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Teleosts such as tunas and billfish lay millions of tiny eggs

weighing on the order of 0.001 g, whereas chondrichthyes such

as sharks and rays produce a few eggs or live offspring weighing

about 2% of adult body mass, as much as 10 000 g in some

species. Why are the strategies so extreme, and why are inter-

mediate ones absent? Building on previous work, we show

quantitatively how offspring size reflects the relationship

between growth and death rates. We construct fitness contours

as functions of offspring size and number, and show how

these can be derived from juvenile growth and survivorship

curves. Convex contours, corresponding to Pearl Type 1 and 2

survivorship curves, select for extremes, either miniscule or

large offspring; concave contours select for offspring of inter-

mediate size. Of particular interest are what we call critical

straight-line fitness contours, corresponding to log-linear Pearl

Type 3 survivorship curves, which separate regimes that select

for opposite optimal offspring sizes.
1. Introduction
A fundamental trade-off in life history is how overall reproductive

effort is allocated to produce either many small or a few large off-

spring (e.g. [1–3]). An especially dramatic example in animals is

afforded by marine fish, which exhibit one of the two extreme repro-

ductive strategies, while the size of offspring varies by at least 7

orders of magnitude (figure 1). The large teleosts (bony fishes that

include tunas, billfish, marine sunfish and groupers) have external

fertilization and produce enormous numbers of tiny eggs that

hatch out as free-living larvae [5–8]. Teleost egg size averages

about 1 mg and is only very weakly correlated with adult body
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Figure 1. Body mass of newborn chondrichthyes (green squares) and teleosts (red circles) as a function of adult body mass. Data from
FishBase compiled December 2016 [4] using conversions mass (g)¼ 0.01 length (cm)3 except egg mass (g)¼ 0.52 diameter (cm)3. OLS
regression for chondrichthyes (+s.e.): log10 offspring wt ¼ 20.94+ 0.26 þ 0.76+ 0.06 log10 adult wt (t96¼ 13.8, p� 0:001).
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size. The chondrichthyes (cartilaginous sharks, rays and chimeras) and the ‘living fossil’ coelacanth have

internal fertilization and produce a relatively small number of relatively large offspring, either large,

well-protected eggs or live-born young. The size of newborn chondrichthyes scales positively and is on

average 2% adult body mass (range 0.01–15%, figure 1, [8–12]). Some large sharks give birth to live off-

spring weighing more than 10 000 g.

So, a challenging question is how have these two groups of marine fish, with such contrasting life his-

tories, been able to occur together for about 200 Myr in many different marine habitats. This question has

been the subject of repeated investigation [3,6,7,12–17]. Producing large, well-developed offspring can be

viewed as a form of parental care, and hypotheses to explain the well-documented correlation between par-

ental care and propagule size in animals have focused on how mortality rates of offspring vary with their

size [16]. Computer simulations of foraging suggest that the many-small tuna strategy does best when prey

are abundant and clumped [6]. This led to the suggestion that the teleost explosion was driven by the con-

current evolution of the copepods, which provided a rich food source for their numerous, tiny larvae [13].

Using simple assumptions from metabolic scaling theory about the size-dependence of growth and death

rates [8,12] showed that ordinarily the tuna strategy is best, but if death rate becomes increasingly density-

dependent with increasing juvenile size, this may give the advantage to a shark strategy, leading to the

observed positive correlation between the sizes of offspring and adults.

Existing theory and data beg the question of why the shark-tuna dichotomy represents two alterna-

tive evolutionary stable strategies. The long history of coexistence of diverse chondrichthyes and teleosts

suggests that the extreme few-large and many-small offspring strategies are approximately equally fit,

whereas intermediate strategies are absent because they have been selected against. In this paper, we

show how fitness contours can be obtained directly from juvenile growth and survivorship curves,

and build upon earlier studies to obtain more general results showing how the shark and tuna strategies,

with either a few, large or many small offspring, can confer equal fitness. We follow others in assuming

the existence of an allocation trade-off such that the product of offspring size and number is fixed. When

this assumption holds, we show that when the death rate of juveniles exceeds the growth rate, the shark

strategy is fitter because more offspring survive to adulthood, but when the growth rate exceeds the

death rate, the tuna strategy is superior because some, out of the enormous number of tiny offspring,

grow fast enough to survive to adulthood.
2. How fitness contours select for initial offspring size
In this section, we characterize the optimal reproductive strategy in terms of offspring size and number.

The action of selection is investigated by calculating the fitness consequences of reproductive options.

http://rsos.royalsocietypublishing.org/


lo
g 

nu
m

be
r 

of
 o

ff
sp

ri
ng

log mass of offspringlog mass of offspring log mass of offspring

10–1–2–3–4

5

4

3

2

1

0

5

0–10

–
–5

–15

10–1–2–3–4

5

4

3

2

1

0

43

21

0
10–1–2–3–4

5

4

3

2

1

0

growth rate > death rate death rate > growth rate

S

L

S

L

S

L

(a) (b) (c)

Figure 2. Reproductive options and fitness contours represented in loge – loge plots of initial offspring number y0 versus initial
offspring mass x0. (a) The reproductive options, represented by the red constraint line, lie on a straight line of slope – 1. The
smallest size strategy, S, is to produce the maximum possible number of tiny offspring; the largest size strategy, L, is to produce
a single offspring of the largest possible size. (b) If growth rate exceeds the death rate, the optimal strategy is indicated by the black
star labelled S. Reproductive options with fitness contours are represented by black lines, and the green arrow indicates the direction
of selection increasing fitness subject to the physiological constraint. Fitness contours are drawn using equation (2.2) for a case in
which growth rate exceeds death rate by a factor of five, so that d/g ¼ 1/5. (c) If growth rate exceeds death rate, the optimal
strategy is indicated by the black star labelled L.
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Net reproductive rate, R0, is used as the underlying measure of fitness, and it is assumed that populations

using the optimal strategy are in steady state at R0 ¼ 1 [18,19]. We do not consider here how density depen-

dence maintains the population at steady state, but assume implicitly that this is achieved by adjustments of

the components of R0 (‘ecological compensation’ [20]). In simple iteroparous life histories in which fecund-

ity n is the same each time an individual breeds, juvenile survivorship is Sj and adult survivorship between

reproductive events is Sa; net reproductive rate is given by R0 ¼ nSjð1þ Sa þ S2
a þ S3

a þ � � �Þ. In the analysis

that follows we are only interested in life-history options from birth until the offspring reach a certain size

mL, so we assume Sa and survivorship from mL to adult size are both fixed and use the number of offspring

that survive from each breeding event to size mL as our operational fitness measure.

We follow previous analyses in evaluating how the optimal reproductive strategy reflects a trade-off

between offspring size and offspring number (e.g. [1–3]). In describing the model, we assume that maternal

resources each time the adult breeds are fixed and there is an allocation trade-off between number, N0, and

size, m0, of offspring such that total biomass, N0 m0, is constant. Our results depend critically on this specific

form of the trade-off. On logarithmic axes, the constraint that N0 m0 is constant appears as a straight line with

slope ¼ 21, as illustrated by the red lines in figure 2, and the possible maternal strategies are points along

these red lines. We ask how the optimal strategy depends on the growth and death rates of juveniles. We

choose to work in terms of per capita death rates, d, and relative growth rates, g, which are rates of

growth per unit mass. Both d and g are given per unit time, which will commonly be year21. We assume

that juvenile growth and death rates both depend only on juvenile body mass, m.

We write expressions in terms of natural logarithms (base e), using subscripts S and L to indicate the

extreme strategies: either many small or few large offspring. So the smallest possible offspring size is mS,

and the largest possible, if only one is produced, is mL. For the present discussion, we define juveniles as

individuals of any size greater than mS but less than mL. We write x ¼ logem and y ¼ logeN. In these

terms, the possible maternal strategies are the points x0, y0 on the red lines in figure 2.

Consider the fate of N0 juveniles of initial mass m0. If their per capita death rate when they are of size x
is d(x), then:

The number surviving from size x0 to x, is

N ¼ N0expð�
ð

dðxÞdtÞ, ð2:1aÞ

where the integration runs from the time when the initial size is x0 to when size is x. The relative growth

rate, ð1=mÞðdm=dtÞ, is equal to dx/dt, let this be written g(x). Substituting for dt in equation (2.1a) gives

the following

The number surviving from size x0 to x, is

N ¼ N0exp �
ðx

x0

dðxÞ
gðxÞ dx

� �
, ð2:1bÞ

i.e.

y ¼ y0 �
ðx

x0

d(xÞ
gðxÞ dx: ð2:1cÞ

http://rsos.royalsocietypublishing.org/
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Figure 3. Fitness contours plotted as in figure 2 together with the ratios of death to growth rates that generate them. (a,c) show
the ratio of death to growth rate plotted in relation to offspring mass, dashed horizontal lines show where death rate ¼ growth
rate. (b,d ) show the resulting fitness contours. In (a,b), d/g ¼ 21

2 log(offspring mass) and this results in concave fitness contours,
selecting for an intermediate optimum. In (c,d ), d/g ¼ 2 þ 1

2 log(offspring mass) and the resulting fitness contours are convex. This
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As the logarithm of the number of offspring surviving to the largest possible size mL is our operational

measure of fitness, F ¼ yL, we can substitute this and rearrange equation (2.1c), to obtain the following:

y0 ¼ Fþ
ðxL

x0

dðxÞ
gðxÞ dx: ð2:2Þ

The above equation can be used to plot fitness contours, showing the fitness of x0, y0 strategies, as in

figures 2b,c and 3. Selection favours evolutionary change perpendicular to the fitness contours, but the

options are constrained to lie on the red trade-off line. Figure 2 shows the conditions when the ratio of

the death rate to the growth rate remains constant over offspring size. If the relative growth rate, g, is greater

than the death rate, d, then the smallest size strategy S is fitter, because the fitness contours have shallower

slope than the reproductive options (black lines shallower than red line in figure 2b). The net result is evol-

ution along the red line towards S. Conversely, if the death rate of juveniles is greater than the growth rate,

then the largest size strategy L is fitter, as in figure 2c.

If death rate and/or growth rate change with increasing offspring size, then fitness may reach a mini-

mum or maximum at an intermediate position on the constraint line as shown in figure 3. If the death rate

shifts from being greater to lower than the growth rate as juvenile size increases, then the fitness contours

are concave and optimal strategy is to produce offspring of intermediate size as in figure 3b. Conversely,

if growth rate is higher than the death rate at the smallest sizes but this reverses as juvenile size increases,

then the fitness contours are convex and optimal strategy is to produce offspring of one or the other of the

extreme sizes as in figure 3d.

3. Fitness contours have the same shapes as mass – abundance curves
Until now, we have considered the fitness consequences of the mother producing some combination of

number and size of offspring, and we have seen how the optimal strategy depends on the shape of the fit-

ness contours in a space with axes the number and size of offspring. In broad terms, the conclusion is that

optimal offspring size depends on how growth and death rates vary as the offspring develops. But, how

selects for extreme strategies. See text for further details.

http://rsos.royalsocietypublishing.org/
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growth and death rates vary over ontogeny is also key to the characterization of life histories. Life histories

have traditionally been described by survivorship and growth curves, plotting the logarithm of survivor-

ship as a function of age, and body mass as a function of age. Pearl [21] plotted survivorship as a function of

age and categorized the empirical curves into qualitative ‘types’ based on their shapes. Here, we are con-

cerned only with survivorship and growth of juveniles (i.e. from hatching or birth until the age of first

reproduction). The slope of the log survivorship curve is the per capita death rate, and the slope of a log

body mass curve is the relative growth rate. In the following sections, we will show that because both sur-

vivorship and growth curves are functions of age, age can be factored out, allowing us to express the

number of surviving offspring as a function of their individual body masses, as in figure 4. This enables

us to obtain what we term mass–abundance curves. Mass–abundance curves have the same shapes as fitness

contours, because they were generated by the same death and growth functions (see the electronic sup-

plementary material for formal proof). So, the convex Type 1 curve in figure 4 has the same shape as the

fitness contours in figure 3d, and the concave Type 3 curve has the same shape as the contours in figure 3b.
4. Inferring fitness contours from juvenile growth and survivorship curves
Mass–abundance curves can be constructed from juvenile survivorship and growth curves in relation to

age. This is because the growth curve gives body mass as a function of age, so the inverse function gives

age in relation to body mass, and this allows survivorship to be rewritten as a function of body mass.

A worked example is given in figure 5. Although our results are general, for realism as well as ease of

exposition we assume the growth curves are of Bertalanffy type, an example is shown in figure 5b.

Of the types of survivorship curves designated by Pearl ([21]; figure 5a), three are relevant to juvenile

survivorship considered here: log linear (Pearl Type 2), where the per capita death rate is constant, inde-

pendent of age; convex (Pearl Type 1), where death rate is low initially and increases with age; and

concave (Pearl Type 3), where death rate is high initially and decreases with age. Together, growth

and survivorship curves determine the shape of mass–abundance curves, as shown in figure 5c. Impor-

tant here is the consideration that the survivorship curves might theoretically be any of the three types

(death rate independent of age, high early, or highly late in ontogeny), depending on the causes of mor-

tality in the environment. By contrast, Bertalanffy and other realistic growth curves are constrained by

physiology so that growth rate decreases with age and converges to zero as adult size is approached.

This is indicated by the spacing between the points representing equal time intervals in figure 5b.

To see how the growth and survivorship curves determine the shape of mass–abundance curves,

note that the points in figure 5 are plotted at consecutive time intervals. There is a large increase in

the logarithm of mass in the first time interval (figure 5b) and the first two points in the mass–abundance

plot are horizontally displaced by an equivalent distance (figure 5c). The decrease in survivorship in the

http://rsos.royalsocietypublishing.org/
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first time interval is small for the blue points (Type 1) but large for the purple points (Type 3b) (figure 5a).

The vertical displacements in figure 5c are the same as those in figure 5a. In this way, the displacements in

figure 5a,b determine the vector displacements in figure 5c. The net effects of growth and death rates

determine the mass–abundance curves. If growth exceeds death rate, the mass–abundance curve—

and the corresponding fitness contour (see previous section)—is shallow. If death exceeds the growth

rate, the mass–abundance curve is steep. Where growth and death rates are equal throughout ontogeny,

the mass–abundance curve and the corresponding fitness contour are straight lines.

Straight-line fitness contours, corresponding to the straight mass–abundance curves in figure 5c, are

of special interest because they separate convex from concave contours, and these have opposite selective

consequences, as discussed earlier. What determines the shape of the critical straight fitness contour that

separates the two selective regimes? Straight fitness contours occur when the survivorship curve (Type 3a

in figure 5a) is the exact inverse or mirror image of the growth curve (figure 5b). This occurs when growth

and death rates are equal throughout ontogeny; as relative body mass increases, per capita survivorship

decreases by exactly the same amount.
5. Discussion
Our key results are that: (1) convex fitness contours select for extreme strategies, either many small or few

large offspring (figure 3d ), whereas concave contours select for offspring of intermediate size (figure 3b).

(2) Straight-line fitness contours as in figure 5c are of special interest because they separate convex from

concave contours, and from regimes which select for opposite strategies. (3) Fitness contours are identical

to mass–abundance curves which express the abundance of surviving offspring as a function of their body

masses. Mass–abundance curves can be derived from juvenile growth and survivorship curves. (4) The

critical straight-line fitness contours occur when survivorship curves are mirror images of growth curves.

When growth curves are known or can be assumed theoretically, this allows construction of critical sur-

vivorship curves, separating selective regimes with opposite consequences. Our results depend on the

assumption of an allocation trade-off such that the product of offspring size and number is fixed, and

will need modification if the trade-off takes another form.

To predict the selective consequences for offspring size, we invert the growth curve to generate the

critical Type 3a survivorship curve shown in figure 5a. If reported survivorship curves are more

curved than this, as in Type 3b, then intermediate offspring size is predicted. This is because very

small offspring would experience death rates higher than growth rates, and the optimal maternal strategy

is to allocate maternal resources to a smaller number of larger offspring. Conversely, if the reported

survivorship curve is less curved than the critical Type 3a survivorship curve, or convex as in Type 1,

then offspring sizes should be extreme, either as small or as large as possible. So, to predict selective

consequences, we need to compare juvenile growth and survivorship curves.

Juvenile growth and survivorship curves are shown in figure 6 for mackerel (Scomber scombrus) from

egg to first breeding at one year old. The inverted growth curve (broken red line) represents the critical

Pearl Type 3a survivorship curve. The real survivorship curve is less concave than the critical curve,

meaning that selection favours an extreme strategy, here eggs as small and numerous as possible.

http://rsos.royalsocietypublishing.org/
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We have shown that the critical Pearl Type 3A survivorship curve has special importance (figure 5). It

represents a threshold, separating selection regimes that favour either extreme or intermediate strategies.

Its parameters are derived from those of the growth curve, as shown in figure 6. In figure 6, the growth

curve is of Gompertz type, but the critical Pearl survivorship curve can always be derived by simply

inverting the appropriate growth curve. These very general results hold because mass–abundance

curves and juvenile survivorship and growth curves are inextricably linked. If any two are known, the

third can be calculated.

Our central thesis is that the key to understanding the tuna reproductive strategy lies in convex fitness

contours (figure 3d ). This is consistent with Olsson et al.’s interpretation [3] based on metabolic scaling

that relatively higher growth rates early in ontogeny are later replaced by relatively higher death rates

due to increased density-dependent mortality as juveniles grow to larger body sizes (see also [24].

Both Olsson et al.’s explanation and our simpler, more general theory invoke assumptions that give

rise to bowed-outwards mass–survivorship curves and, in our case, to the convex fitness contours

that predict two alternative evolutionarily stable extreme strategies. Our theory predicts that for teleosts

the ratio of growth to death rates varies systematically as offspring size increases, so g . d when newborn

offspring are very small but g , d later in ontogeny as juveniles approach mature size.

The theory allows us to offer the following preliminary interpretation of theoretical questions and

empirical patterns in the life histories and evolution of teleosts and chondrichthyes:
(1) Sizes of newborn chondrichthyes. Why don’t sharks produce smaller offspring? Not only are the off-

spring of sharks and rays about six orders of magnitude heavier than those of hatchling teleosts

(figure 1), but also there is a strong positive correlation between the logarithms of body size of new-

born and adult chondrichthyes (r96 ¼ 0.82, p� 0:001, figure 1; [8]). This begs the question of why the

largest sharks and rays do not produce larger numbers of smaller offspring than they do—more like

tunas. The theory suggests the answer: the protection afforded by large eggs and internal develop-

ment of sharks are adaptations to reduce mortality of juveniles. High death rates impose strong

selection, so it is advantageous for adult chondrichthyes to produce the largest possible offspring

consistent with the size–number allocation trade-off. The explanation of the quantitative form of

the relationship between offspring size and adult size in chondrichthyes is an open question of

great general interest, but beyond the scope of the present paper.

(2) Sizes of teleost eggs. Why don’t teleosts produce larger offspring? Figure 1 shows that the eggs of marine

teleosts are uniformly very small: on average about one milligram (0.001 g), so about 4 orders of magni-

tude lighter than the smallest newborn sharks and rays [6–8]. However, two lineages of freshwater

teleosts, the families Poeciliidae and Zenarchopteridae, have independently evolved life histories with

internal fertilization, retention of developing eggs within the mother, and live birth—a suite of traits

similar to the chondrichthyes. Given the approximately equal diversity of marine and freshwater teleosts

(15 000 versus 13 000 species), it seems that there must be some inherent advantage of producing large

numbers of very small, externally fertilized eggs in the marine environment or some powerful constraint

against producing large offspring. The question of how small eggs can be is also of interest. We presume

that minimum egg size somehow reflects the volume of the zygote required to contain the genetic
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material, fuel for embryonic development, and related machinery and compounds. The marine teleost

zygotes must contain the materials for excreting salts and curtailing water loss in the oceans.

(3) Exceptional examples. Additional insights come from the relatively few marine teleosts that lay

relatively large eggs and/or provide some degree of parental care. No marine teleost lineages

have gone farther than having males protect and sometimes supply nutrition to eggs. The phylo-

genetically related seahorses and pipefish are examples. Their females produce large numbers of

very small eggs, which are fertilized externally before being taken up by the male and brooded

and nourished for some substantial period of development [25].

(4) Historical constraints. The evolutionary histories of fishes, and more generally of the early vertebrates,

suggest important roles for physiological constraints in their phylogenetic, geographical and

environmental histories. Reconstructions of the fossil and phylogenetic histories of major lineages

suggest that the physiology of osmoregulation, especially in early ontogeny, played a key role in pre-

venting or allowing colonization of freshwater and marine (and ultimately terrestrial) environments.

It appears that all extant lineages of vertebrates probably evolved from ancestors that at one time lived in

freshwater environments, as evidenced by internal osmotic concentrations more dilute than seawater.

The ancestors of chondrichthyes and coelacanths were colonized from fresh water and diversified in

the oceans in the late Ordovician to mid-Devonian (approx. 400—395 Ma, respectively; [26,27]). The

approximately 1000 extant species of chimeras, sharks and rays share with the ‘living fossil’ coelacanth

life histories based on internal fertilization and production of a few large well-developed offspring, born

or hatched with organs capable of maintaining osmotic balance [28–32].

By contrast, the teleosts invaded the oceans from fresh waters much more recently, probably in the Jurassic

(approx. 200 Ma; [33,34]). They diversified explosively after the Cretaceous-Tertiary mass extinction event

(65 Ma) had eliminated several of lineages of chondrichthyes and invertebrates. With approximately 18 000

extant species, teleosts are by far the most diverse group of marine vertebrates. Although some of their success

is probably due to jaw structure and other morphological innovations, much of it must be attributed to their

diverse body sizes, which span more than 8 orders of magnitude (0.005–2 000 000 g) and allow them to exploit

an enormous variety of niches. The diversification of marine teleosts was facilitated by their ability to produce

tiny eggs that are externally fertilized, maintain osmotic balance as the embryos develop in seawater, and

hatch to give rise to fully functional offspring able to feed themselves and survive independently of their

parents [35–38]. There is abundant room to explore further the detailed relationships between fossil and phy-

logenetic history, osmoregulatory physiology and life history which are only hinted at here.

We conclude that the life histories of marine chondrichthyes and teleosts represent adaptive responses to

the fundamental constraint of the number–size allocation trade-off. The two extreme strategies are main-

tained because the alternative few-large and many-small strategies represent two peaks of high fitness

separated by a valley of low fitness representing moderate numbers of offspring of intermediate sizes.

Retaining a few large eggs or embryos within the mother allows sharks to recruit new adults because the

slow-growing offspring are protected from high rates of mortality. Producing millions of miniscule eggs

allows tunas to recruit new adults because some of the newly hatched larvae grow fast enough to survive

to adulthood, despite high mortality due to competition and predation in the plankton.
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