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Abstract 

 

Background: Cardiovascular diseases such as heart failure and myocardial infarction are 

associated with increased oxidative stress, the release of pro-inflammatory cytokines such as 

tumour necrosis factor-alpha (TNFα) and interleukin 1β (IL1β) and increased death of the 

contractile cardiomyocytes. Oxidative stress (exemplified by H2O2) is a pivotal modulator of the 

balance between the life and death of cardiomyocytes. H2O2 promotes cardiomyocyte 

apoptosis, induces substantial changes in gene expression and activates the three principal 

mitogen-activated protein kinase (MAPK) pathways (ERK1/2, JNKs and p38-MAPKs), which 

regulate gene expression in other cell types. However, the roles of the MAPK pathways in 

regulation of cardiomyocyte gene expression in response to H2O2 are yet to be reported. A 

further pathway that may play important roles cardiac survival vs death is regulated by the 

protein kinase, RIPK1. In non-cardiac cell types, TNFα signals via RIPK1 to cytoprotection or 

cell death, depending on the cellular environment. Polyubiquitinylated RIPK1 promotes 

cytoprotection through activation of NFκB, JNKs and p38-MAPKs while phosphorylation and 

activation of RIPK1 kinase activity is associated with induction of necroptosis, a novel regulated 

cell death modality.  

Hypotheses: The first hypothesis is that ERK1/2, JNKs and p38-MAPKs play substantial roles 

in regulation of cardiomyocyte RNA expression during cardiomyocyte apoptosis induced by 

H2O2. The second hypothesis is that RIPK1, which can signal to cytoprotection through NFκB 

and MAPKs, or to cell death by apoptosis or necroptosis, makes important contributions to 

mediating the balance between life and death of cardiomyocytes.  

Results: To dissect the roles of the MAPK pathways in the cardiomyocyte RNA expression 

response to H2O2, neonatal rat cardiomyocytes were untreated or exposed to H2O2 (0.2 mM, 

2 h) with or without pre-treatment (15 min) with PD184352 (2 µM, inhibits ERK1/2 signalling), 

JNK-IN-8 (1 µM, inhibits JNKs) or SB203580 (0.7 µM, inhibits p38-MAPKα/β) or to the 

inhibitors alone (2 h 15 min). RNA expression profiles were determined using Affymetrix 

microarrays and GeneSpring software. PD184352 alone downregulated 92 and upregulated 

32 RNAs, indicating that ERK1/2 influence basal gene expression. JNK-IN-8 and SB203580 

affected expression of 14 and 6 RNAs, respectively. H2O2 upregulated 295, and downregulated 

195 RNAs, of which 43% and 44%, respectively, were unaffected by any inhibitor. MAPK 

inhibitors affected the upregulation of 37% (PD184352), 25% (JNK-IN-8) or 28% (SB203580) 

RNAs, and affected the downregulation of 33% (PD184352), 28% (JNK-IN-8) or 35% 

(SB203580) RNAs. Microarray data for selected genes were validated using qPCR. To 

examine the roles of cardiac RIPK1, neonatal rat cardiomyocytes were exposed to various 
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pathophysiological stimuli and extracts immunoblotted with antibodies to RIPK1. Pro-

inflammatory cytokines (TNFα or IL1β) induced the appearance of reduced mobility RIPK1 

bands within 5 – 15 min, consistent with phosphorylation but not ubiquitinylation. Further 

evidence of RIPK1 phosphorylation in response to IL1β was obtained using anion-exchange 

chromatography. Additionally, the p38-MAPKα/β inhibitor SB203580 attenuated the 

appearance of reduced mobility RIPK1 bands in response to IL1β, suggestive of a potential 

novel regulatory mechanism of RIPK1. Concentrations of H2O2 that promote apoptosis or 

necrosis (>0.2 mM) resulted in reduced mobility bands of RIPK1, maximal at 60 min. Reduced 

mobility bands of RIPK1 were also detected in adult male rat hearts perfused with H2O2 (0.2 

mM, 60 min) or subjected to ischaemia-reperfusion. To explore the regulation of RIPK1 by 

phosphorylation and ubiquitinylation in cardiomyocytes, adenoviruses expressing exogenous 

FLAG-tagged wild type and mutant RIPK1 were produced. However, the exogenously 

expressed RIPK1 constructs appeared to undergo cleavage when expressed in 

cardiomyocytes.  

Conclusions: The three main MAPK pathways play substantial yet differential roles in the 

regulation of RNA expression in response to H2O2, with the greatest contribution by ERK1/2 

and smaller roles for JNKs and p38-MAPKα/β. Furthermore, RIPK1 in neonatal 

cardiomyocytes or whole adult hearts exhibits reduced mobility in response to oxidative stress 

or pro-inflammatory cytokines, likely reflective of phosphorylation and potentially activation. 

Accordingly, RIPK1 may play important roles in modulating the balance of life vs death of 

cardiomyocytes. This response may, in part, be mediated by p38-MAPK signalling.  

 

 

 

 

 

 

 

 

 

 



4 
 

Acknowledgements  

 

The research detailed in this thesis would not have been possible without the advice, support, 

patience and guidance of my supervisor Professor Angela Clerk, to whom I am extremely 

grateful. I also thank my co-supervisor Professor Peter Sugden for useful and invariably 

humorous discussions.  

I am indebted to Dr. Steve Fuller for his support in the laboratory, and for his invaluable 

practical advice and assistance with the production of adenoviruses. Thanks also to all of my 

colleagues in the research group, past and present, particularly Dr. Michelle Hardyman and 

Dr. Kerry Rostron who have made the process of conducting this research a pleasure.  

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Declaration  

 

I confirm that this is my own work and the use of all material from other sources has been 

properly and fully acknowledged. 

The immunoblots in Chapter Three, Figs. 3.1 and 3.3 were performed by Dr. Kerry Rostron. 

Dr. Michelle Hardyman provided assistance with the qPCR expression analysis in Chapter 

Three.  

Unless otherwise indicated, all other experimental work and analyses were conducted by 

myself.  

 

Sam J Leonard 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Publications and abstracts  

 

Publications 

Fuller, S. J., Osborne, S. A., Leonard, S. J., Hardyman, M. A., Vaniotis, G., Allen, B. G., 

Sugden, P. H. & Clerk, A. (2015). Cardiac protein kinases: the cardiomyocyte kinome and 

differential kinase expression in human failing hearts. Cardiovasc Res, 108, 87-98. 

Abstracts 

Leonard, S. J., Sugden, P. H. & Clerk, A. Dissecting the roles of mitogen-activated protein 

kinases (MAPK) cascades in the mRNA expression response to H2O2 in cardiomyocytes. 

British Society for Cardiovascular Research Autumn Meeting, 2014, Reading: “Cardiovascular 

Signalling in Health and Disease”.  

 

Leonard, S.J., Young, B.J., Fuller, S. J., Sugden, P. H. & Clerk, A. Expression of receptor-

interacting protein kinases 1, 2 and 3 (RIPKs 1, 2 and 3) in the heart and their regulation by 

ischaemia/reperfusion vs oxidative stress. British Cardiovascular Society Annual Conference, 

2014, Manchester 

 

Leonard, S. J., Sugden, P. H. & Clerk, A. Mitogen-activated protein kinase (MAPK) pathways 

play a significant role in regulation of cardiomyocyte mRNA expression in response to H2O2. 

33rd Annual Meeting of the International Society for Heart Research European Section, 2015, 

Bordeaux 

 

 

 

 

 

 

 



7 
 

Contents 

Abstract 2 

Acknowledgements 4 

Declaration 5 

Publications and abstracts 6 

Abbreviations 19 

Chapter One - Introduction 22 

1.1 The heart and heart failure ........................................................................... 23 

1.2 Redox signalling and oxidative stress in the heart ........................................ 26 

1.2.1 The role of redox reactions in intracellular signalling 26 

1.2.2 Modulation of cardiomyocyte life and death by oxidative stress 31 

1.2.3 Regulation of cardiomyocyte gene expression by oxidative stress 37 

1.3 Mitogen-activated protein kinase (MAPK) signalling ..................................... 39 

1.3.1 Activation and roles of the MAPK cascades 39 

1.3.1.1 Extracellular signal-regulated kinases 1 and 2 (ERK1/2) 41 

1.3.1.2 c-Jun N-terminal kinases (JNKs) 43 

1.3.1.3 p38-mitogen activated protein kinases (p38-MAPKs) 45 

1.3.2 Regulation of cardiomyocyte gene expression by ERK1/2, JNKs and p38-

MAPKs 48 

1.4 Pro-inflammatory cytokines and their roles in the heart ................................ 51 

1.4.1 Interleukin 1β (IL1β) and its role in the heart 52 

1.4.2 Tumour necrosis factor-alpha (TNFα) and its role in the heart 55 

1.5 Receptor interacting protein kinases (RIPKs) and necroptosis ..................... 61 



8 
 

1.5.1 Regulated necrosis - necroptosis 61 

1.5.2 Regulation of RIPK1 signalling by post-translational modifications 66 

1.5.2.1 Regulation of RIPK1 signalling by ubiquitinylation 66 

1.5.2.2 Regulation of RIPK1 signalling by phosphorylation 67 

1.5.3 RIPKs and necroptosis in the heart 72 

1.6 Hypothesis and aims .................................................................................... 74 

Chapter Two – General Methods 75 

2.1 Materials and reagents ................................................................................. 76 

2.2 Agonists and inhibitors ................................................................................. 77 

2.3 Cell cultures ................................................................................................. 78 

2.3.1 Preparation of neonatal rat ventricular myocytes 78 

2.3.2 Human Embryonic Kidney 293 (HEK 293) cultures 79 

2.4 Heart perfusions ........................................................................................... 79 

2.5 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting . 80 

2.5.1 Preparation of total protein extracts 80 

2.5.2 Preparation of cytosolic and nuclear protein enriched (NPE) extracts 81 

2.5.3 Bio-Rad protein assay 81 

2.5.4 SDS-PAGE and immunoblotting 82 

2.6 Immunoprecipitations ................................................................................... 83 

2.7 Total RNA extraction .................................................................................... 84 

2.8 Quantitative real time polymerase chain reaction (qPCR) ............................ 85 

2.9 Agarose gel electrophoresis of DNA ............................................................. 88 



9 
 

2.10 General methods for the generation of adenoviruses expressing RIPK1 ...... 88 

2.10.1 Amplification of plasmids 88 

2.10.2 Colony screen PCR 88 

2.10.3 Spin column purification of DNA 91 

2.10.4 Plasmid isolation using the alkaline lysis minipreparation method 91 

2.10.5 Plasmid isolation using the alkaline lysis maxipreparation method 92 

2.10.6 Sequencing of plasmid DNA 94 

2.10.7 Generation of adenoviral plasmids 94 

2.10.7.1 Homologous recombination of shuttle vectors with the pAdeasy-1 

plasmid 94 

2.10.7.2 Colony screen PCR for homologous recombination and purification of 

adenoviral plasmids 95 

2.10.8 Production and propagation of adenoviral particles in HEK 293 cells 96 

2.11 Fast protein liquid chromatography .............................................................. 98 

2.12 Statistical analysis ........................................................................................ 98 

Chapter Three - Regulation of cardiomyocyte gene expression by mitogen-

activated protein kinases in response to H2O2 99 

3.1 Introduction ................................................................................................ 100 

3.2 Methods ..................................................................................................... 102 

3.2.1 Preparation of cytosolic and nuclear protein enriched (NPE) extracts  102 

3.2.2 Microarray sample preparation 103 

3.2.3 Microarray data analysis 103 

3.2.4 Validation of microarray data using qPCR 105 



10 
 

3.3 Results ....................................................................................................... 105 

3.3.1 Nuclear localisation of activated MAPKs in cardiomyocytes exposed to 

H2O2 105 

3.3.2 Selective pharmacological inhibition of ERK1/2, JNK and p38-MAPK 

signalling 112 

3.3.3 Regulation of basal cardiomyocyte RNA expression by MAPKs 118 

3.3.4 Regulation of cardiomyocyte RNA expression by MAPKs in response to 

H2O2 120 

3.3.4.1 Effects of MAPK inhibitors on cardiomyocyte RNA expression induced 

by H2O2 122 

3.3.5 Validation of microarray data using qPCR 128 

3.4 Discussion .................................................................................................. 136 

3.4.1 Confirmation of MAPK inhibitor specificity 136 

3.4.2 Contributions of ERK1/2, JNK and p38-MAPK signalling to cardiomyocyte 

gene expression in response to H2O2 137 

3.4.3 Nuclear localisation of activated MAPKs in response to H2O2 143 

3.4.4 Conclusions and further work 145 

Chapter Four – Effects of pathophysiological stimuli on receptor-interacting 

protein kinases (RIPKs) in the heart 147 

4.1 Introduction ................................................................................................ 148 

4.2 Methods ..................................................................................................... 150 

4.2.1 Neonatal rat ventricular cardiomyocytes and immunoblotting 150 

4.2.2 Anion-exchange fast protein liquid chromatography (FPLC) 150 

4.3 Results ....................................................................................................... 151 



11 
 

4.3.1 Effects of oxidative stress on RIPKs in neonatal rat cardiomyocytes and 

adult rat hearts 151 

4.3.2 Effects of pro-inflammatory cytokines (TNFα and IL1β) on RIPK1 in 

neonatal rat cardiomyocytes 156 

4.3.2.1 Effects of TNFα on RIPK1 in cardiomyocytes 156 

4.3.2.2 Effects of IL1β on RIPK1 in cardiomyocytes 158 

4.3.3 Effect of SB203580 on the RIPK1 response to IL1β in neonatal rat 

cardiomyocytes 162 

4.4 Discussion .................................................................................................. 164 

4.4.1 Differential signalling to RIPK1 by pro-inflammatory cytokines vs oxidative 

stress 164 

4.4.2 Phosphorylation vs ubiquitinylation of RIPK1 165 

4.4.3 Significance of observations for cardiomyocyte death 168 

Chapter Five - Generation of adenoviruses for expression of RIPK1 in cardiomyocytes

 172 

5.1 Introduction ................................................................................................ 173 

5.2 Methods ..................................................................................................... 174 

5.2.1 Identification of candidate RIPK1 activation loop phosphorylation and 

ubiquitinylation sites 174 

5.2.2 Generation of shuttle vectors expressing FLAG-tagged RIPK1 constructs

 174 

5.2.2.1 Generation of shuttle vectors expressing FLAG-tagged wild-type 

RIPK1 (FLAG-RIPK1-Shut) 174 



12 
 

5.2.2.2 Generation of shuttle vectors expressing FLAG-tagged S161A mutant 

RIPK1 (FLAG-S161A-Shut) 181 

5.2.2.3 Generation of shuttle vectors expressing FLAG-tagged S166A mutant 

RIPK1 (FLAG-S166A-Shut) 182 

5.2.2.4 Generation of shuttle vectors expressing FLAG-tagged T183A mutant 

RIPK1 (FLAG-T183A-Shut) 183 

5.2.2.5 Generation of shuttle vectors expressing FLAG-tagged K376R mutant 

RIPK1 (FLAG-K376R-Shut) 184 

5.2.3 Generation of adenoviruses expressing FLAG-tagged RIPK1 constructs

 188 

5.2.4 Transfection of HEK 293 cell cultures 189 

5.2.5 Infection of cardiomyocytes with adenoviruses 189 

5.2.6 Immunoprecipitations 190 

5.3 Results ....................................................................................................... 190 

5.3.1 Identification of candidate RIPK1 activation loop phosphorylation sites and 

ubiquitinylation sites 190 

5.3.2 Generation of shuttle vectors expressing FLAG-tagged wild-type and 

mutant RIPK1 193 

5.3.3 Expression of shuttle vectors expressing FLAG-tagged wild-type and 

mutant RIPK1 in HEK 293 cells 198 

5.3.4 Generation of adenoviruses expressing wild-type and mutant RIPK1 201 

5.3.5 Adenoviral expression of FLAG-tagged RIPK1 proteins in cardiomyocytes

 203 

5.4 Discussion .................................................................................................. 207 



13 
 

5.4.1 Expression of FLAG-tagged RIPK1 constructs 207 

5.4.2 Investigating the causes of reduced RIPK1 electrophoretic mobility 209 

5.4.3 Identification of the RIPK1 activation loop phosphorylation site (ALPS)

 211 

5.4.4 RIPK1 signalling to NFκB and MAPKs in cardiomyocytes 213 

Chapter Six – Summary, discussion and future work 214 

6.1 Overview and summary of results .............................................................. 215 

6.1.1 Regulation of cardiomyocyte RNA expression by MAPKs in response to 

oxidative stress 215 

6.1.2 Effects of pathophysiological stimuli on cardiac RIPKs 215 

6.2 Discussion .................................................................................................. 217 

6.2.1 Stress signalling in cardiomyocytes and the heart 217 

6.2.2 Study limitations 222 

6.2.2.1 Use of pharmacological inhibitors 222 

6.2.2.2 Use of neonatal rat cardiomyocytes 223 

6.3 Future work ................................................................................................ 225 

6.3.1 Regulation of cardiomyocyte gene expression by MAPKs in response to 

H2O2 225 

6.3.2 Regulation and roles of RIPK1 in the heart 226 

APPENDIX I: SDS-PAGE GEL RECIPES 228 

APPENDIX II: MICROARRAY DATA TABLES 253 

APPENDIX III: Mouse RIPK1 DNA sequence and mutations 323 

APPENDIX IV: Mouse RIPK1 protein sequence and mutations 324 



14 
 

References 228 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

List of figures and tables 

  

Chapter One - Introduction  

Figure 1.1. Generation of reactive oxygen species (ROS)                                                   28 

Figure 1.2. Activation of the mitochondrial apoptosis pathway                                       34 

Figure 1.3. Mitogen-activated protein kinase cascades                                                   40 

Figure 1.4. IL1β receptor signalling                                                                                       53 

Figure 1.5. TNFα signalling to inflammation/cytoprotection and apoptosis                           58 

Figure 1.6. Formation of the necrosome                                                                          64 

Figure 1.7. RIPK1 domain structure and post-translational modifications                           71 

 

Chapter Two – General Methods 

Table 2.1. Agonists and inhibitors                                                                                      77 

Table 2.2. Antibodies used for immunoblotting                                                              83 

Table 2.3. Primers used in qPCR validation of microarray data                                       87 

Figure 2.1. PCR conditions for colony screens                                                              90 

Figure 2.2. Schematic of the generation of adenoviral plasmids expressing FLAG-tagged wild-

type and mutant RIPK1 constructs                                                                                      94 

 



16 
 

Chapter Three – Regulation of cardiomyocyte gene expression by mitogen-activated 

protein kinases in response to H2O2 

Figure 3.1. Nuclear signalling of ERK1/2 in response to H2O2 in cardiomyocytes             107 

Figure 3.2. Nuclear signalling of JNKs in response to H2O2 in cardiomyocytes             109 

Figure 3.3. Nuclear signalling of p38-MAPKs in response to H2O2 in cardiomyocytes 111 

Figure 3.4. Inhibition of ERK1/2 signalling by PD184352                                                113 

Figure 3.5. Inhibition of JNK signalling by JNK-IN-8                                                            115 

Figure 3.6. Inhibition of p38-MAPK signalling by SB203580                                                117 

Figure 3.7. Regulation of baseline cardiomyocyte RNA expression by PD184352, JNK-IN-8 or 

SB203580                                                                                                                       119 

Figure 3.8. Changes in cardiomyocyte RNA expression induced by H2O2                          121 

Table 3.1.  Numbers of RNAs upregulated by H
2
O

2 
and affected by MAPK inhibitors 122 

Table 3.2.  Numbers of RNAs downregulated by H
2
O

2 
and affected by MAPK inhibitors 123 

Figure 3.9. Effects of MAPK inhibitors on cardiomyocyte RNA expression induced by  

H2O2                                                                                                                                    124 

Figure 3.10. Gene Ontology analysis of genes upregulated by H2O2 and changed further by 

MAPK inhibitors – classification by Biological Process                                                        126 

Figure 3.11. Gene Ontology analysis of genes upregulated by H2O2 and changed further by 

MAPK inhibitors – classification by Protein Class                                                                127 

Figure 3.12. Validation of microarray data by qPCR: RNAs inhibited by MAPK inhibitors alone 

                                                                                                                                   129 



17 
 

Figure 3.13. Validation of microarray data by qPCR: mRNAs encoding transcription factors

                                                                                                                                   131 

Figure 3.14. Validation of microarray data by qPCR: effects of MAPK inhibitors on expression 

of antioxidant mRNAs induced by H2O2                                                                        133 

Figure 3.15. Validation of microarray data by qPCR: effects of MAPK inhibitors on expression 

of dual-specificity phosphatase (Dusp) mRNAs induced by H2O2                                     135 

 

 

Chapter Four – Effects of pathophysiological stimuli on receptor-interacting protein 

kinases (RIPKs) in the heart  

Figure 4.1. Effects of oxidative stress on RIPK1 in cardiomyocytes                            153 

Figure 4.2. Effects of ischaemia/reperfusion and H2O2 on RIPKs in adult rat hearts 155 

Figure 4.3. Effects of TNFα on RIPK1 in cardiomyocytes                                                157 

Figure 4.4. Effects of IL1β on RIPK1 in cardiomyocytes                                                159 

Figure 4.5. Anion-exchange FPLC of RIPK1 in IL1β treated cardiomyocyte extracts          161 

Figure 4.6. Effects of SB203580 on the RIPK1 response to IL1β in cardiomyocytes 163 

 

Chapter Five – Generation of adenoviruses for expression of RIPK1 in cardiomyocytes 

Figure 5.1. Construction of the oligonucleotide cassette encoding the FLAG-tag             175 

Figure 5.2. Plasmid map of the FLAG-RIPK1-Shut vector                                                176 

Figure 5.3. General strategy for introducing mutations using PCR                                    180 



18 
 

Table 5.1. Primers used in generation of wild-type and mutant FLAG-tagged RIPK1 constructs

                                                                                                                                   186 

Figure 5.4. PCR conditions for generation of wild-type and mutant RIPK1 constructs 187 

Figure 5.5. Identification of conserved RIPK1 phosphorylation and ubiquitinylation sites 192 

Figure 5.6. Generation of the wild-type and mutant RIPK1 DNA constructs                         194 

Figure 5.7. Colony screening for shuttle vectors expressing FLAG-tagged wild-type and mutant 

RIPK1 constructs                                                                                                            195 

Figure 5.8. FLAG-tagged wild-type and mutant RIPK1 shuttle vector sequence chromatograms

                                                                                                                                   197 

Figure 5.9. Expression of FLAG-tagged wild-type and mutant RIPK1 shuttle vectors in HEK 

293 cells                                                                                                                       200 

Figure 5.10. Colony screening for adenoviral plasmids expressing FLAG-tagged wild-type and 

mutant RIPK1                                                                                                                       202 

Figure 5.11. Expression of FLAG-tagged RIPK1 in cardiomyocytes                          205 

Figure 5.12. Effects of IL1β on FLAG-tagged RIPK1 constructs in cardiomyocytes  206 

 

 

 

 

 

 



19 
 

Abbreviations  
 

ALPS Activation loop phosphorylation site 

ANOVA Analysis of variance 

AP-1 Activator protein-1 

Apaf1 Apoptotic protease-activating-factor-1  

ASK1 Apoptosis signal-regulating kinase 1  

ATF Activating transcription factor 

BSA Bovine serum albumen 

CA Constitutively active  

CARD Caspase recruitment domain 

cIAP Cellular inhibitor of apoptosis protein 

CMV Cytomegalovirus 

DD Death domain 

DMEM Dulbecco's modified Eagle's medium 

DMSO Dimethyl sulphoxide 

DN Dominant negative 

DTT Dithiothreitol 

Dusp Dual-specificity phosphatase 

E64 Trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane 

EDTA Ethylenediamine tetra-acetic acid  

EGF Epidermal growth factor  

EGTA Ethylene glycol tetra-acetic acid 

ERK Extracellular signal-regulated kinase 

ET-1 Endothelin-1 

FADD Fas-associated protein with death domain 

FGF Fibroblast growth factor 

FPLC Fast protein liquid chromatography  

GPCR G protein-coupled receptor 

HF Heart failure 

IKK Inhibitor of κB-kinase 

IL Interleukin 

IL1R1 Interleukin-1 receptor 1 

IL1Ra Interleukin-1 receptor antagonist 

IL1RAcPs Interleukin-1 receptor accessory proteins  

InsP3 inositol 1,4,5-trisphosphate  

IPC Ischaemic preconditioning  



20 
 

IR Ischaemia  reperfusion 

IRAK Interleukin-1 receptor associated kinase 

JNK c-Jun N-terminal kinase 

Klf Krüppel-like factor 

KO Knockout 

LUBAC linear ubiquitin assembly complex  

MAP3K Mitogen-activated protein kinase kinase kinase 

MAPK Mitogen-activated protein kinase 

MAPKAPK Mitogen-activated protein kinase activated protein kinase 

MI Myocardial infarction 

MKK Mitogen-activated protein kinase kinase  

MPTP Mitochondrial permeability transition pore 

MSK Mitogen- and stress-activated  kinase 

MyD88 myeloid differentiation primary response protein 88 

NADH Nicotinamide adenine dinucleotide 

NFκB Nuclear factor κB 

NOS Nitric oxide synthase 

NOX NAD(P)H oxidase 

NPE Nuclear protein-enriched 

PAGE Polyacrylamide electrophoresis 

PARP Poly(ADP-ribose) polymerase  

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PDGF Platelet-derived growth factor  

PI Propidium iodide 

PKA Protein kinase A 

PKC Protein kinase C 

PMSF Phenylmethylsulfonyl fluoride 

PtdInsP2 Phosphatidylinositol-4,5,bisphosphate  

qPCR Quantitative real-time polymerase chain reaction  

RIPK Receptor-interacting protein kinase 

ROS Reactive oxygen species 

RPTK Receptor protein tyrosine kinase 

RSK p90 ribosomal S6 kinase 

SEM Standard error of the mean 

siRNA Small interfering RNA 



21 
 

SMAC Second mitochondria-derived activator of caspases  

SNK Student-Newman-Keuls (post-test) 

SOD Superoxide dismutase 

SWOP Second window of protection 

TAB Transforming growth factor-β-activated kinase binding protein 

TAK1 Transforming growth factor-β-activated kinase  

TBST Tris-buffered saline containing 0.1% Tween 20 

TNF  Tumour necrosis factor 

TNFR Tumour necrosis factor receptor  

TRADD Tumour necrosis factor receptor 1 related death domain  protein 

TRAF Tumour necrosis factor receptor associated factor  

TRAIL Tumour necrosis factor-related apoptosis inducing ligand 

TUNEL Terminal deoxynucleotidyl dUTP nick-end labelling 

Δψm Mitochondrial membrane potential 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

 

 

 

 

 

 

 

 

Chapter One - Introduction 

 

 

 

 

 

 

 

 

 

 



23 
 

1.1 The heart and heart failure 

Cardiovascular diseases and heart failure (HF) are leading causes of morbidity and mortality 

worldwide, representing an increasing economic and societal burden, particularly in 

industrialised nations (Laflamme and Murry, 2011; Azad and Lemay, 2014). The heart 

executes a vital function, pumping blood around the body to deliver oxygen and nutrients to, 

and remove waste products from, perfused tissues. The beating of the heart is achieved by 

the synchronised, rhythmic contraction of the cardiomyocytes, the contractile muscle cells of 

the heart. Although representing only ~30% of the total cell number in the heart, 

cardiomyocytes account for approximately 75% of the volume of the mature myocardium. The 

remainder is predominantly composed of a heterogeneous population of other cell types 

including, (in varying proportions) fibroblasts, vascular smooth muscle cells and endothelial 

cells (Buja and Vela, 2008; Souders et al., 2009; Pinto et al., 2016). 

In contrast with lower vertebrates such as the newt and the zebrafish, which can effectively 

regenerate tracts of damaged myocardium through cardiomyocyte proliferation (Oberpriller 

and Oberpriller, 1974; Poss et al., 2002), the consensus is that mammalian cardiomyocytes 

cease to proliferate during the perinatal period, withdrawing from the cell cycle and undergoing 

terminal differentiation (Ahuja et al., 2007). As a result, cardiomyocytes do not readily divide in 

order to replace dead, damaged or dying cells as can occur routinely in other tissues with 

different cell types. Thus, although a healthy heart and its constituent cardiomyocytes are 

robust, and demonstrate resistance to perturbations in the cellular environment, terminal 

differentiation of cardiomyocytes renders the heart vulnerable to chronic stresses such as 

hypertension as well as severe, acute, pathophysiological stressors such as myocardial 

infarction (MI) and ischaemia reperfusion (IR) (Nadruz, 2015; Hausenloy and Yellon, 2013). In 

response to such insults, cardiomyocytes may undergo autophagy, necrosis or a regulated 

form of cell death such as apoptosis or necroptosis (Chiong et al., 2011; Clerk et al., 2003; 

Koshinuma et al., 2014). The resulting cardiomyocyte fallout may impair cardiac pump 

function, rendering the heart’s ability to deliver blood insufficient to meet the body’s 
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requirements. Although there is evidence supporting the existence of a subpopulation of 

multipotent progenitor cells capable of giving rise to the various cardiac cell types, including 

cardiomyocytes (Beltrami et al., 2003), considerable controversy remains as to the nature of 

these cells and their significance in vivo. Regardless, any endogenous repair mechanisms are 

evidently insufficient to fully ameliorate the cardiac damage caused by pathophysiological 

stresses, necessitating the development of effective therapeutic interventions. 

In order to maintain sufficient cardiac output following cardiomyocyte death, surviving 

cardiomyocytes may undergo hypertrophy, an increase in cell size in the absence of 

cytokinesis and concomitant increase in cell number. This is characterised by a recapitulation 

of the immediate early and “foetal” gene expression programmes with induction of c-Fos and 

c-Jun (classic AP-1 transcription factor constituents) and β-myosin heavy chain, amongst 

others (Clerk et al., 2007a; Dorn et al., 2003; Pandya and Smithies, 2011). These changes in 

gene expression, together with augmented protein synthesis, result in morphological changes 

that increase cardiomyocyte function (increases in size and myofibrillogenesis) (Sugden and 

Clerk, 1998). While hypertrophy is initially an adaptive and compensatory response to 

myocardial injury and reduced cardiomyocyte number, continued chronic stress and increased 

workload may lead to continued cardiomyocyte death, accompanied by a significant 

inflammatory response, resulting in a decompensated state and ultimately HF (Van Berlo et 

al., 2013; Petersen and Felker, 2006). The hypertrophic response to myocardial insult is also 

commonly coincident with an increased rate of deposition of extracellular matrix by cardiac 

fibroblasts. This cardiac fibrosis further contributes to myocardial “stiffness” and impaired 

contractility, and to the progression to HF (Krenning et al., 2010; Ho et al., 2010).  

As discussed above, the heart and the cardiomyocytes exhibit a wide range of changes in 

response to the varied pathophysiological stresses encountered, including changes in gene 

expression and protein synthesis as well cell morphology and tissue structure. To understand 

if, and how, these changes contribute to the development of cardiac hypertrophy and heart 

failure, it is essential to establish whether these changes merely correlate with cardiac 
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pathologies, or if there is a causal link. Some changes might also be beneficial and promote 

adaptation to the encountered stress. Understanding the consequences of these changes may 

facilitate development of effective treatments for heart disease. To ascertain whether these 

changes are adaptive, deleterious or only correlative, chemical or genetic approaches may be 

adopted to either inhibit or potentiate the processes thought to lead to the observed changes, 

followed by assessment of the effects of such intervention on functional readouts such as cell 

death. For example, if inhibiting a process can be demonstrated (through multiple consilient 

lines of evidence) to have a protective effect, this process can reasonably be inferred to have 

a detrimental effect. Similarly, if inhibiting processes leading to a putatively beneficial change 

has a detrimental result, the change can be regarded as adaptive. Accordingly, therapeutics 

strategies may seek to either inhibit deleterious changes, or to augment those that are 

adaptive.  

The cellular processes occurring in cardiomyocytes, including survival, gene expression, 

hypertrophy and death in response to pathophysiological stresses are regulated and 

modulated by complex signalling pathways (Matsui et al., 2003; Clerk et al., 2007a; Clerk et 

al., 2003), and there is evidence of significant cross talk between these pathways. Developing 

a detailed mechanistic understanding of these signalling pathways and the functions they 

regulate represents a significant conceptual and technical challenge. However, doing so holds 

great potential from both a basic science and clinical viewpoint, and may facilitate advances in 

the development of sophisticated and rational therapeutic approaches in treating MI and HF. 

Accordingly, intensive research efforts in recent decades have sought to identify the stimuli 

and signalling pathways responsible for regulating cardiomyocyte hypertrophy and gene 

expression, and the balance between cardiomyocyte life and death. 
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1.2 Redox signalling and oxidative stress in the heart 

1.2.1 The role of redox reactions in intracellular signalling 

In recent decades, it has become increasingly recognised that oxidation and reduction (redox) 

reactions are associated with important physiological and pathological roles and processes. 

Production of reactive oxygen species (ROS) incidental to aerobic respiration has been 

acknowledged for several decades, as has the production of oxidants by phagocytes in the 

defence against invading microorganisms (Harman, 1956; Babior, 1984).  

Major forms of ROS include superoxide anion (•O2
-), H2O2, hydroxyl radical (•OH) and hydroxyl 

anion (OH-). These are produced by sequential incomplete single electron reduction of 

molecular O2 (Bartz and Piantadosi, 2010) (Fig. 1.1A). Sources of ROS are numerous and 

varied, although the major contributor to ROS production in vivo is oxidative phosphorylation 

in the mitochondria (Balaban et al., 2005). During oxidative phosphorylation, controlled 

oxidation of electron donors such as nicotinamide adenine dinucleotide (NADH) results in a 

potential across the mitochondrial inner membrane (Δψm) and this potential is subsequently 

used to drive phosphorylation of ADP to produce ATP. At various points in this process, 

electrons from NADH or other donors may “leak” to react with O2, thus forming ROS (Fig. 1.1A) 

(Balaban et al., 2005). In addition to the mitochondria, intracellular ROS are also produced by 

a number of dedicated enzymes, including the various non-phagocyte NAD(P)H oxidase 

(NOX) and xanthine oxidase family members. ROS are also produced by uncoupled nitric 

oxide synthases (NOS) (Fig. 1.1B) (Schieber and Chandel, 2014; Lambeth, 2004; Montezano 

and Touyz, 2012).  

Other enzymes and factors function intracellularly in professional antioxidant defence and 

conversion of ROS to less damaging species, including superoxide disumutases (SODs), 

glutathione peroxidases, peroxiredoxins, glutaredoxin and thioredoxin, catalase and 

glutathione.  Importantly, ROS serve as precursors to other reactive species. For example, the 

various SOD enzymes dismute •O2
- generated by mitochondria and NOX to produce H2O2 (Fig. 
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1.1B), which is thence processed by catalase, glutathione peroxidases and peroxiredoxins to 

prevent excess H2O2 accumulation. In the presence of ferrous ions, H2O2 can also be 

converted through the Fenton reaction to produce the highly reactive •OH (Fig. 1.1B) (Schieber 

and Chandel, 2014; Lambeth, 2004).  
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Figure 1.1 Generation of reactive oxygen species (ROS)  
 

(A) Production of ROS through incomplete reduction of O2.
 Electrons “leaking” from the 

mitochondrial electron transport chain (ETC) during aerobic respiration cause sequential single 

electron (e
-
) reduction of O2 to superoxide anion (

•
O2

-
), H2O2, hydroxyl radical (

•
OH) and 

hydroxyl anion (OH
-
). (B) Intracellular sources of ROS. ROS are produced by NADPH oxidases 

(NOX), uncoupled nitric oxide synthases (NOS), xanthine oxidases (XO) and secondary to 
aerobic respiration in the mitochondrial ETC. ROS are also produced during 
pathophysiological processes including ischaemia and reperfusion (IR), hypoxia and 
reoxygenation (H/R), myocardial infarction (MI) and following exposure to drugs such as 

doxorubicin (Dox). Superoxide distmutases (SOD) increase the rate of 
•
O2

-
 conversion to H2O2, 

which can be reduced by catalase (Cat), glutathione peroxidases (GPx) or peroxiredoxins 

(PRx) to produce H
2
O. H2O2 

may also be converted to 
•
OH and OH

-
 through Fenton chemistry 

in the presence of Fe
2+

. 
•
O2

- 
and H2O2 

can modulate signalling pathways and cellular 

processes, while 
•
OH is typically damaging to biomolecules.  
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The various forms of ROS are small, diffusible molecules and as such fulfil many criteria 

required of second messengers in signalling. ROS function in signal transduction by inducing 

specific oxidative modifications in target signalling molecules, particularly of thiol-containing 

methionine and cysteine residues (Kaya et al., 2015; Garcia-Santamarina et al., 2014). 

Perhaps the most extensively characterised modification induced by ROS is the oxidation of 

protein cysteine thiols by H2O2, and this is arguably the most salient oxidative modification with 

respect to intracellular signalling. Despite the relatively low abundance of cysteine residues 

generally, they are frequently found in functional regions of proteins (Garcia-Santamarina et 

al., 2014). Oxidation-sensitive cysteine thiols typically have a low pKa and at physiological pH 

tend to exist as the deprotonated thiolate anion (Cys-S-). Thiolate anions are readily oxidised 

by H2O2 to form the highly reactive sulfenic species (Cys-SOH) which may result in effects 

such as changes in enzyme activity or formation of intra- or inter-protein disulfide bonds with 

vicinal thiols, resulting in protein conformational changes (Burgoyne et al., 2012; Schieber and 

Chandel, 2014). Thus, fluctuations in ROS production can result in activation or modulation of 

signalling pathways. A transient increase in intracellular H2O2 secondary to ligand binding was 

established as a key mediator of platelet-derived growth factor (PDGF) signalling in vascular 

smooth muscle cells by Sundaresan and colleagues (Sundaresan et al., 1995) and a similar 

scenario was subsequently demonstrated as a requisite for epidermal growth factor (EGF) 

signalling, using A431 human carcinoma cells (Bae et al., 1997; Finkel, 2011).  

Increases in intracellular ROS levels can also elicit responses by targeting proteins which 

repress the activation of specific signalling pathways. For example, apoptosis signal-regulating 

kinase 1 (ASK1) is maintained in an inactive complex by binding to the redox-sensitive protein 

thioredoxin. Exposure to ROS leads to thioredoxin oxidation, resulting in dissociation from 

ASK1 and promoting activation of ASK1 and downstream effects in regulation of apoptosis 

(Saitoh et al., 1998). A further well-established redox-sensitive target is the catalytic site 

cysteine of protein tyrosine phosphatase superfamily members. Protein tyrosine phosphatases 

including PTP1B and Shp2 execute key roles in regulation of tyrosine phosphorylation status, 
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with important implications for signal transduction downstream of tyrosine phosphorylation 

events. Protein tyrosine phosphatase catalytic site cysteines exhibit a particularly low pKa 

relative to other cysteines and are thus readily oxidised by H2O2, resulting in inhibition of 

phosphatase activity and activation of key signalling pathways such as mitogen-activated 

protein kinases (MAPKs, see section 1.3) (Bae et al., 1997; Lee et al., 1998; Lee and 

Esselman, 2002; Meng et al., 2002).  

A key characteristic of signalling modifications is reversibility, as regulation of magnitude and 

duration of signalling is required to ensure an appropriate response. Accordingly, oxidation of 

thiolate anions to the Cys-SOH form is reversible by reducing agents, but in the presence of 

substantially elevated H2O2 concentrations, thiolate anions may undergo higher-order 

oxidation to the sulfinic (Cys-SO2H) or sulfonic (Cys-SO3H) forms, which may be irreversible 

and hence deleterious due to permanent effects on protein structure and function (Schieber 

and Chandel, 2014; Garcia-Santamarina et al., 2014). The necessity for redox modifications 

in signalling to be rapid and reversible has also led to evolution of mechanisms for 

spatiotemporal control of ROS production and removal. For example, mitochondria may 

undergo translocation to the perinuclear region in response to hypoxia, leading to directed 

accumulation of nuclear ROS and resulting in modulation of transcriptional activity (Al-Mehdi 

et al., 2012).  Similarly, localisation of antioxidant enzymes and other proteins such as 

glutathione and thioredoxin is directed to specific compartments to counteract high levels of 

ROS production, thus ensuring tight regulation of intracellular ROS concentrations and 

resulting redox modifications (Kaludercic et al., 2014).  

Despite the important homeostatic and physiological signalling roles of redox reactions, 

dysregulation of redox signalling and excess production of ROS is deleterious and results in 

increased oxidative stress.  Oxidative stress can be defined as an imbalance in production of 

ROS relative to the antioxidant defence mechanisms of a biological system, thus resulting in 

cellular damage. Increased oxidative stress is associated with aging, the pathogenesis of 

cancers and neurodegenerative disorders and cardiovascular diseases including 
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atherosclerosis, HF and IR injury (Pashkow, 2011; Tsutsui et al., 2011). While the majority of 

ROS are produced by mitochondria as a by-product of aerobic respiration,  production of ROS 

is also potentiated by pathological processes including IR and hypoxia/reoxygenation (Fig. 

1.1B) (Hausenloy and Yellon, 2013). ROS are also elaborated following administration 

(whether experimentally or in a clinical setting) of cardiotoxic agents such as chelerythrine, and 

the anti-cancer drugs doxorubicin and fluorouracil (Sawyer et al., 2002; Clerk et al., 2007a; Pai 

and Nahata, 2000). Pathologically elevated levels of intracellular ROS (i.e. oxidative stress) 

can result in cell damage, as ROS directly induce deleterious modifications of biomolecules 

including DNA, lipids, and proteins (Finkel, 2011).  

 

1.2.2 Modulation of cardiomyocyte life and death by oxidative stress  

In the heart, redox modifications of methionine and cysteine residues in myocardial proteins 

can effect changes in activity and structure of diverse targets including ion transporters, 

receptors, kinases, and phosphatases, leading to activation of signalling pathways and 

potentially to oxidative stress and perturbations of homeostasis (Burgoyne et al., 2012). 

Amongst the most severe insults encountered by the heart is IR, such as that encountered 

during acute MI and following thrombolytic therapy. While IR has a wide range of effects on 

cardiomyocytes, it is associated with extensive cardiomyocyte death and a significant increase 

in ROS and oxidative stress (Hausenloy and Yellon, 2013). The cessation of blood flow, and 

therefore provision of oxygen, to the myocardium during ischaemia results in suppression of 

aerobic respiration and ATP production, increased ATP hydrolysis and concomitant acidosis, 

and overload of Ca2+ and Na+ due to disturbance of ATP-dependent ion transporter activity 

(Hausenloy and Yellon, 2013). Counterintuitively, despite the cessation of oxygen supply, ROS 

levels actually increase during ischaemia due to incomplete reduction of residual myocardial 

O2 (Zweier et al., 1987; Becker et al., 1999). Reintroduction of O2 upon reperfusion, however, 

causes a profound increase in ROS production, frequently characterised as a “ROS burst”, as 
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a result of resumption of aerobic phosphorylation (Hearse et al., 1973; Raedschelders et al., 

2012).  

Oxidative stress is a pivotal regulator of the balance between cardiomyocyte survival and 

death, and the level of stress encountered is a key determinant of the response. High levels of 

ROS causing severe oxidative stress are cardiotoxic and result in cardiomyocyte necrosis, 

while moderate levels are permissive for regulated death and thus promote apoptosis (Von 

Harsdorf et al., 1999; Cook et al., 1999b; Kwon et al., 2003). Conversely, low levels of ROS 

may be cardioprotective. Brief periods of non-lethal ischaemia, resulting in increased ROS, 

can confer enhanced myocardial resistance to subsequent ischaemic insult, a phenomenon 

referred to as ischaemic preconditioning (IPC) (Murry et al., 1986). IPC has a biphasic 

response consisting of a transient early period of protection that develops rapidly upon 

ischaemia and disappears after 2 – 4 h, and a delayed onset “second window of protection” 

(SWOP) that manifests 12 – 24 h after ischaemia and persists for several days. Although the 

exact mechanisms underlying the response are not fully understood, ROS are clearly 

implicated, and some investigations indicate that the SWOP is induced by de novo protein 

synthesis and transcription of cardioprotective genes as a result of signalling pathways 

activated downstream of ROS (Rizvi et al., 1999). Indeed, inhibition of ROS production during 

ischaemia abrogates the protective effect of IPC and results in the absence of the SWOP (Sun 

et al., 1996). Exposure of neonatal and/or adult rat cardiomyocytes to low levels of directly 

applied ROS in the form of H2O2 may also confer protection, and some investigators report 

induction of hypertrophy (Aikawa et al., 1997; Kwon et al., 2003; Chen et al., 2000).  

Severe myocardial insult resulting from IR, associated with high levels of ROS production and 

oxidative stress, results in necrotic cardiomyocyte death (or a combination of both necrosis 

and apoptosis) and thus contributes to development of conditions such as HF (Mccully et al., 

2004; Gandhi et al., 2011). Direct exposure of adult rat cardiomyocytes or cardiac-derived 

H9c2 cells to H2O2 also results in necrosis at higher concentrations (0.3 – 1 mM, depending 

on the cell type) as determined using propidium iodide (PI) incorporation (Kwon et al., 2003; 
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Wang et al., 2013; Wang et al., 2015). Moderate H2O2 concentrations, however, can result in 

regulated apoptotic death through the “intrinsic” (or mitochondrial) pathway. Apoptosis is 

characterised by the ordered, ATP-dependent dismantling and removal of cellular 

components, and is generally considered to proceed largely in the absence of an inflammatory 

response (Mcilwain et al., 2013). Apoptosis is executed by a family of endopeptidases, the 

cysteine-dependent aspartate-directed proteases (caspases) which, as implied by their name, 

mediate the cysteine-dependent cleavage of peptide bonds, directed by specific Asp residues 

in their substrates (Mcilwain et al., 2013).  

Activation of caspases through the intrinsic pathway is precipitated by the release of 

cytochrome c into the cytoplasm from the inner mitochondrial membrane (Fig. 1.2), resulting 

in formation of the large, caspase activating complex known as the apoptosome (Zou et al., 

1997; Acehan et al., 2002). Once released, cytochrome c binds to the WD-40 domain of the 

apoptotic protease-activating-factor-1 (Apaf1) adapter protein (Fig. 1.2), leading to Apaf1 

heptamerisation and exposure of the Apaf1 caspase recruitment domain (CARD) (Fig. 1.2) 

(Acehan et al., 2002). The Apaf1 CARD provides a docking site for the binding of “initiator” 

caspase-9, which is activated following hetero-oligomerisation directed by Apaf1. Thence, 

caspase-9 mediates cleavage and activation of the “effector” caspase-3 resulting in proteolytic 

dismantling of cellular constituents and apoptosis (Fig. 1.2) (Mcilwain et al., 2013; Shiozaki et 

al., 2002). The release of cytochrome c from the inner mitochondrial membrane is regulated 

by factors including opening of the mitochondrial permeability transition pore (MPTP), 

associated with loss of Δψm and impairment of ATP production through oxidative 

phosphorylation (Halestrap et al., 2004). Cytochrome c release is also influenced by the activity 

of the Bcl-2 family proteins, which variously function in both anti- and pro-apoptotic roles 

(Czabotar et al., 2014).  
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Figure 1.2 Activation of the mitochondrial apoptosis pathway  

 
Exposure to cellular stresses including ischaemia reperfusion or oxidative stress (exemplified 
by H

2
O

2
) results in the release of cytochrome c from the inner mitochondrial membrane. 

Cytochrome c binds to the WD-40 domains of Apaf-1 resulting in assembly of the Apaf-1 
heptamer and exposure of the Apaf-1 caspase recruitment domain (CARD). Interaction 
between the Apaf-1 and pro-caspase-9 CARDs leads to activation of initiator caspase-9. 
Caspase-9 then cleaves and activates effector caspase-3, resulting in cell death through 
apoptosis.  
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Numerous investigations indicate that cultured neonatal and/or adult rat cardiomyocytes, or 

H9c2 cardiac-derived cells, exposed to moderate H2O2 concentrations (0.1 – 0.5 mM; 

depending on the specific cell type) die by apoptosis (Cook et al., 1999b; Von Harsdorf et al., 

1999; Chen et al., 2000; Kwon et al., 2003; Hong et al., 2001; Clerk et al., 2007b). Using 

neonatal cardiomyocytes, von Harsdorf et al. (Von Harsdorf et al., 1999) demonstrated that 

exposure to H2O2 reduced cardiomyocyte viability and increased terminal deoxynucleotidyl 

dUTP nick-end labelling (TUNEL)-positive nuclei, reflective of DNA fragmentation and 

apoptotic death.  Cardiomyocyte apoptosis initiated by administration of xanthine oxidase in 

the presence of xanthine could be rescued with the addition of exogenous SOD, catalase, or 

a combination thereof, indicating that both •O2
- and H2O2 induce apoptosis (Von Harsdorf et 

al., 1999). Cook and colleagues (Cook et al., 1999b) also reported induction of neonatal 

cardiomyocyte apoptosis following exposure to H2O2 using several different readouts. 

Exposure to H2O2 resulted in activation of caspase-3 and cleavage of poly(ADP-ribose) 

polymerase, an established caspase-3 substrate, and a progressive increase in TUNEL-

positive cardiomyocyte nuclei (Cook et al., 1999b). 

 Exposure of cardiomyocytes to H2O2 is associated with a progressive increase of cytochrome 

c in the cytoplasm, indicating release from the mitochondria in response to oxidative stress 

(Cook et al., 1999b; Von Harsdorf et al., 1999), and this is temporally associated with a 

reduction in Δψm, a phenomenon potentially reflective of opening of the MPTP or other pores 

in the mitochondrial membrane. However, Δψm is partially restored following 45 – 60 min 

exposure to H2O2 (Cook et al., 1999b). Since cytochrome c and Δψm are required for oxidative 

phosphorylation in the mitochondria (Huttemann et al., 2011), the partial restoration of Δψm 

and residual levels of mitochondrial cytochrome c may be reflective of continued capacity for 

respiration and ATP production, potentially influencing whether cardiomyocyte death proceeds 

through ATP-dependent apoptosis or otherwise by necrosis.  

Induction of cardiomyocyte apoptosis by H2O2 is also associated with differential regulation of 

Bcl-2 family members. Antiapoptotic members including the prototypic Bcl-2 and the related 
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Bcl-xL are expressed in neonatal rat hearts and this is sustained throughout maturation to 

adulthood. Conversely, expression of the pro-apoptotic Bcl-2 family members, Bad and Bax, 

are subject to developmental downregulation (Cook et al., 1999b). In unstimulated 

cardiomyocytes, Bcl-2 localises predominantly to the mitochondria while Bad is detected 

primarily in the cytoplasm. H2O2 exposure induces loss of Bcl-2, and accumulation of Bad, at 

the mitochondria. Conversely, Bad rapidly shuttles to the mitochondria following H2O2 

exposure, preceding cytochrome c release, potentially indicative of a role for Bad in initiation 

of the intrinsic pathway of cardiomyocyte apoptosis in response to H2O2 (Cook et al., 1999b).   

In addition to directly applied oxidative stress in the form of H2O2, ROS are also pivotal in 

mediating cardiomyocyte apoptosis in response to other pathophysiological insults. Clinical 

use of the antineoplastic anthracycline doxorubicin is limited by its well-established cardiotoxic 

effects, which are associated with increased cardiomyocyte apoptosis (Arola et al., 2000; 

Childs et al., 2002). Administration of doxorubicin causes accumulation of H2O2 and 

mitochondrial •O2
-   in the intact heart (Doroshow, 1983), and activates the mitochondrial 

pathway to apoptosis in cardiomyocytes; an effect which is inhibited by exposure to 

antioxidants (Kotamraju et al., 2000). The protein kinase C (PKC) inhibitor chelerythrine also 

induces apoptosis in cardiomyocytes and adult rat hearts, albeit in a PKC-independent manner 

(Yamamoto et al., 2001). Like doxorubicin, chelerythrine induces apoptosis through the 

mitochondrial pathway and this can be inhibited by administration of antioxidants, indicating a 

central role of ROS in induction of cardiomyocyte apoptosis in this context (Yamamoto et al., 

2001). As with IR in whole organs, deprivation of oxygen during hypoxia followed by 

reoxygenation results in increased ROS production in cultured cells (Kang et al., 2000) and 

can lead to an increase in cell death. Adult rat cardiomyocytes subjected to hypoxia exhibit 

increased apoptotic death relative to normoxic controls, and induction of apoptosis is increased 

further in response to reintroduction of oxygen following hypoxia (Kang et al., 2000).  
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1.2.3 Regulation of cardiomyocyte gene expression by oxidative stress 

As discussed in section 1.2.2, oxidative stress is a key regulator of the balance between 

survival and death of cardiomyocytes, and increased oxidative stress is associated with the 

pathogenesis of conditions such as HF. The response of the cardiomyocyte depends on the 

extent of the oxidative stress encountered, and ranges from cytoprotection and survival in 

response to low levels to death by apoptosis or necrosis in response to moderate or high levels, 

respectively.  

H2O2, a physiologically relevant form of oxidative stress, is generated in the myocardium 

following ischaemia with or without reperfusion (Slezak et al., 1995). Since H2O2 is relatively 

stable (compared to the much more reactive •O2
-, •OH and OH- species) and easily manipulable 

under experimental conditions, it has become an important means of inducing, and 

investigating the effects of, oxidative stress in cardiac model systems. As discussed, H2O2 

promotes apoptotic cell death, and this response is coincident with substantial changes in 

cardiomyocyte gene expression (Kemp et al., 2003; Clerk et al., 2007b). The changes in gene 

expression induced by H2O2 are both time and concentration dependent, and these changes 

probably contribute at least in part to the ultimate response of the cell.  

Microarray expression profiling investigations indicate that exposure of neonatal rat 

cardiomyocytes to H2O2 results in both upregulation and downregulation of genes. Exposure 

to a non-toxic H2O2 concentration (0.04 mM) results in changes in relatively few genes (Kemp 

et al., 2003; Clerk et al., 2007b). However, a pro-apoptotic H2O2 concentration of 0.2 mM 

induces far more substantial changes in RNA expression following a 2 – 24 h exposure time, 

representing 649 established genes (Clerk et al., 2007b). Many of the upregulated genes code 

for proteins associated with cytoprotection and/or antioxidation, including Gclc (glutamate-

cysteine ligase catalytic subunit), Gclm (glutamate-cysteine ligase regulatory subunit, Nqo1 

(NAD(P)H quinone dehydrogenase 1), Txnrd1 (thioredoxin reductase 1), Fdx1 (ferredoxin 1) 

and Glrx1 (glutaredoxin 1).  Notably, the cyclin-dependent kinase inhibitor p21Cip1/Waf1 is 

upregulated in response to H2O2 (Kemp et al., 2003; Clerk et al., 2007b), and, while its role in 
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the heart has not been well-established, p21Cip1/Waf1 induces cell cycle arrest and cytoprotection 

in other systems (Barnouin et al., 2002). Furthermore, a detailed investigation examining 

expression of the rat orthologue of Mdm2 confirmed that pro-apoptotic H2O2 concentrations 

lead to upregulation of Mdm2 mRNA and protein (Pikkarainen et al., 2009). Knockdown of 

Mdm2 protein in neonatal rat cardiomyocytes also resulted in potentiation of apoptosis induced 

by H2O2, suggestive of a protective effect of Mdm2 upregulation in response to H2O2 

(Pikkarainen et al., 2009).  

In addition to genes with putatively cytoprotective functions, numerous genes associated with 

regulation of transcription and intracellular signalling are also upregulated.  These include the 

dual-specificity phosphatases (Dusps), several Krüppel-like factor (Klf) family members and 

early growth response (Egr) 1 – 4 transcription factors (Clerk et al., 2007b), suggesting that at 

least some of the changes in gene expression during H2O2-induced apoptosis are associated 

with expression of factors involved in regulation of the ongoing response to the encountered 

oxidative stress.  Cardiomyocytes exposed to 0.1 – 0.5 mM H2O2 are ~25 – 75% TUNEL-

positive following 16 – 24 h exposure, indicative of DNA fragmentation and an advanced stage 

of apoptosis (Cook et al., 1999b). Although changes in expression of the largest number of 

genes occur in response to H2O2 at times of 2 – 4 h, early in apoptosis, changes in a small 

number of genes are also detectable up to 24 h (Clerk et al., 2007b), suggesting a sustained 

active response to the increase in oxidative stress by some cardiomyocytes.  

These investigations indicate that pro-apoptotic H2O2 concentrations induce changes in the 

expression of a large number of genes in cardiomyocytes, while non-toxic H2O2 levels have a 

substantially lesser impact. The identities and functions of those genes upregulated during 

H2O2-induced apoptosis (including those associated with cytoprotection and antioxidation as 

well as regulators of transcription and intracellular signalling) strongly suggest that these 

changes influence the ultimate response of the cardiomyocyte and contribute to the process 

of apoptosis. However, the intracellular signalling pathways and regulatory mechanisms 

associated with the induction of these changes in gene expression are yet to be elucidated.  
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1.3 Mitogen-activated protein kinase (MAPK) signalling 

The MAPKs are highly conserved and ubiquitously expressed proline-directed Ser/Thr protein 

kinases.  They represent some of the most important, and most extensively characterised, 

transcytoplasmic signalling pathways delivering signals from extracellular stimuli to the nucleus 

(Widmann et al., 1999; Zhang and Liu, 2002). While other MAPKs such as extracellular signal-

regulated kinase (ERK) 5 have been identified (Lee et al., 1996), the three best-characterised 

MAPK pathways are ERK1/2, the c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. 

Generally, signalling through these MAPKs is associated with diverse cellular functions 

including growth and proliferation, differentiation and death (Zhang and Liu, 2002; Roux and 

Blenis, 2004).   

 

1.3.1 Activation and roles of the MAPK cascades 

All MAPK pathways consist of hierarchical cascades that lead to the phosphorylation and 

concomitant activation of terminal effector kinases (Fig. 1.3). Canonically, MAPK kinase 

kinases (MAP3Ks) phosphorylate and activate MAPK kinases (MKKs). Thence, MKKs dually 

phosphorylate MAPKs on threonine and tyrosine residues within a conserved Thr-Xaa-Tyr 

kinase regulatory motif, resulting in the full activation and downstream effects of the MAPKs 

(Rose et al., 2010). The various MAPK subfamilies are differentially activated in response to 

diverse stimuli and are coupled to a variety of cell surface receptor types. 
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Figure 1.3 Mitogen-activated protein kinase (MAPK) cascades 
 

The best characterised MAPKs, ERK1/2, JNKs and p38-MAPKs are the terminal members of 
three-tiered phosphorylation cascades. H

2
O

2
 (as an example of oxidative stress), growth 

factors (e.g. EGF, PDGF, FGF), agonists of receptors coupled to Gq alpha subunits (GqPCR 
agonists; e.g. ET-1, phenylephrine, A61603) and cytokines lead to activation of Raf family or 
Tpl2 MAP3Ks, resulting in phosphorylation and activation of MKK1/2 and thence ERK1/2. 
ERK1/2 phosphorylate substrates including p90 ribosomal S6 kinases (RSKs), mitogen- and 
stress-activated kinases (MSKs) and a number of transcription factors (e.g. Elk-1, GATA4, c-
Fos, c-Jun) leading to modulation of transcription and other cellular processes. Inhibition of 
MKK1/2 with PD184352 blocks ERK1/2 activation. JNKs and p38-MAPKs are most potently 
activated by oxidative and cellular stresses, cytokines and to a lesser extent by GqPCR 
agonists. MKK3/6 preferentially activate p38-MAPKs while MKK7 activates JNKs. MKK4 can 
activate both p38-MAPKs and JNKs. MAPK3Ks upstream of JNKs and p38-MAPKs are not 
well defined but may include ASK1 and MEKKs. Substrates of p38-MAPKs include 
MAPKAPK2/3 (MK2/3), MSKs and various transcription factors (e.g. MEF2C, ATF2). Targets 
of JNKs are primarily transcription factors (e.g. c-Jun, ATF2). Activity of p38-MAPKα/ß is 
inhibited by SB203580 while JNKs are inhibited by JNK-IN-8.  
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1.3.1.1 Extracellular signal-regulated kinases 1 and 2 (ERK1/2) 

The prototypic MAPK family members are ERK1/2 are encoded by the MAPK3 and MAPK1 

genes, producing the ERK1 and ERK2 products, respectively. ERK1/2 are also commonly 

referred to as p44- and p42-MAPKs, reflecting their respective molecular weights (ERK1, ~44 

kDa; ERK2, ~42 kDa). ERK1/2 are activated by phosphorylation within a Thr-Glu-Tyr activation 

loop (Thr202 and Tyr204 in human ERK1) by their MKKs, MKK1/2 (Fig. 1.3), while the most 

extensively characterised upstream kinases for the ERK1/2 cascade are kinases of the Raf 

family, c-Raf, A-Raf and B-Raf) (Fig. 1.3). (Payne et al., 1991; Wortzel and Seger, 2011). 

MKK1/2 (and thence ERK1/2) are also activated by a further MAP3K, Tpl2, in some conditions, 

for example in response to lipopolysaccharide (Dumitru et al., 2000; Martel et al., 2013). Once 

activated, ERK1/2 modulate the activities of their various substrates by preferentially 

phosphorylating Ser/Thr residues within Pro-Xaa-Ser/Thr-Pro sequence motifs (Davis, 1993).  

Target substrates are located in both the cytoplasmic and nuclear compartments and include 

transcription factors as well as other kinases, referred to as MAPK-activated protein kinases 

(MAPKAPKs) (Fig. 1.3). Nuclear substrates of activated ERK1/2 include numerous DNA 

binding transcription factors (e.g. Elk1, GATA4, c-Fos, c-Jun), whose transactivating activities 

or affinities for binding other transcription factors and proteins are modulated by 

phosphorylation, allowing ERK1/2 to directly influence regulation of transcription (Roskoski, 

2012; Plotnikov et al., 2011). Amongst the best characterised kinase substrates of ERK1/2 are 

the p90 ribosomal S6 kinases (RSKs) and the mitogen- and stress-activated kinases (MSKs) 

(Fig. 1.3). The MSKs and their substrates are predominantly localised in the nucleus and are 

associated with regulation of transcription and inflammation (Reyskens and Arthur, 2016). In 

common with ERK1/2, RSKs are generally localised to the cytoplasm under basal conditions 

but can phosphorylate and regulate substrates in both the cytoplasm and the nucleus upon 

stimulation, influencing processes including cell cycle progression and transcription. However, 

the consensus sequences for phosphorylation by RSKs, Arg/Lys–Xaa–Arg–Xaa–Xaa–Ser/Thr 

(Pearce et al., 2010), are different to those for ERK1/2 and accordingly their substrates are 
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distinct. This affords divergent signalling from ERK1/2 and RSKs, influencing different 

processes depending on the specific substrates targeted (Roux and Blenis, 2004).  

Activation of the ERK1/2 cascade in cardiomyocytes is typically associated with ligand 

stimulation of membrane-bound receptors, particularly receptor protein tyrosine kinases 

(RPTKs) and G protein-coupled receptors (GPCRs) (Clerk et al., 2007a). RPTK agonists 

associated with activation of ERK1/2 in cardiomyocytes include several peptide growth factors 

(Clerk et al., 2006). While the exact mechanisms by which the receptors respond is dependent 

on the specific stimulus, binding of RPTKs by their cognate ligand generally induces receptor 

oligomerisation or conformational change followed by activation of intrinsic tyrosine kinase 

activity, leading to autophosphorylation of specific tyrosine residues in the receptor intracellular 

domain. This forms the basis for the assembly of an active signalling complex, recruiting 

scaffold proteins (e.g. Grb2) and nucleotide exchange factors (e.g. Sos) through association 

of phospho-tyrosine residues on the receptor with Src homology 2  or phospho-tyrosine binding  

domains located on the scaffold proteins. Localisation of the guanine nucleotide exchange 

factor Sos in the vicinity of the small G-protein Ras promotes exchange of GDP for GTP to 

produce the active GTP-bound Ras form. Activated Ras then promotes recruitment and 

activation of Raf family MAP3Ks to initiate the ERK1/2 cascade (Schlessinger, 2000; Clerk et 

al., 2006). Stimulation of RPTKs may also be coupled (dependent on the specific scaffolding 

and adapter molecules) to activation of the ERK1/2 cascade through activation of 

phospholipase C (PLC) γ and PKC isoforms (Clerk et al., 2006; Clerk et al., 2007a). EGF, 

PDGF and fibroblast growth factor (FGF) all activate the ERK1/2 cascade in cardiomyocytes, 

and are associated with induction of the hypertrophic phenotype (Bogoyevitch et al., 1994; 

Clerk et al., 2006).  

Stimulation of members of the large, highly conserved GPCR superfamily is also associated 

with activation of ERK1/2, and signalling through Gαq subunits is arguably most salient with 

respect to cardiomyocytes. Stimulation of GqPCRs results in exchange of GDP for GTP on the 

Gαq subunit, promoting activation of PLCβ, which hydrolyses the membrane phospholipid 
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phosphatidylinositol-4,5,bisphosphate (PtdInsP2) to diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (InsP3). This results in the activation of DAG-sensitive PKC isoforms and thence 

ERK1/2 (Sugden and Clerk, 1997; Clerk and Sugden, 1999). Important GqPCR agonists 

leading to ERK1/2 activation in cardiomyocytes include endothelin-1 (ET-1) and the α-

adrenergic agonists phenylephrine and A61603. These are associated with induction of 

hypertrophy and modulation of gene expression (Kennedy et al., 2006; Cullingford et al., 

2008b; Marshall et al., 2010; Amirak et al., 2013).  

Importantly, and in common with the JNKs and p38-MAPKs (discussed below), oxidative stress 

(exemplified by H2O2) induces ERK1/2 activation in cardiomyocytes. In cardiomyocytes, 

ERK1/2 are activated in response to pro-apoptotic H2O2 concentrations although the degree 

and duration of activation is time and concentration dependent and varies depending on the 

experimental system used (i.e. in isolated neonatal rat cardiomyocytes vs perfused adult rat 

hearts) (Clerk et al., 1998a; Clerk et al., 1998b; Aikawa et al., 1997). In the context of exposure 

to H2O2 it is possible that  activation of ERK1/2 signalling is associated with promotion of 

cardiomyocyte survival, as pharmacological inhibition of the pathway increases cardiomyocyte 

apoptosis induced by H2O2 (Aikawa et al., 1997).   

 

1.3.1.2 c-Jun N-terminal kinases (JNKs) 

JNKs are expressed as ~46 and ~54 kDa proteins (p46-JNKs and p54-JNKs, respectively) 

with at least ten distinct isoforms derived from alternatively spliced variants of the three JNK 

genes, of which JNK1 and JNK2 are expressed universally (Davis, 2000). JNKs are activated 

by phosphorylation of Thr and Tyr residues in a Thr-Pro-Tyr activation motif by their upstream 

dual-specificity kinases MKK4 and MKK7 (Fig. 1.3) (Sanchez et al., 1994; Foltz et al., 1998; 

Lawler et al., 1998). There are numerous upstream activators of MKK4/7 depending on the 

input, including ASK1, MEKK1-4, TAK1 and DLK (Cargnello and Roux, 2011).  
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JNK activity was originally characterised in the context of Ser/Thr phosphorylation of 

microtubule-associated protein 2 in response to cycloheximide (Kyriakis and Avruch, 1990).  

However, JNKs are now known to be induced by a range of stimuli including pro-inflammatory 

cytokines such as tumour necrosis factor (TNF) α and interleukin (IL) 1β, and particularly by 

cellular stresses including ultraviolet radiation, hyperosmotic shock and oxidative stress (Clerk 

and Sugden, 1999; Davis, 2000; Rose et al., 2010). In non-cardiac cells, JNKs regulate activity 

of the transcription factor c-Jun by phosphorylation of two serine residues (Ser63 and Ser73) 

in the N-terminal transactivation region (Hibi et al., 1993). JNKs also regulate activity of other 

transcription factors (ATF2, Elk1, Sap1a, p53 etc.) either by directly modulating transcriptional 

transactivation activity or regulating protein stability and abundance (Cavigelli et al., 1995; 

Whitmarsh et al., 1997; Fuchs et al., 1998; Clerk et al., 2002).  In non-cardiac systems, JNK 

activity is associated with diverse functions including proliferation and regulation of both the 

extrinsic and intrinsic apoptotic pathways (Cargnello and Roux, 2011).  

In cardiomyocytes, JNKs are potently activated by cellular stresses including hyperosmotic 

shock, anisomycin and oxidative stress in the form of pro-apoptotic H2O2 concentrations and 

secondary to hypoxia/reoxygenation (Clerk and Sugden, 1997b; Clerk et al., 1998b; Laderoute 

and Webster, 1997). JNKs are also activated in isolated cardiomyocytes in response to TNFα 

and IL1β (Clerk et al., 1999) as well as, to a lesser degree, by GPCR agonists including ET-1 

(Clerk et al., 2007a). In intact hearts, JNKs are powerfully stimulated by H2O2, and during 

reperfusion following ischaemia (but not during ischaemia) and are also activated in response 

to GPCR agonists such as phenylephrine and angiotensin II (Bogoyevitch et al., 1996; Lazou 

et al., 1998; Yano et al., 1998). Since JNKs are activated in cardiac tissues by both cytotoxic 

stresses and agonists associated with induction of hypertrophy, there are conflicting data as 

to whether activation of cardiac JNKs is associated with cytoprotection, hypertrophy or death. 

In one investigation, adenovirally-mediated overexpression of constitutively active (CA) MKK7 

(resulting in selective activation of JNKs) in cardiomyocytes led to development of a 

hypertrophic phenotype (Wang et al., 1998b). Conversely, in vivo expression of a CA MKK7 
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mutant in mice resulted in cardiomyopathy and death (Petrich et al., 2002; Petrich et al., 2003). 

Some studies also indicate that JNK (and p38-MAPK) activities are elevated relative to donor 

hearts in failing human hearts (Cook et al., 1999a; Haq et al., 2001), although it is unclear 

whether activation of JNKs in this context is a protective or maladaptive response. Similarly, 

additional evidence from transgenic mice expressing dominant negative (DN) forms of JNK1/2 

indicates that these mice develop cardiac hypertrophy in response to pressure overload, 

suggestive of a role for JNK signalling in suppression of hypertrophy (Liang et al., 2003). 

Furthermore, adenovirally-mediated expression of a DN JNK mutant attenuates H2O2-induced 

death of adult rat cardiomyocytes, suggestive that JNKs are pro-apoptotic in this context (Kwon 

et al., 2003).  

The controversy regarding the specific roles of JNKs in mediating cardiac hypertrophy and 

survival vs death may result, at least in part, from differences in observations made in different 

model systems, whether experiments are conducted in vivo or in vitro and whether signalling 

is manipulated using pharmacological or genetic approaches. One potential reason for the 

discrepant observations regarding the roles of JNKs in signalling to hypertrophy vs death is 

the differential localisation and compartmentalisation of signalling components between 

cultured neonatal cardiomyocytes and whole hearts in vivo (Liang and Molkentin, 2003). 

Differential localisation of signalling molecules, such as JNKs, between neonatal and adult 

cardiomyocytes might be expected to result in disparate responses upon stimulation, for 

example due to factors such as availability of substrates. It is probable therefore, that the 

specific roles of JNKs vary, dependent on factors such as the stimulus encountered, duration 

of signalling and cell context and status.  

 

1.3.1.3 p38-mitogen activated protein kinases (p38-MAPKs) 

Six isoforms of p38-MAPK are derived from alternatively spliced transcripts of four genes. 

MAPK14 codes for two isoforms of p38-MAPKα, MAPK11 codes for two isoforms of p38-
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MAPKβ while MAPK12 and MAPK13 code for p38-MAPKγ and p38-MAPKδ, respectively. p38-

MAPKα is the predominant isoform in the heart, with lower expression of p38-MAPKβ and p38-

MAPKγ (Cargnello and Roux, 2011; Marber et al., 2011). Upstream MKKs for the p38-MAPKs 

include MKK3 and 6 (Fig. 1.3), although despite conserved activation loop motifs amongst the 

various p38-MAPK isoforms, there is differential regulation by the MKKs 3 and 6. MKK6 

effectively activates p38-MAPKα/ß/γ while MKK3 is unable to efficiently activate p38-MAPKß 

(Enslen et al., 1998). MKK4 (most closely associated with activation of JNKs), also activates 

p38-MAPKs in some contexts (Winston et al., 1997). Upstream MAP3Ks for the p38-MAPKs 

include ASK1, DLK1, MEKK3/4 and ZAK (Cuadrado and Nebreda, 2010).  

Substrates of the p38-MAPKs are numerous and varied, and the diversity of p38-MAPK targets 

is reflective of the pleiotropic effects of the pathway. In common with ERK1/2, p38-MAPK 

substrates include both transcription factors and MAPKAPKs (Fig. 1.3). The principal kinases 

activated by p38-MAPKs are MAPKAPK 2 and 3, which, in turn, phosphorylate the small heat 

shock protein 25/27 (HSP25/27) on multiple serine residues (Rouse et al., 1994); (Stokoe et 

al., 1992). Other targets include MSK 1 and 2 (Roux and Blenis, 2004). Additionally, and in 

common with JNKs and ERK1/2, p38-MAPKs regulate transcription by direct phosphorylation 

of transcription factors including CREB, ATF1/2/6, MEF2C, ternary complex factors and p53 

(Hazzalin et al., 1996; Whitmarsh et al., 1997; Zarubin and Han, 2005).  p38-MAPKs also 

indirectly modulate the stability of pro-inflammatory transcripts through phosphorylation of the 

mRNA-binding protein tristetraprolin (Brooks and Blackshear, 2013).     

Like the JNKs, activation of p38-MAPKs in cardiac tissues is most closely associated with 

cellular stresses. In cardiomyocytes, p38-MAPKs are potently activated by pro-apoptotic 

concentrations of H2O2, resulting in activation of MAPKAPK2 and phosphorylation of Hsp25/27 

(Clerk et al., 1998b), and are also stimulated by TNFα and IL1β (Clerk et al., 1999). In whole 

hearts, p38-MAPKs (and their substrate MAPKAPK2) are activated by H2O2 and high aortic 

pressure. In contrast with JNKs, p38-MAPKs in whole hearts are ROS-dependently activated 
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during global ischaemia, and this is sustained or increased upon reperfusion (Bogoyevitch et 

al., 1996; Clerk et al., 1998a).  

In common with investigations into the roles of JNKs in the heart (discusses in Section 1.3.1.2), 

studies have produced inconsistent and even dichotomous results regarding the roles of p38-

MAPKs in signalling to cardiac apoptosis vs cytoprotection. However, the reported disparity 

may be due, at least in part, to differing functions of the various isoforms. Interpretation of the 

literature is further complicated by the widespread use of p38-MAPK inhibitors such as 

SB203580, that inhibit both the p38-MAPKα/ß (but not other) isoforms (Kumar et al., 1997). 

Adenoviral overexpression of CA MKK3/6 mutants in cardiomyocytes resulted in a 

characteristic hypertrophic phenotype, with enhanced atrial natriuretic factor expression and 

increased cell surface area and sarcomeric organisation (Wang et al., 1998a). These effects 

were enhanced by co-expression of wild-type p38-MAPKß and suppressed by a DN p38-

MAPKα.  Overexpression of CA MKK3 (which preferentially activates p38-MAPKα rather than 

p38-MAPKß) also enhanced cardiomyocyte apoptosis, a response potentiated by co-

expression of wild-type p38-MAPKα and attenuated by a DN p38-MAPKα mutant, indicating a 

pro-hypertrophic and cytoprotective function for the ß-isoform and a death-promoting role for 

the α-isoform (Wang et al., 1998a). Furthermore, transgenic mice expressing cardiomyocyte-

specific CA MKK3 and CA MKK6 develop an early lethal cardiomyopathy (Liao et al., 2001). 

However, mice expressing only CA MKK3 exhibited significant myocyte atrophy, ventricular 

wall thinning and compromised diastolic function, which were absent in mice expressing CA 

MKK6 (Liao et al., 2001). These observations were supported by Saurin et al. (2000), who 

showed that p38-MAPKα is potently activated by experimentally induced ischaemia of cultured 

neonatal rat ventricular myocytes while the β-isoform is significantly inhibited. The same study 

also demonstrated that cardiomyocytes expressing a DN p38-MAPKα mutant are resistant to 

ischaemia. Moreover, p38-MAPKβ activation is selectively increased in porcine hearts that 

have undergone ischaemic preconditioning (Schulz et al., 2003), suggestive of a protective 

effect of the β-isoform. Thus, use of SB203580 to interrogate the roles of p38-MAPKs may 
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potentially confound interpretation of results, because, while the deleterious effects of p38-

MAPKα would be inhibited, so would the putative protective effect of selective p38-MAPKß 

activation during preconditioning. This notion is supported by the lack of any protective effect 

of SB203580 against ischaemia in cardiomyocytes expressing an SB203580-resistant variant 

p38-MAPKα containing a mutation of the key gatekeeper Thr106 residue, required for the 

interaction between p38-MAPKα/ß and SB203580 (Tong et al., 1997; Martin et al., 2001).  

Considered together, these observations suggest divergent roles of the p38-MAPKα and p38-

MAPKß isoforms, with perhaps a pro-hypertrophic and cardioprotective role for the β-isoform 

and a death-promoting function for p38-MAPKα. As noted for the JNKs, it is possible that the 

specific responses induced by activation of p38-MAPKs is dependent on a number of factors 

including location, duration and intensity of the signal and cardiomyocyte context.  

 

1.3.2 Regulation of cardiomyocyte gene expression by ERK1/2, JNKs and p38-MAPKs 

In other systems, the ERK1/2, JNK and p38-MAPK pathways play major roles in global 

regulation of gene expression (Turjanski et al., 2007). As discussed above, the different MAPK 

pathways target a wide range of substrates and, accordingly, influence regulation of gene 

expression at multiple levels. Both the ERK1/2 and p38-MAPK pathways phosphorylate and 

activate different kinases which in turn modulate activity of various downstream substrates to 

influence gene expression.  ERK1/2 primarily target RSKs while p38-MAPKs activate 

MAPKAPK2/3 thus conferring additional specificity to the cellular response to activating stimuli. 

However, both pathways target MSK1/2, representing a point of convergence of the two signals 

(Roux and Blenis, 2004; Cargnello and Roux, 2011). All three principal MAPK pathways (and 

their respective MAPKAPKs) translocate to the nucleus and upon stimulation phosphorylate 

transcription factors.  This directly alters binding affinities for specific gene promoters and may 

affect transcription factor stability or association with other factors.  



49 
 

In addition to regulation of transcription per se, MAPKs also influence global gene expression 

through regulation of transcript stability and by influencing the rate of protein translation. A key 

role of the p38-MAPK pathway is in regulation of the stability of pro-inflammatory transcripts 

including those for prostaglandin-endoperoxide synthase 2 (COX2) and TNFα (Dean et al., 

1999). One well-established mechanism is through p38-MAPK/MAPKAPK2-mediated 

phosphorylation of RNA-binding proteins such as tristetraprolin. Tristetraprolin binds AU-rich 

elements in the 3’-UTR of mRNAs such as TNFα, leading to their destabilisation and 

degradation. Phosphorylation of tristetraprolin is associated with inhibition of this function and 

this promotes accumulation of pro-inflammatory transcripts (Hitti et al., 2006). Signalling 

through the ERK1/2 cascade influences translation and protein synthesis through 

phosphorylation of the eukaryotic initiation factor 4E, which promotes recruitment of mRNAs 

to the ribosome (Ellederova et al., 2008; Shveygert et al., 2010).  

Investigations examining the role of ERK1/2 in cardiomyocytes indicate that the pathway 

makes major contributions to gene expression in response to GqPCR agonists, namely ET-1, 

phenylephrine and A61603, with at least some of the response being mediated by activation 

of RSKs secondary to ERK1/2 stimulation. Furthermore, these changes in gene expression 

are associated with induction of hypertrophy (Kennedy et al., 2006; Cullingford et al., 2008b; 

Cullingford et al., 2008a; Marshall et al., 2010; Amirak et al., 2013). ERK1/2 are also implicated 

in upregulation of mRNA for c-Jun, an important immediate early gene (Clerk et al., 2002). The 

roles of JNKs and p38-MAPKs in regulation of cardiomyocyte gene expression, however, are 

less clear. Potent activation of JNKs in response to anisomycin and hyperosmotic shock in 

neonatal rat cardiomyocytes results in phosphorylation of c-Jun and ATF2 transcription factors, 

thus presumably influencing transcriptional regulation by these factors (Clerk and Sugden, 

1997b). Inhibition of JNK signalling by overexpression of JNK-interacting protein 1 also 

suppresses upregulation of β-myosin heavy chain, atrial natriuretic factor, skeletal muscle 

alpha-actin and ventricular myosin light chain-2 in response to ET-1 and PE, further supporting 

a role for JNKs in modulation of cardiomyocyte gene expression (Finn et al., 2001).  
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As discussed, ERK1/2, JNKs and p38-MAPKs in cardiomyocytes and hearts are activated in 

response to pro-apoptotic H2O2 concentrations (Clerk et al., 1998a; Clerk et al., 1998b; Kwon 

et al., 2003) and exposure of cardiomyocytes to H2O2 is associated with induction of substantial 

changes  in gene expression (Kemp et al., 2003; Clerk et al., 2007b). The substrate profiles of 

ERK1/2, JNKs and p38-MAPKs, including MAPKAPKs, nuclear-localised transcription factors 

and RNA-binding proteins is strongly suggestive of key roles in regulation of the cardiomyocyte 

gene expression response to H2O2, and these pathways potentially influence the balance 

between life and death of cardiomyocytes in this context. 

One potential experimental strategy to dissect the roles of these pathways in regulation of gene 

expression is to use an inhibitor approach to microarray expression profiling. Potent and 

selective pharmacological inhibitors of MKK1/2 (the upstream activators of ERK1/2) such as 

U0126 (Favata et al., 1998) and PD184352 (Sebolt-Leopold et al., 1999) have been used in 

previous microarray expression profiling experiments to infer the roles of ERK1/2 in regulation 

of cardiomyocyte gene expression in response to ET-1, phenylephrine and A61603 (Kennedy 

et al., 2006; Marshall et al., 2010; Amirak et al., 2013). PD184352 is an allosteric,  non-ATP-

competitive inhibitor and, when used at concentrations of 1 – 2 µM, potently inhibits MKK1/2 

activity and therefore activation of ERK1/2 (Bain et al., 2007). PD184352’s mechanism of 

action confers a high level of selectivity towards MKK1/2 (Ohren et al., 2004) and although 

PD184352 can also inhibit MKK5 (the upstream activator of ERK5), this only occurs at higher 

concentrations (10 µM) (Mody et al., 2001).  

SB203580 (Cuenda et al., 1995), is an established inhibitor of p38-MAPKα (the predominant 

isoform expressed in the myocardium) and p38-MAPKß (expressed in heart at lower levels) 

(Marber et al., 2011). SB203580 displays an ATP-competitive mechanism of action and binds 

to both the activated form of p38-MAPKα/ß to inhibit ATP binding and phosphotransferase 

activity, as well as the inactive form of p38-MAPK, thus reducing its rate of activation (Young 

et al., 1997; Frantz et al., 1998). Although widely used with the intention to inhibit p38-

MAPKα/ß, SB203580 is known to have off-target effects on several other kinases including c-
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Raf, GSK3ß, CK1, GAK. SB203580 is also a particularly potent inhibitor of RIPK2 (Bain et al., 

2007; Hall-Jackson et al., 1999; Godl et al., 2003). When used at higher concentrations (10 

µM), the compound also inhibits JNKs in cardiomyocytes and adult hearts (Clerk and Sugden, 

1998). While SB203580 remains useful in exploring roles of p38-MAPKα/ß, off target effects 

cannot be ruled out and ideally, results should be corroborated using structurally unrelated 

p38-MAPK inhibitors with a distinct mechanism of action, such as BIRB 796 (Bain et al., 2007).  

While compounds such as SP600125 (Bennett et al., 2001) and AS601245 (Gaillard et al., 

2005) have been described as inhibitors of JNKs, their poor selectivity and potency has limited 

the potential to investigate the role of JNK pathway signalling. However, a potent and selective 

inhibitor, JNK-IN-8 (Zhang et al., 2012), has recently become available. JNK-IN-8 targets, and 

covalently binds to, a conserved cysteine residue preceding the JNK DFG-motif, resulting in a 

conformational change that blocks substrate binding (Zhang et al., 2012). Compared to 

conventional ATP-competitive kinase inhibitors, JNK-IN-8 exhibits higher selectivity towards 

its intended target, having no significant inhibitory activity against any other kinase in the 

“Kinativ™” chemical proteomics screening approach (Zhang et al., 2012; Liu et al., 2013). 

Accordingly, availability of JNK-IN-8 permits an inhibitor approach to investigate the 

contribution of JNKs in regulating cardiomyocyte gene expression.  

 

1.4 Pro-inflammatory cytokines and their roles in the heart 

Cytokines are low molecular weight proteins that play central roles in the regulation of immune 

and inflammatory responses, thus mediating a wide range of cellular processes including 

proliferation, differentiation, survival, and death. Cytokines are implicated in the development 

and progression of diverse pathologies, and are associated with both adaptive and 

maladaptive responses in the heart (Oppenheim, 2001; Hedayat et al., 2010). Major cytokines 

include the interferons, TNF superfamily members and IL family members. While some 

cytokines are constitutively expressed in some cell systems, production and release of 
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cytokines is typically induced in response to injurious stimulation. Circulating cytokines thence 

bind their cognate receptors expressed on the surface of target cells to induce specific 

responses (Medzhitov and Horng, 2009).  

1.4.1 Interleukin 1β (IL1β) and its role in the heart 

The IL1 family currently contains eleven members, of which IL1α and IL1β are amongst the 

best characterised (Luheshi et al., 2009). Both IL1α and IL1β bind and signal through the same 

receptor, the IL1 receptor 1 (IL1R1). The structures and biological effects of IL1α and IL1β are 

similar but not identical (Brikos et al., 2007), although most studies focus on IL1β.  IL1R1 is 

also targeted by the antagonist of IL1 signalling, IL1Ra, which blocks receptor stimulation by 

IL1α/β (Arend et al., 1998). IL1R1 interacts with co-receptors, IL1R accessory proteins 

(IL1RAcPs), and ligand binding results in recruitment of additional proteins to form a stable 

signalling complex at the membrane, containing IL1R1, IL1RAcPs, IL1R-associated kinase 

(IRAK) 4 and myeloid differentiation primary response protein 88 (MyD88) (Fig. 1.4) (Lingel et 

al., 2009; Brikos et al., 2007). Upon stable association with the receptor, IRAK4 

autophosphorylates and subsequently phosphorylates IRAKs 1 and 2, resulting in recruitment 

of TRAF6 (Cao et al., 1996; Brikos et al., 2007). Complexes containing IRAKs 1 and 2 and 

TRAF6 dissociate from the receptor complex and thence mediate activation of transforming 

growth factor-β-activated kinase (TAK1). Once active, TAK1 phosphorylates the inhibitor of 

κB-kinases (IKKs) and thus promotes activation of nuclear factor κB (NFκB) and NFκB-

dependent gene expression (Fig. 1.4). TAK1 also signals to activation of MAPKs (see section 

1.3 for a discussion of the MAPK pathways) (Brikos et al., 2007; Takaesu et al., 2000; Weber 

et al., 2010) (Fig. 1.4). Generally, IL1 is a major initiator and mediator of immune and 

inflammatory responses and is implicated in the pathogenesis of infectious, autoinflammatory, 

autoimmune and degenerative diseases (Garlanda et al., 2013).  
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Figure 1.4 IL1β receptor signalling  
 

IL1β stimulation leads to assembly of a complex containing IL1R1, ILRAcPs, MyD88 and 
IRAK4. IRAK4 becomes activated by autophosphorylation and phosphorylates and activates 
IRAKs 1 and 2, resulting in recruitment of TRAF6. Complexes containing TRAF6 and IRAKs 1 
and 2 mediate activation of TAK1. TAK1 phosphorylates and activates the IKKs which thence 
phosphorylate IκB, leading to its proteasomal degradation. NFκB then translocates to the 
nucleus to regulate pro-inflammatory gene expression. TAK1 also mediates activation of 
MAPK pathways.  
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Acute MI results in a significant inflammatory response, and IL1β is significantly upregulated 

in post-infarction rat and mouse hearts (Herskowitz et al., 1995; Yue et al., 1998; Dewald et 

al., 2004). To investigate the roles of IL1 signalling in the post-infarcted heart, Bujak et al. 

(2008) employed an IL1R1 knockout (KO) mouse model. IL1R1 KO mouse hearts exhibited 

significantly reduced neutrophil infiltration following IR and markedly delayed infiltration of 

macrophages. Expression of chemokines and cytokines (including TNFα and IL1β) was also 

reduced post-IR in IL1R1 KO heart (Bujak et al., 2008). Taken together, these observations 

indicate a role for IL1 signalling through the IL1R1 in mediation of the inflammatory response 

to IR. IL1R1 KO hearts also exhibited delayed infiltration of myofibroblasts into the post-infarct 

myocardium and decreased collagen deposition in the peri-infarct region, demonstrating a role 

for IL1 signalling in mediating fibrosis in response to MI (Bujak et al., 2008). In a further study, 

direct administration of IL1β to mice through intraperitoneal injection resulted in reduced left 

ventricular fractional shortening, suggestive of a role for IL1β in mediating development of 

cardiac contractile dysfunction (Van Tassell et al., 2013). Antagonism of IL1 signalling by 

overexpression of IL1Ra resulted in reduced infarct size in rat hearts subjected to IR (Suzuki 

et al., 2001) and, in common with the study by Bujak et al., (2008) this was associated with a 

reduction in neutrophil infiltration into the myocardium, reflective of a dampened inflammatory 

response. Overexpression of IL1Ra also led to significantly reduced incidence of TUNEL-

positive cardiomyocytes and DNA fragmentation in the post-ischaemic area, indicative of 

attenuation of apoptotic death (Suzuki et al., 2001).  

In cultured neonatal rat cardiomyocytes, IL1β activates the three principal MAPK pathways 

(discussed in section 1.3) and leads to phosphorylation of c-Jun and ATF2 transcription factors, 

thus presumably influencing their transactivating activities and thereby modulating 

transcriptional activity (Clerk et al., 1999). IL1β also induces upregulation of c-Jun protein, 

potentially reflecting enhanced stability (and therefore reduced degradation) in response to 

phosphorylation (Clerk et al., 1999). A later investigation confirmed that IL1β induces 

substantial changes in cardiomyocyte gene expression (Barrett et al., 2013). Focussing on 
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early transcriptomic changes in response to IL1β, expression profiling using Affymetrix 

microarrays indicated upregulation of 338 and downregulation of 237 RNAs. Classification of 

genes changed by IL1β demonstrated that most were associated with inflammation and 

signalling, with those relating to inflammation, apoptosis signalling, interleukin signalling and 

Toll receptor signalling being particularly highly represented (Barrett et al., 2013).   

Therefore, IL1β mediates post-infarction inflammation and cell death in the heart and activates 

intracellular signalling pathways in cardiomyocytes, associated with substantial changes in 

gene expression.  

 

1.4.2 Tumour necrosis factor-alpha (TNFα) and its role in the heart 

The prototypic TNF family member, TNFα, binds to the TNF receptor (TNFR) 1, the best 

characterised and most highly expressed member of the TNFR superfamily, and TNFR2. Other 

important TNFR superfamily members include the Fas receptor, which mediates apoptosis in 

response to binding by Fas ligand, and TNF-related apoptosis inducing ligand (TRAIL) 

receptors, DR 4 and 5 (Clerk et al., 2003; Locksley et al., 2001). TNFα has pleiotropic effects, 

and stimulation of TNFR1 activates signalling pathways which lead to a number of different 

responses including cell survival and inflammation or caspase activation and apoptosis, 

depending on cell context and signalling events downstream of receptor binding (Clerk et al., 

2003). TNFα can also signal to a novel form of regulated cell death, necroptosis (Zhou and 

Yuan, 2014), discussed in section 1.5.   

Binding of TNFα to TNFR1 results in the rapid (within minutes) assembly of a multiprotein 

complex at the membrane, referred to as complex I, which activates pro-survival and pro-

inflammatory signalling through NFκB (Micheau and Tschopp, 2003) (Fig. 1.5). TNFα 

stimulation causes receptor trimerisation, recruitment of the adapter molecule TNFR1-

associated death domain (DD) protein (TRADD) and receptor-interacting protein kinase (RIPK) 

1 (Fig. 1.5). RIPK1 plays a central role in mediating signalling through TNFR1 and although 
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RIPK1 is a Ser/Thr protein kinase, its role in complex I is as a scaffold protein and is 

independent of its kinase activity. TRADD also recruits TNF receptor associated factor (TRAF) 

2, followed by the cellular inhibitor of apoptosis proteins (cIAP) 1 and 2. cIAP1/2 and the linear 

ubiquitin assembly complex (LUBAC) are E3 ubiquitin ligases and mediate extensive 

polyubiquitinylation of RIPK1 through K63-linkages (cIAPs) and M1-linkages (LUBAC) (Fig. 

1.5). This facilitates efficient recruitment, retention and activation of a complex containing 

TAK1 binding protein (TAB) 1 and 2 and TAK1 (Fig. 1.5). Linear polyubiquitylation stabilises 

RIPK1 in complex I and also allows recruitment of the NFκB essential modulation (NEMO) 

adapter protein, which regulates formation of the IKK complex. TAK1 activates IKKs, which 

phosphorylate IκB, resulting in its K48-linked ubiquitinylation and proteasomeal degradation 

(Kanayama et al., 2004; Ea et al., 2006; Varfolomeev et al., 2008; Haas et al., 2009; Gerlach 

et al., 2011). IκB retains NFκB in the cytoplasm and thus its degradation relieves repression of 

NFκB, which translocates to the nucleus to mediate expression of NFκB-dependent genes 

(Fig. 1.5). Target genes include pro-inflammatory genes and the pro-survival protein cFLIP, 

which binds to and inhibits caspase-8 and thus blocks apoptosis (Micheau et al., 2001). TAK1 

also transmits the signal from TNFα to activation of MAPKs (Fig. 1.5) (see section 1.3 for a 

discussion of the MAPK pathways) (Liu et al., 1996; Devin et al., 2003; Lee et al., 2004).  

In addition to the pro-inflammatory and pro-survival function of signalling through complex I, 

TNFα can activate the death receptor, or “extrinsic”, pathway to caspase activation and 

apoptosis. Like the intrinsic/mitochondrial pathway detailed in section 1.2.2, the death receptor 

pathway induces activation of initiator, and thence executioner, caspases, resulting in ATP-

dependent dismantling and removal of the cell. Deubiquitinylation of RIPK1 by enzymes 

including CYLD and A20 results in dissociation of complex I, representing an important switch 

in TNFα signalling from inflammation and survival to death (Fig. 1.5) (Wertz et al., 2004; 

Ofengeim and Yuan, 2013). A secondary complex (referred to as complex IIa) forms in the 

cytosol and contains TRADD, RIPK1, Fas-associated protein with DD (FADD) and caspase-8 

(Fig. 1.5). Complex IIa mediates dimerisation and proteolytic activation of initiator caspase-8, 
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which then activates executioner caspases (e.g. caspase-3/7) to induce apoptosis (Fig. 1.5) 

(Micheau and Tschopp, 2003). Caspase-8 also negatively regulates RIPK1 activity in complex 

IIa through cleavage of RIPK1 in the kinase domain (Lin et al., 1999). 
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Figure 1.5 TNFα signalling to inflammation/cytoprotection and apoptosis  
 

TNFα promotes TNFR1 trimerisation and assembly of complex I. TRADD associates with 
TNFR1 and recruits RIPK1, which undergoes M1-linked polyubiquitinylation (PolyUbq) by 
LUBAC and K63-linked PolyUbq by cIAP1/2. M1-linked PolyUbq recruits NEMO and the IKKs 
and K63-linked PolyUbq recruits the TAB/TAK1 complex. Active TAK1 mediates activation of 
MAPKs. TAK1 phosphorylates IKKs which then phosphorylate IκB, resulting in its degradation. 
NFκB thence translocates to the nucleus to regulate pro-inflammatory and pro-survival gene 
expression, resulting in inhibition of caspase-8 and cytoprotection. Deubiquitinylation of RIPK1 
(e.g. by CYLD and A20) leads to formation of complex IIa. FADD recruits caspase-8, which 
dimerises and becomes active. Caspase-8 then mediates activation of executioner caspases 
(e.g. caspase-3 and -7) leading to apoptosis.  
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Due to the anti-apoptotic effects of TNFα signalling through complex I, engagement of TNFR1 

by TNFα is not necessarily sufficient to induce apoptosis in most cell types. Accordingly, many 

investigations induce apoptosis using cotreatment with TNFα and transcription inhibitors such 

as actinomycin D, protein translation inhibitors such as cycloheximide, or proteasome inhibitors 

such as MG132. Inhibition of the proteasome prevents degradation of IκB and thus NFκB is 

retained in its inactive form in the cytoplasm, whereas disruption of transcription and/or 

translation blocks NFκB-dependent upregulation of pro-survival molecules such as cFLIP, thus 

permitting activation of caspase-8 and apoptosis (Lin et al., 1999; Micheau et al., 2001; Kreuz 

et al., 2001; Kim and Song, 2002). A further caspase-8 activating complex, complex IIb may 

also form under conditions of cIAP depletion. As detailed above, cIAPs polyubiquitinylate 

RIPK1 to induce NFκB and suppress apoptosis. cIAP depletion, for example using second 

mitochondria-derived activator of caspases (Smac) or Smac mimetics, results in formation of 

complex IIb, leading to RIPK1 kinase-dependent activation of caspase-8 and apoptosis (Vince 

et al., 2007; Varfolomeev et al., 2007; Wang et al., 2008; Tenev et al., 2011).  

Increased levels of TNFα and inflammation are likely to play an important role in development 

and progression of HF and other cardiovascular diseases, although pleiotropically acting TNFα 

may have deleterious effects or alternatively confer cardioprotection (Higuchi et al., 2004; 

Monden et al., 2007; Hamid et al., 2009). The exact effects of TNFα on the myocardium are 

likely to be highly specific to the concentration encountered, the physiological and cellular 

context (i.e. whether the heart is healthy or compromised and the relative expression of pro-

death and pro-survival factors), and experimental systems employed. Circulating TNFα levels 

are significantly elevated in human patients with severe HF (Levine et al., 1990; Mcmurray et 

al., 1991) and TNFα mRNA and protein expression is increased, relative to donor hearts, in 

hearts from patients with dilated cardiomyopathy and ischaemic heart disease (Torre-Amione 

et al., 1996). TNFα levels are also elevated following MI in human patients (Valgimigli et al., 

2004) and in animal models of MI (Jacobs et al., 1999), suggestive of a role for TNFα in post-

infarction inflammation and remodelling. Numerous studies implicate TNFα in development of 
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cardiac dysfunction, associated with induction of cardiomyocyte apoptosis, left ventricular 

remodelling and progression to HF (Kubota et al., 1997b; Kubota et al., 1997a; Bryant et al., 

1998; Li et al., 2000).(Sivasubramanian et al., 2001; Haudek et al., 2007). Although these 

investigations are indicative of an association between TNFα exposure and cardiac death and 

dysfunction, all utilised transgenic mouse models overexpressing TNFα. The observations 

made, while undoubtedly valuable in illustrating the impact of TNFα on cardiac cells and the 

heart, were made in the context of chronic exposure to high TNFα concentrations, which may 

not reflect physiological conditions or those encountered in patients. Two parallel studies by 

Kubota et al. (1997a, b)  highlight the importance of the extent of TNFα exposure in the ultimate 

response. Both studies used α-MHC promoter-driven constructs with an aim to achieve cardiac 

specific overexpression of TNFα in live mice. However, the first study used a variant of the 

transgene with a deletion of the TNFα 3’ AU-rich destabilising sequence. This resulted in 

profound TNFα overexpression, a very severe HF phenotype characterised by myocarditis and 

cardiomegaly, and 100% mortality by the 11th day (Kubota et al., 1997a). In the second study, 

the destabilising sequence was left intact resulting in more moderate TNFα expression and a 

less severe phenotype (Kubota et al., 1997b). Accordingly, the TNFα expression levels and 

duration of exposure are clearly of central importance in the impact of TNFα on the heart and 

directly influence observations made in model systems.  

Investigations examining the effects of TNFα on cardiac cells in culture also indicate 

heterogeneity in responses depending on the model systems and conditions used. Exposure 

to TNFα alone has been reported to induce DNA fragmentation and an increase in TUNEL-

positive cells in isolated adult rat cardiomyocytes, indicative of induction of apoptosis (Krown 

et al., 1996). However, neonatal rat cardiomyocytes may demonstrate resistance to apoptosis 

in response to TNFα alone (Krown et al., 1996; Bergmann et al., 2001), and some studies have 

shown that additional intervention such as inhibiting the protective NFκB response is required 

to induce apoptosis in response to TNFα in these cells. Using neonatal rat cardiomyocytes, 

and cardiac derived H9c2 cells, Bergmann et al. (2001) reported nuclear translocation of NFκB, 
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but not apoptosis, following TNFα exposure. However, inhibition of NFκB signalling using a 

proteasome inhibitor, MG132 (thus preventing IκB degradation), or adenoviral overexpression 

of a degradation-resistant IκB mutant, sensitised these cells to TNFα-induced apoptosis 

(Bergmann et al., 2001). TNFα also activates the three main MAPK pathways in neonatal rat 

cardiomyocytes, associated with increased phosphorylation of the c-Jun and ATF2 

transcription factors (Clerk et al., 1999). Thus, these signalling pathways presumably make 

important contributions to the overall response of cardiomyocyte.  

 

1.5 Receptor interacting protein kinases (RIPKs) and necroptosis 

1.5.1 Regulated necrosis - necroptosis 

As discussed in section 1.2.2, apoptosis is characterised by a well-ordered, ATP-dependent 

dismantling and removal of cellular components with minimal inflammatory response. In 

contrast, necrosis has generally been regarded as the accidental, uncontrolled death of a cell 

in response to overwhelming stress. Necrosis involves swelling of the organelles, 

permeabilisation and rupture of the plasma membranes, and concomitant release of “damage 

associated molecular patterns” such as HMGB1 into the extracellular space, triggering immune 

cell recruitment and a significant inflammatory response (Scaffidi et al., 2002; Pittman and 

Kubes, 2013). However, recent research has reinforced the notion that the conceptualisation 

of cell death as occurring either by regulated apoptosis or unregulated necrosis is a false 

dichotomy. In 2005, Degterev and colleagues described a novel, non-apoptotic cell death 

modality, which they termed necroptosis. Necroptotic death is associated with morphological 

and biochemical features of necrosis yet is sensitive to pharmacological inhibition, thus 

indicative of a regulated process (Degterev et al., 2005). Since necroptosis is a regulated 

process, it may be possible to target the pathway pharmacologically. As a result, interest in 

this novel cell death pathway has led to intensive research efforts and rapidly expanding 
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knowledge of necroptosis, which is centrally regulated by the receptor-interacting protein 

kinases (RIPKs) 1 and 3.  

Necroptotic death can be elicited by a range of stress stimuli including death receptor ligands 

(e.g. TNFα, TRAIL, FasL), interferons, Toll-like receptor agonists (e.g. 

polyinosinic:polycytidylic acid, lipopolysaccharide) and viral infection (e.g. HSV-1, vaccinia 

virus) (Jouan-Lanhouet et al., 2012; Holler et al., 2000; He et al., 2011; Robinson et al., 2012; 

Wang et al., 2014c). Insights into the molecular regulation of necroptosis have predominantly 

arisen through investigations of TNFα signalling through TNFR1 in non-cardiac systems, 

particularly in immune and inflammatory cells. As detailed in section 1.4.2 and Fig. 1.5, TNFα 

stimulation results in assembly of pro-survival/pro-inflammatory complex I at the membrane, 

which can be disassociated under certain conditions leading to pro-apoptotic complex IIa/b in 

the cytosol (Fig. 1.5).  In complex IIa, caspase-8 inhibits RIPK1 activity by cleaving RIPK1 (Cho 

et al., 2009). However, under conditions refractory to caspase activation, for example in the 

presence of pan-caspase inhibitor zVAD-fmk or viral caspase inhibitor proteins such as B13R, 

RIPK1 can become activated and incorporate a further, necroptosis-inducing complex known 

as the necrosome (Fig. 1.6) (Li and Beg, 2000; Cho et al., 2009; Duprez et al., 2012).  

Activation of RIPK1 kinase activity is a crucial trigger in induction of necroptosis. Catalytically 

active RIPK1 associates with RIPK3 through RIP-homotypic interaction motifs (RHIMs), 66- 

and 88- amino acid sequences in the C-terminal portions of RIPK1 and RIPK3, respectively 

(Sun et al., 2002). Interaction between RIPK1 and RIPK3 results in RIPK1-dependent 

phosphorylation and activation of RIPK3. Oligomerisation of RIPK1:RIPK3 heterodimeric units 

produces a functional, amyloid-like, necrosome (Fig. 1.6) (He et al., 2009; Cho et al., 2009; Li 

et al., 2012). The formation of the necrosome, and induction of necroptosis in most conditions, 

can be suppressed with the specific inhibitor of RIPK1 kinase activity, necrostatin-1 (Nec-1) or 

its derivatives (Fig. 1.6) (Degterev et al., 2008; Degterev et al., 2005). Downstream of 

necrosome formation, RIPK3 phosphorylates a pseudokinase, mixed lineage kinase domain-

like protein (MLKL) (Fig. 1.6) (Sun et al., 2012; Wang et al., 2014a). MLKL phosphorylation 
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results in a conformational change and release of an N-terminal “four helix bundle domain” 

(4HBD), facilitating MLKL oligomerisation (Dondelinger et al., 2014; Hildebrand et al., 2014). 

The associated MLKL complexes translocate to the plasma membrane, where they mediate 

membrane permeabilisation, ion influx, and cellular swelling, all early hallmarks of necroptosis 

(Fig. 1.6) (Cai et al., 2014; Wang et al., 2014a). Some investigations indicate that MLKL 

induces necroptosis by binding of basic residues in the 4HBD to membrane 

phosphatidylinositol phosphates, although the exact mechanisms through which MLKL 

mediates cell death continue to be debated (Sun et al., 2012; Wu et al., 2013; Cai et al., 2014; 

Dondelinger et al., 2014; Hildebrand et al., 2014).  
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Figure 1.6 Formation of the necrosome 
 

Inhibition of caspases (for example by zVAD-fmk, cFLIP or the viral protein B13R) suppresses 
TNFα-induced apoptosis and results in phosphorylation and activation of RIPK1.  RIPK1 and 
RIPK3 associate through their RIP-homotypic interaction motifs (RHIM) leading to 
phosphorylation and activation of RIPK3. RIPK1:RIPK3 heterodimeric units oligomerise to form 
the amyloid-like necrosome signalling complex, which can be inhibited with necrostatins, 
specific inhibitors of RIPK1 kinase activity (e.g. Nec-1). RIPK3 becomes phosphorylated and 
in turn phosphorylates MLKL. MLKL oligomerises and translocates to the membrane, leading 
to membrane permeabilisation, ion influx, necroptotic death and inflammation. 
Necrosulfonamide (NSA) specifically suppresses MLKL-induced necroptosis.  
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Increased cell death is a key contributor to numerous disease states, and thus developing an 

understanding of the mechanisms governing cell death is crucial in identifying novel 

therapeutic strategies. The discovery of necroptosis as a regulated form of necrotic death may 

hold great potential for treating pathologies associated with increased cell death.    

Accumulating evidence indicates that necroptotic death makes an important contribution to 

development and progression of diseases in multiple systems. In their early investigation 

characterising necroptosis, Degterev et al. (2007) demonstrated that Nec-1 confers 

neuroprotection during transient focal cerebral ischaemia in mice, resulting in reduced infarct 

size. Necroptosis is also implicated in other neurodegenerative disorders and contributes to 

motor neuron death in humanised models of familial and sporadic amyotrophic lateral sclerosis 

(Re et al., 2014). The pathway is also activated in multiple sclerosis in human patients. 

Ofengeim et al. (2015) reported elevated expression of RIPKs 1 and 3 in tissue samples from 

human multiple sclerosis patients relative to healthy controls, associated with increased 

phosphorylation of RIPKs 1 and 3. Interaction between RIPK1 and RIPK3 (i.e. the necrosome) 

was detected in multiple sclerosis, but not control samples, and caspase-8 activation was 

found to be defective in multiple sclerosis, a requisite for induction of necroptosis (Fig. 1.6). 

Notably, Ofengeim and colleagues also reported significantly elevated expression of the 

caspase-8 inhibitory protein cFLIPL in multiple sclerosis tissue samples, potentially reflecting 

a physiologically relevant mechanism for defective caspase activation (Ofengeim et al., 2015). 

In a mouse model of kidney IR injury, administration of Nec-1 (either prior to IR or 15 min after 

reperfusion) resulted in significantly reduced renal damage and increased survival, centrally 

implicating RIPK1 kinase mediated necroptosis in kidney IR injury (Linkermann et al., 2012). 

Genetic deletion of RIPK3 or MLKL or inhibition of RIPK1 with Nec-1 also ameliorates renal 

proximal tubule death and inflammation in response to the anti-cancer drug cisplatin (Tristao 

et al., 2012; Xu et al., 2015). Emerging evidence also strongly implicates RIPKs and 

necroptosis in cardiac pathologies, as discussed in detail in section 1.5.3.  
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1.5.2 Regulation of RIPK1 signalling by post-translational modifications 

As discussed in sections 1.4.2 and 1.5.1, RIPK1 is a pleiotropic protein that plays central roles 

in signalling to cytoprotection, or otherwise to cell death through apoptosis or necroptosis. 

Whether RIPK1 induces cytoprotective signalling or promotes cell death is critically regulated 

by post-translational modifications, particularly ubiquitinylation and phosphorylation. 

Established phosphorylation and ubiquitinylation sites are indicated in Fig. 1.7.  

1.5.2.1 Regulation of RIPK1 signalling by ubiquitinylation 

Ubiquitin is a small (76 a.a.; ~8.5 kDa) protein that can be conjugated to other ubiquitin 

molecules through homotypic linkages at seven different lysine residues; and can also be 

linked through the initiator methionine residue to produce linear chains. Linkage at different 

residues is associated with induction of different cellular responses (Peng et al., 2003; Chyan 

et al., 2004). Accordingly, RIPK1 ubiquitinylation status is a key determinant of whether RIPK1 

signals to survival or death.  

As detailed in section 1.4.2 and Fig. 1.5, RIPK1 is a central component of the pro-survival 

TNFα-induced complex I. In complex I, RIPK1 functions as a scaffold protein and undergoes 

extensive polyubiquitinylation by several E3 ligases. Polyubiquitinylation stabilises the 

association of RIPK1 in the receptor complex and provides docking sites for other signalling 

components, resulting in the activation of the pro-survival NFκB and MAPK pathways.  Addition 

of K63-linked polyubiquitin chains to RIPK1 at K377 (see. Fig. 1.7), probably by cIAP1/2, 

provides a docking site for the TAB:TAK1 complex and results in TAK1 induction and a signal 

through to activation of MAPKs. Linear ubiquitination by LUBAC results in recruitment and 

stabilisation of NEMO and IKKs, which are activated by TAK1 to promote NFκB induction (Lee 

et al., 2004; Ea et al., 2006; Haas et al., 2009; Vince et al., 2007; O'donnell et al., 2007; Gerlach 

et al., 2011). Thus, linear and K63-linked RIPK1 polyubiquitinylation co-ordinately promote 

activation of pro-survival signalling downstream of TNFR1. Indeed, impaired 

polyubiquitinylation of RIPK1 in complex I, whether by depletion of cIAPs, disruption of LUBAC, 
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or as a result of deubiquitinylating activities, results in inhibition of RIPK1 pro-survival signalling 

through NFκB and leads to apoptotic or necroptotic death following formation of complex II or 

the necrosome (Kovalenko et al., 2003; Wertz et al., 2004; Bertrand et al., 2008; Berger et al., 

2014).  

Deubiquitinylation of RIPK1 is associated with cessation of cytoprotective signalling and 

induction of apoptotic or necroptotic signalling, and accordingly it was previously assumed that 

RIPK1 was not modified by ubiquitinylation in the necrosome. However, recent investigations 

report ubiquitinylation of RIPK1 within the necrosome, suggestive for a role for ubiquitinylation 

in regulation of necroptotic death. de Almagro et al. (2015) reported that RIPK1 modified with 

K63-linked and linear polyubiquitin linkages is present in the necrosome in numerous human 

and mouse cell lines following treatment with TNFα, Smac mimetic and caspase inhibition (i.e. 

under necroptotic conditions) but not in response to TNFα and Smac mimetic alone (i.e. 

apoptotic conditions). A further study from the same research group indicated that 

polyubiquitinylation of RIPK1 at K115 (see. Fig. 1.7) is required for necroptosis in HT29 cells 

in response to TNFα, Smac mimetic and caspase inhibition, as a modified HT29 line carrying 

a RIPK1 K115R mutation was resistant to necroptosis under these conditions. Suppression of 

RIPK1 kinase activity using different necrostatin compounds indicated that RIPK1 

polyubiquitinylation in the necrosome was dependent on RIPK1 catalytic activity. Furthermore, 

phosphorylation of RIPK1, RIPK3 and MLKL in the necrosome was demonstrated to be 

dependent on polyubiquitinylation of RIPK1. This study also demonstrated the in vivo 

relevance of RIPK1 ubiquitinylation in the necrosome in response to kidney IR injury (De 

Almagro et al., 2017).  

 

1.5.2.2 Regulation of RIPK1 signalling by phosphorylation 

As discussed, RIPK1 catalytic activity is key in promoting necroptosis and, as might be 

expected of a Ser/Thr kinase, RIPK1 signalling is also regulated by phosphorylation of RIPK1 
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itself. Abundant evidence indicates that assembly of the necrosome is driven by 

phosphorylation of RIPK1 and RIPK3, and requires RIPK1 kinase activity, although 

phosphorylation of RIPK1 in response to TNFα, cycloheximide and zVAD-fmk is abolished in 

RIPK3-/- mouse embryonic fibroblasts (Cho et al., 2009). Thus, RIPK3 directly or indirectly 

mediates phosphorylation of RIPK1 to trigger formation of the necrosome and induction of 

necroptosis. However, the phosphorylation sites required for RIPK1 activation and promotion 

of necroptosis, and the kinase(s) responsible, are yet to be clearly characterised.  

To date, numerous RIPK1 phosphorylation sites have been identified through site-specific 

experimental means and/or mass spectrometry, including Ser6, Ser14/Ser15, Ser20, Ser25, 

Ser89, Ser161, Ser166, Ser303, Ser320 and Ser330/331 (Degterev et al., 2008; Mcquade et 

al., 2013; Ofengeim et al., 2015; Newton et al., 2016b). Protein kinases typically require 

phosphorylation of a key residue in their activation loop (the activation loop phosphorylation 

site, ALPS) for efficient catalytic activity. Accordingly, structural modelling comparing the 

kinase domains of B-Raf and RIPK1 led Degterev et al. to propose that Ser161 (see. Fig. 1.7) 

is the RIPK1 ALPS due to sequence similarity with the regulatory Thr598 autophosphorylation 

site of B-Raf (Degterev et al., 2008; Zhang and Guan, 2000). Mutation of Ser161 to non-

phosphorylatable alanine resulted in a ~40% reduction in cellular necroptosis in the study by 

Degterev et al. (2008). However, McQuade and colleagues reported that S161A mutation of 

RIPK1 resulted in only a modest (~21%) reduction of RIPK1 kinase activity, suggesting that 

Ser161 is unlikely to be the ALPS, and that other sites are required for RIPK1 activation. 

McQuade et al. (2013) also mutated Ser166 (see. Fig. 1.7) to alanine, resulting in a ~71% 

attenuation of RIPK1 catalytic activity, and suggesting that Ser166 may be the RIPK1 ALPS.  

However, the authors did not acknowledge the observation or report any follow-up 

investigation, and therefore the RIPK1 ALPS is yet to be formally identified and characterised. 

In common with Ser14/15, Ser20, and Ser161, Ser166 has been identified as an 

autophosphorylation site and as a result has been described as a marker of RIPK1 activation 
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by some investigators (Degterev et al., 2008; Berger et al., 2014; Ofengeim et al., 2015; 

Newton et al., 2016b).  

While questions regarding the phosphorylation sites required for activation of RIPK1 and 

promotion of necroptosis remain, some phosphorylation sites implicated in negative regulation 

of RIPK1 catalytic activity and suppression of RIPK1-dependent apoptosis and necroptosis 

have been characterised. McQuade et al. (2013) reported that mutation of Ser89 (see. Fig. 

1.7) to alanine unexpectedly resulted in RIPK1 hyperactivation, indicating that phosphorylation 

of Ser89 inhibits RIPK1 kinase activation. This observation was corroborated by the 

suppression of RIPK1 catalytic activity in response to mutation of Ser89 to a phosphomimetic 

aspartic acid residue. However, even though the residue is highly evolutionarily conserved 

(Mcquade et al., 2013), RIPK1 phosphorylation at Ser89 has not yet been demonstrated to 

occur in vivo. Accordingly, determining the functional relevance in (patho)physiological 

conditions requires further investigation. 

 Although RIPK1 phosphorylation is necessary for induction of necroptosis, RIPK1 

phosphorylation in TNFR1 complex I is also implicated in suppressing RIPK1-mediated cell 

death. Dondelinger et al. (2015) demonstrated that, in addition to their function in 

cytoprotection through activation of NFκB (see section 1.4.2 and Fig. 1.5), the IKKs also protect 

against RIPK1 kinase-dependent apoptosis and necroptosis in an NFκB-independent manner 

by direct phosphorylation of RIPK1 in complex I. IKKα and IKKß were found to differentially 

phosphorylate RIPK1, and this was associated with suppressed integration of the RIPK1-

kinase dependent complex IIb or the necrosome.  Importantly, the protective role of IKK-

mediated RIPK1 phosphorylation was also confirmed in vivo. Wild-type mice, and transgenic 

mice expressing a kinase-deficient RIPK1 (K45A) mutant were injected with TNFα and the 

IKKα/ß inhibitor TPCA-1. Although TPCA-1 alone had no deleterious effects, TPCA-1 in 

combination with TNFα led to 100% mortality of wild-type mice but not RIPK1K45A/K45A mice, 

indicating suppression of RIPK1 kinase-dependent apoptosis and necroptosis by IKKs. The 

results obtained using genetic manipulation of RIPK1 kinase activity were corroborated using 
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pharmacological means, as wild-type mice injected with TNFα and TPCA-1 in the presence of 

the Nec-1 analogue Nec-1s were protected against death. Mass spectrometric analysis 

identified a number of sites phosphorylated by IKKα/ß including Ser25, Ser166, Ser296, 

Ser331 and Ser416 (Dondelinger et al., 2015) although, notably, the putative inhibitory Ser89 

site reported by McQuade et al. (2013) was not identified.   
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Figure 1.7 RIPK1 domain structure and post-translational modifications 

 
Established RIPK1 phosphorylation sites (in blue) and ubiquitinylation sites (in purple) are 
indicated. Only those sites determined by site-specific experimental means (i.e. using 
mutational analysis, site specific antibodies) are shown. Residue positions refer to human 
RIPK1. R denotes the receptor-interacting protein homotypic interaction motif (RHIM). DD 
denotes the death domain.  
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1.5.3  RIPKs and necroptosis in the heart 

To date, there have been relatively few published studies relating to RIPKs and necroptosis in 

the heart. However, the available data indicate an important role for RIPKs 1 and 3 in mediating 

necroptotic death of cardiac cells, and accordingly suggest a potentially important role for 

necroptosis in cardiac pathologies including MI and HF.  

A number of studies demonstrate that the selective inhibitor of RIPK1, Nec-1 (Degterev et al., 

2008), affords cardioprotection in response to varied stresses, suggesting that RIPK1 kinase 

activity has deleterious effects in the heart. Experiments using Nec-1 in vitro demonstrate 

reduced necrotic death of cardiac-derived H9c2 cells in response to directly applied oxidative 

stress in the form of tert-butyl hyrdoperoxide or H2O2 (Smith et al., 2007; Wang et al., 2015). 

Nec-1 also has similar protective effects in the whole heart. Nec-1 administration during 

myocardial IR in mice in vivo results in reduced infarct size with a reduction in necrotic cell 

death (Smith et al., 2007; Lim et al., 2007; Oerlemans et al., 2012; Qin et al., 2016). Importantly, 

Nec-1 also improves functional outcomes following reperfusion, preserving ejection fraction 

and attenuating adverse remodelling post-infarction, with significantly reduced left ventricular 

wall thinning and fibrosis (Oerlemans et al., 2012). A further study reported a protective effect 

of a combination of Nec-1 and zVAD-fmk administered prior to reperfusion in guinea pig hearts 

subjected to global ischaemia ex vivo, although this investigation did not seek to assess the 

effects on IR of either agent in isolation and therefore cannot distinguish between RIPK1- or 

caspase-dependent effects (Koshinuma et al., 2014). The cardioprotective effects of Nec-1 

have also been replicated in larger mammals, with Nec-1 administration resulting in improved 

cardiac performance and reduced immune cell infiltration in a pig model of IR injury (Koudstaal 

et al., 2015).  

As discussed in Section 1.5.1, induction of necroptosis is associated with phosphorylation of 

RIPK1 and RIPK3, and the formation of RIPK1:RIPK3 complexes (Cho et al., 2009). Notably, 

IR in mouse hearts induces a significant increase in serine phosphorylation of, and association 

between, RIPKs 1 and 3, and this is reduced by Nec-1, suggestive of disruption of necrosome 
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formation and suppression of necroptosis (Oerlemans et al., 2012). Adenovirally-mediated 

overexpression of RIPK3 in cardiomyocytes is also sufficient to induce formation of 

RIPK1:RIPK3 complexes, resulting in promotion of necroptotic death (Luedde et al., 2014). 

Furthermore, cardiac expression of RIPK1, RIPK3 and MLKL protein is increased following 24 

h reperfusion (Oerlemans et al., 2012; Qin et al., 2016). RIPK3 protein expression is also 

enhanced in the peri-infarct region of mouse hearts subjected to ischaemia (24 h) (Luedde et 

al., 2014), although it has not been established whether this occurs in cardiomyocytes or other 

non-myocyte cardiac cells. Inhibition of RIPK1 using Nec-1 (Oerlemans et al., 2012) or genetic 

RIPK3 deficiency (Luedde et al., 2014) is associated with reduced production of ROS as a 

result of IR in hearts, and  RIPK3 deficiency also results in reduced infarct volume following 

ischaemic insult (Luedde et al., 2014; Newton et al., 2016a; Zhang et al., 2016), and enhances 

cardiac allograft acceptance (Pavlosky et al., 2014).  

Suppression of certain cytoprotective mechanisms sensitises cardiomyocytes to necroptosis. 

Overexpression of an inactive DN form of the MAP3K TAK1, crucial for activation of IKKs and 

thence NFκB (see Fig. 1.5), predisposes cardiomyocytes to necroptotic death in response to 

TNFα stimulation (Li et al., 2014). This is rescued by Nec-1, implicating a central role for RIPK1 

kinase activity, but is insensitive to zVAD-fmk and is thus distinct from apoptosis (Li et al., 

2014). Moreover, TAK1 deficient mice exhibit a severe phenotype characterised by cardiac 

dysfunction, concomitant with increased cardiac fibrosis and release of HMGB1. This is 

associated with impaired cytoprotective signalling through TNFα-induced complex I and 

enhanced assembly of pro-apoptotic complex IIa (comprising FADD, RIPK1 and caspase-8, 

see Fig. 1.5) and the necroptotic RIPK1:RIPK3 complex (see Fig 1.6). These effects are 

ameliorated by Nec-1 administration, reinforcing the relevance of RIPK1 and its catalytic 

activity in cardiac necroptosis in certain cellular contexts (Li et al., 2014).  

As discussed, there are relatively few published studies relating to the roles of RIPKs and 

necroptosis in the heart, although several studies implicate necroptosis in cardiac cell death in 

certain circumstances. However, further investigation is required to characterise the 
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contribution of necroptosis to cardiac pathologies and to elucidate the molecular regulation of 

RIPKs 1 and 3 in the heart.  

 

1.6 Hypothesis and aims  

As discussed throughout this chapter, the heart is subjected to numerous and varied stresses, 

resulting in activation of intracellular signalling pathways, changes in gene expression and 

modulation of the balance between cardiomyocyte survival and death. 

There are two distinct, yet thematically related, aspects to this project. The first hypothesis is 

that the three main MAPK pathways, ERK1/2, JNKs and p38-MAPKs, play important roles in 

regulation of cardiomyocyte gene expression in response to oxidative stress. This project aims 

to employ a pharmacological inhibitor approach to microarray expression profiling to determine 

the relative contribution of each MAPK pathway to cardiomyocyte mRNA expression in 

response to a pro-apoptotic concentration of H2O2, a physiologically relevant form of oxidative 

stress.  

The second hypothesis is that other, novel, signalling pathways make important contributions 

to the regulation of cardiomyocyte survival vs death in response to stresses. This study seeks 

to examine the potential role of RIPK1 in the heart by exploring the regulation of cardiac RIPK1 

in response to various pathophysiological stimuli. 
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2.1 Materials and reagents 

Unless otherwise stated, solutions and buffers were prepared using Milli-Q H2O. General 

laboratory chemicals were purchased from VWR or Sigma-Aldrich. Details of other reagents 

and materials are listed below.  

Molecular biology reagents: Kanamycin sulphate, lysogeny broth (LB), LB agar, lysozyme, 

phenol and chloroform were obtained from Sigma-Aldrich. Spin Column Gel Extraction Kits 

were from NBS Biologicals Ltd. PacI, PmeI, KpnI, HindIII, calf intestinal alkaline phosphatase 

and CutSmart Buffer were from New England Biolabs. Promega Pfu polymerase, 10× Pfu 

buffer, Promega FuGene® HD, Taq DNA polymerase, 10× Taq DNA polymerase buffer, 

deoxynucleotide triphosphates, 1 Kb Plus DNA Ladder, UltraPureTM agarose, T4 DNA ligase 

and SYBR® Safe DNA gel stain were from Thermo Fisher Scientific. Polyplus-transfection 

jetPRIME® was from Source BioScience. TrypLE Express dissociation reagent was from 

Thermo Fisher Scientific. 

Cell culture: Cell culture dishes (60, 100 and 150 mm dishes and 35 and 60 mm Primaria 

dishes) were from VWR. Change to Dulbecco’s modified Eagle’s medium (DMEM, containing 

4.5 g/L D-glucose, L-glutamine and 25 mM HEPES) and Medium 199, 10× Dulbecco's 

phosphate buffered saline (PBS), L-glutamine, penicillin/streptomycin and foetal calf serum 

(FCS) were from Gibco. Gelatin and laminin were from Sigma-Aldrich.  

Protein extraction and immunoprecipitations: Benzamidine, dithiothreitol (DTT), 2-

mercaptoethanol, phenylmethylsulphonyl fluoride (PMSF) and EZview™ red anti-FLAG M2 

affinity gel beads were from Sigma-Aldrich. Triton X-100 was from VWR. Leupeptin 

hemisulphate was from Tocris Bioscience. Microcystin-LR was from Enzo Life Sciences 
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qPCR and RNA extraction: RNA Bee was from AMS Biotechnology Ltd. 96-well plates and 

iTaq Universal SYBR Green Supermix were from Bio-Rad. High Capacity cDNA Reverse 

Transcription Kits and MicroAmp Optical Adhesive Film were from Thermo Fisher Scientific.  

SDS-PAGE and immunoblotting: Antibodies for immunoblotting were obtained from Cell 

Signalling Technology, Sigma-Aldrich or Dako, as detailed in Table 2.2. Amersham ECL Prime 

Western Blotting Detection Reagents were from GE Healthcare. Mini-PROTEAN TGX 10% 

precast gels, Precision Plus Protein™ Kaleidoscope™, nitrocellulose membrane (0.45 µm) 

and Bio-Rad Protein Assay reagent were from Bio-Rad. TEMED, ammonium persulphate and 

bromophenol blue were from Sigma-Aldrich. Bovine serum albumin was from Santa Cruz 

Biotechnology. Whatman no. 1 filter paper, Whatman 3MM paper, acrylamide 40% (w/v), bis-

acrylamide 2% (w/v) and Tween 20 were from VWR. 

 

2.2 Agonists and inhibitors  

Stocks of agonists and inhibitors were prepared as indicated in Table 2.1 and were added 

directly to tissue culture medium or perfusate to produce the final concentrations, as indicated.  

Table 2.1 Agonists and Inhibitors 

Agonist/Inhibitor Solvent/Diluent Source Stock Concentration 

Calyculin A DMSO Enzo Life Sciences 200 µM (2000×) 

H2O2 Milli-Q H2O Sigma-Aldrich 0.01 – 10 M (1000×) 

JNK-IN-8 DMSO Millipore 1 mM (1000×) 

PD184352 DMSO Alexis Biochemicals 2 mM (1000×) 

Recombinant rat IL1β PBS+0.1% BSA R&D Systems 50 µg/ml (2000×) 

Recombinant rat TNFα Milli-Q H2O R&D Systems 20 µg/ml (1000×) 

SB203580 DMSO Enzo Life Sciences 0.7 mM (1000×) 

 

 



78 
 

2.3 Cell cultures 

2.3.1 Preparation of neonatal rat ventricular myocytes 

Primary cultures of neonatal ventricular cardiomyocytes were routinely prepared by Prof. 

Angela Clerk. Cardiomyocyte preparations were also performed Dr. Stephen J. Fuller, Dr.  

Kerry A. Rostron or Dr. Lorna R. Fiedler. Neonatal (2 – 4 d) Sprague-Dawley rats, purchased 

from Harlan Laboratories or Charles River Laboratories UK, were sacrificed by cervical 

dislocation and decapitated. The hearts were removed under sterile conditions and the 

ventricles separated from the atria. The ventricles were minced using forceps, washed in ice-

cold digestion buffer [116 mM NaCl, 20 mM HEPES, 0.8 mM Na2HPO4, 5.6 mM glucose, 5.4 

mM KCl and 0.8 mM MgSO4, (pH 7.35)] and transferred to a sterile 100 ml Schott bottle. The 

ventricles were dissociated by serial digestion with 0.4 mg/ml collagenase and 0.6 mg/ml 

pancreatin in sterile digestion buffer. All digestions were performed at 37°C with shaking in a 

water bath. The supernatant from the first digestion (5 min, 160 cycles/min shaking) was 

removed and discarded. Suspensions from subsequent digestions (20 min, 2 × 25 min, 20 min, 

10 min, 136 cycles/min shaking) were transferred to a sterile 50 ml Falcon tube followed by 

the addition of 2 ml FCS. Cells were recovered by centrifugation (5 min, 60×g) and 

resuspended in 4 ml FCS, followed by storage in an incubator (37°C, 5% CO2) for the duration 

of the subsequent digestions. Following all digestions, the pooled cells were recovered by 

centrifugation (5 min, 60×g) and the resulting cell pellet resuspended in plating medium 

[(DMEM)/Medium 199 4:1 (v/v), 15% (v/v) FCS, 100 units/ml penicillin and streptomycin].  

Cardiomyocyte content was enriched by pre-plating on uncoated plastic tissue culture dishes 

(30 min), to remove adherent non-cardiomyocytes. Cardiomyocytes were plated at a density 

of 4×106 cells/dish on 60 mm Primaria dishes pre-coated with sterile 1% (w/v) gelatin (Sigma-

Aldrich UK) and maintained in an incubator (37°C, 5% CO2). After 18 h myocytes were 

confluent and beating spontaneously. Twenty-four hours prior to exposure to stimuli, serum-

containing medium was withdrawn from cardiomyocytes followed by replacement with serum-

free maintenance medium [DMEM/medium 199 4:1 (v/v), 100 units/ml penicillin and 
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streptomycin].   

 

2.3.2 Human Embryonic Kidney 293 (HEK 293) cultures 

Human Embryonic Kidney 293 (HEK 293) cell cultures were established by thawing frozen cell 

aliquots at 37°C followed by resuspension in growth medium [DMEM containing 10% FCS 

(v/v), 1% (v/v) glutamine and 50 units/ml penicillin and streptomycin]. The cells were recovered 

by centrifugation (500×g, 5 min) and resuspended in growth medium. Cells were plated onto 

100 mm tissue culture dishes and grown to confluence in an incubator (37°C, 5% CO2). In 

order to expand cultures or prepare cells for experimentation, cells were harvested using 

TrypLE Express dissociation reagent. Growth medium was removed and cultures washed 

twice in 1× PBS. Cells were dissociated by addition of 1 ml TrypLE Express, followed by 

incubation at 37°C until cells were detached. Cells were then resuspended in growth medium 

and plated onto 60, 100 or 150 mm tissue culture dishes, as required, and maintained in an 

incubator (37°C, 5% CO2).  

 

2.4 Heart perfusions 

Hearts were perfused by Dr. Stephen J. Fuller. Adult Sprague-Dawley rat hearts were perfused 

retrogradely for the indicated times at a pressure of 10 kilopascals (70 mm Hg) with Krebs-

Henseleit bicarbonate-buffered saline [25 mM NaHCO3, 119 mM NaCl, 4.7 mM KCl, 2.5 mM 

CaCl2, 1.2 mM KH2PO4 (pH 7.6)] at 37°C, supplemented with 10 mM glucose and equilibrated 

with 95% O2/5% CO2. Perfusate and heart temperature were maintained at 37°C using a 

water-jacketed apparatus. For hearts subjected to ischaemia reperfusion, the aortic perfusion 

line was clamped for the specified times to cease the flow of perfusate. This was followed by 

removal of the clamp to allow reperfusion for the indicated times. Stocks of treatments, as 

indicated, were prepared at 1000× the desired final concentration and were added directly to 
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the perfusate. Following perfusions, hearts were frozen by clamping between aluminium tongs 

cooled in liquid N2 (freeze-clamped) and the tissue pulverised under liquid N2. The powders 

were stored at -80°C. 

2.5 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting 

2.5.1 Preparation of total protein extracts 

Unless stated otherwise, for cardiomyocyte extracts, stocks of agonists and inhibitors were 

prepared as described in Table 2.1 and were added directly to the tissue culture medium to 

give the final concentrations as stated, for the indicated times. Following treatments, primary 

cardiomyocyte cultures (4×106 cells) were washed twice with ice-cold 1× PBS and scraped 

into 150 μl ice-cold extraction buffer (20 mM glycerophosphate, 50 mM NaF, 2 mM 

ethylenediamine tetra-acetic acid (EDTA), 10 mM benzamidine, 0.2 mM Na3VO4, 5 mM DTT 

and 1% (w/v) Triton X100) containing protease inhibitors [200 μM leupeptin, 10 μM E64 and 

300 μM PMSF] and the PP2A inhibitor microcystin (4 μM). Samples were centrifuged in an 

Eppendorff microcentrifuge (5 min, 10,000×g, 4°C) and the supernatants boiled with 0.33 

volume 4× SDS-PAGE sample buffer [330 mM Tris-HCl (pH 6.8), 10% (w/v) sodium dodecyl 

sulphate (SDS), 133 mM DTT, 13% (v/v) glycerol and 0.2 mg/ml bromophenol blue]. Protein 

content was quantified using the Bio-Rad Protein Assay (see Section 2.5.3 for details) and 

samples were stored at -20°C. 

Total protein extracts from perfused hearts were prepared by homogenising 50 mg of frozen 

heart powders (prepared as described in section 2.4) in six volumes of extraction buffer (as 

described above) and extracted on ice (10 min). Lysates were centrifuged (10000×g, 5 min, 

4°C) and supernatant protein extracts boiled with 0.33 volumes of 4× sample buffer. Protein 

content was quantified using the Bio-Rad Protein Assay (as described in section 2.5.3) and 

samples stored at -20°C. 
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2.5.2 Preparation of cytosolic and nuclear protein-enriched (NPE) extracts 

Cytosolic and nuclear protein-enriched (NPE) extracts were prepared using an adaptation of 

the method described by vor et al. (1983). Cardiomyocytes (4×106 in 60 mm tissue culture 

dishes) were washed twice with ice-cold PBS and scraped into 150 μl buffer A [10 mM HEPES, 

pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.3 mM Na3VO4, 200 μM leupeptin, 10 μM E64, 5 mM 

DTT, 300 μM PMSF, 4 μM microsystin]. Following extraction on ice (10 min), the samples were 

centrifuged (10000×g, 5 min, 4°C) and the supernatants (i.e. the cytosolic fractions) were 

removed to a clean tube and boiled with 0.33 volume of 4× sample buffer.  

For the preparation of NPE extracts, the pellets resulting from the previous centrifugation step 

were resuspended in 50 μl of buffer C [20 mM HEPES, (pH 7.9), 420 mM NaCl, 1.5 mM MgCl2, 

0.2 mM EDTA, 25%, (v/v) glycerol, 0.3 mM Na3VO4, 200 μM leupeptin, 10 μM E64, 5 mM DTT, 

300 μM PMSF, 4 μM microcystin] and extracted on ice for 60 min, with periodic vortex-mixing 

at 10 – 15 min intervals. Samples were then centrifuged (10000×g, 5 min, 4°C) and the 

supernatant NPE extracts transferred to a clean tube and boiled with 0.5 volume of 4× sample 

buffer.  

Protein content in the cytosolic and NPE extracts was determined using the Bio-Rad protein 

assay, as described in section 2.5.3. 

 

2.5.3 Bio-Rad protein assay 

Protein content in extracts was quantified using an adaptation of the Bio-Rad Protein Assay, 

which is itself based on the Bradford method (Bradford, 1976). The colorimetric assay is based 

on the colour change exhibited by binding of Coomassie brilliant blue G-250 dye to basic and 

aromatic amino acid side chains. The extent of the colour change is determined by the 

concentration of the protein present and therefore can be used as an indication of protein 

content in a sample.  
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Protein content in samples was quantified by comparison to a BSA standard curve. Standard 

curves (ranging from 0 – 10 μg protein in 2 µg increments) were produced by diluting BSA (0.2 

mg/ml) in Milli-Q H2O, to a total volume of 100 μl. Protein samples (1 – 5 μl) were also diluted 

in Milli-Q H2O to a total volume of 100 μl.  Bio-Rad Protein Assay solution was diluted 1:5 and 

filtered through Whatman No. 1 filter paper. The diluted, filtered, solution (1 ml) was added to 

the samples and standard curve with vortex-mixing and the absorbance of the solutions at 595 

nm was read using a spectrophotometer. Protein content in samples was calculated by 

interpolation.   

 

2.5.4 SDS-PAGE and immunoblotting 

Protein extracts (quantities as indicated) were separated using 10% polyacrylamide resolving 

gels with 6% polyacrylamide stacking gels (see Appendix I for gel recipes) or using Bio-Rad 

Mini-PROTEAN TGX 10% precast gels. Electrophoresis was conducted for one hour at 160 V 

using the Bio-Rad Mini-PROTEAN III system with SDS-PAGE running buffer [25 mM Tris base, 

192 mM glycine, 0.1% (w/v) SDS]. Molecular weight markers used were Precision Plus Protein 

Kaleidoscope (5 μl). Following electrophoresis, proteins were transferred electrophoretically to 

nitrocellulose membranes using Whatman 3MM paper and a Bio-Rad Trans-Blot semi-dry 

transfer cell (10 V, 1 h) with Towbin transfer buffer [25 mM Tris base, 192 mM glycine, 20% 

(w/v) methanol]. Membranes were incubated in 5% (w/v) non-fat milk powder in Tris-buffered 

saline [50 mM Tris-HCl (pH 7.6), 150 mM NaCl containing 0.1% (v/v) Tween 20 (TBST)] to 

block non-specific binding sites (60 min, 20°C). Membranes were then washed in TBST and 

incubated with primary antibodies as indicated (see Table 2.2 for details) diluted in 5% (w/v) 

bovine serum albumin (BSA) in TBST (16 h, 4°C). The membranes were washed in TBST (3 

× 5 min, 20°C) and incubated with horseradish peroxidase-coupled secondary antibodies in 

TBST (1:5000 dilution) containing 1% (w/v) non-fat milk powder (1 h, 20°C). The membranes 

were then washed again in TBST (3 × 5 min, 20°C).  
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Immunoreactive bands were visualised using enhanced chemiluminescence (Amersham ECL 

Prime Western Blotting Detection Reagents) and detected using an ImageQuant LAS 4000 

Mini system (GE Healthcare). Densitometric analysis of immunoblots was performed using 

ImageQuantTL Software (GE Healthcare). 

Table 2.2 Antibodies used for immunoblotting. 

 CST, Cell Signalling Technology, Inc. 

Protein  Species Supplier (cat. no.)  Dilution 

ERK1/2 Rabbit mAb CST (4695) 1:1000 

Phospho-ERK1/2 (T202/Y204) Rabbit mAb CST (4370) 1:1000 

JNKs Rabbit pAb CST (9252) 1:1000 

Phospho-JNKs (T183/Y185) Rabbit mAb CST (4668) 1:1000 

c-Jun  Rabbit mAb CST (9165) 1:1000 

Phospho-c-Jun (S63) Rabbit mAb CST (2361) 1:1000 

p38-MAPK Rabbit pAb CST (9212) 1:1000 

Phospho-p38-MAPK (T180/T182) Rabbit mAb CST (4511) 1:1000 

MAPKAPK2 Rabbit mAb CST (12155) 1:1000 

Phospho-MAPKAPK2 (T222) Rabbit mAb CST (3316) 1:1000 

Phospho-MAPKAPK2 (T334) Rabbit mAb CST (3007) 1:1000 

RIPK1 Rabbit mAb CST (3493) 1:1000 

RIPK3 Rabbit pAb CST (14401) 1:1000 

FLAG-tag Rabbit pAb Sigma (F7452) 1:1000 

Anti-rabbit Ig/HRP Goat pAb Dako (P0448) 1:5000 

 

2.6 Immunoprecipitations 

Cardiomyocytes (4×106 in 60 mm dishes) or HEK 293 cells were treated as indicated and 

washed twice with ice-cold 1× PBS. Cells were extracted by scraping into 150 µl ice-cold 

immunoprecipitation buffer [20 mM Tris/HCl (pH 7.5), 300 mM KCl, 5 mM MgCl2, 5 mM NaF, 

1 mM EDTA, 0.2 mM Na3VO4, 2 μM microcystin LR, 10% (v/v) glycerol, 1% (v/v) Triton X-100 

and 0.05% 2-mercaptoethanol; containing protease inhibitors [200 μM leupeptin, 10 μM E64 

and 300 μM PMSF]. Lysates were vortex mixed and extracted on ice (10 min) followed by 

centrifugation (5 min, 10000×g, 4°C). A portion (30 µl) of the lysates was boiled with 2× SDS-
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PAGE sample buffer (5 min) for immunoblotting to assess protein input. A sample of 

supernatant (5 µl) was also retained for protein quantification as described in section 2.5.3.  

For immunoprecipitations, 100 µl total cell lysate was removed to a clean pre-chilled tube 

containing EZview™ red anti-FLAG M2 affinity gel beads (20 µl of a 1:1 slurry in 

immunoprecipitation buffer) and immunoprecipitations performed on a rotating mixer (18 h, 

4°C). Following immunoprecipitation, the samples were centrifuged (5 min, 10000×g, 4°C) and 

the supernatants retained and boiled with 2× SDS-PAGE sample buffer (5 min). The pelleted 

anti-FLAG beads were washed with immunoprecipitation buffer (3×, 0.7 ml per wash) and the 

final pellets boiled with 2× SDS-PAGE sample buffer (5 min). Samples were stored at -20°C.  

 

2.7 Total RNA extraction  

Total RNA was extracted from neonatal cardiomyocytes using RNA Bee, following the 

manufacturer’s instructions. For neonatal rat ventricular cardiomyocytes, addition of agonists 

and inhibitors was staggered and cells were harvested simultaneously. RNA Bee (1 ml per 

4×106 cells) was added to cells, which were scraped and repeatedly pipetted to ensure cell 

lysis. Chloroform (0.2 ml) was added and the samples shaken (30 s), and then incubated on 

ice (5 min). The resulting homogenate was centrifuged (12000×g, 15 min, 4°C) to separate the 

phases. The upper aqueous phase (containing RNA) was removed to a clean pre-chilled tube, 

taking care to avoid the interphase layer. RNA was precipitated by addition of 0.5 ml 

isopropanol and the samples were incubated at room temperature for 5-10 min. RNA was then 

pelleted by centrifugation (12000×g, 15 min, 4°C). The supernatant was discarded and the 

pelleted RNA washed twice by centrifugation with 1 ml 75% (v/v) ethanol (12000×g, 10 min, 

4°C), discarding the supernatant ethanol after each wash. RNA was air dried briefly and then 

dissolved in 20 – 40 μl nuclease-free water. RNA purity and concentration were assessed 

using a nanophotometer and A260/A280 values of 1.9-2.1 were considered acceptable. Extracted 

RNA was stored at -80°C.  
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2.8 Quantitative real time polymerase chain reaction (qPCR) 

cDNAs were reverse transcribed from extracted RNA using High Capacity cDNA Reverse 

Transcription Kits. Total RNA extracted from neonatal cardiomyocytes was diluted to 0.2 μg/μl 

with nuclease-free H2O. A 2× reverse transcription mastermix was produced containing (per 

20 μl reaction): 10× RT Buffer (2 μl), 25× dNTP mix 100 mM (0.8 μl), 10× Random Primers (2 

μl), MultiScribeTM reverse transcriptase (1 µl) and nuclease free H2O (9.2 μl). The diluted RNA 

(5 μl, 1 μg) was added to 15 μl mastermix, gently pipetted to mix and centrifuged briefly 

(10000×g, 15 s, 4°C). Reactions were then incubated at 25°C (10 min) followed by 37°C (120 

min) and finally 85°C (5 min). Following reverse transcription, cDNAs were diluted 1:15 with 

the addition of nuclease-free water (280 µl) and were stored at -80°C.  

qPCR was conducted using an ABI Real-Time PCR 7500 system (Applied Biosystems). qPCR 

reactions (25 μl) were analysed in Optical 96-well reaction plates. A qPCR mastermix was 

produced for each gene analysed, containing (per reaction) 12.5 μl iTaq Universal SYBR 

Green Supermix and primers (5 µl). The mastermix (17.5 μl) was pipetted into each well, 

followed by the cDNA template (7.5 µl). Details of primers used are found in Table 2.3. The 

plates were sealed with MicroAmp Optical Adhesive Film and the plates were centrifuged 

(600×g, 5 min, 4°C) to ensure the reactions were collected at the bottom of each well. qPCR 

was performed using absolute quantification with standard curve protocol. Five-point standard 

curves were produced, with each point assigned a quantity value of 1000, 500, 250, 125 or 

62.5 (arbitrary units). The standard curves were produced by pooling equal volumes of each 

cDNA sample. An aliquot of this pooled cDNA was retained and was assigned the quantity 

value of 1000. The remainder was diluted twofold in series for a total of four dilutions to produce 

the 500, 250, 125 and 62.5 points of the standard curve. qPCR cycling conditions were 50°C 

(2 min), 95°C (10 min) and then forty cycles of 95°C (15 sec) and 60°C (1 min). Dissociation-

curve analysis was routinely performed for each primer pair to ensure the absence of aberrant 

amplification products and primer dimers. “No template control” reactions, in which nuclease-
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free water (7.5 μl) is substituted for the cDNA template, were carried out to verify the absence 

of contaminants in the qPCR mastermix. 
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Table 2.3 Primers used in qPCR validation of microarray data 

Oligonucleotide primers were either designed and synthesised by PrimerDesign (PD) or designed using Primer Express software and synthesised by 
Eurofins.  

Gene Symbol Accession No. Product length (bp) Position Sense Primer Antisense Primer Source 

Atf3 NM_012912 132 993-1124 AGCAGGATCGCACTAATGGG ACAACTTCAATGATGATGAATGTTCTCAC PD 

Ctgf NM_022266 131 796-926 CTATGATGCGAGCCAACTGC GAGACGACTCTGCTTCTCCAG PD 

Dusp2 NM_00101208 110 1235-1344 ACTTGCGGAAATTAATTGAACTCTAAA ACATGGTTTCTGCTTGTCACAG PD 

Dusp4 NM_022199 108 519-626 TCCCAGCACAAATGAGTCCTT GCACTGCCGAGGTAGAGG PD 

Dusp5 NM_133578 97 1970-2066 CCTTGGACTTTGGCATGGTTT GGGTCTGACAACTTTCTGAATGA PD 

Dusp8 NM_00110851 96 964-1059 TGTCTTCTGACGACGCATACA TCCTCTCATACTCCAGCAACTG PD 

Egr1 NM_012551 116 1049-1164 TCAGTCGTAGTGACCACCTTAC GGTATGCCTCTTGCGTTCATC PD 

Egr3 NM_017086 125 134-258 ATTACACTCAGATGGCTACAGAGA CAAGTAGGTCACGGTCTTGTTG PD 

Gapdh NM_002046.3 93 552-664 CCAAGGTCATCCATGACAACTT  AGGGGCCATCCACAGTCTT  Eurofins 

Gclc NM_012815.2 78 880-957 TGCCCAATTGTTATGGCTTTG TCCCCAGCGACAATCAATG Eurofins 

Hmox1 NM_012580.2 82 779-860 GACAGAGGAACACAAAGACCAGAGT GGTAGTATCTTGAACCAGGCTAGCA  Eurofins 

Jun NM_021835 81 2241-2321 CTTCTGTAGTGCTCCGTAAGAAC CGCAATCTAGCCTGGTACTCA PD 

Nqo1 NM_017000.3 83 163-245 GACATCACAGGGGAGCCG CTCAGGCGGCCTTCCTTATAC Eurofins 

Txnrd1 NM_031614.2 90 318-407 AGCTAAGGAGGCAGCCAAATT  CCCCCGAGACCCCATCT  Eurofins 
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2.9 Agarose gel electrophoresis of DNA 

DNA samples were mixed with 0.2 vol SDS gel-loading buffer [0.2 mM EDTA (pH 8.0), 50% 

(v/v) glycerol, 0.2% (v/v) bromophenol blue] and subjected to electrophoresis through 1 or 2% 

agarose gels containing a 1:10000 dilution of SYBR® Safe DNA Gel Stain. 1 Kb Plus DNA 

Ladder was used to ensure products were of the correct size. Electrophoresis was conducted 

using TBE buffer [45 mM Tris (pH 8.0), 4 mM boric acid, 1 mM EDTA] for 30 – 45 min at 65 – 

70 V. The products were visualised using UV transillumination. 

 

2.10 General methods for the generation of adenoviruses expressing RIPK1 

2.10.1 Amplification of plasmids  

Plasmids were amplified by heat shock transformation into ultracompetent XL10-Gold 

Escherichia coli cells. Plasmid DNA (4 µl for ligation reactions, 0.1 µg for purified plasmids) 

was added to a 100 µl aliquot of XL10-Gold cells and swirled gently to mix. The cells were 

incubated on ice (30 min) followed by heat-shock (42°C, 50 s). After incubating on ice for a 

further 2 min, 1 ml LB was added and the cells were incubated in a rotary shaker (37°C, 60 

min, 250 rpm). The cells were then spread using a sterile inoculation loop onto warm LB agar 

plates containing kanamycin (50 µg/ml) and incubated upside down overnight at 37°C.  

 

2.10.2 Colony screen PCR 

For screening of bacterial colonies to confirm  the presence of plasmids,  a PCR mastermix 

(400 µl) was assembled containing Taq polymerase (10 units, 2 µl), 10× Taq polymerase buffer 

(40 µl), dNTP mixture (2 mM of each nucleotide, 40 µl), nuclease-free H2O (312 µl) and forward 

and reverse primers (1 µM, 2 µl each primer). Details of primers used are found in Table 2.3. 

Single colonies were picked with a sterile cocktail stick and transferred directly to 25 µl aliquots 

of the PCR screen mastermix. The high temperature (94°C) during the denaturation stage of 
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the PCR ruptures the bacterial cells, thus releasing DNA to be used as template for the screen. 

Cycling conditions are detailed in Fig. 2.1.  

Products from PCR screens were electrophoresed on 1 or 2% agarose gels as described in 

section 2.9 and visualised using UV transillumination. The sticks used to pick the colonies were 

transferred to clean tubes containing 300 µl LB containing kanamycin (50 µg/ml) and shaken 

at 37°C to allow colony growth during PCR screens. Positive colonies (i.e. those producing  

PCR products of the correct size) were inoculated into 5 ml LB containing kanamycin (50 µg/ml) 

and incubated in a rotary shaker overnight (37°C, 250 rpm) followed by plasmid isolation using 

the alkaline lysis minipreparation method, described in section 2.10.4 
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Table 2.3 Primers used in colony PCR screens  

Primer pair 1 was used for screens for the FLAG-RIPK1-Shut plasmid. Pair 2 was used in 
screens for the FLAG-S161A-Shut, FLAG-S166A-Shut and FLAG-T183A-Shut plasmids. Pair 
3 was used in screens for the FLAG-K376R-Shut plasmids. Pairs 4 and 5 were used in screens 
for homologous recombination for all adenoviral plasmids.  

Primer Pair Name Sequence (5’ – 3’) Tm (°C) 

1 
RIPK1_Fwd GACAAGGGTACCATGCAACCAGACATGTCCTTGGAC 67.9 

KpnI _Rev CATGTAGTAAAGGGTTCCACCATTGTTCTTC 60.4 

2 
ShutF GGTCTATATAAGCAGAGCTG 55.3 

S166A_Rev CTTAGTCAGTTTGGCCCATGTCTTAAA 56.7 

3 
K376R_Fwd TGTGCAGGCTAGGCTGCAAGAGG 58.9 

ShutR GTGGTATGGCTGATTATGATCAG 60.6 

4 
AdV_184F CAACGTTGTTGCCATTGCTG 51.8 

AdV_184R TGTAAGCCCACTGCAAGCTA 51.8 

5 
Adv_300F CAGAAACCCGCAGACATGTT 51.8 

AdV_300R CCCCATGCTTTTTGATGCGT 51.8 

 

 

 

Figure 2.1 PCR conditions for colony screens 

(A) PCR conditions for screening colonies expressing wild-type RIPK1, S161A, S166A, and 
T183A constructs. (B) PCR conditions for screening colonies expressing K376R constructs. 

 

94 C

5 min

94 C

30 s
55 C

30 s

72 C

2 min

72 C

7 min

∞

18 C

42 cycles

94 C

5 min

94 C

30 s
55 C

30 s

72 C

30 s

72 C

7 min

∞

18 C

42 cycles

A

B



91 
 

2.10.3 Spin column purification of DNA 

Plasmids and PCR products were purified using Spin Column Gel Extraction Kits, according 

to the manufacturer’s instructions. For purification of PCR products subjected to agarose gel 

electrophoresis, the DNA bands were excised from the gel and the bands weighed. Excised 

bands were dissolved in Binding Buffer (400 µl/100 mg gel) by heating to 55°C with gentle 

shaking. For purification of plasmids or PCR products in solution, the solutions were mixed 

with 3× vol. Binding Buffer. The resulting solutions were loaded onto spin columns and 

incubated to allow adsorption of DNA to the silica membrane (20°C, 2 min). The samples were 

centrifuged (1 min, 10000×g, 20°C) and the flow-through discarded. The bound DNA was 

washed twice with ethanol-containing Wash Buffer (700 µl) using centrifugation (1 min, 

10000×g, 20°C), discarding the flow-through between washes. A further centrifugation step (1 

min, 10000×g, 20°C) was used to remove residual wash buffer. Purified DNA was then eluted 

from the columns using elution buffer (35 µl, 2 mM Tris-HCl pH 8.0~8.5) by centrifugation (1 

min, 10000×g, 20°C). 

 

2.10.4 Plasmid isolation using the alkaline lysis minipreparation method 

Colonies of XL10-Gold or BJ5183-AD-1 E. coli carrying plasmids were inoculated into 5 ml LB 

broth and grown overnight in a rotary shaker (37°C, 250 rpm). The bacteria were recovered 

under centrifugation (1 min, 12,000× g, 4°C) and the plasmids purified using the alkaline lysis 

minipreparation method. Bacterial pellets were resuspended in 100 µl ice-cold Solution I [50 

mM glucose, 25 mM Tris (pH 8.0), 10 mM EDTA (pH 8.0)]. Bacteria were lysed by adding 200 

µl freshly prepared Solution II [0.2 M NaOH, 1% (w/v) SDS)] and tubes were rapidly inverted 

five times. Following incubation (5 min, 20°C), 150 µl Solution III [3 M potassium acetate in 

11.5% (v/v) acetic acid] was added and tubes were gently inverted to mix. Samples were 

incubated on ice (5 min) and centrifuged (5 min, 12000×g, 4°C). The supernatants were 

transferred to clean tubes and nucleic acids precipitated with 2× vol. absolute ethanol, with 
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gentle mixing. Precipitations were carried out at 20°C for 2 min, followed by recovery of nucleic 

acids by centrifugation (5 min, 12000×g, 4°C). The pelleted nucleic acids were washed with 1 

ml 70% ethanol, residual ethanol aspirated and air-dried (10 min, 20°C). The pellets were then 

dissolved in 50 µl TE buffer [10 mM Tris (pH 8.0), 1 mM EDTA] containing pancreatic RNase 

(20 µg/ml) to digest residual RNA (30 min, 20°C). Plasmid DNA was then spin column purified 

as detailed in section 2.10.3 and eluted in 35 µl elution buffer. Stocks of plasmids were stored 

at -20°C.   

 

2.10.5 Plasmid isolation using the alkaline lysis maxipreparation method 

Colonies of XL10-Gold E. coli carrying plasmids were inoculated into 500 ml LB containing 

kanamycin (50 µg/ml) and grown overnight in a rotary shaker (37°C, 250 rpm). Following 

overnight growth, bacteria were recovered by centrifugation in 500 ml centrifuge buckets (15 

min, 3600×g, 16°C) and the resulting pellets rinsed with STE solution [100 mM NaCl, 10 mM 

Tris-HCl (pH 8.0), 1 mM EDTA]. The supernatants were drained and pellets were resuspended 

in 18 ml ice-cold Solution I [50 mM glucose, 25 mM Tris (pH 8.0), 10 mM EDTA, (pH 8.0)] with 

gentle shaking. Bacterial walls were disrupted by the addition of 2 ml lysozyme [(10 mg/ml in 

10 mM Tris (pH 8.0)], with gentle shaking and incubation at room temperature (5 min, 20°C). 

40 ml Solution II was added [0.2 M NaOH, 1% (w/v) SDS] and the solution was shaken, 

followed by incubation at room temperature for 5 min. Following the addition of 20 ml Solution 

III [3 M potassium acetate in 11.5% (v/v) acetic acid] the solutions were shaken and incubated 

on ice for 5 min followed by centrifugation (15 min, 3600×g, 16°C). To remove the flocculent 

white precipitate, the supernatants were then filtered through two layers of cloth into 45 ml 

isopropanol in 250 ml centrifuge buckets, shaken, and centrifuged to pellet nucleic acids (15 

min, 3600×g, 16°C). The resulting pellets were gently rinsed with ethanol [70% (v/v)]. The 

centrifuge buckets were inverted to drain, and residual ethanol gently wiped away with paper 

towel. The pellets were then dissolved in 3 ml TE buffer [10 mM Tris (pH 8.0), 1 mM EDTA] 
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and the resulting solution was poured into 15 ml tubes containing 5 M LiCl (3 ml). The tubes 

were inverted gently to mix and centrifuged (15 min, 3600×g, 16°C).  

The supernatants were poured into 50 ml tubes containing 7 ml isopropanol and the pellets 

discarded. The tubes were centrifuged to pellet nucleic acids (15 min, 3600×g, 16°C) and the 

supernatants discarded. Pelleted nucleic acids were rinsed gently with ethanol [70% (v/v)] and 

inverted to drain. Residual ethanol was gently wiped away using paper towel. RNA was then 

digested by resuspension of pellets in 0.5 ml TE buffer containing pancreatic RNase (20 µg/ml) 

with shaking in a rotary shaker (30 min, 25°C, 250 rpm).  Following digestion of RNA, the 

solution was transferred to a 1.5 ml tube and 600 µl 1.6 M NaCl/13% polyethylene glycol was 

added to precipitate plasmids DNA. The plasmid DNA was then pelleted in a microfuge (1 min, 

12000×g, 4°C). After discarding the supernatants, the pelleted DNA was resuspended in 500 

µl TE buffer and purified by extraction by shaking in phenol (500 µl) by followed by 

centrifugation (5 min, 12000×g, 4°C).  The uppermost phase (~450 µl) was removed to a clean 

1.5 ml tube and the process was repeated for extraction in phenol:chloroform (250 µl of each) 

followed by chloroform alone (500 µl). Plasmid DNA was precipitated by mixing with 10 M 

ammonium acetate (100 µl) followed by addition of 1 ml absolute ethanol. Precipitation was 

carried out at 20°C for 10 min followed by recovery of plasmid DNA by centrifugation (5 min, 

12000×g, 4°C). The pellets were then washed with 1 ml ethanol [70% (v/v)], aspirated to 

remove residual ethanol and air-dried (10 min, 20°C). The purified plasmid DNA was then 

dissolved in 500 µl TE buffer and the concentrations determined using a nanophotometer. 

Stocks of the plasmids were stored at -20°C.  
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2.10.6 Sequencing of plasmid DNA 

Shuttle vector and adenoviral plasmids (5 µl per reaction at 100 ng/µl) were supplied to Source 

BioScience for sequencing using specific primers (5 µl per reaction at 3.2 pmol/µl). Details of 

primers use for sequencing are found in Table 2.4.  

Table 2.4 Primers used for sequencing of shuttle vector and adenoviral plasmids  

Primer Sequence (5' – 3') Length  Tm (°C) 

ShutF GGTCTATATAAGCAGAGCTG 20 55.3 

ShutR GTGGTATGGCTGATTATGATCAG 23 58.9 

RIPK1_Fwd  GACAAGGGTACCATGCAACCAGACATGTCCTTGGAC 36 67.9 

KpnI _Fwd GAAGAACAATGGTGGAACCCTTTACTACATG 31 60.4 

T183A_Fwd GTGAGCAGCACCGCTAA GAAGAACAAT 27 59.7 

K376R_Fwd TGTGCAGGCTAGGCTGC AAGAGG 23 60.6 

 

2.10.7 Generation of adenoviral plasmids  

2.10.7.1 Homologous recombination of shuttle vectors with the pAdeasy-1 plasmid 

To produce adenoviral plasmids, shuttle vector plasmids were linearised and transformed into 

BJ5183-AD-1 E. coli to undergo homologous recombination with the pAdeasy-1 plasmid 

(which is pre-transformed into BJ5183-AD-1 cells) (see Fig. 2.2). Shuttle vector plasmids (2 

µg) were linearised by digestion with PmeI (10 units, 1 µl) in 50 µl reactions containing 10× 

CutSmart® Buffer (5 µl) and nuclease-free H2O. The plasmids were digested at 37°C for 3 h. 

After 2 h, 1 µl calf intestinal alkaline phosphatase was added to the reactions followed by 

incubation at 37°C for a further hour. The linearised shuttle vector plasmids (2 µl) were heat-

shock transformed into BJ5183-AD-1 cells as described for XL10-Gold cells in section 2.10.1. 

The cells were plated onto LB agar plates containing kanamycin (50 µg/ml) and incubated 

upside down overnight at 37°C. The pAdeasy-1 adenoviral plasmid carries the ampicillin 

resistance gene, and this is exchanged for the kanamycin resistance gene carried by the 

shuttle vector plasmids when homologous recombination occurs. Accordingly, colony growth 

on kanamycin plates serves as an indication that homologous recombination has taken place. 
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Similarly, the presence of small bacterial colonies is indicative of recombination as the 

recombinant adenoviral plasmid is a large construct and results in slowly growing colonies. 

 

2.10.7.2 Colony screen PCR for homologous recombination and purification of 

adenoviral plasmids 

Small, well isolated single colonies were picked using a sterile cocktail stick and screened for 

the presence of the recombinant adenoviral plasmid, as described in section 2.10.2 using the 

AdV_184F/AdV_184R and AdV_300F/AdV_300R (details of primers are found in Table 2.3 

and PCR conditions in Fig. 2.1). PCR using these primer pairs produces in a single 184 bp 

band if recombination has been successful and the adenoviral plasmid is present. Two bands 

(of 184 bp and 300 bp) indicates that homologous recombination has not occurred and that 

the shuttle vector is present. Positive colonies were transferred to 5 ml LB containing 

kanamycin (50 µg/ml) and were incubated overnight in a rotary shaker (37°C, 250 rpm) before 

purification of adenoviral plasmids using the alkaline lysis minipreparation method, as 

described in section 2.10.4. The concentration of purified plasmids was determined using a 

nanophotomoter and the plasmids were stored at -20°C.    

The adenoviral plasmids were amplified by heat shock transformation of 0.1 µg plasmid into 

XL10-Gold E. coli as described in section 2.10.1. The transformed cells were spread onto warm 

LB agar plates containing kanamycin (50 µg/ml) and incubated upside down overnight at 37°C. 

Single colonies were picked using a sterile cocktail stick and screened for the presence of the 

recombinant adenoviral plasmid as described in section 2.10.2. Positive colonies were 

inoculated into 500 ml LB containing kanamycin (50 µg/ml) and grown overnight in a rotary 

shaker (37°C, 250 rpm) and the plasmids isolated using the alkaline lysis maxipreparation 

method as described in section 2.10.5. The isolated plasmids were resuspended in 500 µl TE 

buffer, the concentrations determined, and then stored at -20°C.   
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2.10.8 Production and propagation of adenoviral particles in HEK 293 cells 

To produce adenoviral particles, the recombinant adenoviral plasmids were linearised and 

transfected into HEK 293 cells (see Fig. 2.2). Recombinant adenoviral plasmids (50 µg) were 

digested with PacI (3 h, 37°C) in 100 µl reactions containing 10× CutSmart Buffer (10 µl), PacI 

(20 units, 2 µl) and nuclease-free H2O. Following digestion, the cut plasmid DNA was 

precipitated from the reaction mixture. Nuclease free H2O (80 µl) was added to a total volume 

of 180 µl followed by addition of 3 M sodium acetate (20 µl). The reactions were gently mixed 

and DNA precipitated by addition of absolute ethanol (600 µl) with incubation on ice (5 min) 

and at room temperature (20°C, 5 min). The precipitated DNA was pelleted by centrifugation 

(2 min, 10000×g, 4°C) and the supernatant was discarded. The pellets were washed with 70% 

ethanol (1 ml), briefly air dried and dissolved in 35 µl elution buffer.  

The digested plasmid DNA (5 µg) was then transfected into HEK 293 cells using either 

jetPRIME® or FuGene® HD transfection reagents. For transfection using jetPRIME®, HEK 293 

cells were cultured in 60 mm dishes and grown to ~70% confluence. The PacI-digested 

adenoviral plasmid DNA (5 µg) was gently mixed into 200 µl jetPRIME® buffer followed by 

addition of jetPRIME® reagent (10 µl). The mixture was vortex mixed (10 s) followed by 

incubation at room temperature (20°C, 10 min). The mixture was then added dropwise to the 

HEK 293 cultures with gentle rocking. For transfection using FuGene® HD, plasmid DNA (5 

µg) was gently mixed with 200 µl sterile DMEM (37°C) and FuGene® reagent (10 µl) added 

with gentle mixing. The mixtures were incubated at room temperature (20°C, 10 min) and 

added dropwise to HEK 293 cultures at ~70% confluence in 60 mm dishes. Transfected 

cultures were incubated (37°C, 5% CO2) for 7 – 10 days until detachment and rounding of cells 

was observed (indicative of adenoviral infection). Infected cells were collected in culture 

medium and freeze-thawed for four cycles in a methanol and dry ice bath, with brief vortexing 

between each cycle. Cell debris was pelleted with centrifugation (5 min, 4000×g, 4°C) and the 

supernatant primary adenoviral stocks used to infect further HEK 293 cultures for amplification 

of adenoviruses.  
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Figure 2.2 Schematic of the generation of adenoviral plasmids expressing FLAG-tagged 
wild-type and mutant RIPK1 constructs 

Sequence verified shuttle vector plasmids expressing FLAG-tagged wild-type and mutant 
RIPK1 constructs were linearised with PmeI and transformed into BJ5183-AD-1 E. coli to 
undergo homologous recombination with the pAdeasy-1 adenoviral plasmid. Resulting 
colonies were screened and recombinant RIPK1 adenoviral plasmids isolated from positive 
colonies. Adenoviral plasmids were linearised with PacI and transfected into HEK 293 cells for 
production of adenoviral particles.  

PmeI digest,

Homologous 

recombination with 

pAdeasy-1 plasmid  

in BJ5183-AD-1 cells

RIPK1

KpnI

HindIII

FLAG Sequence
PacI

PmeI

FLAG-RIPK1-

Shut

vector

SV40 polyAPacI

R-ITR

L-ITR

Encapsidation signal

Amplification of 

recombinant 

adenoviral plasmids. 

PacI digest

PacI

PmeI

pAdeasy-1

vector

PacI

FLAG-RIPK1-

Shut

vector

Adenovirus 

production in HEK 

293 cells

PacI PacI

FLAG-RIPK1 Adenoviral DNA

FLAG-

RIPK1

FLAG-

RIPK1

FLAG-

RIPK1

FLAG-

RIPK1

FLAG-

RIPK1



98 
 

2.11 Fast protein liquid chromatography 

Anion-exchange FPLC was performed in collaboration with Prof. Angela Clerk using a Mono 

Q HR 5/5 FPLC column and an Äkta FPLC system (both GE Healthcare). Following exposure 

to agonists as described, five 60 mm dishes of neonatal rat ventricular myocytes were washed 

twice with ice-cold PBS and harvested into a total of 300 μl extraction buffer [20 mM β-

glycerophosphate (pH 7.5), 50 mM NaF, 2 mM EDTA, 1% (v/v) Triton X-100, 5 mM DTT, 10 

mM benzamidine, 200 µM leupeptin, 10 µM E64, 300 µM PMSF]. The lysates were extracted 

on ice (10 min), centrifuged to remove cell debris (10,000×g, 5 min, 4°C), and the resulting 

supernatants removed to a clean tube. The extracts were further clarified with a second 

centrifugation (10,000×g, 5 min, 4°C) and the supernatant extracts removed to a clean tube.  

The extracts were loaded into a Mono Q HR 5/5 FPLC column pre-equilibrated with Mono Q 

Buffer A [50 mM Tris/HCl (pH 7.3), 2 mM EDTA, 2 mM ethylene glycol tetra-acetic acid (EGTA), 

0.1% (v/v) 2-mercaptoethanol, 5% (v/v) glycerol, 0.03% (v/v) Brij-35, 0.3 mM Na3VO4, 1 mM 

benzamidine and 4 μg/ml leupeptin]. Following a 4 ml isocratic wash, bound proteins were 

eluted from the column with a linear NaCl gradient (20 ml, 0 – 0.4 M) at a flow rate of 1 ml/min. 

The NaCl gradient was formed by mixing Mono Q Buffer A with Mono Q Buffer B (Mono Q 

Buffer A containing 1 M NaCl). Fractions (0.5 ml) were collected with an automated fraction 

collector. Samples of each fraction were retained and boiled with 0.33 vol. 4× SDS-PAGE 

sample buffer (5 min).  

 

2.12 Statistical analysis 

Results are expressed as means ± standard error of the mean (SEM) with n referring to the 

number of independent observations made. Unless otherwise stated, statistical significance of 

the differences between means was analysed using a one-way analysis of variance (ANOVA), 

applying a Student-Newman-Keuls (SNK) post-test. Statistical analyses were performed using 

GraphPad Prism 4. p<0.05 was considered statistically significant.  
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Chapter Three - Regulation of cardiomyocyte gene expression by 

mitogen-activated protein kinases in response to H2O2 
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3.1 Introduction 

Oxidative stress is a key modulator of the balance between life and death of cardiomyocytes 

and the response is dictated by the level of stress. Moderate concentrations of H2O2 (a 

physiologically relevant form of oxidative stress) permit regulated cardiomyocyte death through 

apoptosis, while at higher levels (>1 mM), death occurs by necrosis (Aikawa et al., 1997; Cook 

et al., 1999b; Kang et al., 2000; Kwon et al., 2003). Conversely, low levels of H2O2 may have 

a hormetic effect and promote cytoprotection, while some investigators report induction of 

hypertrophy (Ytrehus et al., 1995; Valen et al., 1998; Kwon et al., 2003). H2O2 induces 

substantial changes in cardiomyocyte gene expression, effects which are both time and 

concentration dependent. Previous investigations have used Affymetrix microarrays to 

determine the changes in cardiomyocyte gene expression induced by H2O2 (Kemp et al., 2003; 

Clerk et al., 2007b). Exposure of cardiomyocytes to a non-toxic H2O2 concentration (0.04 mM) 

results in changes in relatively few genes. Exposure to a pro-apoptotic H2O2 concentration (0.2 

mM) however, results in changes in a far greater number of genes at (649 mRNAs changed at 

2 – 4 h) (Kemp et al., 2003; Clerk et al., 2007b). Amongst these, genes putatively associated 

with cytoprotection/modulation of apoptosis and antioxidation (e.g. Hsp70, Sod1, Hox1, 

p21cip1/waf1) are highly represented, as well as those associated with transcriptional regulation 

and intracellular signalling. The upregulation of these genes presumably reflects their 

importance in the cardiomyocyte response to H2O2 as apoptosis proceeds (Kemp et al., 2003; 

Clerk et al., 2007b).  

In addition to promoting changes in gene expression, pro-apoptotic H2O2 concentrations also 

induce activation of intracellular signalling pathways including the three principal MAPK 

cascades, ERK1/2, JNKs and p38-MAPKs, in neonatal cardiomyocytes and adult perfused 

hearts (Clerk et al., 1998b; Clerk et al., 1998a). Investigations in cardiomyocytes indicate a 

major role for ERK1/2 in regulation of gene expression in response to the GqPCR agonists 

including ET-1, phenylephrine and A61603 (Kennedy et al., 2006; Cullingford et al., 2008a; 

Cullingford et al., 2008b; Marshall et al., 2010; Amirak et al., 2013). In cardiomyocytes, JNKs 
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phosphorylate c-Jun and ATF2 in response to cellular stresses (i.e. sorbitol; anisomycin) thus 

presumably regulating their transactivating activities and/or stability and influencing gene 

expression (Clerk and Sugden, 1997b). However, the role of JNKs and p38-MAPKs in 

regulating cardiomyocyte gene expression have yet to be elucidated.  Moreover, the roles of 

any of the MAPKs in regulating changes in global gene expression profiles in cardiomyocytes 

exposed to H2O2 have never been reported. 

One strategy to investigate the roles of MAPKs in regulation of gene expression is an inhibitor 

approach coupled with microarray analysis. Selective and potent pharmacological inhibitors of 

MKK1/2 (the upstream activators of ERK1/2) such as U0126 (Favata et al., 1998) and 

PD184352 (Sebolt-Leopold et al., 1999) have long been available. These inhibitors have been 

used successfully in previous microarray expression profiling experiments to characterise the 

roles of ERK1/2 in regulation of cardiomyocyte gene expression (Kennedy et al., 2006; Amirak 

et al., 2013). In this investigation, PD184352 was used at 2 µM, a concentration that potently 

inhibits MKK1/2 activity, and therefore activation of ERK1/2 (Bain et al., 2007). PD184352’s 

allosteric, non-ATP-competitive mechanism of action confers a high level of selectivity towards 

MKK1/2 (Ohren et al., 2004) and, although it can also inhibit MKK5 (the upstream activator of 

ERK5), this only occurs at higher concentrations (10 µM) (Mody et al., 2001). SB203580 

(Cuenda et al., 1995), is an established inhibitor of p38-MAPKα (the predominant isoform 

expressed in heart) and p38-MAPKß (expressed in heart at lower levels) (Marber et al., 2011). 

However, although widely used as a p38-MAPKα/ß inhibitor, SB203580 also inhibits GSK3ß 

and c-Raf (less potently than p38-MAPKs), CK1 and GAK (with similar potency) and RIPK2 

(with greater potency) (Bain et al., 2007; Hall-Jackson et al., 1999; Godl et al., 2003). The 

compound also inhibits JNKs in cardiomyocytes and adult hearts at higher concentrations 

(Clerk and Sugden, 1998). While the reported effects of SB203580 on JNKs and c-Raf are of 

minimal concern here due to the low (0.7 µM) concentration to be used, non-p38-MAPKα/ß 

dependent effects cannot be entirely ruled out in interpretation of any changes in RNA 

expression induced by SB203580.  The poor selectivity of reported JNK inhibitors such as 
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SP600125 (Bennett et al., 2001) and AS601245 (Gaillard et al., 2005) has limited the potential 

to investigate the role of JNK pathway signalling. However, a potent and selective inhibitor, 

JNK-IN-8 (Zhang et al., 2012), has recently become available. JNK-IN-8 targets, and 

covalently binds to, a conserved cysteine residue preceding the JNK DFG-motif and thus 

exhibits higher selectivity compared to conventional kinase inhibitors, having no significant 

inhibitory activity against any other kinase in the “Kinativ™” chemical proteomics screening 

approach (Zhang et al., 2012; Liu et al., 2013). Accordingly, availability of JNK-IN-8 permits an 

inhibitor approach to investigate the contribution of JNKs in regulating cardiomyocyte gene 

expression.  

The primary aim in this chapter is to establish the roles of ERK1/2, JNK and p38-MAPK 

signalling in the regulation cardiomyocyte gene expression in response to a pro-apoptotic 

concentration of H2O2 (0.2 mM), using inhibitors of each pathway. ERK1/2 signalling was 

inhibited using PD184352. JNK signalling was inhibited using JNK-IN-8, while SB203580 was 

used to inhibit p38-MAPKα/ß signalling.  

 

3.2 Methods 

3.2.1 Preparation of cytosolic and nuclear protein enriched (NPE) extracts  

Cytosolic and nuclear protein enriched (NPE) extracts were prepared using the method 

described by Dignam et al. (1983) as described in Chapter Two, Section 2.5.2. Cardiomyocytes 

were treated as indicated, washed twice with ice-cold PBS and scraped into 150 μl cytosolic 

extraction buffer. Following extraction on ice (10 min), the samples were centrifuged (10000×g, 

5 min, 4°C) and the supernatants (i.e. the cytosolic fractions) removed to a clean tube and 

boiled with 0.33 volume of 4× sample buffer. For the preparation of NPE extracts, the resulting 

pellets from the previous centrifugation step were resuspended in 50 μl of nuclear extraction 

buffer and extracted on ice for 60 min, with periodic vortex-mixing at 10 – 15 min intervals. 

Samples were then centrifuged (10000×g, 5 min, 4°C) and the supernatant NPE extracts 
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transferred to a clean tube and boiled with 0.5 volume of 4× sample buffer. Protein content for 

both the cytosolic and NPE fractions was quantified using the Bio-Rad Protein Assay as 

described in Chapter Two, Section 2.5.4. 

 

3.2.2 Microarray sample preparation 

Cardiomyocytes were either untreated, or exposed to 0.2 mM H2O2 (2 h) with or without pre-

treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 µM SB203580, or to each 

inhibitor alone (2 h 15 min). Additions of agonist/inhibitors was staggered and the 

cardiomyocytes were harvested simultaneously. Total RNA was extracted as described in 

Chapter Two, Section 2.7. Extracted RNA was stored at -80°C. 

To minimise variation between cardiomyocyte preparations, equal amounts of RNA from two 

separate cardiomyocyte preparations were pooled to produce a single sample for microarray 

hybridisation. For expression profiling of cardiomyocytes exposed to the inhibitors in isolation, 

three such samples were hybridised to separate microarrays (i.e. n=3 independent samples 

analysed per condition). For cardiomyocytes exposed to H2O2 in the presence or absence of 

the inhibitors and for unexposed control cardiomyocytes, four such samples for each condition 

were hybridised to separate arrays (i.e. n=4 independent samples analysed per condition). 

Total RNA was supplied to Source BioScience for confirmatory quality control using a 

nanophotometer and by obtaining an RNA integrity number (Agilent Technologies Ltd.), 

followed by preparation and hybridisation to Affymetrix GeneChip Rat Gene 2.0 ST arrays 

according to their protocols.   

 

3.2.3 Microarray data analysis 

The analysis was performed by Prof. Angela Clerk. Microarray data (.CEL files) were imported 

into GeneSpring 14.5 (Agilent Technologies) and normalised using the PLIER16 algorithm, 

with normalisation per gene to the median of the controls. Probe sets were filtered by 
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expression, removing those below the lowest 20th percentile and then removing any with 

expression values below 50 in the raw data in all samples for any condition.  The initial analysis 

was for MAPK inhibitors alone relative to unstimulated controls. Probe sets were selected on 

the basis of 1.5-fold change relative to controls.  Statistical analysis used one-way ANOVA 

with SNK post-test and a Benjamini-Hochberg false discovery rate (FDR) correction.  Probe 

sets were selected with a corrected value of p<0.05.  

To study the effects of MAPK inhibitors on the changes induced by H2O2, significant changes 

induced by H2O2 were first identified.  Probe sets were selected on the basis of 1.5-fold 

increase or decrease with H2O2 relative to unstimulated controls and statistical analysis used 

a moderated t-test with a Benjamini-Hochberg FDR correction.  Probe sets were selected with 

a corrected value of p<0.05.  With respect to the effects of the three MAPK inhibitors on the 

changes induced by H2O2, probe sets were selected on the basis of a >1.25-fold difference in 

expression between H2O2 alone and H2O2 in the presence of inhibitors. Probe sets changed 

by inhibitors fall into two groups: Group I contains those of high confidence with statistically 

significant changes in the presence of inhibitor (one-way ANOVA with SNK post-test and a 

Benjamini-Hochberg FDR correction, corrected value p<0.05) while Group II contains those of 

lower confidence which were changed >1.25-fold but were not statistically significant. 

3.2.3.1 Gene Ontology analysis of microarray expression data 

Data for genes identified by the microarray analysis as being upregulated in response to H2O2 

and further changed by the MAPK inhibitors were subjected to Gene Ontology analysis using 

the PANTHER GO-slim tool (Mi et al., 2013).  For each MAPK inhibitor, a list of genes of 

established identity (identified by gene symbol) was uploaded to the PANTHER Workspace 

and analysed using the PANTHER GO-slim tool, classifying genes by Biological Process or 

Protein Class, as indicated in the figure legends.  



105 
 

3.2.4 Validation of microarray data using qPCR 

Cardiomyocytes were untreated, or exposed to 0.2 mM H2O2 (2 h) with or without pre-treatment 

(15 min) with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 µM SB203580, or to each inhibitor alone 

(2 h 15 min). Additions of agonist/inhibitors were staggered and the cardiomyocytes were 

harvested simultaneously. Total RNA was extracted as described in Chapter Two, Section 2.7 

and qPCR was performed as described in Chapter Two, Section 2.8, using specific primers. 

Genes identified by microarray analysis were selected for validation based on their responses 

to the various treatments. Expression values were normalised to values for Gapdh and then to 

the mean of the controls. RNAs extracted for qPCR analysis (n=3/4 independent 

cardiomyocyte preparations) were not those used for microarray analyses. 

3.3 Results 

3.3.1 Nuclear localisation of activated MAPKs in cardiomyocytes exposed to H2O2 

In non-cardiac cells, ERK1/2, JNKs and p38-MAPKs each modulate transcriptional activity by 

phosphorylating nuclear-localised substrates. It is thus necessary to determine if active forms 

of these kinases are present in the nucleus. To examine the nuclear localisation of activated 

MAPKs, cardiomyocytes were exposed to 0.2 mM H2O2 for 0 – 60 min and cytosolic and NPE 

(nuclear protein-enriched) fractions immunoblotted with antibodies to phosphorylated (i.e. 

activated) or total ERK1/2, JNKs or p38-MAPKs. H2O2 promoted maximal activation of both 

ERK1 and ERK2 at 20 – 30 min with similar profiles of activation in both the cytosolic and NPE 

fractions. (Fig. 3.1, A and B) In the NPE fraction, there was a significant increase in phospho-

ERK1 relative to control following 10 min H2O2 stimulation (3.26±0.17-fold, p<0.0001). There 

was also a significant increase in phospho-ERK2 in the NPE fraction following 20 min H2O2 

stimulation (2.37±0.09-fold relative to control, p<0.01). (Fig. 3.1, A and B). In unstimulated 

cardiomyocytes, the relative proportions of nuclear-localised total ERK1 and ERK2 differed: 

21±3% of total ERK1 and 43±8% of total ERK2 were nuclear localised (Fig. 3.1C). However, 
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there was no significant change in localisation of either total ERK1 or ERK2 protein in response 

to H2O2 (Fig. 3.1C). 
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Figure 3.1 Nuclear signalling of ERK1/2 in response to H2O2 in cardiomyocytes.  

 
(A) Cardiomyocytes were either unstimulated or exposed to 0.2 mM H2O2 (2 – 60 min). 
Cytosolic and NPE extracts were immunoblotted with antibodies to phosphorylated or total 
ERK1/2. (B) and (C) Densitometric analysis of the immunoblots in (A). Results are means ± 
SEM (n=4 independent cardiomyocyte preparations) and are normalised to the mean of control 
values. *, p<0.05; **, p<0.01; ****, p<0.0001 relative to nuclear extract control (one-way 
ANOVA with Tukey post-test).  
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Maximal, significant, activation of p46- and p54-JNKs was detected in the cytosolic fraction 

following 10 min H2O2 exposure (Fig. 3.2, A and B). Activation of p46-JNKs in the cytosolic 

fraction was 5.7±0.75-fold relative to control (p<0.001) with a 4.33±0.36-fold increase in p54-

JNK activation (p<0.01) (Fig. 3.2, A and B).  In the NPE fraction, activation of p46-JNKs was 

2.57±0.53-fold relative to control at 10 min, although this was not statistically significant. There 

was also an increase in activated p54-JNKs in the NPE fraction at 10 min (to 1.74±0.48-fold) 

although, as with the p46-JNKs, this was not statistically significant (Fig. 3.2, A and B).  

Total JNKs were predominantly localised to the cytoplasm in unstimulated cardiomyocytes 

(Fig. 3.2C). While 19±5% of total p46-JNKs and 11±3% of total p54-JNKs were nuclear 

localised (Fig. 3.2C), there was no significant change in localisation of total JNK protein in 

response to H2O2 (Fig. 3.2C).  
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 Figure 3.2 Nuclear signalling of JNKs in response to H2O2 

in cardiomyocytes.  

 
(A) Cardiomyocytes were unstimulated or exposed to 0.2 mM H2O2 (2 – 60 min). Cytosolic and 
NPE extracts were immunoblotted with antibodies to phosphorylated or total JNKs. (B) and (C) 
Densitometric analysis of the immunoblots in (A). Results are means ± SEM (n=4 independent 
cardiomyocyte preparations) and are normalised to the mean of control values. *, p<0.05; **, 
0.01; ***, p<0.001 relative to cytosolic extract control (one-way ANOVA with Tukey post-test).  
 

 

 

 

 

 

p54-JNKs

p46-JNKs

p54-JNKs
p46-JNKs

C
y
to

s
o

l

Phospho-JNKs

Total JNKs

Cytosol Nuclear extract

0 2 5 10 20 30 45 60H2O2 (min) 0 2 5 10 20 30 45 60 10

P h o s p h o  E R K 1  T C  g ra p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

1

2

3

4

5 C y to s o l

N u c le u s

P h o s p h o  p 4 6  J N K  T C  g ra p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

1

2

3

4

5

6

7
C y to s o l

N u c le u s
p46-JNKs

P
h
o
s
p
h
o
-p

4
6
-J

N
K

s
 

(r
e
la

tiv
e
 

to
 c

o
n
tr

o
l)

0.2 mM H2O2 (min)

P h o s p h o  p 5 4  J N K  T C  g ra p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

1

2

3

4

5
C y to s o l

N u c le u s

P
h
o
s
p
h
o
-p

5
4
-J

N
K

s
 

(r
e
la

tiv
e
 

to
 c

o
n
tr

o
l)

0.2 mM H2O2 (min)

p54-JNKs

p 4 6  J N K  T C  g r a p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

2 0

4 0

6 0

8 0

1 0 0 N u c le u s

C y to s o l

0.2 mM H2O2 (min)

To
ta

l 
p
4
6
-J

N
K

s

(%
 o

f 
to

ta
l)

P h o s p h o  E R K 1  T C  g ra p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

1

2

3

4

5 C y to s o l

N u c le u s

0.2 mM H2O2 (min)

To
ta

l 
p
5
4
-J

N
K

s

(%
 o

f 
to

ta
l)

P h o s p h o  E R K 1  T C  g ra p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

1

2

3

4

5 C y to s o l

N u c le u s

p 5 4  J N K  T C  g r a p h

0 1 0 2 0 3 0 4 0 5 0 6 0

0

2 0

4 0

6 0

8 0

1 0 0 N u c le u s

C y to s o l

A

B

C

***** ***

*



110 
 

H2O2 exposure induced a significant increase in activated p38-MAPKs in the cytoplasmic 

fraction after 2 min (5.80±1.8-fold relative to control, p<0.05) with a maximal response at 5 min 

(7.8±1.37-fold relative to control, p<0.001) (Fig. 3.3, A and B). H2O2 induced a 1.8±0.23-fold, 

increase in phospho-p38-MAPKs in the NPE fraction at 2 min, although this was not statistically 

significant (Fig. 3.3, A and B).  

Total p38-MAPKs were predominantly localised to the cytoplasm of unstimulated 

cardiomyocytes. Although 10±0.5% of total p38-MAPKs were localised to the nucleus under 

basal conditions, (Fig. 3.3C), H2O2 did not induce a significant change in localisation of total 

p38-MAPK protein (Fig. 3.3C). 
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Figure 3.3 Nuclear signalling of p38-MAPKs in response to H2O2 
in cardiomyocytes.  

 
(A) Cardiomyocytes were unstimulated or exposed to 0.2 mM H2O2 (2 – 60 min). Cytosolic and 
NPE extracts were immunoblotted with antibodies to phosphorylated or total p38-MAPKs. (B) 
and (C) Densitometric analysis of the immunoblots in (A). Results are means ± SEM (n=4 
independent cardiomyocyte preparations) and are normalised to the mean of control values. 
*, p<0.05; ***, p<0.001 relative to cytosolic extract control (one-way ANOVA with Tukey post-
test).  
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3.3.2 Selective pharmacological inhibition of ERK1/2, JNK and p38-MAPK signalling. 

PD184352 was used to inhibit ERK1/2 signalling (Sebolt-Leopold et al., 1999), JNK-IN-8 was 

used to inhibit JNK signalling (Zhang et al., 2012) and SB203580 was used to inhibit p38-

MAPKα/ß signalling (Cuenda et al., 1995). To assess the potency and selectivity of the 

pharmacological inhibitors to be used, cardiomyocytes were untreated or exposed to H2O2 (0.2 

mM, 10 min) with or without 15 min pre-treatment with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 

µM SB203580; or to each inhibitor in isolation (25 min). PD184352 inhibits MKK1/2, which 

activate ERK1/2 (Sebolt-Leopold et al., 1999).  Immunoblotting of cytosolic fractions for total 

and phosphorylated (i.e. activated) ERK1/2 demonstrated that exposure to PD184352 alone 

significantly reduced baseline ERK1/2 phosphorylation relative to control (Fig 3.4, A and B). 

Phospho-ERK1 was reduced to 0.04±0.01-fold while phospho-ERK2 was decreased to 

0.03±0.01-fold relative to control values. There was no significant effect of JNK-IN-8 or 

SB203580 on baseline ERK1/2 phosphorylation (Fig 3.4, A and B). H2O2 induced a significant 

increase in phosphorylated ERK1 relative to control (3.92±0.44-fold) and this was significantly 

reduced by PD184352 to below baseline levels (0.08±0.02-fold) (Fig 3.4, A and B). H2O2 

induced a 3.3±0.53-fold increase in phospho-ERK2.  This was not statistically significant, 

although the response of ERK2 to H2O2 was significantly reduced by PD184352 to below 

baseline levels (0.09±0.02-fold) (Fig 3.4, A and B). H2O2 exposure also resulted in detection of 

reduced mobility ERK2 bands (Fig 3.4, A and B). The appearance of these bands was 

abolished by exposure to PD184352 (Fig. 3.4A, lower blot). Neither JNK-IN-8 nor SB203580 

had a significant effect on baseline ERK1/2 phosphorylation or response of ERK1/2 to H2O2 

(Fig 3.4, A and B).  
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Figure 3.4 Inhibition of ERK1/2 signalling by PD184352. 
 
(A) Cardiomyocytes were unstimulated or exposed to 0.2 mM H2O2 (10 min), with or without 
pre-treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 µM SB203580, or exposed 
to the inhibitors in isolation (25 min). Cytosolic protein extracts (10 µg) were immunoblotted 
with antibodies to phosphorylated or total ERK1/2. (B) Densitometric analysis of the 
immunoblots in (A). Values for phospho-ERK1/2 were normalised to total ERK1/2. Results are 
means ± SEM (n=5 independent cardiomyocyte preparations) relative to the mean of the 
control values. #, p<0.05 relative to control. *, p<0.05; **, p<0.01 relative to H2O2 alone (one-
way ANOVA with Tukey post-test).  
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As JNK-IN-8 inhibits activity of JNKs rather than JNK activation per se (Zhang et al., 2012), 

the effects of the inhibitors on phosphorylation of c-Jun (a direct substrate of JNKs) were 

assessed using antibodies to c-Jun phosphorylated on a transactivating domain 

phosphorylation site, Ser63 (May et al., 1998). JNK-IN-8 (but not PD184352 or SB203580) had 

a significant effect on phosphorylation of c-Jun at Ser63, reducing phospho-c-Jun to 0.43±0.1-

fold relative to control (Fig. 3.5, A and B). Exposure to H2O2 led to a significant increase in 

phospho-c-Jun to 1.98±0.11-fold compared to control and JNK-IN-8 significantly reduced the 

response to H2O2 to below control values (Fig. 3.5, A and B). However, there was no significant 

effect of either PD184352 or SB203580 on the phosphorylation of c-Jun in response to H2O2 

(Fig. 3.5, A and B).  
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Figure 3.5 Inhibition of JNK signalling by JNK-IN-8. 
 

(A) Cardiomyocytes were unstimulated (controls) or exposed to 0.2 mM H2O2 (10 min), with or 
without pre-treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 µM SB203580, or 
exposed to the inhibitors in isolation (25 min). Nuclear protein enriched extracts (15 µg) were 
immunoblotted with antibodies to phospho-c-Jun (pSer63) or total-c-Jun (lower panels). (B) 
Densitometric analysis of the immunoblots in (A). Values for phospho-proteins were 
normalised to total protein values. Results are means ± SEM (n=5 independent cardiomyocyte 
preparations) relative to mean of the control values. #, p<0.05 relative to control. *, p<0.05 
relative to H2O2 alone (one-way ANOVA with Tukey post-test).  
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SB203580 is an established inhibitor of p38-MAPKα/ß isoforms in cardiomyocytes (Clerk et 

al., 1998b). To confirm efficacy and selectivity of SB203580 in inhibiting p38-MAPKα/ß in 

response to H2O2, cytosolic fractions were immunoblotted with antibodies to phosphorylated 

and total MAPKAPK2, a well-characterised substrate of p38-MAPKs. MAPKAPK2 was 

detected as two bands; of ~42 kDa and ~49 kDa, presumably reflecting detection of the isoform 

variants AAO34665.1 (predicted molecular weight ~44 kDa) and XP_017454181.1 (predicted 

molecular weight ~50 kDa). None of the inhibitors alone had a significant effect on 

phosphorylation of either MAPKAPK2 species (Fig. 3.6, A and B). H2O2 led to a significant 

increase in phosphorylation of the 50 kDa MAPKAPK2 form compared to control (to 15.6±1.38-

fold) (Fig. 3.6, A and B) and SB203580 significantly inhibited this response to 2.0±0.28-fold 

relative to control (Fig. 3.6, A and B). Similarly, exposure to H2O2 resulted in a 7.96±0.82-fold 

increase in phosphorylation of the 44 kDa MAPKAPK2 form relative to control (Fig. 3.6, A and 

B) and SB203580 significantly inhibited this to 1.88±0.39-fold compared to control (Fig. 3.6, A 

and B). Neither PD184352 nor JNK-IN-8 had a significant effect on the response of 

MAPKPAPK2 to H2O2 (Fig. 3.6, A and B). 
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Figure 3.6 Inhibition of p38-MAPK signalling by SB203580. 
 
(A) Cardiomyocytes were unstimulated (controls) or exposed to 0.2 mM H2O2 (10 min), with or 
without pre-treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 µM SB203580; or 
exposed to the inhibitors in isolation (25 min). Cytosolic protein extracts (10 µg) were 
immunoblotted for phospho-MAPKAPK2 (pThr222/pThr334) or total-MAPKAPK2 (lower 
panels). (B) Densitometric analysis of the immunoblots in (A). Values for phospho-MAPKAPK2 
were normalised to values for total MAPKAPK2. Results are means ± SEM (n=5 independent 
cardiomyocyte preparations) relative to mean of the control values. #, p<0.05, @, p<0.01 
relative to control. **, p<0.01 relative to H2O2 alone (one-way ANOVA with Tukey post-test).  
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3.3.3 Regulation of basal cardiomyocyte RNA expression by MAPKs   

Having confirmed the selectivity and efficacy of the selected MAPK inhibitors, the contributions 

of ERK1/2, JNK and p38-MAPK signalling to cardiomyocyte RNA expression were investigated 

using microarrays. Cardiomyocytes were exposed to each inhibitor in isolation (2 h 15 min). 

Expression profiling was performed using Affymetrix Rat Gene ST 2.0 microarrays and data 

analysed using GeneSpring Software.   

Of the three MAPK inhibitors, PD184352 had the greatest effect on basal cardiomyocyte RNA 

expression, causing downregulation of 92, and upregulation of 32 RNAs (Fig. 3.7A and 

Appendix II, Table A1). JNK-IN-8 and SB203580, however, induced more minor changes in 

baseline RNA expression: JNK-IN-8 downregulated 12, and upregulated 2, RNAs (Fig. 3.7B 

and Appendix II, Table A2) while SB203580 downregulated only 1, and upregulated 5, RNAs 

(Fig. 3.7C and Appendix II, Table A3).  
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Figure 3.7 Regulation of baseline cardiomyocyte RNA expression by PD184352, JNK-IN-
8 or SB203580. 

Cardiomyocytes were unstimulated or exposed to PD184352 (2 µM), JNK-IN-8 (1 µM) or 
SB203580 (0.7 µM) for 2 h 15 min. Changes in RNA expression were determined using 
Affymetrix Rat Gene 2.0 ST microarrays, using GeneSpring analysis to identify RNAs with 
significant changes in expression (>1.5-fold relative to control) and a significant effect of the 
inhibitors (one-way ANOVA with SNK post-test and Benjamini-Hochberg FDR correction, 
p<0.05). (A) Upregulation or downregulation by PD184352. (B) Upregulation or 
downregulation by JNK-IN-8. (C) Upregulation or downregulation by SB203580. Heatmaps 
range from -2.0 (cyan) through 0 (black) to 2.0 (red); Log

2
 scale. 
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3.3.4 Regulation of cardiomyocyte RNA expression by MAPKs in response to H2O2 

Previous expression profiling studies indicate substantial changes in cardiomyocyte mRNA 

expression following a 2 h exposure to 0.2 mM H2O2 (Kemp et al., 2003; Clerk et al., 2007b). 

Accordingly, cardiomyocytes were untreated or exposed to H2O2 (0.2 mM, 2 h) with or without 

pre-treatment (15 min) with PD184352 (2 µM, inhibits ERK1/2 signalling), JNK-IN-8 (1 µM, 

inhibits JNK signalling) or SB203580 (0.7 µM, inhibits p38-MAPKα/ß signalling). 

The expression of a total of 490 transcripts was significantly changed in response to H2O2 (Fig. 

3.8 and Appendix II, Tables A4 – 5). Of these, 295 were upregulated in response to H2O2 

(Appendix II, Table A4) while the remaining 195 were downregulated (Appendix II, Table A5).  

A manual analysis was conducted to compare the expression profile obtained in the present 

study to that generated previously (Clerk et al., 2007b), by comparing the respective lists of 

genes that were identified significantly upregulated (>1.5 fold, p<0.05) in response to H2O2 

from each study. Overall, a larger number of genes were identified by the previous study as 

being upregulated in response to H2O2 (391 genes in Clerk et al., 2007b  vs 295 in the present 

study). A comparison of the two gene lists indicated that ~42% of the genes identifed as 

upregulated in the present stufy were also identified as such by Clerk et al.  
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Figure 3.8 Changes in cardiomyocyte RNA expression induced by H2O2  
 
Cardiomyocytes were unstimulated or exposed to H2O2 

(0.2 mM, 2 h) with or without pre-
treatment (15 min) with PD184352 (2 µM), JNK-IN-8 (1 µM) or SB203580 (0.7 µM), or were 
exposed to the inhibitors alone (2 h 15 min). Changes in RNA expression were determined 
using Affymetrix Rat Gene 2.0 ST microarrays, using GeneSpring analysis to identify RNAs 
with significant increase or decrease in expression in response to H2O2 

(>1.5-fold change 
relative to control; moderated t-test with Benjamini-Hochberg FDR correction, p<0.05). 
Heatmaps range from -2.0 (cyan) through 0 (black) to 2.0 (red); Log

2
 scale. 
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3.3.4.1 Effects of MAPK inhibitors on cardiomyocyte RNA expression induced by H2O2  

Of the 295 transcripts upregulated in response to H2O2, the expression of 128 (~43%) was 

unchanged by any inhibitor (Appendix II, Table A6), while of the 195 transcripts downregulated 

in response to H2O2, the expression of 86 (~44%) was unaffected by any inhibitor (Appendix 

II, Table A7). 

With respect to those RNAs upregulated in response to H2O2, PD184352 had the greatest 

effect of the inhibitors, with somewhat lesser effects of JNK-IN-8 or SB203580. PD184352 

caused further changes in expression of ~37% of the transcripts induced by H2O2 (Fig. 3.9A 

and Table 3.1). JNK-IN-8 further changed the expression of ~25% of the transcripts 

upregulated by H2O2 (Fig. 3.9B and Table 3.1) while SB203580 further changed the expression 

of ~28% of transcripts induced by H2O2 (Fig. 3.9C and Table 3.1).  

Table 3.1 Numbers of RNAs upregulated by H
2
O

2 
and affected by MAPK inhibitors 

 

Results are the numbers of RNAs upregulated by H
2
O

2 
and changed further in the presence 

of the inhibitors, as indicated. Group I refers to RNAs changed >1.25-fold relative to H
2
O

2 
with 

a significant effect of the inhibitor (one-way ANOVA with SNK post-test and Benjamini-
Hochberg FDR correction, p<0.05). Group II refers to RNAs changed >1.25-fold relative to 
H

2
O

2 
alone but without a significant effect of the inhibitor. Details of specific RNAs regulated 

can be found in Appendix II.  

 

 

 Upregulated by H
2
O

2
 

 
 Group I Group II Total 

PD184325 66 42 108 

JNK-IN-8 28 47 75 
SB203580 24 60 84 

PD184352 and JNK-IN-8 10 35 45 
PD184352 and SB203580 8 29 37 

JNK-IN-8 and SB203580 2 34 36 

All inhibitors  7 11 18 
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Exposure to PD184352 resulted in changes in ~33% of the RNAs downregulated by H2O2 (Fig. 

3.9A and Table 3.2) while JNK-IN-8 resulted in further changes to ~28% of these transcripts 

(Fig. 3.9B and Table 3.2). However, SB2023580 had the greatest effect of the inhibitors on 

RNAs downregulated in response to H2O2, causing further changes in the expression of ~35% 

of these transcripts (Fig. 3.9C and Table 3.2).  

 

Table 3.2 Numbers of RNAs downregulated by H2O2 and affected by MAPK inhibitors 

Results are the numbers of RNAs downregulated by H2O2 and changed further in the presence 
of the inhibitors, as indicated. Group I refers to RNAs changed >1.25-fold relative to H2O2 with 
a significant effect of the inhibitor (one-way ANOVA with SNK post-test and Benjamini-
Hochberg FDR correction, p<0.05). Group II refers to RNAs changed >1.25-fold relative to 
H2O2 alone but without a significant effect of the inhibitor. . Details of specific RNAs regulated 
can be found in Appendix II.  

 

 
Downregulated by H

2
O

2
 

 

 Group I Group II Total 

PD184325 12 53 65 

JNK-IN-8 4 50 54 

SB203580 6 63 69 
PD184352 and JNK-IN-8 2 33 35 
PD184352 and SB203580 1 7 8 
JNK-IN-8 and SB203580 2 23 25 

All inhibitors  1 24 25 

 

 

 

 



124 
 

Figure 3.9 Effects of MAPK inhibitors on cardiomyocyte RNA expression induced by 
H2O2. 

 

 Cardiomyocytes were unstimulated or exposed to H2O2 
(0.2 mM, 2 h) with or without pre-

treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-8 or 0.7 µM SB203580, or exposed to 
the inhibitors alone (2 h 15 min). Changes in RNA expression were determined using 
Affymetrix Rat Gene 2.0 ST microarrays, using GeneSpring analysis to identify RNAs with 
significant increase or decrease in expression in response to H2O2 

(>1.5-fold change relative 
to control; moderated t-test with Benjamini-Hochberg FDR correction, p<0.05). To identify 
RNAs changed in response to the inhibitors, RNAs were selected on the basis of a >1.25-fold 
change in the presence of PD184352, JNK-IN-8 or SB203580, with or without a significant 
effect of the inhibitor (one-way ANOVA with SNK post-test and Benjamini-Hochberg FDR 
correction, p<0.05). (A) RNAs changed by H2O2 

and changed further by PD184352. (B) RNAs 
changed by H2O2 

and further changed by JNK-IN-8. (C) RNAs changed by H2O2 
and changed 

further by SB203580. Heatmaps range from -2.0 (cyan) through 0 (black) to 2.0 (red); Log
2
 

scale. 
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In order to further examine the potential roles of the MAPK pathways in regulation of 

cardiomyocyte gene expression response to H2O2. the microarray data were subjected to Gene 

Ontology analysis. Data for genes upregulated in response to H2O2 and whose expression was 

further changed by PD1845352, JNK-IN-8 or SB203580 was analysed using the PANTHER 

GO-slim tool, first classifying genes by Biological Process (Fig. 3.10) and then by Protein Class 

(Fig. 3.11).  

The highest proportion of genes differentially regulated by each of the MAPK inhibitors were 

classified as being associated with Cellular process (GO:0009987), Metabolic process 

(GO:0008152), Biological regulation (GO:0065007) and Response to stimulus GO:0050896) 

(Fig. 3.10).  

With regard to classification by Protein Class, the Gene Ontology analysis indicated that the 

highest proportion of genes differentially regulated by the three MAPK inhibitors encode 

Signalling molecules (PC00207) (Fig. 3.11). Genes encoding proteins associated with Nucleic 

acid binding (PC00171) and Transcription factors (PC00218) were also highly represented in 

the data for all three MAPK inhibitors (Fig. 3.11). Although genes associated with Enzyme 

modulator proteins were relatively highly represented in the data for PD184352 (Fig. 3.11A) 

and JNK-IN-8 (Fig 3.11B), the proportion was relatively lower for SB203580 (<5%). Notably, 

the proportion of Oxidoreductase genes (PC00176) was substantially higher amongst those 

differentially regulated by SB203580 (7.3% of all genes, Fig. 3.11C) when compared to 

PD184352 (1.8% of all genes, Fig. 3.11A) and particularly JNK-IN-8, with 0 differentially 

regulated genes classified in the Oxidoreductase category.  
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Figure 3.10 Gene Ontology analysis of genes upregulated by H2O2 and changed further 
by MAPK inhibitors – classification by Biological Process 
  
Microarray expression data for genes upregulated by H2O2 and changed further by MAPK 
inhibitors were analysed using the PANTHER GO-slim tool, classifying gene function by 
Biological Process. The data are shown in pie charts as the percentage of genes classified by 
PANTHER GO-slim as being associated with the processes listed in the chart keys. (A) Genes 
upregulated by H2O2 and changed further by PD184352. (B) Genes upregulated by H2O2 and 
changed further by JNK-IN-8. (C) Genes upregulated by H2O2 and changed further by 
SB203580.  
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Figure 3.11 Gene Ontology analysis of genes upregulated by H2O2 and changed further 
by MAPK inhibitors – classification by Protein Class 
  
Microarray expression data for genes upregulated by H2O2 and changed further by MAPK 
inhibitors were analysed using the PANTHER GO-slim tool, classifying gene function by 
Protein Class. The data are shown in pie charts as the percentage of genes classified by 
PANTHER GO-slim as being associated with the Protein Classes listed in the chart keys. (A) 
Genes upregulated by H2O2 and changed further by PD184352. (B) Genes upregulated by 
H2O2 and changed further by JNK-IN-8. (C) Genes upregulated by H2O2 and changed further 
by SB203580. 
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3.3.5 Validation of microarray data using qPCR  

While microarrays provide an overview of global changes in RNA expression in response to 

the different treatments, it is necessary to validate the data using a second, independent, 

method. Accordingly, the microarray data were validated by qPCR, using specific primers.  

Three RNAs were selected for validation based on the effects of one or more of the inhibitors 

in isolation. Microarrays indicated that baseline mRNA expression of dual-specificity 

phosphatase (Dusp) 8 was downregulated in response to JNK-IN-8 and this was confirmed 

using qPCR (Fig. 3.10A). Downregulation of Jun mRNA in response to 2 h 15 min JNK-IN-8 

exposure was not statistically significant when analysed by qPCR (Fig. 3.10B), although the 

expression profiles were similar to those for the microarray data.  Microarray data indicate that 

baseline expression of connective tissue growth factor (Ctgf) was inhibited by PD184352 and 

JNK-IN-8. Although qPCR analysis demonstrated that JNK-IN-8 inhibited Ctgf expression to 

only 0.42±0.04-fold relative to control, this was not statistically significant (Fig. 3.10C). 

Similarly, PD184352 had no significant effect on Ctgf expression, in the qPCR analysis (Fig. 

3.10C). Generally, the microarray data were validated as the expression profiles were similar 

to those for the qPCR data, although the response of Ctgf in the qPCR analysis was lesser 

than that in the microarray data. 
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Figure 3.12 Validation of microarray data by qPCR: RNAs inhibited by MAPK inhibitors 
alone 
 
Cardiomyocytes were unstimulated or exposed to PD184352 (2 µM), JNK-IN-8 (1 µM) or 
SB203580 (0.7 µM) (2 h 15 min). Expression of mRNAs sensitive to one or more inhibitor was 
analysed using qPCR (A, Dusp8; B, Jun; C, Ctgf). Microarray results alone are shown in panels 
(i) and qPCR data in panels (ii). Results are means ± SEM (n=4 independent cardiomyocyte 
preparations) and are normalised to the means of the controls. **, p<0.01 relative to control 
(one-way ANOVA with SNK post-test). 
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With respect to mRNAs upregulated by H2O2, three groups were selected for validation using 

qPCR: mRNAs encoding transcription factors (Egr1, Egr3 and Atf3, Fig. 3.11), mRNAs 

encoding proteins associated with antioxidation (Hmox1, Gclc, Nqo1, and Txnrd1, Fig. 3.12) 

and mRNAs encoding dual-specificity phosphatases (Dusp2, Dusp4 and Dusp5, Fig. 3.13).  

Upregulation of early growth response (Egr) 1 and Egr3 transcription factor mRNAs in 

response to H2O2, and the inhibition of the response by PD184352, was confirmed by qPCR 

(Fig. 3.11, A and B).  The microarray data also indicated that the response of both Egr1 and 

Egr3 to H2O2 was inhibited by JNK-IN-8, and this was reflected by qPCR analysis (Fig. 3.11, 

A and B).  Upregulation of Atf3 in response to H2O2 was confirmed by qPCR, as was the 

inhibition of the response by JNK-IN-8 (Fig. 3.11, C). The qPCR expression profiles for each 

of these mRNAs were generally similar to those from the microarray analysis, thus validating 

the microarray data.  
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Figure 3.13 Validation of microarray data by qPCR: mRNAs encoding transcription 
factors 

 
Cardiomyocytes were unstimulated or exposed to 0.2 mM H2O2 

(2 h) with or without 15 min 
pre-treatment with either PD184352 (2 µM), JNK-IN-8 (1 µM) or SB203580 (0.7 µM) or to each 
inhibitor in isolation (2 h 15 min). Expression of H2O2-responsive mRNAs encoding 
transcription factors were analysed using qPCR (A, Egr1; B, Egr3; C, Atf3). Microarray results 
alone are shown in panels (i) and qPCR data in panels (ii). Results are means ± SEM (n=4 
independent cardiomyocyte preparations) and are normalised to the means of the controls. #, 
p<0.001 relative to control. *, p<0.05; **, p<0.01; ***p<0.001 relative to H2O2 

alone (one-way 
ANOVA with SNK post-test).  
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The microarray data indicate that several mRNAs associated with antioxidation were 

upregulated in response to H2O2. The data for four of these, heme oxygenase 1 (Hmox1), 

glutamate-cysteine ligase catalytic subunit (Gclc), NAD(P)H quinone dehydrogenase 1 (Nqo1) 

and thioredoxin reductase 1 (Txnrd1) were validated using qPCR. As with the microarrays, all 

were significantly upregulated in response to H2O2 (0.2 mM, 2 h) (Fig. 3.12, A-D). Consistent 

with the microarray data, upregulation of Hmox1 was significantly attenuated by SB203580 

(Fig. 3.12A) while upregulation of Gclc was significantly inhibited by PD184352 or SB203580 

(Fig. 3.12B). In concordance with the microarray data, none of the inhibitors had any significant 

effect on the upregulation of either Nqo1 or Txnrd1 (Fig. 3.12, C and D, respectively).  
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Figure 3.14 Validation of microarray data by qPCR: effects of MAPK inhibitors on 
expression of antioxidant mRNAs induced by H2O2 

 
Cardiomyocytes were unstimulated or exposed to 0.2 mM H2O2 

(2 h) with or without 15 min 
pre-treatment with either PD184352 (2 µM), JNK-IN-8 (1 µM) or SB203580 (0.7 µM) or to each 
inhibitor in isolation (2 h 15 min). Expression of H2O2-responsive antioxidant mRNAs was 
analysed using qPCR (A, Hmox1; B, Gclc; C, Nqo1; D, Txnrd1). Microarray results alone are 
shown in panels (i) and qPCR data in panels (ii). Results are means ± SEM (n=3 independent 
cardiomyocyte preparations) and are normalised to the means of the controls. @, p<0.01, #, 
p<0.001 relative to control. *, p<0.05; **, p<0.01; ***, p<0.001 relative to H2O2 

alone (one-way 
ANOVA with SNK post-test).  
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Members of the Dusp family were also selected for validation using qPCR. Dusp2, Dusp4 and 

Dusp5 were identified as significantly upregulated in response to H2O2 by the microarray 

analysis. In agreement with the microarray data, expression of Dusp2, Dusp4 and Dusp5 was 

significantly upregulated in response to 2 h H2O2 exposure (Fig. 3.13, A-C). As with the 

microarrays, upregulation of Dusp2 was inhibited by PD1843523, JNK-IN-8 or SB203580 (Fig. 

3.13A). Microarray analysis indicated that upregulation of both Dusp4 and Dusp5 was inhibited 

by PD184352 or SB203580 (Fig. 3.13, Bi and Ci). This was reflected by the qPCR analysis, 

which also revealed that JNK-IN-8 had a significant inhibitory effect of the response of Dusp4 

and Dusp5 to 2 h H2O2 exposure (Fig. 3.13, Bii and Cii).  
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Figure 3.15 Validation of microarray data by qPCR: effects of MAPK inhibitors on 
expression of dual-specificity phosphatase (Dusp) mRNAs induced by H2O2  

 
Cardiomyocytes were unstimulated or exposed to 0.2 mM H2O2 

(2 h) with or without 15 min 
pre-treatment with either PD184352 (2 µM), JNK-IN-8 (1 µM) or SB203580 (0.7 µM) or to each 
inhibitor in isolation (2 h 15 min). Expression of Dusp mRNAs was analysed using qPCR (A, 
Dusp2; B., Dusp4; C, Dusp5. Microarray results alone are shown in panels (i) and qPCR data 
in panels (ii). Results are means ± SEM (n=4 independent cardiomyocyte preparations) and 
are normalised to the means of the controls. #, p<0.001 relative to control. *, p<0.05; **, p<0.01; 
***, p<0.001 relative to H

2
O

2
 alone (one-way ANOVA with SNK post-test).  
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3.4 Discussion 

Death of cardiomyocytes, including by apoptosis, is closely associated with the pathogenesis 

of cardiovascular diseases including heart failure (Konstantinidis et al., 2012). Oxidative stress, 

exemplified by H2O2, is one of the principal insults encountered by the heart. Exposure to H2O2 

promotes apoptotic death of cardiomyocytes, induces substantial changes in gene expression 

and activates key intracellular signalling pathways including the three main MAPK pathways, 

ERK1/2, JNKs and p38-MAPKs (Cook et al., 1999b; Clerk et al., 1998a; Clerk et al., 1998b; 

Clerk et al., 2007b; Kwon et al., 2003; Kemp et al., 2003). It is assumed that the changes in 

gene (and protein) expression associated with H2O2-induced apoptosis are implicated in 

mediating the death response of cardiomyocytes, and that these changes are regulated, at 

least in part, by the MAPK pathways. In this chapter, the aim was to use a pharmacological 

inhibitor approach coupled with microarray analysis to dissect the roles of ERK1/2, JNKs and 

p38-MAPKs in regulation of cardiomyocyte RNA expression in response to a pro-apoptotic 

H2O2 concentration.  

 

3.4.1 Confirmation of MAPK inhibitor specificity 

The experiments in this chapter relied heavily on the use of pharmacological inhibitors of the 

ERK1/2, JNK and p38-MAPK pathways to implicate these cascades in the cardiomyocyte gene 

expression response to H2O2. The potency and selectivity of the inhibitors employed here were 

confirmed (section 3.3.2). PD184352 (2 µM) potently inhibited the increase in activation of 

ERK1/2 in response to 0.2 mM H2O2 (Fig. 3.4, A and B), with no significant inhibitory effects 

on JNKs or p38-MAPKs, as indicated by the lack of any change in phosphorylation of c-Jun or 

MAPKAPK2, respectively (Figs. 3.5 and 3.6). It should be noted, however, that while 10 min 

exposure to 0.2 mM H2O2 induced a 3.3±0.53-fold increase in ERK2 activation, this was not 

statistically significant; although it is probable that the result would be significant with an 

increased sample size.  The novel inhibitor of JNKs, JNK-IN-8 (Zhang et al., 2012), significantly 
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inhibited H2O2-induced phosphorylation of the established JNK substrate c-Jun (Fig. 3.5), with 

no significant effects on ERK1/2 or the p38-MAPK pathway (Fig. 3.4 and 3.6). In addition, JNK-

IN-8 abolished the detection of reduced mobility c-Jun bands in response to H2O2 (Fig. 3.5A), 

representing additional supporting evidence of inhibition of phosphorylation.  SB203580 is 

widely used to inhibit activity of the p38-MAPKα/ß isoforms (Cuenda et al., 1995). Here, 

SB203580 used at 0.7 µM potently suppressed phosphorylation of the p38-MAPK substrate 

MAPKAPK2 in response to H2O2 in cardiomyocytes (Fig. 3.6), with no significant inhibitory 

effect on either ERK1/2 or JNK signalling (Figs. 3.4 and 3.5).  

 

3.4.2 Contributions of ERK1/2, JNK and p38-MAPK signalling to cardiomyocyte gene 

expression in response to H2O2  

Consistent with previous studies (Kemp et al., 2003; Clerk et al., 2007b), a pro-apoptotic H2O2 

concentration (0.2 mM) induced substantial changes in cardiomyocyte RNA expression after 

2 h exposure, with changes in 490 RNAs (Fig. 3.8 and Appendix II, Tables A4  and A5). A 

preponderance of RNAs was upregulated (295 RNAs, ~60% of total) (Appendix II, Table A4) 

reinforcing the notion that at this early time during apoptosis, cardiomyocytes actively respond 

to the encountered insult, resulting in changes in gene expression that presumably regulate 

and contribute to the final response. Notably, and in agreement with earlier studies (Clerk et 

al., 2007b), numerous upregulated mRNAs encode DNA-binding transcription 

factors/regulators of transcription (including Egr1, Egr3, Atf3, Fos, Fosb, Fosl1, Jund, Klf4, Klf5 

and Klf10) (Appendix II, Table A4), suggesting that part of the response to H2O2 comprises 

expression of factors required for further downstream regulation of gene expression. Similarly, 

many mRNAs encoding receptor ligands were upregulated, including Inhba (inhibin beta-A), 

Ngf (nerve growth factor), Ereg (epiregulin), Areg (amphiregulin), Hbegf (heparin-binding EGF-

like factor) and Lif (leukaemia inhibitory factor) (Appendix II, Table A4). Accordingly, if these 

are ultimately translated to protein and secreted, they may serve to propagate the 

cardiomyocyte response to H2O2 in an autocrine or paracrine fashion. 
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Although substantial changes in RNA expression were detected in response to H2O2, fewer 

genes were identified as upregulated than in the previous study (295 vs the 391 identified in 

Clerk et al., 2007b). Approximately 42% of genes upregulated by H2O2 were identified as such 

by Clerk et al. Accordingly, while the data are reasonably reproducible, there are differences 

between the two data sets. The reasons for this are not immediately apparent, although it may 

be due at least in part to differences in analysis of the microarray data, and the fact that different 

microarrays were used in the two studies (Affymetrix GeneChip Rat Gene 2.0 ST microarrays 

in the present study vs Affymetrix GeneChip Rat Genome 230 2.0 microarrays in Clerk et al., 

2007b).  

The principal aim in this chapter was to characterise the relative contributions of ERK1/2, JNKs 

and p38-MAPKs to the cardiomyocyte RNA expression response to H2O2. Microarray analysis 

indicated that PD184352 in isolation modulated expression of 134 RNAs (Fig. 3.7A and 

Appendix II, Table A1), suggesting that these RNAs are regulated under basal conditions by 

ERK1/2 in cardiomyocytes.  Since 92 (~68%) of these were downregulated, ERK1/2 appear to 

have a primarily positive regulatory role in this context, with a smaller repressive function in 

baseline RNA expression (Fig. 3.7A and Appendix II, Table A1). Conversely, JNK-IN-8 and 

SB203580 promoted baseline changes in only 14 and 6 RNAs, respectively (Fig. 3.7, B and C 

and Appendix II, Tables A2 and A3), indicating a much smaller role for JNKs and p38-MAPKα/ß 

in regulation of basal cardiomyocyte RNA expression. This observation is arguably expected 

due to their association with activation under stress conditions.  

Microarray expression profiling indicated that ERK1/2, JNKs and p38-MAPKα/ß contribute 

substantially, yet differentially, to cardiomyocyte RNA expression in response to H2O2. Of 295 

RNAs upregulated in response to H2O2, the expression of 167 (~56%) was affected by one or 

more of PD184352, JNK-IN-8 or SB203580 (Fig. 3.9, Table 3.1 and Appendix II, Tables A9, 

A10, A15, A16 and A22). A similar proportion of the 195 RNAs downregulated by H2O2 were 

affected by one, or more, MAPK inhibitor (Fig. 3.9, Table 3.2 and Appendix II, Tables A12, 

A13, A18 and A22). Of 295 RNAs upregulated by H2O2, PD184352 further changed expression 
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of 108, indicating that ERK1/2 regulate expression of ~37% of RNAs induced by H2O2 (Fig. 

3.9A, Table 3.1 and Appendix II, Tables A9 and A10). As observed with respect to baseline 

expression, a majority of these RNAs (74, ~69%) were positively regulated by ERK1/2. The 

effects of PD184352 on RNAs downregulated in response to H2O2 also indicate that ERK1/2 

effected changes in 33% of these genes (Fig. 3.9A, Table 3.2 and Appendix II, Tables A12 

and A13). In this context, PD184352 served to relieve the downregulatory effect of H2O2 on 57 

RNAs (i.e. ERK1/2 promote their downregulation) (Appendix II, Table A13) but potentiated the 

downregulation of a further 8 RNAs (Appendix II, Table A12).  

JNK-IN-8 exposure resulted in changes in 75 of the 295 RNAs induced by H2O2, implicating 

JNK signalling in regulation of ~25% of RNAs upregulated in response to 0.2 mM H2O2 at 2 h 

(Fig. 3.9B, Table 3.1 and Appendix II, Tables A15 and A16). In common with ERK1/2, JNKs 

appear to have primarily a positive regulatory role: of 75 RNAs induced by H2O2 and changed 

by JNK-IN-8, 63 (84%) were inhibited (Fig. 3.9B, Table 3.1 and Appendix II, Table A16). The 

data indicate that JNKs also play a negative regulatory role in response to H2O2 as the extent 

of the downregulation of 53 RNAs was reduced in the presence of JNK-IN-8 (Fig. 3.9B, Table 

3.2 and Appendix II, Table A18). 

 SB203580 resulted in changes in expression of 84 RNAs upregulated in response to H2O2, 

implicating p38-MAPKα/ß in regulation of ~28% of induced RNAs (Fig. 3.9C, Table 3.1 and 

Appendix II, Table A20). As observed for ERK1/2 and JNKs, p38-MAPKα/ß appear to play a 

principally positive role in this context, as SB203580 caused inhibition of 83 of the affected 

RNAs (Fig. 3.9C and Appendix II, Table A20), with a repressive effect of p38-MAPKα/ß in 

regulation of only one transcript (Fig. 3.9C and Table Appendix II, Table A20).  With respect to 

RNAs downregulated by H2O2, SB203580 returned the expression of 68 to similar levels to 

control values (implicating p38-MAPKα/ß in their downregulation) and enhanced 

downregulation of only one RNA (Fig. 3.9C, Table 3.2 and Appendix II, Table A22). 



140 
 

To verify the changes in RNA expression determined using microarrays, microarray data for 

selected genes were validated using qPCR and using RNA extracted from cardiomyocyte 

preparations independent from those used in the microarray analysis.  Although the absolute 

numerical values for changes in expression determined by the two independent techniques 

differed, generally, the microarray and qPCR data were in accord, with similar expression 

profiles (Figs. 3.10 – 3.13). Considered together, the microarray and qPCR expression profiling 

data demonstrate that ERK1/2, JNKs and p38-MAPKα/ß all contribute to the cardiomyocyte 

RNA expression response to H2O2 with, in terms of numbers of RNAs affected, a greater 

contribution by ERK1/2 and a relatively smaller contribution by JNKs and p38-MAPKα/ß.  

The expression profiling data presented here suggest a substantial role for ERK1/2 in 

regulation of cardiomyocyte RNA expression in response to H2O2. This observation agrees 

with previous studies in cardiomyocytes implicating ERK1/2 in regulation of RNA expression 

in response to other stimuli (Kennedy et al., 2006; Cullingford et al., 2008a; Marshall et al., 

2010; Amirak et al., 2013). Indeed, several RNAs identified as targets of ERK1/2 in response 

to H2O2 have been reported previously under different conditions. For example, induction of 

Xirp1, Rgs2, and Klf5 by ET-1 is at least partially sensitive to inhibition of ERK1/2 activation 

using U0126 or PD184352 (Kennedy et al., 2006; Cullingford et al., 2008a; Marshall et al., 

2010). A further study in the cardiac-related H9c2 cell line used the MKK1/2 inhibitor PD98059 

to implicate ERK1/2 in induction of Egr1 in response to 0.2 mM H2O2, as observed here (Fig. 

3.11A). The same study also suggested a role for JNKs, but not p38-MAPKα/ß, in upregulation 

of Egr1 in accord with the data presented here (Fig. 3.11A), although the poorly-selective JNK 

inhibitors SP600125 and AS601245 were used (Aggeli et al., 2010).  

Despite the relatively lesser roles of JNKs and p38-MAPKα/ß in regulation of RNA expression 

under these conditions, these pathways may still play crucial roles in the cardiomyocyte 

response to H2O2 through regulation of key genes. Interestingly, Zfp36 was identified as a 

target of p38-MAPKα/ß signalling (Appendix II, Table A20). Zfp36 encodes tristetraprolin, a 

zinc-finger domain-containing RBP that binds AU-rich elements of certain RNAs, resulting in 
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transcript destabilisation. Tristetraprolin is an established substrate of the p38-MAPK pathway, 

and tristetraprolin phosphorylation is reported to inhibit the destabilisation of transcripts 

including pro-inflammatory TNFα (Marderosian et al., 2006; Sun et al., 2007). Similarly, 

induction of Arid5a RNA by H2O2 was inhibited by JNK-IN-8 (Appendix II, Table A16), 

suggesting upregulation by JNKs. Like tristetraprolin, Arid5a binds mRNAs and modulates their 

stability (Masuda et al., 2013). Although little is known about the regulation and function of 

Arid5a, it is associated with regulation of the pleiotropic cytokine interleukin-6 in non-cardiac 

systems (Masuda et al., 2013). Furthermore, despite the larger number of RNAs regulated by 

ERK1/2, several identified targets of ERK1/2 were also sensitive to JNK-IN-8 and/or 

SB203580, including Egr1 and Egr3 (Fig. 3.11, A and B) and Dusp2, Dusp4 and Dusp5 (Fig. 

3.13), indicating overlapping functions of the different MAPK pathways in regulation of some 

genes.  

Although the significance of individual genes is difficult to determine, by examining the RNAs 

regulated by the MAPKs in this study, it may be possible to begin to propose potential 

functional roles for the MAPK pathways in the cardiomyocyte RNA expression response to 

H2O2. Interestingly, several RNAs induced by H2O2 were suppressed by all three MAPK 

inhibitors. One of these, Xirp1 (Appendix II, Tables A9, A17 and A20), encodes an actin-binding 

protein which localises to the myocardial intercalated disks and is upregulated in other cardiac 

stress conditions including in response to myocardial infarction, and is downregulated in failing 

hearts (Wang et al., 2014b; Harpster et al., 2006). Interestingly, Xirp1 is also upregulated in 

response to ischaemic preconditioning (Ashton et al., 2013), suggesting an association with 

cardioprotection. Accordingly, induction of Xirp1 by the MAPK pathways may represent a 

cytoprotective response to the insult caused by H2O2, although further investigation is required. 

Similarly, Klhl40, mutations of which are a common cause of autosomal-recessive nemaline 

myopathy (Ravenscroft et al., 2013), was also induced by H2O2 and inhibited by all three MAPK 

inhibitors studied (Appendix II, Tables A9, A17 and A20)   
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Several “typical” Dusp family members [i.e. Dusps that contain a MAPK-binding domain 

(Huang and Tan, 2012)] were upregulated in response to H2O2 (Fig. 3.13 and Appendix II, 

Table A4). The induction of Dusp2, Dusp4, Dusp5 and Dusp10 was identified using 

microarrays and/or qPCR as being sensitive to one or more the MAPK inhibitors investigated 

(Fig. 3.13) and baseline expression of Dusp8 was downregulated in response to JNK-IN-8 in 

isolation (Fig. 3.10A). These Dusps, named for their phosphatase activity against 

phosphorylated activation loop threonine and tyrosine residues negatively regulate the 

activation of MAPKs (Huang and Tan, 2012). Induction of Dusp2, Dusp4 and Dusp5 was 

inhibited by PD184352, JNK-IN-8 and SB203580 (Fig. 3.13, A – C) and upregulation of Dusp10 

inhibited by JNK-IN-8 (Appendix II, Table A16). These data suggest that ERK1/2, JNKs and 

p38-MAPKα/ß cooperatively function in negative feedback autoregulation during H2O2-induced 

cardiomyocyte apoptosis. Similar feedback loops have been reported previously, for example, 

the induction of Dusp2 by ERK1/2 activity in response to serum in CCL39 cells (Brondello et 

al., 1997). 

Four antioxidation-associated mRNAs identified by microarrays as upregulated by H2O2 were 

selected for further investigation using qPCR. Upregulation of Hmox1, Gclc, Nqo1 and Txnrd1 

[as also previously reported (Clerk et al., 2007b)] was validated, as was the inhibition of Hmox1 

by SB203580 and the inhibition of Gclc by both PD184352 and SB203580 (Fig. 3.12, A – D). 

These data indicate that ERK1/2 and p38-MAPKα/ß regulate expression of (at least some) 

genes encoding antioxidant proteins in response to H2O2, thus presumably contributing to the 

cardiomyocyte response to increased oxidative stress, and potentially promoting 

cytoprotection. Similarly, H2O2 induced upregulation of Cdkn1a, which encodes p21Cip1/Waf1, 

was found to be sensitive to SB203580 (Appendix II, Table A20), indicating a role for p38-

MAPKα/ß in regulation of this gene. In NIH 3T3 cells exposed to 0.25 mM H2O2 (4 h), 

p21Cip1/Waf1 is upregulated at both the RNA and protein level and is associated with transient 

cell cycle arrest, regarded to be a cytoprotective response to the encountered insult (Barnouin 

et al., 2002).  
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Gene Ontology analysis of the microarray expression profiles using the PANTHER GO-slim 

tool provided further insights into the potential roles of MAPKs in the cardiomyocyte gene 

expression response to H2O2. As might be expected, genes associated with cellular and 

metabolic processes, biological regulation and response to stimulus were most highly 

represented in the data for each of the MAPK inhibitors (Fig. 3.10). Gene Ontology analysis 

classifying genes by protein class indicated that genes associated with signalling molecules, 

transcription factors and nucleic acid binding were highly represented for all three of the MAPK 

inhibitors (Fig 3.11). This observation is consistent with the notion that, early in H2O2-induced 

apoptosis, the MAPK pathways are involved in establishing signalling networks and factors 

associated with regulation of transcription, potentially influencing the final cardiomyocyte 

response to the encountered stress. Interestingly, although genes encoding enzyme 

modulators were relatively highly represented in the data for PD184352 (15.8% of all genes, 

Fig. 3.11A) and JNK-IN-8 (11.9% of all genes, Fig. 3.11B) but less so in the data for SB203580 

(<5%, Fig. 3.11C), and accordingly there is presumably divergence in the roles of the different 

MAPKs in this context. Similarly, 7.3% of the genes differentially regulated by SB203580 were 

classified as encoding oxidoreductases (Fig. 3.11C) compared to only 1.8% for PD184352 

(Fig. 3.11A) and 0% for JNK-IN-8 (Fig. 3.11B). Accordingly, this may be reflective of a role for 

p38-MAPKs in defense against the encountered oxidative stress.   

 

3.4.3 Nuclear localisation of activated MAPKs in response to H2O2  

One important aspect of the investigations in this chapter was to characterise the nuclear 

localisation of activated ERK1/2, JNKs and p38-MAPKs in response to H2O2. Since activated 

MAPKs phosphorylate nuclear-localised transcription factors, thereby modulating their 

transactivating activities, it is presumed that phosphorylated (i.e. activated) MAPKs are present 

in the nucleus following stimulation. To assess the nuclear localisation of activated MAPKs in 

response to H2O2, cardiomyocytes were exposed to H2O2 and subcellular protein fractions 

subjected to immunoblotting for total and phosphorylated MAPKs; an approach successfully 
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adopted previously to assess localisation of activated ERK1/2 and RSKs in response to various 

GqPCR agonists (Amirak et al., 2013). These experiments indicated that activated ERK1/2 

were substantially increased in the NPE fraction following 10 min H2O2 stimulation (maximal at 

20 – 30 min), suggesting that active ERK1/2 play a significant role in the nucleus (Fig. 3.1A 

and B). Interestingly, the degree and profiles of ERK1/2 activation were similar in the 

cytoplasmic and nuclear fractions (Fig. 3.1B), reinforcing the notion that the pathway plays 

important roles in both compartments. Perhaps surprisingly, there was an absence of net 

nuclear accumulation of total ERK1/2 protein following activation, as occurs in other cell types 

(Chen et al., 1992; Adachi et al., 1999), although it was also previously reported that exposure 

of cardiomyocytes to ET-1, phenylephrine or A61603 similarly resulted in increased detection 

of activated ERK1/2 in the nucleus in the absence of net nuclear accumulation (Amirak et al., 

2013). Subcellular localisation of ERK1/2 is regulated by a number of factors including 

autodimerisation, interactions with scaffolding proteins or the cytoskeleton or by association 

with the upstream MKKs (Reszka et al., 1995; Adachi et al., 1999; Casar et al., 2009). 

However, these components and their regulation of ERK1/2 localisation in cardiomyocytes are 

yet to be elucidated.  

p46- and p54-JNKs were maximally activated in the cytoplasmic fraction following 10 min 0.2 

mM H2O2 exposure, an earlier time than observed for maximal ERK1/2 activity (Fig. 3.1 A and 

B). Interestingly, cytoplasmic p38-MAPK activation in response to H2O2 was extremely rapid, 

with a significant, ~5.8-fold stimulation by 2 min (Fig. 3.2 A and B). These data are largely 

consistent with previous observations, although p38-MAPK activation was previously 

investigated following ≥5 min 0.1 mM H2O2 stimulation, thus activation at an earlier time-point 

is demonstrated here (Clerk et al., 1998b). In contrast with the data for ERK1/2, the increases 

in activated JNKs and p38-MAPKs in the cardiomyocyte nucleus following H2O2 stimulation 

were smaller and not statistically significant (Figs. 3.2 and 3.3), although due to some variability 

in the response, an increased sample size would likely result in statistically significant 

observations. Nonetheless, activated JNKs and p38-MAPKs were indeed detected in the NPE 



145 
 

fraction following H2O2 exposure, suggestive of a role for these pathways in the cardiomyocyte 

nucleus. In common with ERK1/2, net nuclear accumulation of JNKs or p38-MAPKs was not 

detected (Figs. 3.2 and 3.3). There are seemingly few studies examining the subcellular 

distribution of cardiac JNKs and p38-MAPKs, although JNK1 has previously been shown to 

translocate to cardiomyocyte nuclei upon ischaemia, where it is activated by MKK4 upon 

reperfusion (Mizukami et al., 1997). In other cell types, p38-MAPK does not exhibit 

redistribution to the nucleus upon activation, except in response to DNA damage, consistent 

with the observations here (Raingeaud et al., 1995; Wood et al., 2009).  

The subcellular fractionation method used here relies on use of a hypotonic buffer to selectively 

isolate the cytosolic fraction followed by extraction and enrichment of nuclear proteins using a 

high salt buffer (Dignam et al., 1983). Although other effective approaches, such as exploiting 

differential solubility of subcellular components in detergents (Ramsby and Makowski, 2011), 

are available, the subcellular fractionation method used has been shown to reliably separate 

soluble cytoplasmic proteins from the nucleus; with negligible detectable cross-contamination 

(Amirak et al., 2013; Dignam et al., 1983).  

 

3.4.4 Conclusions and further work 

Considered together, the expression profiling and subcellular localisation data presented here 

indicate that ERK1/2, JNKs and p38-MAPKs play important roles in regulation of 

cardiomyocyte RNA expression in response to H2O2, and that these effects are mediated, at 

least in part, by activated MAPKs in the nucleus. Interestingly, of the MAPKs examined, 

ERK1/2 appear to play the largest role in terms of numbers of genes regulated and degree of 

activation in the nucleus, with somewhat lesser yet important contributions from JNKs and p38-

MAPKs.  

However, given that expression of a total of 214 of the 490 RNAs changed by H2O2 was 

unaffected by any MAPK inhibitor, it is apparent that other regulatory pathways are implicated 
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in the modulation of RNA expression under these conditions. Although the identities of these 

pathways were not investigated during this study, it is possible that other oxidative stress-

sensitive regulators of gene expression such as the transcription factor Nrf2 are involved in the 

cardiomyocyte response to H2O2 (Zhou et al., 2014). Additional work is required to identify, 

and characterise the roles of, these pathways. Further investigations would also seek to assess 

the extent to which the contributions from the MAPK pathways to changes in RNA expression 

are reflected at the level of expressed protein. Of particular interest for further examination are 

the Dusps, due to their roles in negative regulation of MAPK activity. Zfp36/tristetraprolin is 

also a key gene of interest, due to its association with p38-MAPKs and modulation of pro-

inflammatory transcripts.  
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Chapter Four – Effects of pathophysiological stimuli on receptor-

interacting protein kinases (RIPKs) in the heart 

 

 

 

 

 

 

 

 

 

 



148 
 

4.1 Introduction 

The data presented in Chapter Three demonstrate that the principal MAPK pathways, ERK1/2, 

JNKs and p38-MAPKs, play significant yet differential roles in regulation of cardiomyocyte 

mRNA expression during H2O2-induced apoptosis. Thus, these signalling pathways potentially 

contribute to the cardiomyocyte death response. However, it is clear that other pathways also 

play significant roles in modulating the balance between cardiomyocyte life and death. Rapidly 

emerging data in other systems have identified a novel form of cell death, necroptosis, 

mediated by a family of protein kinases, the RIPKs.  

Interest in the RIPKs was piqued during efforts within Prof. Clerk’s laboratory to delineate the 

cardiac kinome (i.e. the full complement of kinases expressed within the heart). These studies 

revealed that certain members of the RIPK family (RIPKs 1, 2 and 3) and other proteins 

implicated in necroptotic cell death (e.g. MLKL) are expressed at significant levels in the heart 

(Fuller et al., 2015). Considering the close association between cardiomyocyte death and 

cardiac pathologies such as HF and MI (Chiong et al., 2011), the RIPKs represent a promising 

field of investigation, since regulated cell death pathways have the potential to be targeted 

therapeutically. The pleiotropic roles of RIPK1 in both promotion of survival (through activation 

of NFκB and MAPKs) and induction of necroptotic death (Zhou and Yuan, 2014) make it a 

particularly salient target of scrutiny since developing an understanding of its function may 

highlight potential for therapeutic intervention both in inhibiting cell death responses and in 

promoting cardioprotection.  

At the outset of this investigation, there were few published studies pertaining to the roles of 

RIPKs and necroptosis in the heart. Early studies subsequent to the observation that 

necrostatin-1 (Nec-1) has a protective effect against non-apoptotic death in ischaemic brain 

injury (Degterev et al., 2005), demonstrated that Nec-1 conferred protection against tertbutyl 

hydroperoxide-induced death of the cardiac-related H9c2 cell line and reduces infarct size 

following myocardial IR (Smith et al., 2007; Lim et al., 2007).  The identification of RIPK1 kinase 

activity as the target of Nec-1 (Degterev et al., 2008) led to more focussed investigations. In 



149 
 

2012, Oerlemans and colleagues (Oerlemans et al., 2012) demonstrated that, in a mouse 

model of myocardial IR, administration of Nec-1 prior to onset of reperfusion inhibited RIPK1/3 

phosphorylation and significantly reduced infarct size and necrotic cell death, with no effect on 

apoptotic death. A concomitant decrease in inflammatory and oxidative stress-associated 

transcripts (e.g. Tnfa, Gab1, Nos2, Cox-2) was also reported, reinforcing the importance of 

RIPK1 in mediating cardiac inflammatory and death responses. While these studies 

highlighted a key role for RIPK1 kinase activity in induction of necroptosis in the heart, Luedde 

et al. (Luedde et al., 2014) described upregulation of RIPK3 in the peri-infarct zone following 

ligation of the left anterior descending coronary artery. However, the study did not address 

whether this was localised to cardiomyocytes or non-myocytes. RIPK3 overexpression also 

induced necroptotic death of neonatal cardiomyocytes. More recently, Li and colleagues (Li et 

al., 2014) demonstrated that inhibition of TAK1 activity suppresses activation of JNKs and 

NFκB and sensitises cardiomyocytes to TNFα-induced necroptosis. The observation that 

cardiomyocytes could be rescued by RIPK1 inhibition with Nec-1, but not pan-caspase 

inhibition, reinforces the central role of RIPK1 kinase activity in necroptosis (Li et al., 2014).  

Although the available studies indicate a key role for RIPKs and necroptosis in the heart, with 

potentially important consequences for development of cardiac pathologies, there remains a 

paucity of detail regarding the molecular regulation of these kinases in the heart. Furthermore, 

the pathway has been examined in the context of a relatively limited number of stimuli which 

may not adequately reflect the wide range of pathophysiological insults to which the heart is 

subjected. In this chapter, the aim was to investigate potential roles for RIPKs in the heart in 

response to a variety of agonists, achieved by adoption of a screening approach to assess the 

response of cardiac RIPKs to a range of pathophysiological stimuli.  
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4.2 Methods 

4.2.1 Neonatal rat ventricular cardiomyocytes and immunoblotting 

Primary cultures of neonatal rat ventricular cardiomyocytes (from 2 – 4 d Sprague-Dawley rats) 

were prepared as described in Chapter Two, section 2.3.1. Cardiomyocytes were treated with 

agonists and/or inhibitors (prepared as detailed in Chapter Two, section 2.2) as indicated. 

Unless stated otherwise, total protein extracts were prepared as in Chapter Two, section 2.5.1. 

Protein content in prepared extracts was quantified using a modification of the Bio-Rad Protein 

assay as described in Chapter Two, section 2.5.3. Extracts (20 – 100 µg) were separated by 

SDS-PAGE using 10% polyacrylamide gels and immunoblotted as described in Chapter Two, 

section 2.5.4 using the indicated antibodies.  

4.2.2 Anion-exchange fast protein liquid chromatography (FPLC) 

Anion-exchange FPLC was performed in collaboration with Prof. Angela Clerk using a Mono 

Q HR 5/5 FPLC column and an Äkta FPLC system (both GE Healthcare) as described in 

Chapter Two, section 2.11. In summary, five 60 mm dishes of neonatal rat ventricular 

cardiomyocytes were treated as indicated, washed twice with ice-cold PBS and harvested into 

a total of 300 μl extraction buffer. The lysates were extracted on ice (10 min), centrifuged to 

remove cell debris (10,000×g, 5 min, 4°C), and the resulting supernatants removed to a clean 

tube. The extracts were further clarified with a second centrifugation (10,000×g, 5 min, 4°C) 

and the supernatant extracts removed to a clean tube. The extracts were loaded into a Mono 

Q HR 5/5 FPLC column pre-equilibrated with Mono Q Buffer A as described in Chapter Two 

section 2.11. Following a 5 ml isocratic wash, bound proteins were eluted from the column with 

a linear NaCl gradient (20 ml, 0 – 0.4 M) at a rate of 1 ml/min, formed by mixing Mono Q Buffer 

A with Mono Q Buffer B (Mono Q Buffer A containing 1 M NaCl). Fractions (0.5 ml) were 

collected with an automated fraction collector. Samples of each fraction were retained and 

boiled with 0.33 vol. 4× SDS-PAGE sample buffer (5 min).  
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Column fractions were immunoblotted using antibodies to RIPK1. Immunoreactive bands were 

analysed densitometrically and the values for each fraction normalised to the maximum value 

from each column.   

 

4.3 Results 

4.3.1 Effects of oxidative stress on RIPKs in neonatal rat cardiomyocytes and adult rat 

hearts 

Several studies have implicated RIPKs in regulation of cell death resulting from ischaemia and 

IR injury in systems including brain, kidney and heart (Degterev et al., 2005; Linkermann et al., 

2012; Oerlemans et al., 2012; Luedde et al., 2014; Newton et al., 2016a). IR induces a wide 

range of responses in the cell, and is associated with an increase in oxidative stress and cell 

death. Directly applied oxidative stress (exemplified by H2O2) can induce cardiomyocyte 

apoptosis or necrosis, dependent on the concentration (Von Harsdorf et al., 1999; Cook et al., 

1999b; Kwon et al., 2003). To examine the effects of oxidative stress on cardiac RIPK1, 

cardiomyocytes were exposed to H2O2 (0.03 – 10 mM, 0.5 – 8h). Total protein extracts were 

produced and immunoblotted with antibodies to RIPK1. 

In unstimulated cardiomyocytes, RIPK1 was detected as a band of ~70 kDa (rat RIPK1 

predicted molecular weight, ~74.8 kDa) (Fig. 4.1) Exposure to H2O2 concentrations of 0.2 mM 

and higher resulted in a reduction in electrophoretic mobility of RIPK1 (Fig. 4.1, A, B and C). 

At 0.2 mM, the response was transient, with a maximal band shift at 0.5 – 1 h, returning to 

baseline by 2 h. The response to 0.5 mM H2O2 was of a greater magnitude, resulting in a band 

shift of the total RIPK1 complement of the cell at 0.5 – 1 h, with a partial reversal at 2 h (Fig 

4.1A).  A higher concentration, 1 mM H2O2, also resulted in reduction of RIPK1 mobility at 0.5 

h. Maximal band shifting was observed at 1 – 2 h in response to 1 mM H2O2, although this 

subsided by 4 h. However, reduced mobility bands were detected following longer incubations 

of up to 8 h (Fig 4.1B).  
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Assessing the response of RIPK1 to exposure to various concentrations of H2O2 for 1 h 

demonstrated that H2O2 concentrations of 0.3 - 10 mM (Fig. 4.1C) resulted in reduced mobility 

of RIPK1, whilst concentrations of 0.1 and 0.03 mM had little or no effect. The response was 

maximal following exposure to 1 mM H2O2 (Fig. 4.1C). 
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Figure 4.1 Effects of oxidative stress on RIPK1 in cardiomyocytes.   
 
(A and B) Cardiomyocytes were exposed to 1 mM H2O2 for 0 – 8 h (A) or 0.2 or 0.5 mM H2O2 
for 0 – 120 min (B). Total protein extracts (30 µg) were immunoblotted for RIPK1. Two 
experiments with independent cardiomyocyte preparations are shown.  (C) Cardiomyocytes 
were exposed to 0 – 10 mM H2O2 (60 min). Total protein extracts (30 µg) were immunoblotted 
for RIPK1 (upper panel). Densitometric analysis of the immunoblots is shown in the lower panel. 
Results shown are the percentages of the upper band relative to total RIPK1 immunoreactivity. 
Results are means ± SEM (n=3 independent cardiomyocyte preparations). **, p<0.01; ***, 
p<0.001 (one-way ANOVA with Tukey post-test). 
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Having observed the effects of oxidative stress on RIPK1 in isolated neonatal cardiomyocytes, 

the effects of IR, which is associated with an increase in oxidative stress, on RIPKs in the 

mature whole organ were explored. Adult male rat hearts were subjected to IR (20 min 

ischaemia and 40 min reperfusion) and extracts were immunoblotted with antibodies to RIPK1 

and RIPK3 (Fig. 4.2, A and C). IR resulted in a significant loss (>4-fold reduction relative to 

control) of RIPK1 protein, with no significant effects on the quantity of the related kinase, RIPK2 

(Fig. 4.2, A and B) IR also resulted in the appearance of bands of reduced mobility for both 

RIPK1 and RIPK3 (Fig. 4.2C). 

To determine whether the effects of directly applied oxidative stress on RIPKs in the isolated 

neonatal cardiomyocyte are reflected in the whole adult heart, adult male rat hearts were 

perfused under control conditions or with 0.2 mM H2O2 for 1 h and extracts immunoblotted for 

RIPKs.  H2O2 induced the appearance of reduced mobility bands of both RIPK1 and RIPK3 

(Fig. 4.2C). 
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Figure 4.2 Effects of ischaemia/reperfusion and H2O2 on RIPKs in adult rat hearts.  
 

Isolated adult male rat hearts were perfused under control conditions (C, 60 min) or subjected 
to global ischaemia followed by reperfusion (IR, ischaemia 20 min; reperfusion 40 min) or were 
perfused with 0.2 mM H2O2 (H, 60 min). (A) Total protein extracts (40 µg) were immunoblotted 
for RIPK1 and RIPK2, as indicated. (B) Densitometric analysis of the immunoblots in (A). 
Results are means ± SEM (n=4) and are normalised to the mean of the controls. ***, p<0.0001 
(Student’s t-test).  (C) Total protein extracts (100 µg) were immunoblotted for RIPK1 and 
RIPK3, as indicated. Each lane represents an individual heart.  
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4.3.2 Effects of pro-inflammatory cytokines (TNFα and IL1β) on RIPK1 in neonatal rat 

cardiomyocytes 

4.3.2.1 Effects of TNFα on RIPK1 in cardiomyocytes  

As discussed in Chapter One, section 1.4, pro-inflammatory cytokines such as TNFα and IL1β 

activate important signalling pathways such as the MAPKs in cardiomyocytes (Clerk et al., 

1999), and are implicated in the regulation of both adaptive and maladaptive responses in the 

heart (Barrett et al., 2013; Hedayat et al., 2010). Historically, RIPKs and necroptosis have been 

characterised most extensively in the context of TNFα stimulation of immune and inflammatory 

cells. To determine whether RIPK1 responds to TNFα in cardiomyocytes, neonatal rat 

cardiomyocytes were exposed to TNFα (20 ng/ml) for 5 min – 8 h. Total protein extracts were 

separated using SDS-PAGE and immunoblotted with antibodies to RIPK1. 

Exposure to TNFα induced the appearance of a reduced mobility band of ~75 kDa (Fig. 4.3A). 

The detection of the 75 kDa band was maximal at 15 min, representing 51 ± 0.015% of the 

total detected RIPK1 protein at that time point (Fig. 4.3B). Notably, in addition to the maximally 

shifted 75 kDa band, a RIPK1 band exhibiting a small upshift relative to control was observed 

at 5 – 15 min (Fig. 4.3A).  The maximal response was at 15 min and this subsided between 30 

– 120 min (Fig. 4.3A). However, the presence of a reduced mobility band was still detectable 

following longer incubation of up to 6 h (Fig. 4.3C). 
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Figure 4.3 Effects of TNFα on RIPK1 in cardiomyocytes. 
 

(A) Cardiomyocytes were untreated or exposed to TNFα (20 ng/ml) for 5 – 120 min. Total 
protein extracts (30 µg) were immunoblotted for RIPK1. (B) Densitometric analysis of the 
RIPK1 immunoblots in (A). Results shown are the percentages of the upper band relative to 
total RIPK1 immunoreactivity and are means ± SEM (n=3 independent cardiomyocyte 
preparations), normalised to the mean of the control values. #, p<0.0001 (one-way ANOVA 
with Tukey post-test). (C) Cardiomyocytes were untreated or exposed to TNFα (20 ng/ml) for 
0.5 – 8 h. Total protein extracts were immunoblotted for RIPK1. The experiment was repeated 
and representative images from both cardiomyocyte preparations are shown.  
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4.3.2.2 Effects of IL1β on RIPK1 in cardiomyocytes 

Having observed that RIPK1 responds to TNFα in cardiomyocytes, the immunoblotting 

approach described above was extended to cardiomyocytes exposed to a further important 

pro-inflammatory cytokine, IL1β. IL1β plays important roles in mediating pathophysiological 

responses in the heart (Yndestad et al., 2007). However, the response of RIPK1 to IL1β does 

not appear to have been assessed in the heart, or any other system. To assess the potential 

roles of IL1β in regulation of RIPK1 and necroptosis in cardiomyocytes, cardiomyocytes were 

unstimulated or exposed to IL1β (25 ng/ml, 5 min – 8 h). As with TNFα (Fig. 4.3), IL1β 

maximally induced the appearance of reduced mobility bands for RIPK1 within 5 – 15 min, with 

the 75 kDa band representing 80±0.15% of total RIPK1 at 15 min (Fig. 4.4, A and B) Longer 

exposures up to 8 h also resulted in detection of a reduced mobility RIPK1 band (Fig. 4.4C) In 

common with TNFα, IL1β also induced a small upshift in RIPK1 relative to unstimulated cells 

at 5 – 15 min (Fig. 4.4A). 
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Figure 4.4 Effects of IL1β on RIPK1 in cardiomyocytes  
 

(A) Cardiomyocytes were untreated or exposed to IL1β (25 ng/ml) for 5 – 120 min. Total protein 
extracts (30 µg) were immunoblotted for RIPK1. (B) Densitometric analysis of the RIPK1 
immunoblots in (A). Results shown are the percentages of the upper band relative to total 
RIPK1 immunoreactivity and are means ± SEM (n=3 independent cardiomyocyte 
preparations), normalised to the mean of the control values. *, p<0.05; ***, p<0.001 (one-way 
ANOVA with Tukey post-test). (C) Cardiomyocytes were untreated or exposed to IL1β (25 
ng/ml) for 0.5 – 8 h. Total protein extracts were immunoblotted for RIPK. Representative 
images from two independent cardiomyocyte preparations are shown.   
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The reduction of protein electrophoretic mobility through SDS gels following phosphorylation 

has been documented extensively and is a well-established phenomenon (Wegener and 

Jones, 1984; Lozano et al., 1990; Fuller et al., 2012).  Accordingly, to examine whether the 

reduction of RIPK1 mobility in response to IL1β might be caused by increased RIPK1 

phosphorylation, protein extracts from unstimulated cardiomyocytes and from those exposed 

to IL1β (25 ng/ml, 15 min) were subjected to anion exchange FPLC using a Mono Q column. 

Mono Q columns contain a strong anion-exchange resin, which causes negatively charged 

residues on proteins to bind tightly. Increasing the phosphorylation status of a protein increases 

the number of negatively charged residues, resulting in tighter binding to the resin, and 

requiring a greater NaCl concentration to disrupt the association and elute the protein. 

Accordingly, more highly phosphorylated proteins typically elute in later fractions. The column 

fractions were immunoblotted for RIPK1. Densitometric analysis of the immunoblotted fractions 

demonstrated that RIPK1 in extracts from unstimulated cardiomyocytes eluted from the Mono 

Q column predominantly in a peak at ~0.19 – 0.2 M NaCl (fractions 19 – 20) (Fig. 4.5, A and 

B ). However, exposure of cardiomyocytes to IL1β retarded the elution of RIPK1 from the Mono 

Q column, resulting in a peak of RIPK1 immunoreactivity eluting at ~0.21 – 0.22 M NaCl 

(fractions 21 – 22) (Fig. 4.5, A and B), consistent with a higher phosphorylation status of RIPK1 

in response to IL1β. 
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Figure 4.5 Anion-exchange FPLC of RIPK1 in IL1β treated cardiomyocyte extracts. 
 

Cardiomyocytes were untreated (Control) or exposed to IL1β (25 ng/ml, 15 min) and extracts 
fractionated on a Mono Q column. (A) Column fractions from cardiomyocytes treated as 
indicated were immunoblotted for RIPK1. (B) Densitometric analysis of the immunoblots in (A). 
Results are means ± SEM (n=3 independent cardiomyocyte preparations) and are normalised 
to the maximum value for each column, as described in section 4.2.2.  
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4.3.3 Effect of SB203580 on the RIPK1 response to IL1β in neonatal rat cardiomyocytes 

Previous investigations indicate that IL1β (10 ng/ml) potently activates p38-MAPKs in 

cardiomyocytes, with a maximal response at 5 – 15 min (Clerk et al., 1999). Having observed 

that IL1β (25 ng/ml) induces maximal band shifting of RIPK1 at 15 min (Fig. 4.4, A and B), it 

was hypothesised that the reduction in RIPK1 mobility might be due to phosphorylation by 

either p38-MAPKs or a p38-MAPK-activated kinase. To investigate this, the effects of the 

inhibitor of p38-MAPKα/ß signalling, SB203580 (Cuenda et al., 1995), on the response of 

RIPK1 to IL1β were examined. Although SB203580 is widely used to inhibit activity of p38-

MAPKα/ß, it is also a more potent inhibitor of RIPK2 (Godl et al., 2003). 

Cardiomyocytes were untreated or exposed to IL1β (25 ng/ml, 15 min) with or without pre-

treatment with SB203580 (0.7 µM, 15 min), or to SB203580 alone (30 min), and total protein 

extracts immunoblotted for RIPK1. As previously observed, IL1β induced a reduction of RIPK1 

electrophoretic mobility and the appearance of higher molecular weight RIPK1 bands relative 

to control (Fig. 4.6). Exposure to SB203580 alone had no discernible effect on RIPK1 mobility. 

However, pre-treatment with SB203580 reduced the appearance of the higher molecular 

weight RIPK1 bands in response to IL1β (Fig. 4.6). 
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Figure 4.6 Effects of SB203580 on the RIPK1 response to IL1β in cardiomyocytes. 
 

Cardiomyocytes were untreated or exposed to IL1β (25 ng/ml, 15 min) with or without pre-
treatment with SB203580 (0.7 µM, 15 min) or exposed to SB203580 alone (30 min). Total 
protein extracts (30 µg) were immunoblotted for RIPK1. Images from three independent 
cardiomyocyte preparations are shown.  
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4.4 Discussion  

The data presented in this chapter provide novel insights into the regulation of RIPK1 in 

cardiomyocytes and the heart. The key findings are that exposure of cardiomyocytes to pro-

inflammatory cytokines (TNFα and IL1β) and H2O2 promoted reduction of RIPK1 mobility on 

immunoblots (Figs. 4.2-4.4). Furthermore, electrophoretic mobility of RIPKs 1 and 3 was 

reduced in response to oxidative stress and IR in whole adult hearts (Fig. 4.3, A and C). These 

data indicate that RIPKs 1 and 3 in cardiomyocytes and/or hearts are differentially regulated 

in response to pathophysiological stimuli, reflecting post-translational modification of these 

proteins (Shirai et al., 2008) and suggesting important roles in mediation of the response of 

the cardiomyocyte to the encountered stimuli. 

4.4.1 Differential signalling to RIPK1 by pro-inflammatory cytokines vs oxidative 

stress 

Although RIPK1 exhibited reduced mobility in response to all the stimuli examined, the extent 

and time courses of the responses differed. Reduction of RIPK1 mobility in response to both 

TNFα and IL-1β was rapid and transient, with maximal responses at 15 min, but the effect of 

TNFα on RIPK1 was of a lesser magnitude than that induced by IL1β at 15 min, with ~51% of 

the total RIPK1 content in the uppermost band, compared to ~80% of total RIPK1 in the 

uppermost band following the same duration of exposure to IL1β (Figs. 4.4 and 4.5). This 

observation implies that the signalling events initiated downstream of IL1β stimulation in this 

context result in modification of a larger pool of RIPK1 protein than in response to TNFα. 

However, the reasons for this and its potential implications are unclear and further investigation 

is required to elucidate the downstream signalling events occurring.   

In contrast with the rapid maximal response to TNFα and IL1β, the reduction of RIPK1 mobility 

upon exposure to all H2O2 concentrations was maximal at the later time of 60 min (Fig. 4.2, A 

and B). This disparity in the onset of the response is potentially explained by the fact that both 

TNFα and IL-1β exert their effects by binding to their respective receptors at the membrane, 
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while H2O2 presumably modulates the activity of proteins intracellularly, rather than binding to 

a specific receptor. Indeed, rather than initiating assembly of specific signalling complexes, as 

do IL1β and TNFα (see Chapter One, Figs 1.4 and 1.5), H2O2 may have a number of effects 

that potentially modulate signalling events, including (for example) inhibiting protein tyrosine 

phosphatases (Hecht and Zick, 1992; Gough and Cotter, 2011). It is also possible that 

exposure of cardiomyocytes to H2O2 stimulates production or release of other signalling 

molecules or factors that may act in an autocrine or paracrine fashion to elicit the observed 

response, although Wang et al. reported that H2O2-induced necroptosis in H9c2 cells is 

independent of TNFR1, suggesting that TNFα is not implicated in the response to H2O2 (Wang 

et al., 2015). Although the data do not address the consequences of the observed effects on 

RIPK1, the rapidity and transience of their onset upon exposure to TNFα and IL1β may reflect 

an early initiating event in the cardiomyocyte response to these stimuli.  

 

4.4.2 Phosphorylation vs ubiquitinylation of RIPK1 

Differential electrophoretic mobility through SDS gels is a common result of post-translational 

modification of proteins (Shirai et al., 2008). In other systems, RIPK1 undergoes 

phosphorylation and ubiquitinylation under different conditions (De Almagro et al., 2017), and 

these modifications might result in reduced electrophoretic mobility of the protein. While 

ubiquitinylation of RIPK1 could result in reduced mobility of the protein, this is unlikely to be 

the cause here as the shift is of insufficient magnitude to reflect the modification of RIPK1 with 

even a single ubiquitin, a protein with a molecular weight of ~8.5 kDa (Chyan et al., 2004). It 

is highly unlikely therefore that the observed band shifting is due to polyubiquitinylation, as 

such a modification would be expected to cause a shift of significantly greater magnitude than 

that observed here, producing high molecular weight “smears” of RIPK1 immunoreactivity on 

immunoblots  (Lee et al., 2004; Ea et al., 2006).  
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The band shift response of RIPK1 to the various pathophysiological stimuli examined here is 

most consistent with phosphorylation. Reduction of protein mobility upon phosphorylation has 

been documented extensively and is particularly relevant in context of regulation of kinases 

such as RIPK1 (Wegener and Jones, 1984; Lozano et al., 1990; Fuller et al., 2012). 

Importantly, the increase in apparent molecular weight of a protein following phosphorylation 

is not a consequence of the relatively insignificant real-terms molecular weight increase 

caused by addition of a phosphate group (80 Da). Rather, it is a result of the reduced capacity 

for SDS to bind the protein due to the increase in negatively charged residues induced by 

phosphorylation (Peck, 2006; Lee et al., 2004). Accordingly, the detection of multiple bands of 

RIPK1 immunoreactivity in response to the various stimuli examined is suggestive of 

phosphorylation on multiple residues. Evidence from other investigators supports the notion 

that the reduction of RIPK1 mobility is caused by phosphorylation. The RIPK1 response to 

TNFα observed here in cardiomyocytes is qualitatively similar to the effects observed by Lee 

and colleagues (Lee et al., 2004) in mouse embryonic fibroblasts. In these cells, TNFα led to 

a reduction in RIPK1 mobility following 5 – 10 min exposure (closely resembling that observed 

in (Fig. 4.4A) and this was sensitive to treatment with lambda phosphatase, restoring shifted 

RIPK1 bands to the original position on immunoblots (Lee et al., 2004).  

Further evidence that the observed RIPK1 band shift is due to phosphorylation was obtained 

by subjecting extracts from IL1β-treated cardiomyocytes to fractionation on a Mono Q column 

(Fig 4.5). Immunoblotting of fractions showed that IL1β led to a retardation in RIPK1 elution 

from the Mono Q column relative to that in unstimulated cardiomyocytes (Fig 4.5, A and B). 

This is indicative of a higher phosphorylation status, as increasing the number of negatively 

charged residues results in tighter binding of proteins to the anion-exchange resin, thus 

requiring a greater NaCl concentration to disrupt the association and leading to elution in later 

fractions. Additionally, the RIPK1 band exhibiting the greatest shift in response to IL1β eluted 

in a later fraction bands exhibiting a smaller shift (Fig. 4.5A), further suggesting that the shift is 

due to phosphorylation.  
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The p38-MAPKα/ß inhibitor SB203580 was also observed to reduce some of the response of 

RIPK1 to IL1β (Fig. 4.6), representing a further line of evidence that the observed reduction of 

electrophoretic mobility is a consequence of phosphorylation. This observation also provides 

novel preliminary evidence that RIPK1 may be a substrate for phosphorylation by either p38-

MAPKα/ß or a p38-MAPKα/ß-activated kinase, such as MAPKAPK2 or MAPKAPK3 (Cargnello 

and Roux, 2011), an observation that has not previously been reported. However, SB203580 

is not entirely selective for p38-MAPKα/ß and inhibits RIPK2 with greater potency (Godl et al., 

2003). Therefore it will be necessary to conduct further investigations in order to determine 

whether the observed effect of SB203580 on the RIPK1 response to IL1β is due to inhibition 

of p38-MAPKα/ß or as a result of off-target effects. One potential approach is to examine 

whether the observed effects can be replicated using structurally unrelated p38-MAPK 

inhibitors that do not inhibit RIPK2, for example the allosteric inhibitor BIRB 796 (Bain et al., 

2007).   

The catalytic activity of kinases is itself frequently regulated by phosphorylation, and they are 

generally strongly activated by phosphorylation of specific residues within a segment of the 

kinase domain known as the activation loop (Adams, 2003). Indeed, the small initial RIPK1 

upshift observed in response to the various stimuli examined is consistent with phosphorylation 

at a single site, and potentially reflects the activation loop phosphorylation site as for Thr197 

of PKA as seen in Cauthron et al.  (Cauthron et al., 1998). This observation is potentially 

relevant to cardiomyocyte death in response to pathophysiological stimuli as a wide range of 

studies implicate RIPK1 kinase activity in induction of necroptotic cell death, a response 

inhibited by pharmacological inhibition of RIPK1 or expression of kinase-inactive RIPK1 

mutants (Degterev et al., 2008; Berger et al., 2014; Newton et al., 2014; Newton et al., 2016a).  
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4.4.3 Significance of observations for cardiomyocyte death 

The response of RIPK1 in cardiomyocytes to various H2O2 concentrations supports the notion 

that RIPK1 moderates cardiomyocyte death.  RIPK1 mobility was largely unaffected by non-

toxic and sub-apoptotic doses of H2O2 (0.03 and 0.1 mM, respectively) (Fig. 4.2C) but exhibited 

reduced mobility in response to concentrations that induce apoptosis and/or necrosis (≥0.3 

mM) with a maximal response upon exposure to 1 mM H2O2  (Fig. 4.2C). Notably, densitometric 

analysis of the reduced mobility RIPK1 bands produced “bell-shaped” dose-dependency 

curves, as observed for a number of other responses induced by H2O2 in cardiomyocytes [e.g. 

expression of Mdm2 (Pikkarainen et al., 2009), phosphorylation of Ndr2 (Fuller et al., 2008)]. 

However, since the multiple bands of RIPK1 immunoreactivity are probably due to 

phosphorylation at multiple sites, it is possible that the modifications have different functions 

and may, amongst other effects, both promote and inhibit activity, as in other systems. For 

example, mutation of Ser89 to alanine results in a robust increase in RIPK1 catalytic activity 

and therefore Ser89 most likely represents an inhibitory phosphorylation site (Mcquade et al., 

2013). 

Phosphorylations may also affect function independently of changes in RIPK1 catalytic activity 

and interpretation of the data is further complicated by the observation that in some contexts 

in non-cardiac systems, increased RIPK1 phosphorylation is associated with sequestration of 

RIPK1 in pro-survival complex I, preventing RIPK1 from forming pro-apoptotic or pro-

necroptotic complexes and thus inhibiting cell death (Dondelinger et al., 2015). Direct 

comparison of the observations pertaining to H2O2 and RIPK1 described here to those 

presented in other studies is problematic due to different model systems and approaches. 

Despite this, a previous study by Wang et al. (Wang et al., 2013) employed siRNA-mediated 

knockdown of RIPK1 (and RIPK3) expression in neonatal mouse cardiomyocytes, conferring 

a protective effect against necrosis induced by 0.5 mM H2O2. In these cells, H2O2 also induced 

an increase in RIPK1 and RIPK3 protein expression. In Wang et al., H2O2 exposure had the 

greatest effect on RIPK1 protein expression at 12 – 24 h, a later time than examined here, with 
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a more minor increase at 6 h. There was, however, no observable change in RIPK1 

electrophoretic mobility. (Wang et al., 2013). The same research group subsequently reported 

that RIPK1/3 knockdown protected H9c2 cells against necrosis in response to a 24 h exposure 

to 0.5 mM H2O2 (Wang et al., 2015), although caution should be exercised in comparing results 

generated using the H9c2 cardiomyoblast cell line to those employing primary cardiomyocytes, 

as used in this study.   

Having observed regulation of RIPK1 in response to pathophysiological stimuli in isolated 

neonatal cardiomyocytes, it was important to investigate the effects of stresses on RIPKs in 

the intact adult heart. Although ischaemia results in extensive cardiomyocyte death and must 

be reversed to rescue damaged tissue and preserve life, reperfusion per se can, paradoxically, 

result in significant injury to the myocardium and may prove lethal (Hausenloy and Yellon, 

2013). Accordingly, it is imperative to develop a deeper understanding of the mechanisms 

underlying IR injury, with a view to identification of novel therapeutic targets and treatment 

options.  

Here, IR and oxidative stress in the form of H2O2 promoted reduced electrophoretic mobility of 

both RIPK1 and RIPK3 in samples from perfused adult rat hearts and led to a significant 

reduction in full-length RIPK1 protein (Fig. 4.3, A and B).  The reduction of detected RIPK1 

protein may be due to caspase cleavage, a response that suppresses necroptosis in other 

systems (Van Raam et al., 2013), or to other forms of degradation. It is also possible that IR 

causes RIPK1 to undergo a conformational change or other modification such that the epitope 

is masked and cannot be detected by the anti-RIPK1 antibodies used, as observed by Fuller 

and colleagues in a study of a different kinase, MST3 (Fuller et al., 2012). The reduction in 

detected RIPK1 appears to contrasts with the results presentenced in Oerlemans et al., 

(Oerlemans et al., 2012) in which there is an apparent increase in RIPK1 expression following 

myocardial IR. However, this may be explained by inherent differences between the model 

systems and protocols employed. Here, zero-flow global ischaemia (20 min) was induced in 

isolated rat hearts by cessation of perfusion whereas Oerlemans and colleagues subjected 
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adult mouse hearts to 30 min ischaemia in vivo using left coronary artery ligation. Importantly, 

in this thesis, the hearts were only reperfused for 40 min prior to cessation of the protocol, 

while Oerlemans and colleagues permitted reperfusion for 24 h. Thus, it is possible that the 

effects leading to reduced RIPK1 immunoreactivity in Fig. 4.3 are reversed during the 

significantly longer reperfusion time employed in the Oerlemans study. A further possibility is 

that the contrasting result is due to the antibodies used to detect the protein. This investigation 

used an antibody to RIPK1 supplied by Cell Signalling Technology (CST, cat. no. 3493) while 

Oerlemans and colleagues used an antibody supplied by BD Biosciences (cat. no. 610459). 

The CST antibody used here is raised to Leu190 in the N-terminal kinase domain of human 

RIPK1 while BD Bioscience list the respective immunogen as residues 385-650 of human 

RIPK1. Thus, as discussed above, the discrepant observations may also be due to differential 

accessibility of the respective epitopes following stimulation (Oerlemans et al., 2012). Future 

investigations might benefit from using more than one anti-RIPK1 antibody, raised to different 

epitopes, to further characterise the effects of the stimuli on RIPK1.  

 In contrast with RIPKs 1 and 3, IR had no effect on the position or intensity of RIPK2 bands 

(Fig. 4.3, A and B). While related to RIPKs 1 and 3, RIPK2 is not thought to be associated with 

the necroptotic death pathway (Cho et al., 2009), further suggesting a specific role for RIPK1s 

and 3 in mediating death responses in the heart. Although both IR and H2O2 promoted 

reduction of RIPK3 mobility in adult perfused rat hearts, none of the stimuli examined had any 

effect on the mobility or abundance of RIPK3 in neonatal cardiomyocytes (data not shown). 

This observation might be explained in part by differences between the sensitivities to the 

various stimuli examined of adult heart cells compared to cardiomyocytes cultured from 

neonatal rats. Furthermore, the cellular composition of the two experimental systems differs, 

as neonatal cell cultures are ~95% cardiomyocytes (Fuller et al., 2015) whereas whole 

perfused adult hearts are composed of both cardiomyocytes and a heterogeneous population 

of other non-myocyte cell types, possibly leading to differences in observations between the 

two systems. It is also possible that any modifications to RIPK3 in neonatal myocytes were 
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simply not detected by separation with SDS-PAGE, as not all phosphoproteins exhibit 

differential migration patterns (Peck, 2006). 

 The data presented in this chapter provide novel insight into the regulation and roles of RIPK1 

in the heart in response to pathophysiological stimuli. In addition to responses to TNFα, IR and 

oxidative stress as observed in other systems, data here demonstrate that cardiac RIPK1 

responds to IL1β, an effect yet to be reported elsewhere. Furthermore, preliminary evidence 

indicates that RIPK1 in cardiomyocytes may be phosphorylated by p38-MAPKα/ß, a p38-

MAPKα/ß-activated kinase, or RIPK2, in response to IL1β. However, further investigation is 

necessary to determine if the observed reduction of RIPK1 electrophoretic mobility is indeed 

caused by phosphorylation and, if so, to identify the sites responsible and their functional 

implications. Initially, the emphasis will be on phosphorylation sites that potentially regulate 

RIPK1 kinase activity and on ubiquitinylation sites linked to MAPK activation and cell survival.  
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Chapter Five - Generation of adenoviruses for expression of RIPK1 in 

cardiomyocytes 
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5.1 Introduction 

RIPK1 represents a key node in the regulation of a number of signalling pathways that 

variously promote cell survival, inflammation and cell death through apoptosis or necroptosis 

(Ofengeim and Yuan, 2013). RIPK1 undergoes numerous post-translational modifications, 

most notably ubiquitinylation and phosphorylation (see section 1.5.2) (Zhou and Yuan, 2014), 

and these modifications influence whether the cell survives or dies.  The data presented in 

Chapter Four demonstrate that RIPK1 in cardiomyocytes and hearts exhibits a reduction in 

electrophoretic mobility in response to diverse pathophysiological stimuli including pro-

inflammatory cytokines (TNFα and IL1β), oxidative stress (exemplified by H2O2) and IR; and 

that this is likely to be caused by phosphorylation. To adequately investigate the effects of 

these stimuli on RIPK1, and to further elucidate the roles of RIPK1 in the heart, it is necessary 

to establish whether this phenomenon is indeed caused by phosphorylation (or by other post-

translational modifications) and to identify the sites at which these modifications occur.  

Numerous RIPK1 phosphorylation sites have been identified using mass spectrometry 

(Degterev et al., 2008; Dondelinger et al., 2015) although relatively few (Ser14/15, Ser89, 

Ser161 and Ser166) have been confirmed using site-specific experimental means such as 

mutational analysis or specific antibodies (Mcquade et al., 2013; Ofengeim et al., 2015; Newton 

et al., 2016b).  

One strategy to determine if the reduction of RIPK1 mobility observed in Chapter Four is due 

to phosphorylation is to mutate individual potential phosphorylation sites and assess whether 

these mutations abolish RIPK1 band shifting in response to the various treatments examined. 

Furthermore, epitope-tagged wild-type proteins may be immunoprecipitated from treated cells 

and treated with exogenous phosphatase to assess whether reduced mobility is due to 

phosphorylation.  As cardiomyocytes are terminally differentiated, they are not amenable to 

genetic manipulation using techniques such as the CRISPR-Cas9 system (Ran et al., 2013) 

and as a result it is necessary to express mutant proteins exogenously. Cardiomyocytes have 

low transfection efficiencies (Djurovic et al., 2004), although adenoviruses represent a highly 
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efficient means of expressing exogenous proteins.  This chapter describes the generation of 

adenoviruses expressing FLAG-tagged wild-type and phosphorylation/ubiquitinylation site 

mutant RIPK1.  The principal aim in this chapter is to use FLAG-tagged RIPK1 constructs to 

assess whether the effects, detailed in Chapter Four, of the pathophysiological stimuli on 

RIPK1 are a result of phosphorylation. A further aim is to use mutational analysis to formally 

identify the RIPK1 activation loop phosphorylation site (ALPS). 

 

5.2 Methods  

5.2.1 Identification of candidate RIPK1 activation loop phosphorylation and 

ubiquitinylation sites 

Evolutionarily conserved serine, threonine and lysine residues were identified using protein 

sequence alignment using the BLAST blastp suite (https://blast.ncbi.nlm.nih.gov), in 

conjunction with the PhosphoSitePlus® resource (http://www.phosphosite.org/). RIPK1 

sequences from human (accession no. NP_003795.2), rat (accession no. NP_001100820.1) 

and mouse (accession no. NP_033094.3) were aligned. 

 

5.2.2 Generation of shuttle vectors expressing FLAG-tagged RIPK1 constructs 

5.2.2.1 Generation of shuttle vectors expressing FLAG-tagged wild-type RIPK1 (FLAG-

RIPK1-Shut) 

The shuttle vector expressing FLAG-tagged wild-type RIPK1 (FLAG-RIPK1-Shut) was 

generated by inserting the DNA sequence encoding mouse RIPK1 between the KpnI and 

HindIII sites of the FLAG-pShuttle-CMV plasmid.  FLAG-pShuttle-CMV plasmids were supplied 

by Dr. Stephen J. Fuller. The sequence encoding the FLAG-tag (DYKDDDDK) (Fig. 5.1) was 

inserted between the BglII and NotI sites in the multiple cloning site of the pShuttle-CMV vector 

(Fig. 5.1). The wild-type mouse RIPK1 sequence (accession no. NM_009068.3) was amplified 
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from a cDNA open reading frame clone purchased from Origene (cat. no. MR209813). In order 

to permit insertion of the construct into the KpnI and HindIII sites of the FLAG-pShuttle-CMV 

vector (Fig. 5.2), primers were designed to amplify the RIPK1 sequence flanked by the 

respective restriction sites. 

 

 

 

Figure 5.1 Construction of the oligonucleotide cassette encoding the FLAG-tag 

The BglII site in forward and NotI site in reverse are highlighted in yellow. Initiation codons are 
highlighted in green and the sequences encoding the FLAG-tag are underlined and 
emboldened.  

 

 

Forward oligonucleotide sequence:

5'-GATCTACCATGGACTACAAAGACGATGACGACAAGGGTACCGTCGACGC-3';

Reverse oligonucleotide sequence :

5'-GGCCGCGTCGACGGTACCCTTGTCGTCATCGTCTTTGTAGTCCATGGTA-3'

NotI

BglII FLAG sequence

FLAG sequence
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Figure 5.2 Plasmid map of the FLAG-RIPK1-Shut vector 
 

(A) Cloned full-length wild-type and mutant RIPK1 DNA constructs were ligated into the KpnI 
and HindIII sites of the FLAG-pShuttle-CMV plasmid. Restriction enzyme sites are italicized. 
Kan denotes the kanamycin resistance gene. pCMV denotes the cytomegalovirus promoter. 
R-ITR and L-ITR denote the right- and left- inverted terminal repeats, respectively. (B) 
Sequence for the FLAG-RIPK1-Shut multiple cloning site region showing the positions of the 
FLAG and RIPK1 sequences. Positions and sequences of the ShutF and ShutR primers and 
restriction sites are indicated.  

 

 

A

B

FLAG-RIPK1-Shut multiple cloning site region sequence (positions 888 – 1031:

GGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGAGATCTACCATG

GACTACAAAGACGATGACGACAAGGGTACCATGCAACCAGACATGTCCTTGGAC…

------------------------------------------RIPK1 SEQUENCE ------------------------------------------

...ATTCGTGCCAGCCAGAGCTAGAAGCTTCTAGATAAGATATC...

...CGATCCACCGGATCTAGATAACTGATCATAATCAGCCATACCAC

HindIII

KpnI

BglII

FLAG sequence

ShutF sequence (888 – 907)

ShutR sequence 1009 – 1031

RIPK1 sequence

RIPK1 sequence

R-ITR

L-ITR

RIPK1

KpnI

HindIII

FLAG Sequence
PacI

PmeI

FLAG-RIPK1-

Shut

vector

PacI

Encapsidation signal

SV40 polyA
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The mouse RIPK1 sequence contains an internal KpnI restriction enzyme site (GGTACC) 564 

bp downstream of the initiation codon. To prevent undesired digestion of the construct at this 

site, a conservative point mutation was introduced during cloning; yielding a site that is not 

recognized by KpnI. The point mutation was introduced using PCR, using the strategy detailed 

in (Fig. 5.3) A complementary forward and reverse primer pair was designed to contain the 

desired mutation (GGTACCGGAACC) flanked by 15 bases on each side. Initially, two PCR 

reactions were performed. The first, to produce the 594 bp N-terminal RIPK1 fragment 

containing the mutated KpnI site, used the RIPK1_Fwd and KpnI_Rev primers (see Table 5.1 

for details). The second, to produce the 1429 bp C-terminal RIPK1 fragment containing the 

mutated KpnI site, used the KpnI_Fwd and RIPK1_Rev primers (see Table 5.1 for details).  

The purchased RIPK1 open reading frame clone was use as template in both reactions. Each 

PCR reaction (50 µl) contained Pfu polymerase (1.5 units, 0.5 µl), 10 × Pfu reaction buffer (5 

µl), dNTP mixture (2 mM of each nucleotide, 5 µl), forward and reverse primers (2 µM, 0.5 µl 

of each primer), Origene RIPK1 clone (2 µl, 50 ng) and nuclease-free water (36.5 µl). PCR 

cycling conditions are indicated in (Fig 5.4A). 

Following PCR, the 594 bp N-terminal and 1429 bp C-terminal RIPK1 DNA fragments were 

purified by electrophoresis through a 1% agarose gel as described in Chapter Two section 2.9 

followed by spin column purification as described in Chapter Two section 2.10.3. A mixture of 

the purified N- and C-terminal products from the first two PCR reactions was used as template 

for a third PCR, to produce the full-length wild-type RIPK1 construct. The reaction (50 µl) 

consisted of Pfu polymerase (1.5 units, 0.5 µl), 10× Pfu reaction buffer (5 µl), dNTP mixture (2 

mM of each nucleotide, 5 µl), template (2 µl of each product from the first two PCRs) and 

nuclease free water (34.5 µl). The assembled reactions were transferred to a thermocycler and 

denatured at 94°C for 5 min, followed by four cycles of 94°C (30 s), 60°C (30 s) and 72°C (5 

min) to allow annealing and extension from the overlapping complementary regions of the 

template products (Fig 5.4B).  Following this, the reaction was paused and the flanking 

RIPK1_Fwd and RIPK1_Rev primers were added (2 µM, 0.5 µl of each primer) in order to 
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produce the full-length RIPK1 sequence, flanked by KpnI and HindIII sites. This was achieved 

by 42 cycles of 94°C (30 s), 55°C (30 s) and 72°C (5 min) followed by a final extension phase 

at 72°C (7 min) (Fig 5.4B). Following PCR, the full-length RIPK1 construct was 

electrophoresed through a 1% agarose gel and then column purified.  

The purified full-length RIPK1 construct (35 µl), flanked by KpnI and HindIII sites, was cut in a 

double digest reaction (50 µl) containing 10× CutSmart® Buffer (5 µl), KpnI (10 units, 1 µl), 

HindIII (10 units, 1 µl) and nuclease-free water (8 µl). The reactions were incubated for 2 h at 

37°C. Following digestion, the cut DNA was column purified as described and eluted in 35 µl 

elution buffer. The purified KpnI/HindIII-digested RIPK1 DNA was then ligated into the KpnI 

and HindIII sites of the FLAG-pShuttle-CMV vector MCS to produce the wild-type FLAG-

RIPK1-Shut plasmid (See Fig. 5.2 for plasmid map). Prior to ligation, the FLAG-pShuttle-CMV 

vector was subjected to double digestion (37°C, 16 h) with KpnI and HindIII as detailed for the 

RIPK1 construct. The ligation reaction (20 µl) contained the purified digested RIPK1 DNA (10 

µl), FLAG-pShuttle-CMV plasmid (50 ng, 0.5 µl), 5× T4 ligase buffer (4 µl), T4 DNA ligase (0.5 

units, 0.5 µl) and nuclease-water (4 µl). Ligations were carried out at 14°C for 1 h followed by 

26°C for 1 h.  

The ligated FLAG-RIPK1-Shut plasmid was subsequently amplified by heat-shock 

transformation into ultracompetent XL10-Gold E. coli cells, as described in Chapter Two, 

section 2.10.1.  The cells were spread onto LB agar plates containing kanamycin (50 µg/ml) 

and incubated overnight at 37°C. Resulting bacterial colonies were PCR screened using the 

RIPK1_Fwd and KpnI_Rev primers as described in Chapter Two, section 2.10.2 to verify 

presence of the FLAG-RIPK1-Shut plasmid, , with an expected product size of 594 bp. Positive 

colonies (i.e. those in which amplification of the expected 594 bp product had taken place) 

were inoculated into 5 ml LB containing kanamycin (50 µg/ml) and incubated in a rotary shaker 

overnight (37°C, 250 rpm) and the FLAG-RIPK1-Shut plasmids isolated using the alkaline lysis 

minipreparation method, as described in Chapter Two, section 2.10.4. Plasmids were 

sequenced as described in Chapter Two, section 2.10.6 to verify the presence of the intended 
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mutation and to ensure no undesired mutations were incorporate during PCR. Sequence 

verified plasmids were subsequently amplified as described and isolated using the alkaline 

lysis maxipreparation method, as described in Chapter Two section 2.10.5. The plasmids were 

stored at -20°C.  
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Figure 5.3 General strategy for introducing mutations using PCR 

DNA constructs containing mutations were produced in two steps using PCR. Step one 
consisted of two reactions to produce fragments containing the desired mutations within a 23 
– 31 bp overlapping region; which were then used as template in the second PCR step to 
produce the full-length mutant constructs. In the first PCR step, the forward flanking primer (A) 
and reverse mutagenic primer (B) were used to produce the N-terminal mutant fragment 
(Product AB). The forward mutagenic primer (C) and reverse flanking primer (D) were used to 
produce the C-terminal mutant fragment (Product CD). Primers A and D were designed to 
introduce N-terminal KpnI and C-terminal HindIII restriction sites. In step two, a mixture of the 
mutant products AB and CD was used as template and the PCR reaction was initiated in the 
absence of primers to allow annealing and extension at the complementary overlapping region. 
The flanking primers (primers A and D) were then added and the reaction continued to amplify 
the full-length mutant product.  

 

Mutant product AB 

Mutant product CD 
D

A

Full-length mutant product

Step two
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Mutant product AB 

Mutant product CD 
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B
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5.2.2.2 Generation of shuttle vectors expressing FLAG-tagged S161A mutant RIPK1 

(FLAG-S161A-Shut)  

Site-directed mutagenesis was used to mutate Ser161 of RIPK1 to an unphosphorylatable 

alanine residue, using the same strategy as for the mutation of the internal KpnI site for the 

FLAG-RIPK1-Shut plasmid. The strategy is detailed in Fig 5.3. Two separate reactions were 

performed to produce the N- and C- terminal fragments, each containing the desired point 

mutation (TCCGCC); using the wild-type FLAG-RIPK1-Shut plasmid (described in section 

5.2.2.1) as template. A further reaction was then conducted to produce full-length RIPK1 

constructs carrying the desired S161A mutation, using a mixture of products from the first two 

reactions as template.  Using the FLAG-RIPK1-Shut plasmid as template in the first two 

reactions allowed production of mutant RIPK1 constructs flanked by the required N-terminal 

KpnI and C-terminal HindIII sites. 

For the 582 bp N-terminal fragment of the S161A mutant, the ShutF and mutagenic 

S161A_Rev primer were used while for the 1567 bp C-terminal S161A mutant fragment, the 

mutagenic S161A_Fwd primer and ShutR primers were used. Details of primers are found in 

Table 5.1. The primers (2 µM, 0.5 µl each primer) were used in 50 µl Pfu reactions, as 

described in section 5.2.2.1.  The FLAG-RIPK1-Shut plasmid (50 ng) was used as template 

for both reactions. PCR cycling conditions are indicated in Fig. 5.4C. 

The S161A N- and C-terminal products electrophoresed on a 1% agarose gel as described in 

Chapter Two, section 2.9 and column purified as described in Chapter Two section 2.10.3.  A 

third PCR reaction was established to produce the full-length S161A construct, as described 

for the wild-type construct in section 5.2.2.1, using the purified S161A N- and C-terminal 

fragments (2 ul of each) as template. This reaction used the flanking ShutF and ShutR primers, 

using PCR cycling conditions as indicated in Fig. 5B.  The resulting PCR products were run on 

a 1% agarose gel and column purified. The purified products were digested with KpnI and 

HindIII and ligated into the respective sites in the pShuttle-CMV multiple cloning site as 

described in section 5.2.2.1 to produce the FLAG-S161A-Shut plasmid. The FLAG-S161A-
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Shut plasmids were heat-shock transformed into XL10-Gold cells as described and resulting 

colonies PCR screened as described in Chapter Two, section 2.10.2 using the ShutF and 

S166A_Rev primers, with an expected product size of 597 bp. Positive colonies were 

inoculated into 5 ml LB containing kanamycin and plasmids isolated using the alkaline lysis 

minipreparation method, as described. Samples of the purified plasmids were sequenced as 

described in Chapter Two, section 2.10.6 using the RIPK1_Fwd primer. Sequence verified 

plasmids were amplified as described and isolated using the alkaline lysis maxipreparation 

method, as described in Chapter Two section 2.10.5. The plasmids were stored at -20°C. 

 

5.2.2.3 Generation of shuttle vectors expressing FLAG-tagged S166A mutant RIPK1 

(FLAG-S166A-Shut) 

Site-directed mutagenesis was used to mutate Ser166 of RIPK1 to an unphosphorylatable 

alanine residue (AGCGCC), using the strategy detailed in Fig 5.3.  Two separate reactions 

were performed to produce the N- and C- terminal fragments each containing the desired point 

mutation; using the wild-type FLAG-RIPK1-Shut plasmid (described in section 5.2.2.1) as 

template.  

For the 597 bp N-terminal fragment of the S166A mutant, the ShutF and mutagenic 

S166A_Rev primer were used while for the 1552 bp C-terminal S166A mutant fragment, the 

mutagenic S166A_Fwd primer and ShutR primers were used. Details of primers are found in 

Table 5.1. The primers (2 µM, 0.5 µl each primer) were used in 50 µl Pfu reactions, as 

described in section 5.2.2.1.  The FLAG-RIPK1-Shut plasmid (50 ng) was used as template 

for both reactions. PCR cycling conditions are indicated in Fig. 5.4C. 

The S166A N- and C-terminal products electrophoresed on a 1% agarose gel as described in 

Chapter Two, section 2.9 and column purified as described in Chapter Two section 2.10.3.  A 

third PCR reaction was established to produce the full-length S166A construct, as described 

for the wild-type construct in section 5.2.2.1, using the purified S166A N- and C-terminal 
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fragments (2 ul of each) as template. This reaction used the flanking ShutF and ShutR primers, 

using PCR cycling conditions as indicated in Fig. 5.4B.  The resulting PCR products were run 

on a 1% agarose gel and column purified. The purified products were digested with KpnI and 

HindIII and ligated into the respective sites in the pShuttle-CMV multiple cloning site as 

described in section 5.2.2.1 to produce the FLAG-S166A-Shut plasmid. The FLAG-S166A-

Shut plasmids were heat-shock transformed into XL10-Gold cells as described and resulting 

colonies PCR screened as described in Chapter Two, section 2.10.2 using the ShutF and 

S166A_Rev primers, with an expected product size of 597 bp. Positive colonies were 

inoculated into 5 ml LB containing kanamycin and plasmids isolated using the alkaline lysis 

minipreparation method, as described. Samples of the purified plasmids were sequenced as 

described in Chapter Two, section 2.10.6 using the RIPK1_Fwd primer. Sequence verified 

plasmids were amplified as described and isolated using the alkaline lysis maxipreparation 

method, as described in Chapter Two section 2.10.5. The plasmids were stored at -20°C. 

 

5.2.2.4 Generation of shuttle vectors expressing FLAG-tagged T183A mutant RIPK1 

(FLAG-T183A-Shut) 

Site-directed mutagenesis was used to mutate Thr183 of RIPK1 to an unphosphorylatable 

alanine residue (ACTGCT), using the strategy detailed in Fig 5.3. Two separate reactions 

were performed to produce the N- and C- terminal fragments each containing the desired point 

mutation; using the wild-type FLAG-RIPK1-Shut plasmid (described in section 5.2.2.1) as 

template.  

For the 648 bp N-terminal fragment of the T183A mutant, the ShutF and mutagenic 

T183A_Rev primer were used whilst for the 1501 bp C-terminal T183A mutant fragment, the 

mutagenic T183A_Fwd primer and ShutR primers were used. Details of primers are found in 

Table 5.1. The primers (2 µM, 0.5 µl each primer) were used in 50 µl Pfu reactions, as 
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described in section 5.2.2.1.  The FLAG-RIPK1-Shut plasmid (50 ng) was used as template 

for both reactions. PCR cycling conditions are indicated in Fig. 5.4C. 

The T183A N- and C-terminal products electrophoresed on a 1% agarose gel as described in 

Chapter Two, section 2.9 and column purified as described in Chapter Two section 2.10.3.  A 

third PCR reaction was established to produce the full-length T183A construct, as described 

for the wild-type construct in section 5.2.2.1, using the purified T183A N- and C-terminal 

fragments (2 ul of each) as template. This reaction used the flanking ShutF and ShutR primers, 

using PCR cycling conditions as indicated in Fig. 5.4B.  The resulting PCR products were run 

on a 1% agarose gel and column purified. The purified products were digested with KpnI and 

HindIII and ligated into the respective sites in the pShuttle-CMV multiple cloning site as 

described in section 5.2.2.1 to produce the FLAG-T183A-Shut plasmid. The FLAG-T183A-

Shut plasmids were heat-shock transformed into XL10-Gold cells as described and resulting 

colonies PCR screened as described in Chapter Two, section 2.10.2 using the ShutF and 

S166A_Rev primers, with an expected product size of 597 bp. Positive colonies were 

inoculated into 5 ml LB containing kanamycin and plasmids isolated using the minipreparation 

method, as described. Samples of the purified plasmids were sequenced as described in 

Chapter Two, section 2.10.6 using the RIPK1_Fwd primer. Sequence verified plasmids were 

amplified as described and isolated using the alkaline lysis maxipreparation method, as 

described in Chapter Two section 2.10.5. The plasmids were stored at -20°C. 

 

5.2.2.5 Generation of shuttle vectors expressing FLAG-tagged K376R mutant RIPK1 

(FLAG-K376R-Shut) 

Site-directed mutagenesis was used to mutate Lys376 of RIPK1 to an arginine residue 

(AAGAGG), using the strategy detailed in Fig 5.3. Mutation of lysine to arginine prevents 

ubiquitinylation at that site (Xu and Jaffrey, 2013). Arginine is a particularly suitable substitute, 

as, like lysine, it carries a positive charge at physiological pH and has a relatively large side 
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chain, thus diminishing the likelihood of destabilising effects of the mutation on protein structure 

and conformation. Two separate reactions were performed to produce the N- and C- terminal 

fragments each containing the desired point mutation; using the wild-type FLAG-RIPK1-Shut 

plasmid (described in section 5.2.2.1) as template.  

For the 1225 bp N-terminal fragment of the K376R mutant, the ShutF and mutagenic 

K376R_Rev primer were used whilst for the 920 bp C-terminal K376R mutant fragment, the 

mutagenic K376R_Fwd primer and ShutR primers were used. Details of primers are found in 

Table 5.1.The primers (2 µM, 0.5 µl each primer) were used in 50 µl Pfu reactions, as described 

in section 5.2.2.1.  The FLAG-RIPK1-Shut plasmid (50 ng) was used as template for both 

reactions. PCR cycling conditions are indicated in Fig. 5.4C. 

The K376R N- and C-terminal products electrophoresed on a 1% agarose gel as described in 

Chapter Two, section 2.9 and column purified as described in Chapter Two section 2.10.3.  A 

third PCR reaction was established to produce the full-length K376R construct, as described 

for the wild-type construct in section 5.2.2.1, using the purified K376R N- and C-terminal 

fragments (2 ul of each) as template. This reaction used the flanking ShutF and ShutR primers, 

using PCR cycling conditions as indicated in Fig. 5.4B.  The resulting PCR products were run 

on a 1% agarose gel and column purified. The purified products were digested with KpnI and 

HindIII and ligated into the respective sites in the pShuttle-CMV multiple cloning site as 

described in section 5.2.2.1 to produce the FLAG-K376R-Shut plasmid. The ligated FLAG-

K376R-Shut plasmids were heat-shock transformed into XL10-Gold cells as described and 

resulting colonies PCR screened as described in Chapter Two, section 2.10.2 using the 

K376R_Fwd and ShutR primers, with an expected product size of 920 bp. Positive colonies 

were inoculated into 5 ml LB containing kanamycin and plasmids isolated using the alkaline 

lysis minipreparation method, as described. Samples of the purified plasmids were sequenced 

as described in Chapter Two, section 2.10.6 using the T183A_Fwd primer. Sequence verified 

plasmids were amplified as described and isolated using the alkaline lysis maxipreparation 

method, as described in Chapter Two section 2.10.5. The plasmids were stored at -20°C. 
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Table 5.1 Primers used in generation of wild-type and mutant FLAG-tagged RIPK1 
constructs 

(A) Sequences of primers used in generation of wild-type and mutant FLAG-tagged RIPK1 
constructs. Restriction sites are emboldened and italicised. Codons containing mutated bases 
are emboldened and the mutated bases highlighted in red text. Full mouse RIPK1 DNA and 
protein sequences with positions of mutations are found in Appendices III and IV, respectively. 
(B) Details of primer pairs used to generate wild-type and mutant RIPK1 fragments and full-
length constructs. 

A 

Primer Sequence (5' – 3') Length (bp) Tm (°C) 

RIPK1_Fwd  GACAAGGGTACCATGCAACCAGACATGTCCTTGGAC 36 67.9 

RIPK1_Rev  ATCTAGAAGCTTCTAGCTCTGGCTGGCACGAATCA 35 65.6 

KpnI _Fwd GAAGAACAATGGTGGAACCCTTTACTACATG 31 60.4 

KpnI _Rev CATGTAGTAAAGGGTTCCACCATTGTTCTTC 31 60.4 

S161A_Fwd CTTGGTGTGGCTGCCTTTAAGACATGG 27 61.3 

S161A_Rev CCATGTCTTAAAGGCAGCCACACCAAG 27 61.3 

S166A_Fwd TTTAAGACATGGGCCAAACTGACTAAG 27 56.7 

S166A_Rev CTTAGTCAGTTTGGCCCATGTCTTAAA 27 56.7 

T183A_Fwd GTGAGCAGCACCGCTAAGAAGAACAAT 27 59.7 

T183A_Rev ATTGTTCTTCTTAGCGGTGCTGCTCAC 27 59.7 

K376R_Fwd TGTGCAGGCTAGGCTGCAAGAGG 23 60.6 

K376R_Rev CCTCTTGCAGCCTAGCCTGCACA 23 60.6 

ShutF GGTCTATATAAGCAGAGCTG 20 55.3 

ShutR GTGGTATGGCTGATTATGATCAG 23 58.9 

 

B 

 N-terminal fragment C-terminal fragment Full-length construct 

Construct 
Forward 
primer 

Reverse 
primer 

Forward 
primer 

Reverse 
primer 

Forward 
primer 

Reverse 
primer 

RIPK1 RIPK1_Fwd  KpnI_Rev KpnI_Fwd RIPK1_Rev RIPK1_Fwd RIPK1_Rev 

S161A ShutF S161A_Rev S161A_Fwd ShutR ShutF ShutR 

S166A ShutF S166A_Rev S166A_Fwd ShutR ShutF ShutR 

T183A ShutF T183A_Rev T183A_Fwd ShutR ShutF ShutR 

K376R ShutF K376R_Rev K376R_Fwd ShutR ShutF ShutR 
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Figure 5.4 PCR conditions for generation of wild-type and mutant RIPK1 constructs 

PCR conditions for (A) amplification of wild-type RIPK1 N- and C-terminal fragments, (B) 
generation of full-length wild-type and mutant constructs and (C) generation of S161A, S166A, 
T183A and K376R mutant RIPK1 N- and C-terminal fragments.  
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5.2.3 Generation of adenoviruses expressing FLAG-tagged RIPK1 constructs 

Shuttle vector plasmids, generated as described in section 5.2.2, were used to produce 

adenoviruses expressing wild-type and S161A, S166A, T183A and K376R mutant RIPK1 

constructs. To produce the recombinant adenoviral plasmids, the FLAG-RIPK1-Shut, FLAG-

S161A-Shut, FLAG-S166A-Shut, FLAG-T183A-Shut and FLAG-K376R-Shut plasmids were 

linearised by digestion with PmeI and transformed into BJ5183-AD-1 E. coli as described in 

Chapter Two, section 2.10.7.1, to undergo homologous recombination with the pAdeasy-1 

plasmid.  

The transformed BJ5183-AD-1 cells were spread onto warm LB agar containing kanamycin 

(50 µg/µl) and grown overnight at 37°C. Resulting colonies were PCR screened for the 

presence of recombinant adenoviral plasmids as described in Chapter Two, section 2.10.2 

using the AdV_184F/AdV_184R and AdV_300F/AdV_300R primer pairs (details of primers are 

found in Chapter Two, Table 2.3. The AdV_184F/AdV_184R primer pair is designed to span a 

sequence common to both the pShuttle-CMV and pAdeasy1 plasmids producing a product of 

184 bp. The second primer pair, AdV_300F/AdV_300R spans a region that is present in the 

pShuttle-CMV plasmid, producing a 300 bp product, but is absent in the pAdeasy-1 plasmid if 

homologous recombination has occurred. Thus, PCR using these primer pairs will lead to a 

single 184 bp product if homologous recombination has occurred and the respective 

recombinant RIPK1 constructs are present. Conversely, production of two products, of sizes 

184 and 300 bp, indicates presence of the shuttle vector construct and that recombination was 

unsuccessful. Colonies positive for the recombinant adenoviral plasmids were inoculated into 

LB and plasmids isolated using the alkaline lysis minipreparation method as described in 

Chapter Two, section 2.10.4. Purified plasmids (0.1 µg) were amplified by heat shock 

transformation into XL10-Gold cells and isolated using the alkaline lysis maxipreparation 

method as described in Chapter Two, sections 2.10.1 and 2.10.5. The recombinant adenoviral 

plasmids were linearised by digestion with PacI and transfected into HEK 293 cells for 
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production of adenoviruses, which were then propagated as described in Chapter Two, section 

2.10.8.  

 

5.2.4 Transfection of HEK 293 cell cultures 

For expression of FLAG-tagged RIPK1 proteins using shuttle vectors, plasmids were 

transfected into HEK 293 cells using jetPRIME® transfection reagent. HEK 293 cells were 

cultured in 60 mm dishes in HEK 293 growth medium [DMEM containing 10% FCS (v/v), 1% 

(v/v) glutamine and 50 units/ml penicillin and streptomycin] and grown to confluence. The 

shuttle vector plasmid (1 – 5 µg, as indicated) was gently mixed into 100 – 200 µl jetPRIME® 

buffer followed by addition of jetPRIME® reagent (2 – 10 µl). The mixture was vortex mixed (10 

s) followed by incubation at room temperature (20°C, 10 min). The mixture was then added 

dropwise to the HEK 293 cultures with gentle rocking. The transfected cultures were incubated 

to permit expression of proteins (48 h, 37°C, 5% CO2). Serum-containing medium was 

withdrawn 24 h prior to experimentation and replaced with HEK 293 maintenance medium 

[DMEM containing 1% (v/v) glutamine and 50 units/ml penicillin and streptomycin].   

 

5.2.5 Infection of cardiomyocytes with adenoviruses 

Cultures of neonatal rat cardiomyocytes were prepared as described in Chapter Two section 

2.3.1. Cardiomyocytes were infected with stocks of adenoviruses expressing FLAG-tagged 

RIPK1 proteins (10 – 50 µl) at the time of plating and the infected cultures incubated to permit 

expression of proteins (18 – 48 h, 37°C, 5% CO2). Serum-containing medium was withdrawn 

24 h prior to experimentation and replaced with maintenance medium [(DMEM)/Medium 199 

4:1 (v/v), 100 units/ml penicillin and streptomycin].  
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5.2.6 Immunoprecipitations 

Immunoprecipitation of FLAG-tagged RIPK1 proteins was performed as described in Chapter 

Two, section 2.6. Cardiomyocytes or HEK 293 cells were treated as indicated and washed 

twice with ice-cold 1× PBS. Cells were extracted by scraping into 150 µl ice-cold 

immunoprecipitation buffer. Lysates were vortex mixed and extracted on ice (10 min) followed 

by centrifugation (5 min, 10000×g, 4°C). A portion (30 µl) of the lysates was boiled with 2× 

SDS-PAGE sample buffer (5 min) for immunoblotting to assess protein input. A sample of 

supernatant (5 µl) was also retained for protein quantification as described in Chapter Two, 

section 2.5.3.  

For immunoprecipitations, 100 µl total cell lysate was removed to a clean pre-chilled tube 

containing EZview™ red anti-FLAG M2 affinity gel beads (20 µl of a 1:1 slurry in 

immunoprecipitation buffer) and immunoprecipitations performed on a rotating mixer (18 h, 

4°C). Following immunoprecipitation, the samples were centrifuged (5 min, 10000×g, 4°C) and 

the supernatants retained and boiled with 2× SDS-PAGE sample buffer (5 min). The pelleted 

anti-FLAG beads were washed with immunoprecipitation buffer (3×, 0.7 ml per wash) and the 

final pellets boiled with 2× SDS-PAGE sample buffer (5 min). Samples were stored at -20°C. 

 

5.3 Results  

5.3.1 Identification of candidate RIPK1 activation loop phosphorylation sites and 

ubiquitinylation sites 

Previous investigations indicate that phosphorylation is a key regulator of RIPK1 signalling, 

and that RIPK1 kinase activity is essential for formation of the necrosome (Degterev et al., 

2008; Cho et al., 2009; Mcquade et al., 2013). The catalytic activity of many kinases is strongly 

activated by phosphorylation of key residues within a region known as the activation loop 

(Adams, 2003), although the activation loop phosphorylation site (ALPS) for RIPK1 has yet to 

be formally identified. To identify candidate ALPSs, protein sequences from human (accession 
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no. NP_003795.2), rat (accession no. NP_001100820.1) and mouse (accession no. 

NP_033094.3) RIPK1 were aligned to identify evolutionarily conserved phosphorylatable 

residues in the kinase activation loop. Three such residues were wholly conserved from human 

to mouse and rat: Ser161, Ser166 and Thr182 (Thr182 refers to the human sequence, the 

equivalent residue is Thr183 in mouse and rat) (Fig. 5.5, A and C). Other potentially 

phosphorylatable residues were conserved in mouse and rat but not in human (i.e. Ser169, 

Ser180/181) and therefore are unlikely to play important roles in regulation of RIPK1 kinase 

activity. Although Ser161 and Ser166 are established phosphorylation sites (Mcquade et al., 

2013; Ofengeim et al., 2015), there appears to be no reference to Thr183 in the literature or in 

information curated by the PhosphositePlus® resource. Sequence alignment also confirmed 

that Lys377, a site required for IKK, NFκB and MAPK activation by TNFα in non-cardiac cells 

(associated with cytoprotection) (Ea et al., 2006; Duprez et al., 2012), is conserved in both rat 

(Lys375) and mouse (Lys376) (Fig. 5.5, B and C). 

 

 

 

 

 

 

 

 

 

 



192 
 

 

 

Figure 5.5 Identification of conserved RIPK1 phosphorylation and ubiquitinylation sites 
 

Protein sequences for human, rat and mouse RIPK1 were aligned using blastp.  (A) 
Identification of conserved phosphorylatable residues. Essential kinase subdomain VIII motifs 
are highlighted in green and conserved serine and threonine residues in the activation loop 
are highlighted in yellow. (B) Conserved lysine residue in the RIPK1 intermediate domain. (C) 
Schematic of the RIPK1 domain structure. Positions of the identified conserved residues are 
indicated. Residue numbers are for human RIPK1. P denotes a potentially phosphorylatable 
site and Ub denotes a ubiquitinylatable lysine residue. R denotes the RIP-homotypic 
interaction motif. DD denotes the death domain.  
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5.3.2 Generation of shuttle vectors expressing FLAG-tagged wild-type and mutant 

RIPK1  

Using protein sequence alignment, Ser161, Ser166 and Thr183 were identified as potential 

ALPSs, and Lys376 was identified as a ubiquitinylation site of interest. To facilitate 

investigation of the importance of these sites in cardiomyocytes, and to establish whether these 

sites contribute to the reduced RIPK1 mobility in response to pathophysiological stimuli 

described in Chapter Four, shuttle vector plasmids expressing FLAG-tagged mouse wild-type 

RIPK1 (FLAG-RIPK1-Shut) and mutant RIPK1 (FLAG-S161A-Shut, FLAG-S166A-Shut, 

FLAG-T183A-Shut and FLAG-K376R-Shut) were produced as described in section 5.2.2. The 

DNA constructs encoding wild-type and mutant RIPK1 were generated using the PCR strategy 

described in Fig. 5.3 and specific primers, as detailed in Table 5.1. Agarose gel electrophoresis 

of the resulting PCR products confirmed successful amplification of the N- and C-terminal 

fragments (Fig. 5.6, Ai, Bi and Ci) and successful generation of the full-length constructs using 

the N- and C-terminal fragments as template (Fig. 5.6. Aii, Bii and Cii).  

The full-length constructs were digested with KpnI and HindIII and ligated into the respective 

restriction sites of the FLAG-pShuttle-CMV plasmid. The shuttle vectors expressing the FLAG-

tagged RIPK1 constructs were then transformed into XL10-Gold E. coli and resulting colonies 

PCR screened to confirm the presence of the RIPK1 constructs (Fig. 5.7). The shuttle vector 

plasmids were subsequently amplified and the presence of the intended mutations verified by 

sequencing (Fig. 5.8).   
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Figure 5.6 Generation of the wild-type and mutant RIPK1 DNA constructs 

Agarose gel (1%) electrophoresis of RIPK1 DNA constructs. (Ai) Wild-type RIPK1 was 
amplified from an open reading frame clone as a 594 bp N-terminal fragment (N) using the 
RIPK1_Fwd and KpnI_Rev primers and a 1429 bp C-terminal fragment (C) using the KpnI_Fwd 
and RIPK1_Rev primers. (Aii) The full-length 2023 bp construct was produced using a mixture 
of the N- and C-terminal products as template using the RIPK1_Fwd and RIPK1_Rev primers. 
(Bi) S161A, S166A and T183A N-terminal fragments were produced using the ShutF primer 
and the respective reverse mutagenic primers. C-terminal fragments were produced using the 
respective forward mutagenic primers and the ShutR primer. (Bii) full-length S161A, S166A 
and T183A constructs were produced using the ShutR and ShutF primers and a mixture of the 
respective N- and C-terminal products as template. (Ci) The 1225 bp K376R N-terminal 
fragment was produced using the ShutF and K376R_Rev primers and the 920 bp C-terminal 
fragment used the K376R_Fwd and ShutR primers. (Cii) The full-length K376R construct was 
produced using the ShutF and ShutR primers and a mixture of the N- and C-terminal products 
as template. M denotes the 1 kb Plus DNA Ladder marker. Full details of primers used are 
found in Table 5.1.  
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Figure 5.7 Colony screening for shuttle vectors expressing FLAG-tagged wild-type and 
mutant RIPK1 constructs  
 

Full-length wild-type (RIPK1) and mutant (S161A, S166A, T183A and K376R) constructs were 
digested with KpnI/HindIII, ligated into the FLAG-pShuttle-CMV plasmid and amplified in XL10-
Gold E. coli. Transformed bacteria were spread on kanamycin plates and resulting colonies 
PCR screened for the presence of the RIPK1 plasmids. Products were electrophoresed on 1% 
agarose gels (A) Colonies were PCR screened for the FLAG-RIPK1-Shut plasmid using the 
RIPK1_Fwd and KpnI-Rev primers. (B) Colonies were screened for the plasmids containing 
the S161A, S166A and T183A constructs using the ShutF and S166A-Rev primers. (C) 
Colonies were screened for the FLAG-K376R-Shut plasmid using the K376R_Fwd and the 
ShutR primers. M denotes the 1 kb Plus DNA Ladder marker.   
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Figure 5.8 FLAG-tagged wild-type and mutant RIPK1 shuttle vector sequence 
chromatograms 
 

Shuttle vector plasmids expressing wild-type and mutant RIPK1 constructs were sequenced 
to verify the presence of the desired mutations. Sequence chromatograms showing the 
relevant mutations are shown. Sequencing for (A – C) used the RIPK1_Fwd primer. 
Sequencing for (E) used the T183A_Fwd primer. Details of primers are found in Table 5.1.  
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5.3.3 Expression of shuttle vectors expressing FLAG-tagged wild-type and mutant 

RIPK1 in HEK 293 cells 

To assess whether the FLAG-tagged wild-type and mutant RIPK1 proteins could be expressed 

successfully using the shuttle vectors, the FLAG-RIPK1-Shut, FLAG-S161A-Shut and FLAG-

S166A-shut plasmids were transfected into HEK 293 cells, as described in section 5.2.4. The 

proteins were immunoprecipitated using antibodies to the FLAG-tag and detected by 

immunoblotting for the FLAG-tag (Fig. 5.9).  

Initially, the expression of wild-type RIPK1 using the FLAG-RIPK1-Shut plasmids was 

assessed. Immunoblotting of immunoprecipitates resulted in detection of two dominant bands 

of FLAG immunoreactivity (of ~74 and ~79 kDa) (Fig. 5.9A). Although it is not clear why the 

transfected shuttle vector resulted in expression of two bands, immunoblotting of the total cell 

lysates with antibodies to RIPK1 also detected both bands in transfected cells, and it is 

therefore possible that one of the bands represents a RIPK1 species that has undergone post-

translational modification. In Chapter Four, exposure of cardiomyocytes to TNFα resulted in 

reduced mobility of endogenous RIPK1 (Fig. 4.3). To assess whether the exogenously 

expressed FLAG-tagged RIPK1 construct responds to TNFα stimulation in the same manner, 

transfected HEK cells were exposed to TNFα (20 ng/ml, 5 min). However, there was no 

apparent effect on the mobility of either of the detected bands (Fig. 5.9A).  

Transfection of HEK 293 cells with the FLAG-S166A-Shut and FLAG-S161A-Shut plasmids 

also resulted in detection of multiple bands of FLAG and RIPK1 immunoreactivity (Fig. 5.9, B 

and C). In contrast with the effects of IL1β on endogenous RIPK1 in cardiomyocytes observed 

in Chapter Four (Fig. 4.4), exposure of HEK 293 cells expressing FLAG-RIPK1-Shut or FLAG-

S166A-Shut to IL1β (25 ng/ml, 15 min) had no effect on the mobility of the detected RIPK1 

bands (Fig. 5.9B). Although neither TNFα nor IL1β had any effect on the electrophoretic 

mobility of the expressed constructs, exposure of HEK 293 cells transfected with the FLAG-

RIPK1-Shut, FLAG-S161A-Shut and FLAG-S166A-Shut plasmids to the potent PP1/PP2A 

inhibitor calyculin A (Garcia et al., 2002) resulted in detection of reduced mobility bands of all 
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three proteins (Fig. 5.9C). This is likely a result of increased Ser/Thr phosphorylation as 

previously observed in investigations of other kinases (Fuller et al., 2008; Fuller et al., 2012).  
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Figure 5.9 Expression of FLAG-tagged wild-type and mutant RIPK1 shuttle vectors in 
HEK 293 cells 
 

(A) HEK 293 cells were untransfected or transfected with different quantities of FLAG-RIPK1-
Shut plasmid as indicated. Cells were untreated or exposed to TNFα (20 ng/ml, 5 min). FLAG-
tagged constructs were immunoprecipitated and immunoblotted for FLAG (upper blot) or total 
lysates (30 µg protein) immunoblotted for RIPK1 (lower blot). (B) HEK 293 cells were 
untransfected or transfected with 1.25 µg shuttle vector plasmid as indicated. Cells were 
untreated or exposed to IL1β (25 ng/ml, 15 min). FLAG-tagged constructs were 
immunoprecipitated and immunoblotted for FLAG (upper blot) or total lysates (30 µg protein) 
immunoblotted for RIPK1 (lower blot). (C) HEK 293 cells were untransfected or transfected 
with 1.25 µg shuttle vector plasmid as indicated. Cells were untreated or exposed to calyculin 
A (100 nM, 10 min). FLAG-tagged constructs were immunoprecipitated and immunoblotted for 
FLAG (upper blot) or total lysates (30 µg protein) immunoblotted for RIPK1 (lower blot).  
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5.3.4 Generation of adenoviruses expressing wild-type and mutant RIPK1 

Transfection of HEK 293 cells with shuttle vectors confirmed that the FLAG-tagged RIPK1 

proteins could be expressed, although the exogenously expressed RIPK1 constructs did not 

respond to TNFα and IL1β treatment of HEK 293 cells in the same manner as endogenous 

RIPK1 in cardiomyocytes. To facilitate further investigation of RIPK1 in cardiomyocytes, shuttle 

vectors expressing wild-type and mutant RIPK1 were used to produce adenoviruses. Shuttle 

vectors were linearised by digestion with PacI and transformed into BJ5183-AD-1 E. coli to 

undergo homologous recombination with the pAdeasy-1 plasmid, producing recombinant 

adenoviral plasmids expressing the FLAG-tagged RIPK1 constructs. The bacteria were spread 

onto LB agar and resulting colonies screened for the presence of the recombinant adenoviral 

plasmid as described in Chapter Two, section 2.10.2 and section 5.2.3. Agarose gel 

electrophoresis of products from the PCR screens resulted in detection of single 184 bp bands 

for each of the constructs (Fig 5.10), indicating successful homologous recombination and the 

presence of the recombinant adenoviral plasmid. Plasmids were isolated from positive colonies 

and amplified. The purified plasmids were sequence verified and used to produce and 

propagate adenoviruses in HEK 293 cells, as described in Chapter Two, section 2.10.8.  
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Figure 5.10 Colony screening for adenoviral plasmids expressing FLAG-tagged wild-
type and mutant RIPK1 
 

BJ5183-AD-1 colonies transformed with linearised wild-type (RIPK1) and mutant (S161A, 
S166A, T183A and K376R) RIPK1 shuttle vector constructs, as indicated, were PCR screened 
to determine if homologous recombination to produce the adenoviral plasmid had occurred. 
The AdV184_F/AdV_184R and AdV_300F/AdV_300R primer pairs were used. Products were 
electrophoresed on a 2% agarose gel. A single 184 bp band indicates that homologous 
recombination has occurred and the presence of the adenoviral plasmid. Two bands (of 184 
and 300 bp) indicates the presence of the shuttle vector. FLAG-pShuttle-CMV was used as a 
negative control (-) and FLAG-PKN1 adenoviral plasmid was used as a positive control (+). M 
denotes the 1 kb Plus Ladder marker.  
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5.3.5 Adenoviral expression of FLAG-tagged RIPK1 proteins in cardiomyocytes 

Experiments were conducted to assess whether the FLAG-tagged RIPK1 constructs could be 

expressed in cardiomyocytes using adenoviral transduction. Cardiomyocytes were uninfected 

or infected with adenoviruses expressing wild-type FLAG-RIPK1 (30 µl adenoviral stock).  The 

cardiomyocytes were incubated for 48 h prior to serum withdrawal (24 h).  FLAG-tagged 

proteins were immunoprecipitated and immunoblotted for RIPK1. In immunoprecipitates from 

unstimulated cells, FLAG-RIPK1 was detected as a dominant band of immunoreactivity of ~36 

kDa and as a less intense band of ~72 kDa (Fig. 5.11Ai), approximately corresponding to the 

expected molecular weight for full-length FLAG-RIPK1 (75.8 kDa). Longer exposure times 

facilitated enhanced visualisation of the 72 kDa bands (Fig. 5.11Aii). Previous experiments 

indicated that FLAG-RIPK1, FLAG-S161A and FLAG-S166A expressed using shuttle vectors 

in HEK 293 cells exhibited a reduction in mobility in response to treatment with the PP1/PP2A 

inhibitor calyculin A (Fig. 5.9C). Exposure of infected cardiomyocytes expressing FLAG-RIPK1 

to calyculin A (100 nM, 10 min) also resulted in detection of reduced mobility FLAG-RIPK1 

bands of >37 kDa and >74 kDa (Fig. 5.11, Ai and Aii).  

Previously, IL1β treatment had no effect on FLAG-RIPK1, FLAG-S161A or FLAG-S166A 

constructs expressed using shuttle vectors in HEK 293 cells (Fig. 5.9B). To investigate whether 

the constructs respond to IL1β in cardiomyocytes, cardiomyocytes were uninfected or infected 

with adenoviruses expressing FLAG-RIPK1 (30 µl) FLAG-S161A (10 µl), FLAG-S166A (30 µl) 

or FLAG-K376R (50 µl). The cardiomyocytes were incubated for 24 h to permit expression of 

the FLAG-tagged proteins and then serum-containing medium was withdrawn for a further 24 

h. The cardiomyocytes were either untreated or exposed to IL1β (25 ng/ml, 15 min) and FLAG-

tagged proteins immunoprecipitated and immunoblotted for RIPK1. As observed in Fig. 5.11, 

in unstimulated cardiomyocytes, the FLAG-RIPK1, FLAG-S161A, and FLAG-S166A 

constructs were detected as dominant bands of ~36 kDa and less intense bands of ~72 kDa 

(Fig. 5.12Ai), although there was little or none detected FLAG-K376R.  A longer exposure time 

permitted enhanced detection of the less intense bands migrating at ~72 kDa, and also allowed 
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detection of ~72 kDa bands for the FLAG-K376R construct (Fig. 5.12Aii). However, exposure 

to IL1β did not appear to have a substantial effect on the mobility of any RIPK1 construct (Fig. 

5.12, Ai and Aii). 
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Figure 5.11 Expression of FLAG-tagged RIPK1 in cardiomyocytes 
 

Cardiomyocytes were uninfected or infected with adenoviruses expressing FLAG-RIPK1, as 
indicated, and either untreated or exposed to calyculin A (100 nM, 10 min) (Ai) FLAG-tagged 
proteins were immunoprecipitated and immunoblotted for RIPK1 (ii) The immunoblot in (Ai) 
subjected to a longer exposure time. (B) Total cell lysates (30 µg protein) were immunoblotted 
for RIPK1.  
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Figure 5.12 Effects of IL1β on FLAG-tagged RIPK1 constructs in cardiomyocytes 
 

Cardiomyocytes were either uninfected or infected with adenoviruses expressing FLAG-
tagged RIPK1 constructs, as indicated. Cardiomyocytes were untreated or exposed to IL1β 
(25 ng/ml, 15 min) (Ai) FLAG-tagged proteins were immunoprecipitated and immunoblotted 
for RIPK1. (Aii) The immunoblot in (Ai) subjected to a longer exposure time. (B) Total cell 
lysates (30 µg protein) were immunoblotted for RIPK1. 
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5.4 Discussion 

This chapter details the production of adenoviruses expressing N-terminally FLAG-tagged 

wild-type and mutant RIPK1 constructs, with the intention of using these constructs to further 

investigate the roles and regulation of RIPK1 in cardiomyocytes. Initially, multispecies protein 

sequence alignment was conducted to identify conserved phosphorylatable residues in the 

RIPK1 kinase activation segment (Fig. 5.5A). Sequence alignments indicated that three 

potentially phosphorylatable activation segment residues, Ser161, Ser166 and Thr183 are 

wholly conserved from human to mouse and rat, and thus are of prime interest in identification 

of the RIPK1 ALPS (Fig. 5.5A). A further residue in the RIPK1 intermediate domain, Lys376, 

is also conserved (Fig. 5.5B) and polyubiquitinylation at this residue is implicated in activation 

of NFκB and MAPKs downstream of RIPK1 in other cell types (Ea et al., 2006; Li et al., 2006; 

Duprez et al., 2012). Accordingly, adenoviruses expressing wild-type and S161A, S166A, 

T183A and K376R mutant RIPK1 were generated.  

 

5.4.1 Expression of FLAG-tagged RIPK1 constructs 

The wild-type and mutant constructs were first sub-cloned into the FLAG-pShuttle-CMV 

plasmid, and expression of the FLAG-RIPK1, FLAG-S161A and FLAG-S166A proteins 

assessed in HEK 293 (Fig. 5.9). FLAG-RIPK1-Shut was detected in HEK 293 cells as two 

bands of ~74 kDa and ~79 kDa (Fig. 5.9A). Detection of the 74 kDa band is largely in 

agreement with expected molecular weight of mouse FLAG-RIPK1 (~75.8 kDa). The reason 

for the detection of a 79 kDa band is unknown although since the band was not detected in 

untransfected total cell lysates (Fig. 5.9A), this may represent a FLAG-RIPK1 species that has 

undergone post-translational modification. It is also possible that the 79 kDa band is the full-

length FLAG-RIPK1 construct, in which case detection of the 74 kDa band may reflect the 

presence of a truncated FLAG-RIPK1 species.  Although the FLAG-RIPK1 constructs did not 

respond to exposure of HEK 293 cells to TNFα or IL1β (Fig. 5.9, A and B), PP1/PP2A inhibition 
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with calyculin A resulted in reduced mobility of the FLAG-RIPK1, FLAG-S161A and FLAG-

S166A constructs (Fig. 5.9, A and C) confirming that modification of the exogenously 

expressed constructs could be detected.  

To further investigate the regulation of RIPK1 in cardiomyocytes, the shuttle vectors were used 

to produce FLAG-RIPK1, FLAG-S161A, FLAG-S166A, FLAG-T183A and K376R 

adenoviruses. However,due to time limitations, FLAG-T183A had not undergone the final 

amplification in HEK 293 cells to produce the final, high-titre adenoviral stock. Adenovirally 

mediated expression of FLAG-RIPK1 was first tested by infecting cardiomyocytes and 

immunoprecipitating the proteins with antibodies to the FLAG-tag (Fig. 5.11). Immunoblotting 

of the immunoprecipitated proteins with anti-RIPK1 antibodies detected dominant bands of 

~36 kDa (Fig. 5.11Ai) and less intense bands of ~72 kDa (Fig. 5.11Ai). Visualisation of the ~72 

kDa bands was enhanced by exposing the membrane for a longer duration (Fig. 5.11Aii). The 

~72 kDa bands approximately correspond to the expected molecular weight of mouse RIPK1, 

allowing for the limitations in the sensitivity of the technique, although immunoblotting of total 

lysates indicated that detection of the full-length RIPK1 constructs was considerably lower than 

that of the ~36 kDa bands (Figs. 5.11B and 5.12B) 

 It is possible that the ~36 kDa bands are a RIPK1 cleavage product produced in response to 

overexpression of the protein. A previous study by Lin and colleagues (Lin et al., 1999) 

reported that TNFα treatment of HeLa cells leads to caspase-8 mediated cleavage of RIPK1 

at Asp324, resulting in a C-terminal RIPK1 product with an apparent molecular weight of 42 

kDa, and a smaller N-terminal product containing the kinase domain. In this context, cleavage 

of RIPK1 at Asp324 was reported to promote apoptosis (Lin et al., 1999). A further study using 

Jurkat cell extracts exposed to cytochrome c indicated that RIPK1 is cleaved by caspase-6, 

also producing a <40 kDa RIPK1 product, as observed here (Figs. 5.11 and 5.12) (Van Raam 

et al., 2013). Zhang et al. (Zhang et al., 2015) similarly reported production of a 37 kDa N-

terminal RIPK1 cleavage fragment by caspase-8 and indicated that RIPK1 cleavage at Asp324 

protects Jurkat cells against TRAIL-induced death. Cleavage of mouse RIPK1 at the equivalent 
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residue, Asp325, would produce an N-terminal fragment with a predicted molecular weight of 

~37.5 kDa.  This, considered together with the observations of the studies discussed, strongly 

suggests that the FLAG-tagged RIPK1 proteins are cleaved following expression in 

cardiomyocytes, resulting in the observed ~36 kDa bands.  

As observed in HEK 293 cells, exposure of cardiomyocytes to calyculin A resulted in detection 

of reduced mobility FLAG-RIPK1 bands of >74 kDa (Fig. 5.11, Ai and Aii). As calyculin A is a 

potent inhibitor of PP1/PP2A (Garcia et al., 2002), it is probable that the observed reduction of 

RIPK1 mobility is caused by phosphorylation of multiple Ser/Thr residues. Although Ser/Thr 

phosphorylation is the most likely explanation for the observed reduction of mobility, further 

experiments are required to confirm this. Although calyculin A resulted in detection of reduced 

mobility FLAG-RIPK1 bands in both cardiomyocytes and HEK 293 cells (Figs. 5.9A and 5.11), 

IL1β exposure had no effect on any of the FLAG-tagged RIPK1 constructs in either cell type 

(Figs. 5.9B and 5.12). It is possible that the responses to the different stimuli are dependent 

on localisation of the expressed protein to specific cellular regions or compartments. For 

example, the modification of endogenous RIPK1 in response to IL1β detailed in Chapter Four 

may occur in specific complexes, and it is possible that the exogenously expressed FLAG-

tagged RIPK1 constructs were not incorporated into these complexes.  

Further experimentation may allow identification of conditions for the successful use of the 

RIPK1 adenoviruses, although due to the apparent cleavage of the exogenously expressed 

constructs and the lack of response to IL1β, it may not be possible to use the adenoviruses for 

investigation of regulation of RIPK1 in cardiomyocytes. 

 

5.4.2 Investigating the causes of reduced RIPK1 electrophoretic mobility  

The data presented in Chapter Four demonstrate that RIPK1 in cardiomyocytes exhibits 

reduced mobility in response to pro-inflammatory cytokines (i.e. TNFα and IL1β) (Chapter 

Four, Fig. 4.3 and 4.4) and H2O2 (Chapter Four, Fig. 4.1). It was hypothesised that this 
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phenomenon is due to phosphorylation, most likely at multiple different sites. Further evidence 

indicating that RIPK1 undergoes phosphorylation in response to IL1β was obtained using 

anion-exchange FPLC (Chapter Four, Fig. 4.5). However, to further investigate the response 

of RIPK1 to these stimuli, it is necessary to confirm that the observed reduction in mobility is 

in fact caused by phosphorylation. This can be investigated by conducting dephosphorylation 

experiments using exogenous PP2A. While it is possible to incubate total cell lysates with 

PP2A, this approach may be inefficient due to the large number of endogenous PP2A targets 

within the cell (Slupe et al., 2011), and thus an approach using exogenously expressed FLAG-

RIPK1 is favoured. 

Accordingly, the principal aim in this chapter was to produce adenoviruses expressing FLAG-

tagged RIPK1 which can be immunoprecipitated for use in experiments to assess RIPK1 

phosphorylation in response to the various stimuli examined. The intention was to infect   

cardiomyocytes with FLAG-RIPK1 adenoviruses followed by exposure to TNFα (20 ng/ml, 15 

min), IL1β (25 ng/ml, 15 min) or H2O2 (1 mM, 60 min) in an attempt to stimulate the maximal 

RIPK1 response, as determined by the experiments in Chapter Four. The constructs would be 

immunoprecipitated using antibodies to the FLAG-tag, as described in section 5.2.6, and 

dephosphorylation initiated with the addition of recombinant PP2A catalytic domain, in the 

presence or absence of okadaic acid, a PP2A inhibitor (Garcia et al., 2002). Treated 

immunoprecipitates would subsequently be separated using SDS-PAGE, followed by 

immunoblotting for FLAG and/or RIPK1. The expectation is that the stimulated FLAG-RIPK1 

constructs would exhibit reduced mobility as in Chapter Four and that incubation with PP2A 

would result in the bands migrating  at the same position as the untreated constructs if the 

reduced mobility is caused by phosphorylation. The inclusion of okadaic acid should then lead 

to the treated FLAG-RIPK1 bands exhibiting reduced mobility, due to inhibition of 

dephosphorylation by PP2A.  This strategy was adopted successfully in a previous study by 

Fuller and colleagues (Fuller et al., 2012). However, due to unforeseen problems with 
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expressing full-length FLAG-RIPK1 in cardiomyocytes and the lack of response to IL1β, these 

experiments were not possible.  

 

5.4.3 Identification of the RIPK1 activation loop phosphorylation site (ALPS) 

RIPK1 is a key mediator of cell survival and death responses in certain contexts, and ample 

evidence in both non-cardiac systems and the heart indicates that RIPK1 kinase activity is 

obligatory for its pro-necrotic function (Degterev et al., 2008; Mcquade et al., 2013; Newton et 

al., 2016a; Oerlemans et al., 2012; Wang et al., 2015). Previously, structural modelling and 

sequence alignment comparing B-Raf and RIPK1 indicated homology between the activation 

loops of these kinases. Specifically, the important regulatory autophosphorylation site of B-

Raf, Thr598 (Zhang and Guan, 2000), was found to be homologous to Ser161 in the RIPK1 

activation loop (Degterev et al., 2008). This led other investigators to propose Ser161 as the 

RIPK1 ALPS. However, substitution of non-phosphorylatable alanine at Ser161 does not fully 

abolish kinase activity and only led to minimal attenuation of induction of necroptosis (Degterev 

et al., 2008; Mcquade et al., 2013). Accordingly, while Ser161 may contribute to RIPK1 kinase 

activity, it is not the ALPS and phosphorylation at other site(s) is required for efficient catalysis. 

Although mutation of Ser161 to alanine does not block kinase activity or functional competence 

to induce necroptosis, it substantially attenuates sensitivity of RIPK1 to Nec-1, indicating that 

this residue is implicated in the interaction between RIPK1 and this inhibitor (Degterev et al., 

2008; Mcquade et al., 2013). Some studies have used autophosphorylation of RIPK1 at Ser166 

as a marker of activation (Berger et al., 2014; Ofengeim et al., 2015; Newton et al., 2016b).  

However, it has yet to be definitively demonstrated and reported that Ser166 is the RIPK1 

ALPS. McQuade and colleagues (Mcquade et al., 2013) mutated Ser166 to alanine, resulting 

in a ~71% decrease in RIPK1 autophosphorylation in an in vitro kinase assay, although the 

authors did not acknowledge this observation (Mcquade et al., 2013).  
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A major aim in this chapter was to definitively identify the RIPK1 ALPS. Here, sequence 

alignment revealed that three RIPK1 kinase domain Ser/Thr residues, Ser161, Ser166 and 

Thr183, are absolutely conserved from human to rat and mouse (Fig. 5.5), potentially indicating 

important roles in regulation of RIPK1 kinase activity. Ser161 and Ser166 are established 

phosphorylation sites, as discussed above, although there does not appear to be any 

published information pertaining to potential roles of Thr183. To investigate the importance of 

these sites in regulation of RIPK1 function, adenoviruses expressing FLAG-tagged wild-type 

(FLAG-RIPK1), S161A, S166A and T183A RIPK1 were generated. As discussed in section 

5.4.1, the T183A adenoviruses had not undergone the final amplification in HEK 293 cells to 

produce a sufficiently infective titre. A kinase-deficient RIPK1 variant in which the critical lysine 

residue required for ATP binding and phosphotransfer (Carrera et al., 1993), Lys45, was 

mutated to alanine as in Berger et al. (Berger et al., 2014) was also produced (FLAG-K45A, 

data not shown) but similarly had not undergone sufficient amplification for use. Final 

adenoviral stocks of the wild-type FLAG-RIPK1, FLAG-S161A and FLAG-S166A adenoviruses 

were produced and their expression tested in cardiomyocytes. However, as demonstrated in 

Figs. 5.11 and 5.12, and discussed in section 5.4.1, the overexpressed FLAG-tagged 

constructs appear to undergo cleavage in cardiomyocytes. 

Despite the problems experienced with expression of the full-length constructs, it may still be 

possible to use the adenoviruses in kinase assays to identify the ALPS. In further 

investigations, cardiomyocytes would be infected with FLAG-RIPK1, FLAG-S161A, FLAG-

S166A, FLAG-T183A and FLAG-K45A adenoviruses and exposed to putative agonists (for 

example calyculin A, TNFα, IL1β, H2O2). The various RIPK1 constructs would be 

immunoprecipitated using antibodies to the FLAG-tag and subjected to kinases assays in vitro, 

assessing the incorporation of radioactively labelled [γ-32P]ATP into an appropriate substrate 

using Čerenkov counting. It may be necessary to conduct initial experiments to identify the 

most suitable substrate. Previous studies have used autophosphorylation as an indication of 

RIPK1 kinase activity (Degterev et al., 2008; Cho et al., 2009; Mcquade et al., 2013) although 
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it may be more appropriate to use alternative substrates such as exogenously expressed 

RIPK3 or the widely used generic phosphoacceptor substrate, myelin basic protein (Clerk and 

Sugden, 1997a). The results of these experiments should indicate the phosphorylation site(s) 

required for RIPK1 kinase activity in response to the various stimuli in cardiomyocytes, with 

the expectation that the constructs containing the mutated ALPS will exhibit significantly 

reduced kinase activity relative to the wild-type.  

5.4.4 RIPK1 signalling to NFκB and MAPKs in cardiomyocytes  

In addition to its role in regulation of cell death, in non-cardiac cell types, RIPK1 is required for 

TNFα-mediated activation of cytoprotective NFκB signalling (Hsu et al., 1996) (Kelliher et al., 

1998) and the three principal MAPK pathways, ERK1/2, JNKs and p38-MAPKs (Liu et al., 

1996; Devin et al., 2003; Lee et al., 2004). Interestingly, RIPK1 catalytic activity is required for 

activation of ERK1/2 but not JNKs or p38-MAPKs (Devin et al., 2003; Lee et al., 2004; Zhang 

et al., 2013). Activation of NFκB and MAPKs downstream of RIPK1 is dependent on K63-linked 

polyubiquitinylation of RIPK1 at Lys377, resulting in the recruitment of the TAK1 complex and 

activation of IKKs (Ea et al., 2006; Li et al., 2006). To begin to investigate the roles of RIPK1 

in activation of NFκB and MAPKs in cardiomyocytes, adenoviruses expressing FLAG-tagged 

mouse RIPK1 containing a mutation of the conserved K376 residue (FLAG-K376R) were 

produced (Fig. 5.10), although the effects of the mutation on NFκB and MAPK activation were 

not examined due to time limitations. Future investigations would seek to express FLAG-

K376R and wild-type FLAG-RIPK1 in cardiomyocytes followed by exposure to TNFα or other 

agonists. The effects on activation of NFκB would be investigated by assessing activation of 

IKKs and phosphorylation of their substrate, IκBα, as in Ea et al. (Ea et al., 2006). Effects on 

the activation of MAPKs would be investigated by immunoblotting for phosphorylated (i.e. 

activated) ERK1/2, JNKs and p38-MAPKs.  
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Chapter Six – Summary, discussion and future work 
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6.1 Overview and summary of results 

One of the major aims for this thesis, detailed in Chapter Three, was to characterise the roles 

of three well-established signalling pathways, the ERK1/2, JNK and p38-MAPK cascades, in 

regulation of cardiomyocyte RNA expression during H2O2-induced apoptosis.  Chapters Four 

and Five focused on the regulation of cardiac RIPK1, which mediates the novel necroptotic cell 

death pathway, and is also involved in cytoprotection, potentially through JNK and p38-MAPK 

signalling.  

 

6.1.1 Regulation of cardiomyocyte RNA expression by MAPKs in response to 

oxidative stress  

• H2O2 (0.2 mM) promoted activation of MAPKs in the nucleus with no net nuclear 

accumulation of total protein. ERK1/2 were activated to a similar extent in nucleus and 

cytoplasm, whilst activation of JNKs and p38-MAPKs was greater in the cytoplasm than in 

the nucleus.  

 

• ERK1/2 play a substantial role in regulation of basal cardiomyocyte RNA expression, with 

lesser contributions by JNKs and p38-MAPKα/ß.  H2O2 induced substantial changes in 

cardiomyocyte RNA expression, and ERK1/2 played the largest role in terms of numbers of 

RNAs regulated (~35% of RNAs), with relatively smaller contributions by JNKs (~26% of 

RNAs) and p38-MAPKα/ß (~31% of RNAs). Approximately 44% of RNAs were regulated 

through alternative mechanisms.   

 

6.1.2 Effects of pathophysiological stimuli on cardiac RIPKs  

• In cardiomyocytes, moderate and high concentrations of H2O2 induced appearance of 

reduced mobility RIPK1 bands on immunoblots, consistent with multiple phosphorylations. 
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Similarly, in adult rat perfused hearts, 0.2 mM H2O2 resulted in reduced electrophoretic 

mobility RIPK1 also consistent with increased phosphorylation. Following 

ischaemia/reperfusion in perfused hearts, RIPK1 exhibited reduced electrophoretic mobility, 

but this was associated with decreased RIPK1 immunoreactivity, suggestive of either 

degradation or conformational changes resulting in epitope masking.  

 

• Exposure of cardiomyocytes to pro-inflammatory cytokines (TNFα and IL1β) resulted in 

reduction of RIPK1 electrophoretic mobility on immunoblots, consistent with 

phosphorylation.  This was supported by RIPK1 analysis using anion-exchange FPLC. 

  

• The p38-MAPKα/ß inhibitor SB203580 reduced the rate of appearance of reduced mobility 

RIPK1 bands in cardiomyocytes exposed to IL1β, suggesting that RIPK1 might be 

phosphorylated by p38-MAPKα/ß or a p38-MAPKα/ß-activated kinase.  

 

• Shuttle vectors for expression of FLAG-tagged wild-type RIPK1 (FLAG-RIPK1) and 

phosphorylation/ubiquitinylation site mutant RIPK1 (FLAG-S161A, FLAG-S166A, FLAG-

T183A and FLAG-K376R) were produced. The FLAG-RIPK1, FLAG-S161A and FLAG-

S166A constructs did not exhibit reduced mobility in response to IL1β when expressed in 

HEK 293 cells but exhibited reduced mobility in response to calyculin A. Adenoviruses were 

generated for expression of FLAG-tagged constructs in neonatal rat cardiomyocytes, but 

much of the expressed RIPK1 protein appeared to have undergone cleavage. 

 

• Exposure of neonatal rat cardiomyocytes infected with FLAG-RIPK1 adenoviruses to the 

PP1/PP2A inhibitor calyculin A resulted in reduced mobility FLAG-RIPK1 bands, but the 

FLAG-RIPK1, FLAG-S161A, FLAG-S166A or FLAG-K376R constructs did not respond to 

IL1β in cardiomyocytes. 
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6.2 Discussion 

6.2.1 Stress signalling in cardiomyocytes and the heart 

The heart and its constituent cardiomyocytes are subjected to a wide range of 

pathophysiological stresses. Exposure to such stresses can result in activation of intracellular 

signalling pathways, leading to varied responses including differential regulation of gene 

expression and modulation of the balance between cardiomyocyte life and death (Clerk et al., 

2007a). Extensive research in recent decades has focussed on identification of the 

pathophysiological stimuli responsible for these effects and on elucidating the signalling 

pathways that might be involved in eliciting them. Amongst the most significant 

pathophysiological stresses encountered by the heart and cardiomyocytes are oxidative stress 

and pro-inflammatory cytokines, which are associated with activation of various intracellular 

signalling pathways and a wide range of adaptive and maladaptive responses (Tsutsui et al., 

2011; Hedayat et al., 2010). 

Oxidative stress, exemplified by H2O2, is a key regulator of the balance between life and death 

of cardiomyocytes, and is associated with the pathogenesis and progression of cardiac 

diseases such as HF. It has been well-established through numerous investigations that 

exposure to moderate levels of H2O2 induces cardiomyocyte apoptosis (Aikawa et al., 1997; 

Von Harsdorf et al., 1999; Cook et al., 1999b; Kwon et al., 2003) and, as confirmed in Chapter 

Three, promotes substantial changes in cardiomyocyte RNA expression (Kemp et al., 2003; 

Clerk et al., 2007b). These changes are assumed to influence the progression of 

cardiomyocyte apoptosis. H2O2 also activates the three principal MAPK cascades, which 

regulate gene expression in other cell types (Clerk et al., 1998b; Turjanski et al., 2007). The 

investigations detailed in Chapter Three sought to establish the importance of MAPKs in 

eliciting global changes in cardiomyocyte RNA expression during H2O2-induced apoptosis. The 

results presented indicate that the MAPKs do indeed contribute substantially, yet differentially, 

to global changes in cardiomyocyte RNA expression in this context and accordingly to the 

overall response of the cardiomyocyte. As observed in previous investigations examining 
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cardiomyocyte gene expression in response to other agonists (i.e. the α-adrenergic agonists 

phenylephrine, ET-1 and A61603) (Kennedy et al., 2006; Marshall et al., 2010; Amirak et al., 

2013), ERK1/2 represents a major node in signalling to RNA expression in cardiomyocytes 

exposed to H2O2 (Chapter Three, Fig. 3.9). Although the data indicate that JNKs and p38-

MAPKs also make contributions, these were found to be somewhat smaller than that of ERK1/2 

(Chapter Three, Fig. 3.9). Since, like in other systems, cardiac JNKs and p38-MAPKs are 

particularly activated by H2O2 and other cellular stresses (Clerk et al., 1998a; Clerk et al., 

1998b; Clerk and Sugden, 1997b; Laderoute and Webster, 1997) and also by IR (Bogoyevitch 

et al., 1996) it is perhaps surprising that these pathways did not dominate over ERK1/2 in 

regulation of cardiomyocyte RNA expression induced by H2O2. However, while ERK1/2 were 

found to regulate a larger number of RNAs than either the JNKs or p38-MAPKα/ß, many RNAs 

induced by H2O2 were differentially regulated by more than one MAPK inhibitor (e.g. Klhl40, 

Xirp1, Egr1 and Egr3, Dusp2, Dusp4, Dusp5) (Appendix II, Tables A9, A16 and A20), indicative 

of overlapping contributions by the different MAPK pathways. Assuming the mRNAs are 

translated into protein, the products of many of the mRNAs promoted by the JNKs (e.g. Atf3) 

(Appendix II, Table A16) or p38-MAPKα/ß (e.g. Hmox1, Gclc, Cdkn1a, Zfp36) (Appendix II, 

Table A20) may potentially have important effects on the overall response of the 

cardiomyocyte, and therefore the heart, to the encountered stress. However, although the data 

presented indicate that the three principal MAPK pathways make substantial contributions in 

this context, ~44% of the RNAs differentially regulated by H2O2 were unaffected by any MAPK 

inhibitor (Appendix II, Tables A6 and A7).  It is therefore apparent that other H2O2-responsive 

signalling pathways or regulatory mechanisms are involved in regulation of cardiomyocyte 

RNA expression, with a potentially important impact on the response of the heart to oxidative 

stress. Although the identity of these mechanisms is not immediately clear, established redox-

sensitive transcriptional regulators such as the transcription factor Nrf2 (Zhou et al., 2014) may 

be involved. Further work is required to examine these mechanisms. 
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While the data presented in Chapter Three provide further insights into the regulation of 

cardiomyocyte responses to oxidative stress by the extensively investigated MAPK pathways, 

other, less well-characterised pathways are also likely to make important contributions to 

cardiomyocyte signalling under stress conditions, potentially with important consequences for 

the heart as a whole organ. Cardiomyocyte cell death in response to varied insults is a key 

contributor to the pathogenesis of heart diseases such as HF, although the relative significance 

of apoptosis vs necrosis in the development of HF continues to be debated (Clerk et al., 2003; 

Van Empel et al., 2005; Konstantinidis et al., 2012). Since necrosis has conventionally been 

conceptualised as a passive and unregulated process in response to overwhelming stress, it 

was largely assumed that necrotic death was refractory to targeted therapy. However, the 

recent identification of necroptosis as a regulated form of necrosis (Degterev et al., 2005) and 

a possible contributor to pathologies has highlighted new potential for therapeutic intervention 

(Zhou and Yuan, 2014). Necroptotic death is centrally regulated by RIPK1 (Cho et al., 2009). 

However, RIPK1 also executes important functions in signalling to cytoprotection in non-

cardiac systems, including through signalling to the activation of MAPKs. RIPK1 is required for 

recruitment and activation of TAK1 and IKKs, resulting in stimulation of NFκB-dependent gene 

expression (Kelliher et al., 1998; Ea et al., 2006) and also activation of JNKs and p38-MAPKs 

(Liu et al., 1996; Lee et al., 2004; Devin et al., 2003). Accordingly, RIPK1 and its roles in the 

heart are of particular interest, both in examining the fundamental processes underlying 

development of cardiovascular diseases associated with increased cardiomyocyte death, and 

in identifying potential therapeutic targets aiming to either diminish this fallout of 

cardiomyocytes or otherwise to increase cytoprotective mechanisms. It was therefore 

hypothesised that the RIPK1 has significant functions in modulating cardiomyocyte responses 

to stress stimuli, potentially in mediating cardiac cell death, as well as in activation of other 

important signalling pathway such as the MAPKs.  

In Chapter Four, exposure of cardiomyocytes or hearts to a range of important 

pathophysiological agonists, including pro-inflammatory cytokines or oxidative stress, resulted 
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in reduction of RIPK1 electrophoretic mobility on immunoblots (Chapter Four, Figs. 4.1 – 4.4). 

IR and H2O2 also resulted in reduced mobility of RIPK1 in extracts from whole adult rat hearts 

(Chapter Four, Fig. 4.2). As discussed, this effect is consistent with increased phosphorylation 

of RIPK1 in response to the respective stimuli.  Investigations in non-cardiac systems, such as 

that of Cho et al. (Cho et al., 2009), indicate that RIPK1 phosphorylation and kinase activity 

are required for formation of the necrosome and induction of necroptotic cell death. Similarly, 

pharmacological inhibition, or genetic disruption, of RIPK1 catalytic activity protects cells 

against necroptotic death (Degterev et al., 2005; Berger et al., 2014; Shutinoski et al., 2016; 

Newton et al., 2016a). Investigations examining the roles of RIPK1 and RIPK3 in the heart also 

demonstrate that increased phosphorylation is associated with necrotic death of 

cardiomyocytes and negative impacts on cardiac function (Oerlemans et al., 2012; Luedde et 

al., 2014). Increased RIPK1 phosphorylation is also associated with necroptotic death, which 

potentially contributes to pathologies, in other organ systems (Degterev et al., 2005; Ofengeim 

et al., 2015) Accordingly, if the observed reduction of RIPK1 electrophoretic mobility is indeed 

caused by phosphorylation, this may be reflective of a role in mediating cardiomyocyte death 

in response to pathophysiological stresses, with potential impacts on the development of 

pathologies associated with increased cardiac cell death, such as MI or HF (Konstantinidis et 

al., 2012). 

Despite the association between increased RIPK1 phosphorylation and cell death, 

phosphorylation of RIPK1 by IKKs is also associated with preventing RIPK1 from integrating 

the pro-apoptotic complex II and the necrosome (Dondelinger et al., 2015). While Dondelinger 

et al. (Dondelinger et al., 2015) demonstrated that phosphorylation of RIPK1 by IKKs protects 

against cell death, and also identified some of the targeted phosphorylation sites, the 

physiological and functional relevance of RIPK1 phosphorylation in eliciting cytoprotection is 

yet to be established. Further work is required to establish the importance of RIPK1 

phosphorylation and kinase activity in eliciting either cell death or cytoprotection, to investigate 
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its relevance in cardiomyocytes and the heart and to investigate whether RIPK1 is a viable 

therapeutic target in the treatment of cardiovascular diseases. 

As discussed above, in addition to its functions in mediating cell death, RIPK1 is also involved 

in activation of cytoprotective mechanisms (Kelliher et al., 1998). Site-specific K63-linked 

polyubiquitinylation of RIPK1 at Lys377 (Lys 376 in mouse, see Chapter Five Fig. 5.5B) results 

in recruitment of IKKs and TAK1 (Ea et al., 2006). IKKs mediate activation of NFκB leading to 

upregulation of pro-survival proteins (Kreuz et al., 2001) while TAK1 signals to activation of 

JNKs and p38-MAPKs (Liu et al., 1996; Lee et al., 2004; Devin et al., 2003). An investigation 

by Li et al. (Li et al., 2014) demonstrated that TAK1 inhibition renders cardiomyocytes 

susceptible to necroptosis in response to TNFα, and is associated with defective activation of 

NFκB and JNKs. Accordingly, JNKs may confer cytoprotection in this context, and their 

activation by TAK1 might lie downstream of RIPK1. Chapter Five details the production of 

adenoviruses expressing FLAG-tagged mouse RIPK1 in which Lys376 was mutated to 

arginine (FLAG-K376R) to prevent ubiquitinylation. The intention was to use the adenoviruses 

to express the mutated form of RIPK1 in cardiomyocytes in order to examine the effects on 

activation of MAPKs in cardiomyocytes. Cardiomyocytes infected with FLAG-K376R 

adenoviruses would have been treated with various pathophysiological stimuli (e.g. TNFα, IL1β 

or H2O2) and the effects of the mutation on activation of MAPKs assessed by immunoblotting 

with antibodies to phosphorylated (i.e. activated) MAPKs. This approach could also be 

extended to further investigate the still poorly defined roles of different MAP3Ks, for example 

MEKKs, ASK1 and TAK1, in signalling to activation of MAPKs in cardioymoyctes. However, 

unforeseen difficulties with expressing the full-length mutant and wild-type RIPK1 constructs 

combined with time limitations resulted in an inability to conduct the experiments required, and 

accordingly further work is needed to establish the potential roles and significance of RIPK1 in 

signalling to MAPKs in cardiomyocytes.  

In Chapter Four (Fig. 4.6), it was observed that RIPK1 in cardiomyocytes may be 

phosphorylated by p38-MAPKα/ß [or a p38-MAPKα/ß-activated kinase such as MAPKAPK2 
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or 3 (Cargnello and Roux, 2011)] in response to IL1β. As discussed, the presence of RIPK1 is 

required for TNFα-induced activation of p38-MAPK (Lee et al., 2004) although there do not 

appear to be any published studies indicating that RIPK1 is a substrate of the p38-MAPK 

pathway and therefore this is a novel observation. Further investigation will be required to 

determine whether RIPK1 is indeed a bona fide substrate of the p38-MAPKα/ß pathway, to 

establish which sites are phosphorylated, and to determine the functional relevance of these 

phosphorylation events (see section 6.3.2). The activation of MAPKs, particularly JNKs and 

p38-MAPKs, in response to pro-inflammatory cytokines in cardiomyocytes (Clerk et al., 1999) 

and other systems (Bird et al., 1994; Raingeaud et al., 1995) is well established. RIPK1 was 

observed to respond to TNFα and IL1β treatment in cardiomyocytes (Chapter Four, Fig. 4.3 

and 4.4), with inhibition of the response to IL1β by SB203580 (Chapter Four, Fig. 4.6). These 

observations may be indicative of crosstalk between the RIPK1 and MAPK pathways, with 

potentially important consequences for development and progression of cardiovascular 

diseases associated with increased cell death, cytokine expression and inflammation, such as 

MI and HF (Jacobs et al., 1999; Hedayat et al., 2010; Konstantinidis et al., 2012).  

 

6.2.2 Study limitations  

6.2.2.1 Use of pharmacological inhibitors 

Pharmacological inhibitors were employed to implicate the MAPK cascades in regulation of 

cardiomyocyte RNA expression (see Chapter Three). Since no pharmacological inhibitor is 

entirely selective, attempts were made to optimise the use of the inhibitors employed. In 

Chapter Three, section 3.3.2, experiments were performed to confirm the potency and 

selectivity of PD1854352 (to inhibit ERK1/2 activation) (Sebolt-Leopold et al., 1999), JNK-IN-

8 (to inhibit JNKs) (Zhang et al., 2012) and SB203580 (to inhibit p38-MAPKα/ß signalling) 

(Cuenda et al., 1995). Despite limitations in their use, pharmacological inhibitors remain 

invaluable in identifying potential roles of different signalling pathways, are relatively 
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economical and easily manipulable. Ideally, inhibitor experiments should be repeated using 

other inhibitors with unrelated structures and/or mechanisms of action to verify that results can 

be replicated. Genetic manipulation of pathways, for example knockdown of signalling protein 

expression with siRNA or using tissues from transgenic animals, is also a potentially useful 

approach. However, these methods are still subject to limitations, particularly with respect to 

terminally-differentiated cardiomyocytes where genetic approaches may prove technically 

problematic. Furthermore, unlike pharmacological inhibitors, genetic approaches relying on 

knockdown or overexpression of proteins may result in disruption of the delicate stoichiometry 

of signalling molecules and thus have unintended consequences.  Ideally, a range of 

complementary approaches should be adopted to interrogate the pathways of interest. 

Nonetheless, the results from experiments using pharmacological inhibitors, such as those 

reported here, are still valuable in elucidating the roles of different pathways in eliciting different 

cellular responses. 

 

6.2.2.2 Use of neonatal rat cardiomyocytes 

Cultured neonatal rat ventricular cardiomyocytes were the primary experimental system used 

in this thesis. Since the ultimate aim of biomedical research is to elucidate the biological 

mechanisms regulating health and disease processes in humans, human cardiomyocytes 

would be the most desirable model system. However, due to practical and ethical reasons, it 

is necessary to use cardiomyocytes from other animals. Neonatal rat cardiomyocytes are a 

well-characterised, relatively standardised, and widely employed model, thus facilitating 

comparison of results from different experiments both within research groups and from external 

investigators. Crucially, the studies examining cardiomyocyte gene expression in response to 

H2O2 that directly informed this investigation (Kemp et al., 2003; Clerk et al., 2007b) were 

conducted using neonatal rat cardiomyocytes, and thus it was essential to continue to use the 

system for consistency.  
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Since many cardiac pathologies (such as HF and MI) predominantly affect adults, it is arguable 

that adult rat cardiomyocyte cultures are more reflective of the adult phenotype and should 

therefore be the preferred experimental system. However, neonatal cardiomyocytes are more 

amenable to formation of stable, confluent, synchronised cultures than are adult 

cardiomyocytes (Chlopcikova et al., 2001), which also undergo substantial morphological 

changes in culture (Chlopcikova et al., 2001; Bugaisky and Zak, 1989). Furthermore, adult 

cardiomyocytes are sensitive to environmental perturbations and thus the success of such 

preparations is highly dependent on factors including the concentration of Ca2+ in the digestion 

medium and also batch-to-batch variability of digestion enzymes (Chlopcikova et al., 2001; 

Bugaisky and Zak, 1989). Crucially, the procedure for isolation of adult rat cardiomyocytes may 

result in stimulation of stress-responsive signalling pathways (Clerk et al., 2007b), which may 

have undesired consequences such as modulation of gene expression, thus making them 

substantially less suitable for experiments such as those detailed here.  Nonetheless, it is 

important to assess the extent to which the observations made in the neonatal system are 

recapitulated in the adult animal. Here, the effects of a pro-apoptotic H2O2 concentration on 

RIPK1 in neonatal cardiomyocytes were observed to be similar in the whole adult heart (see 

Chapter Four, Figs. 4.1 and 4.2). Furthermore, the effects of IL1β on RIPK1 in neonatal 

cardiomyocytes reported here (see Chapter Four, Fig. 4.6) were subsequently replicated in 

whole adult hearts, as was the effect of SB203580 on the RIPK1 response IL1β (KA Rostron 

and A Clerk, unpublished data). Accordingly, while it is not possible to directly compare the 

isolated neonatal cardiomyocyte system to the whole adult organ, many of the responses 

observed in neonatal cardiomyocytes are similar to those occurring in adult hearts, and 

neonatal cardiomyocytes are therefore a valid and valuable model. 

 

 

 



225 
 

6.3 Future work  

The research presented in this thesis has provided novel insights into some of the intracellular 

signalling pathways involved in regulation of gene expression and cell death in the heart, and 

has highlighted areas of interest for future investigations. 

6.3.1 Regulation of cardiomyocyte gene expression by MAPKs in response to H2O2 

The results reported in Chapter Three indicate that ERK1/2, and to a lesser extent, JNKs and 

p38-MAPKs, play important roles in regulation of global RNA expression during cardiomyocyte 

apoptosis in response to H2O2. Initially, it will be important to establish whether the observed 

changes in RNA expression are reflected at the level of protein expression.  Genes upregulated 

in response to H2O2 and found to be differentially regulated by the MAPK pathways would be 

selected for further examination. Key genes of interest include the Dusps, as a result of their 

roles in negative regulation of MAPK signalling (Huang and Tan, 2012). Other genes of interest 

include Zfp36 (tristetraprolin) due to its association with post-transcriptional regulation of 

important pro-inflammatory genes such as TNFα in other cell types (Brooks and Blackshear, 

2013) and the fact that the roles of tristetraprolin in the heart have not been investigated 

extensively. Assessment of the extent to which changes in RNA expression are reflected at 

the level of protein could be achieved by exposing cardiomyocytes to H2O2 in the presence or 

absence of the MAPK inhibitors used in Chapter Three, followed by immunoblotting of protein 

extracts with antibodies to the relevant proteins. Further studies may also seek to examine the 

contributions of MAPKAPKs to cardiomyocyte gene expression in the context of oxidative 

stress. These experiments would employ selective inhibitors of downstream kinases such 

RSKs to further dissect the roles of the MAPK cascades in regulation of global RNA 

expression, as employed successfully in previous cardiomyocyte studies such as that of 

Amirak and colleagues (Amirak et al., 2013).  

It will also be important to assess the extent to which the changes in gene expression observed 

in neonatal cardiomyocytes occur in the whole adult heart. To investigate this, adult male rat 
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hearts would be perfused ex vivo with H2O2, in the presence or absence of MAPK inhibitors in 

the perfusate. This approach would provide sufficient material to permit analysis of RNA 

expression of selected genes using qPCR, as well as assessment of the effects of H2O2 and 

the MAPK inhibitors on protein expression using immunoblotting.  

Since ~44% of the RNAs differentially regulated in response to H2O2 were unaffected by any 

of the MAPK inhibitors, other signalling pathways and regulatory mechanisms are clearly 

involved in regulation of cardiomyocyte gene expression in response oxidative stress. Further 

work might seek to identify the pathways and mechanisms responsible, with an initial focus on 

transcriptional regulators known to be responsive to oxidative stress, such as the transcription 

factor Nrf2 (Zhou et al., 2014).  

 

6.3.2 Regulation and roles of RIPK1 in the heart 

The results of the experiments detailed in Chapter Four indicate that RIPK1 in cardiomyocytes 

and hearts exhibits reduced mobility in response to a number of important pathophysiological 

stimuli, most likely reflecting increased phosphorylation. Attempts to further investigate 

whether the observed effects were due to phosphorylation using adenoviruses were hindered 

by unforeseen difficulties in expressing full-length exogenous FLAG-tagged RIPK1 constructs. 

However, it may still prove possible to use the adenoviruses (detailed in Chapter Five) to 

identify the RIPK1 ALPS by assessing the effects of the various mutations on RIPK1 activity 

in in vitro kinase assays.  

It will also be important to conduct further investigation into the regulation of RIPK1 in response 

to IL1β, a novel observation detailed in Chapter Four. Of particular interest is further 

examination of the potential roles of p38-MAPKs in phosphorylation of RIPK1 in response to 

IL1β stimulation. This phenomenon does not appear to have been previously reported in any 

system and, as a result, initial approaches using non-cardiac cell lines that are amenable to 

genetic manipulation are justified. For example, expression of p38-MAPK and MAPKAPKs 2 
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and 3 could be knocked down using siRNA or other approaches such as CRISPR-Cas9, to 

establish if these interventions affect the response of RIPK1 to IL1β. Mutational analysis, in 

which phosphorylatable serine or threonine residues are systematically mutated to alanine, 

could also be employed to determine the RIPK1 residue(s) targeted for phosphorylation by 

p38-MAPKs.  The effect could be further investigated in cardiac cells by using an inducible 

cardiac-specific p38-MAPKα knockout mouse model, such as that described by Nishida et al. 

(Nishida et al., 2004).  
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APPENDIX I: SDS-PAGE GEL RECIPES 

 

6% stacking gels (for 10 ml gel mixture): 

Acrylamide 30% - 2.0 ml  

Bisacrylamide 2% - 0.8 ml  

20% SDS - 50 μl  

Tris 1M pH 6.8 - 1.25 ml  

H2O - 5.87 ml  

TEMED - 10 μl  

APS 25% - 75 μl  

  

10% resolving gels (for 10 ml gel mixture): 

Acrylamide 30% 3.33 ml  

Bisacrylamide 2% - 1.33 ml  

20% SDS - 50 μl  

Tris 1M pH 8.8 - 3.75 ml  

H2O - 1.45 ml  

TEMED - 10 μl  

APS 25% - 75 μl 
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Table A1 Changes in transcript expression induced by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to PD184352 (2 µM) for 2 h 15 min. 

Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 

using GeneSpring 14.5 analysis to identify RNAs with significant changes in expression (>1.5-

fold relative to control) and a significant effect of the inhibitor (one-way ANOVA with SNK post-

test and Benjamini-Hochberg FDR correction, p<0.05). Raw values are given for controls and 

results are the mean fold change relative to controls (n=3 independent hybridisations).  

RNAs upregulated in response to PD184352 

Transcript ID Gene Symbol Control PD184352 

    (Raw values) (Relative to control) 

17807283 Abca1 416 1.66 

17850744 Adamts15 216 1.93 

17754293 Adarb1 141 1.73 

17723725 Apcdd1 97 1.57 

17687609 Atf3 132 1.81 

17653231 Baiap2 212 1.64 

17719938 Bambi 142 1.60 

17766015 Bcl2l11 160 1.70 

17845173 Cilp 182 1.75 

17819669 Cyp1b1 512 1.77 

17845877 Fam214a 156 1.58 

17738055 Fat4 277 1.51 

17695522 Fgfr3 108 1.65 

17777751 Flrt3  87 1.83 

17860796 Kcne4 319 1.54 

17710605 Klf2 153 1.68 

17622657 Mrgprf 194 1.75 

17715072 Nedd9 392 1.51 

17789572 Pdk4 315 2.69 

17823303 Pgf 306 1.90 

17690991 Pik3ip1 330 1.87 

17623967 Rab3il1 166 1.60 

17679974 Rab7b 122 1.51 

17821038 Rhob 597 1.60 

17821293 Rsad2 75 1.67 

17844592 Sema7a 293 1.67 

17864290 Slc40a1  246 1.72 

17797024 Sox17 178 1.98 

17864503 Stk17b 258 1.62 

17813989 Ston1 363 1.62 

17719481 Unknown 81 1.56 

17631450 Zfp74  242 1.50 
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Table A1 cont.  

RNAs downregulated in response to PD184352 

Transcript ID Gene Symbol Control PD184352 

    (Raw values) (Relative to control) 

17709074 Angpt2 551 0.61 

17879104 Apln 574 0.57 

17725828 Arap3 171 0.65 

17627604 Arhgap18 651 0.61 

17659402 Ccl3 681 0.51 

17638903 Ccnd1 373 0.56 

17808573 Cdkn2b 257 0.60 

17682154 Cfap45 139 0.65 

17641660 Ch25h 313 0.30 

17764202 Chst1 268 0.54 

17637749 Chst15 253 0.54 

17650883 Csf3 113 0.37 

17693465 Cxcl1 643 0.66 

17693459 Cxcl2 208 0.46 

17683912 Cxcr4 418 0.47 

17708195 Dlc1 1574 0.60 

17765071 Dll4 285 0.28 

17712103 Dusp4 267 0.27 

17626435 Dusp5 197 0.45 

17827855 Dusp6 273 0.10 

17722348 Egr1 1291 0.05 

17758189 Egr2 135 0.41 

17803896 Epha2 112 0.52 

17815588 Etv1 226 0.60 

17666684 Etv5 156 0.43 

17801898 Fhl3 411 0.51 

17774919 Fjx1 136 0.47 

17623115 Fosl1 115 0.44 

17778359 Foxs1 225 0.66 

17720816 Frmd4a 592 0.41 

17793546 Frmd4b 221 0.51 

17745332 Fst 181 0.64 

17783411 Gimap4 231 0.66 

17646620 Grap 124 0.65 

17728750 Ier2 191 0.63 

17777184 Il1a 228 0.28 

17858700 Il1r1 1510 0.37 

17709452 Irs2 475 0.42 

17728243 Irx3 172 0.57 

17618664 Kcne3 453 0.33 

17652361 Kcnj2 303 0.53 

17691166 Lif 167 0.42 

17765032 LOC691418 237 0.51 

17676301 Mafk 362 0.66 
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Table A1 cont.  

RNAs downregulated in response to PD184352 cont. 

Transcript ID Gene Symbol Control PD184352 

    (Raw values) (Relative to control) 

17751179 Ndst3 229 0.54 

17759817 Nrarp 172 0.66 

17731247 Nrp1 1316 0.60 

17666273 Nrros 114 0.59 

17827193 Nuak1 388 0.53 

17799362 Pappa 688 0.66 

17828155 Phlda1 306 0.15 

17821531 Pik3cg 141 0.56 

17700983 Plau 275 0.41 

17611428 Plekhg1 248 0.64 

17735703 Plk2 1381 0.61 

17809625 Plk3 127 0.57 

17712060 Pragmin 239 0.58 

17759401 Prdm1 121 0.52 

17774894 Prr5l 91 0.62 

17844430 Ptpn9 570 0.66 

17621742 Ptpre 126 0.65 

17739018 Ptx3 586 0.65 

17745872 Rai14 626 0.47 

17819479 Rapgef5 164 0.66 

17681025 Rgs16 369 0.64 

17684906 Rgs2 370 0.40 

17857692 Runx2 160 0.57 

17779204 Sdc4 1184 0.52 

17681477 Sele 84 0.54 

17831678 Shank3 140 0.64 

17613677 Slc1a5 358 0.64 

17813885 Socs5 594 0.65 

17699557 Sox7 183 0.61 

17764824 Spred1 404 0.37 

17691731 Spred2 433 0.27 

17631334 Spred3 173 0.60 

17738042 Spry1 164 0.56 

17705145 Spry2 507 0.30 

17725883 Spry4 281 0.17 

17665170 St3gal6 468 0.63 

17789522 Tfpi2 101 0.44 

17799396 Tlr4 301 0.59 

17624534 Tmem2 888 0.54 

17681381 Tnfsf18  50 0.65 

17829670 Trib1 363 0.54 

17821133 Trib2 346 0.43 

17851432 Ubash3b 149 0.54 

17737832 Unknown 79 0.65 

17726303 Zfp608 468 0.57 

17728781 Zswim4 180 0.62 
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Table A2 Changes in transcript expression induced by JNK-IN-8 

Cardiomyocytes were unstimulated (Control) or exposed to JNK-IN-8 (1 µM) for 2 h 15 min. 

Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 

using GeneSpring 14.5 analysis to identify RNAs with significant changes in expression (>1.5-

fold relative to control) and a significant effect of the inhibitor (one-way ANOVA with SNK post-

test and Benjamini-Hochberg FDR correction, p<0.05). Raw values are given for controls and 

results are the mean fold change relative to controls (n=3 independent hybridisations). 

RNAs downregulated in response to JNK-IN-8 

Transcript ID Gene Symbol Control JNK-IN-8 

    (Raw values) (Relative to control) 

17627697 Ctgf 1463 0.39 

17751869 Cyr61 872 0.50 

17795854 Dusp16 286 0.60 

17638514 Dusp8  279 0.35 

17656333 Glra1 59 0.62 

17725668 Hbegf 363 0.47 

17808683 Jun 422 0.64 

17775303 Olr776 65 0.62 

17620947 Unknown 191 0.66 

17803987 Unknown 136 0.62 

17815738 Unknown 336 0.63 

17820179 Unknown 99 0.61 

 

RNAs upregulated in response to JNK-IN-8 

Transcript ID Gene Symbol Control JNK-IN-8 

    (Raw values) (Relative to control) 

17819669 Cyp1b1 512 1.98 

17795409 Olr1 1395 1.60 
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Table A3 Changes in transcript expression induced by SB203580 

Cardiomyocytes were unstimulated (Control) or exposed to SB203580 (0.7 µM) for 2 h 15 min. 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant changes in expression (>1.5-
fold relative to control) and a significant effect of the inhibitor (one-way ANOVA with SNK post-
test and Benjamini-Hochberg FDR correction, p<0.05). Raw values are given for controls and 
results are the mean fold change relative to controls (n=3 independent hybridisations). 

RNAs downregulated in response to SB203580  

Transcript ID Gene Symbol Control SB203580 

    (Raw values) (Relative to control) 

17820179 Unknown 99 0.57 

 

RNAs upregulated in response to SB203580  

Transcript ID Gene Symbol Control SB203580 

    (Raw values) (Relative to control) 

17681128 LOC680254 152 1.51 

17652341 Map2k6 72 1.68 

17843221 Olr1196 36 1.51 

17679974 Rab7b 122 1.56 

17612614 Unknown 40 1.59 
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Table A4 Transcripts upregulated in response to H2O2  

Cardiomyocytes were unstimulated (Control) or exposed to H
2
O

2 
(0.2 mM, 2 h). Changes in 

RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, using 
GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in response 
to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-Hochberg FDR 

correction, p<0.05). Raw values are given for controls and results are the mean fold change 
relative to controls (n=4 independent hybridisations). 

Transcript ID Gene Symbol Control H2O2 

    (Raw values) (Relative to controls) 

17781129 Abcb1a 541 3.48 

17810550 Adprhl2 153 1.53 

17617581 Aen 113 3.48 

17782314 Akr1b8  564 2.33 

17693425 Areg 82 1.61 

17705843 Arhgef3 189 2.09 

17858347 Arid5a 218 2.18 

17821662 Arl4a 120 1.57 

17717253 Arl5b 261 1.90 

17652634 Armc7 131 2.20 

17759590 Arrdc3 1034 1.58 

17670615 Arvcf 113 1.53 

17687609 Atf3 132 7.45 

17673406 Atp5j2 65 1.51 

17726777 Atp8b1 277 1.53 

17861066 B3gnt7 67 1.58 

17664484 Bach1 517 2.21 

17621224 Bag3 801 1.58 

17653231 Baiap2 212 1.75 

17632894 Bax 143 1.76 

17796337 Bcat1 357 1.55 

17766015 Bcl2l11 160 1.76 

17818164 Bdkrb2 181 2.83 

17766552 Bmp2 193 2.06 

17753161 Brd2 722 1.70 

17636338 Btbd10 136 1.65 

17684316 Btg2 308 2.91 

17826458 Cbarp 109 1.51 

17664770 Cbr1 246 2.84 

17664759 Cbr1 1116 1.51 

17664780 Cbr3 105 1.64 

17655535 Ccng1 2202 1.51 

17747788 Ccnl1 471 1.52 

17630241 Cd3eap 85 1.50 

17774921 Cd44 663 1.66 

17868794 Cd80 54 5.22 

17669098 Cd80 104 5.00 

17753672 Cdkn1a 604 5.59 

17808573 Cdkn2b 257 1.56 

17765084 Chac1 119 3.03 

17748939 Chrnb2 70 1.58 

17847383 Cish 357 2.15 

17610582 Cited2 1010 1.68 
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Table A4 cont.  

Transcript ID Gene Symbol Control H2O2 

    (Raw values) (Relative to controls) 

17708936 Ckap2 81 1.81 

17859270 Coq10b 187 1.72 

17716200 Crem 139 1.93 

17750384 Csf1 1259 1.58 

17856536 Csrnp1 120 3.28 

17727278 Ctdp1 247 1.64 

17751869 Cyr61 872 1.50 

17628832 Dact2 146 1.85 

17634960 Ddias 67 1.75 

17828625 Ddit3 227 2.07 

17769238 Dok5 182 1.64 

17833617 Dot1l 431 2.12 

17850594 Dpy19l2 39 1.55 

17682903 Dusp10 353 1.61 

17765931 Dusp2 145 3.21 

17712103 Dusp4 267 1.85 

17626435 Dusp5 197 2.70 

17706222 Eaf1 208 1.82 

17877966 Eda2r 204 3.65 

17705094 Ednrb 836 1.70 

17748848 Efna1 336 1.86 

17722348 Egr1 1291 1.68 

17699889 Egr3 90 1.69 

17834736 Eid3 82 3.13 

17734860 Ell2 198 1.80 

17735400 Enc1 549 1.50 

17803896 Epha2 112 2.95 

17693433 Ereg 68 4.14 

17804459 Errfi1 1256 1.94 

17735859 Esm1 217 1.82 

17664927 Ets2 517 1.93 

17739583 Etv3 287 1.60 

17815275 Fam110c 100 3.24 

17741698 Fam212b 82 2.51 

17806608 Fam219a 115 1.52 

17669931 Fam43a 306 1.59 

17610500 Fbxo30 329 1.72 

17852444 Fdx1 196 1.57 

17817508 Fos 121 2.25 

17630236 Fosb 59 6.02 

17623115 Fosl1 115 5.16 

17716029 Gabpb1l 215 1.57 

17791733 Gadd45a 695 2.40 

17718415 Gadd45g 412 3.17 

17846065 Gclc 634 2.69 

17742399 Gclm 337 1.69 

17707117 Gdf15 116 15.19 

17797288 Gem 317 1.98 

17654535 Gfer  173 1.71 
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Table A4 cont. 

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17645401 Gfpt2 1557 1.83 

17693015 Gpat3 105 3.32 

17815053 Grhl1 87 1.67 

17730641 Gse1  202 1.58 

17716626 Gtpbp4 176 1.66 

17831416 Gtse1 101 2.45 

17628982 Has1 81 1.69 

17837405 Has2 286 2.05 

17725668 Hbegf 363 2.19 

17669934 Hes1 471 1.70 

17715718 Hist1h2bh 527 1.65 

17715802 Hist1h4b 153 1.66 

17610557 Hivep2 489 1.71 

17753387 Hmga1 774 1.66 

17728071 Hmox1 1149 3.41 

17752874 Hspa1a/b 103 2.07 

17816804 Hspa2 112 1.59 

17674382 Hspb8 908 1.65 

17718644 Id4 107 1.83 

17728750 Ier2 191 1.98 

17756250 Ier3 782 1.93 

17685432 Ier5 332 1.90 

17858730 Il1rl1 430 2.14 

17788345 Il6 108 1.99 

17719769 Inhba 220 2.47 

17681323 Intron to Gas5 133 1.61 

17769167 
Intron to 

LOC100911177 311 1.53 

17769169 
Intron to 

LOC100911177 73 1.54 

17623687 Intron to Snhg1 78 1.51 

17700736 Ipo5 764 1.58 

17617588 Isg20 64 5.97 

17710887 Jund 470 1.62 

17840711 Kansl2 389 1.54 

17654269 Kctd5 233 1.55 

17836999 Klf10 245 1.66 

17807351 Klf4 345 1.91 

17880605 Klf5 333 1.72 

17700455 Klf5 270 1.53 

17707169 Klhl26 148 1.60 

17856642 Klhl40 98 3.05 

17691166 Lif 167 3.09 

17785906 Lmcd1 441 2.38 

17739110 LOC100910449 80 2.02 

17807593 LOC102550203 284 1.86 

17692310 LOC102551714 57 1.84 

17637453 LOC102554302 229 1.66 

17787531 LOC689800 59 1.90 

17663983 Mafg 204 1.77 

17708402 Mak16 229 1.56 
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Table A4 cont. 

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17646559 Map2k3 364 1.93 

17836020 Mdm2 366 5.14 

17711465 Mfap3l 169 1.62 

17700626 Mir18a  37 1.57 

17700628 Mir19a 39 1.69 

17648510 Mir22 147 1.77 

17732589 Mir27a 55 1.56 

17714890 Mirlet7f-1 38 2.09 

17749411 Mllt11 412 1.57 

17792604 Mthfd2 348 1.54 

17792855 Mxd1 231 1.86 

17796946 Mybl1 70 3.00 

17829696 Myc 264 2.41 

17659041 NF1 142 1.86 

17714621 Nfil3 203 1.68 

17741409 Ngf 102 1.68 

17869377 Nid2 146 1.66 

17733371 Nob1 441 1.58 

17738403 Noct 206 2.53 

17733363 Nqo1 347 2.83 

17832476 Nr4a1 178 4.78 

17772385 Nr4a2 165 1.70 

17798725 Nr4a3 63 11.10 

17645338 Olr1387 40 2.12 

17619333 Olr230 36 1.73 

17779084 Oser1 444 1.62 

17730529 Osgin1 76 3.12 

17717422 Otud1 152 1.69 

17769225 Pard6b 74 2.74 

17634940 Pcf11 359 1.50 

17745324 Pelo 489 1.83 

17716849 Pfkfb3 397 1.50 

17828155 Phlda1 306 2.35 

17680418 Phlda3 220 2.84 

17614190 Plaur 252 1.68 

17844002 Plet1 62 5.15 

17735703 Plk2 1381 1.55 

17723942 Pmaip1 45 1.86 

17842335 Ppan 192 1.57 

17756153 Ppp1r10 465 1.57 

17632926 Ppp1r15a 311 1.78 

17666316 Ppp1r2 470 1.74 

17712060 Pragmin 239 2.18 

17793342 Prickle2 230 1.76 

17719280 Prl6a1 31 1.92 

17775140 Prrg4 582 1.52 

17771568 Psmd5 183 1.56 

17680795 Ptgs2 712 2.22 

17859412 Ptp4a1  1544 1.72 
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Table A4 cont.  

Transcript ID Gene Symbol Control H2O2 

    (Raw values) (Relative to controls) 

17863629 Ptp4a1  1246 1.76 

17630418 PVR 516 2.32 

17679974 Rab7b 122 1.84 

17738821 Rap2b 152 1.63 

17734548 Rbm34 180 1.52 

17689820 Rbm47 84 1.55 

17668004 Rcan1 1895 1.52 

17805250 Rdh10 153 1.57 

17861997 RGD1562136 96 1.73 

17834704 RGD1563365 120 1.51 

17774787 RGD1564664 158 1.84 

17684906 Rgs2 370 3.29 

17821038 Rhob 597 1.65 

17649347 Rhot1 42 1.53 

17721512 Riok3 590 1.50 

17806037 Ripk2 421 1.68 

17840784 Rnd1 444 2.00 

17730862 Rpl13 206 1.58 

17766170 Rpl22l2 54 1.72 

17614756 Rpl28 41 1.53 

17610687 Rps13 40 1.69 

17772976 Rps3 53 1.56 

17857692 Runx2 160 1.67 

17639867 Sac3d1 89 1.83 

17814680 Sdc1 560 1.58 

17679473 Serpinb2 251 6.69 

17676856 Serpine1 764 2.76 

17614694 Sertad1 176 1.62 

17802844 Sesn2 163 3.65 

17751449 Sgms2 152 2.73 

17747564 Siah2 355 1.56 

17757468 Sik1 457 1.67 

17652327 Slc16a6 203 2.23 

17681552 Slc19a2 147 2.74 

17696492 Slc1a4 361 1.86 

17777498 Slc23a2 197 1.69 

17801572 Slc2a1 1520 1.61 

17683239 Slc30a1 236 2.19 

17836034 Slc35e3 537 1.56 

17725180 Slc39a6 603 1.62 

17864290 Slc40a1  246 1.62 

17671549 Slc7a1 575 1.67 

17747235 Slc7a11 99 4.32 

17649532 Slfn2 280 1.57 

17770731 Snhg7 1268 1.70 

17735293 Snora47 63 1.56 

17793995 Snora7a 295 1.61 

17844990 Snord16a 100 1.53 

17709866 Snord19 121 1.55 

 



264 
 

Table A4 cont.  

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17623689 Snord22 111 1.59 

17736124 Snord72 43 1.52 

17645306 Snord95 137 1.51 

17745308 Snx18 693 1.60 

17663683 Socs3 503 1.57 

17655823 Sqstm1 609 1.95 

17819714 Srsf7 158 1.57 

17767319 Srxn1 94 8.55 

17712330 Star 109 1.80 

17737660 Terc 118 1.86 

17789522 Tfpi2 101 1.78 

17777978 Thbd 107 1.55 

17758158 Tmem26 160 1.53 

17654148 Tnfrsf12a 877 1.87 

17638748 Tnfrsf22 170 2.15 

17650292 Tob1 871 1.76 

17797247 Tp53inp1 549 2.97 

17778298 Trib3 100 1.89 

17646726 Trim16 182 1.51 

17738669 Tsc22d2 425 1.52 

17652422 Ttyh2 285 1.63 

17723990 Tubb6 1014 1.74 

17834717 Txnrd1 630 2.68 

17686443 Uap1  169 6.08 

17814012 Uap1l2 64 3.74 

17673512 Ubc 1018 1.84 

17691637 Unknown 63 1.62 

17674327 Unknown 235 1.59 

17808103 Unknown 119 1.58 

17873757 Unknown 145 1.79 

17624595 Unknown 175 1.52 

17831177 Unknown 130 1.67 

17844970 Unknown 130 1.67 

17862391 Unknown 106 2.62 

17769925 Unknown 201 1.55 

17719481 Unknown 81 1.82 

17862387 Unknown 214 1.86 

17862389 Unknown 192 1.83 

17868712 Unknown 58 1.53 

17868967 Unknown 190 1.63 

17857041 Unknown 195 1.53 

17761562 Unknown 189 1.69 

17881046 Unknown 268 1.57 

17825181 Unknown 295 1.61 

17612614 Unknown 40 1.53 

17848154 Unknown 73 1.75 

17709357 Unknown 414 1.52 
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Table A4 cont. 

Transcript ID Gene Symbol Control H2O2 

    (Raw values) (Relative to controls) 

17820466 Wdr43 598 1.50 

17856543 Xirp1 1051 2.79 

17628094 Zbtb2 134 1.59 

17852451 Zc3h12c 302 1.87 

17672229 Zfand2a 306 3.57 

17624514 Zfand5 1288 1.66 

17631103 Zfp36 617 2.06 

17614769 Zfp626 95 1.55 

17737682 Zmat3 198 1.94 
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Table A5 Transcripts downregulated in response to H2O2  

Cardiomyocytes were unstimulated (Control) or exposed to H
2
O

2 
(0.2 mM, 2 h). Changes in 

RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, using 
GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in response 
to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-Hochberg FDR 

correction, p<0.05). Raw values are given for controls and results are the mean fold change 
relative to controls (n=4 independent hybridisations). 

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17799707 Acer2 313 0.47 

17667628 Adamts5 510 0.58 

17719191 Agtr1a 357 0.66 

17815851 Akap6 742 0.66 

17789297 Akap9 477 0.67 

17846985 Amotl2 396 0.66 

17837080 Angpt1 232 0.60 

17796393 Antisense to Rassf8 129 0.66 

17763560 Aplnr 199 0.65 

17845894 Arpp19 97 0.66 

17680619 Aspm 97 0.57 

17792236 Atoh8 268 0.59 

17878335 Atrx  629 0.65 

17673260 Auts2l  238 0.64 

17680721 B3galt2 333 0.59 

17843642 Bcl9l 503 0.57 

17764983 Casc5  125 0.62 

17880642 Ccdc141 132 0.62 

17744890 Ccnb1 118 0.58 

17843026 Cdon 918 0.49 

17742771 Cenpe 140 0.61 

17687536 Cenpf 178 0.58 

17854478 Cep162 112 0.63 

17782474 Chrm2 1605 0.58 

17777174 Ckap2l 90 0.60 

17872611 Dmd  954 0.58 

17858146 Dst 1133 0.66 
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Table A5 cont.    

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17699765 Ebf2 122 0.62 

17637939 Ebf3 321 0.59 

17746602 Ect2 112 0.64 

17865182 Erbb4 159 0.66 

17815588 Etv1 226 0.65 

17611079 Eya4 111 0.63 

17771237 Fam78a  231 0.64 

17768463 Fam83d 136 0.62 

17776634 Fbn1 1963 0.62 

17772756 Fign 139 0.64 

17696327 Fignl1 167 0.64 

17808333 Frem1 241 0.62 

17675438 Fry 645 0.66 

17687729 G0s2 527 0.49 

17815757 G2e3 171 0.67 

17821495 Gpr22 156 0.60 

17655129 Hba1 972 0.28 

17655107 Hba1/2 155 0.30 

17655118 Hba-a1 221 0.33 

17635606 Hbb 308 0.24 

17635600 Hbb-b1 97 0.42 

17635616 Hbb-b1 315 0.33 

17715833 Hist1h1b 299 0.59 

17700037 Htr2a 367 0.66 

17762176 Intron to Cacnb4 235 0.60 

17759530 Intron to Ebf3 79 0.66 

17748808 Intron to Fdps 173 0.59 

17855024 Intron to Ppp2r3a 166 0.66 

17755547 Intron to Rev3l 59 0.66 

17711829 Intron to Sorbs2 217 0.60 

17837524 Intron to Tmem65 116 0.66 

17865965 Irs1 279 0.61 

17717602 Irx4 418 0.60 

17764518 Kcna4 96 0.64 

17618664 Kcne3 453 0.61 

17860796 Kcne4 319 0.64 

17796225 Kcnj8 466 0.67 

17625128 Kif20b 69 0.61 

17853237 Kif23 132 0.65 

17809656 Kif2c 103 0.67 

17748476 Kirrel 682 0.66 

17785455 Klf15 128 0.56 

17837495 Klhl38 160 0.56 

17813889 Kpna2 2186 0.59 

17662569 Kpna2 1843 0.63 

17736233 Lifr 841 0.56 
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Table A5 cont.    

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17686320 LOC685351 118 0.39 

17728554 LOC685411 104 0.66 

17669287 LOC689217 70 0.58 

17714742 LOC689587 55 0.67 

17836590 Lrp1 1961 0.62 

17828320 Lrrc10 260 0.59 

17810315 Macf1 1159 0.61 

17735024 Mef2c 392 0.66 

17782472 Mir490  64 0.63 

17822197 Mis18bp1 86 0.66 

17637913 Mki67 646 0.50 

17720028 MPP7 383 0.58 

17720030 Mpp7 858 0.67 

17704998 Mycbp2  491 0.63 

17721099 Nebl 1255 0.65 

17808303 Nfib 1999 0.62 

17835031 Nr1h4 128 0.62 

17633908 Nr2f2 574 0.66 

17731247 Nrp1 1316 0.65 

17877478 Obp1f 68 0.62 

17849828 Olr1115 83 0.59 

17645356 Olr1397 206 0.64 

17840683 Olr1877 64 0.53 

17635740 Olr194 58 0.66 

17618063 Olr20 63 0.60 

17747228 Pcdh18 332 0.56 

17694650 Pcdh7 765 0.66 

17711915 Pcm1 687 0.65 

17694084 Pdgfra  2983 0.58 

17665547 Phldb2  1041 0.66 

17690991 Pik3ip1 330 0.51 

17620368 Plk1 372 0.45 

17690210 Ppargc1a 581 0.55 

17670970 Prkdc 212 0.64 

17687572 Prox1 247 0.57 

17659777 Prr11 74 0.58 

17845217 Rasl12 190 0.59 

17795994 Rerg 393 0.59 

17766923 Rin2 354 0.65 

17800088 Ror1 519 0.64 

17797354 Runx1t1 347 0.55 

17716433 Ryr2 1853 0.61 

17789488 Samd9l  382 0.54 

17789483 Samd9l  211 0.66 
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Table A5 cont.    

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17856909 Sgol1 65 0.64 

17859327 Sgol2 62 0.61 

17737579 Slc2a2 147 0.63 

17854985 Slc35g2 103 0.65 

17649522 Slfn5  528 0.60 

17853413 Smad6 564 0.53 

17738567 Smad9 208 0.60 

17852869 Snx33 406 0.53 

17636071 St5 431 0.51 

17699814 Stc1 1401 0.49 

17813989 Ston1 363 0.62 

17807544 Svep1 360 0.63 

17795793 Tas2r113 54 0.64 

17850618 Tbx20 3376 0.62 

17611107 Tcf21 281 0.58 

17758246 Tet1 386 0.63 

17688028 Tgfbr3 1314 0.63 

17827700 Tmcc3 125 0.56 

17798353 Tmem8b 107 0.51 

17865381 Tnp1 64 0.66 

17830802 Tnrc6b 610 0.66 

17660863 Top2a 326 0.53 

17767437 Tpx2 179 0.62 

17821133 Trib2 346 0.60 

17748341 Trim2 262 0.63 

17846281 Ttk 97 0.66 

17628672 Ttll2 70 0.64 

17773733 Ttn 283 0.46 

17773418 Ttn 2498 0.53 

17824838 Unknown 49 0.59 

17869552 Unknown 72 0.62 

17846920 Unknown 146 0.67 

17683590 Unknown 95 0.61 

17778194 Unknown 80 0.62 

17688837 Unknown 97 0.62 

17696705 Unknown 72 0.61 

17739289 Unknown 212 0.66 

17834493 Unknown 131 0.66 

17870224 Unknown 89 0.64 

17681386 Unknown 77 0.65 

17669427 Unknown 276 0.62 

17673323 Unknown 555 0.58 

17784265 Unknown 291 0.62 

17617825 Unknown 105 0.59 

17867695 Unknown 95 0.67 

17748455 Unknown 209 0.65 

17725000 Unknown 227 0.62 

17702423 Unknown 109 0.66 

17719529 Unknown 98 0.66 

17618570 Unknown 77 0.60 

17735950 Unknown 67 0.59 

17851236 Unknown 74 0.62 
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Table A5 cont.    

Transcript ID Gene Symbol Control H2O2  

    (Raw values) (Relative to controls) 

17862549 Unknown 113 0.65 

17686829 Unknown 71 0.61 

17676207 Unknown 94 0.65 

17824985 Unknown 75 0.66 

17640505 Unknown 72 0.64 

17755940 Unknown 66 0.63 

17667572 Unknown 249 0.63 

17734970 Unknown 110 0.65 

17824511 Unknown 121 0.66 

17815738 Unknown 336 0.55 

17867308 Unknown 1570 0.48 

17867314 Unknown 2176 0.56 

17690416 Unknown 59 0.62 

17878327 Unknown 233 0.63 

17867296 Unknown 85 0.63 

17612467 Vom1r19 80 0.67 

17628732 Vom2r-ps18 80 0.64 

17709537 Zcchc24 834 0.62 

17791192 Zfp467 201 0.57 

17726303 Zfp608 468 0.61 

17829163 Zfpm2 348 0.67 
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Table A6 Transcripts upregulated by H2O2 and unaffected by any MAPK inhibitor  

Cardiomyocytes were unstimulated or exposed to H
2
O

2 
(0.2 mM, 2 h) with or without pre-treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-

8 or 0.7 µM SB203580, or exposed to the inhibitors alone (2 h 15 min). Changes in RNA expression were determined using Affymetrix Rat Gene 
2.0 ST microarrays, using GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in response to H

2
O

2 
(>1.5-fold change 

relative to control; moderated t-test with Benjamini-Hochberg FDR correction, p<0.05) without a significant effect of the inhibitors. Raw values are 
given for controls and results are the mean fold changes relative to controls (n=3/4 independent hybridisations). PD, PD184352. JI8, JNK-IN-8. 
SB, SB203580. 

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17810550 Adprhl2 153 0.97 1.01 1.01 1.53 1.41 1.37 1.39 

17617581 Aen 113 1.01 1.16 1.01 3.48 3.49 3.34 3.20 

17717253 Arl5b 261 1.03 1.10 1.03 1.90 1.62 1.82 1.93 

17726777 Atp8b1 277 1.06 1.00 1.03 1.53 1.89 1.36 1.49 

17664484 Bach1 517 0.77 1.12 1.09 2.21 1.78 2.16 2.03 

17653231 Baiap2 212 1.64 1.28 1.23 1.75 2.04 1.84 1.72 

17796337 Bcat1 357 0.95 1.04 0.98 1.55 1.59 1.52 1.56 

17766015 Bcl2l11 160 1.70 1.31 1.09 1.76 1.69 1.93 1.49 

17636338 Btbd10 136 1.13 1.21 1.11 1.65 2.01 1.71 1.63 

17826458 Cbarp 109 0.86 0.93 0.94 1.51 1.24 1.61 1.54 

17664759 Cbr1 1116 1.02 1.06 1.00 1.51 1.19 1.80 1.40 

17664780 Cbr3 105 1.17 1.05 1.10 1.64 1.35 1.76 1.49 

17655535 Ccng1 2202 1.11 1.10 1.10 1.51 1.66 1.56 1.59 

17774921 Cd44 663 0.80 1.07 1.04 1.66 1.61 1.70 1.59 

17669098 Cd80 104 1.15 1.06 1.08 5.00 5.95 5.09 5.13 
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Table A6 cont. 

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17765084 Chac1 119 1.25 1.13 0.91 3.03 2.44 3.18 2.79 

17748939 Chrnb2 70 1.14 1.10 1.07 1.58 1.52 1.56 1.70 

17859270 Coq10b 187 1.19 1.17 1.09 1.72 2.08 1.49 1.40 

17716200 Crem 139 1.25 1.24 1.25 1.93 2.08 1.76 1.78 

17750384 Csf1 1259 1.30 1.08 1.25 1.58 1.92 1.61 1.74 

17727278 Ctdp1 247 1.14 1.14 1.03 1.64 1.39 1.61 1.35 

17828625 Ddit3 227 1.31 1.20 1.25 2.07 1.91 1.90 2.43 

17850594 Dpy19l2 39 1.13 1.03 1.06 1.55 1.37 1.70 1.66 

17877966 Eda2r 204 1.44 1.49 1.37 3.65 3.49 3.68 3.76 

17834736 Eid3 82 1.02 1.25 1.18 3.13 3.00 3.13 2.73 

17734860 Ell2 198 1.19 1.22 1.03 1.80 2.24 1.74 1.56 

17735400 Enc1 549 0.92 1.05 0.90 1.50 1.35 1.56 1.40 

17735859 Esm1 217 1.50 1.47 1.14 1.82 2.00 1.89 1.49 

17741698 Fam212b 82 1.39 1.12 1.16 2.51 2.96 2.41 2.42 

17806608 Fam219a 115 1.08 1.03 1.10 1.52 1.44 1.32 1.43 

17610500 Fbxo30 329 0.86 0.99 0.90 1.72 1.82 1.70 1.53 

17852444 Fdx1 196 0.97 1.14 1.01 1.57 1.32 1.50 1.32 

17817508 Fos 121 0.73 1.05 1.28 2.25 2.13 2.12 2.35 

17623115 Fosl1 115 0.44 1.11 1.10 5.16 4.42 4.15 4.85 

17791733 Gadd45a 695 1.06 1.07 1.43 2.40 1.98 2.27 2.63 

17742399 Gclm 337 1.32 1.38 1.30 1.69 1.95 1.71 1.67 
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Table A6 cont.  

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17654535 Gfer  173 1.15 1.12 1.07 1.71 1.89 1.73 1.68 

17645401 Gfpt2 1557 0.91 1.27 1.04 1.83 2.27 2.12 1.68 

17815053 Grhl1 87 1.22 1.24 1.10 1.67 1.42 1.67 1.68 

17669934 Hes1 471 0.86 1.17 0.96 1.70 1.38 1.73 1.41 

17715802 Hist1h4b 153 1.30 1.27 1.25 1.66 1.90 1.72 1.52 

17610557 Hivep2 489 0.98 1.11 1.04 1.71 1.55 1.67 1.58 

17816804 Hspa2 112 1.10 0.89 0.88 1.59 1.89 1.53 1.35 

17617588 Isg20 64 1.25 1.48 1.66 5.97 6.37 6.41 6.07 

17840711 Kansl2 389 1.05 1.11 1.03 1.54 1.39 1.28 1.24 

17654269 Kctd5 233 1.05 1.08 1.04 1.55 1.25 1.50 1.46 

17836999 Klf10 245 0.99 1.04 1.17 1.66 1.70 1.42 1.69 

17707169 Klhl26 148 1.19 1.08 0.94 1.60 1.62 1.74 1.58 

17807593 LOC102550203 284 1.16 1.20 1.13 1.86 2.24 2.24 1.99 

17637453 LOC102554302 229 1.04 0.93 0.88 1.66 1.60 1.64 1.80 

17663983 Mafg 204 0.89 1.13 1.14 1.77 1.70 1.72 1.77 

17708402 Mak16 229 1.02 1.22 0.99 1.56 1.58 1.58 1.40 

17836020 Mdm2 366 1.14 1.10 0.95 5.14 5.35 4.66 4.55 

17648510 Mir22 147 1.23 1.41 1.19 1.77 1.95 1.87 1.49 

17792604 Mthfd2 348 1.19 1.29 1.15 1.54 1.88 1.81 1.67 

17796946 Mybl1 70 0.88 1.11 0.98 3.00 3.03 2.83 2.82 

17659041 NF1 142 1.14 1.23 1.07 1.86 1.76 1.79 1.90 
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Table A6 cont. 

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17714621 Nfil3 203 1.14 0.81 0.85 1.68 1.99 1.37 1.40 

17733371 Nob1 441 1.11 1.18 1.13 1.58 1.38 1.43 1.37 

17733363 Nqo1 347 1.12 1.25 0.94 2.83 3.29 3.32 2.50 

17779084 Oser1 444 1.08 1.12 1.05 1.62 1.93 1.70 1.62 

17730529 Osgin1 76 1.11 1.18 1.21 3.12 3.41 3.04 2.91 

17716849 Pfkfb3 397 1.27 0.91 1.00 1.50 1.27 1.26 1.29 

17735703 Plk2 1381 0.61 0.71 1.00 1.55 1.62 1.29 1.42 

17723942 Pmaip1 45 0.89 0.95 0.92 1.86 2.26 1.62 1.63 

17842335 Ppan 192 0.88 1.11 1.02 1.57 1.53 1.66 1.46 

17756153 Ppp1r10 465 1.03 0.97 0.88 1.57 1.66 1.59 1.61 

17632926 Ppp1r15a 311 1.05 0.90 1.12 1.78 1.98 1.50 1.71 

17793342 Prickle2 230 0.70 1.02 1.01 1.76 1.75 1.78 1.78 

17775140 Prrg4 582 0.89 0.85 0.98 1.52 1.29 1.39 1.49 

17771568 Psmd5 183 1.24 1.12 1.15 1.56 1.61 1.48 1.83 

17859412 Ptp4a1  1544 1.09 1.14 1.08 1.72 1.83 1.84 1.65 

17863629 Ptp4a1  1246 1.11 1.16 1.11 1.76 1.87 1.85 1.66 

17738821 Rap2b 152 1.09 1.21 1.17 1.63 1.90 1.67 1.60 

17734548 Rbm34 180 0.95 1.21 1.26 1.52 1.47 1.59 1.61 

17689820 Rbm47 84 0.89 1.05 0.91 1.55 1.34 1.42 1.28 

17805250 Rdh10 153 1.02 1.17 1.17 1.57 1.76 1.61 1.49 

17861997 RGD1562136 96 0.98 1.32 1.36 1.73 1.40 1.63 1.67 
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Table A6 cont.  

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17834704 RGD1563365 120 0.90 1.18 1.16 1.51 1.21 1.53 1.43 

17774787 RGD1564664 158 1.87 1.24 1.16 1.84 2.51 1.60 1.67 

17721512 Riok3 590 0.93 1.04 0.96 1.50 1.55 1.56 1.42 

17806037 Ripk2 421 1.02 1.07 1.02 1.68 1.36 1.59 1.52 

17639867 Sac3d1 89 1.04 1.04 0.94 1.83 1.90 1.79 1.76 

17614694 Sertad1 176 1.06 1.04 0.98 1.62 1.46 1.51 1.68 

17802844 Sesn2 163 1.45 1.47 1.24 3.65 4.20 3.62 3.35 

17747564 Siah2 355 1.09 1.17 1.13 1.56 1.38 1.44 1.40 

17681552 Slc19a2 147 1.00 1.08 1.12 2.74 2.78 3.13 2.96 

17696492 Slc1a4 361 1.06 1.18 1.31 1.86 1.99 1.89 1.92 

17777498 Slc23a2 197 1.05 1.19 1.17 1.69 1.48 1.61 1.67 

17683239 Slc30a1 236 1.21 1.06 1.05 2.19 2.19 1.97 1.99 

17836034 Slc35e3 537 1.03 0.97 1.08 1.56 1.37 1.40 1.50 

17725180 Slc39a6 603 0.94 0.93 0.86 1.62 1.77 1.59 1.53 

17864290 Slc40a1  246 1.72 1.29 1.22 1.62 1.50 1.90 1.60 

17671549 Slc7a1 575 0.90 1.10 1.02 1.67 1.72 1.66 1.51 

17735293 Snora47 63 1.11 1.24 1.08 1.56 1.77 1.52 1.50 

17793995 Snora7a 295 0.97 1.03 0.96 1.61 1.81 1.60 1.49 

17844990 Snord16a 100 1.19 1.27 1.08 1.53 1.82 1.57 1.32 

17709866 Snord19 121 1.13 1.26 1.19 1.55 1.86 1.84 1.35 

17736124 Snord72 43 1.14 1.39 1.09 1.52 1.71 1.51 1.29 

17645306 Snord95 137 1.11 1.28 1.06 1.51 1.41 1.66 1.48 
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Table A6 cont. 

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17745308 Snx18 693 0.69 0.93 0.97 1.60 1.34 1.44 1.48 

17663683 Socs3 503 0.89 0.85 0.90 1.57 1.76 1.42 1.27 

17655823 Sqstm1 609 1.36 1.20 1.09 1.95 2.15 2.14 1.73 

17819714 Srsf7 158 1.22 1.19 1.03 1.57 1.81 1.57 1.34 

17712330 Star 109 0.93 1.05 1.05 1.80 1.58 1.78 1.48 

17638748 Tnfrsf22 170 0.85 0.96 0.94 2.15 1.91 2.08 2.01 

17797247 Tp53inp1 549 1.09 0.98 1.00 2.97 3.54 2.90 2.69 

17778298 Trib3 100 0.95 0.98 0.96 1.89 1.54 1.96 1.78 

17652422 Ttyh2 285 0.83 1.21 1.13 1.63 1.50 2.01 1.78 

17723990 Tubb6 1014 0.94 0.95 1.07 1.74 1.60 1.46 1.62 

17834717 Txnrd1 630 1.00 1.11 0.97 2.68 2.38 2.70 2.35 

17673512 Ubc 1018 1.22 0.99 0.92 1.84 2.16 1.84 1.49 

17868712 Unknown 58 1.04 0.96 1.04 1.53 1.53 1.47 1.69 

17868967 Unknown 190 0.96 0.86 1.02 1.63 1.56 1.54 1.70 

17857041 Unknown 195 1.10 1.19 1.03 1.53 1.33 1.52 1.54 

17761562 Unknown 189 1.22 1.37 1.36 1.69 1.89 1.70 1.66 

17881046 Unknown 268 0.98 1.16 1.04 1.57 1.69 1.58 1.52 

17825181 Unknown 295 0.97 1.03 0.96 1.61 1.81 1.60 1.49 

17612614 Unknown 40 1.33 1.42 1.59 1.53 1.25 1.27 1.33 

17848154 Unknown 73 1.13 1.32 1.01 1.75 1.67 1.66 1.42 

17709357 Unknown 414 1.47 1.35 1.45 1.52 1.66 1.35 1.22 
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Table A6 cont. 

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)         (Relative to controls)     

17820466 Wdr43 598 0.84 1.01 0.96 1.50 1.41 1.47 1.37 

17628094 Zbtb2 134 0.96 1.07 1.04 1.59 1.45 1.50 1.59 

17852451 Zc3h12c 302 1.17 1.20 1.14 1.87 1.64 2.28 2.02 

17672229 Zfand2a 306 1.06 1.10 1.00 3.57 3.85 3.49 2.86 

17624514 Zfand5 1288 1.10 1.00 0.98 1.66 1.47 1.61 1.56 

17614769 Zfp626 95 1.38 1.37 1.19 1.55 1.28 1.74 1.58 

17737682 Zmat3 198 1.08 1.01 0.99 1.94 1.68 1.78 1.75 
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Table A7 Transcripts downregulated by H2O2 and unaffected by any MAPK inhibitor  

Cardiomyocytes were unstimulated or exposed to H
2
O

2 
(0.2 mM, 2 h) with or without pre-treatment (15 min) with 2 µM PD184352, 1 µM JNK-IN-

8 or 0.7 µM SB203580, or exposed to the inhibitors alone (2 h 15 min). Changes in RNA expression were determined using Affymetrix Rat Gene 
2.0 ST microarrays, using GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in response to H

2
O

2 
(>1.5-fold 

change relative to control; moderated t-test with Benjamini-Hochberg FDR correction, p<0.05) without a significant effect of the inhibitors. Raw 
values are given for controls and results are the mean fold changes relative to controls (n=3/4 independent hybridisations). PD, PD184352. JI8, 
JNK-IN-8. SB, SB203580. PD, PD184352. JI8, JNK-IN-8. SB, SB203580. 

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)        (Relative to controls)     

17815851 Akap6 742 0.91 0.98 0.99 0.66 0.55 0.64 0.72 

17789297 Akap9 477 0.91 0.98 0.96 0.67 0.70 0.72 0.78 

17846985 Amotl2 396 0.93 0.98 0.93 0.66 0.73 0.63 0.74 

17837080 Angpt1 232 0.88 0.88 1.01 0.60 0.71 0.64 0.70 

17845894 Arpp19 97 1.17 1.17 0.95 0.66 0.59 0.56 0.70 

17878335 Atrx  629 0.91 1.01 0.99 0.65 0.71 0.74 0.80 

17673260 Auts2l  238 0.97 0.97 0.96 0.64 0.67 0.69 0.72 

17680721 B3galt2 333 1.06 1.12 1.06 0.59 0.51 0.62 0.61 

17744890 Ccnb1 118 1.06 1.15 1.03 0.58 0.69 0.65 0.66 

17742771 Cenpe 140 0.87 1.02 0.92 0.61 0.67 0.72 0.72 

17687536 Cenpf 178 0.88 0.98 0.98 0.58 0.64 0.68 0.69 

17782474 Chrm2 1605 0.93 1.06 0.93 0.58 0.55 0.64 0.64 

17872611 Dmd  954 0.91 0.98 0.97 0.58 0.46 0.55 0.63 

17858146 Dst 1133 0.98 1.00 1.00 0.66 0.64 0.69 0.74 

17699765 Ebf2 122 0.88 1.04 1.00 0.62 0.65 0.68 0.77 
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Table A7 cont.  

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)        (Relative to controls)     

17637939 Ebf3 321 1.16 1.10 1.14 0.59 0.73 0.62 0.72 

17776634 Fbn1 1963 1.01 0.98 0.96 0.62 0.77 0.75 0.76 

17772756 Fign 139 1.07 1.17 1.15 0.64 0.70 0.70 0.75 

17696327 Fignl1 167 1.07 0.94 0.93 0.64 0.68 0.65 0.68 

17675438 Fry 645 0.98 0.99 0.90 0.66 0.55 0.67 0.66 

17687729 G0s2 527 1.20 1.09 0.93 0.49 0.54 0.54 0.48 

17815757 G2e3 171 1.09 1.17 1.00 0.67 0.68 0.79 0.75 

17821495 Gpr22 156 1.04 1.09 0.75 0.60 0.72 0.63 0.57 

17655129 Hba1 972 0.92 0.80 0.77 0.28 0.25 0.33 0.29 

17655118 Hba-a1 221 0.98 0.80 0.80 0.33 0.38 0.36 0.33 

17635616 Hbb-b1 315 0.95 0.82 0.77 0.33 0.33 0.37 0.35 

17700037 Htr2a 367 1.03 1.01 0.92 0.66 0.60 0.64 0.59 

17762176 
Intron to 
Cacnb4 235 0.89 0.80 0.87 0.60 0.75 0.69 0.64 

17748808 Intron to Fdps 173 0.98 1.20 0.94 0.59 0.55 0.62 0.56 

17855024 
Intron to 
Ppp2r3a 166 1.24 1.01 0.98 0.66 0.75 0.56 0.81 

17837524 
Intron to 
Tmem65 116 0.97 0.84 0.88 0.66 0.79 0.67 0.77 

17865965 Irs1 279 0.79 0.92 0.97 0.61 0.65 0.59 0.64 

17717602 Irx4 418 0.94 1.05 0.79 0.60 0.67 0.71 0.64 

17764518 Kcna4 96 0.69 0.95 0.85 0.64 0.57 0.57 0.56 

17796225 Kcnj8 466 0.76 1.12 1.00 0.67 0.65 0.81 0.77 

17809656 Kif2c 103 1.12 1.07 1.09 0.67 0.75 0.82 0.79 
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Table A7 cont.  

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)        (Relative to controls)     

17785455 Klf15 128 1.05 1.16 0.97 0.56 0.67 0.66 0.64 

17837495 Klhl38 160 1.25 1.29 1.39 0.56 0.68 0.58 0.65 

17813889 Kpna2 2186 0.92 1.02 0.88 0.59 0.61 0.74 0.65 

17662569 Kpna2 1843 0.97 1.06 0.90 0.63 0.64 0.76 0.65 

17828320 Lrrc10 260 0.76 1.04 0.82 0.59 0.61 0.72 0.66 

17810315 Macf1 1159 1.05 1.04 1.03 0.61 0.64 0.68 0.74 

17735024 Mef2c 392 0.83 0.96 0.92 0.66 0.72 0.70 0.75 

17782472 Mir490  64 1.01 1.06 0.83 0.63 0.62 0.58 0.64 

17720028 MPP7 383 1.04 1.11 0.94 0.58 0.52 0.64 0.61 

17720030 Mpp7 858 1.20 1.22 1.09 0.67 0.62 0.69 0.68 

17704998 Mycbp2  491 1.12 1.02 0.99 0.63 0.76 0.73 0.78 

17808303 Nfib 1999 0.94 0.98 0.99 0.62 0.68 0.70 0.74 

17835031 Nr1h4 128 1.24 0.96 1.02 0.62 0.76 0.63 0.67 

17633908 Nr2f2 574 0.95 0.96 0.87 0.66 0.60 0.80 0.61 

17635740 Olr194 58 0.93 1.03 0.78 0.66 0.72 0.79 0.69 

17747228 Pcdh18 332 1.28 1.04 1.05 0.56 0.59 0.68 0.70 

17694650 Pcdh7 765 1.13 1.11 1.03 0.66 0.60 0.75 0.68 

17665547 Phldb2  1041 0.84 1.12 0.98 0.66 0.60 0.76 0.76 

17670970 Prkdc 212 1.04 1.04 1.03 0.64 0.74 0.74 0.79 

17687572 Prox1 247 0.98 1.11 0.97 0.57 0.55 0.65 0.60 
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Table A7 cont.  

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)        (Relative to controls)     

17766923 Rin2 354 0.85 1.00 1.07 0.65 0.62 0.71 0.75 

17800088 Ror1 519 0.97 1.01 0.99 0.64 0.75 0.74 0.72 

17797354 Runx1t1 347 1.43 1.17 1.22 0.55 0.58 0.56 0.62 

17716433 Ryr2 1853 1.02 1.00 0.95 0.61 0.50 0.62 0.64 

17789488 Samd9l  382 0.89 0.75 0.93 0.54 0.62 0.57 0.64 

17789483 Samd9l  211 0.91 0.93 1.04 0.66 0.61 0.60 0.63 

17807544 Svep1 360 0.96 0.99 0.97 0.63 0.75 0.70 0.73 

17850618 Tbx20 3376 1.09 1.12 0.89 0.62 0.69 0.75 0.67 

17688028 Tgfbr3 1314 1.11 1.05 1.05 0.63 0.71 0.70 0.73 

17827700 Tmcc3 125 0.78 1.00 0.98 0.56 0.54 0.55 0.63 

17830802 Tnrc6b 610 1.24 1.08 1.02 0.66 0.74 0.74 0.81 

17773418 Ttn 2498 1.03 1.02 0.90 0.53 0.47 0.53 0.57 

17851236 Unknown 74 0.87 0.71 0.70 0.62 0.72 0.72 0.78 

17862549 Unknown 113 0.79 0.83 0.95 0.65 0.69 0.74 0.80 

17686829 Unknown 71 0.76 1.03 0.89 0.61 0.70 0.77 0.76 

17676207 Unknown 94 0.94 0.95 1.04 0.65 0.80 0.79 0.80 

17824985 Unknown 75 0.87 0.79 0.92 0.66 0.69 0.78 0.79 

17640505 Unknown 72 0.69 0.74 0.85 0.64 0.73 0.60 0.71 

17755940 Unknown 66 0.69 0.98 0.87 0.63 0.54 0.67 0.70 

17667572 Unknown 249 0.81 0.89 0.95 0.63 0.78 0.78 0.70 

17734970 Unknown 110 0.94 0.90 0.78 0.65 0.74 0.67 0.69 
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Table A7 cont.  

Transcript ID Gene Symbol Control PD JI8 SB H2O2 PD+H2O2 JI8+H2O2 SB+H2O2 

    (Raw values)        (Relative to controls)     

17824511 Unknown 121 0.84 0.88 0.95 0.66 0.73 0.70 0.67 

17815738 Unknown 336 0.57 0.63 0.79 0.55 0.46 0.55 0.56 

17867308 Unknown 1570 1.11 1.32 1.17 0.48 0.52 0.51 0.49 

17867314 Unknown 2176 1.00 1.05 1.00 0.56 0.68 0.59 0.57 

17690416 Unknown 59 0.87 0.88 0.71 0.62 0.73 0.66 0.62 

17878327 Unknown 233 0.93 1.08 1.03 0.63 0.61 0.73 0.60 

17867296 Unknown 85 1.07 1.10 1.07 0.63 0.69 0.59 0.59 

17791192 Zfp467 201 1.05 0.90 0.74 0.57 0.65 0.54 0.61 

17829163 Zfpm2 348 1.03 0.95 0.96 0.67 0.70 0.66 0.75 
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Table A8 Transcripts upregulated by H2O2 and unaffected by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 2 µM PD184352 or with or without pre-treatment (15 min), or were 
exposed to the PD184352 alone (2 h 15 min) Changes in RNA expression were determined 
using Affymetrix Rat Gene 2.0 ST microarrays, using GeneSpring 14.5 analysis to identify 
RNAs with significant increase in expression in response to H

2
O

2 
(>1.5-fold change relative to 

control; moderated t-test with Benjamini-Hochberg FDR correction, p<0.05) with no effect of 
PD184352. Raw values are given for controls and results are the mean fold change relative to 
controls (n=3/4 independent hybridisations). PD, PD184352.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17810550 Adprhl2 153 0.97 1.53 1.41 

17617581 Aen 113 1.01 3.48 3.49 

17858347 Arid5a 218 1.02 2.18 2.26 

17717253 Arl5b 261 1.03 1.90 1.62 

17670615 Arvcf 113 1.20 1.53 1.59 

17687609 Atf3 132 1.81 7.45 9.28 

17673406 Atp5j2 65 1.04 1.51 1.00 

17726777 Atp8b1 277 1.06 1.53 1.89 

17664484 Bach1 517 0.77 2.21 1.78 

17621224 Bag3 801 1.09 1.58 1.48 

17653231 Baiap2 212 1.64 1.75 2.04 

17796337 Bcat1 357 0.95 1.55 1.59 

17766015 Bcl2l11 160 1.70 1.76 1.69 

17636338 Btbd10 136 1.13 1.65 2.01 

17826458 Cbarp 109 0.86 1.51 1.24 

17664759 Cbr1 1116 1.02 1.51 1.19 

17664780 Cbr3 105 1.17 1.64 1.35 

17655535 Ccng1 2202 1.11 1.51 1.66 

17774921 Cd44 663 0.80 1.66 1.61 

17669098 Cd80 104 1.15 5.00 5.95 

17753672 Cdkn1a 604 1.24 5.59 5.88 

17765084 Chac1 119 1.25 3.03 2.44 

17748939 Chrnb2 70 1.14 1.58 1.52 

17610582 Cited2 1010 1.12 1.68 1.76 

17859270 Coq10b 187 1.19 1.72 2.08 

17716200 Crem 139 1.25 1.93 2.08 

17750384 Csf1 1259 1.30 1.58 1.92 

17856536 Csrnp1 120 1.19 3.28 3.03 

17727278 Ctdp1 247 1.14 1.64 1.39 

17628832 Dact2 146 1.06 1.85 1.59 

17828625 Ddit3 227 1.31 2.07 1.91 

17833617 Dot1l 431 1.03 2.12 2.04 

17850594 Dpy19l2 39 1.13 1.55 1.37 

17682903 Dusp10 353 1.33 1.61 1.88 

17877966 Eda2r 204 1.44 3.65 3.49 

17705094 Ednrb 836 1.19 1.70 1.79 



284 
 

Table A8 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17834736 Eid3 82 1.02 3.13 3.00 

17734860 Ell2 198 1.19 1.80 2.24 

17735400 Enc1 549 0.92 1.50 1.35 

17735859 Esm1 217 1.50 1.82 2.00 

17664927 Ets2 517 1.34 1.93 1.98 

17815275 Fam110c 100 2.12 3.24 4.75 

17741698 Fam212b 82 1.39 2.51 2.96 

17806608 Fam219a 115 1.08 1.52 1.44 

17610500 Fbxo30 329 0.86 1.72 1.82 

17852444 Fdx1 196 0.97 1.57 1.32 

17817508 Fos 121 0.73 2.25 2.13 

17630236 Fosb 59 0.94 6.02 5.07 

17623115 Fosl1 115 0.44 5.16 4.42 

17791733 Gadd45a 695 1.06 2.40 1.98 

17742399 Gclm 337 1.32 1.69 1.95 

17707117 Gdf15 116 1.19 15.19 13.41 

17654535 Gfer  173 1.15 1.71 1.89 

17645401 Gfpt2 1557 0.91 1.83 2.27 

17815053 Grhl1 87 1.22 1.67 1.42 

17716626 Gtpbp4 176 1.10 1.66 1.63 

17837405 Has2 286 0.52 2.05 1.83 

17669934 Hes1 471 0.86 1.70 1.38 

17715802 Hist1h4b 153 1.30 1.66 1.90 

17610557 Hivep2 489 0.98 1.71 1.55 

17728071 Hmox1 1149 1.12 3.41 3.24 

17816804 Hspa2 112 1.10 1.59 1.89 

17674382 Hspb8 908 0.97 1.65 1.66 

17718644 Id4 107 1.22 1.83 1.47 

17685432 Ier5 332 0.90 1.90 1.78 

17719769 Inhba 220 0.68 2.47 3.48 

17769167 
Intron to 

LOC100911177 311 0.93 1.53 1.56 

17769169 
Intron to 

LOC100911177 73 1.17 1.54 1.64 

17617588 Isg20 64 1.25 5.97 6.37 

17840711 Kansl2 389 1.05 1.54 1.39 

17654269 Kctd5 233 1.05 1.55 1.25 

17836999 Klf10 245 0.99 1.66 1.70 

17707169 Klhl26 148 1.19 1.60 1.62 

17807593 LOC102550203 284 1.16 1.86 2.24 

17637453 LOC102554302 229 1.04 1.66 1.60 

17663983 Mafg 204 0.89 1.77 1.70 

17708402 Mak16 229 1.02 1.56 1.58 

17836020 Mdm2 366 1.14 5.14 5.35 
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Table A8 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17648510 Mir22 147 1.23 1.77 1.95 

17732589 Mir27a 55 1.15 1.56 1.71 

17714890 Mirlet7f-1 38 1.68 2.09 1.92 

17792604 Mthfd2 348 1.19 1.54 1.88 

17792855 Mxd1 231 1.32 1.86 1.79 

17796946 Mybl1 70 0.88 3.00 3.03 

17829696 Myc 264 0.60 2.41 1.97 

17659041 NF1 142 1.14 1.86 1.76 

17714621 Nfil3 203 1.14 1.68 1.99 

17733371 Nob1 441 1.11 1.58 1.38 

17738403 Noct 206 0.75 2.53 2.13 

17733363 Nqo1 347 1.12 2.83 3.29 

17832476 Nr4a1 178 0.97 4.78 4.97 

17798725 Nr4a3 63 1.06 11.10 11.07 

17779084 Oser1 444 1.08 1.62 1.93 

17730529 Osgin1 76 1.11 3.12 3.41 

17634940 Pcf11 359 1.10 1.50 1.72 

17716849 Pfkfb3 397 1.27 1.50 1.27 

17680418 Phlda3 220 1.08 2.84 2.97 

17614190 Plaur 252 0.84 1.68 1.55 

17735703 Plk2 1381 0.61 1.55 1.62 

17723942 Pmaip1 45 0.89 1.86 2.26 

17842335 Ppan 192 0.88 1.57 1.53 

17756153 Ppp1r10 465 1.03 1.57 1.66 

17632926 Ppp1r15a 311 1.05 1.78 1.98 

17793342 Prickle2 230 0.70 1.76 1.75 

17775140 Prrg4 582 0.89 1.52 1.29 

17771568 Psmd5 183 1.24 1.56 1.61 

17680795 Ptgs2 712 0.47 2.22 2.46 

17859412 Ptp4a1  1544 1.09 1.72 1.83 

17863629 Ptp4a1  1246 1.11 1.76 1.87 

17679974 Rab7b 122 1.51 1.84 2.41 

17738821 Rap2b 152 1.09 1.63 1.90 

17734548 Rbm34 180 0.95 1.52 1.47 

17689820 Rbm47 84 0.89 1.55 1.34 

17805250 Rdh10 153 1.02 1.57 1.76 

17861997 RGD1562136 96 0.98 1.73 1.40 

17834704 RGD1563365 120 0.90 1.51 1.21 

17774787 RGD1564664 158 1.87 1.84 2.51 

17649347 Rhot1 42 1.22 1.53 1.39 

17721512 Riok3 590 0.93 1.50 1.55 

17806037 Ripk2 421 1.02 1.68 1.36 
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Table A8 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17730862 Rpl13 206 1.07 1.58 1.43 

17766170 Rpl22l2 54 1.75 1.72 2.41 

17614756 Rpl28 41 1.14 1.53 1.36 

17610687 Rps13 40 1.27 1.69 1.45 

17772976 Rps3 53 1.09 1.56 1.31 

17639867 Sac3d1 89 1.04 1.83 1.90 

17614694 Sertad1 176 1.06 1.62 1.46 

17802844 Sesn2 163 1.45 3.65 4.20 

17747564 Siah2 355 1.09 1.56 1.38 

17681552 Slc19a2 147 1.00 2.74 2.78 

17696492 Slc1a4 361 1.06 1.86 1.99 

17777498 Slc23a2 197 1.05 1.69 1.48 

17683239 Slc30a1 236 1.21 2.19 2.19 

17836034 Slc35e3 537 1.03 1.56 1.37 

17725180 Slc39a6 603 0.94 1.62 1.77 

17864290 Slc40a1  246 1.72 1.62 1.50 

17671549 Slc7a1 575 0.90 1.67 1.72 

17747235 Slc7a11 99 1.20 4.32 4.37 

17735293 Snora47 63 1.11 1.56 1.77 

17793995 Snora7a 295 0.97 1.61 1.81 

17844990 Snord16a 100 1.19 1.53 1.82 

17709866 Snord19 121 1.13 1.55 1.86 

17736124 Snord72 43 1.14 1.52 1.71 

17645306 Snord95 137 1.11 1.51 1.41 

17745308 Snx18 693 0.69 1.60 1.34 

17663683 Socs3 503 0.89 1.57 1.76 

17655823 Sqstm1 609 1.36 1.95 2.15 

17819714 Srsf7 158 1.22 1.57 1.81 

17767319 Srxn1 94 1.36 8.55 7.84 

17712330 Star 109 0.93 1.80 1.58 

17777978 Thbd 107 1.02 1.55 1.27 

17654148 Tnfrsf12a 877 0.78 1.87 1.59 

17638748 Tnfrsf22 170 0.85 2.15 1.91 

17797247 Tp53inp1 549 1.09 2.97 3.54 

17778298 Trib3 100 0.95 1.89 1.54 

17738669 Tsc22d2 425 0.89 1.52 1.54 

17652422 Ttyh2 285 0.83 1.63 1.50 

17723990 Tubb6 1014 0.94 1.74 1.60 

17834717 Txnrd1 630 1.00 2.68 2.38 

17686443 Uap1  169 1.11 6.08 7.05 

17814012 Uap1l2 64 0.93 3.74 4.05 

17673512 Ubc 1018 1.22 1.84 2.16 
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Table A8 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17691637 Unknown 63 1.07 1.62 1.39 

17674327 Unknown 235 1.03 1.59 1.44 

17808103 Unknown 119 1.01 1.58 1.52 

17873757 Unknown 145 0.84 1.79 1.50 

17624595 Unknown 175 1.22 1.52 1.53 

17831177 Unknown 130 0.90 1.67 1.61 

17844970 Unknown 130 0.90 1.67 1.61 

17769925 Unknown 201 1.38 1.55 1.90 

17868712 Unknown 58 1.04 1.53 1.53 

17868967 Unknown 190 0.96 1.63 1.56 

17857041 Unknown 195 1.10 1.53 1.33 

17761562 Unknown 189 1.22 1.69 1.89 

17881046 Unknown 268 0.98 1.57 1.69 

17825181 Unknown 295 0.97 1.61 1.81 

17612614 Unknown 40 1.33 1.53 1.25 

17848154 Unknown 73 1.13 1.75 1.67 

17709357 Unknown 414 1.47 1.52 1.66 

17820466 Wdr43 598 0.84 1.50 1.41 

17628094 Zbtb2 134 0.96 1.59 1.45 

17852451 Zc3h12c 302 1.17 1.87 1.64 

17672229 Zfand2a 306 1.06 3.57 3.85 

17624514 Zfand5 1288 1.10 1.66 1.47 

17631103 Zfp36 617 0.81 2.06 1.82 

17614769 Zfp626 95 1.38 1.55 1.28 

17737682 Zmat3 198 1.08 1.94 1.68 
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Table A9 Transcripts upregulated by H2O2 and inhibited by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without pre-

treatment (15 min) with 2 µm PD184352, or were exposed to PD184352 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, using 
GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in response to 
H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-Hochberg FDR 

correction, p<0.05). RNAs inhibited >1.25-fold in the presence of PD184352 were selected, with or 
without a significant effect of the inhibitor (one-way ANOVA with SNK post-test and Benjamini-
Hochberg FDR correction, p<0.05). RNAs with significant changes in the presence of PD184352 
are indicated with an asterisk (*). Raw values are given for controls and results are the mean fold 
change relative to controls (n=3/4 independent hybridisations). PD, PD184352.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   (Relative to controls)     

17782314 Akr1b8  564 1.11 2.33 1.60 * 

17693425 Areg 82 0.99 1.61 1.26   

17705843 Arhgef3 189 0.80 2.09 1.06 * 

17652634 Armc7 131 0.94 2.20 1.51 * 

17759590 Arrdc3 1034 0.90 1.58 1.27   

17861066 B3gnt7 67 0.95 1.58 1.13   

17818164 Bdkrb2 181 1.03 2.83 1.79   

17766552 Bmp2 193 0.89 2.06 1.44   

17684316 Btg2 308 0.75 2.91 1.78 * 

17664770 Cbr1 246 0.96 2.84 1.36 * 

17630241 Cd3eap 85 0.99 1.50 1.18 * 

17808573 Cdkn2b 257 0.60 1.56 0.74 * 

17847383 Cish 357 0.91 2.15 1.54   

17769238 Dok5 182 1.00 1.64 1.21   

17765931 Dusp2 145 0.91 3.21 1.79 * 

17712103 Dusp4 267 0.27 1.85 1.15   

17626435 Dusp5 197 0.45 2.70 1.03 * 

17706222 Eaf1 208 0.75 1.82 1.33 * 

17748848 Efna1 336 0.95 1.86 0.97 * 

17722348 Egr1 1291 0.05 1.68 0.13 * 

17699889 Egr3 90 0.79 1.69 0.81 * 

17803896 Epha2 112 0.52 2.95 1.30 * 

17804459 Errfi1 1256 0.74 1.94 1.50 * 

17739583 Etv3 287 0.92 1.60 1.24 * 

17669931  Fam43a 306 0.89 1.59 1.23   

17716029 Gabpb1l 215 1.09 1.57 1.22 * 

17718415 Gadd45g 412 0.94 3.17 2.50   

17846065 Gclc 634 0.91 2.69 2.02 * 

17797288 Gem 317 1.17 1.98 1.28 * 

17693015 Gpat3 105 1.12 3.32 2.52   

17730641 Gse1  202 0.99 1.58 1.16 * 

17725668 Hbegf 363 0.61 2.19 1.26 * 
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Table A9 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   (Relative to controls)     

17753387 Hmga1 774 0.92 1.66 1.14 * 

17728750 Ier2 191 0.63 1.98 1.02 * 

17756250 Ier3 782 0.72 1.93 1.33 * 

17858730 Il1rl1 430 0.93 2.14 1.47   

17700736 Ipo5 764 0.98 1.58 1.20 * 

17700455 Klf5 270 1.01 1.53 1.05 * 

17880605 Klf5 333 1.00 1.72 0.98 * 

17856642 Klhl40 98 0.93 3.05 1.33 * 

17691166 Lif 167 0.42 3.09 1.75 * 

17785906 Lmcd1 441 0.72 2.38 1.58   

17787531 LOC689800 59 0.80 1.90 0.93 * 

17646559 Map2k3 364 0.96 1.93 1.31 * 

17711465 Mfap3l 169 0.80 1.62 1.09 * 

17700626 Mir18a  37 0.86 1.57 1.12 * 

17700628 Mir19a 39 0.89 1.69 1.34   

17749411 Mllt11 412 0.74 1.57 1.11   

17869377 Nid2 146 1.03 1.66 1.14 * 

17619333 Olr230 36 1.04 1.73 1.18   

17717422 Otud1 152 0.68 1.69 1.23   

17769225 Pard6b 74 1.12 2.74 1.36 * 

17745324 Pelo 489 0.75 1.83 1.21 * 

17828155 Phlda1 306 0.15 2.35 1.05 * 

17844002 Plet1 62 1.32 5.15 2.72   

17712060 Pragmin 239 0.58 2.18 0.82 * 

17719280 Prl6a1 31 0.82 1.92 1.11 * 

17630418 PVR 516 0.84 2.32 1.82   

17668004 Rcan1 1895 0.79 1.52 1.21   

17684906 Rgs2 370 0.40 3.29 2.06   

17840784 Rnd1 444 0.86 2.00 1.59   

17857692 Runx2 160 0.57 1.67 0.61 * 

17814680 Sdc1 560 1.14 1.58 1.11 * 

17679473 Serpinb2 251 0.69 6.69 4.39   

17751449 Sgms2 152 1.05 2.73 1.73 * 

17757468 Sik1 457 0.76 1.67 0.94   

17652327 Slc16a6 203 0.87 2.23 1.64   

17801572 Slc2a1 1520 0.80 1.61 1.07 * 

17649532 Slfn2 280 0.90 1.57 1.16 * 

17789522 Tfpi2 101 0.44 1.78 1.16 * 

17758158 Tmem26 160 1.00 1.53 0.93 * 

17646726 Trim16 182 0.88 1.51 1.15   

17856543 Xirp1 1051 0.56 2.79 0.89 * 
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Table A10 Transcripts upregulated by H2O2 and enhanced by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h), with or without 

pre-treatment (15 min) with 2 µM PD184352, or were exposed to PD184352 alone (2h 15 min) 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs enhanced >1.25-fold in the presence of PD184352 
were selected, with or without a significant effect of the inhibitor (one-way ANOVA with SNK 
post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with significant changes in 
the presence of PD184352 are indicated with an asterisk (*). Raw values are given for controls 
and results are the mean fold change relative to controls (n=3/4 independent hybridisations). 
PD, PD184352.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   
(Relative to 

controls)     

17781129 Abcb1a 541 1.26 3.48 4.97 * 

17821662 Arl4a 120 1.37 1.57 2.35 * 

17632894 Bax 143 1.17 1.76 2.39 * 

17753161 Brd2 722 1.34 1.70 2.16 * 

17747788 Ccnl1 471 1.35 1.52 2.40 * 

17868794 Cd80 54 1.22 5.22 6.60   

17708936 Ckap2 81 1.28 1.81 3.12 * 

17751869 Cyr61 872 0.67 1.50 2.87 * 

17634960 Ddias 67 0.99 1.75 2.37   

17693433 Ereg 68 1.42 4.14 6.41 * 

17831416 Gtse1 101 1.14 2.45 3.29 * 

17628982 Has1 81 1.52 1.69 5.35 * 

17715718 Hist1h2bh 527 1.49 1.65 2.20   

17752874 Hspa1a/b 103 0.91 2.07 2.61   

17788345 Il6 108 0.37 1.99 3.30 * 

17681323 Intron to Gas5 133 1.69 1.61 2.22   

17623687 
Intron to 
Snhg1 78 1.16 1.51 2.00   

17710887 Jund 470 1.34 1.62 2.32 * 

17807351 Klf4 345 1.26 1.91 3.95 * 

17741409 Ngf 102 1.00 1.68 2.28   

17772385 Nr4a2 165 1.27 1.70 2.44   

17645338 Olr1387 40 1.05 2.12 3.49   

17666316 Ppp1r2 470 1.29 1.74 2.43 * 

17821038 Rhob 597 1.60 1.65 4.56 * 

17676856 Serpine1 764 0.72 2.76 4.18 * 

17770731 Snhg7 1268 1.15 1.70 2.62   

17623689 Snord22 111 1.26 1.59 2.23   

17737660 Terc 118 1.33 1.86 2.67   

17650292 Tob1 871 1.10 1.76 2.20 * 

17862389 Unknown 192 1.21 1.83 2.76   
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Table A10 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   (Relative to controls)     

17862391 Unknown 106 1.59 2.62 3.72  

17719481 Unknown 81 1.56 1.82 2.58 * 

17862387 Unknown 214 1.12 1.86 2.60   

17692310 Zfp120 57 1.13 1.84 2.32   
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Table A11 Transcripts downregulated by H2O2 and unaffected by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without pre-

treatment (15 min) with 2 µM PD184352, or exposed to PD184352 alone (2 h 15 min). Changes in 
RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, using 
GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in response to 
H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-Hochberg FDR 

correction, p<0.05) with no effect of PD184352. Raw values are given for controls and results are 
the mean fold change relative to controls (n=3/4 independent hybridisations). PD, PD184352.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17799707 Acer2 313 0.62 0.47 0.44 

17815851 Akap6 742 0.91 0.66 0.55 

17789297 Akap9 477 0.91 0.67 0.70 

17846985 Amotl2 396 0.93 0.66 0.73 

17837080 Angpt1 232 0.88 0.60 0.71 

17845894 Arpp19 97 1.17 0.66 0.59 

17878335 Atrx  629 0.91 0.65 0.71 

17673260 Auts2l  238 0.97 0.64 0.67 

17680721 B3galt2 333 1.06 0.59 0.51 

17880642 Ccdc141 132 0.75 0.62 0.63 

17744890 Ccnb1 118 1.06 0.58 0.69 

17742771 Cenpe 140 0.87 0.61 0.67 

17687536 Cenpf 178 0.88 0.58 0.64 

17782474 Chrm2 1605 0.93 0.58 0.55 

17872611 Dmd  954 0.91 0.58 0.46 

17858146 Dst 1133 0.98 0.66 0.64 

17699765 Ebf2 122 0.88 0.62 0.65 

17637939 Ebf3 321 1.16 0.59 0.73 

17746602 Ect2 112 1.16 0.64 0.77 

17865182 Erbb4 159 1.08 0.66 0.62 

17815588 Etv1 226 0.60 0.65 0.69 

17771237 Fam78a  231 0.92 0.64 0.54 

17776634 Fbn1 1963 1.01 0.62 0.77 

17772756 Fign 139 1.07 0.64 0.70 

17696327 Fignl1 167 1.07 0.64 0.68 

17675438 Fry 645 0.98 0.66 0.55 

17687729 G0s2 527 1.20 0.49 0.54 

17815757 G2e3 171 1.09 0.67 0.68 

17821495 Gpr22 156 1.04 0.60 0.72 

17655129 Hba1 972 0.92 0.28 0.25 

17655107 Hba1/2 155 0.77 0.30 0.27 

17655118 Hba-a1 221 0.98 0.33 0.38 

17635616 Hbb-b1 315 0.95 0.33 0.33 

17700037 Htr2a 367 1.03 0.66 0.60 

17762176 
Intron to 
Cacnb4 235 0.89 0.60 0.75 

17759530 Intron to Ebf3 79 1.00 0.66 0.71 

17748808 Intron to Fdps 173 0.98 0.59 0.55 

17855024 
Intron to 
Ppp2r3a 166 1.24 0.66 0.75 

17837524 
Intron to 
Tmem65 116 0.97 0.66 0.79 

17865965 Irs1 279 0.79 0.61 0.65 

17717602 Irx4 418 0.94 0.60 0.67 

17764518 Kcna4 96 0.69 0.64 0.57 
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Table A11 cont. 

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17796225 Kcnj8 466 0.76 0.67 0.65 

17625128 Kif20b 69 0.97 0.61 0.73 

17809656 Kif2c 103 1.12 0.67 0.75 

17785455 Klf15 128 1.05 0.56 0.67 

17837495 Klhl38 160 1.25 0.56 0.68 

17813889 Kpna2 2186 0.92 0.59 0.61 

17662569 Kpna2 1843 0.97 0.63 0.64 

17736233 Lifr 841 0.81 0.56 0.61 

17813883 LOC100359600 671 0.96 0.59 0.57 

17713890 LOC102551451 615 1.21 0.55 0.59 

17849251 LOC102553278 65 0.87 0.59 0.73 

17728554 LOC685411 104 0.74 0.66 0.55 

17714742 LOC689587 55 0.79 0.67 0.82 

17836590 Lrp1 1961 1.11 0.62 0.74 

17828320 Lrrc10 260 0.76 0.59 0.61 

17810315 Macf1 1159 1.05 0.61 0.64 

17735024 Mef2c 392 0.83 0.66 0.72 

17782472 Mir490  64 1.01 0.63 0.62 

17822197 Mis18bp1 86 1.11 0.66 0.76 

17720028 MPP7 383 1.04 0.58 0.52 

17720030 Mpp7 858 1.20 0.67 0.62 

17704998 Mycbp2  491 1.12 0.63 0.76 

17721099 Nebl 1255 0.99 0.65 0.65 

17808303 Nfib 1999 0.94 0.62 0.68 

17835031 Nr1h4 128 1.24 0.62 0.76 

17633908 Nr2f2 574 0.95 0.66 0.60 

17877478 Obp1f 68 1.09 0.62 0.73 

17635740 Olr194 58 0.93 0.66 0.72 

17747228 Pcdh18 332 1.28 0.56 0.59 

17694650 Pcdh7 765 1.13 0.66 0.60 

17711915 Pcm1 687 0.92 0.65 0.72 

17694084 Pdgfra  2983 1.11 0.58 0.63 

17665547 Phldb2  1041 0.84 0.66 0.60 

17620368 Plk1 372 1.09 0.45 0.50 

17690210 Ppargc1a 581 0.95 0.55 0.54 

17670970 Prkdc 212 1.04 0.64 0.74 

17687572 Prox1 247 0.98 0.57 0.55 

17659777 Prr11 74 1.01 0.58 0.69 

17795994 Rerg 393 0.98 0.59 0.68 

17766923 Rin2 354 0.85 0.65 0.62 

17800088 Ror1 519 0.97 0.64 0.75 

17797354 Runx1t1 347 1.43 0.55 0.58 

17716433 Ryr2 1853 1.02 0.61 0.50 

17789488 Samd9l  382 0.89 0.54 0.62 

17789483 Samd9l  211 0.91 0.66 0.61 

17853413 Smad6 564 1.23 0.53 0.66 
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Table A11 cont. 

 Transcript ID Gene Symbol Control PD H2O2 PD+H2O2 

    (Raw values)   (Relative to controls)   

17852869 Snx33 406 1.10 0.53 0.66 

17636071 St5 431 1.00 0.51 0.58 

17807544 Svep1 360 0.96 0.63 0.75 

17850618 Tbx20 3376 1.09 0.62 0.69 

17758246 Tet1 386 1.23 0.63 0.75 

17688028 Tgfbr3 1314 1.11 0.63 0.71 

17827700 Tmcc3 125 0.78 0.56 0.54 

17865381 Tnp1 64 0.84 0.66 0.80 

17830802 Tnrc6b 610 1.24 0.66 0.74 

17748341 Trim2 262 1.11 0.63 0.69 

17628672 Ttll2 70 0.71 0.64 0.79 

17773733 Ttn 283 1.43 0.46 0.52 

17773418 Ttn 2498 1.03 0.53 0.47 

17834493 Unknown 131 0.73 0.66 0.71 

17870224 Unknown 89 1.01 0.64 0.75 

17681386 Unknown 77 0.86 0.65 0.80 

17867695 Unknown 95 1.02 0.67 0.71 

17748455 Unknown 209 0.87 0.65 0.77 

17725000 Unknown 227 0.68 0.62 0.69 

17702423 Unknown 109 0.91 0.66 0.66 

17719529 Unknown 98 0.92 0.66 0.77 

17618570 Unknown 77 0.87 0.60 0.61 

17735950 Unknown 67 0.62 0.59 0.57 

17851236 Unknown 74 0.87 0.62 0.72 

17862549 Unknown 113 0.79 0.65 0.69 

17686829 Unknown 71 0.76 0.61 0.70 

17676207 Unknown 94 0.94 0.65 0.80 

17824985 Unknown 75 0.87 0.66 0.69 

17640505 Unknown 72 0.69 0.64 0.73 

17755940 Unknown 66 0.69 0.63 0.54 

17667572 Unknown 249 0.81 0.63 0.78 

17734970 Unknown 110 0.94 0.65 0.74 

17824511 Unknown 121 0.84 0.66 0.73 

17815738 Unknown 336 0.57 0.55 0.46 

17867308 Unknown 1570 1.11 0.48 0.52 

17867314 Unknown 2176 1.00 0.56 0.68 

17690416 Unknown 59 0.87 0.62 0.73 

17878327 Unknown 233 0.93 0.63 0.61 

17867296 Unknown 85 1.07 0.63 0.69 

17628732 Vom2r-ps18 80 0.84 0.64 0.76 

17791192 Zfp467 201 1.05 0.57 0.65 

17829163 Zfpm2 348 1.03 0.67 0.70 
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Table A12 Transcripts downregulated by H2O2 and downregulated further by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 2 µM PD184352, or exposed to PD184352 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs further decreased >1.25-fold in the presence of 
PD184352 were selected, with or without a significant effect of the inhibitor (one-way ANOVA 
with SNK post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with significant 
changes in the presence of PD184352 are indicated with an asterisk (*). Raw values are given 
for controls and results are the mean fold change relative to controls (n=3/4 independent 
hybridisations). PD, PD184352. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   (Relative to controls)     

17763560 Aplnr 199 1.01 0.65 0.52   

17611079 Eya4 111 0.79 0.63 0.46   

17711829 Intron to Sorbs2 217 0.55 0.60 0.33   

17618664 Kcne3 453 0.33 0.61 0.35 * 

17731247 Nrp1 1316 0.60 0.65 0.48 * 

17699814 Stc1 1401 1.15 0.49 0.37   

17821133 Trib2 346 0.43 0.60 0.37   

17726303 Zfp608 468 0.57 0.61 0.44 * 
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Table A13 Transcripts downregulated by H2O2 and enhanced by PD184352 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without pre-

treatment (15 min) with 2 µM PD184352, or exposed to PD184352 alone (2 h 15 min).  Changes in 
RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, using 
GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in response to 
H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-Hochberg FDR 

correction, p<0.05). RNAs enhanced >1.25-fold relative to H2O2 alone in the presence of PD184352 
were selected, with or without a significant effect of the inhibitor (one-way ANOVA with SNK post-
test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with significant changes in the 
presence of PD184352 are indicated with an asterisk (*). Raw values are given for controls and 
results are the mean fold change relative to controls (n=3/4 independent hybridisations). PD, 
PD184352.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   (Relative to controls)     

17667628 Adamts5 510 0.74 0.58 0.96   

17719191 Agtr1a 357 1.41 0.66 0.91 * 

17796393 
Antisens to 

Rassf8 129 1.03 0.66 1.09   

17680619 Aspm 97 1.10 0.57 0.79   

17792236 Atoh8 268 1.18 0.59 0.82 * 

17843642 Bcl9l 503 1.28 0.57 0.76 * 

17764983 Casc5  125 0.88 0.62 0.84   

17843026 Cdon 918 1.49 0.49 0.68   

17854478 Cep162 112 1.07 0.63 0.87   

17777174 Ckap2l 90 1.17 0.60 0.75   

17768463 Fam83d 136 1.10 0.62 0.89   

17808333 Frem1 241 0.94 0.62 0.81   

17635606 Hbb 308 0.98 0.24 0.34   

17635600 Hbb-b1 97 1.47 0.42 0.54   

17715833 Hist1h1b 299 1.30 0.59 0.86   

17755547 Intron to Rev3l 59 0.98 0.66 0.86   

17860796 Kcne4 319 1.54 0.64 0.81   

17853237 Kif23 132 1.27 0.65 0.94 * 

17748476 Kirrel 682 1.07 0.66 0.83 * 

17686320 LOC685351 118 0.74 0.39 0.80   

17825088 LOC100359978 73 0.96 0.46 0.59   

17633383 LOC103691130 86 0.83 0.57 0.77   

17669287 LOC689217 70 0.93 0.58 0.87   

17637913 Mki67 646 1.10 0.50 0.66   

17618063  Olr20 63 0.91 0.60 0.97   

17849828 Olr1115 83 0.75 0.59 0.73   

17645356 Olr1397 206 0.94 0.64 0.81   

17840683 Olr1877 64 0.87 0.53 0.76   

17690991 Pik3ip1 330 1.87 0.51 0.80 * 

17845217 Rasl12 190 1.08 0.59 0.77 * 

17856909 Sgol1 65 1.17 0.64 0.80   
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Table A13 cont.  

Transcript ID Gene Symbol Control PD H2O2 PD+H2O2   

    (Raw values)   (Relative to controls)     

17859327 Sgol2 62 1.10 0.61 0.78   

17737579 Slc2a2 147 0.85 0.63 0.86   

17854985 Slc35g2 103 0.79 0.65 0.88   

17649522 Slfn5  528 0.97 0.60 0.77   

17738567 Smad9 208 1.33 0.60 0.88 * 

17813989 Ston1 363 1.62 0.62 0.85   

17795793 Tas2r113 54 0.77 0.64 0.82   

17611107 Tcf21 281 1.24 0.58 0.80   

17798353 Tmem8b 107 0.85 0.51 0.81   

17660863 Top2a 326 1.18 0.53 0.73   

17767437 Tpx2 179 1.15 0.62 0.79 * 

17846281 Ttk 97 1.10 0.66 0.91   

17784265 Unknown 291 0.96 0.62 1.02   

17824838 Unknown 49 1.04 0.59 0.89   

17688837 Unknown 97 1.03 0.62 0.92   

17696705 Unknown 72 0.86 0.61 0.90   

17869552 Unknown 72 1.01 0.62 0.90   

17778194 Unknown 80 1.25 0.62 0.90   

17673323 Unknown 555 1.00 0.58 0.82   

17846920 Unknown 146 0.91 0.67 0.93   

17739289 Unknown 212 0.79 0.66 0.91   

17617825 Unknown 105 0.93 0.59 0.81   

17669427 Unknown 276 0.99 0.62 0.80   

17683590 Unknown 95 0.91 0.61 0.77   

17612467 Vom1r19 80 0.94 0.67 0.87   

17709537 Zcchc24 834 1.34 0.62 0.78   
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Table A14 Transcripts upregulated by H2O2 and unaffected by JNK-IN-8 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 1 µM JNK-IN-8, or exposed to JNK-IN-8 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05) with no effect of JNK-IN-8. Raw values are given for 
controls and results are the mean fold change relative to controls (n=3/4 independent 
hybridisations). JI8, JNK-IN-8.   

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17781129 Abcb1a 541 1.15 3.48 3.47 

17810550 Adprhl2 153 1.01 1.53 1.37 

17617581 Aen 113 1.16 3.48 3.34 

17782314 Akr1b8  564 1.17 2.33 2.13 

17821662 Arl4a 120 1.29 1.57 1.84 

17717253 Arl5b 261 1.10 1.90 1.82 

17652634 Armc7 131 1.06 2.20 2.67 

17759590 Arrdc3 1034 1.08 1.58 1.74 

17726777 Atp8b1 277 1.00 1.53 1.36 

17861066 B3gnt7 67 0.81 1.58 1.27 

17664484 Bach1 517 1.12 2.21 2.16 

17621224 Bag3 801 0.91 1.58 1.44 

17653231 Baiap2 212 1.28 1.75 1.84 

17796337 Bcat1 357 1.04 1.55 1.52 

17766015 Bcl2l11 160 1.31 1.76 1.93 

17753161 Brd2 722 1.13 1.70 1.68 

17636338 Btbd10 136 1.21 1.65 1.71 

17826458 Cbarp 109 0.93 1.51 1.61 

17664770 Cbr1 246 1.17 2.84 3.32 

17664759 Cbr1 1116 1.06 1.51 1.80 

17664780 Cbr3 105 1.05 1.64 1.76 

17655535 Ccng1 2202 1.10 1.51 1.56 

17747788 Ccnl1 471 1.24 1.52 1.61 

17630241 Cd3eap 85 0.94 1.50 1.27 

17774921 Cd44 663 1.07 1.66 1.70 

17868794 Cd80 54 1.08 5.22 5.54 

17669098 Cd80 104 1.06 5.00 5.09 

17753672 Cdkn1a 604 0.88 5.59 4.96 

17808573 Cdkn2b 257 1.11 1.56 1.63 

17765084 Chac1 119 1.13 3.03 3.18 

17748939 Chrnb2 70 1.10 1.58 1.56 

17847383 Cish 357 0.79 2.15 1.78 

17859270 Coq10b 187 1.17 1.72 1.49 

17716200 Crem 139 1.24 1.93 1.76 

17750384 Csf1 1259 1.08 1.58 1.61 

17727278 Ctdp1 247 1.14 1.64 1.61 
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Table A14 cont.  

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17828625 Ddit3 227 1.20 2.07 1.90 

17769238 Dok5 182 1.28 1.64 1.71 

17850594 Dpy19l2 39 1.03 1.55 1.70 

17712103 Dusp4 267 0.88 1.85 1.53 

17626435 Dusp5 197 0.94 2.70 2.41 

17706222 Eaf1 208 1.04 1.82 1.63 

17877966 Eda2r 204 1.49 3.65 3.68 

17705094 Ednrb 836 1.24 1.70 1.90 

17748848 Efna1 336 1.25 1.86 1.62 

17834736 Eid3 82 1.25 3.13 3.13 

17734860 Ell2 198 1.22 1.80 1.74 

17735400 Enc1 549 1.05 1.50 1.56 

17693433 Ereg 68 1.10 4.14 3.83 

17735859 Esm1 217 1.47 1.82 1.89 

17664927 Ets2 517 1.05 1.93 1.67 

17739583 Etv3 287 1.08 1.60 1.58 

17815275 Fam110c 100 1.65 3.24 3.10 

17741698 Fam212b 82 1.12 2.51 2.41 

17806608 Fam219a 115 1.03 1.52 1.32 

17669931 Fam43a 306 1.19 1.59 1.59 

17610500 Fbxo30 329 0.99 1.72 1.70 

17852444 Fdx1 196 1.14 1.57 1.50 

17817508 Fos 121 1.05 2.25 2.12 

17623115 Fosl1 115 1.11 5.16 4.15 

17716029 Gabpb1l 215 1.23 1.57 1.55 

17791733 Gadd45a 695 1.07 2.40 2.27 

17846065 Gclc 634 1.17 2.69 2.68 

17742399 Gclm 337 1.38 1.69 1.71 

17654535 Gfer  173 1.12 1.71 1.73 

17645401 Gfpt2 1557 1.27 1.83 2.12 

17815053 Grhl1 87 1.24 1.67 1.67 

17716626 Gtpbp4 176 1.31 1.66 1.49 

17628982 Has1 81 1.19 1.69 1.57 

17837405 Has2 286 0.89 2.05 1.74 

17669934 Hes1 471 1.17 1.70 1.73 

17715718 Hist1h2bh 527 1.24 1.65 1.59 

17715802 Hist1h4b 153 1.27 1.66 1.72 

17610557 Hivep2 489 1.11 1.71 1.67 

17753387 Hmga1 774 1.02 1.66 1.50 

17728071 Hmox1 1149 1.19 3.41 3.53 

17752874 Hspa1a/b 103 0.83 2.07 1.89 

17816804 Hspa2 112 0.89 1.59 1.53 

17718644 Id4 107 1.14 1.83 1.49 
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Table A14 cont.  

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17756250 Ier3 782 0.81 1.93 1.74 

17685432 Ier5 332 0.88 1.90 1.58 

17858730 Il1rl1 430 1.29 2.14 2.12 

17788345 Il6 108 0.75 1.99 1.92 

17769167 
Intron to 

LOC100911177 311 1.08 1.53 1.44 

17769169 
Intron to 

LOC100911177 73 1.28 1.54 1.44 

17623687 Intron to Snhg1 78 1.21 1.51 1.80 

17700736 Ipo5 764 1.07 1.58 1.41 

17617588 Isg20 64 1.48 5.97 6.41 

17840711 Kansl2 389 1.11 1.54 1.28 

17654269 Kctd5 233 1.08 1.55 1.50 

17836999 Klf10 245 1.04 1.66 1.42 

17807351 Klf4 345 0.98 1.91 2.02 

17700455 Klf5 270 0.97 1.53 1.32 

17707169 Klhl26 148 1.08 1.60 1.74 

17691166 Lif 167 0.92 3.09 2.61 

17739110 LOC100910449 80 0.99 2.02 1.74 

17807593 LOC102550203 284 1.20 1.86 2.24 

17692310 LOC102551714 57 1.24 1.84 2.19 

17637453 LOC102554302 229 0.93 1.66 1.64 

17787531 LOC689800 59 1.01 1.90 2.00 

17663983 Mafg 204 1.13 1.77 1.72 

17708402 Mak16 229 1.22 1.56 1.58 

17646559 Map2k3 364 1.17 1.93 1.98 

17836020 Mdm2 366 1.10 5.14 4.66 

17711465 Mfap3l 169 1.20 1.62 1.77 

17700626 Mir18a  37 1.09 1.57 1.82 

17700628 Mir19a 39 1.11 1.69 1.64 

17648510 Mir22 147 1.41 1.77 1.87 

17732589 Mir27a 55 0.97 1.56 1.33 

17792604 Mthfd2 348 1.29 1.54 1.81 

17792855 Mxd1 231 1.13 1.86 1.70 

17796946 Mybl1 70 1.11 3.00 2.83 

17829696 Myc 264 0.92 2.41 2.14 

17659041 NF1 142 1.23 1.86 1.79 

17714621 Nfil3 203 0.81 1.68 1.37 

17741409 Ngf 102 1.26 1.68 1.77 

17869377 Nid2 146 1.01 1.66 1.69 

17733371 Nob1 441 1.18 1.58 1.43 

17733363 Nqo1 347 1.25 2.83 3.32 

17772385 Nr4a2 165 1.46 1.70 1.92 

17779084 Oser1 444 1.12 1.62 1.70 

17730529 Osgin1 76 1.18 3.12 3.04 

17745324 Pelo 489 0.97 1.83 1.62 

17716849 Pfkfb3 397 0.91 1.50 1.26 

17828155 Phlda1 306 0.89 2.35 2.10 

 

 



301 
 

Table A14 cont.  

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17680418 Phlda3 220 1.07 2.84 2.82 

17844002 Plet1 62 2.17 5.15 5.41 

17735703 Plk2 1381 0.71 1.55 1.29 

17723942 Pmaip1 45 0.95 1.86 1.62 

17842335 Ppan 192 1.11 1.57 1.66 

17756153 Ppp1r10 465 0.97 1.57 1.59 

17632926 Ppp1r15a 311 0.90 1.78 1.50 

17666316 Ppp1r2 470 1.20 1.74 1.75 

17712060 Pragmin 239 1.06 2.18 1.89 

17793342 Prickle2 230 1.02 1.76 1.78 

17719280 Prl6a1 31 1.07 1.92 1.57 

17775140 Prrg4 582 0.85 1.52 1.39 

17771568 Psmd5 183 1.12 1.56 1.48 

17680795 Ptgs2 712 1.05 2.22 2.00 

17859412 Ptp4a1  1544 1.14 1.72 1.84 

17863629 Ptp4a1  1246 1.16 1.76 1.85 

17679974 Rab7b 122 1.26 1.84 1.56 

17738821 Rap2b 152 1.21 1.63 1.67 

17734548 Rbm34 180 1.21 1.52 1.59 

17689820 Rbm47 84 1.05 1.55 1.42 

17805250 Rdh10 153 1.17 1.57 1.61 

17861997 RGD1562136 96 1.32 1.73 1.63 

17834704 RGD1563365 120 1.18 1.51 1.53 

17774787 RGD1564664 158 1.24 1.84 1.60 

17684906 Rgs2 370 0.85 3.29 2.74 

17649347 Rhot1 42 1.72 1.53 1.43 

17721512 Riok3 590 1.04 1.50 1.56 

17806037 Ripk2 421 1.07 1.68 1.59 

17730862 Rpl13 206 0.98 1.58 1.54 

17614756 Rpl28 41 1.05 1.53 1.30 

17857692 Runx2 160 1.05 1.67 1.53 

17639867 Sac3d1 89 1.04 1.83 1.79 

17814680 Sdc1 560 1.06 1.58 1.37 

17614694 Sertad1 176 1.04 1.62 1.51 

17802844 Sesn2 163 1.47 3.65 3.62 

17747564 Siah2 355 1.17 1.56 1.44 

17681552 Slc19a2 147 1.08 2.74 3.13 

17696492 Slc1a4 361 1.18 1.86 1.89 

17777498 Slc23a2 197 1.19 1.69 1.61 

17801572 Slc2a1 1520 0.87 1.61 1.30 

17683239 Slc30a1 236 1.06 2.19 1.97 

17836034 Slc35e3 537 0.97 1.56 1.40 

17725180 Slc39a6 603 0.93 1.62 1.59 

17864290 Slc40a1  246 1.29 1.62 1.90 

17671549 Slc7a1 575 1.10 1.67 1.66 

17649532 Slfn2 280 1.18 1.57 1.71 

17770731 Snhg7 1268 1.13 1.70 1.75 
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Table A14 cont.  

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17735293 Snora47 63 1.24 1.56 1.52 

17793995 Snora7a 295 1.03 1.61 1.60 

17844990 Snord16a 100 1.27 1.53 1.57 

17709866 Snord19 121 1.26 1.55 1.84 

17736124 Snord72 43 1.39 1.52 1.51 

17645306 Snord95 137 1.28 1.51 1.66 

17745308 Snx18 693 0.93 1.60 1.44 

17663683 Socs3 503 0.85 1.57 1.42 

17655823 Sqstm1 609 1.20 1.95 2.14 

17819714 Srsf7 158 1.19 1.57 1.57 

17767319 Srxn1 94 1.31 8.55 7.79 

17712330 Star 109 1.05 1.80 1.78 

17737660 Terc 118 1.17 1.86 2.13 

17777978 Thbd 107 0.91 1.55 1.38 

17758158 Tmem26 160 0.97 1.53 1.38 

17638748 Tnfrsf22 170 0.96 2.15 2.08 

17650292 Tob1 871 0.97 1.76 1.59 

17797247 Tp53inp1 549 0.98 2.97 2.90 

17778298 Trib3 100 0.98 1.89 1.96 

17652422 Ttyh2 285 1.21 1.63 2.01 

17723990 Tubb6 1014 0.95 1.74 1.46 

17834717 Txnrd1 630 1.11 2.68 2.70 

17686443 Uap1  169 1.67 6.08 5.52 

17814012 Uap1l2 64 1.32 3.74 3.60 

17673512 Ubc 1018 0.99 1.84 1.84 

17624595 Unknown 175 1.13 1.52 1.43 

17831177 Unknown 130 0.94 1.67 1.62 

17844970 Unknown 130 0.94 1.67 1.62 

17719481 Unknown 81 1.34 1.82 1.74 

17862387 Unknown 214 1.15 1.86 2.26 

17862389 Unknown 192 1.34 1.83 2.29 

17868712 Unknown 58 0.96 1.53 1.47 

17868967 Unknown 190 0.86 1.63 1.54 

17857041 Unknown 195 1.19 1.53 1.52 

17761562 Unknown 189 1.37 1.69 1.70 

17881046 Unknown 268 1.16 1.57 1.58 

17825181 Unknown 295 1.03 1.61 1.60 

17612614 Unknown 40 1.42 1.53 1.27 

17848154 Unknown 73 1.32 1.75 1.66 

17709357 Unknown 414 1.35 1.52 1.35 

17820466 Wdr43 598 1.01 1.50 1.47 

17628094 Zbtb2 134 1.07 1.59 1.50 

17852451 Zc3h12c 302 1.20 1.87 2.28 

17672229 Zfand2a 306 1.10 3.57 3.49 

17624514 Zfand5 1288 1.00 1.66 1.61 

17631103 Zfp36 617 0.87 2.06 1.82 

17614769 Zfp626 95 1.37 1.55 1.74 

17737682 Zmat3 198 1.01 1.94 1.78 
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Table A15 Transcripts upregulated by H2O2 and enhanced by JNK-IN-8 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 1 µM JNK-IN-8, or exposed to JNK-IN-8 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs enhanced >1.25-fold relative to H2O2 alone in the 
presence of JNK-IN-8 were selected, with or without a significant effect of the inhibitor (one-
way ANOVA with SNK post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with 
significant changes in the presence of JNK-IN-8 are indicated with an asterisk (*). Raw values 
are given for controls and results are the mean fold change relative to controls (n=3/4 
independent hybridisations). JI8, JNK-IN-8. 

 

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2   

    (Raw values)   (Relative to controls)     

17632894 Bax 143 1.32 1.76 2.24   

17708936 Ckap2 81 1.36 1.81 2.39   

17634960 Ddias 67 1.13 1.75 2.23   

17831416 Gtse1 101 1.05 2.45 3.06 * 

17681323 Intron to Gas5 133 1.70 1.61 2.39   

17645338 Olr1387 40 1.41 2.12 2.79   

17634940 Pcf11 359 1.28 1.50 1.91   

17766170 Rpl22l2 54 1.71 1.72 2.41   

17747235 Slc7a11 99 1.21 4.32 5.50   

17623689 Snord22 111 1.36 1.59 2.07   

17769925 Unknown 201 1.41 1.55 1.97   

17862391 Unknown 106 1.59 2.62 3.29   
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Table A16 Transcripts upregulated by H2O2 and inhibited by JNK-IN-8 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 1 µM JNK-IN-8, or exposed to JNK-IN-8 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs inhibited >1.25-fold relative to H2O2 alone in the 
presence of JNK-IN-8 were selected, with or without a significant effect of the inhibitor (one-
way ANOVA with SNK post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with 
significant changes in the presence of JNK-IN-8 are indicated with an asterisk (*). Raw values 
are given for controls and results are the mean fold change relative to controls (n=3/4 
independent hybridisations). JI8, JNK-IN-8. 

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2   

    (Raw values)   (Relative to controls)     

17693425 Areg 82 0.78 1.61 1.10 * 

17705843 Arhgef3 189 0.94 2.09 1.60 * 

17858347 Arid5a 218 0.73 2.18 1.32 * 

17670615 Arvcf 113 0.97 1.53 1.13 * 

17687609 Atf3 132 0.69 7.45 2.92 * 

17673406 Atp5j2 65 1.08 1.51 1.08   

17818164 Bdkrb2 181 0.79 2.83 1.80   

17766552 Bmp2 193 0.81 2.06 1.50   

17684316 Btg2 308 0.64 2.91 1.52 * 

17610582 Cited2 1010 0.84 1.68 1.30 * 

17856536 Csrnp1 120 0.97 3.28 2.20   

17751869 Cyr61 872 0.50 1.50 0.80 * 

17628832 Dact2 146 0.79 1.85 1.32   

17833617 Dot1l 431 0.96 2.12 1.53   

17682903 Dusp10 353 0.97 1.61 1.15   

17765931 Dusp2 145 0.86 3.21 2.36 * 

17722348 Egr1 1291 0.70 1.68 1.18 * 

17699889 Egr3 90 0.89 1.69 1.33   

17803896 Epha2 112 0.82 2.95 1.99   

17804459 Errfi1 1256 0.96 1.94 1.41 * 

17630236 Fosb 59 1.34 6.02 4.73   

17718415 Gadd45g 412 0.61 3.17 2.15   

17707117 Gdf15 116 0.85 15.19 11.38   

17797288 Gem 317 0.91 1.98 1.43 * 

17693015 Gpat3 105 1.37 3.32 2.63   

17730641 Gse1  202 0.85 1.58 1.21 * 

17725668 Hbegf 363 0.47 2.19 1.07 * 

17674382 Hspb8 908 0.91 1.65 1.27   

17728750 Ier2 191 0.96 1.98 1.51 * 

17719769 Inhba 220 1.06 2.47 1.97   

17710887 Jund 470 0.60 1.62 0.97 * 

17880605 Klf5 333 0.97 1.72 1.37   

17856642 Klhl40 98 0.92 3.05 1.43 * 

 



305 
 

Table A16 cont.  

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2   

    (Raw values)   (Relative to controls)     

17785906 Lmcd1 441 0.52 2.38 0.96 * 

17714890 Mirlet7f-1 38 1.77 2.09 1.62   

17749411 Mllt11 412 0.63 1.57 1.09   

17738403 Noct 206 0.78 2.53 1.61 * 

17832476 Nr4a1 178 0.91 4.78 3.72   

17798725 Nr4a3 63 1.31 11.10 8.72   

17619333 Olr230 36 1.26 1.73 1.35   

17717422 Otud1 152 0.61 1.69 0.77 * 

17769225 Pard6b 74 0.92 2.74 1.43 * 

17614190 Plaur 252 0.98 1.68 1.25 * 

17630418 PVR 516 0.96 2.32 1.76   

17668004 Rcan1 1895 0.70 1.52 1.02   

17821038 Rhob 597 0.84 1.65 1.27 * 

17840784 Rnd1 444 0.62 2.00 1.34   

17610687 Rps13 40 1.22 1.69 1.06   

17772976 Rps3 53 1.29 1.56 1.15   

17679473 Serpinb2 251 1.59 6.69 5.12   

17676856 Serpine1 764 0.81 2.76 1.95   

17751449 Sgms2 152 1.16 2.73 2.01   

17757468 Sik1 457 0.87 1.67 1.18 * 

17652327 Slc16a6 203 0.79 2.23 1.20 * 

17789522 Tfpi2 101 0.91 1.78 1.39   

17654148 Tnfrsf12a 877 0.77 1.87 1.34   

17646726 Trim16 182 0.80 1.51 1.03   

17738669 Tsc22d2 425 0.87 1.52 1.19   

17674327 Unknown 235 0.94 1.59 1.25   

17808103 Unknown 119 0.92 1.58 1.17   

17691637 Unknown 63 0.76 1.62 1.13   

17873757 Unknown 145 0.91 1.79 1.18   

17856543 Xirp1 1051 0.91 2.79 1.42 * 
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Table A17 Transcripts downregulated by H2O2 and unaffected by JNK-IN-8 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 1 µM JNK-IN-8, or exposed to JNK-IN-8 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05) with no effect of JNK-IN-8. Raw values are given for 
controls and results are the mean fold change relative to controls (n=3/4 independent 
hybridisations). JI8, JNK-IN-8.   

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17667628 Adamts5 510 0.76 0.58 0.57 

17815851 Akap6 742 0.98 0.66 0.64 

17789297 Akap9 477 0.98 0.67 0.72 

17846985 Amotl2 396 0.98 0.66 0.63 

17837080 Angpt1 232 0.88 0.60 0.64 

17845894 Arpp19 97 1.17 0.66 0.56 

17792236 Atoh8 268 1.00 0.59 0.72 

17878335 Atrx  629 1.01 0.65 0.74 

17673260 Auts2l  238 0.97 0.64 0.69 

17680721 B3galt2 333 1.12 0.59 0.62 

17843642 Bcl9l 503 0.92 0.57 0.61 

17744890 Ccnb1 118 1.15 0.58 0.65 

17843026 Cdon 918 1.01 0.49 0.53 

17742771 Cenpe 140 1.02 0.61 0.72 

17687536 Cenpf 178 0.98 0.58 0.68 

17782474 Chrm2 1605 1.06 0.58 0.64 

17872611 Dmd  954 0.98 0.58 0.55 

17858146 Dst 1133 1.00 0.66 0.69 

17699765 Ebf2 122 1.04 0.62 0.68 

17637939 Ebf3 321 1.10 0.59 0.62 

17611079 Eya4 111 1.00 0.63 0.78 

17768463 Fam83d 136 1.23 0.62 0.76 

17776634 Fbn1 1963 0.98 0.62 0.75 

17772756 Fign 139 1.17 0.64 0.70 

17696327 Fignl1 167 0.94 0.64 0.65 

17675438 Fry 645 0.99 0.66 0.67 

17687729 G0s2 527 1.09 0.49 0.54 

17815757 G2e3 171 1.17 0.67 0.79 

17821495 Gpr22 156 1.09 0.60 0.63 

17655129 Hba1 972 0.80 0.28 0.33 

17655107 Hba1/2 155 0.74 0.30 0.31 

17655118 Hba-a1 221 0.80 0.33 0.36 

17635600 Hbb-b1 97 1.32 0.42 0.49 

17635616 Hbb-b1 315 0.82 0.33 0.37 

17700037 Htr2a 367 1.01 0.66 0.64 

17762176 Intron to Cacnb4 235 0.80 0.60 0.69 

17759530 Intron to Ebf3 79 0.86 0.66 0.61 

17748808 Intron to Fdps 173 1.20 0.59 0.62 

17855024 Intron to Ppp2r3a 166 1.01 0.66 0.56 

17755547 Intron to Rev3l 59 1.13 0.66 0.80 

17837524 Intron to Tmem65 116 0.84 0.66 0.67 
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Table A17 cont. 

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17865965 Irs1 279 0.92 0.61 0.59 

17717602 Irx4 418 1.05 0.60 0.71 

17764518 Kcna4 96 0.95 0.64 0.57 

17618664 Kcne3 453 1.27 0.61 0.69 

17796225 Kcnj8 466 1.12 0.67 0.81 

17625128 Kif20b 69 1.21 0.61 0.71 

17809656 Kif2c 103 1.07 0.67 0.82 

17748476 Kirrel 682 0.87 0.66 0.71 

17785455 Klf15 128 1.16 0.56 0.66 

17837495 Klhl38 160 1.29 0.56 0.58 

17813889 Kpna2 2186 1.02 0.59 0.74 

17662569 Kpna2 1843 1.06 0.63 0.76 

17714742 LOC689587 55 0.74 0.67 0.72 

17836590 Lrp1 1961 1.10 0.62 0.76 

17828320 Lrrc10 260 1.04 0.59 0.72 

17810315 Macf1 1159 1.04 0.61 0.68 

17735024 Mef2c 392 0.96 0.66 0.70 

17782472 Mir490  64 1.06 0.63 0.58 

17720028 MPP7 383 1.11 0.58 0.64 

17720030 Mpp7 858 1.22 0.67 0.69 

17704998 Mycbp2  491 1.02 0.63 0.73 

17721099 Nebl 1255 1.18 0.65 0.72 

17808303 Nfib 1999 0.98 0.62 0.70 

17835031 Nr1h4 128 0.96 0.62 0.63 

17633908 Nr2f2 574 0.96 0.66 0.80 

17731247 Nrp1 1316 1.09 0.65 0.77 

17849828 Olr1115 83 0.64 0.59 0.71 

17840683 Olr1877 64 0.83 0.53 0.63 

17635740 Olr194 58 1.03 0.66 0.79 

17747228 Pcdh18 332 1.04 0.56 0.68 

17694650 Pcdh7 765 1.11 0.66 0.75 

17711915 Pcm1 687 0.97 0.65 0.72 

17665547 Phldb2  1041 1.12 0.66 0.76 

17690991 Pik3ip1 330 1.11 0.51 0.57 

17620368 Plk1 372 1.17 0.45 0.54 

17690210 Ppargc1a 581 1.18 0.55 0.67 

17670970 Prkdc 212 1.04 0.64 0.74 

17687572 Prox1 247 1.11 0.57 0.65 

17659777 Prr11 74 1.10 0.58 0.69 

17845217 Rasl12 190 1.08 0.59 0.67 

17795994 Rerg 393 1.22 0.59 0.70 

17766923 Rin2 354 1.00 0.65 0.71 

17800088 Ror1 519 1.01 0.64 0.74 

17797354 Runx1t1 347 1.17 0.55 0.56 

17716433 Ryr2 1853 1.00 0.61 0.62 

17789488 Samd9l  382 0.75 0.54 0.57 

17789483 Samd9l  211 0.93 0.66 0.60 

17856909 Sgol1 65 1.13 0.64 0.79 

17859327 Sgol2 62 1.27 0.61 0.72 

17852869 Snx33 406 0.97 0.53 0.55 
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Table A17 cont. 

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2 

    (Raw values)   (Relative to controls)   

17636071 St5 431 0.89 0.51 0.53 

17699814 Stc1 1401 1.07 0.49 0.44 

17813989 Ston1 363 0.96 0.62 0.66 

17807544 Svep1 360 0.99 0.63 0.70 

17795793 Tas2r113 54 0.98 0.64 0.68 

17850618 Tbx20 3376 1.12 0.62 0.75 

17611107 Tcf21 281 0.95 0.58 0.57 

17758246 Tet1 386 1.02 0.63 0.70 

17688028 Tgfbr3 1314 1.05 0.63 0.70 

17827700 Tmcc3 125 1.00 0.56 0.55 

17798353 Tmem8b 107 0.99 0.51 0.54 

17865381 Tnp1 64 0.90 0.66 0.72 

17830802 Tnrc6b 610 1.08 0.66 0.74 

17821133 Trib2 346 0.80 0.60 0.50 

17748341 Trim2 262 1.13 0.63 0.74 

17773733 Ttn 283 1.16 0.46 0.45 

17773418 Ttn 2498 1.02 0.53 0.53 

17669427 Unknown 276 0.93 0.62 0.71 

17673323 Unknown 555 0.90 0.58 0.60 

17784265 Unknown 291 0.73 0.62 0.64 

17617825 Unknown 105 0.98 0.59 0.69 

17748455 Unknown 209 0.85 0.65 0.72 

17725000 Unknown 227 0.89 0.62 0.72 

17702423 Unknown 109 0.92 0.66 0.72 

17719529 Unknown 98 1.07 0.66 0.83 

17618570 Unknown 77 0.94 0.60 0.74 

17735950 Unknown 67 0.70 0.59 0.64 

17851236 Unknown 74 0.71 0.62 0.72 

17862549 Unknown 113 0.83 0.65 0.74 

17686829 Unknown 71 1.03 0.61 0.77 

17676207 Unknown 94 0.95 0.65 0.79 

17824985 Unknown 75 0.79 0.66 0.78 

17640505 Unknown 72 0.74 0.64 0.60 

17755940 Unknown 66 0.98 0.63 0.67 

17667572 Unknown 249 0.89 0.63 0.78 

17734970 Unknown 110 0.90 0.65 0.67 

17824511 Unknown 121 0.88 0.66 0.70 

17815738 Unknown 336 0.63 0.55 0.55 

17867308 Unknown 1570 1.32 0.48 0.51 

17867314 Unknown 2176 1.05 0.56 0.59 

17690416 Unknown 59 0.88 0.62 0.66 

17878327 Unknown 233 1.08 0.63 0.73 

17867296 Unknown 85 1.10 0.63 0.59 

17612467 Vom1r19 80 0.88 0.67 0.79 

17709537 Zcchc24 834 1.13 0.62 0.65 

17791192 Zfp467 201 0.90 0.57 0.54 

17726303 Zfp608 468 0.90 0.61 0.64 

17829163 Zfpm2 348 0.95 0.67 0.66 
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Table A18 Transcripts downregulated by H2O2 and affected by JNK-IN-8 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 1 µM JNK-IN-8, or exposed to JNK-IN-8 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs changed >1.25-fold relative to H2O2 alone in the 
presence of JNK-IN-8 were selected, with or without a significant effect of the inhibitor (one-
way ANOVA with SNK post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with 
significant changes in the presence of JNK-IN-8 are indicated with an asterisk (*). Raw values 
are given for controls and results are the mean fold change relative to controls (n=3/4 
independent hybridisations). JI8, JNK-IN-8. 

RNAs downregulated by H2O2 and enhanced by JNK-IN-8 

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2   

    (Raw values)   (Relative to controls)     

17799707 Acer2 313 1.22 0.47 0.62   

17796393 Antisens to Rassf8 129 0.95 0.66 0.90   

17763560 Aplnr 199 1.47 0.65 0.84   

17680619 Aspm 97 1.08 0.57 0.71   

17764983 Casc5  125 0.94 0.62 0.86   

17880642 Ccdc141 132 1.33 0.62 0.79   

17854478 Cep162 112 1.04 0.63 0.81   

17777174 Ckap2l 90 1.17 0.60 0.77   

17746602 Ect2 112 1.30 0.64 0.80   

17865182 Erbb4 159 1.19 0.66 0.84   

17815588 Etv1 226 1.08 0.65 0.82 * 

17771237 Fam78a  231 1.14 0.64 0.84   

17808333 Frem1 241 1.22 0.62 0.84   

17635606 Hbb 308 0.97 0.24 0.35   

17715833 Hist1h1b 299 1.05 0.59 0.75   

17860796 Kcne4 319 1.36 0.64 0.82   

17736233 Lifr 841 1.17 0.56 0.74   

17813883 LOC100359600 671 1.08 0.59 0.79 * 

17825088 LOC100359978 73 0.69 0.46 0.89   

17713890 LOC102551451 615 1.07 0.55 0.71   

17849251 LOC102553278 65 0.98 0.59 0.74   

17633383 LOC103691130 86 0.76 0.57 0.73   

17686320 LOC685351 118 0.67 0.39 0.71   

17728554 LOC685411 104 0.75 0.66 0.85   

17669287 LOC689217 70 0.78 0.58 0.90   

17822197 Mis18bp1 86 1.08 0.66 0.86   

17637913 Mki67 646 1.13 0.50 0.67   

17877478 Obp1f 68 0.89 0.62 0.81   

17645356 Olr1397 206 0.91 0.64 0.80   

17618063 Olr20 63 0.77 0.60 0.82   

17694084 Pdgfra  2983 1.12 0.58 0.74   
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Table A18 cont.  

RNAs downregulated by H2O2 and enhanced by JNK-IN-8 cont.  

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2   

    (Raw values)   (Relative to controls)     

17737579 Slc2a2 147 0.90 0.63 0.81   

17854985 Slc35g2 103 0.91 0.65 0.89   

17649522 Slfn5  528 1.00 0.60 0.82   

17853413 Smad6 564 1.02 0.53 0.68   

17738567 Smad9 208 1.31 0.60 0.89 * 

17660863 Top2a 326 1.21 0.53 0.74   

17767437 Tpx2 179 1.17 0.62 0.84 * 

17846281 Ttk 97 1.21 0.66 0.91   

17628672 Ttll2 70 0.84 0.64 0.84   

17688837 Unknown 97 0.96 0.62 0.95   

17834493 Unknown 131 0.72 0.66 0.94   

17846920 Unknown 146 1.05 0.67 0.94   

17870224 Unknown 89 0.81 0.64 0.89   

17681386 Unknown 77 0.79 0.65 0.90   

17683590 Unknown 95 0.93 0.61 0.83   

17824838 Unknown 49 1.04 0.59 0.80   

17869552 Unknown 72 0.81 0.62 0.82   

17867695 Unknown 95 0.67 0.67 0.87   

17696705 Unknown 72 1.09 0.61 0.78   

17778194 Unknown 80 1.30 0.62 0.80   

17739289 Unknown 212 0.90 0.66 0.84   

17628732 Vom2r-ps18 80 0.93 0.64 0.80   

 

RNAs downregulated by H2O2 and downregulated further by JNK-IN-8 

Transcript ID Gene Symbol Control JI8 H2O2 JI8+H2O2   

    (Raw values)   (Relative to controls)     

17711829 Intron to Sorbs2 217 0.72 0.60 0.40   
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Table A19 Transcripts upregulated by H2O2 and unaffected by SB203580 

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 0.7 µM SB203580 or with or without pre-treatment (15 min), or 
were exposed to the SB203580 alone (2 h 15 min) Changes in RNA expression were 
determined using Affymetrix Rat Gene 2.0 ST microarrays, using GeneSpring 14.5 analysis to 
identify RNAs with significant increase in expression in response to H

2
O

2 
(>1.5-fold change 

relative to control; moderated t-test with Benjamini-Hochberg FDR correction, p<0.05) with no 
effect of SB203580. Raw values are given for controls and results are the mean fold change 
relative to controls (n=3/4 independent hybridisations). SB, SB203580.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17781129 Abcb1a 541 1.13 3.48 3.41 

17810550 Adprhl2 153 1.01 1.53 1.39 

17617581 Aen 113 1.01 3.48 3.20 

17693425 Areg 82 1.09 1.61 1.31 

17858347 Arid5a 218 0.91 2.18 1.83 

17821662 Arl4a 120 1.11 1.57 1.44 

17717253 Arl5b 261 1.03 1.90 1.93 

17652634 Armc7 131 0.98 2.20 1.82 

17759590 Arrdc3 1034 0.94 1.58 1.45 

17670615 Arvcf 113 1.18 1.53 1.49 

17726777 Atp8b1 277 1.03 1.53 1.49 

17664484 Bach1 517 1.09 2.21 2.03 

17653231 Baiap2 212 1.23 1.75 1.72 

17632894 Bax 143 1.30 1.76 2.00 

17796337 Bcat1 357 0.98 1.55 1.56 

17766015 Bcl2l11 160 1.09 1.76 1.49 

17753161 Brd2 722 1.05 1.70 1.36 

17636338 Btbd10 136 1.11 1.65 1.63 

17826458 Cbarp 109 0.94 1.51 1.54 

17664759 Cbr1 1116 1.00 1.51 1.40 

17664780 Cbr3 105 1.10 1.64 1.49 

17655535 Ccng1 2202 1.10 1.51 1.59 

17747788 Ccnl1 471 1.22 1.52 1.66 

17774921 Cd44 663 1.04 1.66 1.59 

17868794 Cd80 54 1.06 5.22 5.67 

17669098 Cd80 104 1.08 5.00 5.13 

17808573 Cdkn2b 257 1.03 1.56 1.44 

17765084 Chac1 119 0.91 3.03 2.79 

17748939 Chrnb2 70 1.07 1.58 1.70 

17708936 Ckap2 81 0.97 1.81 2.17 

17859270 Coq10b 187 1.09 1.72 1.40 

17716200 Crem 139 1.25 1.93 1.78 

17750384 Csf1 1259 1.25 1.58 1.74 

17856536 Csrnp1 120 1.08 3.28 2.83 

17727278 Ctdp1 247 1.03 1.64 1.35 

17751869 Cyr61 872 1.07 1.50 1.62 

17628832 Dact2 146 1.08 1.85 1.57 

17634960 Ddias 67 1.02 1.75 2.05 

17828625 Ddit3 227 1.25 2.07 2.43 

17769238 Dok5 182 1.12 1.64 1.55 

17850594 Dpy19l2 39 1.06 1.55 1.66 

17682903 Dusp10 353 0.99 1.61 1.44 

17877966 Eda2r 204 1.37 3.65 3.76 
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Table A19 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17722348 Egr1 1291 1.05 1.68 1.94 

17699889 Egr3 90 1.01 1.69 1.37 

17834736 Eid3 82 1.18 3.13 2.73 

17734860 Ell2 198 1.03 1.80 1.56 

17735400 Enc1 549 0.90 1.50 1.40 

17735859 Esm1 217 1.14 1.82 1.49 

17739583 Etv3 287 0.99 1.60 1.49 

17741698 Fam212b 82 1.16 2.51 2.42 

17806608 Fam219a 115 1.10 1.52 1.43 

17669931 Fam43a 306 1.13 1.59 1.33 

17610500 Fbxo30 329 0.90 1.72 1.53 

17852444 Fdx1 196 1.01 1.57 1.32 

17817508 Fos 121 1.28 2.25 2.35 

17623115 Fosl1 115 1.10 5.16 4.85 

17716029 Gabpb1l 215 0.99 1.57 1.45 

17791733 Gadd45a 695 1.43 2.40 2.63 

17718415 Gadd45g 412 1.06 3.17 2.62 

17742399 Gclm 337 1.30 1.69 1.67 

17654535 Gfer  173 1.07 1.71 1.68 

17645401 Gfpt2 1557 1.04 1.83 1.68 

17693015 Gpat3 105 1.19 3.32 2.68 

17815053 Grhl1 87 1.10 1.67 1.68 

17730641 Gse1  202 1.00 1.58 1.33 

17831416 Gtse1 101 1.06 2.45 2.56 

17628982 Has1 81 1.04 1.69 1.41 

17669934 Hes1 471 0.96 1.70 1.41 

17715718 Hist1h2bh 527 1.21 1.65 1.78 

17715802 Hist1h4b 153 1.25 1.66 1.52 

17610557 Hivep2 489 1.04 1.71 1.58 

17753387 Hmga1 774 1.09 1.66 1.59 

17752874 Hspa1a/b 103 0.98 2.07 1.76 

17816804 Hspa2 112 0.88 1.59 1.35 

17728750 Ier2 191 1.02 1.98 1.95 

17756250 Ier3 782 0.94 1.93 1.61 

17858730 Il1rl1 430 1.20 2.14 1.96 

17681323 Intron to Gas5 133 1.37 1.61 1.63 

17623687 Intron to Snhg1 78 1.08 1.51 1.44 

17700736 Ipo5 764 1.08 1.58 1.43 

17617588 Isg20 64 1.66 5.97 6.07 

17710887 Jund 470 1.04 1.62 1.49 

17840711 Kansl2 389 1.03 1.54 1.24 

17654269 Kctd5 233 1.04 1.55 1.46 

17836999 Klf10 245 1.17 1.66 1.69 

17807351 Klf4 345 0.92 1.91 1.80 

17880605 Klf5 333 1.06 1.72 1.62 

17700455 Klf5 270 1.08 1.53 1.54 

17707169 Klhl26 148 0.94 1.60 1.58 

17691166 Lif 167 0.94 3.09 2.97 

17807593 LOC102550203 284 1.13 1.86 1.99 

17692310 LOC102551714 57 1.18 1.84 1.97 

17637453 LOC102554302 229 0.88 1.66 1.80 

17787531 LOC689800 59 1.03 1.90 1.53 

17663983 Mafg 204 1.14 1.77 1.77 

17708402 Mak16 229 0.99 1.56 1.40 

17646559 Map2k3 364 1.30 1.93 2.02 

17836020 Mdm2 366 0.95 5.14 4.55 

17711465 Mfap3l 169 1.21 1.62 1.43 

17648510 Mir22 147 1.19 1.77 1.49 
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Table A19 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17792604 Mthfd2 348 1.15 1.54 1.67 

17796946 Mybl1 70 0.98 3.00 2.82 

17659041 NF1 142 1.07 1.86 1.90 

17714621 Nfil3 203 0.85 1.68 1.40 

17741409 Ngf 102 1.19 1.68 1.70 

17869377 Nid2 146 1.04 1.66 1.46 

17733371 Nob1 441 1.13 1.58 1.37 

17738403 Noct 206 0.90 2.53 2.35 

17733363 Nqo1 347 0.94 2.83 2.50 

17772385 Nr4a2 165 1.27 1.70 1.74 

17645338 Olr1387 40 1.42 2.12 2.57 

17779084 Oser1 444 1.05 1.62 1.62 

17730529 Osgin1 76 1.21 3.12 2.91 

17717422 Otud1 152 1.05 1.69 1.43 

17769225 Pard6b 74 1.16 2.74 2.32 

17634940 Pcf11 359 1.09 1.50 1.82 

17745324 Pelo 489 0.95 1.83 1.50 

17716849 Pfkfb3 397 1.00 1.50 1.29 

17844002 Plet1 62 1.91 5.15 4.35 

17735703 Plk2 1381 1.00 1.55 1.42 

17723942 Pmaip1 45 0.92 1.86 1.63 

17842335 Ppan 192 1.02 1.57 1.46 

17756153 Ppp1r10 465 0.88 1.57 1.61 

17632926 Ppp1r15a 311 1.12 1.78 1.71 

17666316 Ppp1r2 470 1.18 1.74 1.69 

17712060 Pragmin 239 1.04 2.18 1.92 

17793342 Prickle2 230 1.01 1.76 1.78 

17775140 Prrg4 582 0.98 1.52 1.49 

17771568 Psmd5 183 1.15 1.56 1.83 

17859412 Ptp4a1  1544 1.08 1.72 1.65 

17863629 Ptp4a1  1246 1.11 1.76 1.66 

17738821 Rap2b 152 1.17 1.63 1.60 

17734548 Rbm34 180 1.26 1.52 1.61 

17689820 Rbm47 84 0.91 1.55 1.28 

17668004 Rcan1 1895 1.04 1.52 1.29 

17805250 Rdh10 153 1.17 1.57 1.49 

17861997 RGD1562136 96 1.36 1.73 1.67 

17834704 RGD1563365 120 1.16 1.51 1.43 

17774787 RGD1564664 158 1.16 1.84 1.67 

17821038 Rhob 597 1.13 1.65 1.65 

17721512 Riok3 590 0.96 1.50 1.42 

17806037 Ripk2 421 1.02 1.68 1.52 

17840784 Rnd1 444 1.02 2.00 1.86 

17766170 Rpl22l2 54 1.51 1.72 1.51 

17857692 Runx2 160 0.97 1.67 1.37 

17639867 Sac3d1 89 0.94 1.83 1.76 

17814680 Sdc1 560 1.04 1.58 1.29 

17676856 Serpine1 764 1.00 2.76 2.56 

17614694 Sertad1 176 0.98 1.62 1.68 

17802844 Sesn2 163 1.24 3.65 3.35 

17751449 Sgms2 152 1.20 2.73 2.18 

17747564 Siah2 355 1.13 1.56 1.40 

17681552 Slc19a2 147 1.12 2.74 2.96 

 

 

 



314 
 

Table A19 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17696492 Slc1a4 361 1.31 1.86 1.92 

17777498 Slc23a2 197 1.17 1.69 1.67 

17683239 Slc30a1 236 1.05 2.19 1.99 

17836034 Slc35e3 537 1.08 1.56 1.50 

17725180 Slc39a6 603 0.86 1.62 1.53 

17864290 Slc40a1  246 1.22 1.62 1.60 

17671549 Slc7a1 575 1.02 1.67 1.51 

17747235 Slc7a11 99 0.99 4.32 4.24 

17649532 Slfn2 280 1.12 1.57 1.63 

17770731 Snhg7 1268 1.05 1.70 1.76 

17735293 Snora47 63 1.08 1.56 1.50 

17793995 Snora7a 295 0.96 1.61 1.49 

17844990 Snord16a 100 1.08 1.53 1.32 

17709866 Snord19 121 1.19 1.55 1.35 

17623689 Snord22 111 1.02 1.59 1.42 

17736124 Snord72 43 1.09 1.52 1.29 

17645306 Snord95 137 1.06 1.51 1.48 

17745308 Snx18 693 0.97 1.60 1.48 

17663683 Socs3 503 0.90 1.57 1.27 

17655823 Sqstm1 609 1.09 1.95 1.73 

17819714 Srsf7 158 1.03 1.57 1.34 

17712330 Star 109 1.05 1.80 1.48 

17737660 Terc 118 0.98 1.86 1.87 

17789522 Tfpi2 101 1.01 1.78 1.56 

17758158 Tmem26 160 1.02 1.53 1.56 

17654148 Tnfrsf12a 877 1.07 1.87 1.69 

17638748 Tnfrsf22 170 0.94 2.15 2.01 

17650292 Tob1 871 0.86 1.76 1.49 

17797247 Tp53inp1 549 1.00 2.97 2.69 

17778298 Trib3 100 0.96 1.89 1.78 

17646726 Trim16 182 1.10 1.51 1.36 

17738669 Tsc22d2 425 0.98 1.52 1.54 

17652422 Ttyh2 285 1.13 1.63 1.78 

17723990 Tubb6 1014 1.07 1.74 1.62 

17834717 Txnrd1 630 0.97 2.68 2.35 

17673512 Ubc 1018 0.92 1.84 1.49 

17862391 Unknown 106 1.36 2.62 3.10 

17769925 Unknown 201 1.25 1.55 1.88 

17719481 Unknown 81 1.32 1.82 1.94 

17862387 Unknown 214 1.05 1.86 2.29 

17862389 Unknown 192 1.08 1.83 2.20 

17868712 Unknown 58 1.04 1.53 1.69 

17868967 Unknown 190 1.02 1.63 1.70 

17857041 Unknown 195 1.03 1.53 1.54 

17761562 Unknown 189 1.36 1.69 1.66 

17881046 Unknown 268 1.04 1.57 1.52 

17825181 Unknown 295 0.96 1.61 1.49 

17612614 Unknown 40 1.59 1.53 1.33 

17848154 Unknown 73 1.01 1.75 1.42 

17709357 Unknown 414 1.45 1.52 1.22 

17820466 Wdr43 598 0.96 1.50 1.37 

17628094 Zbtb2 134 1.04 1.59 1.59 

17852451 Zc3h12c 302 1.14 1.87 2.02 

17672229 Zfand2a 306 1.00 3.57 2.86 

17624514 Zfand5 1288 0.98 1.66 1.56 

17614769 Zfp626 95 1.19 1.55 1.58 

17737682 Zmat3 198 0.99 1.94 1.75 
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Table A20 Transcripts upregulated by H2O2 and affected by SB203580  

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 0.7 µM SB203580, or exposed to SB203580 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant increase in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs changed >1.25-fold relative to H2O2 alone in the 
presence of SB203580 were selected, with or without a significant effect of the inhibitor (one-
way ANOVA with SNK post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with 
significant changes in the presence of SB203580 are indicated with an asterisk (*). Raw values 
are given for controls and results are the mean fold change relative to controls (n=3/4 
independent hybridisations). SB, SB203580.  

RNAs upregulated by H2O2 and inhibited by SB203580  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2   

    (Raw values)   (Relative to controls)     

17782314 Akr1b8  564 1.13 2.33 1.69   

17705843 Arhgef3 189 1.07 2.09 1.59 * 

17687609 Atf3 132 1.12 7.45 5.23   

17673406 Atp5j2 65 1.15 1.51 1.03   

17861066 B3gnt7 67 0.73 1.58 0.95 * 

17621224 Bag3 801 0.92 1.58 1.25 * 

17818164 Bdkrb2 181 0.98 2.83 1.96   

17766552 Bmp2 193 0.79 2.06 1.44   

17684316 Btg2 308 0.87 2.91 2.18   

17664770 Cbr1 246 0.94 2.84 1.60 * 

17630241 Cd3eap 85 1.11 1.50 1.12 * 

17753672 Cdkn1a 604 0.85 5.59 4.12   

17847383 Cish 357 0.67 2.15 1.35   

17610582 Cited2 1010 0.94 1.68 1.22   

17833617 Dot1l 431 0.89 2.12 1.61   

17765931 Dusp2 145 0.80 3.21 1.84   

17712103 Dusp4 267 1.06 1.85 1.37   

17626435 Dusp5 197 0.85 2.70 2.06   

17706222 Eaf1 208 0.97 1.82 1.44 * 

17705094 Ednrb 836 0.97 1.70 1.25 * 

17748848 Efna1 336 1.06 1.86 1.45 * 

17803896 Epha2 112 1.00 2.95 2.34   

17693433 Ereg 68 1.02 4.14 3.06   

17804459 Errfi1 1256 0.87 1.94 1.36   

17664927 Ets2 517 0.93 1.93 1.43 * 

17815275 Fam110c 100 1.59 3.24 2.43   

17630236 Fosb 59 1.25 6.02 4.55   

17846065 Gclc 634 0.98 2.69 1.98 * 

17707117 Gdf15 116 0.99 15.19 10.75   

17797288 Gem 317 0.97 1.98 1.54 * 

17716626 Gtpbp4 176 1.16 1.66 1.27   

17837405 Has2 286 0.73 2.05 1.42   

17725668 Hbegf 363 0.89 2.19 1.50   

17728071 Hmox1 1149 0.94 3.41 2.67   

17674382 Hspb8 908 0.94 1.65 1.29 * 

17718644 Id4 107 1.07 1.83 1.40   

17685432 Ier5 332 0.89 1.90 1.44 * 
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Table A20 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2   

    (Raw values)   (Relative to controls)     

17788345 Il6 108 0.70 1.99 1.28   

17719769 Inhba 220 1.04 2.47 1.74   

17769169 
Intron to 

LOC100911177 73 1.10 1.54 1.20   

17769167 
Intron to 

LOC100911177 311 0.92 1.53 1.10 * 

17856642 Klhl40 98 1.04 3.05 1.80 * 

17785906 Lmcd1 441 0.98 2.38 1.57   

17739110 LOC100910449 80 1.52 2.02 1.52   

17700626 Mir18a  37 0.98 1.57 1.13 * 

17700628 Mir19a 39 1.09 1.69 1.26   

17732589 Mir27a 55 1.10 1.56 1.24   

17714890 Mirlet7f-1 38 1.38 2.09 1.46   

17749411 Mllt11 412 0.67 1.57 1.03   

17792855 Mxd1 231 0.98 1.86 1.44   

17829696 Myc 264 0.90 2.41 1.86   

17832476 Nr4a1 178 0.95 4.78 3.06 * 

17798725 Nr4a3 63 1.07 11.10 6.09   

17619333 Olr230 36 0.92 1.73 1.12   

17828155 Phlda1 306 0.96 2.35 1.80   

17680418 Phlda3 220 1.05 2.84 2.26   

17614190 Plaur 252 1.04 1.68 1.33   

17719280 Prl6a1 31 0.97 1.92 1.33 * 

17680795 Ptgs2 712 0.84 2.22 1.64   

17630418 PVR 516 1.00 2.32 1.82 * 

17684906 Rgs2 370 0.83 3.29 2.21   

17649347 Rhot1 42 1.48 1.53 0.99   

17730862 Rpl13 206 1.05 1.58 1.15   

17614756 Rpl28 41 1.06 1.53 1.13   

17610687 Rps13 40 1.15 1.69 1.18   

17772976 Rps3 53 1.20 1.56 0.98   

17679473 Serpinb2 251 1.51 6.69 5.24   

17757468 Sik1 457 0.91 1.67 1.23 * 

17652327 Slc16a6 203 0.99 2.23 1.71   

17801572 Slc2a1 1520 0.80 1.61 1.23 * 

17767319 Srxn1 94 1.17 8.55 6.33 * 

17777978 Thbd 107 0.90 1.55 1.08   

17686443 Uap1  169 1.26 6.08 4.41   

17814012 Uap1l2 64 0.98 3.74 2.30   

17624595 Unknown 175 1.26 1.52 1.17   

17831177 Unknown 130 0.92 1.67 1.26   

17844970 Unknown 130 0.92 1.67 1.26   

17691637 Unknown 63 0.94 1.62 1.19   

17674327 Unknown 235 1.03 1.59 1.16   

17808103 Unknown 119 1.06 1.58 1.14   

17873757 Unknown 145 0.94 1.79 1.09   

17856543 Xirp1 1051 0.86 2.79 1.49 * 

17631103 Zfp36 617 0.78 2.06 1.33 * 
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Table A20 cont.  

RNAs upregulated by H2O2 and inhibited by SB203580  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2   

    (Raw values)   (Relative to controls)     

17679974 Rab7b 122 1.56 1.84 2.33   
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Table A21 Transcripts downregulated by H2O2 and unaffected by SB203580  

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 0.7 µM SB203580, or exposed to SB203580 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05) with no effect of SB203580. Raw values are given for 
controls and results are the mean fold change relative to controls (n=3/4 independent 
hybridisations). SB, SB203580.   

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17667628 Adamts5 510 0.69 0.58 0.58 

17719191 Agtr1a 357 1.00 0.66 0.76 

17815851 Akap6 742 0.99 0.66 0.72 

17789297 Akap9 477 0.96 0.67 0.78 

17846985 Amotl2 396 0.93 0.66 0.74 

17837080 Angpt1 232 1.01 0.60 0.70 

17763560 Aplnr 199 1.19 0.65 0.61 

17845894 Arpp19 97 0.95 0.66 0.70 

17792236 Atoh8 268 1.01 0.59 0.72 

17878335 Atrx  629 0.99 0.65 0.80 

17673260 Auts2l  238 0.96 0.64 0.72 

17680721 B3galt2 333 1.06 0.59 0.61 

17843642 Bcl9l 503 0.91 0.57 0.65 

17744890 Ccnb1 118 1.03 0.58 0.66 

17742771 Cenpe 140 0.92 0.61 0.72 

17687536 Cenpf 178 0.98 0.58 0.69 

17782474 Chrm2 1605 0.93 0.58 0.64 

17777174 Ckap2l 90 1.00 0.60 0.74 

17872611 Dmd  954 0.97 0.58 0.63 

17858146 Dst 1133 1.00 0.66 0.74 

17699765 Ebf2 122 1.00 0.62 0.77 

17637939 Ebf3 321 1.14 0.59 0.72 

17865182 Erbb4 159 1.11 0.66 0.81 

17611079 Eya4 111 0.88 0.63 0.72 

17771237 Fam78a  231 1.05 0.64 0.77 

17776634 Fbn1 1963 0.96 0.62 0.76 

17772756 Fign 139 1.15 0.64 0.75 

17696327 Fignl1 167 0.93 0.64 0.68 

17675438 Fry 645 0.90 0.66 0.66 

17687729 G0s2 527 0.93 0.49 0.48 

17815757 G2e3 171 1.00 0.67 0.75 

17821495 Gpr22 156 0.75 0.60 0.57 

17655129 Hba1 972 0.77 0.28 0.29 

17655118 Hba-a1 221 0.80 0.33 0.33 

17635600 Hbb-b1 97 1.11 0.42 0.43 

17635616 Hbb-b1 315 0.77 0.33 0.35 

17700037 Htr2a 367 0.92 0.66 0.59 

17762176 Intron to Cacnb4 235 0.87 0.60 0.64 
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Table A21 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17748808 Intron to Fdps 173 0.94 0.59 0.56 

17855024 Intron to Ppp2r3a 166 0.98 0.66 0.81 

17711829 Intron to Sorbs2 217 0.82 0.60 0.55 

17837524 Intron to Tmem65 116 0.88 0.66 0.77 

17865965 Irs1 279 0.97 0.61 0.64 

17717602 Irx4 418 0.79 0.60 0.64 

17764518 Kcna4 96 0.85 0.64 0.56 

17618664 Kcne3 453 1.26 0.61 0.67 

17796225 Kcnj8 466 1.00 0.67 0.77 

17809656 Kif2c 103 1.09 0.67 0.79 

17748476 Kirrel 682 1.01 0.66 0.77 

17785455 Klf15 128 0.97 0.56 0.64 

17837495 Klhl38 160 1.39 0.56 0.65 

17813889 Kpna2 2186 0.88 0.59 0.65 

17662569 Kpna2 1843 0.90 0.63 0.65 

17813883 LOC100359600 671 0.88 0.59 0.57 

17633383 LOC103691130 86 0.74 0.57 0.67 

17728554 LOC685411 104 0.94 0.66 0.80 

17828320 Lrrc10 260 0.82 0.59 0.66 

17810315 Macf1 1159 1.03 0.61 0.74 

17735024 Mef2c 392 0.92 0.66 0.75 

17782472 Mir490  64 0.83 0.63 0.64 

17822197 Mis18bp1 86 1.13 0.66 0.73 

17720028 MPP7 383 0.94 0.58 0.61 

17720030 Mpp7 858 1.09 0.67 0.68 

17704998 Mycbp2  491 0.99 0.63 0.78 

17808303 Nfib 1999 0.99 0.62 0.74 

17835031 Nr1h4 128 1.02 0.62 0.67 

17633908 Nr2f2 574 0.87 0.66 0.61 

17731247 Nrp1 1316 1.00 0.65 0.68 

17849828 Olr1115 83 0.78 0.59 0.57 

17645356 Olr1397 206 1.16 0.64 0.76 

17635740 Olr194 58 0.78 0.66 0.69 

17747228 Pcdh18 332 1.05 0.56 0.70 

17694650 Pcdh7 765 1.03 0.66 0.68 

17665547 Phldb2  1041 0.98 0.66 0.76 

17670970 Prkdc 212 1.03 0.64 0.79 

17687572 Prox1 247 0.97 0.57 0.60 

17845217 Rasl12 190 1.08 0.59 0.70 

17766923 Rin2 354 1.07 0.65 0.75 

17800088 Ror1 519 0.99 0.64 0.72 

17797354 Runx1t1 347 1.22 0.55 0.62 

17716433 Ryr2 1853 0.95 0.61 0.64 

17789488 Samd9l  382 0.93 0.54 0.64 

17789483 Samd9l  211 1.04 0.66 0.63 

17856909 Sgol1 65 0.97 0.64 0.75 

17859327 Sgol2 62 1.05 0.61 0.74 

17854985 Slc35g2 103 0.87 0.65 0.80 

17853413 Smad6 564 1.05 0.53 0.63 
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Table A21 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2 

    (Raw values)   (Relative to controls)   

17807544 Svep1 360 0.97 0.63 0.73 

17795793 Tas2r113 54 0.96 0.64 0.78 

17850618 Tbx20 3376 0.89 0.62 0.67 

17611107 Tcf21 281 0.86 0.58 0.57 

17688028 Tgfbr3 1314 1.05 0.63 0.73 

17827700 Tmcc3 125 0.98 0.56 0.63 

17798353 Tmem8b 107 0.90 0.51 0.56 

17830802 Tnrc6b 610 1.02 0.66 0.81 

17767437 Tpx2 179 1.03 0.62 0.76 

17821133 Trib2 346 0.87 0.60 0.69 

17773418 Ttn 2498 0.90 0.53 0.57 

17696705 Unknown 72 1.05 0.61 0.69 

17739289 Unknown 212 0.96 0.66 0.74 

17669427 Unknown 276 1.12 0.62 0.74 

17673323 Unknown 555 0.93 0.58 0.65 

17784265 Unknown 291 0.94 0.62 0.69 

17617825 Unknown 105 1.03 0.59 0.66 

17867695 Unknown 95 0.88 0.67 0.82 

17851236 Unknown 74 0.70 0.62 0.78 

17862549 Unknown 113 0.95 0.65 0.80 

17686829 Unknown 71 0.89 0.61 0.76 

17676207 Unknown 94 1.04 0.65 0.80 

17824985 Unknown 75 0.92 0.66 0.79 

17640505 Unknown 72 0.85 0.64 0.71 

17755940 Unknown 66 0.87 0.63 0.70 

17667572 Unknown 249 0.95 0.63 0.70 

17734970 Unknown 110 0.78 0.65 0.69 

17824511 Unknown 121 0.95 0.66 0.67 

17815738 Unknown 336 0.79 0.55 0.56 

17867308 Unknown 1570 1.17 0.48 0.49 

17867314 Unknown 2176 1.00 0.56 0.57 

17690416 Unknown 59 0.71 0.62 0.62 

17878327 Unknown 233 1.03 0.63 0.60 

17867296 Unknown 85 1.07 0.63 0.59 

17709537 Zcchc24 834 1.13 0.62 0.77 

17791192 Zfp467 201 0.74 0.57 0.61 

17726303 Zfp608 468 0.91 0.61 0.60 

17829163 Zfpm2 348 0.96 0.67 0.75 

 

 

 

 

 

 

 



321 
 

Table A22 Transcripts downregulated by H2O2 and affected by SB203580  

Cardiomyocytes were unstimulated (Control) or exposed to H2O2 
(0.2 mM, 2 h) with or without 

pre-treatment (15 min) with 0.7 µM SB203580, or exposed to SB203580 alone (2 h 15 min). 
Changes in RNA expression were determined using Affymetrix Rat Gene 2.0 ST microarrays, 
using GeneSpring 14.5 analysis to identify RNAs with significant decrease in expression in 
response to H

2
O

2 
(>1.5-fold change relative to control; moderated t-test with Benjamini-

Hochberg FDR correction, p<0.05). RNAs changed >1.25-fold relative to H2O2 alone in the 
presence of SB203580 were selected, with or without a significant effect of the inhibitor (one-
way ANOVA with SNK post-test and Benjamini-Hochberg FDR correction, p<0.05). RNAs with 
significant changes in the presence of SB203580 are indicated with an asterisk (*). Raw values 
are given for controls and results are the mean fold change relative to controls (n=3/4 
independent hybridisations). SB, SB203580.  

RNAs downregulated by H2O2 and enhanced by SB203580  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2   

    (Raw values)   (Relative to controls)     

17799707 Acer2 313 1.43 0.47 0.66   

17796393 Antisens to Rassf8 129 0.97 0.66 0.92   

17680619 Aspm 97 0.97 0.57 0.80   

17764983 Casc5  125 0.91 0.62 0.85   

17880642 Ccdc141 132 1.19 0.62 0.78   

17843026 Cdon 918 0.97 0.49 0.62   

17854478 Cep162 112 0.95 0.63 0.85   

17746602 Ect2 112 1.22 0.64 0.85   

17815588 Etv1 226 1.19 0.65 0.89 * 

17768463 Fam83d 136 1.06 0.62 0.81   

17808333 Frem1 241 1.24 0.62 0.89   

17655107 Hba1/2 155 0.58 0.30 0.50   

17635606 Hbb 308 0.78 0.24 0.34   

17715833 Hist1h1b 299 1.12 0.59 0.79   

17759530 Intron to Ebf3 79 1.03 0.66 0.88   

17755547 Intron to Rev3l 59 0.95 0.66 0.91   

17860796 Kcne4 319 1.18 0.64 0.81   

17625128 Kif20b 69 0.90 0.61 0.84   

17736233 Lifr 841 1.16 0.56 0.78   

17825088 LOC100359978 73 0.83 0.46 0.67   

17713890 LOC102551451 615 0.85 0.55 0.72   

17849251 LOC102553278 65 1.05 0.59 0.84   

17686320 LOC685351 118 0.66 0.39 0.67   

17669287 LOC689217 70 0.97 0.58 0.94   

17714742 LOC689587 55 0.97 0.67 0.84   

17836590 Lrp1 1961 1.09 0.62 0.78 * 

17637913 Mki67 646 1.09 0.50 0.64   

17721099 Nebl 1255 1.05 0.65 0.83   

17877478 Obp1f 68 1.03 0.62 0.90   

17840683 Olr1877 64 1.00 0.53 0.68   

17618063 Olr20 63 1.11 0.60 1.00   

17711915 Pcm1 687 0.94 0.65 0.83   
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Table A22 cont. 

RNAs downregulated by H2O2 and enhanced by SB203580 cont.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2   

    (Raw values)   (Relative to controls)     

17694084 Pdgfra  2983 1.07 0.58 0.77   

17690991 Pik3ip1 330 1.08 0.51 0.71 * 

17620368 Plk1 372 1.08 0.45 0.56   

17690210 Ppargc1a 581 1.02 0.55 0.69   

17659777 Prr11 74 1.02 0.58 0.74   

17795994 Rerg 393 1.27 0.59 0.84   

17737579 Slc2a2 147 0.87 0.63 0.85   

17649522 Slfn5  528 1.07 0.60 0.92   

17738567 Smad9 208 1.23 0.60 0.99 * 

17852869 Snx33 406 0.95 0.53 0.68   

17636071 St5 431 1.00 0.51 0.66   

17813989 Ston1 363 1.08 0.62 0.81   

17758246 Tet1 386 1.14 0.63 0.88 * 

17865381 Tnp1 64 0.92 0.66 0.86   

17660863 Top2a 326 1.05 0.53 0.71   

17748341 Trim2 262 1.10 0.63 0.83   

17846281 Ttk 97 1.13 0.66 1.00   

17628672 Ttll2 70 0.81 0.64 0.81   

17773733 Ttn 283 0.96 0.46 0.61   

17824838 Unknown 49 1.27 0.59 1.15 * 

17834493 Unknown 131 0.74 0.66 1.01   

17869552 Unknown 72 0.81 0.62 0.94   

17846920 Unknown 146 1.10 0.67 0.99   

17870224 Unknown 89 0.93 0.64 0.94   

17748455 Unknown 209 0.97 0.65 0.94   

17725000 Unknown 227 0.89 0.62 0.89   

17683590 Unknown 95 0.94 0.61 0.83   

17702423 Unknown 109 1.09 0.66 0.90   

17719529 Unknown 98 0.97 0.66 0.90   

17618570 Unknown 77 1.03 0.60 0.80   

17778194 Unknown 80 1.05 0.62 0.82   

17735950 Unknown 67 0.75 0.59 0.78   

17688837 Unknown 97 1.00 0.62 0.78   

17681386 Unknown 77 0.85 0.65 0.81   

17612467 Vom1r19 80 0.94 0.67 0.85   

17628732 Vom2r-ps18 80 1.13 0.64 0.82   

 

RNAs downregulated by H2O2 and downregulated further by SB203580.  

Transcript ID Gene Symbol Control SB H2O2 SB+H2O2   

    (Raw values)   (Relative to controls)     

17699814 Stc1 1401 0.83 0.49 0.33   
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APPENDIX III: Mouse RIPK1 DNA sequence and mutations 

  1  ATGCAACCAG ACATGTCCTT GGACAATATT AAGATGGCAT CCAGTGACCT 

 51  GCTGGAGAAG ACAGACCTAG ACAGCGGAGG CTTCGGGAAG GTGTCCTTGT 

101  GTTACCACAG AAGCCATGGA TTTGTCATCC TGAAAAAAGT ATACACAGGG 

151  CCCAACCGCG CTGAGTACAA TGAGGTTCTC TTGGAAGAGG GGAAGATGAT 

201  GCACAGACTG AGACACAGTC GAGTGGTGAA GCTACTGGGC ATCATCATAG 

251  AAGAAGGGAA CTATTCGCTG GTGATGGAGT ACATGGAGAA GGGCAACCTG 

301  ATGCACGTGC TAAAGACCCA GATAGATGTC CCACTTTCAT TGAAAGGAAG 

351  GATAATCGTG GAGGCCATAG AAGGCATGTG CTACTTACAT GACAAAGGTG 

401  TGATACACAA GGACCTGAAG CCTGAGAATA TCCTCGTTGA TCGTGACTTT 

451  CACATTAAGA TAGCCGATCT TGGTGTGGCT TCCTTTAAGA CATGGAGCAA 

501  ACTGACTAAG GAGAAAGACA ACAAGCAGAA AGAAGTGAGC AGCACCACTA 

551  AGAAGAACAA TGGTGGTACC CTTTACTACA TGGCACCCGA ACACCTGAAT 

601  GACATCAATG CAAAGCCCAC GGAGAAGTCG GACGTGTACA GCTTTGGCAT 

651  TGTCCTTTGG GCAATATTTG CAAAAAAGGA GCCCTATGAG AATGTCATCT 

701  GTACTGAGCA GTTCGTGATC TGCATAAAAT CTGGGAACAG GCCAAATGTA 

751  GAGGAAATCC TTGAGTACTG TCCAAGGGAG ATCATCAGCC TCATGGAGCG 

801  GTGCTGGCAG GCGATCCCAG AAGACAGGCC AACATTTCTT GGCATTGAAG 

851  AAGAATTTAG GCCTTTTTAC TTAAGTCATT TTGAAGAATA TGTAGAAGAG 

901  GATGTGGCAA GTTTAAAGAA AGAGTATCCA GATCAAAGCC CAGTGCTGCA 

951  GAGAATGTTT TCACTGCAGC ATGACTGTGT ACCCTTACCT CCGAGCAGGT 

1001 CAAATTCAGA ACAACCTGGA TCGCTGCACA GTTCCCAGGG GCTCCAGATG 

1051 GGTCCTGTGG AGGAGTCCTG GTTTTCTTCC TCCCCAGAGT ACCCACAGGA 

1101 CGAGAATGAT CGCAGTGTGC AGGCTAAGCT GCAAGAGGAA GCCAGCTATC 

1151 ATGCTTTTGG AATATTTGCA GAGAAACAGA CAAAACCGCA GCCAAGGCAG 

1201 AATGAGGCTT ACAACAGAGA GGAGGAAAGG AAACGAAGGG TCTCTCATGA 

1251 CCCCTTTGCA CAGCAGAGAG CTCGTGAGAA TATTAAGAGT GCAGGAGCAA 

1301 GAGGTCATTC TGATCCCAGC ACAACGAGTC GTGGAATTGC AGTGCAACAG 

1351 CTGTCATGGC CAGCCACCCA AACAGTTTGG AACAATGGAT TGTATAATCA 

1401 GCATGGATTT GGAACTACAG GTACAGGAGT TTGGTATCCG CCAAATCTAA 

1451 GCCAAATGTA TAGTACTTAT AAAACTCCAG TGCCAGAGAC CAACATACCG 

1501 GGAAGCACAC CCACCATGCC ATACTTCTCT GGGCCAGTAG CAGATGACCT 

1551 CATAAAATAT ACTATATTCA ATAGTTCTGG TATTCAGATT GGAAACCACA 

1601 ATTATATGGA TGTTGGACTG AATTCACAAC CACCAAACAA TACTTGCAAA 

1651 GAAGAGTCGA CTTCCAGACA CCAAGCCATC TTTGATAACA CCACTAGTCT 

1701 GACTGATGAA CACCTGAACC CTATCAGGGA AAACCTGGGA AGGCAGTGGA 

1751 AAAACTGTGC CCGCAAGCTG GGCTTCACTG AGTCTCAGAT CGATGAAATC 

1801 GACCATGACT ATGAAAGAGA TGGACTGAAA GAGAAAGTTT ACCAAATGCT 

1851 TCAGAAGTGG CTGATGCGGG AAGGCACCAA AGGGGCCACA GTGGGAAAGT 

1901 TGGCCCAGGC ACTTCACCAA TGTTGCAGGA TAGACCTGCT GAACCACTTG 

1951 ATTCGTGCCA GCCAGAGCTA G 

Mouse RIPK1 DNA sequence (accession no. NM_009068.3) indicating codons targeted for 
mutation. Codons targeted are underlined and emboldened and the specific bases mutated 
are indicated in red text. For FLAG-RIPK1 (KpnI site mutation): GGTACCGGAACC 
(positions 555 – 560). For FLAG-S161A TCCGCC (positions 481 – 483). For FLAG-S166A: 
AGCGCC (positions 496 – 498). For FLAG-T183A: ACTGCT (positions 547 – 549). For 
FLAG-K376R AAGAGG (positions 1126 – 1128). 
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APPENDIX IV: Mouse RIPK1 protein sequence and mutations 

 

   1 MQPDMSLDNI KMASSDLLEK TDLDSGGFGK VSLCYHRSHG FVILKKVYTG 

  51 PNRAEYNEVL LEEGKMMHRL RHSRVVKLLG IIIEEGNYSL VMEYMEKGNL 

 101 MHVLKTQIDV PLSLKGRIIV EAIEGMCYLH DKGVIHKDLK PENILVDRDF 

 151 HIKIADLGVA SFKTWSKLTK EKDNKQKEVS STTKKNNGGT LYYMAPEHLN 

 201 DINAKPTEKS DVYSFGIVLW AIFAKKEPYE NVICTEQFVI CIKSGNRPNV 

 251 EEILEYCPRE IISLMERCWQ AIPEDRPTFL GIEEEFRPFY LSHFEEYVEE 

 301 DVASLKKEYP DQSPVLQRMF SLQHDCVPLP PSRSNSEQPG SLHSSQGLQM 

 351 GPVEESWFSS SPEYPQDEND RSVQAKLQEE ASYHAFGIFA EKQTKPQPRQ 

 401 NEAYNREEER KRRVSHDPFA QQRARENIKS AGARGHSDPS TTSRGIAVQQ 

 451 LSWPATQTVW NNGLYNQHGF GTTGTGVWYP PNLSQMYSTY KTPVPETNIP 

 501 GSTPTMPYFS GPVADDLIKY TIFNSSGIQI GNHNYMDVGL NSQPPNNTCK 

 551 EESTSRHQAI FDNTTSLTDE HLNPIRENLG RQWKNCARKL GFTESQIDEI 

 601 DHDYERDGLK EKVYQMLQKW LMREGTKGAT VGKLAQALHQ CCRIDLLNHL 

 651 IRASQS 

Mouse RIPK1 protein sequence indicating positions of amino acid residues targeted for 
mutation. Mutated residues are underlined, emboldened and indicated in red text: S161 was 
mutated to Ala, S166 was mutated to Ala, T183 was mutated to Ala, K376 was mutated to Arg.  

 

 

 

 

 

 

 

 

 

 

 

 

 


