln χ are in the range 372 

from 0.48 to 1. RMSE values (Table 4) are larger in the global comparison than in the 373 

calibration set for ln √LA and SLA; but closely similar for Narea, Vcmax25 and Jmax25, and 374 

χ. The average RMSE across traits excluding LDMC is slightly less in the global 375 

comparison (0.42) than in the calibration set (0.61). 376 

Discussion 377 

The ecological significance of leaf-trait dimensions 378 

The four dimensions of total leaf-trait variation reported here indicate the existence of 379 

independent variation among species in LA, χ, photosynthetic capacity, and the LES. 380 

The RDA based on climate shows a smaller dimensionality, with most of the variation 381 

concentrated on a single axis from wet to dry environments. LA is both expected and 382 

observed to increase with plant-available moisture, due to energy-balance constraints 383 

(Wright et al., 2017). χ is both expected and observed to increase with atmospheric 384 

moisture according to the least-cost hypothesis (Prentice et al., 2014). These 385 

hydroclimatic controls on both LA and χ are presumed to be the cause of (a) the 386 

dominance of a single dimension of trait-environment relationships across the region, 387 

related to moisture/aridity, and (b) the observed close covariation of LA and χ 388 

between sites along the aridity gradient – contrasting with their independence in the 389 

data as a whole. Analysis of the residual (non-climatic) component of trait variation 390 

however shows, once again, four independent dimensions, with a pattern closely 391 

similar to that shown in total leaf-trait variation, and orthogonal variation of LA and χ. 392 

Multivariate analysis confirms the universal nature of the LES, as indexed here by 393 

SLA, LDMC (which tends to be high when SLA is low), and Narea. Unlike Nmass (N 394 

concentration per unit mass), Narea increases with decreasing SLA because the 395 

structural component of leaf N increases in proportion to LMA (see e.g. Onoda et al., 396 



2004, 2017; Wright et al., 2005; Osnas et al., 2013; Dong et al., 2017a). The LES is 397 

identified in the PCA, and in the residual trait variation after consideration of climate 398 

effects in RDA. However, it also appears in the climatically constrained RDA as a 399 

second-order pattern correlated with the latitudinal gradient. In other words, there is a 400 

shift in the average position of species along the LES (towards lower SLA) with 401 

increasing growing-season length and warmth, although this shift accounts only for a 402 

small proportion (2%) of total trait variance. The LES reflects the inescapable linkage 403 

between high construction costs and long payback times of leaves with low SLA 404 

(Kikuzawa, 1991; Reich et al., 1997; McMurtrie & Dewar, 2011; Funk & Cornwell, 405 

2013). The shift towards lower-SLA leaves in warmer climates is primarily due to the 406 

shift of dominance from deciduous to evergreen woody plants. The increase in 407 

growing-season length (towards a year-round growing season in the tropics) favours 408 

longer-lived evergreen leaves with lower SLA in warmer climates, as shown here and 409 

in other studies. 410 

Both the gap-filled data set and the non-gap-filled subset show that the two 411 

photosynthetic capacities (Vcmax and Jmax) covary closely (Fig. S6), as is expected 412 

from the co-ordination hypothesis – which predicts that leaves should not possess 413 

excess capacity in either carboxylation or electron transport, as photosynthesis 414 

depends on both (Chen et al., 1993; Maire et al., 2012). However both traits show 415 

substantial variation within sites. When Vcmax and Jmax were entered into the analysis 416 

after adjustment to local growth temperature, as opposed to 25˚C, the results were 417 

very similar (not shown). Opposite trends of variation in Vcmax and Jmax are shown 418 

only in the (minor) third axis of the RDA, accounting for 0.4% of total trait variance 419 

and driven by differences among sites in summer temperature that are independent of 420 

the latitudinal gradient. This pattern is consistent with expectations, as a decline in the 421 

Jmax:Vcmax ratio with increasing temperature has been shown experimentally (Kattge & 422 

Knorr, 2007) and predicted theoretically (Wang et al., 2017a). The decline is larger 423 



when the two photosynthetic capacities are estimated at prevailing growth 424 

temperature, but persists when they are adjusted to 25˚C. 425 

Contributions to leaf trait variation 426 

The variance partitioning results presented here demonstrate that family and climate 427 

effects (except for LDMC and SLA) overlap considerably. In other words, a 428 

substantial part of trait variation with climate is due to families replacing one another 429 

along environmental gradients. After family, climate and site effects have been taken 430 

into account, independent life-form effects become unimportant. Thus, to first order, 431 

the principal controls on trait variation in this data set are family identity, climate, and 432 

climatic selection among families. Additional effects of site (independent of climate) 433 

could in principle be due to microclimatic and/or edaphic differences among sites, 434 

which have not been investigated. LDMC and to a lesser extent SLA show stronger 435 

family effects than other traits, while the effects of climate on these traits appear to be 436 

largely independent of family identity. 437 

Implications for vegetation modelling 438 

Vegetation models based on continuous variation in trait space sample ‘plants’ from a 439 

continuum of trait values (e.g. Scheiter et al., 2013; Fyllas et al., 2014). This approach 440 

requires specifying which traits can vary; by how much; and the extent to which 441 

different traits covary, in other words, the effective dimensionality of trait space. Our 442 

analyses of leaf traits, including traits derived from stable isotope and gas exchange 443 

measurements, indicate that at least four independent dimensions of trait variation 444 

need to be considered; that realistic modelling of functional diversity must allow for 445 

within-site variation in each of these dimensions; and that environmental differences 446 

force patterns of trait covariation across sites that can be different from patterns 447 

observed within sites. 448 



With the exception of LDMC, which shows a particularly strong phylogenetic 449 

component, the trait-environment relationships found here should be amenable to 450 

process-based modelling. The energy balance implications of leaf size (Michaletz et 451 

al., 2016; Dong et al., 2017b; Wright et al., 2017) mean that this trait is crucial for 452 

survival, particularly in cold climates or in hot, dry climates. As the biophysical 453 

controls of leaf size are relatively well understood, it should be straightforward to 454 

build energy-balance constraints on leaf size into trait-based models. Shifts in the LES 455 

along environmental gradients could also be modelled, given the well-established 456 

relationship of leaf longevity and SLA (Wright et al., 2004) and the experimentally 457 

determined variations of SLA with environmental factors (Poorter et al., 2009). The 458 

distribution of SLA within communities could be represented by a pattern of 459 

covariation in leaf longevity, SLA, LDMC and the structural component of Narea, as 460 

shown here and in other studies. 461 

 462 

The co-ordination hypothesis predicts both Vcmax and the ratio of Jmax to Vcmax, 463 

including the observed dependence of both quantities on growth temperature (Wang et 464 

al., 2017b). Large-scale patterns in Vcmax and the metabolic component of Narea can be 465 

predicted theoretically (Dong et al., 2017a). The co-ordination hypothesis also 466 

predicts the observed seasonal acclimation of Vcmax and Jmax (Togashi et al., 2018). 467 

Thus, at the level of community mean values, it seems likely that Vcmax can be 468 

successfully modelled as a function of environment (Ali et al., 2016). A 469 

temperature-dependent ratio of Jmax to Vcmax would then allow prediction of Jmax. 470 

 471 

The CO2 drawdown from air to leaf, indexed by χ, is predicted by most vegetation 472 

models by simultaneous solution of the FvCB equations to predict assimilation rate as 473 

a function of leaf-internal CO2 (ci) and the diffusion equation to predict ci as a 474 

function of ambient CO2 (ca), stomatal conductance and assimilation rate (Farquhar et 475 

al., 1980). Theoretically and empirically well-founded relationships between χ and 476 



environmental variables (Wang et al., 2017b) provide an alternative way to model χ 477 

directly as a function of environment, and thus to predict assimilation rates more 478 

straightforwardly than in many current models. 479 

Challenges and future directions 480 

This analysis illustrates the power of large trait data sets spanning a large range of 481 

climates, and including measurements from multiple co-existing species at each field 482 

site, to reveal general patterns. It also shows the utility of multivariate analysis to 483 

summarize patterns, and variance partitioning to attribute trait variability to different 484 

(and sometimes intersecting) causes. But despite the availability of large plant-trait 485 

data compilations (e.g. Kattge et al., 2011), the number of sites that include all of any 486 

specified set of plant traits is often disappointingly small – because different research 487 

groups typically collect data on different sets of traits. There remains a need for more 488 

extensive trait data collection including photosynthetic traits and isotopic 489 

measurements in addition to conventional leaf traits, and for such data collection to 490 

extend to the full range of the world’s climates. There has been a limited amount of 491 

comparative work, for example, on photosynthetic traits, which are essential for all 492 

process-based vegetation modelling. Moreover, compared to leaf traits, there is a 493 

paucity of data on other field-measurable traits (notably stem hydraulic properties) 494 

that may be equally important for plant functional ecology. As is well illustrated by 495 

the global data sets that we used to test the predictive capacity of trait-climate 496 

relationships, the site- and/or species-metadata available are often limited. There 497 

remains a need for extensive, targeted collection and analysis of plant trait data, 498 

including co-located morphological, gas-exchange and isotopic measurements, and 499 

spanning the world’s major environmental and floristic gradients. 500 
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Figure legends 749 

Fig. 1 Geographical and climatic coverage of the trait dataset. The individual sites are 750 

shown as red dots superimposed on a simplified vegetation map of China in (a); these 751 

sites have been grouped into eight named regions. The distribution of sites in climate 752 

space is shown in (b), where MI is the moisture index defined as the ratio of mean 753 

annual precipitation to annual equilibrium evapotranspiration, PAR0 is the 754 

accumulated photosynthetically active radiation during the thermal growing season, 755 

and the daily mean temperature during the thermal growing season (mGDD0) is shown 756 

by the colour of the dots. The grey shading indicates the frequency of different climates, 757 

as defined by MI and PAR0, in eastern China as a whole. 758 

Fig. 2 Trait dimensions from principal component analysis: grey circles are species-site 759 

combinations. The traits are LA: leaf area, SLA: specific leaf area, LDMC: leaf dry 760 

matter content, Narea: leaf nitrogen per unit area, Vcmax25: maximum carboxylation rate 761 

standardized to 25˚C, Jmax25: maximum electron transport rate standardized to 25˚C, 762 

and χ: the ratio of intercellular to ambient CO2 concentration. The four axes of 763 

variability related to LA, χ, the leaf economic spectrum and the photosynthetic traits are 764 

shown by coloured ellipses on each plot. 765 

Fig. 3 Climate-related trait dimensions from redundancy analysis: grey circles are 766 

species-site combinations and coloured dots signify named regions as defined in Fig. 1. 767 

The traits are: LA: leaf area, SLA: specific leaf area, LDMC: leaf dry matter content, 768 

Narea: leaf nitrogen per unit area, Vcmax25: maximum carboxylation rate standardized to 769 

25˚C, Jmax25: maximum electron transport rate standardized to 25˚C, and χ: the ratio of 770 

intercellular to ambient CO2 concentration. The climate variables are the ratio of mean 771 

annual precipitation to annual equilibrium evapotranspiration (MI), the accumulated 772 

photosynthetically active radiation during the thermal growing season (PAR0) and the 773 

daily mean temperature during the thermal growing season (mGDD0). 774 



Fig. 4 Residual (climate-independent) dimensions of trait variation: grey circles are 775 

species-site combinations. The traits are: LA: leaf area, SLA: specific leaf area, LDMC: 776 

leaf dry matter content, Narea: leaf nitrogen per unit area, Vcmax25: maximum 777 

carboxylation rate standardized to 25˚C, Jmax25: maximum electron transport rate 778 

standardized to 25˚C, and χ: the ratio of intercellular to ambient CO2 concentration. 779 

Fig. 5 Partial correlations between traits, after removal of climate effects. The traits are: 780 

LA: leaf area, SLA: specific leaf area, LDMC: leaf dry matter content, Narea: leaf 781 

nitrogen per unit area, Vcmax25: maximum carboxylation rate standardized to 25˚C, 782 

Jmax25: maximum electron transport rate standardized to 25˚C, and χ: the ratio of 783 

intercellular to ambient CO2 concentration. Colours indicate the strength of the 784 

correlation, where dark blue indicates perfect correlation. 785 

Fig. 6 Variance partitioning (%) for all traits considered together, and each trait 786 

separately. The traits are: LA: leaf area, SLA: specific leaf area, LDMC: leaf dry matter 787 

content, Narea: leaf nitrogen per unit area, Vcmax25: maximum carboxylation rate 788 

standardized to 25˚C, Jmax25: maximum electron transport rate standardized to 25˚C, 789 

and χ: the ratio of intercellular to ambient CO2 concentration.  790 

Fig. 7 Predicting traits globally at site level, from the trait-climate relationships derived 791 

from data in China. The traits are: LA: leaf area, SLA: specific leaf area, LDMC: leaf 792 

dry matter content, Narea: leaf nitrogen per unit area, Vcmax25: maximum carboxylation 793 

rate standardized to 25˚C, Jmax25: maximum electron transport rate standardized to 794 

25˚C, and χ: the ratio of intercellular to ambient CO2 concentration. (a) Predicted 795 

ln√LA versus observed ln√LA (Wright et al., 2017). (b) Predicted ln SLA versus 796 

observed ln SLA (Wright et al., 2004). (c) Predicted ln LDMC versus observed ln 797 

LDMC (Wright et al., 2004). (d) Predicted ln Narea versus observed ln Narea (Wright et al., 798 

2004). (e) Predicted ln Vcmax25 versus observed ln Vcmax25 (De Kauwe et al., 2016). (f) 799 

Predicted ln Jmax25 versus observed ln Jmax25 (De Kauwe et al., 2016). (g) Predicted logit 800 

χ versus observed logit χ (Cornwell et al., 2017). Red squares are site means. 801 
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annual precipitation to annual equilibrium evapotranspiration (MI), the accumulated 826 
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carboxylation rate standardized to 25˚C, Jmax25: maximum electron transport rate 832 
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Fig. 5 Partial correlations between traits after removal of climate effects. The traits are: 834 

LA: leaf area, SLA: specific leaf area, LDMC: leaf dry matter content, Narea: leaf 835 

nitrogen per unit area, Vcmax25: maximum carboxylation rate standardized to 25˚C, 836 

Jmax25: maximum electron transport rate standardized to 25˚C, and χ: the ratio of 837 

intercellular to ambient CO2 concentration. Colours indicate the strength of the 838 

correlation, where dark blue indicates perfect correlation. 839 
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Fig. 6 Variance partitioning (%) for all traits considered together, and each trait 841 

separately. The traits are: LA: leaf area, SLA: specific leaf area, LDMC: leaf dry matter 842 

content, Narea: leaf nitrogen per unit area, Vcmax25: maximum carboxylation rate 843 

standardized at 25˚C, Jmax25: maximum electron transport rate standardized at 25˚C, and 844 

χ: the ratio of intercellular to ambient CO2 concentration. 845 
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Fig. 7 Predicting traits globally at site level, from the trait-climate relationships derived 847 

from data in China. The traits are: LA: leaf area, SLA: specific leaf area, LDMC: leaf 848 

dry matter content, Narea: leaf nitrogen per unit area, Vcmax25: maximum carboxylation 849 

rate standardized to 25˚C, Jmax25: maximum electron transport rate standardized to 850 

25˚C, and χ: the ratio of intercellular to ambient CO2 concentration. (a) Predicted 851 

ln√LA versus observed ln√LA (Wright et al., 2017). (b) Predicted ln SLA versus 852 

observed ln SLA (Wright et al., 2004). (c) Predicted ln LDMC versus observed ln 853 

LDMC (Wright et al., 2004). (d) Predicted ln Narea versus observed ln Narea (Wright et al., 854 

2004). (e) Predicted ln Vcmax25 versus observed ln Vcmax25 (De Kauwe et al., 2016). (f) 855 

Predicted ln Jmax25 versus observed ln Jmax25 (De Kauwe et al., 2016). (g) Predicted logit 856 

χ versus observed logit χ (Cornwell et al., 2017). Red squares are site means. 857 
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Table 1 Trait loadings, eigenvalues, and the percentage of trait variation explained by 861 

successive principal components in the trait PCA. Loadings > 0.3 in magnitude are 862 

shown in bold. 863 

 PC1 PC2 PC3 PC4 

ln √LA 0.57 0.69  0.29 0.31 

ln SLA 0.07 0.04 0.61 0.28 

ln LDMC  0.04 0.03  0.31  0.09 

ln Narea  0.12  0.11  0.60  0.24 

ln Vcmax,25  0.19  0.24  0.23 0.70 

ln Jmax,25  0.16  0.19  0.17 0.52 

logit χ 0.76  0.64  0.05  0.02 

 

Eigenvalue  2.57  0.90  0.50  0.25 

Explained (%) 58.0 20.4 11.3  5.6 

Cumulative (%) 58.0 78.5 89.8 95.4 
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Table 2 Trait loadings, eigenvalues, and the percentage of trait variation explained by 865 

successive RDA axes (constrained by climate) and residual principal components, with 866 

axes 1 and 2 mirrored to facilitate comparison with the PCA. Loadings > 0.3 in 867 

magnitude are shown in bold. 868 

 RDA1 RDA2 RDA3 PC1 PC2 PC3 PC4 

ln √LA 0.66  0.24  0.51  0.12 0.85 0.44  0.25 

ln SLA 0.01 0.67  0.11  0.11 0.20  0.53  0.33 

ln LDMC  0.02  0.14  0.43 0.08  0.05 0.32 0.17 

ln Narea  0.15  0.67 0.30 0.04  0.18 0.55 0.30 

ln Vcmax,25  0.22  0.07  0.19 0.04  0.33 0.26  0.68 

ln Jmax,25  0.18 0.11 0.29 0.05  0.26 0.22  0.49 

logit χ 0.67 0.08 0.58  0.98  0.17 0.07 0.04 

Eigenvalue  1.55  0.08  0.02  1.19  0.75  0.42  0.24 

Explained (%) 34.9  1.8  0.4 26.8 17.0  9.6  5.3 

Cumulative (%) 34.9 36.7 37.1 63.9 80.9 90.5 95.9 
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Table 3 Total contributions (%) of climate, family, site and life form to trait variation. 870 

Standard deviations (weights) of the transformed variables are also given.  871 

 All traits ln √LA ln SLA ln LDMC ln Narea ln Vcmax25 ln Jmax25 logit χ 

Weights  1.17 0.50 0.38 0.59 0.58 0.48 1.37 

Climate  37.3 51.4 14.6 3.7 24.7 23.6 28.1 38.0 

Family 54.8 61.0 40.5 48.0 36.7 38.8 46.3 59.0 

Site 49.4 59.4 35.9 17.8 39.6 33.7 37.9 51.8 

Life form 16.3 25.8 7.5 9.4 1.3 3.4 5.1 16.7 
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Table 4 Prediction accuracy of the trait-climate RDA model for independent global data 873 

sets at site level. * indicates that the slope is significantly different from 1 (P < 0.01), # 874 

indicates that the intercept is significantly different from 0 (P < 0.01). ** indicates that 875 

the regression is significant (P < 0.01). 876 

 877 

Traits Slope Intercept 𝑅𝑎𝑑𝑗
2  n RMSE Source of data 

ln √LA 0.60* 

(0.52, 0.70) 

–1.45# 

(–1.72, –1.10) 

0.34** 
388 0.70 Wright et al. (2017) 

ln SLA 0.99  

(0.68, 1.31) 

–0.61 

(–1.41, 0.19) 

0.31** 
87 0.53 Wright et al. (2004) 

ln LDMC n.s.  n.s. 0.01 9 0.20 Wright et al. (2004) 

ln Narea 0.38* 

(0.24, 0.52) 

0.45# 

(0.34, 0.56) 

0.28** 
77 0.26 Wright et al. (2004) 

ln Vcmax25 1.16 

(0.62, 1.69) 

–0.11 

(–1.97, 1.76) 

0.33** 
38 0.40 De Kauwe et al. 

(2016) 

ln Jmax25 0.59* 

(0.27, 0.92) 

1.99# 

(0.62, 3.36) 

0.25** 
38 0.33 De Kauwe et al. 

(2016) 

logit χ 0.48* 

(0.40, 0.57) 

0.35# 

(0.30, 0.40) 

0.33** 
281 0.29 Cornwell et al. (2017) 


