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José Lúıs da Silva
Universidade da Madeira, Edif́ıcio da Penteada, Caminho da Penteada, 9020-105, Fun-
chal, Madeira, Portugal; e-mail: luis@uma.pt

Tobias Kuna
University of Reading, Department of Mathematics, Whiteknights, PO Box 220, Read-
ing RG6 6AX, U.K.
e-mail: t.kuna@reading.ac.uk

Eugene Lytvynov
Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP,
U.K.; e-mail: e.lytvynov@swansea.ac.uk

Abstract

Let σ be a non-atomic, infinite Radon measure on Rd, for example, dσ(x) = z dx where

z > 0. We consider a system of freely independent particles x1, . . . , xN in a bounded set

Λ ⊂ Rd, where each particle xi has distribution 1
σ(Λ) σ on Λ and the number of particles, N ,

is random and has Poisson distribution with parameter σ(Λ). If the particles were classically

independent rather than freely independent, this particle system would be the restriction

to Λ of the Poisson point process on Rd with intensity measure σ. In the case of free

independence, this particle system is not the restriction of the free Poisson process on Rd

with intensity measure σ. Nevertheless, we prove that this is true in an approximative sense:

if bounded sets Λ(n) (n ∈ N) are such that Λ(1) ⊂ Λ(2) ⊂ Λ(3) ⊂ · · · and
⋃∞
n=1 Λ(n) = Rd,

then the corresponding particle system in Λ(n) converges (as n → ∞) to the free Poisson

process on Rd with intensity measure σ. We also prove the following N/V -limit: Let N (n) be

a determinstic sequence of natural numbers such that limn→∞N
(n)/σ(Λ(n)) = 1. Then the

system of N (n) freely independent particles in Λ(n) converges (as n→∞) to the free Poisson

process. We finally extend these results to the case of a free Lévy white noise (in particular,

a free Lévy process) without free Gaussian part.

Keywords: Completely random measure; freely independent particle systems; free
Poisson process; free Lévy process; N/V -limits.

2010 MSC: 46L54, 60G20, 60G51, 60G55, 60G57, 82B21.

1



1 Introduction

Let Γ(Rd) denote the configuration space of an (infinite) system of identical particles
in Rd. By definition, Γ(Rd) is the collection of all sets γ ⊂ Rd which are locally finite.
A probability measure on Γ(Rd) is called a point process, see e.g. [12]. In statistical
mechanics, a point process describes the state of a system of particles in the continuum.
Although every realistic system has only a finite number of particles, many important
physical phenomena can only be described by infinite particle systems, see e.g. [8, 20].

An infinite system of particles without interaction is described by a Poisson point
process. Let σ be a non-atomic, infinite Radon measure on Rd, for example dσ(x) =
z dx, where z > 0. A Poisson point process on Rd with intensity measure σ is the
probability measure π on Γ(Rd) whose Fourier transform is given by the formula (5)
below. The measure π can also be uniquely characterized by the following property:
For Λ ∈ B0(Rd), the number of particles of a configuration γ which belong to Λ has
Poisson distribution with parameter σ(Λ), and given that γ ∩ Λ = {x1, . . . , xN} the
particles x1, . . . , xN are independent and the distribution of each particle xi on Λ is 1

V
σ.

Here, B0(Rd) denotes the collection of all bounded Borel subsets of Rd, and V = σ(Λ)
is the volume of Λ.

The Poisson point process π can be derived through the N/V -limit. More precisely,
let us consider an isotone sequence of sets Λ(n) ∈ B0(Rd), i.e., Λ(1) ⊂ Λ(2) ⊂ Λ(3) ⊂ · · · ,
and assume that

⋃∞
n=1 Λ(n) = Rd. Denote V (n) := σ(Λ(n)) and let N (n) be natural

numbers such that the condition (6) below is satisfied. Then the Poisson point process
π is equal to the limit (as n→∞) of the system of N (n) independent particles in Λ(n)

such that the distribution of each particle on Λ(n) is 1
V (n) σ.

This result admits a generalization to measure-valued Lévy processes on Rd, which
are probability measures on K(Rd), e.g. [13–15]. Here K(Rd) denotes the space of all
discrete signed Radon measures on Rd, i.e., signed Radon measures of the form

∑
i siδxi ,

where si 6= 0 and δxi denotes the Dirac measure with mass at xi. The points xi may be
interpreted as locations of particles (or some organisms in biological interpretation).
The weights si are a certain attribute attached to these particles (organisms). Note
that the set {xi} is not necessarily locally finite. For a large class of measure-valued
Lévy processes, {xi} is even dense in Rd a.s. [15].

In free probability, the notion of independence of random variables is replaced
by Voiculescu’s definition of free independence of noncommutative probability spaces.
This has led to a deep theory, in which many results are noncommutative analogs of
fundamental results of classical probability theory, see e.g. [18,26,27]. Let us specifically
mention the paper [3], which studies stable laws and domains of attraction in free
probability theory and establishes the Bercovici–Pata bijection between the infinitely
divisible distributions on R and the freely infinitely divisible distributions on R. See
also [1, 5, 26] for discussions of free Lévy processes.

An analog of the classical Poisson distribution on R with parameter α is the free
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Poisson distribution with parameter α, also known as the Marchenko–Pastur distri-
bution. This distribution can be derived as the limit (as n → ∞) of the nth free
convolution power of the distribution (1 − α

n
)δ0 + α

n
δ1, where α > 0 is a parameter

of the distribution. It should be stressed that the free Poisson distribution is not dis-
crete: it has density with respect to the Lebesgue measure and possibly one atom, see
e.g. [18].

As shown in [1,26], the Poisson point process with intensity σ also has a counterpart
in free probability. According to [6], the free Poisson process on Rd is a real algebra
generated by a family of bounded selfadjoint operators A(f) in the full Fock space over
L2(Rd, σ), and the vacuum state on this algebra plays the role of an expectation. Here
f belongs to the class of bounded measurable functions on Rd with compact support.
The operators A(f) resemble the commuting operators in the symmetric Fock space
over L2(Rd, σ) which identify the Poisson point process, see e.g. [16, 23].

In the case of the one-dimensional underlying space R, Ben Arous and Kargin [2]
gave a rigorous meaning to the heuristic notion of a system of N freely independent,
identically distributed particles. Furthermore, it follows from [2, Theorem 2] that the
N/V -limit holds for a free Poisson process on R. More precisely, if the condition (6) be-
low is satisfied, the free Poisson process with intensity measure σ can be approximated
by a system of N (n) freely independent particles in Λ(n) such that the distribution of
each particle on Λ(n) is 1

V (n) σ.
The first result of the present paper states that the N/V -limit holds for a free

Poisson process on any underlying space Rd (and even on any locally compact Polish
space). We prove the convergence of the corresponding moments, which is stronger than
the weak convergence shown in [2] in the case of the underlying space R. Furthermore,
our proof of this result is significantly shorter and simpler than the proof in [2]. We
also extend the N/V -limit to the case of a free Lévy white noise as defined in [6]. In
particular, such a result holds for a free Lévy process without free Gaussian part [1].

The main result of the paper concerns a noncommutative probability space (A (Λ), τΛ)
which describes a system of N freely independent particles in a set Λ ∈ B0(Rd) which
have distribution σ

V
, where the number of particles, N , is random and has the (classical)

Poisson distribution with parameter σ(Λ). Here A (Λ) is an algebra of (unbounded)
linear operators in a certain Hilbert space and τΛ is a trace on this algebra. As men-
tioned above, if the particles were independent rather than freely independent, then
this particle system would be precisely the restriction to Λ of the Poisson point process
on Rd with intensity measure σ. However, in our noncommutative setting, (A (Λ), τΛ)
is not the restriction to Λ of the free Poisson process with intensity σ. Nevertheless,
we prove that, if (Λ(n))∞n=1 is an isotone sequence of sets from B0(Rd) whose union is
Rd, then the probability spaces (A (Λ(n)), τΛ(n)) converge, in the sense of moments, to
the free Poisson process on Rd with intensity σ.

The latter result can be interpreted as follows. Let Θ,Λ ∈ B0(Rd) be such that Θ ⊂
Λ and the set Λ is much larger than Θ. Then the restriction to Θ of the noncommutative
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probability space (A (Λ), τΛ) is very close to the restriction to Θ of the free Poisson
process on Rd with intensity σ. We also extend this result to the case of a free Lévy
white noise (in particular, a free Lévy process).

We stress that, for the results of this paper, it is principal that both the underlying
space and the intensity measure of the free Poisson process are infinite.

The paper is organized as follows. In Section 2, we briefly recall some definitions
and properties related to the classical Poisson point process, a measure-valued Lévy
process, and a Lévy white noise. Although we do not use these results directly in
this paper, they are needed to better understand analogy and differences between the
classical and the free cases. In Section 3 we recall the definition of free independence,
namely in terms of cumulants which is more convenient for applications. Moreover we
define the free Lévy white noise. In Section 4, we construct noncommutative probability
spaces which describe systems of freely independent, identically distributed particles,
and free probability counterparts of discrete random measures

∑N
i=1 siδxi such that the

pairs (si, xi) are independent and identically distributed. In Section 5, we formulate
the results of the paper. Finally, in Section 6 we prove the results.

2 A measure-valued Lévy process and a Lévy white

noise

Let X be a locally compact Polish space. Let B(X) denote the Borel σ-algebra on X,
and let B0(X) denote the collection of all Borel sets in X which have compact closure.
A measure on (X,B(X)) is called Radon if it takes finite values on each set from
B0(X). A signed Radon measure on X is a difference of two Radon measures on X.
Let M(X) denote the collection of all signed Radon measures on X. The space M(X)
is equipped with the vague topology, and let B(M(X)) denote the corresponding Borel
σ-algebra.

The configuration space Γ(X) is defined as the collection of all sets γ ⊂ X that
are locally finite. Usually, a configuration γ ∈ Γ(X) is identified with the measure
γ =

∑
x∈γ δx, where δx denotes the Dirac measure with mass at x. Under this identifi-

cation, the configuration γ becomes a Radon measure on X, so we have the inclusion
Γ(X) ⊂ M(X). Below it should always be clear from the context which of the two
interpretations of a configuration we are currently using.

A measurable mapping η from a probability space into M(X) is called a (signed)
random measure on X, see e.g. [12, 14]. If η takes a.s. values in Γ(X), then η is called
a (simple) point process. (In particular, any probability measure on M(X) or Γ(X)
identifies a random measure or a point process, respectively.)

A random measure η is called completely random if, for any mutually disjoint sets
Λ1, . . . ,Λn ∈ B0(X), the random variables η(Λ1), . . . , η(Λn) are independent [13,14].

4



Let us fix a reference measure σ on X. We assume that σ is a non-atomic Radon
measure and σ(X) =∞.

Assume that a completely random measure η has in addition the property that, for
any two sets Λ1,Λ2 ∈ B0(X) such that σ(Λ1) = σ(Λ2), the random variables η(Λ1)
and η(Λ2) have the same distribution. Then, in e.g. [15, 24], such a random measure
was called a measure-valued Lévy process on X. If X = R, σ is the Lebesgue measure,
and Lt := η([0, t]), then (Lt)t≥0 is just a classical Lévy process of bounded variation.
The following proposition describes the measure-valued Lévy process on X in terms of
their Fourier transform.

Proposition 1 ( [13, 14]). (i) Let η be a random measure on X, and let µ denote the
distribution of η. Then η is a measure-valued Lévy process on X if and only if there
exists a measure ν on R∗ := R \ {0} which satisfies∫

R∗
min{1, |s|} dν(s) <∞, (1)

and the Fourier transform of µ is given by∫
M(X)

ei〈f,η〉 dµ(η) = exp

[∫
X×R∗

(eisf(x) − 1) dσ(x) dν(s)

]
, f ∈ B0(X). (2)

Here B0(X) is the set of all bounded measurable functions on X with compact support,
and 〈f, η〉 :=

∫
X
f dη.

(ii) Let µ denote the distribution of a measure-valued Lévy process on X. Let K(X)
denote the set of all signed discrete Radon measures on X, i.e.,

K(X) :=

{
η =

∑
i

siδxi ∈M(X)
∣∣∣ si 6= 0, xi ∈ X

}
.

Then µ(K(X)) = 1.

If the measure µ has Fourier transform (2), then ν is called the Lévy measure of µ.

Remark 2. Assume in addition that X is a smooth Riemannian manifold. Let ν be a
measure on R∗ which does not satisfy (1) but satisfies the following weaker assumption:∫

R∗
min{1, s2} dν(s) <∞. (3)

Then, instead of a measure-valued Lévy process η, one may consider the associated
centered generalized stochastic process with independent values, µ̃, see [10]. In e.g. [7],
µ̃ is also called the centered Lévy white noise measure. Let us explain this in more
detail. Let

D(X) ⊂ L2(X, σ) ⊂ D ′(X)
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be the standard triple of spaces in which D(X) is the nuclear space of smooth, com-
pactly supported functions on X and D ′(X) is the dual space of D(X) with respect
to zero space L2(X, σ), see e.g. [4, Chap. 11, Sect. 1]. Evidently, M(X) ⊂ D ′(X).
For simplicity of notations, let us also assume that the following stronger assumption
holds: ∫

R∗
s2 dν(s) <∞, (4)

Then there exists a (centered) probability measure µ̃ on D ′(X) which has Fourier
transform∫

D ′(X)

ei〈f,ω〉 dµ̃(ω) = exp

[∫
X×R∗

(
eisf(x) − 1− isf(x)

)
dσ(x) dν(s)

]
, f ∈ D(X).

Here for ω ∈ D ′(X) and f ∈ D(X), we denote by 〈f, ω〉 the dual pairing between ω
and f .

By choosing in Proposition 1 the measure ν to be δ1, we get the Poisson point
process on X with intensity measure σ, whose distribution we denote by π. We have
π(Γ(X))=1 and π has Fourier transform∫

Γ(X)

ei〈f,γ〉 dπ(γ) = exp

[∫
X

(eif(x) − 1) dσ(x)

]
, f ∈ B0(X). (5)

Remark 3. Let us equip R∗ = R \ {0} with a metric such that a set Λ ⊂ R∗ is compact
in R∗ if and only if Λ is compact in R. In particular, for any compact set Λ in R∗
the distance (in R) from Λ to zero is strictly positive. We construct the following
measurable injective (but not surjective) mapping

K(X) 3 η =
∑
i

siδxi 7→ R(η) := {(xi, si)} ∈ Γ(X × R∗),

see [11, Theorem 6.2]. As easily seen, the pushforward of the measure µ from Proposi-
tion 1 under R is the Poisson point process on X × R∗ with intensity measure σ ⊗ ν.

Now we will formulate two results of the classical probability theory whose analogs
we want to derive in the free setting.

Proposition 4. Let Λ ∈ B0(X) with σ(Λ) > 0. Let (xi)
∞
i=1 be a sequence of in-

dependent random points in Λ with distribution σΛ := 1
σ(Λ)

σ. Let N be a random

variable which has Poisson distribution with parameter σ(Λ), and let N be independent
of (xi)

∞
i=1. We define πΛ as the distribution of the point process

∑N
i=1 δxi. Then πΛ is

the restriction to the set Λ of the Poisson point process π, i.e., the pushforward of π
under the measurable mapping

Γ(X) 3 γ 7→ γ ∩ Λ ∈ Γ(Λ),

which coincides with the Poisson point process on Λ with intensity σ.
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Remark 5. Quite often, Proposition 4 is used as the definition of the Poisson point
process π, i.e., one defines π as the unique probability measure on Γ(X) such that, for
each Λ ∈ B0(X), the restriction of π to Λ is equal to the measure πΛ from Proposition 4.

Proposition 6 (N/V -limit). Let Λ(n) ∈ B0(X), n ∈ N, be such that Λ(1) ⊂ Λ(2) ⊂
Λ(3) ⊂ · · · and

⋃∞
n=1 Λ(n) = X, i.e., Λ(n) ↗ X. Denote V (n) := σ(Λ(n)), V (n) →∞ as

n→∞. Let N (n) ∈ N, n ∈ N, be such that

lim
n→∞

N (n)

V (n)
= 1. (6)

(Note that the numbers N (n) are not random.) For each n ∈ N, we define ρ(n) as the
distribution of the point process

N(n)∑
i=1

δ
x

(n)
i
, (7)

where x
(n)
i are independent random points in Λ(n) with distribution σ(n) := 1

V (n) σ. Then

ρ(n) → π weakly as n→∞.

For a proof of Proposition 6, see e.g. [19].

Remark 7. In view of Remark 3, the result of Proposition 6 can be extended to a
measure µ from Proposition 1. More precisely, let Λ(n) ∈ B0(X), Λ(n) ↗ X, let
∆(n) ∈ B0(R∗), ∆(n) ↗ R∗, let V (n) := σ(Λ(n))ν(∆(n)), and let N (n) ∈ N satisfy (6).
For each n ∈ N, we define ρ(n) as the distribution of the random measure

N(n)∑
i=1

s
(n)
i δ

x
(n)
i
, (8)

where (x
(n)
i , s

(n)
i ) are independent random points in Λ(n)×∆(n) with distribution 1

V (n)σ⊗
ν. Then ρ(n) → µ weakly as n→∞.

Furthermore, it can be shown that, if X is a smooth Riemannian manifold and
condition (3) is satisfied, then ρ̃(n) → µ̃ weakly as n → ∞. Here ρ̃(n) is the centered
random measure ρ(n), i.e., the distribution of the random measure

N(n)∑
i=1

s
(n)
i δ

x
(n)
i
−
(
N (n)

∫
∆(n)

s dν(n)(s)

)
σ(n).

Let us also mention a characterization of a measure-valued Lévy process through
cumulants. Assume that the measure ν on R∗ satisfies∫

R∗
|s|n dν(s) <∞ for all n ∈ N. (9)
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Then the measure µ from Proposition 1 has all moments finite, i.e., for any f ∈ B0(X)
and n ∈ N, ∫

K(X)

|〈f, η〉|n dµ(η) <∞.

According to the classical definition of cumulants, for any f1, . . . , fn ∈ B0(X), the
cumulant C(n)(〈f1, ·〉, . . . , 〈fn, ·〉) is defined recurrently by the following formula, which
connects the cumulants with the moments:∫

K(X)

〈f1, η〉〈f2, η〉 · · · 〈fn, η〉 dµ(η) =
∑

θ∈P(n)

∏
B∈θ

C(B; 〈f1, ·〉, . . . , 〈fn, ·〉).

Here P(n) denotes the collection of all set partitions of {1, 2, . . . , n} and for each
B = {i1, . . . , ik} ⊂ {1, 2, . . . , n},

C
(
B; 〈f1, ·〉, . . . , 〈fn, ·〉

)
:= C(k)

(
〈fi1 , ·〉, . . . , 〈fik , ·〉

)
.

A direct calculation shows that the cumulants of µ are given by

C(n)
(
〈f1, ·〉, . . . , 〈fn, ·〉

)
=

∫
R∗
sn dν(s)

∫
X

f1(x)f2(x) · · · fn(x) dσ(x), n ∈ N. (10)

In particular, the cumulants of the Poisson point process π are given by

C(n)
(
〈f1, ·〉, . . . , 〈fn, ·〉

)
=

∫
X

f1(x)f2(x) · · · fn(x) dσ(x), n ∈ N. (11)

Remark 8. If the measure ν satisfies (9) for n ≥ 2, then the first cumulant of the
measure µ̃ given in Remark 2 is equal to zero, while the cumulants C(n) for n ≥ 2 are
still given by formula (10).

3 Free independence and free Lévy white noise

Let us recall the definition of free independence and free Lévy white noise.
Let A be a von Neumann algebra of bounded linear operators acting in a separable

Hilbert space, and let τ be a faithful normal trace which satisfies the condition τ(1) =
1. The pair (A , τ) is called a W ∗-probability space. An element a ∈ A is called a
noncommutative random variable.

Let A1, . . . ,An be subalgebras of A . The algebras A1, . . . ,An are called freely
independent if, for any numbers i1, i2, . . . , im ∈ {1, . . . , n} (m ≥ 2) such that il 6= il+1

for l = 1, . . . ,m− 1, and for all al ∈ Ail with τ(al) = 0, l = 1, . . . ,m, we have

τ(a1a2 · · · am) = 0.
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Selfadjoint elements a1, . . . , an ∈ A are called freely independent if the algebras
A1, . . . ,An that they respectively generate are freely independent.

The above definition of free independence is not very convenient for applications.
Speicher [21] (see also [22]) gave an equivalent definition based on the idea of free
cumulants.

A set partition θ = {B1, . . . , Bk} of {1, . . . , n} is called non-crossing if there do not
exist Bi, Bj ∈ θ, i 6= j, for which the following inequalities hold: x1 < y1 < x2 < y2

for some x1, x2 ∈ Bi and y1, y2 ∈ Bj. We denote by N P(n) the collection of all
non-crossing set partitions of {1, . . . , n}.

For a1, . . . , an ∈ A , the free cumulant R(n)(a1, . . . , an) is defined recurrently by the
following formula:

τ(a1a2 · · · an) =
∑

θ∈N P(n)

∏
B∈θ

R(B; a1, . . . , an), (12)

where for each B = {i1, . . . , ik} ⊂ {1, 2, . . . , n} with i1 < i2 < · · · < ik,

R(B; a1, . . . , an) := R(k)(ai1 , . . . , aik). (13)

Theorem 9 ( [21]). The selfadjoint elements a1, . . . , an ∈ A are freely independent if
and only if, for each k ≥ 2 and any indices i1, . . . , ik ∈ {1, . . . , n} such that there exist
il 6= im, we have

R(k)(ai1 , . . . , aik) = 0.

Analogously to [6], we will now define a free Lévy white noise. Let us first recall
several definitions related to the Fock space. Let H be a real separable Hilbert space.
We denote by F (H) the (full) Fock space over H:

F (H) :=
∞⊕
n=0

H⊗n.

where H⊗0 := R. The vector Ω = (1, 0, 0, . . . ) is called the vacuum.
For h ∈ H, we define a creation operator a+(h) as a bounded linear operator in

F (H) satisfying
a+(h)f (n) = h⊗ f (n), f (n) ∈ H⊗n.

The adjoint of a+(h) is an annihilation operator, which satisfies

a−(h)f1 ⊗ · · · ⊗ fn = (h, f1)H f2 ⊗ · · · ⊗ fn, f1, . . . , fn ∈ H.

For a bounded linear operator L in H, we define a bounded linear operator a0(L) in
F (H) by

a0(L)Ω := 0, a0(L)f1 ⊗ · · · ⊗ fn = (Lf1)⊗ f2 ⊗ · · · ⊗ fn, f1, . . . , fn ∈ H.

9



Let ν be a measure on R∗ which satisfies

ν
(
{s ∈ R∗ | |s| > R}

)
= 0 for some R > 0 (14)

and ∫
R∗
|s| dν(s) <∞. (15)

Remark 10. In fact, instead of requiring (14) and (15), we could have supposed that
ν satisfies (9). However, the operators appearing bellow would be, generally speaking,
unbounded and we would have to specify their domain. Still the results of the paper
which hold under the assumptions (14) and (15) would remain true under the weaker
assumption (9).

Let f ∈ B0(X). We define f ⊗ id : X ×R∗ → R, f ⊗ id(x, s) := f(x)s. By (14) and
(15),

f ⊗ id ∈ L2(X × R∗, σ ⊗ ν) ∩ L1(X × R∗, σ ⊗ ν) ∩ L∞(X × R∗, σ ⊗ ν).

So, we define a selfadjoint bounded linear operator

A(f) := a+(f ⊗ id) + a0(f ⊗ id) + a−(f ⊗ id) +

∫
X

f dσ

∫
R∗
s dν(s) (16)

in F (L2(X × R∗, σ ⊗ ν)). When defining the operator a0(f ⊗ id) we identified the
function f ⊗ id with the operator of multiplication by this function acting in L2(X ×
R∗, σ ⊗ ν).

Let A denote the real algebra generated by the operators (A(f))f∈B0(X). We define
a trace τ on A by

τ(a) = (aΩ,Ω)F (L2(X×R∗,σ⊗ν)), a ∈ A . (17)

A straightforward calculation shows that, for any f1, . . . , fn ∈ B0(X), the nth free
cumulant is given by

R(n)
(
A(f1), . . . , A(fn)

)
=

∫
R∗
sn dν(s)

∫
X

f1(x)f2(x) · · · fn(x) dσ(x), n ∈ N, (18)

compare with (10). Hence, by Theorem 9, for any f1, . . . , fn ∈ B0(X) such that
fifj = 0 σ-a.e. if i 6= j, the noncommutative random variables A(f1), . . . , A(fn) are
freely independent. In particular, for any mutually disjoint sets Λ1, . . . ,Λn ∈ B0(X),
the noncommutative random variables A(Λ1), . . . , A(Λn) are freely independent. Here,
for Λ ∈ B0(X), we denote A(Λ) := A(χΛ), where χΛ is the indicator function of Λ.

Furthermore, for any Λ1,Λ2 ∈ B0(X) with σ(Λ1) = σ(Λ2), we have

τ(A(Λ1)n) = τ(A(Λ2)n) for all n ∈ N.

10



Hence the selfadjoint operators A(Λ1) and A(Λ2) have the same spectral measure at
the vacuum state Ω. Thus, we can think of the family of operators (A(f))f∈B0(X) as a
free Lévy white noise with Lévy measure ν.

In the case where ν = δ1, the operators A(f) act in the Fock space F (L2(X, σ))
and have the form

A(f) := a+(f) + a0(f) + a−(f) +

∫
X

f dσ. (19)

Their free cumulants are given by

R(n)
(
A(f1), . . . , A(fn)

)
=

∫
X

f1(x)f2(x) · · · fn(x) dσ(x), n ∈ N, (20)

compare with (11). The operators (A(f))f∈B0(X) are called a free Poisson process on
X with intensity measure σ.

In the case where condition (14) is satisfied, but instead of (15) the weaker condition
(4) holds, we still have

f ⊗ id ∈ L2(X × R∗, σ ⊗ ν) ∩ L∞(X × R∗, σ ⊗ ν).

So, we define selfadjoint operators

Ã(f) := a+(f ⊗ id) + a0(f ⊗ id) + a−(f ⊗ id) (21)

in F (L2(X × R∗, σ ⊗ ν)). We similarly define (Ã , τ) and we get R(1)(Ã(f)) = 0 and

R(n)
(
Ã(f1), . . . , Ã(fn)

)
=

∫
R∗
sn dν(s)

∫
X

f1(x)f2(x) · · · fn(x) dσ(x), n ≥ 2.

Hence (Ã(f))f∈B0(X) is a centered free Lévy white noise with Lévy measure ν, compare
with Remarks 2 and 8.

Remark 11. Let X = R and let dσ(x) = dx be the Lebesgue measure on R. Let ν be
a measure on R∗ which satisfies (4), (14). For each t ≥ 0, we define L(t) := Ã(χ[0,t]).
Then (L(t))t≥0 is a centered free Lévy process without free Gaussian part, see [1].

4 Freely independent particles

In this section we will construct systems of freely independent particles in a finite
volume.

11



4.1 N freely independent particles

Assume Λ ∈ B0(X). Let PΛ be a probability measure on Λ and let N ∈ N, N ≥ 2.
Assume that x1, . . . , xN are independent random points in Λ which have distribution
PΛ. We consider a point process γ =

∑N
i=1 δxi . We wish to introduce a counterpart of

such a point process in which the particles x1, . . . , xN are freely independent. This is
done by generalizing the approach of Ben Arous and Kargin [2] in the case X = R.

If we fix a function f ∈ B0(X) and integrate f with respect to γ, we get the random
variable

N∑
i=1

f(xi), (22)

which is a sum of N independent identically distributed random variables f(xi). Since
each xi has distribution PΛ, we may think of each random variable f(xi) as the operator
of multiplication by the function f acting in the Hilbert space L2(Λ, PΛ). We denote
this operator by M(Λ; f). Thus, we may think of the classical random variable (22) as
the bounded linear operator

N∑
i=1

Mi(Λ; f)

acting in the tensor product L2(Λ, PΛ)⊗N , where the ith operator Mi(Λ; f) is the
M(Λ; f) operator acting in the ith space of the tensor product L2(Λ, PΛ)⊗N .

To construct the free version, let us consider the algebra generated by the (commu-
tative) operators (M(Λ; f))f∈B0(X) in L2(Λ, PΛ). We define a trace τΛ on this algebra
by setting, for any f1, . . . , fk ∈ B0(X),

τΛ

(
M(Λ; f1) · · ·M(Λ; fk)

)
:= (M(Λ; f1) · · ·M(Λ; fk)1, 1)L2(Λ,PΛ) =

∫
Λ

f1 · · · fk dPΛ.

(23)
The next step is to construct the free product of N copies of this (commutative)

W ∗-probability space, see e.g. [17,18]. For the reader’s convenience, let us briefly recall
this construction.

We define a Hilbert space

H :=
{
f ∈ L2(Λ, P ) | 〈f〉 = 0

}
,

where 〈f〉 :=
∫

Λ
f dPΛ and the Hilbert space H is equipped with the scalar product of

L2(Λ, PΛ). Let H1, . . . , HN denote N copies of the space H. We define a Hilbert space

H (Λ, N) := R⊕
⊕
k∈N

l1,...,lk∈{1,...,N}
lj 6=lj+1, j=1,...,k−1

Hl1 ⊗Hl2 ⊗ · · · ⊗Hlk .

12



We set ΨN := (1, 0, 0, . . . ) ∈ H (Λ, N). For any i ∈ {1, . . . , N} and f ∈ B0(X), we
define a bounded linear operator Mi(Λ; f) in H (Λ, N) by setting

Mi(Λ; f)ΨN := 〈f〉ΨN + [f ]i,

where [f ]i := f − 〈f〉 ∈ Hi, and for any k ∈ N and any gj ∈ Hlj , j = 1, . . . , k with
lj 6= lj+1, we set: if i 6= l1,

Mi(Λ; f)g1 ⊗ g2 ⊗ · · · ⊗ gk := 〈f〉 g1 ⊗ g2 ⊗ · · · ⊗ gk + [f ]i ⊗ g1 ⊗ g2 ⊗ · · · ⊗ gk

and if i = l1,

Mi(Λ; f)g1 ⊗ g2 ⊗ · · · ⊗ gk := 〈fg1〉 g2 ⊗ · · · ⊗ gk + [fg1]i ⊗ g2 ⊗ · · · ⊗ gk.

We denote by M (Λ, N) the algebra generated by all the operators Mi(Λ; f) in
H (Λ, N), and by Mi(Λ, N) the subalgebra of M (Λ, N) that is generated by the op-
erators Mi(Λ; f) with a fixed i ∈ {1, 2, . . . , N}. We define a trace τΛ,N on M (Λ, N)
by

τΛ,N(a) := (aΨN ,ΨN)H (Λ,N), a ∈M (Λ, N). (24)

Then the subalgebras Mi(Λ, N) with i = 1, . . . , N are freely independent in the W ∗-
probability space (M (Λ, N), τΛ,N). Furthermore, for each fixed i, we have

τΛ,N

(
Mi(Λ; f1) · · ·Mi(Λ; fk)

)
= τΛ

(
M(Λ; f1) · · ·M(Λ; fk)

)
. (25)

For each f ∈ B0(X), we now set

A(Λ, N ; f) :=
N∑
i=1

Mi(Λ; f). (26)

The operators
(
A(Λ, N ; f)

)
f∈B0(X)

may be thought of as a system of N freely indepen-

dent particles in Λ such that each particle has distribution PΛ. We denote by A (Λ, N)
the subalgebra of M (Λ, N) that is generated by the operators

(
A(Λ, N ; f)

)
f∈B0(X)

.

Thus, we have constructed the W ∗-probability space (A (Λ, N), τΛ,N).

4.2 Poisson-distributed random number of freely independent
particles

Next, let us consider the case where the number of particles, N , is random and has
Poisson distribution with parameter α > 0. To realize this situation, we proceed as
follows. For a Hilbert space H and a constant c > 0, we denote by H c the Hilbert
space which coincides with H as a set but the scalar product in H c is equal to the
scalar product in H times c.
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We also denote H (Λ, 0) := R, Ψ0 := 1 ∈ H (Λ, 0), and A(Λ, 0; f) := 0 for all
f ∈ B0(X). This corresponds to the case when there are no particles in Λ. In particular,
Ψ0 may be thought of as the indicator function of an empty set.

We define a Hilbert space

H (Λ) :=
∞⊕
N=0

H (Λ, N)
αN

N !
e−α.

We denote by Hfin(Λ) the dense subset of H (Λ) which consists of all finite sequences
(F0, F1, . . . , Fk, 0, 0, . . . ) with Fi ∈H (Λ, i), i = 1, . . . , k, k ∈ N.

For each f ∈ B0(X), we define a (Hermitian) linear operator A(Λ; f) in H (Λ) with
domain Hfin(Λ) by

A(Λ; f) =
∞∑
N=0

A(Λ, N ; f),

where each operator A(Λ, N ; f) acts in H (Λ, N). Evidently, each operator A(Λ; f)
maps Hfin(Λ) into itself.

We denote by A (Λ) the algebra generated by the operators (A(Λ; f))f∈B0(X). A
trace τΛ on A (Λ) is given by

τΛ(a) :=
∞∑
N=0

(aΨN ,ΨN)H (Λ,N)
αN

N !
e−α, a ∈ A (Λ). (27)

As easily seen, the series in formula (27) indeed converges for each a ∈ A (Λ).

Remark 12. As the operators A(Λ; f) are unbounded, strictly speaking (A (Λ), τΛ) is
not a W ∗-probability space. We will call it a noncommutative probability space.

4.3 Discrete measures with freely independent atoms
and weights

Let ∆ ∈ B0(R∗) and let PΛ×∆ be a probability measure on Λ×∆. Let N ∈ N, N ≥ 2.
Assume that (x1, s1), . . . , (xN , sN) are independent random points in Λ×∆ which have
distribution PΛ×∆. We consider a random discrete measure which has atoms at the
points xi and weights si: η =

∑N
i=1 siδxi . Analogously to subsec. 4.1, we may now

easily introduce a free analog of this random measure. Indeed, integrating a function
f ∈ B0(X) with respect to η, we get a random variable

N∑
i=1

sif(xi), (28)

which is a sum of N independent identically distributed random variables sif(xi).
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So, starting with the Hilbert space L2(Λ×∆, PΛ×∆) instead of L2(Λ, PΛ), we define a
Hilbert space H (Λ×∆, N) analogously to H (Λ, N). Using the function f⊗ id instead
of f , we define bounded linear operators Mi(Λ×∆; f) in H (Λ×∆, N). Analogously
to subsec. 4.1, we define an algebra M (Λ×∆, N), a trace τΛ×∆ on it, and subalgebras
Mi(Λ×∆, N), which are freely independent. Finally, we define operatorsA(Λ×∆, N ; f)
and the corresponding subalgebra A (Λ × ∆, N). (We have used obvious notations.)
The W ∗-probability space

(
A (Λ × ∆, N), τΛ×∆,N

)
is the required free analog of the

random measure (28).
Let us also note that, analogously to subsec. 4.2, we may also construct a noncom-

mutative probability space corresponding to the case where the number of particles,
N , in A (Λ×∆, N) is random and has Poisson distribution with parameter α. We de-
note the corresponding operators by A(Λ×∆; f), and the noncommutative probability
space by (A (Λ×∆), τΛ×∆).

5 Approximations

In this section, we will formulate the main results of the paper, the proofs will be given
in Section 6 below.

Our first result is the free counterpart of Proposition 6.

Theorem 13 (N/V limit for the free Poisson process). Let Λ(n) ∈ B0(X), n ∈ N, and
Λ(n) ↗ X. Denote V (n) := σ(Λ(n)), V (n) → ∞ as n → ∞. Let N (n) ∈ N, n ∈ N, be
such that (6) holds. For each n ∈ N, consider the W ∗-probability space(

A (Λ(n), N (n)), τΛ(n),N(n)

)
, (29)

constructed in subsec. 4.1, which describes N (n) freely independent particles in Λ(n) with
distribution σ(n) = 1

V (n)σ. Then, as n → ∞, the W ∗-probability space (29) converges
to the W ∗-probability space (A , τ) of the free Poisson process on X with intensity σ.
The convergence is in the sense of moments, i.e., for any f1, . . . , fk ∈ B0(X),

lim
n→∞

τΛ(n),N(n)

(
A(Λ(n), N (n); f1) · · ·A(Λ(n), N (n); fk)

)
= τ(A(f1) · · ·A(fk)). (30)

Here, for each f ∈ B0(X), A(f) is the operator in F (L2(X, σ)) defined by (19), and
τ is given by formula (17) with ν = δ1.

Remark 14. In the case X = R, Theorem 2 in [2] implies that the W ∗-probability space
(29) converges weakly to the W ∗-probability space (A , τ), i.e., for each f ∈ B0(X) and
k ∈ N,

lim
n→∞

τΛ(n),N(n)

(
A(Λ(n), N (n); f)k

)
= τ(A(f)k). (31)

However, in the noncommutative setting, formula (31) does not imply the stronger
statement (30).
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The following statement is a free analog of Remark 7.

Corollary 15 (N/V limit for the free Lévy white noise). Assume that a measure ν
on R∗ satisfies (14) and (15). Let Λ(n) ∈ B0(X), Λ(n) ↗ X, let ∆(n) ∈ B0(R∗),
∆(n) ↗ R∗, let V (n) := σ(Λ(n))ν(∆(n)), and let N (n) ∈ N satisfy (6). For each n ∈ N,
consider the W ∗-probability space(

A (Λ(n) ×∆(n), N (n)), τΛ(n)×∆(n),N(n)

)
, (32)

constructed in subsec. 4.3, which describes the sum of N (n) freely independent random
measures siδxi, where each (si, xi) is a random point in Λ(n) × ∆(n) with distribution

1
V (n)σ ⊗ ν. Then, as n → ∞, the W ∗-probability space (32) converges to the W ∗-
probability space (A , τ) which describes the free Lévy white noise with Lévy measure
ν. The convergence is in the sense of moments, i.e., for any f1, . . . , fk ∈ B0(X),

lim
n→∞

τΛ(n)×∆(n),N(n)

(
A(Λ(n) ×∆(n), N (n); f1) · · ·A(Λ(n) ×∆(n), N (n); fk)

)
= τ(A(f1) · · ·A(fk)). (33)

Here, for each f ∈ B0(X), A(f) is the operator in F (L2(X × R∗, σ ⊗ ν)) defined by
(16), and τ is given by (17).

If instead of (15), the measure ν satisfies the weaker assumption (4), we still have
the following approximation of the centered free Lévy white noise with Lévy measure ν:
for any f1, . . . , fk ∈ B0(X),

lim
n→∞

τΛ(n)×∆(n),N(n)

(
Ã(Λ(n) ×∆(n), N (n); f1) · · · Ã(Λ(n) ×∆(n), N (n); fk)

)
= τ(Ã(f1) · · · Ã(fk)). (34)

Here
Ã(Λ×∆, N ; f) := A(Λ×∆, N ; f)− τΛ×∆,N(A(Λ×∆, N ; f))

and Ã(f) is defined by (21).

According to Proposition 4, in the classical case the measure πΛ is precisely the
restriction to Λ of the Poisson point process π. As will be seen from the proof of
Theorem 16 below, a direct analog of this fact is not true in the free case, i.e., the free
counterpart of πΛ is not the restriction to Λ of the free Poisson process.

Theorem 16 (approximation of the free Poisson process). Let Λ(n) ∈ B0(X), n ∈ N,
and Λ(n) ↗ X, σ(Λ(n)) → ∞ as n → ∞. For each n ∈ N, consider the noncom-
mutative probability space (A (Λ(n)), τΛ(n)), constructed in subsec. 4.2, which describes
N (n) freely independent particles in Λ(n) with distribution σ(n), where N (n) is a random
number which has Poisson distribution with parameter σ(Λ(n)). Then, as n → ∞,
the noncommutative probability space (A (Λ(n)), τΛ(n)) converges to the W ∗-probability
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space (A , τ) of the free Poisson process on X with intensity σ. The convergence is in
the sense of moments, i.e., for any f1, . . . , fk ∈ B0(X),

lim
n→∞

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); fk)

)
= τ(A(f1) · · ·A(fk)). (35)

Here, the operators A(fi) and the state τ are as in Theorem 13.

The corresponding result also holds for a free Lévy white noise.

Corollary 17 (approximation of the free Lévy white noise). Assume that a measure ν
on R∗ satisfies (14) and (15). Let Λ(n) ∈ B0(X), Λ(n) ↗ X, let ∆(n) ∈ B0(R∗), ∆(n) ↗
R∗, and let V (n) := σ(Λ(n))ν(∆(n)). For each n ∈ N, consider the noncommutative
probability space

(A (Λ(n) ×∆(n)), τΛ(n)×∆(n)), (36)

constructed in subsec. 4.3, which describes a sum of N (n) freely independent random
measures siδxi, where each (si, xi) is a random point in Λ(n) × ∆(n) with distribution

1
V (n)σ⊗ν, and N (n) is a random number which has Poisson distribution with parameter

V (n). Then, as n → ∞, the noncommutative probability space (36) converges (in the
sense of moments) to the W ∗-probability space (A , τ) which describes the free Lévy
white noise with Lévy measure ν.

If instead of (15), the measure ν satisfies the weaker assumption (4), we still have
the following approximation of the centered free Lévy white noise with Lévy measure ν:
for any f1, . . . , fk ∈ B0(X),

lim
n→∞

τΛ(n)×∆(n)

(
Ã(Λ(n) ×∆(n); f1) · · · Ã(Λ(n) ×∆(n); fk)

)
= τ(Ã(f1) · · · Ã(fk)). (37)

Here Ã(f) is defined by (21), and

Ã(Λ(n) ×∆(n); f) =
∞∑
N=0

Ã(Λ(n) ×∆(n), N ; f),

where the operator

Ã(Λ(n) ×∆(n), N ; f) := A(Λ(n) ×∆(n), N ; f)− τΛ(n)×∆(n),N

(
A(Λ(n) ×∆(n), N ; f)

)
acts in H (Λ(n) ×∆(n), N).

Remark 18. The results of this section may be seen as the free analogs of equivalence
of ensembles for the ideal gas, cf. [9].
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6 Proofs

The results presented in the lemma below are well known and can be easily derived
from the definition of a free cumulant.

Lemma 19. Let A be an algebra and let τ be a trace on A . Let the free cumulants
on A be defined through (12). The following statements hold.

(i) For each n ∈ N, there exist cθ ∈ Z with θ ∈ N P(n) such that

R(n)(a1, . . . , an) =
∑

θ∈N P(n)

∏
B∈θ

cθ τ(B, a1, . . . , an), a1, . . . , an ∈ A . (38)

Here, for each B = {i1, . . . , ik} ⊂ {1, 2, . . . , n} with i1 < i2 < · · · < ik,

τ(B; a1, . . . , an) := τ(ai1 · · · aik).

Furthermore, for the partition θ which has only one element, {1, 2, . . . , n}, we have
cθ = 1.

(ii) For any a ∈ A , denote ã := a − τ(a). Then R(1)(ã) = 0, any for any
a1, . . . , an ∈ A with n ≥ 2,

R(n)(ã1, . . . , ãn) = R(n)(a1, . . . , an). (39)

Proof of Theorem 13. By (12) and (38), formula (30) is equivalent to the following
statement: for any f1, . . . , fk ∈ B0(X), k ∈ N,

lim
n→∞

R
(k)

Λ(n),N(n)

(
A(Λ(n), N (n); f1), . . . , A(Λ(n), N (n); fk)

)
= R(k)(A(f1), . . . , A(fk)) (40)

(we used obvious notations). By Theorem 9 and formulas (25), (26), we get

R
(k)

Λ(n),N(n)

(
A(Λ(n), N (n); f1), . . . , A(Λ(n), N (n); fk)

)
=

N(n)∑
i1=1

· · ·
N(n)∑
ik=1

R
(k)

Λ(n),N(n)

(
Mi1(Λ(n); f1), . . . ,Mik(Λ(n); fk)

)
=

N(n)∑
i=1

R
(k)

Λ(n),N(n)

(
Mi(Λ

(n); f1), . . . ,Mi(Λ
(n); fk)

)
= N (n)R

(k)

Λ(n)

(
M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
. (41)

Here, for f ∈ B0(X), M(Λ(n); f) is the operator of multiplication by the function f
in L2(Λ(n), σ(n)), the (commutative) algebra generated by these operators is equipped

with the trace τΛ(n) , see (23), and R
(k)

Λ(n) , k ∈ N are the corresponding free cumulants.
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By Lemma 19, (i) and the formula (23) with Λ = Λ(n) and PΛ = σ(n) = 1
V (n)σ,

there exist bounded sequences of real numbers, (c
(n)
2 )∞n=1, . . . , (c

(n)
k )∞n=1, which depend

on f1, . . . , fk but are independent of N (n), such that

R
(k)

Λ(n)

(
M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
=

1

V (n)

∫
Λ(n)

f1(x) · · · fk(x) dσ(x) +
k∑
j=2

c
(n)
j

(V (n))j
.

(42)
By (41) and (42), we get

lim
n→∞

R
(k)

Λ(n),N(n)

(
A(Λ(n), N (n); f1), . . . , A(Λ(n), N (n); fk)

)
=

∫
X

f1(x) · · · fk(x) dσ(x),

which, in view of (20), gives (40).

Proof of Corollary 15. The proof of formula (33) is similar to the proof of (30). Indeed,
analogously to (42), we get

R
(k)

Λ(n)×∆(n)

(
M(Λ(n) ×∆(n); f1), . . . ,M(Λ(n) ×∆(n); fk)

)
=

1

V (n)

∫
Λ(n)

f1(x) · · · fk(x) dσ(x)

∫
∆(n)

sk dν(s) +
k∑
j=2

c
(n)
j

(V (n))j
, (43)

which implies

lim
n→∞

R
(k)

Λ(n)×∆(n),N(n)

(
A(Λ(n) ×∆(n), N (n); f1), . . . , A(Λ(n) ×∆(n), N (n); fk)

)
=

∫
X

f1(x) · · · fk(x) dσ(x)

∫
R∗
sk dν(s). (44)

By (18), formula (33) holds.
Formula (34) is proven as follows. In view of Lemma 19, (ii), it suffices to show

that, under the assumptions (14) and (4), formula (44) holds for k ≥ 2. Note that

sup
n∈N

(
1

ν(∆(n))

∫
∆(n)

s dν(s)

)
<∞.

Using this, one can easily show that the constants c
(n)
j from (43) satisfy, for j ≥ 2,

sup
n∈N

|c(n)
j |

ν(∆(n))j
<∞.

Therefore,

|c(n)
j |

(V (n))j
=

|c(n)
j |

ν(∆(n))j σ(Λ(n))j
→ 0 as n→∞,

which implies (44) for k ≥ 2.
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Proof of Theorem 16. For n ∈ N, denote V (n) := σ(Λ(n)). Let f1, . . . , fk ∈ B0(X). We
have, by (12), (27) and (41),

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); fk)

)
=

∞∑
N=1

τΛ(n),N

(
A(Λ(n), N ; f1) · · ·A(Λ(n), N ; fk)

) (V (n))N

N !
e−V

(n)

= e−V
(n)

∞∑
N=1

(V (n))N

N !

∑
θ∈N P(k)

∏
B∈θ

RΛ(n),N

(
B;A(Λ(n), N ; f1), . . . , A(Λ(n), N ; fk)

)
= e−V

(n)
k∑
i=1

∞∑
N=1

(V (n))NN i−1

(N − 1)!

∑
θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
. (45)

Here |θ| denotes the number of sets in the partition θ and

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
:=
∏
B∈θ

RΛ(n)

(
B;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
.

Let us consider the term in the sum
∑k

i=1 in (45) which corresponds to i = 1. The
only partition θ ∈ N P(k) with |θ| = 1 is θ =

{
{1, . . . , k}

}
. Hence, by (12) and (23),

this term is equal to

e−V
(n)

∞∑
N=1

(V (n))N

(N − 1)!
R

(k)

Λ(n)

(
M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
= V (n)

(
τΛ(n)

(
M(Λ(n); f1) · · ·M(Λ(n); fk)

)
−

∑
θ∈N P(k)
|θ|≥2

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

))

=

∫
Λ(n)

f1(x) · · · fk(x) dσ(x)

− V (n)
∑

θ∈N P(k)
|θ|≥2

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
. (46)

By (45) and (46), we get

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); f1)

)
=

∫
Λ(n)

f1(x) · · · fk(x) dσ(x)

+ e−V
(n)

k∑
i=2

∞∑
N=2

(V (n))N(N i−1 − 1)

(N − 1)!

∑
θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
.

(47)
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We denote, for each partition θ ∈ N P(k) and n ∈ N,

I(n)(θ; f1, . . . , fk) :=
∏
B∈θ

I(n)(B; f1, . . . , fk), (48)

where for B = {i1, . . . , il} ∈ θ

I(n)(B; f1, . . . , fk) =

∫
Λ(n)

fi1(x) · · · fil(x) dσ(x). (49)

Consider any θ ∈ N P(k) with |θ| = 2. We have

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
=

1

(V (n))2
I(n)(θ; f1, . . . , fk)

−
∑

π∈N P(k)
|π|≥3, π≤θ

RΛ(n)

(
π;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
. (50)

Here π ≤ θ denotes that the partition π is finer than the partition θ, i.e., each element
of π is a subset of some element of θ.

Recall that, for i, j ∈ N, i ≥ j, the Stirling number of the second kind, S(i, j),
denotes the number of ways to partition a set of i elements into j nonempty subsets.
Let π ∈ N P(k) with |π| ≥ 3. For l ∈ {1, . . . , k} with l ≤ |π|, we denote by NS(π, l)
the number of non-crossing partitions θ ∈ N P(k) such that |θ| = l and π ≤ θ. Note
that the number of all partitions θ of {1, . . . , k} such that |θ| = l and π ≤ θ is equal
to S(|π|, l). Hence, NS(π, l) ≤ S(|π|, l).

By (47)–(50), we get

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); f1)

)
−
∑
i=1,2

∑
θ∈N P(k)
|θ|=i

I(n)(θ; f1, . . . , fk),

= e−V
(n)

k∑
i=3

∞∑
N=2

(V (n))N

(N − 1)!

∑
θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
×
(
N i−1 − 1− (N − 1) NS(θ, 2)

)
= e−V

(n)
k∑
i=3

∞∑
N=2

(V (n))N

(N − 1)!

(
N i−1 − 1− (N − 1) S(i, 2)

)
×

∑
θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)

+ (V (n))2

k∑
i=3

∑
θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
(S(i, 2)− NS(θ, 2)).

(51)
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Note that
0 ≤ S(i, 2)− NS(θ, 2) ≤ S(k, 2). (52)

Furthermore, as easily seen from Lemma 19, (i), there exists a constant C2 > 0 such
that, for each i ∈ {3, . . . , k} and n ∈ N,∑

θ∈N P(k)
|θ|=i

∣∣RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)∣∣ ≤ C2

(V (n))3
. (53)

Therefore, by (51)–(53),

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); f1)

)
=

∑
θ∈N P(k)
|θ|≤2

I(n)(θ; f1, . . . , fk)

+ e−V
(n)

k∑
i=3

∞∑
N=2

(V (n))N

(N − 1)!

(
N i−1 − 1− (N − 1) S(i, 2)

)
×

∑
θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
+ r

(n)
2 , (54)

where limn→∞ r
(n)
2 = 0.

This procedure can be iterated, which is shown in the following lemma. Below we
will use the standard notation (N)j := N(N − 1)(N − 2) · · · (N − j + 1), the falling
factorial.

Lemma 20. For each m ∈ {2, . . . , k}, we have

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); fk)

)
=

∑
θ∈N P(k)
|θ|≤m

I(n)(θ; f1, . . . , fk)

+ e−V
(n)

k∑
i=m+1

∞∑
N=2

(V (n))N K(N, i,m)

(N − 1)!

×
∑

θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
+ r(n)

m , (55)

where limn→∞ r
(n)
m = 0 and

K(N, i,m) := N i−1−1−(N−1)1 S(i, 2)−(N−1)2 S(i, 3)−· · ·−(N−1)m−1 S(i,m). (56)

In particular, for m = k,

τΛ(n)

(
A(Λ(n); fk) · · ·A(Λ(n); f1)

)
=

∑
θ∈N P(k)

I(n)(θ; f1, . . . , fk) + r
(n)
k . (57)
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Here I(θ; f1, . . . , fk) is defined analogously to (48), (49) with Λ(n) being replaced with
X.

Proof. We prove formula (55) by induction on m. We have already shown that (55)
holds for m = 2, see (54). So assume that (55) holds for m ∈ {2, . . . , k − 1}, and we
have to prove (55) for m+ 1. The key observation here is that

K(N,m+ 1,m) = (N − 1)m, (58)

which is equivalent to the following classical identity for the Stirling numbers of the
second kind:

Nm =
m∑
j=1

S(m, j)(N)j,

see e.g. [25, Theorem 13.5]. The rest of the proof is similar to the way we derived
formula (54) from (47).

Indeed, for each θ ∈ N P(k) with |θ| = m+ 1, we have

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
=

1

(V (n))m+1
I(n)(θ; f1, . . . , fk)

−
∑

π∈N P(k)
|π|≥m+2, π≤θ

RΛ(n)

(
π;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
. (59)

Then, by (55)–(59),

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); f1)

)
=

∑
θ∈N P(k)
|θ|≤m+1

I(n)(θ; f1, . . . , fk)

+ e−V
(n)

k∑
i=m+2

∞∑
N=2

(V (n))N
(
K(N, i,m)− (N − 1)m S(i,m+ 1)

)
(N − 1)!

×
∑

θ∈N P(k)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
+ r

(n)
m+1 (60)

where

r
(n)
m+1 := e−V

(n)
k∑

i=m+2

∞∑
N=2

∑
θ∈N P(k)
|θ|=i

(V (n))N(N − 1)m
(N − 1)!

(
S(i,m+ 1)− NS(θ,m+ 1)

)
×RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
+ r(n)

m . (61)
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Note that, in (61),

0 ≤ S(i,m+ 1)− NS(θ,m+ 1) ≤ S(k,m+ 1).

Hence, analogously to (53), there exists a constant Cm+1 > 0 such that, for each
i ∈ {m+ 2, . . . , k} and n ∈ N,∑

θ∈N P(k)
|θ|=i

∣∣RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)∣∣ ≤ Cm+1

(V (n))m+2
. (62)

By (61) and (62), limn→∞ r
(n)
m+1 = 0. The definition (56) gives rise to

K(N, i,m)− (N − 1)mS(i,m+ 1) = K(N, i,m+ 1).

Hence, by (60), the induction step is proven.

By (57),

lim
n→∞

τΛ(n)

(
A(Λ(n); f1) · · ·A(Λ(n); f1)

)
=

∑
θ∈N P(k)

I(θ; f1, . . . , fk).

But by (12), (13), and (20),

τ
(
A(f1) · · ·A(fk)

)
=

∑
θ∈N P(k)

I(θ; f1, . . . , fk),

which implies (35).

Proof of Corollary 17. The first statement trivially follows from the proof of Theo-
rem 16. To prove formula (37), we proceed as follows. Using Lemma 19, we get,
analogously to (45),

τΛ(n)

(
Ã(Λ(n) ×∆(n); f1) · · ·A(Λ(n) ×∆(n); fk)

)
= e−V

(n)
k∑
i=1

∞∑
N=1

(V (n))NN i−1

(N − 1)!

∑
θ∈N P(k;2)
|θ|=i

RΛ(n)

(
θ;M(Λ(n); f1), . . . ,M(Λ(n); fk)

)
.

(63)

Here N P(k; 2) denotes the collection of all non-crossing partitions θ of {1, . . . , k}
such that each set B ∈ θ has at least two elements. Completely analogously to the
proof of Theorem 16, we show that the right hand side of (63) converges to∑

θ∈N P(k;2)

R(θ;A(f1), . . . , A(fk)) = τ(Ã(f1) · · · Ã(fk)).
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