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ABSTRACT

Western disturbances (WDs) are synoptic extratropical disturbances embedded in the subtropical westerly
jet stream. They are an integral part of the South Asian winter climate, both for the agriculture-supporting
precipitation they bring to the region and for the associated isolated extreme events that can induce devastating
flash flooding. Here, WD behaviour and impacts are characterised in 23 CMIP5 historical simulations and
compared with reanalysis and observations. It is found that WD frequency has a strong relationship with
model resolution: higher resolution models produce significantly more WDs, and a disproportionately high
fraction of extreme events. Exploring metrics of jet strength and shape, we find that the most probable cause
of this relationship is that the jet is wider in models with coarser resolution, and therefore the northern edge in
which WDs are spun up sits too far north of India. The frequency of WDs in both winter and summer is found
to be overestimated by most models, and thus the winter frequency of WDs estimated from the multi-model
mean (30 winter−1) is above the reanalysis mean (26 winter−1). In this case, the error cannot be adequately
explained by local jet position and strength. Instead, we show that it is linked with a positive bias in upstream
mid-tropospheric baroclinicity. Despite a positive winter precipitation bias in CMIP5 models over most of
India and Pakistan and a dry bias in the western Himalaya, the fraction of winter precipitation for which WDs
are responsible is accurately represented. Using partial correlation, it is shown that the overestimation in WD
frequency is the largest contributor to this bias, with a secondary, spatially heterogeneous contribution coming
from the overestimation of WD intensity.

1. Introduction

Western disturbances (WDs) are synoptic-scale (or α-
mesoscale) cyclonic perturbations in the subtropical west-
erly jet stream (Dimri and Chevuturi, 2016), noted in par-
ticular for their ability to bring extreme winter precip-
itation and flooding to Pakistan and north India (Moo-
ley, 1957; Rangachary and Bandyopadhyay, 1987; Lang
and Barros, 2004; Hunt et al., 2018c), where they are re-
sponsible for a significant fraction of the annual rainfall
(Yadav et al., 2012). They exist predominantly as mid-
latitude vortices in the mid-to-upper troposphere, propa-
gating eastwards (Mull and Desai, 1947), and either orig-
inating as extratropical cyclones or developing as frontal
systems over Eurasia (Dimri and Chevuturi, 2014). A ma-
jority of WDs (known as ‘active’ disturbances) also ex-
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hibit notable synoptic conditions at the surface - chiefly a
fall in temperature and pressure (Dimri, 2004).

WDs have been the subject of a number of modelling
case studies. The first of these studies (Ramanathan and
Saha, 1972; Chitlangia, 1976) showed that even early, sim-
ple models were capable of producing good approxima-
tions of the synoptic dynamics and movement of WDs.
More recently, the focus of such studies has been on
improvement of associated precipitation forecasts (Das,
2005; Semwal and Giri, 2007; Dimri, 2012; Semwal and
Dimri, 2012; Patil and Kumar, 2016, 2017), as well as
the relative importance of data assimilation (Rakesh et al.,
2009; Dasgupta et al., 2004) and sensitivities to parameter-
isation schemes and ancillaries (e.g. orography, land sur-
face classification) (Thomas et al., 2014; Dimri and Che-
vuturi, 2014; Thomas et al., 2017).

These recent studies indicate that WDs can be well-
simulated in models, however these are typically high-
resolution, regional models with a WD or progenitor al-
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ready in the initial conditions. Thus, we do not know how
well represented WDs are in GCMs1, despite it being an
important question to answer if we are to eventually con-
sider how storms in the South Asian region are affected by
future climate forcings.

At the time of writing, there exists no study that explic-
itly tracks western disturbances in a global climate model
(or group thereof); however, a number of proxies have
been used to assess how well their impact on the region is
simulated in GCMs. Tiwari et al. (2014) showed that the
magnitude of winter precipitation over north India across
five GCMs was generally underestimated, though the dis-
tribution of extreme events was well captured. Their ex-
periments, however, were seasonal forecasts with a one-
month lead time, and thus not strictly free-running. Con-
versely, Palazzi et al. (2015) demonstrated that CMIP5
models exhibit a substantial positive winter precipitation
bias over the Hindu-Kush Himalaya region. Ridley et al.
(2013) used a weather-regime based argument to suggest
that the patterns of surface pressure associated with WDs
are well simulated in a regional climate model. Objective
feature tracking techniques have been used successfully in
climate models for tropical cyclones (Camargo, 2013), ex-
tratropical cyclones (Zappa et al., 2013a,b), anticyclones
(Purich et al., 2014), and tropical depressions (Serra and
Geil, 2017; Sandeep et al., 2018). Western disturbances
have a similar length scale to such systems and should,
therefore, be as easily tracked – as indeed they have been
in reanalysis data (Cannon et al., 2016; Hunt et al., 2018b).

Coupled Model Intercomparison Project Phase 5
(CMIP5) models are known to exhibit significant biases
in summer precipitation over the Indian subcontinent (e.g.
Levine et al., 2013; Sperber et al., 2013; Meher et al.,
2017; Akhter et al., 2017), and the few studies on win-
ter precipitation in the same context suggest that there are
generally positive biases, particularly – as we have seen –
over the Himalayan foothills (Palazzi et al., 2015). Given
that there is some bias over wintertime north India, and
assuming that western disturbances bring most of the sea-
sonal rainfall to the area, can the differences in their sim-
ulated and observed behaviour account for this?

In this study we will adapt the tracking algorithm of
Hunt et al. (2018b) to assess the behaviour of WDs in the
CMIP5 models, how and why these differ from observed
features, and what the sources of intermodel variability
are. This will be the first comprehensive tracking and as-
sessment of WDs in CMIP5 global climate models.

In Sec. 2 we outline the tracking algorithm and data
sources used in this study; in Sec. 3 we compare spatial
and temporal distributions, both among CMIP5 models
and against reanalysis; in Sec. 4 we explore the causes
of intermodel variability in WD frequency; in Sec. 4b we
examine what causes the differences between simulated

1By GCMs here, we explicitly mean those without the benefit of data
assimilation or external forcing, such as reanalyses.

WDs and observed ones; in Sec. 5 we investigate the re-
lationship between simulated WDs and precipitation; fi-
nally, we conclude in Sec. 6.

2. Methods and data

a. Global climate models

For this study, all 23 freely-accessible CMIP5 models
(Taylor et al., 2012) for which 6-hourly wind data were
available were used. Temperature data were not required,
as assumptions about the thermal structure of western dis-
turbances are not made prior to tracking. Where possible,
the r1i1p12 ensemble member was chosen as the represen-
tative of each model. The exception was EC-EARTH, for
which, due to data availability reasons, the member r9i1p1
was used. Although most models have historical runs ex-
tending from 1850-2005, we have chosen to use only the
period for which all models have available data, that is
1950-2005. The historical experiments of all models used
here are forced with observed natural and anthropogenic
contributions.

b. Reanalysis data

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) interim reanalysis (ERA-Interim, Dee
et al., 2011) outputs data on six-hourly timesteps, over 37
pressure levels (cf. 60 model levels), of which 27 are be-
tween 1000 and 100 hPa. It has a spatial resolution of
T255, corresponding to approximately 80 km at the equa-
tor, and spans from 1979 to the present day. Data from
ships, buoys, satellites, and sondes are assimilated. A full
catalogue of WD tracks in ERA-Interim has already been
produced (Hunt et al., 2018b) and is freely available on-
line3. In this study, we will compare ERA-I WD tracks
with CMIP5 WD tracks, though we must re-compute the
former so that the methodology is consistent (see Sec. d).
To do so, we use vorticity data for the whole output period
(1979-2017) at six-hourly intervals.

c. Observational data

The Asian Precipitation-Highly Resolved Observa-
tional Data Integration Toward Evaluation of Water
Sources (APHRODITE; Yatagai et al., 2009, 2012) is a
gridded, gauge-based precipitation product, available at
daily timesteps and a resolution of 0.25◦, covering the pe-
riod 1951-2007. In terms of continuity and gauge den-
sity, it is one of the best precipitation products available
over South Asia (Prakash et al., 2015), and performs well
against satellite-based products (Guo et al., 2015). We will
use this as our “observed” precipitation when comparing

2i.e. first (r)ealisation, first (i)ntialisation, first (p)hysics setup
3http://catalogue.ceda.ac.uk/uuid/

f66c26bcf7684ed29d14a88825884a19
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real to modelled WD rainfall attribution and when looking
at winter precipitation biases in the region.

d. Tracking WDs in CMIP5 data
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FIG. 1. WD tracks for two of the CMIP5 models used in this study.
CMCC-CM has the longest mean track (7058 km), and FGOALS-g2 the
shortest (5815 km). Blue contours mark track point densities of 0.1, 0.5,
1, and 2 year−1 (100 km)−2 respectively. The domain through which all
tracks must pass is marked by the red box.

Objective feature-based (i.e. parcel-following) tracking
of western disturbances has recently been performed on
reanalysis data with a view to exploring the structure and
variability (Hunt et al., 2018b). We use that algorithm
here, with a few modifications. For the reader’s conve-
nience, the entirety of the algorithm, including the neces-
sary changes for use with CMIP5 output, is given below.

1. Compute the six-hourly relative vorticity at 500 hPa.
In previous work with reanalysis data, the 450-
300 hPa mean vorticity was used; however CMIP5
six-hourly output is available only (for this part of
the troposphere) at 500 and 250 hPa. Sensitivity
tests carried out with reanalysis data indicated that
500 hPa was a suitable replacement, the cost being a
slightly shorter average track. Since we are not par-
ticularly interested in the genesis/lysis regions, this is
an acceptable compromise.

2. Truncate the vorticity field at a spectral resolution
of T63 (∼ 200 km at equator). We shall call this
quantity ξ . There are several advantages to this step:
firstly, the orography of the region generates some
noise in the mid-tropospheric vorticity field through
gravity wave production, spectral truncation filters
this out due to its comparatively small spatial scale;
secondly, this resolution is coarser than most CMIP5
models and thus quickly eradicates effects caused by
improved resolving power. We state the caveat that
resolved physical processes in the model, as well as
the upstream Zagros Mountains, are still affected by
resolution and as a result there will be components
of vorticity tendency sensitive to the underlying grid
scale that will not be mitigated by this preprocessing.

3. Locate all local maxima in ξ subject to some radius
δ , such that a point is considered a local maximum if
no points with a distance δ have a greater value of ξ .
We shall call this set of local maxima χi.

4. For each χi, associate local positive nonzero values
of ξ and integrate to find the centroid of ξ for each.
We shall call this set of points Xi.

5. (a) To group the candidate points into tracks: for
each Xi at time point j, seek and attach the near-
est neighbour from time point j + 1, so long
as it is within some distance ∆, using the kd-
tree nearest neighbour algorithm (e.g. Yianilos,
1993).

(b) The efficacy of this step can be increased by
introducing the concept of a background ve-
locity, important when considering the high-
frequency, high-velocity nature of WDs. Here
this is done by biasing the search radius us-
ing the contemporaneous wind field; for ex-
ample, in a wind field, u, the central location
from which the nearest neighbour is sought is
not Xi but Xi +u(Xi) · (t j+1− t j). Simply put,
rather than starting the nearest neighbour search
at the location of the candidate point at the pre-
vious time-point, we assume it is advected by
the background winds and start the search from
the location where it would have ended up after
such advection.

6. We also hold the tracks in memory for one time point,
looking for a candidate in time point j+2 within 2∆

of Xi. This prevents breaking a track into two pieces
unnecessarily in the event of a candidate apparently
disappearing for a single time-point.

7. These resulting tracks are then filtered three times.
Firstly, “stubs” of length shorter than two days are
rejected. Secondly, tracks that do not pass through
Pakistan or north India, defined as 20-36.5◦N, 60-
80◦E (see Fig. 1), are rejected as not of interest to
this study. Thirdly, tracks whose geneses are east of
their lyses and thus do not propagate eastwards are
rejected. Finally, disturbances with a genesis east of
60◦E are filtered out - this serves to remove contam-
ination from mid-tropospheric cyclones that spin up
during the summer monsoon as well as expunging
any vortices that might arise from Hindu Kush and
Himalaya lee cyclogenesis.

8. The values of δ and ∆ were determined empirically
in Hunt et al. (2018b) by running the algorithm over
19 case studies identified from previous literature and
choosing the combination giving the closest match in
the ERA-I reanalysis. These were found to be 850 km
and 1000 km (6 hours)−1 respectively.
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We cannot be certain that tracking vorticity maxima in this
region will yield only WDs or WD-like disturbances with-
out further analysis. Such analysis was completed by Hunt
et al. (2018b) (see Fig. 9 therein) who applied a k-means
clustering method to a multi-field composite of tracked
systems. They found the first order of variance to be inten-
sity (i.e. the magnitude of the fields), and the second order
to be wavelength. Had a different type of system contam-
inated the database, then the first order of variance would
have been structural; that not being the case, we can be
sure that such impurity is negligible.

For illustration, the tracks of the two models with the
shortest and longest mean track lengths (FGOALS-g2 and
CMCC-CM respectively) are given in Fig. 1.

3. Frequency and spatial distribution

a. Frequency

We start by comparing the WD frequencies of each
model for both winter (DJFM) and summer (JJAS) sea-
sons4. Frequency is computed on a daily basis – from
which coarser statistics can be derived – by counting the
number of tracks intercepting the Pakistan-north India do-
main (given in red in Fig. 1).

These are given as violin plots in Fig. 2, with results
from ERA-Interim for comparison. In winter, the CMIP5
multi-model mean of 30.4 season−1 is 0.64 standard de-
viations above the ERA-I frequency of 26.9 season−1;
in summer, the CMIP5 multi-model mean (MMM)5 of
4.8 season−1 is 1.17 standard deviations above the ERA-
I frequency of 2.9 season−1. Comparing the shapes of
the distributions by looking at higher-order moments, the
ERA-I variances are not significantly different from the
distribution of individual model variances for either sea-
son; however, the skewness does significantly differ in
both cases: for winter and summer respectively in ERA-I,
the skewnesses are 0.66 and 0.42, compared with MMM
values of 0.05 and 0.35. In other words, the models tend
to underestimate the relative thickness of the right tail of
the seasonal frequency distributions. For both seasons,
the mean intra-model variance6 and inter-model variance
were not statistically separable, and we thus cannot make
any confident claims on how consistently WDs are rep-
resented across the CMIP5 models; only that when com-
pared to reanalysis, the models do generally well except
for a slight – though not universal, three models underes-
timate summer frequency and five winter – overestimation
of frequency and inability to capture the asymmetries of
the seasonal histograms.

4WDs are typically at their most numerous and most intense dur-
ing the winter months, whereas those that do occur during the summer
months, whilst unusual, can be extremely devastating due to their con-
structive interaction with the monsoon.

5To clarify, we define multi-model mean as the simple average of the
first ensemble member (unless otherwise stated) for all valid models.

6By this, we mean the interannual variance for a given model.

b. Spatial distribution

Fig. 3(a) shows the distribution of WD track genesis
points in ERA-Interim and the difference with the CMIP5
historical MMM; these are each computed by applying
a spherical kernel density estimate to the set of all track
geneses. The overestimation in WD frequency shown in
Fig. 2 is again clear, but the spatial pattern is otherwise
generally well represented, except for a slight underesti-
mation of the eastward and southward extents. Extending
this to all track points, in Fig. 3(b), we see again that al-
though the spatial extent is generally well represented, the
signal from the frequency overestimate is clear. Further-
more, there is a significant eastward extension of the tracks
in CMIP5 compared with ERA-Interim, indicating that the
GCM WDs tend to penetrate more deeply across the sub-
continent and into the central Himalaya. Most of the inter-
model variance in these fields is controlled by variation in
frequency rather than location.

c. Relationship with modes of internal variability

It has been shown that western disturbances tend to
(though not exclusively) feed off baroclinic instabilities
(Hunt et al., 2018a), hence their typically baroclinic struc-
ture (Hunt et al., 2018b). A simple way to indicate this
is demonstrated in Fig. 4 – we take the ‘baroclinic an-
gle’, that is to say the local angle between the density and
pressure isosurfaces which can be computed directly using
∇ρ ×∇p, which is proportional to the baroclinic term in
the vorticity tendency equation (Holton and Hakim, 2012)
– and correlate its monthly means with the western dis-
turbance monthly frequencies. CMIP5 daily field outputs
have a fairly limited vertical resolution, and we have al-
tered the ERA-Interim calculations to reflect that (using
levels at 850, 700, 500, 250, and 100 hPa). Fortunately,
this degradation introduces errors in magnitude not ex-
ceeding 15% in the domain of interest.

The value of the correlation coefficient between baro-
clinic vorticity tendency and WD frequency in ERA-
Interim is given in Fig. 4; computed interannually using
data from the winter months (DJFM, 1979-2016). This is
computed at two levels: 500 hPa (Fig. 4(a)) and 250 hPa
(Fig. 4(a)). At 500 hPa, there is a large area of signifi-
cantly positive correlation, centred over the Persian Gulf;
at 250 hPa this is reduced in size and intensity, and is trans-
lated poleward, over Iran. This corroborates previous find-
ings that WDs lean poleward with height, that they have
a vorticity maximum near 500 hPa, and that they seem
to intensify rapidly on approach to the Hindu Kush and
Karakoram (Hunt et al., 2018b).

Figs. 5(a) and 5(b) show the CMIP5 (historical) multi-
model mean values of the interannual correlation coeffi-
cient at 500 hPa and 250 hPa respectively. These are com-
puted in the same way as they were for ERA-I for each
model, except for different dataset lengths, with the mean
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FIG. 2. Violin plots denoting the estimated density functions for annual frequencies of western disturbances in each of the 23 CMIP5 historical
experiments used in this study, separated by season: Dec-Mar in blue, and Jun-Sep in red. Bounds indicate the extrema, with the central ticks
indicating the means. The equivalent functions for ERA-Interim are given at the top.

of the results given here. The results are broadly the same
as in Fig. 4, albeit slightly reduced in magnitude: a large
area of significantly positive correlation located roughly
over the north Arabian Sea at 500 hPa, which at 250 hPa
shrinks and migrates poleward (and westward). These
similarities strongly imply two key results: firstly that the
structures of WDs in CMIP5 models are close to those in
reanalysis, although this cannot be demonstrated directly
due to the limited vertical resolution of the output from the
former; and secondly that the processes governing devel-
opment and subsequent intensification are also well repre-
sented. Note also that at 500 hPa (Figs. 4(a) and 5(a)), the
areas of highest correlation are co-located with the regions
of highest track genesis density in Fig. 3(a).

4. Causes of intermodel variability

a. Resolution

Horizontal resolution has been shown to be an impor-
tant control in tropical cyclone frequency and intensity
in GCMs (Roberts et al., 2015); though work on CMIP3
models has suggested that this is likely down to the lo-
cal vorticity tendencies rather than larger-scale progenitors
(Walsh et al., 2013). The relationship of model resolu-
tion with frequency or intensity of mesoscale or synoptic-
scale systems in the vicinity of the Indian subcontinent has
not been explored in depth, though it has recently been
shown that higher model resolution leads to increased in-
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FIG. 3. Spherical kernel density estimates [year−1 (5◦ spherical cap)−1] for (a) track genesis points and (b) all track points. CMIP5 multi-model
mean densities given in coloured contours; the difference (CMIP5 minus ERA-I) in line contours.
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FIG. 4. Interannual correlation coefficients between the monthly mean baroclinic angle at (a) 500 hPa and (b) 250 hPa and the monthly western
disturbance frequency, computed using ERA-Interim, December - March. The reanalysis data were coarsened to match the available vertical
resolution from the CMIP5 output, so that calculations based on vertical gradients were consistent. Stippling indicates where the correlation
coefficient was significant at the 90% confidence level. Note that the colour scales differ between here and Fig. 5.
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FIG. 5. As Fig. 4 but instead showing the multi-model mean of correlations computed for each CMIP5 model. Stippling indicates where at least
half of the models had a correlation coefficient that was significant at the 90% confidence level. Computed for December - March.
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FIG. 6. Mean WD frequency as a function of resolution, subset by thresholds in (a) genesis longitude and (b) peak intensity, computed using
500 hPa truncated vorticity. Effective gridlength is defined as the geometric mean of the longitude and latitude spacings. Popular resolutions are
provided for reference on the additional abscissa. Values for ERA-Interim are denoted by crosses for each case.

tensity and track length of monsoon depressions in an
NWP framework (Hunt and Turner, 2017).

The intermodel relationship between resolution and
tracked WD frequency is shown in Fig. 6. There is a clear
correlation between the two: increasing resolution is as-
sociated with a significant increase in WD frequency; for
example, a linear regression suggests that decreasing the
effective gridlength from 3◦ to 1◦ will raise the average
frequency of simulated WDs from 45 year−1 to 65 year−1.
The correlation coefficient across all WDs with resolution
(i.e. the red lines in Fig. 6) is -0.68. Fig. 6(a) shows how
this relationship changes for subsets of events whose gene-

ses are west of 50◦E and 20◦E respectively. The relative
slope (i.e. gradient over absolute value) does not vary sig-
nificantly across the three categories, and thus the null hy-
pothesis that resolution has no bearing on upstream gene-
sis longitudes cannot be rejected.

In contrast, Fig. 6(b) shows that there are strong varia-
tions in slope between the three threshold categories, when
using peak intensity7. Here, the trendline gradients do

7Here, we define peak intensity as the largest value of T5-T63
spectrally-bandpassed 500 hPa relative vorticity8 achieved by a west-
ern disturbance when over Pakistan or India. This has been shown to be
a good proxy for rainfall (Hunt et al., 2018b).
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FIG. 7. Probability density functions for peak WD intensity – mea-
sured using the 500 hPa relative vorticity, as in Fig. 6(b) – for each
model (solid) and ERA-Interim (dashed), coloured by model resolution.

not decrease relatively with increasing thresholds. Instead,
they suggest that higher resolution models are more likely
to spawn higher intensity WDs. As previously mentioned,
decreasing the effective gridlength from 3◦ to 1◦ will raise
the annual frequency of all WDs by about 40%, but will
raise the frequency of the strongest WDs - those which
reach a mid-tropospheric vorticity exceeding 10−4 s−1 -
by about 450%. This result is similar to that previously
found for tropical cyclones, which indicate that there are
preferential increases in the most intense storms with res-
olution (e.g. Roberts et al., 2015).

The relationship between resolution and peak inten-
sity can be quantified further by looking at the proba-
bility density functions in Fig. 7. The CMIP5 models,
whose individual PDFs are given by the solid coloured
lines, show a marked shift with increasing resolution: both
the mean and median increase by over 50% across the
range, though perhaps more importantly, the right tail ex-
hibits a strong sensitivity to resolution. This suggests that
higher-resolution models are capable of regularly simulat-
ing WDs with intensities three to four times higher than
the median, which is very different to the statistics of
ERA-I WDs.

It is clear that resolution is responsible for a great deal
of the intermodel variance in WD frequency; now, we con-
sider what mechanism might cause increased resolution
to spawn more WDs. It has been shown previously that
the location of the subtropical westerly jet is the strongest
control on the frequency of WDs incident on India (Hunt
et al., 2018b), so we start by regressing mean model boreal
winter (Dec-Mar) zonal wind at 200 hPa against model
resolution (measured using the aforementioned grid spac-
ing), and this is shown in Fig. 8. Recalling that a positive
coefficient would imply a strengthening of winds under a
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FIG. 8. Correlation of model mean DJFM 200 hPa zonal wind with
model grid spacing (as defined in Fig. 6). The climatological winter jet
axis (i.e. latitude of greatest 200 hPa zonal wind) computed using ERA-
Interim is given by the green line. Stippling indicates regions where the
correlation is significant at the 90% confidence level.
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FIG. 9. Mean DJFM subtropical westerly jet statistics for CMIP5
historical experiments and ERA-Interim, computed between 30◦E and
80◦E, at 200 hPa, using zonal wind speed. Top/red: jet thickness, de-
fined as the mean meridional distance between isotachs of 30 m s−1;
centre/blue: mean latitude of the zonal wind speed centroid, i.e. the
centre of the jet; bottom/yellow: mean core speed, i.e. the mean of the
highest wind speed at each longitude. Given for each are the trendlines
and correlation coefficient for the CMIP5 values.

coarsening of resolution, we note therefore that in lower-
resolution models the jet appears slightly weaker (though
not significantly so) over central and north India, as well
as upstream. Conversely, there are significantly stronger
upper-level winds north of 30◦N in lower-resolution mod-
els, across almost the whole continent.

This is most readily interpreted as the jet being clima-
tologically wider in GCMs with a low resolution. To see
whether or not this is the case, some mean winter jet statis-
tics were computed for each of the CMIP5 models, as well
as ERA-Interim. These are given in Fig. 9, and show the
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relationships between model resolution and jet thickness,
location, and core speed, computed over 30◦E-80◦E; we
see that at a lower resolution the jet is markedly wider, as
well as being slightly stronger and positioned at a slightly
lower latitude, which is in agreement with Lu et al. (2015).
The correlation coefficients for thickness and speed are
significantly different from zero at the 90% confidence
level (though the latter is not at 99%). With a correlation
coefficient of 0.4, the jet thickness explains more variabil-
ity than either of the other metrics suggested - consistent
with Fig. 8.

b. Biases

It has been shown both here and in previous litera-
ture (Hunt et al., 2018a) that the isopycnal-isobaric angle
(shortened here to baroclinic angle) is an important up-
stream predictor of winter WD frequency in both reanaly-
sis and GCMs. A logical extension to this is to see if there
is a bias in the baroclinic angle that can account for the
general positive bias in winter WD frequency in GCMs
(e.g. Fig. 2). In this section, CMIP5 and ERA-I climatolo-
gies are computed for a common time period (1979-2005)
to ensure that resulting comparisons are robust. Fig. 10
shows the biases in the winter (DJFM) climatologies of
the baroclinic angle, given as a percentage error with re-
spect to the reanalysis. At 500 hPa (Fig. 10(a)), there is a
negative bias over most of Asia, except for a zonal belt be-
tween about 15◦N and 20◦N. In that belt, the bias becomes
positive, almost reaching 20% over the north Arabian Sea
and north India. Conversely, at 250 hPa (Fig. 10(b)), there
is a negative bias (i.e. the GCMs typically make the angle
too small) over the entire region of interest; exceeding a
20% error over much of the domain, though substantially
smaller upstream of the Hindu Kush.

At both levels, the areas of most positive bias (except-
ing some areas of equatorial ocean at 250 hPa) are found,
with similar size and shape, in the same locations as the
genesis maxima of Fig. 3(a) and the correlation maxima of
Fig. 5. This suggests that because the baroclinic angle is
substantially overestimated in the GCM mid-tropospheres,
CMIP5 models have a positive bias in winter WD fre-
quency.

Given the previously established relationship between
WDs and the subtropical westerly jet both here (Fig. 8)
and in previous work (Hunt et al., 2018b), we would be
remiss not to examine its representation in CMIP5 models.
We apply the definition of p(jet) used by Schiemann et al.
(2009), that is:

pjet =

{
1 u > 0 and |u|> 30 m s−1

0 otherwise
. (1)

This is applied to daily data at 250 hPa9 for both reanal-
ysis and model output. Fig. 11 shows the winter clima-
tologies of p(jet) for ERA-I and the CMIP5 MMM; over-
laid stippling indicates where the correlation coefficient
between the monthly means of p(jet) and the monthly WD
frequency is significant. It appears that both the jet, and
resulting WD sensitivity are quite well represented in the
GCMs; crucially, there is a significant correlation between
the location of the jet edges upstream of (and over) India
and Pakistan, and in this region the location and gradient
of these edges are comparable to reanalysis.

On the balance of evidence presented here, we conclude
that the strongest cause of the positive bias in WD fre-
quency and intensity is a positive upstream bias in mid-
tropospheric baroclinic vorticity tendency.

5. Precipitation

As discussed in the introduction, some substantial bi-
ases in winter precipitation are known to affect this region
in CMIP5 models (Palazzi et al., 2013, 2015), particularly
over the Himalayan foothills. Fig. 12(a) shows the ratio
of climatological winter rainfall in CMIP5 models (1950-
2005) to observed (APHRODITE; 1951-2007). We have
presented in this way, as opposed to an absolute difference,
because of the large precipitation maximum along the Hi-
malayan foothills – wherein a small fractional change of
relative unimportance could dwarf much large fractional
changes elsewhere.

It is clear that across almost all of India and north Pak-
istan, there is a marked wet bias, reaching as much as a
factor of three in Gujarat. Even poorer is the overestimate
of seasonal precipitation over the Tibetan Plateau (n.b. this
is where the APHRODITE gauge density is lowest), which
is a known issue (Su et al., 2013), and beyond the scope of
this study. There is a small area of dry bias, too, in south
Pakistan and Afghanistan.

To complete this discussion, we also consider the rela-
tionship between ERA-Interim and CMIP5 precipitation
(see Fig. 12(b)). We see that only some of the biases from
Fig. 12(a) persist: notably the slight positive bias over Gu-
jarat and the significant wet biases at the edge of the Ti-
betan Plateau. The cause of the former is not clear, but the
latter is almost certainly due to inadequate representation
of the Tibetan orography at the relatively coarse resolu-
tions of GCMs and reanalyses. It is interesting to note that
the positive precipitation bias over the centre of the Ti-
betan Plateau in CMIP5 models does not persist in ERA-
Interim, suggesting that the aforementioned representation
problem is leading to some larger-scale dynamical bias.

9Conventionally this is computed at 200 hPa, but wind speeds are
not available for model outputs at that level at the required temporal
resolution.
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FIG. 10. Percentage error in climatological DJFM baroclinic angle in the CMIP5 multi-model mean, compared with ERA-Interim, at (a) 500 hPa
and (b) 250 hPa.
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FIG. 11. Climatological winter values of p(jet) at 250 hPa for (a) ERA-Interim and (b) the CMIP5 MMM. Stippling indicates where the
correlation coefficient between monthly means of p(jet) and the associated monthly WD frequencies is significantly different from zero at the
two-tailed 90% confidence level, and for CMIP5 where this is true in at least half of the models. In each case, p(jet) is computed on daily data
before the relevant means are taken.
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FIG. 12. Bias in climatological winter (DJFM) precipitation, computed as the logarithm of the ratio of CMIP5 MMM precipitation and (a)
APHRODITE gridded gauge data or (b) ERA-Interim forecast precipitation. Data over oceans are not defined in APHRODITE and are thus not
given here. The 2000 m smoothed isohypse is given in black.
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FIG. 13. Correlation coefficient between model grid size and cli-
matological winter (DJFM) precipitation. Model grid size is defined as
in Fig. 6, i.e. the geometric mean of longitudinal and latitudinal grid
spacings. Stippling indicates where the correlation coefficient is signif-
icantly different from zero at the 90% confidence level. The 2000 m
smoothed isohypse is given in black.

To further explore the relationship between model reso-
lution and precipitation, Fig. 13 shows the correlation co-
efficient between model grid-spacing (as defined in Fig. 6
and associated text) and climatological DJFM precipita-
tion. Where the correlation value is positive, increasing
the model grid spacing will result in increased precipita-
tion (and vice versa for model resolution); we expect WD-
caused precipitation to fall into this category, because –
as we have seen – increased model resolution leads to
more populous and more intense WDs. There is a sub-
stantial tongue of negative correlation over the head of the
Arabian Sea and towards the Hindu Kush, leading into a
maximum in the western foothills of the Himalaya. Con-
versely, across the windward edge of the Himalayas, there
is a band of significant positive correlation (that is, in-
creasing model resolution acts to reduce climatological
precipitation). It is not clear what causes this, but it is pos-
sible the enhanced precipitation upstream – perhaps due
to improved resolution of the Himalayan front, increased
WD activity, or both – results in less precipitable moisture
over the southern Tibetan Plateau. The roles played by
moisture transport and larger scale dynamics are signifi-
cant in WD-generated precipitation (Cannon et al., 2016;
Hunt et al., 2018c), and though beyond the scope of this
manuscript, should be the subject of future work.

So, to what extent can we attribute these biases to mis-
representation of western disturbances? We have seen
already that these GCMs tend to overestimate WD fre-
quency by an average of about 15% in the winter, and
further that they tend to drastically overestimate the in-
tensity, particularly in the tail. We can start to explore this
relationship by using simple attribution plots.

Fig. 14(a) shows the climatological winter (DJFM) pre-
cipitation that can be attributed to western disturbances us-
ing a naı̈ve radius-of-influence approach with tracks from
ERA-Interim that are described in Sec. 2d. Simply, we
take a fixed radius-of-influence, 800 km, derived from
Fig. 11 of Hunt et al. (2018b); then precipitation occur-
ring at a point on a day in which a WD passes within this
distance is attributed to that WD. For the CMIP5 case, In
areas of northwest India and Pakistan, over 60% of the
winter precipitation occurs in the vicinity of a western dis-
turbance. Of this, about 85% is provided by the strongest
half of systems.

We compute the attribution in the same way for CMIP5
models, before taking the overall mean as shown in
Fig. 14(b). The two attribution maps demonstrate a strik-
ing similarity. Though the CMIP5 MMM is generally
smoother in form, it too has a maximum of almost 70%,
and indicates the strong influence of WDs on winter rain-
fall in Pakistan and north India. Perhaps surprisingly,
given the bias shown in Fig. 12, the attribution is well-
represented along the Himalayan foothills and into the Ti-
betan Plateau.

What we can deduce from this, therefore, is that the
misrepresentation of WDs is responsible for most of the
north Indian winter wet bias in CMIP5 models. We can-
not state with certainty, however, whether this is due to
the intensity bias or the frequency bias, since more intense
WDs are correlated with heavier associated precipitation
in observations (Hunt et al., 2018b).

To isolate these potential causes is nontrivial. In an
inter-model context, resolution exerts a strong control on
both WD frequency and intensity; whereas in an intra-
model context, upstream baroclinicity causes the same
problem. We use the method of partial correlation to dis-
entangle the potential contributions. Consider two vari-
ables x and y which potentially have a relationship with
a third variable, z. Their correlation independent of the
influence of z is computed by taking the residuals from
their respective linear regressions with z, δx and δy and
instead computing the correlation between these. For our
case, where only one variable is to be held constant, the ex-
pression for the correlation coefficient has a simple closed
form:

ρ(x,y)|z =
ρ(x,y)−ρ(x,z)ρ(y,z)√
1−ρ(x,z)2

√
1−ρ(y,z)2

, (2)

where ρ is the correlation coefficient and the left hand side
is evaluated holding z constant. Here, we assign precipita-
tion to x and intensity and frequency interchangeably to y
and z.

Fig. 15(a) shows the partial correlation between
monthly precipitation and monthly WD frequency, hold-
ing mean intensity constant. As one would intuitively
expect, there is a widespread positive trend; more WDs
means more rainfall. The correlation coefficient peaks
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FIG. 14. Fraction of climatological winter (Dec-Mar) precipitation that can be explained by western disturbance activity. Computed using (a)
APHRODITE daily gridded gauge data [1951-2007] and (b) CMIP5 precipitation data [1950-2005]. The attribution (see text) is computed for each
model before the mean is taken.
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(b) Intensity

FIG. 15. Multi-model mean partial correlation coefficient between winter (DJFM) monthly precipitation and (a) monthly WD frequency and (b)
mean monthly peak WD intensity; in each instance holding the other variable constant. Red contours on each indicate the CMIP5 MMM winter
precipitation [mm day−1]. Stippling indicates where more than half the models indicate a significance exceeding 95%.

over the foothills of the western Himalaya, and is signifi-
cant almost everywhere, until the sign the the relationship
changes to negative over the Bay of Bengal and some parts
of the Tibetan Plateau. This pattern is largely in agreement
– as it ought to be, to a first order approximation – with
Fig. 14(b).

Fig. 15(b) shows the partial correlation between
monthly precipitation and monthly mean (peak) intensity,
while holding WD frequency constant. Here, the relation-
ship pattern is more striking, there is a dipole whose posi-
tive peak is situated at the southwest corner of the Tibetan
Plateau and whose negative peak is spread across the Bay
of Bengal and Arabian Sea near the south of the peninsula.
This implies that during months where the models produce

stronger WDs, there is more precipitation being generated
over the Himalayas and Tibetan Plateau (and to a lesser
extent, over the Hindu Kush and Karakoram). This rela-
tionship is partially corroborated by previous work, which
shows that stronger western disturbances produce heavier
precipitation (Hunt et al., 2018b), and that extreme precip-
itation events in winter in this region are strongly depen-
dent on meridional moisture flux (Hunt et al., 2018c).

The overall positive bias appears to be related to
the overestimation of WD frequency in CMIP5 GCMs,
whereas the meridional gradient of that bias (i.e. that it
is more positive towards the Himalayan massif) seems to
be due to the general overestimation of WD intensity.
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6. Conclusion and summary

An assessment of the behaviour of western disturbances
(WDs) over 23 CMIP5 models was carried out, with the
foci of the investigation being the sources of inter-model
and intra-model variability as well as multi-model mean
biases against reanalysis. WDs were objectively tracked
in the historical (1950-2005) runs of each model, as well
as ERA-Interim reanalysis for comparison, using 500 hPa
relative vorticity and a domain filter.

Marked variability was found in the climatological
WD frequencies between models. These frequencies are
strongly anticorrelated with model grid-spacing (i.e. a
higher resolution model tends to produce more WDs),
with evidence indicating that this is due to coarser mod-
els producing a wider subtropical jet that tends to carry
disturbances (which are embedded in its northern flank)
too far north of India. An alternative explanation is that at
lower resolutions the interaction of the jet with the Hindu
Kush/Karakoram orography – which is partially respon-
sible for the generation/spin-up of WDs – is increasingly
poorly represented.

On average, CMIP5 models tend to slightly overesti-
mate the frequency of WDs. Furthermore, models with
higher resolution tend to generate higher-intensity WDs.
This effect is particularly pronounced in the tail of the dis-
tribution, where the highest resolution models can occa-
sionally create WDs with intensities far higher than those
tracked in ERA-Interim reanalysis.

Upstream baroclinic vorticity tendency (baroclinic an-
gle) has previously been shown to be an important con-
tribution to both the genesis and intensification of WDs
(Hunt et al., 2018a). Here it has been shown that the spa-
tial covariance of this parameter with downstream WD fre-
quency is represented well in the multi-model statistics in
both the mid and upper troposphere. This indicates that the
process by which models are spinning up western distur-
bances is accurate compared to reanalysis, and hence that
their gross structures likely follow suit; however, we can-
not probe this directly in the multi-model database, since
multiple vertical levels are not provided at six-hourly fre-
quency.

There is, however, a large positive bias in mid-
tropospheric baroclinic angle over much of the region
where it is significantly correlated with WD frequency.
Such a prominent bias is not found in other fields to which
WD genesis is sensitive (e.g. proxies of jet location and
strength), which indicates that this bias is likely the source
of the models’ propensity to overestimate WD frequency
and intensity.

The most important characteristic of western distur-
bances, from an impacts point of view, is the winter pre-
cipitation associated with them. Using a simple radius-
threshold attribution method, it was shown that WDs bring
over 70% of the climatological winter precipitation to

much of north India and Pakistan, and that the spatial at-
tribution pattern is very similar in the CMIP5 MMM cli-
matology. This attribution fraction is not homogeneous,
however: it is over 40% across much of the Hindu-Kush
and Himalayan foothills, and as high as 30% even through
into West Bengal. These values indicate just how impor-
tant a component orographic forcing is in the context of
WD precipitation.

Moreover, there exists a marked winter wet bias over
South Asia in these GCMs, which could thus, in theory,
be linked to the WD frequency bias. Using a novel cor-
relation technique, it was shown that in general this bias
can indeed be explained by overestimated WD frequency,
and that its spatial variability was more likely explained
by simulated WDs having too high an intensity.

One obvious avenue for future work is the exploration
of WD characteristics in future climate scenarios; it has
been shown here that WDs are sufficiently well repre-
sented in CMIP5 models to allow such analysis, and there
now exists a tracking framework upon which to base it.
However, future studies should be aware of the shortcom-
ings found in this work – most importantly biases in fre-
quency and intensity.

Further work should also seek to frame the results of
Sec. 5 in the context of large-scale dynamics and ther-
modynamics; these, as well as synoptic-scale moisture
transport have been shown to be important contributors to
the precipitation caused by western disturbances (Cannon
et al., 2016; Hunt et al., 2018c). Such work should also
seek to attribute precipitation on an event-by-event ba-
sis, rather than the statistical approximation we have used,
which would allow much deeper analysis of the problems
presented here. Furthermore, a detailed analysis on the
role of orography and lee cyclogenesis is required to fully
understand the impact model resolution has on circulation
in this region.
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