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Abstract 
 

Dissolved carbon in lakes play  a vital  role  in the  global  carbon cycling.  The concentration 

and dynamics of lake dissolved carbon can be influenced by both the surrounding landscape 

and  a combination of physical, chemical and biological processes within the lakes 

themselves. From 2009  to 2016, we conducted a large-scale assessment of dissolved organic 

carbon (DOC) and  dissolved inorganic carbon (DIC) in 249  lakes  across  a diverse range of 

climatic, geopedologic, topographical and  hydrological conditions in  five  Chinese  

limnetic regions: the  East Limnetic Region  (ELR), the  Northeast Limnetic Region  (NLR),  

the  Inner  Mongolia-Xinjiang Limnetic Region (MXR), the  Yungui  Limnetic Region  (YGR), 

and  the  Tibet-Qinghai Limnetic Region  (TQR).  We found  that  the density of the organic 

matter in the soil in the surrounding landscape plays an important role in the DOC and DIC in  

lake  water, as  was  evidenced by  the  high  DOC and  DIC levels  in  the  NLR, where the  soil  

is respectively organically rich.  Conditions in the arid and semi-arid environments (i.e.  TQR 

and  MXR) have  created a number of brackish/saline lakes  and  here  we found  that, DOC 

and  DIC levels  (median: 21.79 and  93.72 mg/L, respectively) are significantly higher than 

those  in the freshwater lakes (median: 5.80  and  29.38 mg/L). It also appears to be the case 

that the trophic state of freshwater lakes influences the spatial variation of DOC. This can be 

seen in the  relationships between DOC and  trophic state  index  (TSI) in agriculturally-

dominated regions such  as the ELR (R2 = 0.59,  p < 0.01), NLR (R2 = 0.65,  p < 0.001), 

and  YGR (R2 = 0.78,  p < 0.001). Additionally, a close  relationship between DOC and  

DIC can  be found  in lake  waters with  different trophic states  (eutrophic: slp = 0.63,  R2= 

0.69;  mesotrophic: slp = 1.03,  R2 = 0.65;  oligotrophic: slp = 1.00,  R2 = 0.64). This 

indicates that human activities influence the quantity and quality of dissolved carbon in 

inland water across China.  This study is able to provide insights regarding the potential effects 

of climate change and changes in land-use upon the amount of dissolved carbon in lake  

water.   

 

1.  Introduction 
 

Dissolved  carbon  (DC) in  water  bodies,  including both  dissolved organic   carbon   (DOC)  and   its  

inorganic  counterpart,  dissolved   in- organic  carbon  (DIC), play a vital role in the global  carbon  

cycle (Cole et  al.,  2007;  Tranvik  et  al.,  2009;  Borge  et  al.,  2015;  Weyhenmeyer et al., 2015).  

Although, inland  waters  cover only a small fraction of the earth's  surface,  they have a 

disproportionately large effect on this cycle (Cole et al., 2007;  Armstrong, 2010;  Catalan  et al., 2016)  
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through the storing  and  decomposing organic  matter- and  the  emission  of green- house  gases (Cole 

et al., 1994;  Raymond  et al., 2013).  Hydrologically, lakes receive the water from the surrounding 

landscape and therefore, according to Armstrong (2010), a large amount of the carbon produced by 

terrestrial systems ends up in inland waters in the form of particulates, where it is stored and/or 

mineralized and released back into the atmosphere as CO2 and CH4. DOC is one of the largest bioactive 

organic reservoirs on the earth's surface (Cole et al., 2007; Para et al., 2010), and is the main substrate 

for heterotrophic bacterial growth. The mineralization of DOC through biodegradation or photo-

degradation is a major source of CO2 in the atmosphere (Tranvik et al., 2009; Butman et al., 2015). In 

water bodies DOC can mediate the chemical environment through the generation of organic acids 

(Brooks and Lemon, 2007), and enhance or alleviate the toxicity of heavy metals (Cory et al., 2006). 

As it is the main component of colored dissolved organic matter, DOC also plays a vital role in 

regulating the transmission of light in aquatic ecosystems (Karlsson et al., 2009; Song et al., 2013), 

proving a shield against harmful ultraviolet light and protecting aquatic organisms in the water 

(Williamson and Rose, 2010). 

Environmental and limnological factors, e.g., temperature,- precipitation, lake type, and trophic level, 

have a major influence on the transport, transformation and storage of DOC in a body of water (Arts et 

al., 2000; Duarte et al., 2008; Gudasz et al., 2010; Weyhenmeyer et al., 2016; Wen et al., 2018). 

Previous studies have demonstrated that the DOC in inland waters tends to decrease as the duration 

time for the water increases because of increased photochemical processes and microbial consumption 

and decomposition (Hanson et al., 2011; Kellerman et al., 2015). However, studies have also found that 

inland waters in semi-arid and arid regions with high salinity exhibit elevated DOC concentrations 

(Brooks and Lemon, 2007; Wen et al., 2016). Curtis and Adams (1995) reported a positive correlation 

between DOC and specific conductivity in a semi-arid part of eastern-central Alberta in Canada. In 

another study of DOC in inland waters across the Songnen Plain in Northeastern China, Song et al. 

(2013) found a strong association between DOC and salinity. The endorheic region of China covers 

about 42% of the country’s mainland area. This region has many brackish and saline lakes with a total 

surface area of 46321 km2, which accounts for 51% of the country’s total lake surface area and 67% of 

the country’s total lake water volume (Wang and Dou, 1998). The pattern of the spatial distribution of 

DOC in both fresh and brackish/saline water merits further investigations for carbon cycling, as 

increasingly postulated by researchers, its potential impact on the global carbon cycle (e.g., Duarte et 

al., 2008; Raymond et al., 2013; Wen et al., 2016). 

DIC is another important component of dissolved carbon in water. DIC generally occurs as dissolved 

CO2, bicarbonate (HCO3 −), and carbonate (CO3 −2), and it has a direct connection with water pH and 

temperature fluctuations (Wetzel, 2001; Pacheco et al., 2013). DIC is the primary source of carbon for 

photosynthesis and the generation of organic substances. In inland waters, DIC can be derived from 

mineralization and microbial activity in both the lakes and their drainage basin. The amount of 

inorganic carbon is determined by the respiratory production of CO2 by organisms and by the influx of 

CO2 and HCO3 − from incoming water through weathering, atmospheric invasion and ground water 

(Wetzel, 2001; Raymond et al., 2013). As a major constituent of inland waters, DIC can affect its 

gaseous characteristics and the availability of nutrients, and it is a fundamental requirement for organic 

productivity (Marcé et al., 2015). DIC can also regulate acidity, hardness and other related 

characteristics of the water, affecting in turn light conditions and the availability of nutrients in the 

water column (Wetzel, 2001). There is also remarkable spatial variation in the amount of DIC in water 

(i.e., CO2, H2CO3 −, and CO3 2−) because of variability in terrestrial input, aquatic transformation, 

and the exchange taking place at air-water interfaces (Duarte et al., 2008). This makes it important to 

investigate the spatial patterns of DIC distribution in the landscape as this is a major factor regulating 

the dynamics of DIC distribution in inland water. 

In recent decades, a number of studies have explored the spatial and temporal variation of DOC in 

coastal and fresh inland waters (Sobek et al., 2007; Tranvik et al., 2009; Wen et al., 2016). However, 

these studies are geographically and climatically rather limited. For instance, in western European 

countries and especially in Scandinavia, where lakes are abundant, DOC variation has been 

investigated intensively (Agren et al., 2007; Sobek et al., 2007; Weyhenmeyer et al., 2015). Lakes in 

North America and Japan have also been examined from this perspective (Curtis and Adams, 1995; 

Sugiyama et al., 2004; Kawasaki et al., 2013). However, most of these lakes are located in a temperate 

zone with a relatively low elevation. Comparatively, few investigations have been carried out regarding 

the spatial variation of DOC and DIC in inland waters across a variety of different climatic, 

geopedological and topographical landscape conditions. This is especially true for countries, such as 

China, where there is a large gradient and variability in climate, elevation, and ecoregion. The Tibetan 

Plateau is a prime example here. It is the highest plateau in the world, covering a vast land area with 
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drastically different geopedological and topographical conditions and ecosystem. The plateau also has 

an abundance of lakes, especially brackish and saline ones (Wang and Dou, 1998). Little is known 

about the dissolved carbon in these lakes and this kind of information can provide future studies with a 

baseline for estimating the effects of climate change on the aquatic carbon cycle at high altitudes and 

latitudes (Song et al., 2016). 

Trophic state has been found to have a strong impact on internal DOC generation and fluctuations in its 

concentration (Zhang et al., 2010; Pacheco et al., 2013; Zhou et al., 2017). It has also been found that 

DIC, as a major constituent of inland waters that has a direct or indirect connections with trophic state 

(Weyhenmeyer et al., 2015), can have an effect upon nutrient availability and the productivity of 

aquatic systems (Tranvik et al., 2009; Pacheco et al., 2013). In shallow lakes, both DOC and DIC can 

become partly buried in the lake bottom sediments. Some part of the sedimentary DC will then be lost 

through mineralization and physiochemical process, particularly when re-suspension is caused by 

strong winds (Gudasz et al., 2010; Zhou et al., 2015). Given the rapid economic development currently 

taking place in China, the water quality in many Chinese lakes had been severely impaired by 

excessive nutrient input. This input arises from both non-point source pollution through various 

agricultural practices and from point source pollution relating to urbanization and industrial discharge 

(Ministry of Environment Protection of China: MEPC, 2015; Shi et al., 2018). According to the latest 

annual report by the MEPC, only 8% out of the 62 lakes subject to long-term monitoring were 

oligotrophic, 61% were mesotrophic, 23% were eutrophic, and the remaining 8% were hypereutrophic 

(Ministry of Environment Protection of China: MEPC, 2015). The serious eutrophication of inland 

waters may have changed the distribution pattern of DOC in lakes across China. This merits further 

exploration (Zhang et al., 2010; Zhou et al., 2015; Zhao et al., 2016). DOC and DIC concentrations in 

inland waters are regulated by a series of environmental parameters, with these parameters varying 

spatially and across different ecosystems. However, study of this aspect of the DC cycle has not been 

systematically conducted. 

In this paper we present the results of an investigation of landscape level patterns of dissolved carbon 

across diverse climatic, geopedological, topographical and hydrological conditions. We hypothesize, 

here, that the DOC and DIC relationship is changing with environmental conditions, the geographical 

location and the trophic state of lakes all having an important influence on this relationship. We 

anticipate that our findings will help research to gain a better insight into the distribution of DC 

snapshot concentrations across a large variety of lakes. More significantly, the study reported here was 

the first to undertake large-scale quantification of dissolved carbon in inland lakes across China. As 

such, it provides a baseline for evaluating the effects of climate change and changes in land use change 

upon levels of dissolved carbon in the future. The specific objectives of the study included (1) 

assessing the current levels of DOC and DIC in inland lakes across China; (2) identifying the major 

environmental factors that affect the spatial variability in the distribution of DOC and DIC, thereby 

offering an opportunity to explore the relationships between major environmental factors and DC 

concentration; and (3) determining the relationship of DOC and DIC with the trophic conditions in 

different environments. 

2.  Materials and methods 
 

2.1. Study area 

Covering a total  land  area  of 9.6 million  square  kilometers, China has diverse climatic, 

geopedological, and topographical conditions. The geomorphology is extremely complex, with areas of 

high relief in the west and low relief in the east, resulting in an overall trend for the major rivers to flow 

eastward (Fig. 1). The surface features of the country can be grouped into three elevation levels. The 

first level is represented by the Tibetan Plateau with average elevation of 4000m above sea level (as l), 

and where grassland is the dominant form of land cover (Fig. S1). The second level includes regions 

lying north of the Kunlun Mountains that descend to between 2000 and 1000 m, including the 

Mongolian Plateau, the Tarim Basin, the Loess Plateau and the Yungui Plateau. The third level, east of 

the first and the second level, is made up of hills and plains lying mostly below 500m asl, with 

extensive and densely populated alluvial plains where intensive farming practices dominate (Fig. S1). 

The climate in China differs significantly from region to region and precipitation generally decreases as 

one moves from the southeast to the northwest (Fig. S2). 

China's lake densities vary significantly across its vast territory, mainly controlled by topography and 

climate (Fig. 1). According to Wang and Dou (1998), these lakes can be divided into five limnetic 

regions: the East Limnetic Region (ELR), Northeast Limnetic Region (NLR), Inner Mongolia-Xinjiang 
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Limnetic Region (MXR), Yungui Limnetic Region (YGR), and Tibet-Qinghai Limnetic Region (TQR). 

In the NLR, most lakes (∼60%) greater than 1 km2 are distributed on the Songnen Plain, with the rest 

in the mountainous regions. In the ELR, about 830 lakes with area greater than 1 km2 are located in the 

floodplains of the middle and lower Yellow, Yangtze and Huai Rivers. The total lake area is 

approximately 25170 km2, which account to 25.3% of the total lake area in China. In the MXR, there 

are 820 lakes with a surface area greater than 1 km2, covering a total surface area of 23700 km2, or 

22.1% of China’s total inland waters. The YGR in China’s southwest where Karst topography is a 

dominant landscape has the lowest number of lakes with an area greater than 1 km2, i.e. 65, totaling a 

coverage of 1399 km2 (Fig. S3). The TQR in China’s west with the highest elevations has thousands of 

closed lakes and, the total lake area accounts more than half of China’s inland waters (Ma et al., 2011). 

Lakes in this region are mainly fed by snow and glacier melting waters; hence, they can be sensitive to 

global warming (Song et al., 2016). 

 

Fig. 1.  

Field  sampling locations from  China’s five   limnetic  regions  (LR):  Yungui   limnetic region  

(YGR),   East   China    limnetic  region (ELR), Northeast China  limnetic region (NLR), Tibet-Qinghai  

limnetic   region   (TQR),   and Inner   Mongolia-Xinjiang limnetic  region (MXR).  Over  1100   water  

samples were   collected from  303  large   and/or  representative lakes  from  these  regions at an 

elevation range from 37 m to 5100  m. DEM is the abbreviation of digital elevation model. 

2.2. Water sampling and field measurements 

Multiple field campaigns were conducted every autumn from 2009 to 2015 to survey lakes distributed 

in China (see Fig. 1), and the field campaigns were all performed by the same research group. To be 

specific, 247 samples were taken from 72 lakes in the NLR in the late August 2011, September 2012, 

and September 2015. In the MXR, 193 samples were collected from 53 lakes in late August 2013, late 

September 2014, and late July-early August 2015. In total, four field surveys were carried out in 

September 2012, October 2014, and October 2015 in the ELR and 207 samples were collected from 49 

lakes. In the YLR, two field campaigns were conducted in September 2009 and October 2015, with a 

total of 128 samples being collected from 25 lakes. As for the TQR, the limnetic region on the world’s 

highest plateau, one field campaign was carried out in Qinghai Province in September 2014 and 

another field campaign was conducted in the Tibet Autonomous Regions in August 2015. During these 

two field campaigns, a total of 168 samples were collected from 50 lakes. In total, the study collected 

958 water samples from 249 lakes. 

Water samples were collected for laboratory chemical analysis at each of the 249 lakes we studied from 

approximately 0.5m below the water surface, usually in the middle of the body of water. On average, 
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water samples were collected at 3–4 sampling stations from every lake on average, with the samples 

consisting of more than 2 L of water, which was collected to an amber high-density polythyene 

(HDPE) bottle at every station. These water samples were placed in a portable refrigerator, and 

immediately treated with 0.2 mL saturated HgCl2 solution (final concentration, 0.02% by volume; see 

Dickson and Goyet, 1994) to inhibit the growth and activity of microorganisms before the samples 

could be got to the laboratory. All of the water samples for DC determination and analysis were filtered 

in situ through a 0.45 μm glass-fiber filter (Bandao Industrial Co., Ltd, China). The samples were kept 

in the portable refrigerator at 4 °C for no more than 7 days before they were returned to a laboratory. 

At all of the lakes we studied, in-situ field measurements were conducted across a number of ambient 

parameters, including pH, salinity, water temperature, electrical conductivity, Secchi disk depth, total 

dissolved solids (TDS), and light transmission, using a YSI 600 XLM Sonde (YSI Inc., Yellow 

Springs, OH) and a Secchi disk. This data was analyzed to determine the effect of ambient conditions 

on DOC and DIC concentrations. The uncertainty of measures for the pH, salinity, and water 

temperature for the YSI were 0.01, 0.01 ppt and 0.001 K, respectively. 

2.3. Water quality determination and trophic state index calculation 

Water quality parameters were measured within 24 h of the samples being got to the laboratory. Water 

samples were measured inμS/cm (micro-Siemens/centimeter) units using DDS-307 electrical 

conductivity (EC) meter at room temperature (20 ± 2 °C) in the laboratory. Water turbidity was 

determined for the raw water samples using a Shangfen Vis-7230 spectrophotometer with a 3-cm 

quartz cell at room temperature (20 ± 2 °C), using Milli-Q water as the reference. Chlorophyll-a (Chl-

a) was extracted from the water samples using a 90% buffered acetone solution from a 0.5 L water 

samples. The Chl-a concentration was determined using a Shimadzu UV-2660PC spectrophotometer 

(Shimadzu Inc., Kyoto). Water samples were filtered through 0.7 μm glass fiber membranes 

(Whatman, GF/F 1825-047), which retained particulate matter. The membranes were pre-combusted at 

450 °C. Suspended particulate matter (SPM) and suspended particulate inorganic matter (SPIM) were 

then determined gravimetrically, as per the method, detailed in Song et al. (2013). Total nitrogen (TN) 

was measured according to the absorption levels in 146 nm of each water sample after it had been 

decomposed with alkaline potassium peroxydisulfate. Total phosphorus (TP) was determined using the 

molybdenum blue method after the samples had been digested with potassium peroxydisulfate (APHA 

et al., 1998). Total alkalinity (TA) was measured by titration to a desired endpoint colour using 

hydrochloric acid, with phenolphthalein or methyl orange being used as the indicator at room 

temperature (20 ± 2 °C). This procedure was detailed in APHA et al. (1998). 

The DC was similar conducted within 24 h of the water being got to the laboratory. The standards for 

the dissolved total carbon (DTC) were prepared using reagent grade potassium hydrogen phthalate in 

ultrapure water. DIC levels were determined using a mixture of anhydrous sodium carbonate and 

sodium hydrogen carbonate (Song et al., 2013). The DOC was calculated by subtracting the DIC from 

the DTC, both of which were measured through high-temperature catalytic oxidation (680 °C) using a 

Shimadzu Total Organic Carbon Analyzer (TOC-VCPN, Shimadzu Corporation, Japan). Analysis of 

blanks and replications showed a detection limit of 0.3 mg/L, and a precision of 5% at a concentration 

of 4 mg/L. All samples in the study were measured by the same instruments and the same methods. 

According to the Secchi disk depth, TP, and Chl-a concentrations, we evaluated the trophic state of 

every sampling site on the basis of a modified Carlson’s trophic state index (TSI) (Carlson, 1977; 

Aizaki et al., 1981). All of the sampling sites were then classified as being eutrophic, mesotrophic, or 

oligotrophic (262, 516, and 140 sites, respectively).  

2.4. Soil organic matter (SOM) density estimation 

In order to assess the relationship between lake DOC and soil organic matter (SOM), we derived an 

average SOM density from the drainage areas for 62 of the lakes. First of all, we used data from a 

digital elevation model (DEM) and the ArcGIS10.0 software package (Redland, Ca, USA) to delineate 

the drainage catchment boundaries for the lakes. The SOM data itself was derived from the second 

national soil census, which was conducted during 1979–1994 (Dai and Huang, 2006; Li et al., 2012). In 

this census, 6241 samples altogether were collected from different soil taxonomies across China (Li et 

al., 2012). In addition, the soil physiochemical properties, geomorphology, and types of land use were 

recorded at each sampling station. In our study, only the SOM percentages for the top 20 cm of the 

soils were retrieved. They were then interpolated using a Kriging algorithm in the ArcGIS10.0 

software. After this, an average SOM was calculated by overlaying the catchment boundary of each 

lake on the interpolated SOM map. 
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2.5. Statistical analyses 

We calculated the mean DOC and DIC values for every lake, and used them to examine the DOC-DIC 

relationship in different limnetic regions across China. The DOC-DIC relationships for different 

trophic states were analyzed, drawing upon the DOC and DIC values for every samling site. For 

several lakes we also examined the TSI-DOC relationship. In order to provide more data for statistical 

analysis, we added an additional 55 groups of TSI and DOC data, that had not been included in the 

previous 948 samples sets, even though they had been acquired at the same sampling time. 

Statistical analyses of the DC and other water quality parameters were conducted using the Matlab 

R2015b software package (MathWorks Inc., FL). The differences in water chemistry parameters 

(including DOC and DIC) for lakes in different limnetic regions across China, and the DOC/DIC ratio 

in fresh and brackish/saline waters were all assessed using an analysis of variance (ANOVA). In 

addition, a T-test was carried out to assess DOC and DIC differences between brackish and fresh 

water. Regression and correlation analyses were also conducted using the Origin 8.3 software package 

(OriginLab, Hampton, MA) to examine the relationship between DC and other water chemistry 

parameters. Finally, a classification regression tree approach (CHAID) was used to probe the 

relationship between DC concentration and nutrients in the various Chinese lakes. We used DOC or 

DIC concentration as the response variable and the explanatory variables were TSI, salinity, pH, TN, 

TP, SOM, water temperature, and suspended matter concentration. The mean value and standard errors 

for DOC or DIC concentration were calculated for each branch of the regression tree. 

3. Results 

3.1. Ambient lake water conditions in different limnetic regions 

A large diversity of inland waters of varying water quality was encountered in this study. As shown in 

Tables 1 and 2, the waters in the ELR and NLR were extremely turbid, with a very low transparency 

(ELR: 0.4 ± 0.3 m, NLR: 0.6 ± 0.7 m). Relatively high concentrations of nutrients in most of the lakes 

in the ELR resulted in high concentrations of Chl-a (52.1 ± 252.1 μg/L). However, most of the lakes 

in the NLR exhibited even higher concentrations of nutrients, most of which were derived from 

farmland (Fig. S3). Despite this, a relatively low Chl-a concentration was measured in this region (22.2 

± 39.4 μg/ L) because of the lower temperature (Song et al., 2013). A large variation in turbidity 

(106.3 ± 741.8 NTU) was found in the lakes in the MXR but, overall, clearer waters (SDD: 2.1 ± 2.8 

m) predominated in this region. Lakes in this zone also generally exhibited high concentrations of 

nutrients and a relatively lower concentration of Chl-a (10.8 ± 23.6 μg/L). Most of the lakes in the 

YGR are tectonic origin, making them much deeper (average: 13.2 m) and they were also more 

transparent (SDD: 2.2 m). Lakes in the TQR are similarly of tectonic origin and of greater depth (21.7 

± 16.8 m). Here, they were more transparent (5.7 ± 2.8 m) due to less pollution from human activity. 

As this region, less populous and had limited non-point agricultural pollution, its waters contained less 

nutrients (TN: 0.37 ± 0.42 mg/L, TP: 0.04 ± 0.05 mg/L) and fewer forms of algal growth (Chl-a: 1.3 ± 

4.2 μg/L). 

In the ELR, 85% of the water bodies were eutrophic or hyper-eutrophic according to Carlson’s 

trophic index (Carlson, 1977). In the NLR, there was also a high percentage of water bodies were 

eutrophic (67%) or mesotrophic (33%). The percentage of eutrophic lakes was 46% and 39% 

respectively for the MXR and the YGR, with the remaining lakes being mesotrophic. By contrast, the 

alpine lakes across the Tibetan Plateau (i.e., the TQR) were all oligotrophic. As a result of the regional 

hydro-geological and climatic conditions, most of the waters in the NLR and MXR showed high pH 

values and saline waters were dominant. Through comparison (Table 2), it can be seen that lakes from 

the TQR (3.8 ± 7.0 psu) and MXR (11.6 ± 32.5 psu) exhibited the highest salt content, while lakes in 

the other three zones, particularly those in the ELR exhibited lower salt concentration and alkalinity 

(100.1 ± 38.3 mg/L).  
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Table 1 

Field surveys for water sample collections and in-situ measurements in  China’s  five  

limnological regions. Date  represents sampling date;  Temp  denotes water temperature; 

EC, electric conductivity; TDS, total  dissolved solid;  Sal denotes salinity; Turb represents 

turbidity; SDD is Secchi  disk depth, and  Depth  is the  average depth of the  water bodies  

investigated. 

 

Table 2 

Water quality parameter characteristics in different limnological regions of China, including total 

nitrogen (TN), total phosphorus (TP), total alkalinity (Alk), dissolved organic carbon (DOC), dissolved 

inorganic carbon (DIC), chlorophyll a (Chl-a), suspended particulate matter (SPM), suspended 

particulate inorganic matter (SPIM). 

 

 

3.2. Spatial distribution of DOC concentration in China’s lakes 

As shown in Figs. 2a and 3a, lakes in the NLR exhibited the highest DOC concentration, followed by 

the MXR, TQR, and YGR. Water bodies situated in the ELR displayed the lowest DOC concentration 

overall. It can be seen from Table 2 that the DOC concentrations in lakes in the ELR ranged from 1.7 

mg/L in Dongting Lake to 71.0 mg/L in Xiashan Lake. A low average DOC concentration was 

recorded here (6.5 mg/L) with some moderate variation (S.D., 6.3 mg/L). However, the median value 

in this Limnetic Region was much lower (3.6 mg/L). The average DOC concentration in the ELR was 

significantly different from those in the NLR (F=232.4, p < 0.001), MXR (F=232.4, p < 0.001), 

TQR (F=132.5, p < 0.001), and YGR (F=32.4, p < 0.01). Compared to the ELR, waters in the NLR 

demonstrated notably higher DOC concentrations (24.1 mg/L) with a large variation (3.6–790.5 mg/L) 

and a large standard deviations (52.9 mg/L). DOC concentration in the NLR was also significantly 

different to that of the YGR (F=207.6, p < 0.001) and the TQR (F=134.2, p < 0.001). Like the NLR, 

lakes in the MXR also exhibited a high average DOC concentration and a large variations (30.1 ± 41.4 

mg/L), which is noticeably different again from the YGR (F=175.3, p < 0.001) and the TQR (F=57.6, 

p < 0.01). It turned out that terminal waters in the MXR exhibited higher DOC concentrations (16.4 ± 

7.4 mg/L) than open waters (5.6 ± 2.4 mg/L), and significant difference was observed between these 

two water types (F=232.4, p < 0.0001, see Fig. 2). As for lakes in the YGR, a comparable average 

DOC concentration (7.0 ± 4.9 mg/ L) was measured to that of the ELR, where fresh water bodies 

prevail in the outflow region. A large range of DOC concentration (0.3–151.3) was encountered for the 

lakes situated in the TQR, with a relatively high average concentration of DOC (13.4 mg/L). 

 

  



8 

 

 

Fig.2. 

Box and whisker plots showing median, minimum, maximum, and the upper and lower quartiles of 

dissolved organic carbon, (a) and dissolved inorganic carbon (b) concentrations in lake waters from 

five different limnetic regions across China. Large variability has been found in DIC concentration, 

especially in high-latitude (NLR) or high-altitude (TQR) cold regions. 

3.3. Spatial distribution of DIC concentration in China’s lakes 

Equally large variations in DIC concentration were observed across the waters of the different limnetic 

regions (Table 2, Fig. 2b, Fig. 3b), with both minimum (2.0 mg/L) and maximum (3472.0 mg/L) values 

being recorded in the lakes of the Tibetan Plateau. As can be seen in Fig. 2b, the lowest average (20.3 ± 

9.2 mg/L) DIC was displayed in the ELR, and it was significantly different from that in the NLR 

(F=29.8, p < 0.01), MXR (F=176.4, p < 0.0001), YGR (F=65.9, p < 0.001), and TQR (F=31.5, p < 

0.001). The DIC concentration in the waters of the NLR had the highest mean value (95.4 mg/L) with a 

large variation (range: 8.7∼2068.7 mg/L; S.D=179.3 mg/L). This was significantly different again 

from the YGR (F=5.3, p < 0.05) and the TQR (F=11.01, p < 0.01). It was not significantly different, 

however, from the MXR (F=0.5, p=0.45). Further examination revealed that extremely high DIC 

concentrations were to be found in brackish waters (203.5 ± 110.4 mg/L) (Figs. 2b and S1), with a 

much higher average value than that reported by Duarte et al. (2008). Generally, a significant 

difference for DIC was observed between brackish and fresh waters (p < 0.0001). Likewise, high DIC 

concentrations were observed for waters situated in semi-arid or endorheic regions, i.e. the MXR and 

the TQR (Table 2, Figs. 2b and 3b). Another feature to be noted from Fig. 2 is that both DOC and DIC 

demonstrated stable trends for waters, except for the waters in the TQR, where extremely high DIC 

concentrations were found. Similarly, the DIC concentrations in the MXR were significantly different 

from those of the YGR (F=19.8, p < 0.001) and TQR (F=15.7, p < 0.001), with these last two regions 

also being significantly different from one another (F=12.2, p < 0.01). 

  



9 

 

 

Fig. 3. 

Spatial distributions of dissolved organic carbon (above) and dissolved inorganic carbon (below) 

concentrations in lake waters from five different limnetic regions across China. High DOC levels were 

found mainly in drier climate, while extremely high DIC levels were found in brackish and saline lakes 

on the Qinghai-Tibet Plateau. 

 

3.4. Relationship between DOC and DIC 

This study found no consistent relationship between DOC and DIC across China’s five limnetic 

regions (Fig. 4), but it did find a significantly higher DOC/DIC ratio (0.33 ± 0.13) in freshwater lakes 

than in brackish/saline waters (0.21 ± 0.14) (p < 0.01). In the ELR, a linear increasing trend can be 

seen for this, with a high scatter (Fig. 4a). In the NLR, there was a closer relationship between DOC 

and DIC (Fig. 4b, R2=0.72). Though not as close as in the NLR, we also found a positive link between 

DOC and DIC in the lakes of the MXR (Fig. 4c, R2=0.41) and the TQR (Fig. 4e, R2=0.62). In the most 

extreme case, however, there was no visible relationship between DOC and DIC at all for the lake 

waters in the YGR (Fig. 4d). 
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In this study, we found a close relationship between DOC and DIC under trophic states: an R2 of 0.69 

for eutrophic, 0.65 for mesotrophic, and 0.64 for oligotrophic (Fig. 5). Interestingly, the regression 

slopes varied according to trophic state, 0.63, 1.03, and 1.00 for eutrophic, mesotrophic and 

oligotrophic water bodies respectively. In the eutrophic water bodies, the DIC was only slightly higher 

than the DOC in the water column, but in the mesotrophic and oligotrophic water bodies, the DIC was 

respectively 6.5 and 19.5 times the DOC. We compared the DOC and DIC concentrations in different 

trophic states, and found that eutrophic water bodies showed the highest mean and median DOC 

concentration, but the lowest mean DIC concentration. The oligotrophic water bodies, by contrast, 

showed the highest mean DIC concentration. 

 

Fig.4. 

Different relationships between DOC and DIC concentrations in lake waters from five different 

limnetic regions of China:(a) East China limnetic region (ELR), (b) Northeast China limnetic region 

(NLR), (c) Inner Mongolia-Xinjiang limnetic region (MXR), (d) Yungui limnetic region (YGR),(e) 

Tibet-Qinghai limnetic region (TQR). 
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Fig.5. 

Relationships between DOC and DIC concentrations in lake waters across China under different -

trophic state: (a) eutrophic water bodies, (b) mesotrophic water bodies, and (c) oligotrophic water 

bodies. 
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3.5. Relationship between DOC and environmental factors 

The regression tree analysis of the DC content in these waters showed it to be mainly influenced by 

the trophic states, salinity of the water, and SOM. The relationship between DOC and the trophic states 

of the lakes in the NLR shown in Fig. 6a (R2=0.65). It can be seen that cleanest water in Songhua Lake 

exhibited a low DOC concentration with a very low Chl-a concentration. The most eutrophic lake, i.e. 

Lamasi Lake, showed high concentrations of DOC and Chl-a (Table S1). As shown in Fig. 6b, there 

was a close association (R2=0.59) between DOC and TSI in the six representative lakes from the ELR 

(also see Fig. S4 and Table S1). In the case of the YGR, six lakes with gradient eutrophic states were 

also selected to explore the relationship between DOC and TSI more closely (see Fig. 6c). It can be 

seen that the oligotrophic lake, Fuxian exhibited the lowest DOC and Chl-a concentrations (Table 2). 

The extremely eutrophic ones (Tables 2, and S1), Dianchi and Xingyun Lake, however, showed higher 

DOC and Chl-a concentrations. Thus, a close relationship between TSI and DOC was revealed for the 

lakes in the YGR (R2=0.78). 

We also found a significant relationship between the DOC in lake waters and the SOM density in the 

drainage catchments (Fig. 7b; R2=0.45). Lakes in the ELR and TQR exhibited low DOC in the lakes 

and a low SOM density in the corresponding catchments (Fig. 7a). Meanwhile, a high SOM density 

was found in the NLR, which corresponded with high DOC concentration in lakes. The relationship 

between DC and salinity is presented in Fig. 8. It can be seen that the slope and intercept for DOC and 

salinity in the regression model is distinct from the result for DIC (Fig. 8a and b). Note, in this respect, 

that a significant difference was observed for DOC between the lakes in the exorheic and endorheic 

regions (F=148.6, p < 0.001), but an even more remarkable difference was exhibited for DIC across 

these two different hydrological units (F=236.3, p < 0.001). For both DOC and DIC, the 

concentrations in the endorheic region were higher than in exorheic region. 
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Fig.6. 
Impact of trophic state on the concentration of DOC in fresh water limnetic regions to avoid the impact 

of accumulated effect in brackish waters, (a) the Northeast limnetic region, (b) the East China limnetic 

region, and (c) the Yungui limnetic region. 
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Fig.7. 
Soil organic matter (SOM) contents in five limnetic regions of China (a), and the relationship between 

SOM and DOC concentration in lake waters. China’s most northern region, NLR, has the highest SOM 

and lake waters in the region show the closest DOC-SOM relation. 

 

4. Discussion 

4.1. Analysis of the dissolved carbon in Chinese lakes 

We conducted a large-scale assessment of the DOC and DIC in 249 lakes in five Chinese limnetic 

regions. We have also examined the relationship between DOC and DIC in these lake waters according 

to their different trophic states and the different limnetic regions. The relationship between DOC and 

DIC in the ELR produced a high degree of scatter (Fig. 4a). When the samples from the ELR were 

further analyzed, the results showed that some of the lakes were severely impacted along a linear trend. 

Examples here include Lake Chaohu, Chenjia Lake and Dongting Lake, which are circled in Fig. 4a. 

Algal bloom combined with sediment re-suspension caused by strong winds may explain the biased 

relationship between DOC and DIC in these lakes, as it was found previously by Xu et al. (2017). 

However, when the samples in the circle in Fig. 4a were excluded, the linear trend remained 

significant (R2=0.42). In the NLR, MXR, and TQR, a close relationship between DOC and DIC was 

revealed (Fig. 4b, b, and e), indicating that both forms of dissolved carbon were largely originating 

from the same source. Weyhenmeyer et al. (2015) have reported that DIC inputs to lakes generally 

come from their drainage basin, rather than being produced within the lakes themselves. So, for 

locations in the northern temperate climatic zone, DOC and DIC are mainly originating from external 

sources, and a close relationship between them would seem to hold. The lake of relationship between 

DOC and DIC in the YGR lake waters suggests that, in this case, the DOC and DIC are probably being 

derived from different sources, as will be explained in the following section (Fig. 4d). 



15 

 

Furthermore, the different relationships between DOC and DIC in the different limnetic regions (Fig. 

4) may be a result of the lakes having different catchment geologies. The dominant sources for DIC in 

waters can be either terrestrial or through aquatic ecosystems (Wetzel, 2001; Weyhenmeyer et al., 

2015). The Yungui Plateau consists of two distinct regions: a high alpine region in Northwestern 

Yunnan Province, and a region endowed with rolling karst hills in the northern Yunnan and western 

Guizhou provinces. As most of the catchments are sitting on karst (Fig. S3), and there is abundant 

precipitation, the production of carbonic acid prevails is one of the primary reactions. According to our 

results, lakes in China’s five limnetic regions outside of those located in areas of karst regions, show 

a close relationship between DOC and DIC (Fig. 4b, c, e). It is possible that limestone rocks may be 

limited as a source of DIC in the case of both surface and/or ground water. The dissolution of carbonate 

rocks absorbs large amounts of atmospheric CO2 every year (Shen et al., 2017). Carbonate weathering 

in the watershed would supply more DIC to the surface water (Marce et al., 2015). This being to, 

further studies are needed to elucidate the DOC-DIC relationship in lakes situated in karst landscapes. 

4.2. Effect of the trophic state on lake DOC and DIC 

In this study, we found that eutrophic water bodies showed the highest mean and median DOC 

concentration, but the lowest mean DIC concentration when compared to meso- and oligotrophic 

waters. Many studies have shown that eutrophic waters tend to have higher DOC concentrations or a 

higher DOC light absorption coefficient than mesoand oligotrophic waters (Sugiyama et al. 2004; 

Williamson et al. 1999; Yoshioka et al. 2002; Zhang et al., 2018), The primary explanation for this is 

that, during phytoplankton blooms, the phytoplankton cell burst is contributing carbohydrates to 

autochthonous DOC (Findlay and Sinsabaugh, 2003; Finlay et al., 2010; Roland et al., 2010; Ye et al. 

2010; Pacheco et al., 2013; Ye et al. 2015). Eutrophic waters always have higher photosynthetic rates 

than meso- and oligotrophic waters because of algal blooms. It is possible that these may be consuming 

more carbon dioxide during the photosynthesis process, resulting in a lower DIC concentration in 

lakes. It will be remembered that, when we looked at the DOC -DIC regression slopes, we found that 

DIC was significantly higher than DOC in oligotrophic waters. This was mainly due to the fact that 

these samples were collected in saline waters that are situated in the endorheic regions of the TQR and 

MXR. DIC accumulates much faster than DOC from the catchment here, so a much higher DIC was 

exhibited. However, DIC was only slightly higher than DOC in the water column in eutrophic waters 

and it had a lower slope value compared to meso- and oligotrophic waters. This may be related to the 

autochthonous DOC in eutrophic waters, which is highly bioreactive in the carbon cycle (Kalinowska 

2004; Ye et al. 2010). 

Through inspection of the DOC concentration across different eutrophic state in different limnetic 

regions, it was found that highly eutrophic lakes generally demonstrated higher DOC concentration 

than other lakes situated nearby that are less eutrophic. Saline lakes located in endorheic regions 

generally exhibit high DOC concentrations (Curtis and Adams, 1995; Song et al., 2013; Wen et al., 

2016). We therefore only examined lakes in the ELR, NLR, and YGR outflow regions to explore the 

relationship between DOC concentrations and lake trophic states (see Fig. S4 for their locations). 

Although, we cannot guarantee that the high DOC concentration in these eutrophic lakes originated 

directly from algae released carbon or byproducts, the strong association between TSI and DOC (Fig. 

6) strongly implies that eutrophication has altered the DOC sources and its natural carbon density. This 

has also been found in other studies (Finlay et al., 2010; Pacheco et al., 2013; Zhou et al., 2015). 

Nutrients from intensive agricultural practice and densely populated urban areas (Figs. S1 and S4), 

combined with industrial discharge, have caused serious eutrophication in most of the lakes in the ELR 

(MEPC, 2015; Zhou et al., 2017). Thus, a similar pattern was tracked across the lakes in this region, 

with the Dongting Lake showing a low DOC concentration that is connected to the Yangzi River, while 

the Chaohu Lake, where algal bloom is frequently observed (Yang et al., 2013; Xu et al., 2016), 

exhibited a high DOC concentration. A close relationship between TSI and DOC was revealed across 

the representative lakes from the ELR and YGR (Fig. 6). This indicates that eutrophication exerts an 

important influence upon DOC concentration in lake waters. This has also been confirmed by other 

investigations (Finlay et al., 2010; Pacheco et al., 2013; Zhou et al., 2016). It should be noted that the 

high DOC concentration in these eutrophic lakes may partly originate from the discharge of industrial 

or domestic sewage or from industrial effluent waters, coupled together with the DOC originating 

from algal bloom (Zhou et al., 2017). Further investigation is needed to identify and separate the DOC 

that is derived from algal bloom, for instance by using isotope tracers or other biomarkers (Urban et al., 

2005; Kellerman et al., 2015; Zhou et al., 2016), so that the algal bloom contribution to DOC can be 

quantitatively assessed. 
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4.3. Influencing of environmental factors on lake DOC 
 

A significant relationship between DOC in lake waters and SOM density in the drainage catchments 

was found in this study (Fig. 7). Previous studies (e.g., Agren et al., 2007; Philips, 2010) have reported 

a connection between the level of DOC in lakes and SOM density in catchment areas and have 

suggested that this is because DOC in aquatic systems is mainly derived from allochthonous sources. 

Studies have also found that the DOC level in lake water is often reflected in the watershed soil C:N 

ratio, its carbon density, the percentage of wetlands, the watershed size, and the hydrologic conditions 

(Spencer et al., 2012). In this study, we have looked at 249 lakes that are the receiving water bodies for 

drainage basins with vastly different SOM densities. To exclude the impact of autochthonous DOC 

from algal bloom and the direct input of DOC from human activity through wastewater discharge, we 

have specifically examined freshwater lakes with low Chl-a, TN, and TP concentrations for each 

limnetic region (i.e. oligotrophic or mesotrophic lakes with low TSI values). There is no doubt that 

climatic, hydrological conditions and land use/cover are also having an influence on the DOC 

concentration in lake waters (Sobek et al., 2007; Wilson et al., 2009; Catalan et al., 2016). So, the 

relationship between DOC concentration and catchment SOM density may start to appear less 

correlated over time. 

Inspection of the water samples indicated that waters with high DOC concentrations were located in the 

endorheic regions of the western Songnen Plain (Song et al., 2013; Zhao et al., 2016). The 

significantly higher DOC and DIC levels found in the endorheic lakes in our study may be mainly the 

result of a cumulative effect. Within semi-humid and semi-arid regions, endorheic lakes predominant 

(Fig. S3), so the chemical substances in the water accumulate because of the condensing effect of 

surface evaporation. This being the case, dissolved carbon accumulated incrementally along with the 

salinity or TDS, depending on the water duration times and the accumulation of dissolved matter 

(Duarte et al., 2008; Mattsson et al., 2009; Catalan et al., 2016). This relationship implies that source 

and sink patterns are similar amongst lakes in semi-arid or arid regions. The most likely explanation is 

that the most persistent DOC after photo- and bio-degradation has taken place is evapo-concentrated in 

these semi-arid or arid regions, and the accumulated carbon is then stored in these closed inland waters. 

In comparison, DIC is more stable than DOC, which explains the stable relationship between DIC and 

salinity (Song et al., 2013). Long periods of exposure to sunlight may also be enhancing photochemical 

oxidation processes in these saline waters and causing higher DIC concentration (Brooks and Lemon, 

2007; Tobias and Bohlke, 2011). Land use may also be playing an important role, with the saline-

alkaline soil around these water bodies contributing significantly to DIC concentration through 

erosion and surface runoff (Duarte et al., 2008; Song et al., 2013; Wetzel, 2001; Wilson and 

Xenopoulos, 2008). An empirical model could be calibrated using a larger dataset to estimate DIC for 

inland waters in semi-arid or arid regions. DOC, however, is more labile (subject to photochemical and 

microbial degradation) and has a wider variety of sources (allochthonous, autochthonous, and 

anthropogenic discharge) and composition (Spencer et al., 2012). This results in a different 

relationship between DOC and salinity. Nonetheless, with properly calibrated models and data sets 

collected across various seasons, it should also be possible to estimate the DOC concentration for semi-

arid or arid zones and thus explain its the high variance (R2 > 0.6). 

5. Conclusions 

This study is the first landscape-level assessment of dissolved organic and dissolved inorganic carbon 

in lake waters to be undertaken across the whole of China, covering different climatic, geopedological, 

topographical, and limnological conditions. Based on the findings, the following conclusions can be 

drawn: 

(1) SOM density and catchments in the landscape exert a strong influence uopn the levels of DOC and 

DIC in China’s inland waters and this is the major driving factor for the high levels of DOC and DIC 

in lakes in the NLR. 

(2) Salinity plays an important role in affecting the DOC and DIC levels in lake water, with the DOC 

and DIC concentrations in fresh water lakes in the ELR, YGR and parts of the NLR being much lower 

than they are in the brackish/saline (terminal) waters in the TPR and MXR. This is most probably due 

to the condensing effect of surface evaporation, leading to the possibility of predicting dissolved carbon 

and salinity in brackish or saline waters in endorheic regions. 

(3) Eutrophication caused by human activity can increase DOC levels, particularly where this promotes 
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excess growth of algae and organic accumulation. 

(4) Our initial hypothesis that the relationship between DOC and DIC is changing in tandem with 

environmental change is proven. A close and positive relationship between DOC and DIC in lake 

waters was only found in non-carbonate dominated regions, suggesting that karst landscapes may 

deviate from the broader trend. 
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