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Abstract:
In recent years, deep convolutional neural networks (CNNs), which are based

on the hierarchical structure of the visual cortex has found remarkable accuracy

rates in object classification. One of its drawbacks is the requirement of a large

collection of labelled data for training.

Therefore, unsupervised hierarchical networks are more suited for a more biolog-

ically plausible model. For a classification accuracy to be closer towards CNNs,

the invariance and selectivity of the extracted features need to be improved. One

of the standard methods for learning invariant features is to apply non-linearity

functions to the data which has been implemented in both CNNs and HMAX

models. Based on these principles, an extended form of the HMAX model is pro-

posed which applies two different types of non-linear pooling operations.

The extension is designed with the help of sparsity based algorithms such as In-

dependent Subspace Analysis (ISA) and Topographic Independent Component

Analysis(TICA). Aside from an improved classification accuracy compared to

previous unsupervised hierarchical models, it also reduces the data dimensions

within the layers.
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Chapter 1

Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sparse hierarchical models of vision . . . . . . . . . . . . . . . 2

1.1 Introduction

The brain generates an immediate response upon stimulus which stems from

a rapid exchange of information across different layers of neurons. Its unique

ability to process vast amounts of sensory stimuli is exemplified in the speed,

robustness and generality of the primate visual system. The visual cortex has

thus been a source of extensive research in the field of neuroscience.

In recent years, insights from neurophysiological findings has laid the ground-

work for biologically inspired computational vision systems. These models have

gained prominence due to their efficiency in task oriented processes. The motiva-

tion behind such endeavours arise from the dual purpose of designing superior

artificial intelligence systems and studying the human brain. Although some

large scale models has achieved almost human-level accuracies [21] or even sur-

passed them [22], replicating the generality and robustness of the visual cortex is

still an ongoing challenge [23].

The primate vision system is characterized by an optimal balance between

invariance and selectivity. For modelling such features, many modern cognitive

frameworks have adopted a deep-hierarchical architecture based on the pioneer-

ing work by Hubel and Wiesel [24]. In these models, information is processed in

layers of gradually increasing complexity. Each unit or receptive field within a

layer is the combination of multiple afferent units in the lower layer. They also

identified two different types of components that contribute towards this property

in the primary visual cortex or V1: The simple cells, which selectively respond
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to stimulus of a particular orientation, position and phase. And the complex

cells, which are invariant to changes in position and phase, while maintaining

selectivity towards orientation.

One of the most prominent models which demonstrated invariance with this

type of architecture was the HMAX [8]. Its significance in the field cognitive

vision is due its biological plausibility. By alternating simple and complex layer

functions, it formed high level units that were selective to complex features while

displaying a degree of tolerance towards translation and scale variations.

Another aspect of naturally occurring systems is unsupervised learning. The

sparse coding algorithm developed by Olhausen and fields [25] demonstrated the

emergence of receptive fields that resembled the simple cell properties of the V1

when applied on natural images. With this unsupervised learning technique, a

second property of sparsity was also implemented. Signal sparsity has widely

been supported by studies in neuroscience [26][27][10] and its application in hi-

erarchical vision frameworks has resulted in highly efficient object recognition

models [28] [13] [10].

Building upon the HMAX framework by integrating sparse, unsupervised

learning techniques, new biologically inspired recognition models were devel-

oped by incorporating Independent Subspace Analysis and Topographic Inde-

pendent Component Analysis. These optimizations showed an improvement in

object classification compared to the current HMAX based models. These models

were further extended with attentional modulation and compression techniques.

1.1.1 Sparse hierarchical models of vision

In the HMAX models, the position and scale invariance of complex cells were

obtained by pooling over units of similar orientation but slightly differing loca-

tions and spatial resolutions respectively [8][29]. In other sparse unsupervised

models, phase invariance was achieved by pooling over dependent units with

similar orientations [13][12]. These invariant properties were generally modelled

with a non-linearity function. Since learning more than one type of invariance

contributes greatly to model performance, two layers of complex cell functions is

implemented to improve classification accuracy as well as to reduce data dimen-

sionality.

To implement the models, Independent Subspace Analysis (ISA) and Topo-

graphical Independent Component Analysis (TICA) was applied. These unsuper-
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vised algorithms are an extension of the Independent Component Analysis (ICA)

[30][31][32]. Similar to sparse coding, applying ICA on natural images also gener-

ates units resembling V1 simple cells [33]. But with ISA and TICA, the receptive

fields are grouped based on their dependencies, which parallels the properties

of complex cells. Multiple layers of selectivity and invariance led to the forma-

tion of high level units responsive to complex features. The activation values

of these units were then evaluated on object classification and feature detection

tasks, which were found to be highly competitive compared to recent biologically

inspired models.

The chapters are organized as follows. In chapter 2, an overview of the es-

tablished structure and functional properties of the visual cortex was given. The

various stages of vision processing in the brain was described while highlighting

the aspects more relevant to our vision models. The significant aspects include

primary visual cortex, model hierarchy and sparsity.

In chapter 3, some of the existing biologically inspired vision models were

reviewed, with a focus on unsupervised and sparse hierarchies [13], [12] [10].

HMAX models and its extensions were also investigated due to their impact on

cognitive based models.

In chapter 4, two models of sparse hierarchical vision were implemented, with

ISA and TICA. In these models, the learned units or filters are grouped into

subspaces or neighbourhoods based on their energy correlation. The response

of each subspace was determined by the L2 pooling function [13], which is the

square root of its summed energies. In the first layer of our model, linear filters

were applied (generated by ISA or TICA) on patches of image data. The response

of these orientation, phase and frequency selective filters within a subspace or

neighbourhood were L2 pooled. In the next stage, max pooling was applied over

neighbouring locations on the feature maps to encode shift invariance. With each

layer, receptive fields of larger size and higher complexity were learned which

led to the emergence of highly invariant and selective units. After evaluating

the extracted features using images of different object classes, an improvement in

classification accuracy over other unsupervised hierarchical models was observed.

The different parameters of the model, such as subspace size and number of

units in each layer were also investigated. The evaluations demonstrated that

the models with increasing receptive field sizes and L2 pooling performed object

classification with higher accuracy than the rest. Even with the absence of pooling



1.1. Introduction 4

within multiple spatial resolutions, the new models performed better than those

that modelled scale invariance.

In chapter 5, attention modulation was integrated through the use of saliency

maps. The formation of saliency maps were based on similar principles as un-

supervised recognition models in chapter 4. The motivation behind this opti-

misation was to reduce the amount of redundant data to be processed by the

model. After surveying some of the biology based saliency models, a saliency

map based on the feature integration theory [34] and the Itti and Koch model [17]

was applied. This was based on the ’bottom-up’ mechanism of attention, where

the focus is directed in an involuntary process depending on the natural statisti-

cal properties of the visual scene [35]. This map was then used for directing the

extraction of samples only towards the most salient regions of the visual field.

Other popular saliency algorithms such as the GBVS [19] and SUN [20] were also

applied to compare their performance. For a model with low number of samples,

the overall classification accuracy of saliency modulated feature detectors saw a

slight improvement over the models that applied randomised sampling strategy.

In Chapter 6, a compressive form of the HMAX model by applying the prin-

ciples of sparsity and compressed sensing (CS) [36] was investigated. It is a pow-

erful compression technique which is able to recover any sparse data sampled

at a rate lower than the Nyquist rate. With sparse hierarchical models, apply-

ing CS allows the data to be propagated in its compressed form. Evaluation on

multi-category object classification revealed that the accuracy of the model was

dependent on the reconstruction error associated with the compression matrix.

When compression with a low reconstruction error was applied, the performance

of the model was almost on par with its uncompressed version.

In chapter 7, a summary of the insights gained in each of the chapters were

provided. The limitations of some of the approaches were also discussed, after

which avenues for further research were identified.



Chapter 2

Visual cortex and the mechanisms

behind perception

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hierarchical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Visual cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Attention modulation . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Neuronal mechanisms underlying vision . . . . . . . . . . . . . . . 9

2.3.1 Sparsity of Neural response . . . . . . . . . . . . . . . . . . . . 11

2.3.2 The neural code and perceptual grouping . . . . . . . . . . . 11

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction

Understanding the mammalian visual process has been an ongoing study for over

a few decades [23]. The complexity of the entire visual cortex cannot be repre-

sented by simple models since many different components continuously interact

with each other. In recent years numerous biologically inspired recognition mod-

els were developed to capture the invariance and selectivity of the primate visual

system. A certain degree of progress has been made in modelling these individual

aspects of the cognitive process such as attention, recognition, motion detection,

but a complete cognitive framework with the generality, robustness and speed of

the visual cortex has not yet been achieved [23].

Since the models in the following chapters are mainly inspired by biology,

some of the known structure and functional properties of the human visual sys-

tem will be presented.
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2.2 Hierarchical structure

A deep hierarchical structure was proposed as the most suitable model to reflect

the various processing stages of the visual cortex [23]. This layout allows for

cells in the higher levels to share the elements of lower levels which contributes

towards computational efficiency and generalization. The receptive fields (RF)

are described as the area of each layer that receives the input visual stimulus. The

lower layers are composed of RFs of small size and low complexity.

The cells in higher levels, which receive signals directly from the lower layers,

contain receptive fields that gradually increase in size sizes (figure 2.1). This

increase in RF size corresponds to higher complexity of features [23]. It was also

described as a mechanism of reusing the computational building blocks in each

of the layers [21]. Most biologically inspired vision models such as the HMAX [8],

convolutional neural networks [37] and Hierarchical Temporal Memory [14] has

achieved promising results in demonstrating invariance and selective properties

of the visual cortex.

Figure 2.1: Layers of increasing receptive filed sizes (As implemented in

VisNet)[1]

Due to its lack of feedback mechanisms and evidence of varying receptive

field sizes and complexities in all the layers made it too simplistic to represent the

visual pathways [21].
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The Retina

The retina, which is considered to be apart of the central nervous system (CNS),

forms the first stage of vision [38]. It consists of three layers of neurons connected

by two intermediate layers of synaptic cells. Within its structure, Photoreceptors

which are situated at the back of the retinal layers convert the incoming pho-

tons into electrical impulses. These photoreceptors include the low light sensitive

rods and color sensitive cones. The three different types of cones correspond

to the wavelengths of types red, green and blue. The different colour percep-

tion arises from the combination of these three cells which describes trichromatic

vision [38][23].

The next layer that receives these converted electrical impulses are the Bipolar

cells. The third layer is the Ganglion neurons which receives impulses from the

Bipolar cells via the intermediate Amacrine cells. The output of the Ganglion cells

transfer through the optic nerve into the Primary Visual Cortex via the LGN [38].

Lateral Geniculate Nucleus

The processed data from the retina enters the visual cortex through the Lateral

Geniculate Nucleus (LGN) which acts as a form of relay as there is no spatial

difference with the retinal ganglion cells [23]. Both retinal and LGN cells con-

tain center-surround receptive fields which are linked to functions adapting to

changes in luminance [23].

A computational parallel to this component was described by the Difference

of Gaussian (DoG) operations, which has been applied in many of the biologically

inspired attentional models [23].

2.2.1 Visual cortex

The visual cortex has a primary visual pathway, that separates into Ventral stream,

which analyses object shape and Dorsal stream, which detects object motion [39].

The general structure of the Visual Cortex (VC) comprises of multiple pro-

cessing layers, which starts from V1 or the primary visual cortex,which is the

first layer that receives stimulus. V1 in sends data to the rest of the layers V2, V3,

V4 all the way to the inferotemporal cortex IT. The IT contains the view tunes

cells which are size and shift invariant [29].
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Primary visual cortex

The primary visual cortex or the V1 is the most studied and modelled out of

all the layers. The architecture of alternating simple and complex cells proposed

by Hubel and Wiesel’s study [40] has formed the foundation for many of the

cognitive vision models.

The simple cells are tuned to a variation of factors such as size, rotation and

position. The function of simple cells has been parametrized by two dimensional

Gaussian [8] and Gabor functions [29]. The complex cells exhibit invariance prop-

erties and computationally, it has been described to have a similar function to that

of a max pooling operation [8].

Colour coding cells are also present in the V1 area which forms 5− 10% of its

total numbers [23]. It was found that the colour receptive fields could be learned

by applying independent component analysis methods on natural colour images

[32].

Retinotopy

The receptive fields of neighbouring cells in the lower layers of the visual cortex

cover neighbouring areas of the visual field. Although this type of organization is

said to occur in many areas, it is not guaranteed in the higher layers of the cortex

[32].

2.2.2 Attention modulation

Eye movement and attention are known to form an integral component of object

perception. It is described as a method for allocating resources for the visual tasks

for dealing with the overwhelming amount of visual information that reaches the

retina[35][41]. The brain therefore, reduces the information to gather only the

most important portions of the data for further processing . An early pre-attentive

mechanism is said to work in parallel to segment and categorize objects from a

scene [42]. This aspect has been used to model a vision system that divides it into

two processes and allows a feedback mechanism for selective spatial attention to

influence the output.

The ARTSCAN, shown in figure 2.2, uses a dual structure of cortical stream

such that formation of surface attention representation lead to the formation of

an attention shroud in the where cortical stream, which in turn leads to learning
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invariant object recognition in the what cortical stream [2] [41].

Figure 2.2: ARTSCAN system [2]

In the computational models for designing biologically inspired attention, a

combination of two pathways were defined: a ’Bottom-up’ mechanism that arises

from the low level features such as detection of edges, colour continuity. This is

occurs free viewing manner when the subject does not search for any particular

object [35] [43]. The second is the ’Top-down’ attention mechanism that is tied

to the cognitive ability of the mammal. This directs the lower levels to adjust its

response accordingly and drives the fast saccadic eye movements to focus on a

particular region of interest [35].

2.3 Neuronal mechanisms underlying vision

The retinal ganglion cell’s response was studied on different organisms to inves-

tigate how neurons represent and transmit data to the brain which resulted in

patterns of action potentials or spikes [44]. The neural code is a sequence of such

patterns that occur in the neuronal assemblies when they encounter sensory in-

formation [45]. It was found that the timing of the spikes of a single neuronal

response is relevant for information transmission in the brain [44]. Sensory, cog-

nitive and motor processes are said to result from parallel interactions among
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large populations of neurons. The process responsible for linking this distributed

activity in the visual system for identifying relationships among features in an

image so that the object can be identified is called ’Binding’ [42]. Observing the

activity of clusters of neurons has shown patterns of spikes that occur repetitively.

This neuronal oscillation has been suggested to play an important role in visual

pattern perception.[46] According to the temporal correlation theory, an object is

represented by the temporal correlation of firing activities of the distributed cells

that detect different features of the object. The recording of oscillatory response

of the brain by EEG has shown that a group of neurons exhibit synchronous os-

cillatory response when activated by visual stimulus [47]. Phase locking has been

used for the detection of synchrony between different channels of visual task

related EEG recordings. The channels correspond to the different areas of the cor-

tex. Methods such as calculation of Phase Locking Value [48] have been used for

finding synchronization between signals. Signal decomposition algorithms such

as EMD for the analysis of brain signals has been crucial for finding more about

vision related phenomenon and also for testing the response of simulated neuron

models of vision.

With theories about formation of neural assemblies, it is important to take

understand how spikes are generated. The Hodgkin Huxley model is the most

well known model for the simulation of excitatory and inhibitory response of the

neuron. It is in the form of an electrical circuit which is analogous to how the

neuron fires when the membrane potential, due to stimulus, exceeds a certain

threshold level [3].

Figure 2.3: Hoddgkin-Huxley model of a Neuron [3]
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The figure 1 shows the circuit model of a neuron where, following ohms law,

the membrane potential Vm is given by,

Cm
dVm

dt
= I − [Gk(Vm −Vk) + GNa(Vm −VNa) + Gl(Vm −Vl)] (2.1)

Where, GNa, Gk, and Gl are the conductances of the three ion channels

(Sodium, Potassium and leakage channel respectively), I is the total current and

E is the membrane potential [3]. This model was useful for simulation, but only

for a limited number of neurons [49].

2.3.1 Sparsity of Neural response

Evidence of sparse activation of neurons has been supported by a wide range

of experimental data [10][27][1]. Given an assembly of neurons, the number of

neurons actually firing at any given instance is very low. So, when stimulus is

applied, only a handful of neurons activate within particular area.

2.3.2 The neural code and perceptual grouping

In investigating the behaviour of neurons as a group, it was found that percep-

tion ties closely with the dynamic formation of neural assemblies and its syn-

chronous activity. It was proposed that grouped features are represented (and dis-

tinguished from one another) by selective synchronisation of dynamically formed

neural assemblies [50]. This was one of the possible explanations that related to

the binding problem which questions how the distributed activity of the neurons

leads to grouping of features. Another theory was the allocation of attention.

It was argued that a pre-attentive object features could be formed according to

gestalt principles with the formation of neural assemblies [50][42] .

2.3.2.1 Modelling Dual Processing Streams

It is evident that the processing of visual data in the brain occurs at low latency.

Scenes and objects are perceived instantly which has been recorded to be around

100− 150 ms [51]. In [4], a hierarchical model of spiking neuron was described to

demonstrate both the low latency and data processing in the mammalian cortex.

It uses a latency encoding (with the data being sent with the low firing rate of

the cortical neuron) and a temporal reference frame. The input starts a clock that

generates a rhythmic oscillation. This provides a synchronisation signal to all
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the cortical areas. The source of the oscillation is termed as the ILN (after the

intra laminar nuclei) which is triggered with visual stimulus and the phase also

changes within the different processing stages of the hierarchy. There is also a

limited time constraint which does not allow too many feedback loops to occur.

The model (in figure 2.4) architecture is in the form of minicolumns which contain

two cells A1 and A2 that resemble spiking neurons. A1 receives only feedforward

input and A2 receives both feedforward and feedback inputs.

Figure 2.4: Structure of the minicolumn [4]

As seen from the figure 2.4, A1 only communicates with the rest of the system

via A2. This model works corresponding to the clock input of ILN. Its imple-

mentation on invariant object recognition was demonstrated with a hierarchical

vision model with each level comprising of an array of minicolumns. The first

feedforward cycle was able to give correct recognition most of the time. The feed-

back loops were only used to suppress the error causing factors. The resulting

output was a translation invariant recognition, tolerant to noise, mild changes to

rotation and scaling and partial occlusion [4].

A detailed version of the neocortical architecture, which uses the columns ar-

ranged in layers, was described in [52]. The structure is defined by minicolumns

[4], which mimics an elementary computational module of a neocortex and

macrocolumns. These macrocolumns which contains the minicolumns share the

same receptive field. The columns are arranged in layers similar to the visual

cortex and has several processing level. The initial feedforward process forms

an initial hypothesis at the highest level (which has a high probability of being
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correct), which then initiates the top-down sequential refinement.

2.4 Summary

In this chapter, some of the studied mechanisms governing mammalian percep-

tion was listed along with the computational models that were adopted for sim-

ulating them. The important features include: Hierarchical structure, increasing

complexity of receptive fields and receptive field sizes, sparsity of neuronal ac-

tivation and bottom-up and top down attentional modulation. Based on these

principles, many different versions of vision models were designed, which will

be explored in detail in the next chapter.

The main drawback of current biologically inspired vision models is that they

tend to highlight just one aspect of the biology. For example, the HMAX model

[8] also only mimics the hierarchical structure and the simple and complex cell

template. In terms of performance, deep convolutional neural networks have been

able to replicate almost human level recognition, but aside from its hierarchical

structure and number of neurons, there is little to no connection to biological

learning process. None of these models incorporate any feedback connectivity

and in terms of invariance and selectivity, they fall far behind in comparison.

To reach closer towards biological plausibility, it is essential to consider more

than one aspect of the mammalian vision. The aim is to extract features with

improved invariance and selectivity over previous models while also considering

the properties of the visual cortex.
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3.1 Introduction

With the goal of understanding perception related mechanisms, many computa-

tional models based on the visual cortex were designed [53]. Although a universal

vision framework that represents all the aspects of the visual process would be

a more representative form of the cortex, most are generally geared towards a

specific visual task such as object tracking, recognition or saliency. In this study,

the focus is mainly towards object recognition tasks, which form the central com-

ponent of all cognitive process. These models are based on the receptive field

organization described by Hubel and Wiesel [40]. In their study, a hierarchical

structure of alternating layer of simple and complex cells was described. Higher

level cognitive functions are said to emerge from the selective and invariant prop-

erties of these cells, which increase in complexity along the layers [8].

In such types of biologically inspired models, input images are processed

through these layers to generate an output feature vector. These models aim to

achieve invariant response to all forms of transformations while also maintaining

its selectivity towards a particular class of objects and its performance is based

on its feature representation ability. The features are extracted in a hierarchical
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manner, starting with low level edges and boundaries to higher levels of object

descriptors. Evaluation of models such as [37], [54], [16] is usually performed by

training the extracted features to classify objects into their respective categories

using softmax or linear regression methods. In a different approach, the activation

value of high level units were analysed for object detection in [13][10], which bears

a closer resemblance to biology rather than supervised training of a classifier.

The invariance and selectivity of these units determined the effectiveness of the

learning algorithms.

In this chapter some of the hierarchical recognition models which were bio-

logically motivated will be reviewed. The properties of these frameworks will

form the basis for the new models in chapter 4.

3.1.1 Hierarchical models of vision

The selective firing of neurons based on the pattern of input stimulus been mod-

elled in many artificial vision systems. The earliest such model is the perceptron,

which has interconnected layers of neurons consisting of visible layer and hidden

layer with a linear prediction function. The ’firing’ of a neuron is dependant upon

the comparison of the weighted sum of all the inputs to a threshold.

Similar in structure to the Perceptron, the earliest models based on Hubel and

Wiesels architecture was proposed in 1980 by Fukushima, called Neocognitron,

where its property of selective attention was applied for pattern recognition [5].

It was modelled according to the simple and complex cell layers of neurons in the

form of feedforward, self-organising neural networks and demonstrated position

invariance and tolerance for small amount of shape distortion.

In [55], the Neocognitron was further improved using bend detecting and line

extracting cells. Although the system was robust when trained with unsupervised

learning, supervised learning algorithms showed better results. A more recent

modification includes a Hypercolumn model to increase its effectiveness for a

more general set of images [56].

In conventional computer vision models, object recognition involves a process

of feature extraction followed by classifier training or learning. The Scale Invari-

ant Feature Transform or SIFT is one of such algorithms in which local feature ex-

traction is performed [57]. Invariance to scale and rotation is achieved through a

process of extrema detection, keypoint localization, orientation assignment[57]. In

comparison, these neural network based models directly apply learning in which
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Figure 3.1: Neocognitron[5]

all the parameters of the layers are obtained with a back-propagation algorithm.

In this way, biologically inspired models aim to obtain invariant descriptors with-

out hand-crafted features which required overly complicated algorithms. The

hierarchical models in this section are composed of neurons that are fully con-

nected. Each neuron in one layer is connected to all the neurons in the next layer.

Convolutional Neural Networks and deep learning architectures

Convolutional neural networks (CNNs) are a type of hierarchical models also

inspired by the Hubel and Wiesel’s architecture of the visual cortex. But here,

each neuron is connected only to a small number of afferent neurons in the pre-

vious layer. This type of local connectivity allows for a more efficient method for

processing images as it greatly reduces the number of parameters to be learned.

These models are also trained with supervised learning using backpropagation

algorithms [21].

The very first convolutional neural network was described by LeCun [6],

which and adopts a hierarchical structure with multiple layers. The input of

each successive layer is a group of locally connected or neighbouring units of the

previous layer. The weights of the units belonging to the same local group is

shared which reduces the number of parameters and leads to position invariance.

A typical CNN includes a set of three fixed operations which are repeated

throughout the model depending on the number of layers. The first component

of the sub-layer is the convolutional layer, which spatially translates the input

feature array by convolution with a linear filter. It is followed by a non-linearity
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Figure 3.2: Convolutional Network model of LeNet-5l [6]

function operation. Most commonly used function is the Rectified Linear Unit

or ReLU, which replaces all the negative outputs to zero. And finally, a feature

pooling operation that performs max pooling or sub-sampling operation over the

neighbouring units. Combination of these three steps are termed as the convo-

lutional layer. The convolution step accounts for the selectivity whereas pooling

gives rise to position invariance. This bears a similarity with the simple and

complex cell layer like structure in the visual cortex which displays properties of

selectivity and invariance respectively. In addition to encoding invariance, it also

reduces the size of the image data and thereby making the operations in along

the network more practical.

The LeNet-5 illustrated in figure 3.2 shows seven layers of the 3-level process-

ing stages. Though it was initially applied for text recognition, it has been widely

used in a number of applications such as face detection, video surveillance due

to its computational efficiency and uniformity which allows a wide range of im-

plementations [58]. After multiple stages of convolutional layer, the final layers

are comprised of a set of fully connected neurons with multiple hidden layers

and an output layer. With this, the models use a gradient based supervised learn-

ing method using backpropagation algorithm to learn all the parameters of the

network.

Recent developments in this technology has displayed remarkable advance-

ments in image recognition accuracy. Very deep architectures, with multiple con-

volutional layers stacked before the fully connected final layer have been found to

display almost human level accuracy or even surpassing when tested with various

databases [59]. These massive models contain a very large number of parameters
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which results in higher performance for complex tasks and thus generally outper-

forms most other models [21]. Although these models are inspired by the general

architecture of the brain, they do not specifically aim to mimic the structure and

functional properties of the visual cortex [60].

In recent years, the benchmark for CNNs have been determined by the Ima-

genet Large Scale Visual Recognition Challenge (ILSVRC) [61]. It is based on the

classification accuracy of the Imagenet database, which contains 1000 categories

of images of over a million images [62].

Notable models include the Krizhevsky et.al.[7], which won the ILSVRC in

2012. This model was comprised of five convolutional layers and three fully con-

nected layers trained with a stochastic gradient descent algorithm. Not all the

convolutional layers applied max pooling and the total number of neurons added

up to 650,000 with 60 million parameters. At the time, it achieved the highest

accuracy in classification of the Imagenet dataset with an top-1 and top-5 error

rate of 37.5% and 17.0% respectively on 1000 categories. Figure 3.3 shows the

architecture, which was implemented using two GPUs. Each GPU was allocated

to the top and bottom sections of the layers separately.

Figure 3.3: Krizhevsky,2012 model [7]

Improvements to this model was made by Zeiler and Fergus in [63], where the

accuracy of image categorization was enhanced by changing the filter sizes and

convolution strides within the layers. The filter sized were determined after ap-

plying an ’adaptive deconvolutional’ operation which allowed visualization with

the reconstruction of the input [64].

Another model similar to the Krizhevsky format is the Hybrid-CNN which

was applied for scene text recognition. They used a hidden Markov model
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(HMM) to form a hybrid CNN-HMM. Unlike previous techniques, where a seg-

mentation operation around the text within a scene was performed prior to learn-

ing, this model was able to learn the text information directly [65].

The GoogLeNet [66], which won the ILSVRC 2014 had a 22 layer deep net-

work and achieved an error rate of 6.67% on the testing and validation dataset.

Efficiency was increased with a reduction in the total number of parameters by

12 times compared to the Krizhevsky model. Another difference was that it ap-

plied average pooling in place of max pooling operation within the layers. A

characteristic of this model is the usage of 11 convolutions which forms a deeper

network without adding more layers [66]. It also act as a dimension reduction

measure. This model is an example of a class of very deep architectures where a

large number of internal layers contribute to an improved accuracy levels [59].

The Deep Residual Learning model [67], which was the winner of ILSVRC

2015, had a depth of 152 layers. In [22], a Parametric ReLU method was applied

to a very deep network which was one of the first models to surpass human level

of accuracy in recognition.

One characteristic of these models is that it requires a large collection of train-

ing samples for the training process. Experiments in [63] showed that when a

CNN trained with the Imagenet database with 1.3 million images was applied

on the Caltech − 256 dataset [68] (which contains a total of 30,607 images with

257 categories), its performance surpassed the CNN trained with the Caltech-256

dataset with a large margin. Another property is the supervised learning mech-

anism that requires all the training data to be pre-labelled. Although structure

and performance-wise, they behave similar to the human visual cortex, the mech-

anism of learning spontaneously is not reflected in these models.

In [58], an unsupervised pre-training of the filter banks was proposed as a

method for greatly reducing the number labelled samples required for training

the network. A sparse coding algorithm was applied for learning the filter param-

eters. Since unsupervised learning from random input data is more in tune with

the biological learning process, hierarchical models that adopt this type method

serve as an important example in this field.

Self-Taught and Unsupervised learning models

Unsupervised feature extraction technique has been applied in the field of com-

puter vision in the form of many different algorithms such as the PCA, ICA and
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sparse coding techniques. One of the earlier unsupervised method implemented

on a deep network scale was demonstrated by the Deep Belief Network (DBN)

[69], where each layer learned features based on the statistical dependencies of

the input in the previous layer. The learning process was based on maximiz-

ing the likelihood of the training data. An elementary unit of the DBN is the

Restricted Boltzmann Machine (RBM) which is a type of undirected graph with

binary states which contain a hidden and a visible layer. The DBNs are formed

by stacking together these RBMs.

This model was later extended with the Convolutional Deep Belief Networks

(CDBNs) [37], in which the weights between the layers are shared across all the

locations of the input image. It applies a probabilistic max pooling method which

accounts for its translation invariant response.

Adaptive deconvolutional model by Zeiler et. al. [64], was also proposed as

an unsupervised feature learning model by applying a Predictive Sparse Decom-

position (PSD) method. The output features were then trained with a classifier to

determine its performance.

In [70], learning of high level features was demonstrated with a large collec-

tion of unlabelled data. The algorithm for this model was based on the simple and

complex cell structure in which the first layer applied a linear filter bank and the

subsequent layer encoded invariance by pooling operations. The simple cells in

the form of sparse linear filters were learned by K-means clustering method and

the complex cells were formed by agglomerative clustering which grouped the

simple cells together. It was found that the simple cells in the higher layers of the

model were highly selective towards human faces with this type of unsupervised

training.

Similar architectures but using sparse algorithms such as ICA (Independent

Component Analysis) and its extensions ISA (Independent Subspace Analysis)

and TICA (Topographic ICA) were described in [12] and [13] respectively.

Among the many hierarchical biologically motivated recognition models, the

HMAX model [71] also performs feature extraction in an unsupervised manner.

Although hand-crafted filter designs are applied within the layers, the input data

is always comprised of unlabelled data.
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HMAX

A view-based hierarchical model of vision was proposed in 1999 by Poggio and

Reisenhuber called HMAX. The name was coined due to max-pooling operations

that occur within alternating layers to encode invariance. This feedforward model

bears close resemblance to the structure of the primary visual cortex defined by

Hubel and Wiesel formed with alternating layers of simple S and complex C cells

[71][8].

The first layer called the S1 layer is based on the simple cells, which sensitive

to low level features such as edges. It is comprised of an array of two dimensional

Gaussian filters tuned to different orientations.

Gxy = exp(
−(X2 + γ2Y2)

2σ2 )cos(
2πX

λ
+ φ) (3.1)

Where,

X = xcosθ − ysinθ (3.2)

and,

Y = xsinθ + ycosθ (3.3)

γ is the aspect ratio, σ is the effective width of the filter, λ is the wavelength

and φ is the phase [72]. In a later modification, the Gaussian filters were replaced

by Gabor filters as they allow for a more accurate orientation tuning [29].

The second layer called the C1 layer is modelled after the complex cells of

the visual cortex. It performs a non-linear max operation on the outputs of the

S1 layer such that the only the strongest value gets selected. The max pooling

operation has been also be found to occur in the cortex [73][8]. To achieve size in-

variance, max pooling occurs over S1 cells of same orientation but varying spatial

resolutions and to achieve position invariance, pooling is applied over neighbour-

ing locations of each feature map.

After the C1 layer feature selectivity is performed by a simple cells of higher

complexity. In the HMAX model in [8], the S2 units are formed by extracting

patches or prototypes of C1 layer outputs. The S2 outputs are the result of tem-

plate matching that is given by a Gaussian radial basis function,

R(X, P) = exp
(
−‖X− P‖

2σ2α

)
(3.4)

Where X is the C1 layer outputs, P represents the S2 features or prototypes,

σ is the standard deviation and α denotes the normalizing factor for the different
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patch sizes [74]. The C2 layer encodes global invariance by max pooling over

all the location and scales, forming a bag of features [74]. Due to this structure,

this model was also described as spatio-temporal feature detectors of increasing

complexity [39].

After C2, there can be a multiple number of S and C cell layers. In its imple-

mentation for object recognition in [75], four levels of simple and complex layers

were applied, resulting in robust object recognition system. It was also applied

for modelling a system for action recognition from a video sequence [39]. Figure

3.4 shows a common hierarchical model from [8] that illustrates how each layer

contributes to the invariance to different transformations.

Figure 3.4: HMAX model: Hierarchy of alternating simple and complex cells

forming view tuned cells [8]

The HMAX model has undergone many different modifications following its

initial version in [8]. In [29], the Gaussian filters in S1 layer were replaced by

Gabor filters. The motivation behind this adjustment was due to its similarity to

physiological data and the number of free parameters that allows more accurate

tuning [29]. In [54], application of this model was demonstrated on a series of

recognition tasks. The extracted C2 features were highly robust in binary class
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object classification.

In [72][74], sparsity was introduced in the S2 inputs such that only the most

dominant orientation of the C1 unit is captured. Additionally, lateral inhibition

was applied which suppressed the S1 and C1 outputs. Based on the findings

that V4 and the IT neurons are selective to a range of scales and visual field [74],

the invariance property of the C2 units were also limited by applying a localized

pooling of features. This type of pooling was also described as ’attending’ towards

a particular region of the visual field.

Further improvement was demonstrated in [16], where localised pooling

method was adopted for the high level filter responses (in this model, the C2 or

L4 outputs). The model comprised of four alternating layers of convolution and

pooling. In the first layer, Gabor filters of multiple orientations and scales were

convolved with the input images. This was followed by the local max pooling

operation at the same orientation maps in the L2 layer. Adjacent scale maps were

also pooled to achieve a degree of scale invariance. Patches of L2 were extracted

to form High Level (HL) filters, which were convolved with the L2 outputs. In

the final layer, a combination of spatial pyramid [76] and localised pooling was

applied. In this method, max pooling over various locations was performed by

using concentric search regions of various sizes. The location and scale of the

pooling region was also encoded in the final feature vector. It was mentioned

that depending on the complexity of the input images, the number of best suited

required to represent the features varied. With this model, the classification ac-

curacy on multiple categories of objects improved significantly over the previous

HMAX [74]. With increase in scale resolution of the pooling, the classification

accuracy was further improved in [11].

Some limitations that were identified for this model include off-line learning

and lack of feedback which made it too simplistic to account for the complexities

of the cortical neurons [77]. In [77], to account for feedback mechanisms, which

are considered as an important aspect of the visual cortex that can modify V1

layer responses [78][79], a feedback mechanism for HMAX model was developed

based on Bayesian networks and belief propagation. A theoretical framework

for hierarchical Bayesian system was proposed in [80]. They described a feed-

back process where the lower layers would get updated with the influence from

higher layers till the system reaches an equilibrium state. A hierarchical model

for pattern recognition was demonstrated in [9] where a conditional probability
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distribution matrix is calculated for the lower level modules that is updated as the

learning process is repeated. Figure 3.5 shows the Hierarchical Bayesian Network

in which each node contains a probability distribution [9].

Figure 3.5: Bayesian Hierarchical model [9]

Each mid-layer node X of the model is influenced by its parent nodes and

children nodes. This dependency between the nodes defines X to be the joint

probability of bottom-up beliefs λ(X) and top-down beliefs π(X) [77].

Bel(X) = α.λ(X).π(X) (3.5)

Where, α is a normalizing constant. Due to the computational cost of belief

propagation, a loopy belief propagation model was applied to approximate the

HMAX functions. Based on these principles, a Bayesian network was designed

where each node represented the features encoded at a given location and layer.

The probability distribution over the possible states or orientations was calculated

to determine the response of the nodes. Finally, conditional probability tables

were used for linking these nodes to parent nodes in the next layer, which also

provided an approximation of the max-pooling operation of the complex cell

layers of the HMAX. One drawback with this model is the computation cost. Even

with more optimised belief propagation, its scalability was limited and could not

be applied for large datasets [77].

In all the above HMAX models, the first layer of HMAX contained hard coded
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Gabor filters corresponding to realistic parameters of of the visual cortex cells

[10][29]. Unsupervised learning is usually reserved for the higher levels. In

[10], an unsupervised method based on the natural statistics of input images was

adopted for learning all the layers of the HMAX model (figure 3.6). In addition,

the applied learning techniques also modelled the sparsity of neuronal activation

which is said to characterize the response of all the layers of cortical cells [81].

The learning methods included the sparse coding optimization algorithm and the

equivalent independent component analysis (ICA). A similar model was also de-

signed in [28], where two layered sparse coding model was trained for invariant

and discriminative feature detection. Higher order dependencies were modelled

by pooling over local regions to generate two sets of codebooks. In an expan-

sion of this model, the sparse HMAX in [10] stacked multiple layers of feature

selectivity and pooling.

Each S layer was followed by max pooling operation over slight variation of

spatial positions for shift invariance in the C layer. The final feature vector was

obtained by applying spatial pyramid max pooling [76] over the final S layer

outputs. It was reported that even without pooling over different scales, this

model performed improved object classification than the original HMAX and also

learned object specific neurons similar to [13] but with much lower computational

resources.

Figure 3.6: Sparsity regularised HMAX model [10]

The S1 layers were learned from unsupervised algorithms from random
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patches of the input images. These units resembled Gabor-like edge detectors

whose response within neighbouring spatial locations were pooled in the next

C1 layer. The sampled outputs of C1 formed the training set for learning higher

order feature detectors in S2, with either sparse coding or ICA. In this manner,

multiple layers were formed with increasing complexity of receptive fields along

the hierarchy. In he final C layer, features were extracted by applying spatial

pyramid max pooling over the outputs. Even without applying scale invariance

functions, this model achieved a high classification accuracy compared to most

other models. When the activation values of the high level units were analysed,

they were found to be highly selective to object category and also displayed a de-

gree of invariance towards translation, rotation, scale and occlusion. Their study

also demonstrated the advantage of max pooling in comparison to average pool-

ing since it introduces linear higher-order dependencies among filter responses at

different positions which leads to learning high level features (although some

other methods such as square pooling are also known to share this property

[13][12][31]) [10].

A new enhancement of the feedforward HMAX model was proposed in [82]

where bottom-up saliency maps were integrated for learning high level proto-

types. This type of attentional modulation directed the sampling of patches to-

wards the regions of high saliency and reduced the data redundancy. The patches

were then selected and classified into separate clusters based on their similarity

with an unsupervised iterative algorithm. This method was adapted to the mem-

ory processing property of the V2 layer and the distributed regions of the IT

[82]. Higher classification accuracy than the original HMAX model in [54] was

reported for this model for a smaller set of training sizes, but its performance in

comparison with the newer HMAX models were not determined.

All the HMAX models described in this section apply a different strategy

of pooling at the final layer (figure 3.7). In [54], [75], global max pooling over

all the locations was applied, in [74], localised regions were pooled, in [10] and

[16], spatial pyramid pooling was implemented and in [16],[11], localised pooling

with multiple resolutions were applied. Among these methods, the models with

spatial pyramid pooling were found to perform with higher accuracy than the

rest as it allows for more dense representation of features [76][10][83][11].
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Figure 3.7: Pooling strategies the HMAX models [11]: the coloured boundaries

describe the pooling areas that are applied in the above models

Sparse hierarchical models

In recent years sparse representation has been widely applied in vision related

models [84][85]. Apart from the sparse-HMAX model in [10], many other mod-

els have implemented sparsity in a hierarchical manner including the two layer

architecture in [28] and [86]. Models in [13], [87], [88][12] learn the simple layer

units with ICA related algorithms. These models extract features from the natural

statistical properties of images [32].

In [12], Independent Subspace Analysis (ISA) was applied for learning multi-

ple S layer units for an action recognition system in a convolution and stacking

architecture (figure 3.8). ISA is an extension of the ICA algorithm that classifies

the units into groups or subspaces according to their dependencies [33]. In this

model, phase and position invariance was achieved by square pooling over re-

sponses of simple cells within a subspace. Features invariant to local translation

and phase was learned by pooling over responses within subspaces. Convolution

resulted in faster computation time which was essential for processing the high

dimensional data but it was described as biologically less plausible as the pa-

rameters are shared across all the locations [89][13]. However most convolutional

neural networks as well as HMAX models share this type of shared parameters.

The invariant spatio-temporal features achieved a high classification accuracy for

action recognition datasets. A higher efficiency in training time was also achieved

by preprocessing the output of each layer with PCA, which performs both com-

pression and data whitening, before applying ISA.

The Topographical ICA (TICA) [30] was applied in a hierarchical model in [13]

to build a large scale object detection system (figure 3.9), described as a sparse
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Figure 3.8: Convolutional and stacked ISA network in [12]

deep autoencoder. TICA is another extension of the ICA in which dependencies

decrease with increase in spatial distance within the topography. In this unsuper-

vised learning framework, a nine layered locally connected sparse autoencoders

were trained using a reconstruction based TICA algorithm [90](for generating an

overcomplete set of units). This model follows the architecture of the Tiled CNN

described in [89] which differentiates it from other models. The receptive fields

are localised such that each unit only observes only a portion of the input data.

The parameters are not shared across all the locations of the image. In addition

to biological plausibility, its claimed to be able to learn more than just translation

invariances. The final layer contained class-specific neurons corresponding to the

f ace neurons in the IT. The model applied a reconstruction based TICA algorithm

[90] to learn overcomplete features (where number of features are greater than

the dimensions of the input).

Invariance was achieved through square pooling the responses of dependent

or neighbouring units. The final layer formed high level ’neurons’, which were

measured for object detection against a set of distractors. The best neuron for

face detection achieved an accuracy of 81.7% for a dataset of 37, 000 (comprised

of ImageNet [61], and Labeled Faces in the Wild dataset [91]) images containing

13, 026 positive samples. The neurons also exhibited robustness towards rotation
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and scale variations. With these results, this model displayed high performance

in object detection and invariant response however, its accuracy in classifying

multiple categories of objects were not reported.

Figure 3.9: First layer of the architecture in [13], comprised of localized receptive

fields

In both of these models, invariance was achieved by pooling over overlapping

neighbourhood of features from the previous layer. Here, hierarchy, invariance,

selectivity and sparsity is demonstrated, yet they are structurally different from

the HMAX models.

Instead of localized receptive fields, as in [13], the S layer response in the

HMAX is in the form of a hyper-column which contain feature maps for all the

possible locations and scales [60]. Also, shift invariance is achieved by max pool-

ing of neighbouring locations of the same feature map. Recently, an unsupervised
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version of the sparse HMAX was developed, in which all the S layer units were

learned from natural images using sparse coding and ICA [10].

The list of models that have applied sparsity based learning algorithms have

displayed highly accurate results in image classification and detection. Its added

advantage biological plausibility, supported by experimental data [81] makes it

an important technique for designing cognitive models.

3.1.2 Temporal models

In these models, encoding of invariant features is based on the temporal as well as

spatial statistics of the data. They demonstrate a self-organising learning pattern

which is said to occur in the brain [1].

The Hierarchical Temporal Memory HTM [14] is a memory and time based

machine learning technology which was developed according to a converging hi-

erarchical version of the neocortex. This tree shaped network was based on the

Hierarchical Bayesian model that was implemented in [9]. Inference and predic-

tion is made by observing the temporal sequence of images that display similar

patterns over a period of time. The model was extended to mimic the columnar

nature of neocortical neurons in [52] where in each layer, the cells or ’neurons’

were grouped into columns such that all the cells in a column would share the

same receptive field. The memory allocated to each unit decides the complexity

of pattern learnt by each layer. Here, learning, inference and prediction occurs in

a continuous manner.

The HTM is characterised by its spatial and temporal pooling functions. Spa-

tial pooling sends feedforward information to the next layer where patterns that

are spatially similar are pooled together. The propagation of information occurs

in the form of ’activation’ of columns. A sparse distributed representation en-

sures that only a percentage of columns or units are active in a layer at a time.

The neuron with stronger activation suppresses the neighbouring neurons with

weaker activation [14].

Temporal pooling groups together patterns that follow each other in time. The

previous input is used to form representations of the current input within a layer.

It also performs prediction for the next time step which involves the formation

of connections ’synapses’ with neighbouring cells of the same layer with active

cells form connections with previously active neighbouring cells. This is done

by adjusting the weights assigned to each connection which range from 0 to 1
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Figure 3.10: Hierarchical Temporal Memory[14]

depending on the strength of the connection [14].

Apart from recognition tasks, the HTM has been useful specially in applica-

tions that include a temporal variation of data. For static vision models, single-cell

columns were found to be sufficient [14]. Higher number of cells are useful for

predictions and representations based on previous input. This method has been

found to be highly efficient in a vast variety of applications and closely mimics

the neocortical architecture but fails to incorporate any feedback mechanism that

occurs in the visual cortex [77].

Another temporal based learning mechanism was proposed in [92] called

spike timing dependent plasticity (STDP). This feedforward hierarchical archi-

tecture, models the ventral stream of the visual cortex. The components here

are represented in terms of neurons and its spiking response. In this model, the

connections between the units or synapses are given weights depending on the

frequency of the input stimulus.

This type of self-organised learning with synaptic reinforcement through tem-

poral and spatial continuity information was also integrated into the VisNet

framework in [1].

A similar extension to the HMAX model was proposed in [93], where con-

nectivity between the most active units were strengthened based the temporal
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sequence of images. The temporal component is not included in most of the

frameworks described in this chapter. But for designing a more biologically real-

istic model, it would be advantageous to incorporate such mechanisms into the

learning process.

3.2 Summary

In this chapter, all the hierarchical models which were described were in some

manner, inspired by biological vision. Since a large part of the functional proper-

ties of the brain remain a mystery, most of these models are mainly based on the

hierarchical template of the initial simple and complex layers of the visual cortex.

Since there is even less similarity between supervised learning method for

the CNNs and biological vision, the focus will be on improving unsupervised

hierarchical models in the next chapters. Although not all aspects of the visual

cortex are considered, the aim is to improve its classification accuracy towards the

range exhibited by large scale CNNs.



Chapter 4

Sparse hierarchical vision models

4.1 Introduction

In this chapter, an unsupervised hierarchical model of vision is proposed us-

ing sparsity-based algorithms: Independent Subspace Analysis (ISA) and Topo-

graphic Independent Component Analysis (TICA). The new model is inspired

by the unsupervised hierarchical feature learning described in [13],[12] and the

HMAX framework and its extensions [8][54][10]. It extracts high level features

from a set of unlabelled data which are then classified using linear regression.

Here, each layer of the hierarchy involves three stages of processing: Linear filter-

ing, L2-pooling and max pooling.

Application of ISA and TICA on natural images has led to the emergence of

complex cell properties of phase invariance [31][30]. Therefore, with its proper-

ties, features extracted from the model exhibit a high degree of invariance and

selectivity which is demonstrated by an improved classification accuracy in com-

parison to unsupervised models such as [10] and [16]. In addition to object clas-

sification accuracy, it also reduces the dimensionality of the data at each of the

layer outputs. Since the simple and complex layer template of the HMAX model

is replicated in these models, they are referred to as ISA-HMAX or TICA-HMAX

in the following sections.

4.2 Sparsity-based algorithms and invariant feature repre-

sentation

Evidence in various studies in neuroscience suggest that sparsity of response oc-

cur in all layers of the visual cortex [81][94][1][10]. The non-Gaussianity in natural

data was first represented in terms of sparse coding by Olhausen and Fields, in

which an image was represented by linear combination of very small number

of non-zero features [25]. The independent component analysis (ICA) generates
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features similar to sparse coding but they are statistically independent [33][32].

In an extension to the ICA, the independent subspace analysis (ISA) and topo-

graphical independent component analysis (TICA) was developed in which the

components were grouped according to their energy dependencies [31][30][32].

Since maximizing sparsity is equivalent to maximizing independence [31][25],

ICA, ISA and TICA has been used as an alternative to sparse coding in many

models [10][13][12]. Recent examples of ISA or TICA based hierarchical models

include a deep learning frameworks for action recognition in [12], where a con-

volution and stacking method was adopted and [13], where a multi-layer model

with pooling and local contrast normalization was built to simulate a large scale

feature detection by training with unlabelled data.

The performance of these models greatly depends on its invariant feature rep-

resentation which is generally achieved with a non-linearity function. In the con-

volutional neural networks, HMAX, and its sparsity regularized extension [10],

translation invariance was achieved by a max pooling function over neighbour-

ing locations on a feature map. Biological plausibility of max pooling was also

supported by studies that discovered similar functions in the V4 area of primate

visual cortex and complex cells in cat visual cortex [29]. In the self-taught learning

models described in [13] and [12], L2-pooling function over the feature maps was

applied. Additionally, the original HMAX models also encode scale invariance by

max pooling over features of same orientations and positions but slightly differ-

ent spatial frequency [29]. Some recent convolutional neural networks have also

extended scale invariance into their model [95]. As evident from these models,

there is always an aim to learn more than one type of invariances.

It has been stated that phase and position invariance are rather closely related

to each other [32]. Changes in phase for a spatially localized stimulus translated

into very small shifts in position (in the direction of its oscillations) such that it

was termed as a special case of position invariance. Complex cell properties of the

ISA and TICA therefore, displayed phase invariance and limited shift invariance

[31]. To obtain high level features with improved classification accuracy, both

L2-pooling and max pooling is applied in the proposed models in this chapter.

Sparse coding

The emergence of Gabor-like filters similar to the V1 simple cells by maximising

sparsity was demonstrated by the sparse coding optimization technique [27].
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With a given sample of natural image patches, these Gabor-like filters or bases

are formed by solving a convex optimization problem in which the cost function

is minimized with respect to an l1-norm regularization term as in equation 4.2.

Here, the input vector x is expressed in terms of a linear combination of basis

functions ai and coefficients si as,

x =
k

∑
i=1

aisi = AS (4.1)

For a set of m input vectors, the optimization is carried out by the given cost

function as,

minimize
m

∑
j=1
||x−

k

∑
i=1

aisi||2 + λ
k

∑
i=1
|si|1 (4.2)

To ensure that the si terms are mostly zero, the l1-norm regularization term is

used. The term λ ∑k
i=1 |si|1 imposes the sparsity penalty on the cost function, λ is

a positive constant.

Independent component analysis

Like sparse coding, independent component analysis also learns filters or bases

that are localized in space, frequency and orientation [32]. In ICA, the bases are

constrained to be independent with respect to each other. From equation 4.1,

given the matrix S is orthogonal,

A = S−1X = WX (4.3)

One of the popular methods to learn the bases and weights are is by the maximum

likelihood estimation of the observed data [32]. Given W = (w1, ..., wn)T,

maximize
T

∑
t=1

k

∑
i=1

logpi(w
Tj
i xi) + Tlog|detW| (4.4)

Where pj is the probability density function and log|detW| is the orthogonality

constraint.

In [32], ICA estimation by maximizing sparsity (instead of independence) was

termed as a special case of maximizing the non-Gaussianity of natural images.
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Subspace and Topographic ICA

The independent subspace analysis (ISA) and topographic independent compo-

nent analysis (TICA) are two extensions of the ICA that relaxes the independence

constraint and arranges the bases according to the strength of their higher order

correlations [32]. This type of grouping has led to the emergence of complex cell

property of phase invariance [30][32].

From equation 4.3, if two components si = ziσ and sj = zjσ are defined

as uncorrelated then cov(s1, s2) = 0, where σ is a common variance variable

and zi, zj are zero mean and unit variance independent components. However,

uncorrelated components does not indicate independence [32] since correlation

of their squares is positive.

cov(s2
i , s2

j ) = E{s2
i s2

j } − E{s2
i }E{s2

j } 6= 0 (4.5)

cov(z2
i σ2, z2

j σ2) = E{z2
i z2

j σ2σ2} − E{z2
i σ2}E{z2

j σ2} = E{σ4} − E{σ2}2 6= 0 (4.6)

This type of dependency is also termed as energy correlations between two

components [30][32].

Topographic independent component analysis (TICA)

In TICA, the arrangement of the learned units is in a way such that it reduces the

distance between correlated components and thereby reducing the wiring length

between two statistically related neurons. In neuroanatomy, is explained as the

length of the axons that connects the neurons [30]. This minimization of wiring

length has been described in [32] as a model for the compactness of the brain

volume and speed of signal processing.

Here, the grouping of dependent components is determined by neighbour-

hood function that defines the topography. Proximity within the topography

indicates strength of its second order correlation.

The generative model for the TICA is defined by the joint density of the S ∈
{s1, ..., sn} components from equation 4.3. The variances of the components of S

are generated, from which the components (zi, zj) are derived independently.

The arrangement of the components with the associated variances σ are de-

fined by a two dimensional neighbourhood function h(i, j) with neighbourhood
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area of width m, which is defined as a monotonically decreasing distance measure

as defined by equation 4.7.

h(i, j) =

1 if |i− j| ≤ m

0 if otherwise.
(4.7)

The variance of a component σi is then defined in terms of the neighbourhood

function as,

σi = φ(
n

∑
k=1

h(i, k)uk) (4.8)

Where φ is a scalar non-linearity function and uk are the independent compo-

nents.

The components si can then be defined as,

si = σizi = φ(
n

∑
k=1

h(i, k)uk)zi (4.9)

The components, si, sj are uncorrelated but their energies s2
i , s2

j are correlated

(equation 4.6). As in the case of ICA, W = (w1, ..., wn)T = A−1 (from equation 4.3,

the bases and weights can be learned by the maximum likelihood estimation of

the cost function,

logL(W) =
T

∑
t=1

n

∑
j=1

G(
n

∑
i=1

h(i, j)(wT
i x)2) + Tlog|detW| (4.10)

ej =
√

h(i, j)(wT
i x)2 (4.11)

The h(i, j)(wT
i x)2 represents the energy of a neighbourhood or the complex

cell output, and G is a scalar function [30].

The figure 4.1 shows the components derived from a set of natural images

using TICA. The input was a set of 50000 samples of 14× 14 sized square patches

extracted randomly from the Kyoto dataset. It shows a total of 196 bases where

a neighbouring function determines the dependence of nearby components. The

bases within a neighbourhood of size 3× 3 exhibit very slight variations in ori-

entation, frequency and position, but are varied in phase. As described in [32],

most of the components are of high frequency range, with some low frequency

blobs that are grouped together. When TICA is applied to colour images (in figure

4.2), the colour components are grouped into the low frequency clusters The gray

scale high frequency edge detectors surround the low frequency components in

the topographic map.
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Figure 4.1: Bases learned by TICA on natural images (the yellow box indicates the

size of the neighbourhood function)
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Figure 4.2: Bases learned by TICA on colour images

Independent subspace analysis

In independent subspace analysis (ISA), the dependent components are grouped

into a subspaces of pre-defined size. The neighbourhood function in this case is

defined as,

h(i, j) =

1 if ∃q : i, j ∈ Sq

0 if otherwise.
(4.12)

Where component S ∈ {s1, ..., sn} from 4.3 is divided into n-tuples such that

the si inside a tuple are dependent on each other. q ∈ {1, ..., q} is the index of the

n-tuple. Sq represents the set of indices of the component si that exists within that

tuple [31]. Equation 4.1 becomes,

With W = (w1, ..., wn)T = A−1, the cost function for maximum log likelihood

estimation in this case is given by,

logL(W) =
T

∑
t=1

Q

∑
q=1

G(∑
i∈Sq

(wT
i x)2) + Tlog|detW| (4.13)

Where, (wT
i x)2 is the energy term, and G is a scalar function.

The total response of each subspace is the squared sum of each component,
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Figure 4.3: ISA on natural image samples (the yellow box indicates the subspace of

size 4)

also termed as the L2-pooling.

eq =
√

∑
i∈Sq

s2
i (4.14)

Figure 4.4: ISA on colour image samples

The figure 4.3 shows the components derived from a set of natural images

from the kyoto dataset using ISA. The input was a set of 50000 samples of 14× 14

sized square patches extracted randomly from the database. It shows a total

of 160 bases where each subspace is comprised of 4 filters. Units within the
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same subspace are localized in orientation, frequency and position (with slight

variation) while having different phases. Similarly, for colour images as shown in

figure 4.4, all the colour components, with different phases, are classified into a

single subspace.

4.3 Image processing before unsupervised learning

The bases in figures 4.3 and 4.1 correspond to the simple cells of the V1 area in

the visual cortex. Their response is highly selective towards orientation, spatial

frequency and position. The complex cells pool over multiple feature selective

simple cells to exhibit invariance. In the higher layers, as the complexity of fea-

tures increase, there is also an increase in invariance which is attributed to the

increase in receptive field size [60]. In the models based on visual cortex, to repli-

cate this increased complexity, samples from all the features of the previous layers

form the training set for the next layer. The simple and complex cell layers in the

HMAX and similar models are based on the primary visual cortex, but visual

signal processing in the mammalian vision starts before that in the retina and the

LGN [23].

Contrast Gain Control

The contrast gain control(CGC), with its purpose to simplify the statistical struc-

ture of images by whitening and divisive normalization are operations that has

been compared to functional properties of the retina and LGN based on physio-

logical evidence [96]. With data whitening, the second-order information or cor-

relation within the data is removed. Common method of whitening is the PCA,

which also performs functions such as dimension reduction and anti-aliasing [32].

CGC is applied by dividing the whitened image patches with its variance.

This reduces the dependencies between the components which is useful for ISA

and TICA algorithms. As described in [32], for two uncorrelated (but not inde-

pendent) components, defined as si = ziσ and sj = zjσ, where σ is a common

variance variable and zi, zj are zero mean and unit variance independent compo-

nents, equation 4.1 becomes,

X = σ
k

∑
i=1

aizi (4.15)

Assuming that the variance σ̄ of each patch is almost equal to the global variance
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σ, normalization is carried out by dividing the image patch with is variance σ̄. So,

practically, it does not entirely eliminate but reduces the variance dependencies.

X̄ ← X
σ + ε

(4.16)

Where ε is a small constant for preventing division by zero [32].

The necessity of CGC was demonstrated in [96], where the subspace sizes

in the ISA algorithm was estimated by maximizing the likelihood with respect

to subspace size and pooling non-linearity. Without CGC, the strong dependen-

cies increased likelihood of almost all the bases to be categorized into one large

subspace. Thus, it is an important step before learning the dictionaries.

Max pooling over neighbouring positions of the same feature map introduces

positive correlations between the ICA components [10]. Figure 4.5 shows the

correlation coefficients of the S and C layers of an HMAX model (similar to [10]),

where the bases were generated by ICA. The input was a random image, which

was processed by linear filters obtained by ICA. The outputs of the ICA filters

represents the S layer. Over each of the outputs, max pooling was applied over

neighbouring values which represents the C layer.

The red histogram shows the coefficients between the response maps of all

the filters in the S layer of the model. The S layer outputs are observed to be

highly uncorrelated (with the average correlation coefficient close to zero). For

the C layer outputs, the size of pooling area p on the feature maps was varied.

The histograms (except red) show the effect of applying the max pooling function

on the S layer outputs. The average positive correlation increases with increase in

pooling area. This analysis was also presented in [10], where it was demonstrated

that max pooling non-linearity produced second order linear interactions among

the filters .

Figure 4.6 depicts the correlation coefficients of the first and second stages

of the ISA model (in red and blue histograms respectively) after applying CGC.

Its response shows the effects of applying the non-linearity function defined in

equation 4.14. The histogram in red represents the simple S layer output which

is highly uncorrelated and thus, its average correlation coefficient is close to zero.

The responses within subspace (of size Z = 5) were pooled according to equa-

tion 4.14. Here, blue histogram (which is superimposed with the red histogram),

shows that the remaining correlation coefficients are further reduced since ISA

minimizes the dependencies between norms of projection into subspaces [32].
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Figure 4.5: Correlation coefficients of the S and C layers of ICA HMAX in [10]

(The values above the histograms indicate their average correlation coefficients.)
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Applying max pooling over local area reintroduces linear dependencies in the

form of positive correlation (with an average of 0.51), as observed by the his-

togram in green which is larger than that of figure 4.5 (as observed by the blue

histogram which was 0.34).

Figure 4.6: Correlation coefficients of the ISA layers (The values above the his-

togram indicate their average correlation coefficients)

It was observed that inhibition of activation values below zero at the S layer

displayed better classification accuracy than allowing negative values (which is

the same as ReLU function of the convolutional neural networks). After setting

the negative values to zero, applying equation 4.14 shifted the histogram to the

right, indicating positive correlation as seen in figure 4.7. The average correlation

coefficients then also increased with subspace size (figure 4.7, left). Applying max

pooling further increased the linear dependencies (as observed in figure 4.7right),

with an average correlation coefficient slightly higher than in figure 4.6.

The histograms for the TICA outputs also displayed similar results, where

increase in neighbourhood size and pooling area shifts the histogram to the fur-

ther right. Setting negative values to zero before L2-pooling and then applying

local max pooling further strengthens the dependencies between the filters. This

indicates that the type of non-linearity function in the complex layers affects the

extent of interaction between the components and thereby influencing the invari-

ance properties of the extracted features. The study in [10] and the evaluations in
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Figure 4.7: Correlation coefficients of the ISA layers after setting all the negative

values to zero: left: Total number of filters is fixed at 100, and the subspace size Z

is varied. right: After outputs within subspace size Z=2 is pooled, max pooling is

applied over local positions of size p=2

figure 4.21 indicates that the introduction of linear dependencies in the complex

layers coincides with higher classification performance of the models. Also, due

to the appearance of these linear dependencies, CGC was applied on the sampled

data from the complex layers before applying unsupervised learning algorithms

in the next layer.

4.4 Enhanced HMAX models with phase and position in-

variance

In this section, implementation of the new hierarchical feature extraction model

is presented. The first simple and complex cell layers are denoted by S1 and C1.

Here, the combination of S1 and C1 layer functions is referred to as V1 layer. The Vi

layer of this model comprises of three sub layers: Si is the response of orientation,

spatial frequency and position selective linear filters, Cia represents the non linear

L2 pooling of the Si outputs within a subspace or topographic neighbourhood by

equation 4.14, and Cib denotes max pooling output over neighbouring locations

for each Cib feature. Since these non-linearities correspond to phase and position

invariance respectively, they are referred to as such in the model description.
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ISA HMAX model

In this model, the S layer filters were learned by applying ISA algorithm.

Figure 4.8: V1 layer of the ISA HMAX model

Figure 4.8 shows the first layer V1 of the feed-forward model. The structure of

the model is in the form of hypercolumns (also illustrated in [60]) or feature maps,

which is comprised of all the filter outputs for a spatial location . The subspace

size is denoted by Z1 and the total number of filters or bases at S1 is R1. Figure

4.9, shows the full model comprised of multiple V1 layers. The receptive field

size pi of the Vi layer of the model indicates the width of the square area that is

sampled from the C(i−1)b
layer (which is the input image for S1).

S layer

The filters generated from sampling random patches of images were grouped into

subspaces based on higher order energy correlations. The impact of subspace
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Figure 4.9: Multiple Vi layers of the ISA HMAX model

size along the different layers has an effect on object classification results. For a

fixed set of Si filters, increasing subspace size Z strengthens phase invariance but

decreases the number of features.

Si layer: For the first layer V1, each S1 layer filter is of size p1 × p1, where p1

is the width of the square receptive field of the first layer. The S1 filter is applied

on a patch of p1 × p1 of the input image X which is of size M× N.

If Wi =
{

wi1 , wi2 , ..., wiRi

}
is the set of filters, the Si response is of dimensions

M̃× Ñ × Ri, where M̃ = M− pi + 1 and Ñ = N − pi + 1.

Si =
〈
W, Xp

〉
(4.17)

Where, Xp is a decorrelated and normalized set of patches extracted from the

input image. Any negative output of Si layer was set to zero before the complex

layers, which resulted in a better performance in classification accuracy.
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C layer

Cia layer: With subspace size Zi, all the Si values within the subspace are pooled

such that the output of Cia has dimensions M̄× N̄ × R̃i. Where R̃i = Ri/Zi.

Cia =

√
∑
j∈Zi

Si j
2 (4.18)

Equation 4.18 represents the output of one feature detector at the Cia stage.

Cib layer: Each of the responses of the Cia are max pooled over non-

overlapping areas of size ri × ri similar to [10].

TICA HMAX model

In this model, the S layer filters are arranged according to a topography deter-

mined by their energy correlations. The model structure is similar to the ISA

version depicted in figure 4.8, but instead of equation 4.18, the components are

pooled according to the neighbourhood of influence given by equation 4.8. The

hierarchical layers are formed by alternating S and double C layers. The Vi layer

of this model comprises of three sub layers: Si represents the simple cell response

of linear filters, Cia represents non linear pooling of Si within a group represented

by a two dimensional neighbourhood function h(i, j), and Cib for the max pooling

over local spatial position of the responses of Cia .

The figure 4.10, shows the V1 layer of the HMAX model using TICA.

S layer

Si layer: Input image X is of size M× N. Similar to the previous model, Wi is the

set of filters (which contains a total of Ri filters of size pi × pi), the Si output is of

dimensions M̄× N̄ × Ri, where M̄ = M− pi + 1 and N̄ = N − pi + 1 (given by

equation 4.17).

C layer

Cia layer: With square neighbourhood of width hi, all the Si values within the

area are pooled such that the response of Cia has dimensions M̄× N̄ × R̃i, where

R̃i < Ri.



4.4. Enhanced HMAX models with phase and position invariance 49

Figure 4.10: V1 layer of the HMAX model (TICA) (image from CalTech101

dataset[15])
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Cia =

√√√√ n

∑
j=1

h(i, j)Si j
2 (4.19)

Where h(i, j) includes all the units that fall within a neighbourhood of size

hi × hi.

Cib layer: Again, each of the outputs of the Cia are max pooled over non-

overlapping areas of size ri × ri.

Final S layer

In the final Sn layer of the model, the square root of the sum of energies (or L2

pooling) of the values across all the location on each feature map is obtained as

the feature vector.

Cn =
√

∑ S2
n (4.20)

The Cia step is generally not applied when obtaining the final feature vector

(as illustrated in the V3 layer of figure 4.9). The final feature vector of size 1× Rn

forms the input for the classifier.

In both of these models, there is a dimensionality reduction within each of

the Cia layers. This differs from the 1 ∗ 1 convolution method applied in the

GoogleNet model [66]. It introduces non-linearity by another ReLU function im-

mediately after each of the 1 ∗ 1 method. But when applied to unsupervised

feature learning models such as these, the performance does not improve com-

pared to L2-pooling. Moreover, the learning process is completely different in

these models, compared to the backpropagation like methods of convolutional

neural networks, so its applicability here is debatable.

4.5 Empirical evaluation

The different hierarchical models illustrated in figures 4.9 and 4.10 were tested on

a database of 10 different categories 1 of objects from the CalTech101 dataset [15].

The initial experiments presented in this section are to evaluate between the ISA

and TICA models along with different iterations of parameters such as subspace

and receptive field size for which a small sample of the categories is used.

1categories included: airplane, bonsai, butterfly, car-side, chandelier, faces, ketch, leopards, mo-

torbikes, watch
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The models were comprised of three Vi layers which included linear filtering,

non-linear L2 pooling and spatial max pooling. The S layer filters were learned

from a database of the 10 categories which contained a total of 30 images per

class. After learning the S layer dictionaries, features were extracted by the models

from a separate testing database of 600 images from the same 10 categories. For

evaluation of the models, the extracted feature vectors were classified with multi-

class linear SVM (LibSVM software [97]). A sparse HMAX model using ICA as

described in [10] was also trained with the same parameters and database for

comparison. The model had the same number of Vi layers except that it only

included linear filtering and spatial max pooling functions.

Experiment 1: Multi-class object classification: Comparison of HMAX models

In all the models, for learning the filters in each S layer, a total of 50, 000 data

samples were randomly extracted from the previous layer. The samples were

then whitened and normalized to reduce linear dependencies before applying

the learning algorithms (ICA, ISA or TICA).

Table 4.1: Model specifications

Models

V1, p1 = 11 V2, p2 = 12 V3, p3 = 13

C1a C2a

S1 (R1) Z1/h1 R̃1 S2 (R2) Z2/h2 R̃2 S3 (R3)

ICA 36 - 36 64 - 64 400

ISA 144 4 36 100 4 25 400

TICA 144 2 36 100 2 25 400

Table 4.2: Number of S1,C1,S2,C2,S3 filter outputs. The ICA model does not have

a Cia , so the number of filters do not change

Similar parameters were used for all the three models, detailed in table 4.2,

where Ri is the number of Si filters, Zi is the subspace size for ISA, hi is the width

of the neighbourhood function for TICA, pi is the width of the square receptive

field area and R̃i is the final number of Vi features after subspace or topographic

pooling. Although the number of filters in the S1 and S2 layers for the ISA and

TICA is larger than the ICA models, they are reduced in numbers after pooling

in Cia . Since there is no Cia stage in the ICA model, its number is fixed at 36,

which equal to the number of filter outputs obtained after Cia in the ISA and
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TICA models.

The final number of filter outputs in the V2 layer of the ICA model is kept

larger than the TICA and ISA models. Greater number of features usually result

in better classification accuracy, but the increased dimension of the data slows

down the learning process in the next layer. So in this case, the ICA model

actually has a larger number of final C2 layer outputs than TICA and ISA models.

In the case of ISA and TICA models, the Cia stage pooling reduces the number

of features such that computation for the next layer is easier. The results were

also compared with the same dataset on the HMAX model (called S-HMAX) from

[16][11] using the accompanying source code 2. The size of final feature vector

was 400 for all the models.

Figure 4.11: Classification accuracy for the different hierarchical models: ISA,

TICA, ICA [10] and S-HMAX [16]

The figure 4.11 displays the classification accuracy for the models on ten cat-

egories of objects. The accuracy was determined from 30 individual runs of the

classifier with random splits of training and testing data. It is observed that the

ISA model outperforms all the other models, including TICA as well as S-HMAX

2http://webia.lip6.fr/ cord/BioVision/
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[16]. In the S-HMAX model, the S layer outputs were pooled across multiple

spatial resolutions for scale invariance, which was not included in our model. In

[10], the ICA model was reported to perform better than the HMAX model in

[72], and other convolutional hierarchical models such as [28][64]. But their final

feature vector was obtained by spatial pyramid pooling [98] with resolutions 4, 2

and 1, rather than a global L2 pooling. The resulting feature vector was of size

43, 008, which combined outputs from two different types of architectures (with

4 and 6 layers) [10]. Also, in this graph, the TICA model is observed to perform

poorly in comparison to the ISA and S-HMAX with these parameters, due to

which the parameters such as pooling neighbourhood size or overlap size need to

be examined. For ISA and TICA models, various parameters such as number of

dictionaries and receptive field sizes affect the classification result. For example,

in the case of TICA, the size of neighbourhood function as well as the size of

overlapping area affects the model performance. In this experiment, there was no

overlap of the pooling area.

In [96], a generalized ISA model was used in for estimating the optimal sub-

space sizes from natural image statistics. It was discovered that models with

a relative increase in subspace sizes, provided a better statistical representation

of natural images than ICA. Estimation of pooling method also found squared

summation to be the best form of modelling non-linearities compared to absolute

values. This coincides with the observations in figure 4.11, where in a hierarchical

setting, ISA demonstrably extracts more distinguishable features than ICA.

Experiment 2: Subspace size of the ISA model

Generally, large number of feature detectors are optimal for recognition mod-

els as they capture image complexity more accurately. Reducing subspace size

increases the final feature size of the Vi layer, whereas increasing subspace size

improves processing speed by reducing the size of Ci a output. To study this ef-

fect of changing feature dimensions, the same dataset of 10 object categories as

experiment 1.

Subspace size of final layer

The parameters for V1 and V2 were fixed, while changing subspace size for the V3

layer in the ISA model from figure 4.9. The model specifications for this experi-

ment are described in table 4.3.
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Figure 4.12: Classification accuracy for 10 classes when subspace size Z3 is

changed with fixed number of R3. L2 pooling at V3 is not applied so the fea-

ture vector is of the same length for all the cases: a) Accuracy with respect to

number of training samples b) Accuracy with respect to subspace size, where t

represents the number of training samples
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Table 4.3: Model specifications: The subspace size Z3 of V3 is varied

Models

V1, p1 = 11 V2, p2 = 12 V3, p3 = 13

C1a C2a

S1 (R1) Z1 R̃1 S2 (R2) Z2 R̃2 S3 (R3)

ISA 100 4 25 150 5 30 400

In figure 4.12, the S3 layer filters were formed with different subspace sizes,

but were not pooled with equation 4.18. So, after applying spatial pooling over

all the locations of the features, the final feature vector was of size 1× 400. In

figure 4.13, the values within the subspaces were pooled with equation 4.18 such

that the feature vector was of variable size.

Figure 4.12a demonstrates when the overall performance of the features with

smaller subspace size (with a fixed feature vector size) perform better than the

subspaces of largest sizes (45, 50). However, figure 4.12b indicates that Z3 = 4

and Z3 = 20 classifies with better accuracy than the rest for most of the training

sample sizes.

When L2 pooling (equation 4.18) was applied, the reduction in feature size

showed the model with highest R̃3 (which in this case is 200) to perform better

object classification than the rest (figure 4.12a). Again, the models with subspaces

of size 4 and 8 are on average less accurate than 5 and 10 respectively in (figure

4.12b).

Number of S2 layer filters

Here, the parameters for V1 and V3 were fixed, while changing subspace size for

the V2 layer in the ISA model from figure 4.9. The model specifications for this

experiment are described in table 4.4.

Table 4.4: Model specifications

Models

V1, p1 = 11 V2, p2 = 12 V3, p3 = 13

C1a C2a

S1 (R1) Z1 R̃1 S2 (R2) Z2 R̃2 S3 (R3)

ISA 100 4 25 300 - - 200

In figure 4.14a, the classification accuracy for the different subspace sizes at

the V2 layer is depicted. The model with largest R̃ shows highest accuracy, but
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Figure 4.13: Classification accuracy for 10 classes when subspace size Z3 is

changed with fixed number of R3. Pooling of subspace values is applied so

the feature vector size R̃3 changes for all the cases: a) Accuracy with respect

to number of training samples b) Accuracy with respect to subspace size, where

t represents the number of training samples
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from figure 4.14b, it is seen that the second largest R̃ which is 100 for Z2 = 3 does

not perform better than Z2 = {4, 5}.

Figure 4.14: Classification accuracy for 10 classes when subspace size Z2 is

changed with fixed value of R2 = 300. Pooling at C2a is applied such the fea-

ture vector size R̃2 changes for all the cases: a) Accuracy with respect to number

of training samples b) Accuracy with respect to subspace size, where t represents

the number of training samples

Figure 4.15 shows the results when the value of R̃2 is increased in a steady

manner while keeping subspace size at Z2 = 5. As the figure indicates, increasing

the number of subspaces generally result in better performance, but R̃2 = 50 and

R̃2 = 40 is less accurate than R̃2 = 45 and R̃2 = 35 respectively.

The above experiments indicate that although larger subspace sizes are pre-

ferred, simply increasing the number of filters or subspace sizes does not neces-

sarily translate to a better model. For example, the results in figure 4.14b showing

better accuracy for Z2 = 4, R̃2 = 75 than Z2 = 3, R̃2 = 100 indicate that larger sub-

space sizes represent the statistical properties of the data more accurately.

This highlights the drawback of applying ISA with prior assumption of pool-

ing sizes since the probability of best data representation is not guaranteed. In

[96], it was discovered that a relatively large subspace size was optimal for rep-

resentation of natural image statistics, depending on the size of the input patch.
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Figure 4.15: Accuracy for subspace size Z2 = 5 while increasing R2

For higher complexity data, such as the input sample to the V2 and V3 layers, it

was found that the most optimal subspace sizes to be 2 and 5 for the V2 layer and

4 for the V3 layer. It is thus more beneficial for the subspace sizes to be estimated

adaptively rather than fixed.

Experiment 3: Topographic ICA models

Unlike the ISA model, the S layer outputs in TICA models can be pooled with a

variable size. The topographic model in experiment 1 did not show favourable

result in comparison with the ISA and S-HMAX models, which had a neighbour-

hood function of width h1 = 2 and no overlap. In this the parameters for the

TICA models such as number of features and neighbourhood size which affect

the overall performance of the multi-class object recognition is examined.

Overlap of pooling area

The sample of input were processed in the same manner as the previous experi-

ments with ten categories of images from the Caltech101 database. In the first set

of models, the three S layers were learned with neighbourhood function of size

3× 3, 5× 5 and 7× 7. The specifications of the model are described in table 4.5.

Here, the pooling area width is represented by hi and the overlapped number of



4.5. Empirical evaluation 59

units is denoted by oi. The types of pooling types A and B are illustrated in figure

4.16. If oi = 0, it follows the pooling method B and A for oi > 0. (M4 has the same

specifications as M3 except that in the feature learning phase, the TICA filters are

formed with a neighbourhood function of size 3× 3 for all the three layers).

Figure 4.16: Pooling window for TICA

Table 4.5: Model specifications

Models

V1 V2 V3

C1a C2a

S1(R1) h1 R̃1 S2(R2) h2 R̃2 S3(R3)

M1 (o1 = 1, o2 = 2) 169 3 36 196 4 36 225

M2 (o1 = 1, o2 = 0) 169 3 36 196 2 49 225

M3 (o1 = 0, o2 = 0) 144 2 36 144 2 36 225

M4 (o1 = 0, o2 = 0) 144 2 36 144 2 36 225

The figure 4.17 shows the performance of classification accuracy for the mod-

els in table 4.5. Despite having a larger number of filters for models M1 and M2,

its performance is much worse than that of M3 and M4. This demonstrates that

overlapped pooling does not lead to a better model even though the final number

of features at the Cib is larger.
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Figure 4.17: Classification of TICA models

Size of the neighbourhood function

The figure 4.18 shows the performance when the width of the pooling area hi

is varied. The model parameters for this experiment are described in table 4.6.

During the learning phase, the S layer filters were formed with a topographic

neighbourhood function of size 3× 3 for all the layers.

Table 4.6: Model parameters

Models

V1 V2 V3

C1a C2a

S1(R1) h1 R̃1 S2(R2) h2 R̃2 S3(R3)

M1 (o1 = 0, o2 = 0) 64 1 64 100 1 100 225

M2 (o1 = 0, o2 = 0) 16 1 16 25 1 25 225

M3 (o1 = 0, o2 = 0) 64 2 16 100 2 25 225

M4 (o1 = 0, o2 = 0) 144 3 16 255 3 25 225

From table 4.5, M2,M3 and M4 have the same number of Cia outputs (R̃i).

They are represented as the solid blue,red and black lines in the figure 4.18 re-

spectively. The model with h = 2 shows an improved accuracy compared to

h = 1, 3. The high performance of M1 (blue dotted line) can be attributed to the
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Figure 4.18: Classification of TICA models with different neighbourhood function

sizes hi

larger number of Cia outputs. The results indicate that the ratio of number of

Si filters to the pooling area (ie., Ri/hi) should be sufficiently large for a better

performance.

4.5.1 Object Classification: ISA and TICA models

Comparison of ISA and TICA models is again examined since they are similar

algorithms but display widely different classification results, based on the choice

of pooling parameters. From the TICA models, it was found that non-overlapped

windows for pooling of neighbouring filters show better object classification than

overlapping windows. While keeping the pooling area fixed, the TICA model

becomes similar to the ISA models with a fixed subspace. Therefore, for com-

parison, similar model parameters were used, where the area of neighbourhood

function for the TICA model is equal to the subspace size of the ISA model.

From the figure 4.19, it can be seen that with lower number of filters and larger

subspace sizes, ISA clearly outperforms the TICA models, even for lower number

of S layer filters. However, when the number of filters are high in comparison to

the pooling neighbourhood size (when the ratio of Ri/hi is larger), TICA performs

on par or better than the ICA models.

In ISA models, the subspaces exhibit complex cell properties of phase invari-

ance while the spatial frequency and orientations remain unchanged [96]. But
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Figure 4.19: Comparison for ISA and TICA on Classification accuracy for 10 cat-

egories
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Table 4.7: Model specifications

Models

V1 V2 V3

C1a C2a

S1(R1) h1, Z1 R̃1 S2(R2) h2, Z2 R̃2 S3(R3)

ISA1 144 9 16 100 4 25 225

TICA1 144 3 16 25 2 25 225

ISA2 64 4 16 100 4 25 225

TICA2 64 2 16 255 2 25 225

with TICA, when the area of neighbourhood function is increased, along with

phase, the orientation and frequency variation within the area is large [32]. This

could explain why the models with lowest pooling area (hi = 1), with respect

to the number of filters show best classification accuracy. This also applies in the

higher layers, where increase in data complexity and pooling area introduces even

wider variation of features. Figure 4.20, displays the S2 and S3 units by keeping

the pooling neighbourhood area hi = 1 for all the layers.

Figure 4.20: S2 and S3 units of the TICA model visualized using the method

defined in [10]

With hi = 1, it is almost similar to the ICA model but demonstrates a better

classification accuracy (than ICA) [30]. It is also more biologically feasible than

either ISA or ICA, as its structure resembles the retinotopic organization of cells
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in the retina, LGN and V1 [32]. For a hierarchical TICA to give the best results,

small neighbourhood sizes are better suited. This however does not contribute

much to the dimension reduction of the data.

4.5.2 Receptive field size

Studies have shown that the receptive field size increases as we go from lower

to higher levels of the VC [99], where the cells of the first layer process local

stimulus within a small localized area. Figure 4.21 shows the performance of

the architecture in figure 4.9 with different receptive field sizes. The results in

4.21 indicate that increase in receptive field size also improves performance. The

number of filters are the same as in ISA1 from table 4.5 and p refers to width of

the square patch.

Figure 4.21: Performance for different receptive field sizes p for ISA

Increasing receptive field size improved the performance only when the ratio

of increase was not too large as seen from figure 4.21. The model with decreasing

RF size (p1 = 11, p2 = 10, p3 = 9) was also more accurate than the ones with

p1 = 11, p2 = 13, p3 = 14 and p1 = 11, p2 = 13, p3 = 15.

The figure 4.22, shows more combinations of receptive field sizes. The graph
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Figure 4.22: Performance for different receptive field sizes p for ISA

shows an increasing value of p1 = 11, p2 = 12, p3 = 13 to be the most favourable.

4.5.3 Spatial pooling at the final layer

Instead of max pooling, a global L2 pooling was applied across the values of S3

output, which was taken as the final activation of the high level filters. Com-

pared to max pooling method, it showed better classification accuracy. Setting

any negative values to zero also further improved the model performance (figure

4.23).

4.6 Dimensionality reduction with 1*1 convolutions

The 1 ∗ 1 convolution method has been adopted in some convolutional neural net-

works such as the GoogleNet [66]. For supervised learning models, this technique

has proved to improve performance by allowing deeper networks and also intro-

ducing an additional non-linearity with a ReLU operation. Since unsupervised

models such as the ones described here does not rely on back-propagation meth-

ods to learn the filters and are functionally different, applying 1 ∗ 1 convolutions



4.6. Dimensionality reduction with 1*1 convolutions 66

Figure 4.23: Performance for different pooling methods at the V3 layer

Table 4.8: Model parameters

Models
V1 V2 V2.5 (1*1 convolution layer) V3

S1(Z1) R̃1 S2(Z2) R̃2 1 ∗ 1 convolution S3

ISA (without 1 ∗ 1) 100(4) 25 150 (6) 25 - 225

ISA (with 1 ∗ 1) 100(4) 25 150 (5) 30 25 225

ICA (without 1 ∗ 1) 25 25 30 30 - 225

ICA (with 1 ∗ 1) 25 25 30 30 25 225

ICA(2) (with 1 ∗ 1) 25 25 150 150 25 225

does not result in any improvement over older ICA based models. To evaluate its

effect, it was applied on an ICA and ISA HMAX model after the second layer C2

output. The 1 ∗ 1 convolution layer (which is denoted as layer V2.5 aims to reduce

the total number of filter outputs from the C2 without affecting the performance.

The table 4.8 shows the parameters that were applied for the models. The input

data used was the same as in experiment 1, with 10 categories. The values at

layer V2.5 signifies the reduction in data dimensionality with respect to the previ-

ous layer V2. For both ISA and ICA models, the negative values were suppressed

after convolution to introduce an added non-linearity.

Figure 4.24 displays the performance of the models in table 4.8. Aside from

ISA performing better classification than ICA models, in both the cases, 1 ∗ 1
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Figure 4.24: Effect of 1 ∗ 1 convolution on ICA and ISA HMAX models

convolution does not contribute to improving its performance. Also, even with

increasing the number of filters for ICA(2), the model gives poorer results than

ISA. The large scale CNNs in contrast require millions of images for training and

the learning of filters does not depend on data from the previous layer. This

experiment, however, represents a model with a limited amount of training data

ad filter learning highly depends on the output of the previous layer. In this case,

applying 1 ∗ 1 convolution does not seem advantageous.

4.7 Face detection

In the multi-class categorization experiments, the whole set of final layer (S3) re-

sponses were extracted to form the feature vector, which was then used as input

for an SVM classifier. Although studies in neuroscience have not yet established

the mechanisms behind inference, this method for evaluation does not reflect the

biological process in the visual cortex. It was studied that groups of neurons in

the IT respond to a particular type of stimulus such as f ace neurons [100]. With

ISA and TICA, filters or neurons are grouped together based on their energy cor-

relation. These groups of neurons should be able to selectively activate depending

on the stimulus.
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In [13], it was discovered that unsupervised training of multi-layered model

using TICA formed units (or cells) that were highly selective towards a category

of object. Faces, in particular, were found to be highly distinguishable from other

random inputs.

In this section, the S3 layer filters, a threshold was used according to which

it classified the stimulus as f ace or distractor. A total of 810 images were used,

out of which 405 were comprised of images of faces and the rest were random

set of images. The model was trained by the 10 category dataset in the previous

experiments. The threshold is changed for both ICA, ISA and TICA models. For

ISA, the combined accuracy of an entire subspace is lower than that an individual

unit, but all the cells within that subspace show high degree of selectivity towards

the stimulus.

Figure 4.25 shows the selectivity of the best neuron for face detection using

the ICA model for HMAX. After adjusting the threshold to 7.5, the unit achieved

81% accuracy in detecting faces from the dataset. (In [10], all the individual units

were classified by assigning it a category label according to its activation value

with respect to a fixed threshold which achieved an 84% accuracy in classifying

multiple objects).

Figure 4.25: Histogram of Positive and Negative samples for a single S3 layer unit

for ICA

With ISA models, the figure 4.27 shows the histogram for the positive and

negative samples for a subspace. The number of units in one subspace was 10

and the combined response of the 10 units displayed an accuracy of 88.6% for

detecting faces. All the units within the subspace have demonstrated a high

activation value with respect to the threshold of 34.7. (The threshold needed to
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be increased with increase in subspace size). Figure 4.27 displays the histogram

of the best neuron for detection of faces which was achieved with an accuracy

of 92.88% accuracy. Figure 4.28 shows the histogram of all the 10 units within

the highest performing subspace for detection of faces. All the individual units

within the subspace in figure 4.28 had an accuracy of above 70%.

Figure 4.26: Histogram of positive and negative samples for a single S3 layer unit

for ISA

Figure 4.27: Histogram of positive and negative samples for a single S3
b layer

subspace for ISA (Z3 = 10)

Similarly, with TICA, the neighbourhood of highest activation values was

analysed for feature detection. In this case, the single best unit achieved a 93.13%

accuracy (figure 4.29) in distinguishing faces from random set of images. The

combined output of the surrounding units displayed an accuracy of 88.96% (fig-
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Figure 4.28: Histogram of positive and negative samples for the 10 S3 layer units

within the highest performing subspace

ure 4.30).

Figure 4.29: Histogram of Positive and Negative samples for a single S3 layer unit

for TICA

These graphs show that filters in the S3 layer of the HMAX models using

ISA and TICA can detect faces with high accuracy when the model is trained

with unlabelled data with any random sets of images. The TICA in this case

adopted the parameters with a small neighbourhood pooling size (but with 400 S3

features), where the neighbourhood size was smaller with respect to the number

of filters. The multi-object classification in this case was almost close to the ISA

model (as seen in figure 4.19). Although the ISA model slightly outperformed for

multi-object classification, the TICA model, with small neighbourhood size and

from a random set of training images was able to learn highly distinctive face

’neurons’ that are grouped together in the topography.
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Figure 4.30: Histogram of Positive and Negative samples for a neighbourhood of

S3 layer filters (h3 = 2)

4.7.1 Invariant response

Figure 4.31: Neural activation response of the best neuron in a TICA model with

respect to varying factors with threshold (blue)

The figure 4.31 shows the response of a single high level unit in the S3 layer

of the TICA model. The blue line indicates the threshold. The same threshold

that was applied in figure 4.29 (13.5) for detecting faces was applied and orienta-

tion, position and scale of the images were changed. As seen from the activation

values in figure 4.31, the final S3 neuron that detects faces, does so irrespective of

change in orientation, position and occlusion to a certain extent. Although pool-

ing between multiple spatial resolutions was not applied as in [54][72][16], scale
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invariance to a certain extent was also achieved.

4.7.2 Multiple scale model

In the HMAX models [72][16], Gabor filters of different sizes were applied for

modelling scale invariance. The resulting features displayed a range of spatial

frequencies which were sorted into scale bands and the value of adjacent scales

were pooled together.

For multiple scales, learning filters of different patch sizes in an unsupervised

manner generates sets that are uncorrelated with each other and thus, cannot be

pooled together. An alternative method was suggested in [10], where existing

filters could be resized and integrated into the model. To examine this method,

filters of multiple sizes were applied on the ISA models and the outputs were

resized before pooling. The performance declined considerably, which indicated

that HMAX method for scale pooling is not applicable.

In [95], to address the limited scale tolerance of CNNs, a scale invariant con-

volutional network (SiCNN) was proposed where a multi-column approach was

applied [95]. The feature vector of all the columns, which processed different

scales, was concatenated before applying the fully connected final layer. This

method of concatenating the output feature vector also improved accuracy for

the ISA model, when feature vectors from two architectures were concatenated

but this could also be attributed to the larger feature vector. Since improving

invariant response is always desirable, more research into this area is needed.

4.8 Multi-class object categorization on CalTech101 dataset

The previous set of experiments were performed on a small dataset images. The

purpose was mainly to observe the behaviour of the model with varying its pa-

rameters. Both the ISA and TICA models show improved classification when

compared to ICA models. TICA model perform best with a small pooling neigh-

bourhood size and therefore, the extent of possible data dimensionality reduction

is lower compared to ISA model. When the training set for learning the filters

was randomized, the accuracy levels were similar. The figure 4.32 display the

an ISA model where filters were trained with five different randomization of the

same dataset. However, there is a possibility for the outcome to be different for

different datasets. Therefore, it is important for the model to be tested with a
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larger dataset.

Figure 4.32: ISA HMAX model trained with different randomization of the same

dataset

To compare its performance with other state of the art feature extraction mod-

els, the complete set of CalTech101 [15] database was used for multi-class object

categorization. The standard method of splitting the training set of images into 15

and 30 images per class was applied. There are some limitations to the CalTech101

dataset: The uniformity of data with most of the images center aligned makes

learning less challenging. With small number of images in certain categories, the

largest training size is limited to 30 images. And the presence of artifacts, which

appear due to image rotation or scaling [68]. Many different models, such CNNs

and HMAX, has been previously evaluated on this dataset, so for comparisons

the CalTech101 was used.

The ISA model was evaluated since it is comparatively faster to train than

TICA. In the previous experiments, feature length of 400 was used (which refers

to the number of S3 units). But for a larger database with total number of 9144

images, the feature length was increased to 1000. The number of S1 and S2 layer

filters was 144 and 300 respectively. The corresponding subspace sizes were Z1 =

9 and Z2 = 5. Although for better results, a larger number of dictionaries in

each layer is more beneficial (figure 4.15), these parameters allowed for a faster

computation time.
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The sample size for learning dictionaries at each layer was 50, 000. The dictio-

naries (or filters) were learned from just 10 images from each category. Learning

the 1000 S3 layer high level filters was the most time consuming part of the model.

Therefore, the total learning phase of the model was approximately two hours.

The average inference time per image for V1, V2 and V3 layers were 1.5, 1.1, and

1.2 seconds respectively.

Current state of the art models has achieved very good results for the

CalTech101 database. The list of models in this section are mostly biologically

motivated hierarchical models based on the HMAX model. Most of the reported

accuracy of these models were the result of varying length of features. For ex-

ample, in the HMAX model in [54],[75], classification using a dictionary of 4075

features had an accuracy of 54% [16]. In [16], by increasing the scale depth of the

S1 units, an accuracy of 61% with 4080 features was reported. In [10], an accu-

racy of 73.67% was achieved for training size of 30 for feature length of 21, 504.

A further increase of 76.13% was reported for a feature length of 43, 008. In [28],

an unsupervised two layer model with sparse coding and pooling was developed

which also achieved a high classification accuracy of 74% with codebook of 4096

features.

The type of pooling techniques at the highest layers in all these models were

also different. In [10], spatial pyramid pooling [76] was applied on the high level

features with a grid size of 4,2 and 1. Global and localized maxima were pooled in

[54] and [74] respectively. In [11], the model in [16] was extended with localized

pooling at multiple resolutions that resulted in increased classification accuracy.

In the ISA-HMAX, L2 pooling of global spatial information of S3 response

forms the final feature vector. Similar to the models in [10] and [64], the larger

receptive field size at S3 covers almost the entire image such that the pooling

occurs over a very small set of values. The Liblinear [101] classifier was applied

at this stage due to the larger number of categories.

With a dictionary size of 1000, classification accuracy of 54.20% for training

size of 15 images and 62.30% for 30 images per category was achieved for the

entire data set.

Since the number of features were too small, the feature length was increased

sampling patches of C2 and C1 responses. The position of the samples were kept

constant for all the input images. This method, however, did not improve the

classification accuracy. Therefore, another set of 1000 features was learned from
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the C2 layer of the model (figure 4.33). The subspace size was 10, similar to the

previously trained 1000 units. The S3 layer was trained in two separate runs. With

this new dictionary size of 2000, the classification results improved considerably.

The results were obtained from an average of 10 independent runs. An increase

in accuracy was observed with 61.99% ± 0.42 and 70.29% ± 0.33 for 15 and 30

training sizes respectively.

In the experiments using 10 categories of objects, the number of images in

the test set was even. With the entire Caltech101 dataset since there is a widely

varying number of images, the average accuracy for each category was obtained.

The final result was calculated as the mean of all the class specific accuracy rates.

In this case, an accuracy of 52.40%± 0.32 and 60.03%± 0.15 was achieved for 15

and 30 training sizes respectively.

For the ISA model, these classification results were obtained from only 2000 S3

outputs, whereas the other models had dictionary sizes of at least 4000 high level

units. Thus, with increase in the number of S3 filters from 1000 to 2000, a jump in

classification accuracy was observed. Since most of the hierarchical models listed

in table 4.8 have a feature length of at least 4000, the same process in figure 4.33

of learning extra 1000 filters was repeated.

Figure 4.33: S3 units were learned in two separate runs

The resulting accuracy is higher than the unsupervised learning models listed

in the given table. Compared to the Adaptive Deconvolutional Networks [64],

which uses 4 layers for feature extraction the accuracy of the ISA-HMAX model
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with 4000 features is much higher.

Classification accuracy for number of 15 and 30 training images per category

Model 15 images 30 images

Serre [54] 35 42

Mutch & Lowe [74] 48 54

HMAX-S [16] 54 61

HMAX-S (extended) [11] 68.49 ± 0.75 76.32 ± 0.97

Lee et al. [37] 57.7 ± 1.5 64.5 ± 0.5

Zeiler et al. [64] - 71 ± 0.10

Yu et al. [28] - 74.0

Sparsity regularised HMAX [10] 68.98 ± 0.64 76.13 ± 0.85

ISA HMAX (dictionary size 2000) 61.99% ± 0.42 70.29% ± 0.33

ISA HMAX (dictionary size 2000,

average of per category classifica-

tion rate)

52.40% ± 0.32 60.03% ± 0.15

ISA HMAX (dictionary size 4000) 72.65% ± 1.08 79.70% ± 0.55

The ISA-HMAX model however, lags behind most convolutional neural net-

works when it comes to classification accuracy. For example, the supervised CNN

trained in [63] demonstrated an accuracy of 72.6%± 0.1 for 60 training images per

category on the Caltech-256, which is a much more difficult dataset to learn. For

the Caltech-101, the performance accuracy for 30 training classes was 85.4%± 0.4.

Also, the model was pre-trained with the Imagenet dataset, which contributed

heavily towards the improved classification result.

To examine the ISA-HMAX model for larger number of images, the Caltech-

256 database was trained with the same model parameters as the Caltech-101.

Aside from the complexity of images , the number of categories and images are

larger. The model was thus evaluated on a feature set of 4000, but contained a

lesser number of mid-layer S1 = 100 and S2 = 150 filters for a faster inference

time. For learning the filters, 30 images from each category was used. The re-

sulting accuracy for 60 training images per category only reached 35.35%, which

is much lower in comparison. This could indicate that for larger datasets, the

number of filters within the layers need to be higher.
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4.9 Summary

In this chapter, an enhanced form of the HMAX model is presented. By applying

ISA and TICA algorithms for learning both low and high level features, sim-

ple and complex cell properties in a three layer operation was designed. These

layers performed linear filtering for feature selectivity, L2 pooling, which repre-

sents phase invariance and max pooling to introduce position invariance. It was

demonstrated that the added non-linearities of L2 and max pooling contribute

towards an improved feature learning.

Comparison of ISA and TICA regulated models highlighted certain limita-

tions and advantages of both algorithms. The advantage of TICA stems from

its biological plausibility, since its topographic arrangement closely resembles the

retinotopic organization of receptive fields in the cortex. Evaluation of its S3 layer

units for feature detection also demonstrated a higher detection ability than the

ISA. However, in terms of multi-class categorization, its performance lagged be-

hind ISA and other HMAX models when the pooling neighbourhood size was too

large with respect to the topography size. Compared to TICA, the ISA version of

the model performed displayed a much higher accuracy. In addition, the learning

speed was also much higher as it is a much faster algorithm.

One explanation behind this occurrence could be due to the widely varying

range of phases values of the components within a neighbourhood, unlike the

ISA, where the components within a subspace are phase-shifted [32]. Invariance

properties usually arise when the features are pooled over a range of slightly

shifted variations. With larger neighbourhood sizes, there is a larger variation in

orientation and frequency which becomes even more evident in the high level fea-

tures. It was also discovered that while pooling the filter outputs within an area,

overlapping areas can cause the classification accuracy to reduce. In terms of

multi-class categorization with 10 classes, the accuracy of the ISA-HMAX model

was much higher than either ICA or the S-HMAX (from [16]). The highest accu-

racy for a training size of 30 images was found to be 94.3%. Its performance on

the Caltech-101 data was also an improvement over other unsupervised feature

extraction models.

Another advantage of ISA and TICA in comparison with ICA, was the dimen-

sion reduction of the data after each layer. This made the learning of higher order

features much easier than the ICA models since the is sampled directly from the

layer below.
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One drawback with these algorithms is that training speed is quite slow in

comparison with HMAX models. Learning the three S layer feature vectors took

much longer than extracting prototypes with random sampling. The inference

time, however, was quite fast and dependent on the high level filter sizes. The

model in figure 4.33 took an average of 3 seconds per image.For smaller S3 size

of 400, it was an average of 1.5 seconds per image. Another area improvement

could be in terms of integrating faster and overcomplete learning algorithms.

Due to the variability of feature sizes with different sizes of S1 filters, pooling

over responses of multiple spatial resolutions did not yield favourable results.

Therefore, the scale invariance property was not modelled. Thus, scale invariance

is an area that needs to be addressed in future works.

Even though most models with the smallest subspace size (Z = 2) had the best

accuracy, there were many cases where a larger size performed better. Therefore,

this variation in classification accuracy depending on the subspace size calls for

the need of data adaptive subspaces rather than a fixed size.

The above models only represent a feedforward mechanism which only mod-

els a small fraction of the visual cortex functions. Feedback signals that modulate

responses of lower layer neurons are an inherent part of the perceptual mecha-

nisms. One explanation behind the feedback connections is the attentional modu-

lation mechanism that eliminates redundant information by focusing on the most

salient regions of a visual scene. Vision models with saliency has already been de-

veloped with high accuracy in object classification [102]. In the following chapter,

the application of saliency modulation to the hierarchical model for improving

efficiency of feature extraction is examined.



Chapter 5

Enhancing Object Recognition

with saliency Maps

5.1 Introduction

In chapter 4, unsupervised learning algorithm was applied in each SK layer of the

model which involved sampling of patches from the CK−1 layer. Large number of

samples ensures a better probabilistic representation of the input data, but also

slows the down the learning speed. Increase in the number of categories of train-

ing datasets would thus require an even higher number of samples. For learning

from a large set of images with limited amount of samples, the process can be

optimized such that only the most salient part of the images are sampled. In this

chapter, both the low and high level features of the images will be utilized to

form a self regulated attention-recognition framework. In addition, some existing

saliency maps will also be combined with the model for comparison. Efficiency of

the saliency modulated HMAX will then be evaluated based on its classification

accuracy performance.

5.2 Saliency models

Attentional modulation is one of the mechanisms that greatly reduces the redun-

dancy in input data that enters the visual stream. By prioritizing, the brain is able

to process the vast amount of incoming information rapidly [103]. As an integral

component of the cognitive framework, it has been a topic of extensive study in

neuroscience as well as psychology which has provided the foundations for cur-

rent models in computer vision. The most fundamental one being the Feature

integration theory [34], based on which, a saliency map generating algorithm was

proposed by Koch and Ullman [104] and subsequently implemented by Itti et

al. [17]. Based on the Itti model, similar feature combination methods has been
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adapted in many of the saliency models that followed. In this method, generally

the types of low level features, such as orientation, intensity or colour, and its

integration techniques play an important role but newer advancements have also

included high level features such as object shapes [105] for generating saliency

maps.

The term saliency has been defined as the external stimulus driven bottom up

component of the whole attentional process [35] [17]. Most of the current mod-

els in computer vision deal with this feedforward component of the attentional

mechanism. It is characterised by involuntary response towards the statistical

properties of the visual scene as opposed to the top down mechanisms which

are task driven [35]. Studies have linked this process to the neural activities in

the V1 layer of the visual cortex [106]. In this chapter, bottom-up saliency based

attentional modulation will be integrated on the hierarchical vision models.

5.3 Background: Saliency Map Algorithms and hierarchi-

cal models

The standard model from which most current algorithms are derived from was

proposed by Itti and Koch, in which salient areas were localized in a bottom

up process. This model is categorised as cognitive type, which applies to most

other models (based on the feature integration theory) to a certain degree [35].

In this model, feature maps of input images of different scales are generated by

Difference of Gaussians (DoG) operations (that compares average value of cen-

ter with average surrounding value) on colour, intensity and orientation channels

[107][17]. After that, for each channel, the feature maps are combined across

scales and normalized. The maps in the channel are then linearly summed and

again normalized to form ’conspicuity’ maps, which are again linearly combined

to form the saliency map. This type of model generates a bottom-up type atten-

tion where the salient region emerges from the low level information of the scene

[107].

Models based on Feature Integration theory

Several frameworks based on the Koch-Ullman model has been developed after

the Itti model, such as the Saliency Toolbox [108], the C++ Neuromorphic Vision

Toolkit, iNVT which contains ongoing improvements on the original algorithm
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[17] [107]. Upgrades include contour integration [109], top-down influence by

maximizing signal-to-noise ratio of target versus distractor [107]. In the most

recent update, they have implemented a fusion of different types of state-of-the

art saliency models, resulting in greater accuracy than individual saliency models

[110]. Evaluation of the saliency models are usually carried out with ground truth

maps which either eye fixation maps or manually tagged targets or a combination

of both [35].

The guided search theory proposed that attention is directed towards regions

of interest by varying the weights of the combination of features [111]. An imple-

mentation of weighted linear combination of different feature maps was devel-

oped in [105] where the coefficients were trained with ground truth maps of eye

tracking data. The combined saliency map showed higher accuracy than the cur-

rent models at the time. Similar type of supervised models such as [112] [113][114]

[115] were also trained using existing databases of human eye movements or with

very high accuracy in predicting human attentional behaviour. For the current vi-

sion models however, the focus was more on the unsupervised saliency models

which are dependent on statistical properties of the input data.

In the designs based on the Itti model, the different feature maps are obtained

independently and fused. A similar fusion of independent feature channels based

on natural image statistics was implemented using a Bayesian framework in [20]

called the SUN saliency model (Saliency Using Natural Statistics). Here, bottom-

up saliency was generated from the self-information of the natural images, similar

to the models in. It also included a method for merging top-down influence to

predict attentional direction. Bayesian model of saliency was earlier implemented

by Torralba [18], [20][35], where a joint probability of the presence of target and

location (given target was present) was formulated. The difference from SUN

model was that probability was estimated for the object being present in any

location of the scene versus being present at each point of the visual space [20][35].

It was noted in [20] that increasing the area of search to the entire image turned

the equations of the model the same as that of Oliva et. al. The advantage of

the SUN saliency model is that the parameters of the filters could be learnt in a

completely unsupervised manner from natural images. Similar type of models

are thus suitable for integrating with the unsupervised HMAX models from the

previous chapter.
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SUN saliency model

The SUN model was implemented by using both Gabor filters or Difference of

Gaussians (DoG) and ICA. The saliency at a point z is defined as the probability

that the target C is salient given the features f z observed at location lz.

sz = p(C = 1|F = fz; L = lz) (5.1)

With the assumption that feature and location are independent,

sz =
1

p(F = fz)︸ ︷︷ ︸
bottom−up in f luence

· (F = fz | C = 1)· (C = 1 | L = lz)︸ ︷︷ ︸
top−down in f luence

(5.2)

The log probability estimation gives,

log sz =
1

p(F = fz)︸ ︷︷ ︸
bottom−up in f luence

+ (F = fz | C = 1)︸ ︷︷ ︸
Log likelihood

+ (C = 1 | L = lz)︸ ︷︷ ︸
Location prior

(5.3)

The bottom-up term was described as self information, which emerges from

the unique local characteristics of the image. The areas that show the greatest

variance in the orientation, intensity and colour are least common and draw the

most attention. At this point there is no preconceived target and the attention is

towards the general visual field.

The log-likelihood term affects the saliency after knowing the class of target

which determines the features associated with it. The location prior gives the

probability of the location of the target, given the class of the object is known.

The latter two terms describe the functionality of the top-down influence which

comes into effect after gathering information about the target properties. Without

prior knowledge about the target, the saliency map is generated only from the

first self information term, discarding the top-down influence.

The self-information term is calculated in the form of linear filter responses.

With the Difference of Gaussian method, filters of different scales on intensity

and colour channels are combined with the equation 5.4.

log sz = −logp(F = fz) =
N

∑
i=1

∣∣∣∣ fi

σi

∣∣∣∣θi

+ const (5.4)

Where N is the total number of filters, σ and θ are the shape and scale parameters

of each filter and f represents the filter response.
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The Gaussian filter responses were assumed to be independent of each other

and added to form the saliency map with the equation although in reality they

were found to be highly correlated [20]. The same condition applies to the ICA

filters, where some correlation due to natural image statistics appear in practice.

The same equation 5.4 applies for the ICA filters, where the term f represents

the filter response of each ICA component. Number of components are restricted

to the dimensions of the colour image such that k = p × p × 3− 1 where, p is

the width of the square patch. In [20], the KL-divergence criteria for evaluation

produced better results for ICA than DoG filters.

Top-down models

Studies have suggested that higher order features and top-down mechanisms

form a significant part of the attention process [35]. It is also described as a

slower and voluntary phenomenon [116]. The top-down saliency in many mod-

els is usually combined after there is some prior knowledge about general about

the target characteristics [20][35]. Others models add context information to the

bottom-up saliency maps [18]. In [18], both local and global feature maps were

generated in two parallel pathways, which were then combined to form the fi-

nal saliency map. For integrating attentional modulation in a hierarchical vision

framework, the top-down mechanisms are an important component which can

model the feedback connectivity between the different layers. Such a working

model can bring new insights into the feedback mechanisms of the visual cortex

as well.

Current state of the art models

The MIT saliency benchmark was developed in order to rank the saliency algo-

rithms with respect to baseline maps of human fixation data [117][107]. Accord-

ing to their metrics, Judd et al. [105] and Graph-based visual saliency (GBVS)

[19] models displayed high accuracy (among the Itti based models) in predicting

human eye fixations whereas the SUN model falls behind in comparison. Models

incorporating blurrier saliency maps and center bias have have generally shown

better accuracy under their evaluation criteria [107]. Recent advancements in

the field of deep convolutional networks has achieved even higher performance

scores than the above two models. The new frameworks, Deep f ix [118] and Deep
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Gaze [119][120], which use learned high level features with a feedforward hier-

archical network, have demonstrated a high accuracy in eye fixation predictions.

The scope of attention models is vast with many different approaches towards

generating saliency maps. But since the natural statistical approach was applied

in the vision models in chapter 4, similar models will be explored that rely on

feature integration method of producing saliency maps.

Besides SUN, sparse representation models such as TICA [114] and PCICA

(Pairwise cumulant ICA)[121] algorithms were also applied for modelling

saliency. Both models, included the L2 feature pooling operation described in

equation 4.19 followed by linear combination of the resulting feature maps. In

[114], the responses of the TICA filters were combined with weighted summation

method where a two stage supervised learning was adopted to train weights us-

ing eye fixation maps. Although it was reported to predict attention with high

accuracy, supervised training models were excluded as they are not biologically

plausible. The PCICA technique in [121] generated overcomplete set of filters

which was convolved with the image, pooled according to similarly classified

filters, processed with center surround DoG filters and linearly combined. The

generated saliency maps were applied in similar manner, but using ISA on both

V1 and V2 layers of the model (figure 4.9).

In the recognition model of chapter 4, the first layer comprised of linear filters

learned by ICA, ISA or TICA algorithms followed by non-linear pooling opera-

tions. The next layer contained higher order feature detectors that were learned

from the previous layer outputs. One drawback from just using linear filters is

that saliency gets shifted towards highly textured regions [20]. In [20], non linear

transform of DoG filters was suggested to address this problem. It was observed

that although non-linear functions (also applied in [121] in the form of square

pooling) are highly effective in highlighting distinct edges, it is not sufficient for

extracting global information of the images. Since the localized saliency maps

obtained from linear features have this limitation, these higher order feature de-

tectors can be incorporated for a global feature map similar to the contextual

guidance model by [18].
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5.4 Saliency modulated object recognition

Recent studies have demonstrated that the ventral and dorsal streams of the vi-

sual cortex are interconnected[122] which confirms that saliency and attention

form an integral part of cognitive process. In the HMAX models, the units in

higher layers respond to high level features such as object shapes. To learn these

features in an unsupervised manner, samples of data from the lower layer are ex-

tracted, which is usually carried out in a random manner. Randomized sampling

is sufficient for learning lower level features, like edge detectors, as their presence

is universal. But for features of high complexity, it is important to discard redun-

dant information. Increasing the sample size reduces probability of error, but not

very practical. This would require an even larger sample size for high number of

training images.

In [82], an enhanced HMAX model was proposed where the patches from

the C layer were extracted with the help of saliency maps. The saliency maps,

which were produced in parallel with the vision model, was inspired by the Itti

and Koch model. The features from orientation, intensity and colour channels

were combined together after processing them in parallel streams. The patches

of multiple scales, extracted with the template, were then grouped into different

clusters such that the memory for similar features were shared. This type of

grouping was inspired by the memory processing ability of the V2 and IT [82]. To

categorise the different patches, they adopted an unsupervised iterative clustering

algorithm.

In the ISA and TICA models from chapter 4, similar patches are also grouped

together such that the memory required to represent middle layer features is

lower. However, the method of grouping is completely different to that of [82]. In

the ISA model, saliency maps are applied for learning the filters at the S2 and S3

layers using the ISA algorithm. The S1 filters are involved in generating bottom-

up saliency maps using the feature integration methods similar to [20] and [121].

The feature maps are comprised of orientation filter responses categorised into

subspaces according to their energy correlations. Applying ISA on colour images

groups the colour components into separate subspaces (figure 4.4). In this way,

both orientation and colour feature maps can be extracted from the image.
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V1 layer saliency maps

The basic structure of the model is same as figure 4.9. Each stage of the V1 layer,

(S1, C1a , and C1b from the previous chapter) contribute towards the formation of

saliency map.

S1 layer: Patches of receptive field width p from the image are multiplied with

each of the set of linear filters W.

S1 =
〈
W, Xp

〉
(5.5)

Where, Xp is the set of patches extracted from the image. The model in [121]

applies convolution at this stage. Here, both methods are equally applicable,

equation 5.5 was applied to keep it consistent with the vision model. (Figure 5.1

shows the saliency maps obtained after applying subspace pooling (in Cia ) for

both convolution and multiplication methods.)

Figure 5.1: Convolution and multiplication method. (Input image from [15])

The saliency maps in figure 5.2 are obtained from linear combination of all the

feature maps. Since the output of linear filters are highly sensitive towards dense

textures (figure 5.2, second row), non-linear functions are applied [20][121]. The

type of non-linearity plays an important role in the outcome of the saliency maps.

In this model, both L2 pooling of subspace responses and max pooling of local

spatial responses was applied.

C1a layer: All the Si≥0 values within the subspaces of size Z1 are pooled with

equation 5.6.

C1a =

√
∑

j∈Z1

S1 j
2 (5.6)

Where the total number of feature maps is R̃1. From figure 5.2 (third row, third

column), it can be seen that the most prominent edges of the image are retained,

while the high density textures are suppressed.

C1b layer: From each of the feature maps in C1a , the strongest response

from within a local area is allowed, which form the conspicuity maps. Mod-
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elling of this competition between neurons is usually carried out by ’Difference

of Gaussian’ operators at at multiple scales[121]. This type of center-surround

process has been found to occur in both the LGN and V1 areas of the visual

cortex [121][35][123][124]. In this model, instead of DoG, max pooling on non-

overlapping local areas of size ri × ri was applied.

When applied directly on the S1 layer output (figure 5.2 fourth row, first col-

umn and fourth row, second column), the resulting saliency map also suppresses

high density textures, but to a lesser extent compared to that of the combined

action of S1 and C1b . The salient areas are also more scattered in comparison.

A simple linear combination of normalized feature maps was applied to form

the saliency maps in figure 5.2.

Ab =
R̃1

∑
j=1

C1b (5.7)

Where Ab is the bottom-up saliency map formed by the V1 layer specifications.

Such methods are usually not very robust as they are likely to highlight the

background textures and suppress the maxima of the feature maps [121]. There-

fore, it is more beneficial to use weighted combinations or the iterative method

from [125][121].

In this way, the properties of the existing object recognition system are utilized

where the bottom-up saliency begins at the V1 layer of the model.

Saliency enhanced HMAX model

Figure 5.3 illustrates the V1 layer of the HMAX model. The C layer indicates

the joint operation of C1a and C1b steps. From the map obtained in the C1 layer,

which can be referred to as the V1 saliency map, patches were sampled from the

locations of highest saliency. These samples were then used for training the S2

level filters (figure 5.3).

In the next V2 layer, the same procedure is applied to form the saliency maps

with the higher order feature maps of the S2 layer. Again, the most salient patches

of the C2 outputs are sampled for training the S3 filters.

The maps for some other saliency models are illustrated in figure 5.4. The

ISA1 refers to the saliency map without applying the pooling function at C1a and

ISA2 represents the saliency map applying the functions of both the stages of the

C1 layer. Out of the listed methods, the GBVS [19] was found to perform best
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Figure 5.2: Saliency maps from S and C layers of ICA and ISA models (Input

image from [15])
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Figure 5.3: HMAX with Saliency (Input image from [15])

at predicting human attentional behaviour according to the MIT benchmark. In

a lot of cases, operations such as border attenuation and center bias improves

the prediction accuracy considerably since human attention tends to gravitate

towards the center of any visual scene [107]. This may not hold true for the object

recognition model as the target could be present at any random location.

Figure 5.5 shows the samples of data from salient regions after the C1 and C2

layers.

When using the saliency methods from [19],[20],[17] and [126], these maps

were applied directly on the images. For example, the GBVS algorithm was used

for generating a saliency map, which was then applied on the input image be-

fore the S1 layer to suppress non salient areas and highlight the salient areas. It

was observed that when these maps were used only as a template for sampling

the patches, the classification accuracy did not improve. Thus, it is essentially a

combination of the external saliency maps and the ISA saliency method.

To sample the patches, the method from [105] was adapted, where only the

top 30% of the salient areas were extracted. To account for any discrepancies in

the detection of objects, a small percentage of the samples could be reserved for

either the center or any random area, but this technique was not applied in the

experiments.
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Figure 5.4: Saliency maps for different saliency algorithms, from rows 1 to 9:

Input images [15], Itti and Koch [17], Torralba [18] , GBVS [19], ISA1 without C1a

non-linearity, ISA2 including C1a non-linearity, ISA2 with center bias filter , ICA,

SUN [20]
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Figure 5.5: Saliency maps from V1 and V2 layer outputs after applying the differ-

ent algorithms, (Input images from [15])
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5.4.1 Evaluation

For this experiment, a set of 300 images belonging to 10 categories from the Cal-

tech101 dataset were used for training. The receptive field sizes of the first, second

and third layer were fixed at 11, 10 and 9. The specifications for the number of

filters using ISA is listed in table 5.1. Z1, Z2 refers to the subspace size. Colour

images were used after converting to LMS colour space such that the maximum

number of possible S1 filters is larger.

Table 5.1: Model specifications

Models

V1, p1 = 11 V2, p2 = 10 V3, p3 = 9

C1a C2a

S1 (R1) Z1 R̃1 S2 (R2) Z2 R̃2 S3 (R3)

ISA 144 9 16 100 4 25 400

The main difference of this model from the ones in chapter 4 is the number

of sampled patches from the C1 outputs, which is reduced to 10000 (from the

earlier 50000), which greatly increased the learning speed. Sample size is further

reduced to 5000 for the C2 layer. The figure 5.6 shows the classification accuracy

of the saliency enhanced model when reduced number of samples are used.

The other applied saliency maps are in combination with the already existing

ISA method. Figure 5.6 shows that the saliency modulated models perform clas-

sification with better accuracy than the model with random samples. Comparing

with the other saliency methods, the performance of the Itti & Koch model is

much lower, whereas the SUN performs on par with the non-regulated model.

Figure 5.7 shows the accuracy of the same model, but with 50, 000 random

samples per layer. The performance of saliency regulated models with much

lower is much closer to the model with an increased number of random samples,

than the model with no saliency (figure 5.7 , black line). Although not ideal, with

improvements in saliency maps and integration techniques, higher performance

can be achieved.

On of the contributing factor for lower performance is due to the limitations

of the saliency map. Incorrect samples due to poor saliency maps can reduce the

performance of the classification model (figure 5.8).

The maps in figure 5.8 display the limitations of the linear combination

method that was applied in this model. Thus, it is important to adjust the V1
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Figure 5.6: Classification Accuracy for saliency enhanced models
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Figure 5.7: Classification Accuracy for saliency enhanced models

Figure 5.8: Incorrect data samples (Input image from [15])



5.5. Top-down model 95

layer outputs to prevent loss of information. The modified V1 output would then

become the new input for the V2 layer. Instead of modulating the feature maps

with iterative summation methods or supervised training of weights, another pos-

sible method of feature map combination is through the influence of top-down

cues [127][128][35].

5.5 Top-down model

The feature integration theory suggests that interaction of low level features oc-

cur at the pre-attentive stage, after which focused attention follows [34]. Attention

models based on this theory demonstrated that interaction between seemingly in-

dependent features highlights parts of the scene in a bottom-up mechanism. It

was observed have seen how saliency maps can optimize the learning of dictio-

nary features by adaptive sampling, but algorithms using just orientation, colour

and intensity maps can be limited in its detection of high level features. In the

model in the previous section, higher order feature detectors were applied in the

form of S2 filters. Its outputs were combined to form the saliency maps at V2

but the S2 filters were not able to detect any areas that were suppressed in the V1

layer.

Since unsupervised and data adaptive methods are preferred, weights should

be updated according to prior information from the model itself (or any external

source), which would form the top-down attentional mechanism. The saliency

maps can then be updated as in equation 5.2[18]. Before training the HMAX

model, no such prior existed, so the initial attention was the result of the S1

filters. As observed in 5.5, they resembled edge detectors and responded to low

level properties of the image. But after obtaining the S2 and S3 filters, it is possible

to direct a top-down mechanism to update the response of the V1 layer. Thus,

the influence of learned higher order feature detectors stored in memory would

become the prior in equation 5.2. With this method however, the class of the

object is not yet known so that the process is still involuntary.

In previous hierarchical models, the higher (S2 or S3) layers never interacted

directly with the input image. These higher layers of HMAX models has been

compared with the V2 or V4 layers of the visual cortex [8][82]. Although there

is no evidence for any direct connection between V2 and the LGN (which relays

retinal signals), feedback signals from V2 and higher order areas up to the IT are
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said to modify the response of lower order areas such as the V1 [35]. Feedback

connections are said to modulate the activity of lower layer neurons to distinguish

object from background [129].

The role of context on the modulation of local contrast response of the V1

layer has been a topic of interest in the field of both neuroscience and computer

vision [18] [130]. Global structure information stored in memory is one of the

components that form contextual information [130]. Oliva and Torralba, defined

a feedback method to integrate top-down influence for generating a saliency map.

In their model, the local and global pathways of feature detection occurs in two

parallel streams. The local pathway represents the local features involving bottom

up saliency. The global features represents the scene as a whole and modulates

the saliency at the local feature level. These were built from pooling together the

low level feature detectors across multiple orientations and scales and applying

PCA compression. The mean of the global features at coarse spatial resolutions

were used to estimate the structure of the scene. Segmentation based on global

structure of the image facilitated the saliency by suppressing the activation of

locations with low probability.

Applying higher order filter on input image (top-down saliency map)

Based on the model described in [18], contextual information based on the learned

S2 and S3 layer filters is considered. Here, the interaction of S2 layer filter directly

on the image to generate saliency maps with contextual information is described.

The dimension of each S2 filter depends on the size of its receptive field and

the number of filters or groups of filters in the previous layer. So, for a receptive

field width of p2 and number of S1 filter responses R1, the dimensions of each S2

filter are of size p2× p2×R1. Here, each square filter of size p2× p2 is represented

as w2. Then, for a single S2 filter and a given input image Xp, a feature map is

obtained as,

S1t =
R1

∑
i=1

〈
w2i, Xp

〉
(5.8)

The subscript t stands for top-down interaction (since the saliency map is

being calculated from pre-learned filters to be combined with bottom-up saliency

maps). The S2 filters were divided into subspaces of size Z2, so applying the non-

linearity similar to equation 5.6, is applied to reduce the number of feature maps
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to R̃2 with,

C1t =

√
∑

j∈Z2

S1t j
2 (5.9)

This step leads to blurrier saliency maps and gives a more accurate represen-

tation of the scene structure. Finally, the feature maps formed by equation 5.9 are

added to form the final saliency map.

At =
R̃2

∑
j=1

C1t (5.10)

Figure 5.9 shows the maps produced by the (bottom-up) S1 and (top-down)

S2 layer filters.

Figure 5.9: Saliency maps using local (S1) and global (S2) feature detectors (Input

image from [15])

The first column displays the input images. The second column shows the V1

layer saliency maps. Third column displays the global saliency maps generated

by V2 features. Fourth column shows the saliency maps formed with the same

method, but using the S3 layer filters.



5.5. Top-down model 98

Combining bottom-up saliency map with top-down attentional modula-
tion

With the top-down saliency map is defined, it can be combined with bottom-up

saliency map to direct attentional modulation. The top-down components are

defined with the subscript t and bottom-up components with subscript b

The feedback attention and recognition model operates in the following steps

(figure5.10).

1. In the first iteration of training the ISA HMAX model, the S1 filters are

learned from natural images.

2. A primary saliency map is formed with equation 5.7 A1b. Referred to as

A1b in figure 5.10.

3. This saliency map (A1b) directs the sampling of patches for learning S2 layer

filters.

4. The S2 layer filters are applied on the images using equations 5.8, 5.9 and

5.10, to generate a secondary saliency map At.

5. The secondary saliency map At is combined with the primary saliency map

A1b

6. From the newly modulated Ab, patches are sampled and S2 layer filters

relearned to update the dictionary.

The connections represented by ’b’ stands for the influence of the bottom-

up saliency maps Sib , which directs the learning of Si+1 filters. The top-down

influence is represented by ’t’, which changes the outputs of lower layers.

As observed from the figure 5.9, the St maps represent a global representation

of the scene. The areas that share similarities are segmented. There are a few

different strategies by which the maps St and S1b can be combined. The most

straightforward method is to multiply the bottom-up and top down maps [35]

or the combination technique defined in [18]. Alternatively, each of the S1 filter

responses can be modified by the St saliency map to form the new input for the

feedforward recognition model.

At this point, due to an undefined top-down and bottom up saliency map

combination method, a working model could not be demonstrated.
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Figure 5.10: A feedback model of hierarchical vision with attentional modulation

through global contextual information
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5.5.1 Summary

In this chapter an integrated attention-recognition system was proposed that is

unsupervised and data adaptive. The attention modulation has been demon-

strated to be an integral part of cognitive function. The combination of hierar-

chical models and the interaction between low and high level features lead to

the direction of focus towards the salient regions of a scene. The types of fea-

ture include low level edge detectors from which higher order features emerge.

Although such feature detectors have demonstrated a positive impact on object

recognition and saliency in many of the current vision models, there are a number

of other properties that need to be included for a more robust and biologically

plausible system. Factors such as depth perception, higher level contextual infor-

mation such as the relationship between objects and colour are some of the areas

of research that can enhance the feedback recognition model. Another area of

improvement includes the typed of feedback connections between the different

layers. With increase in model layers, the impact of further connectivity between

the intermediate layers may bring new insights into the cognitive process.



Chapter 6

Compressed hierarchical model

6.1 Introduction

In chapter 4, hierarchical framework that comprised of feature detectors of in-

creasing complexity was implemented. It was observed that the models with

large number of middle layer units performed object classification with much

higher accuracy. But increasing its numbers made the learning process for the

next layer time consuming and memory intensive. Since these units were learned

using ISA or TICA, the pooling of responses within subspaces or neighbourhoods

somewhat reduced the data size. However, the best results were achieved when

the subspace size or neighbourhood size was small in comparison with the total

number of units. In this chapter, to deal with large mid layer outputs, a com-

pressed hierarchical model which reduces the data size using the principles of

compressed sensing is proposed.

6.2 Compressed Sensing

The Shannon sampling theorem states that with uniform sampling at Nyquist

rate, which is twice the bandwidth of the signal, the data can be fully be recov-

ered. Although most modern signal processing systems are built around this

principle, instances where we encounter high Nyquist rates makes it difficult to

implement as the required number of samples becomes too high. For data such as

images, that limitation is bounded by its spatial resolution rather than Shannon

theorem [131] [36]. Standard compression techniques reduce high dimensional

but they are usually applied after storing the sampled data. In a ground breaking

work by Candes, Romberg, Tao and Donoho [36][132], a new framework called

Compressed Sensing or Compressive Sampling (CS) was proposed where com-

pression occurs at the data acquisition stage. With this method, the signal can be

sampled at a rate lower than the Nyquist frequency and efficiently reconstructed.
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The sparsity of signals is the key to this type of compression. The L1-norm

is commonly used as the regularization term for sparse coding cost function [25].

Given a signal that is sufficiently sparse, its compressed form can be recovered

using the same L1-norm technique. In this chapter, the principles behind com-

pressed sensing and its application towards a feedforward unsupervised HMAX

model will be explored. The motivation is to investigate novel sparse models of

HMAX that have ’compression’ property in the learning process.

As observed from the hierarchical models in the previous chapters, object dif-

ferentiability relies heavily on the number of filters in the layers. With data com-

pression in each layer, faster and more efficient recognition models can be built.

Its necessity becomes more apparent for large scale models with high number of

feature detectors in each layer.

6.2.1 Compression of sparse signals

The two main principles underlying compressed sensing are sparsity of data and

incoherence [36].

Sparse representation of signals

Most of the naturally occurring signals are not sparse [25], but can be expressed

as a coefficient vector with small number of non zero elements with respect to a

basis Ψ.

x = 〈s, Ψ〉 =
N

∑
i=1

siΨ (6.1)

For orthonormal basis Ψ

s = ΨTx (6.2)

The signal that is to be ’sensed’ or compressively sampled is denoted by x,

where x ∈ RN . It can be represented by sparse coefficient matrix si with respect

to the set of bases Ψ. These basis sets can be of many different types such as

Wavelets, DCT, Dirac delta functions . In the ISA-HMAX models, S layer filters

form the basis vectors. Compression is applied on the coefficient matrix si which

depends on the number of non zero values. With K non zero elements, the matrix

is termed as K-sparse.

After the sparse signal s̃ is recovered from the compressed version, the original

signal xs is reconstructed using equation 6.1.
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xs =
N

∑
i=1

s̃Ψ (6.3)

With the reconstruction error,

‖x− xs‖l2 = Ψ ‖s− s̃‖2 (6.4)

The full recovery of data thus depends on its accuracy in sparse representation

and the reconstruction technique of the compressed signal.

From equation 6.1, the sparse signal si can be approximated with the l1-norm,

min ‖s‖l1 such that, Ψs = x (6.5)

When a signal is compressed, a measurement matrix Φ is applied to its sparse

vector,

y = Φs (6.6)

From equation 6.2, sparse vector s can be represented in terms of orthonormal

basis Ψ,

y = ΦΨTx = Ax (6.7)

For sensing of the data, the measurement matrix extracts K samples of the

sparse signal, where K << N. The sensed or compressed data is represented by

y, which is a set of under-sampled data from the signal x,

The term A matrix in equation 6.7 is called sensing matrix with A = ΦΨT. Es-

timation of the coefficient matrix s̃, from the sensed data y is obtained by solving

the l1-norm minimisation equation,

min
s̃∈RN

‖s̃‖l1 such that,Φs̃ = y

or from equation 6.7,

min
s̃∈RN

‖s̃‖l1 such that,Ax = y

The measurement matrix Φ is of dimensions M× N, where M is the number

of samples which are randomly sensed from the N dimensional signal. The max-

imum number of samples M which defines the extent of compressibility of the
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signal depends on the sparsity K of the basis Ψ. Which refers to the number of

non-zero components associated with the basis vector.

Selecting M samples from the signal x ∈ RN , and if the coefficient vector is

K-sparse, (having K number of non-zero values), [132] If the observed samples

obey,

M ≥ CKlogN (6.8)

Where, C is a positive constant, the l1-norm minimization equation 6.5 exact

reconstruction of the signal x is possible with very high probability. It was ob-

served that the value of M needs to be at least KlogN for the signal to be recovered

[132].

Incoherence

The second condition for compressed sensing is the incoherence between the basis

matrix Ψ and the measurement matrix Φ. This property implies that data is

spread out in the domain of its basis Ψ [36]. The minimum correlation between

elements of the two matrices is ideal for giving least errors in reconstruction of

the data when sampling M samples as in equation 6.8.

With a fixed orthogonal basis set Ψ, any random matrix displays incoherence

to a large degree [36]. For the signal x ∈ RN coherence between the two matrices

Ψ and measurement Φ sensing M samples is defined by,

µ(Ψ, Φ) =
√

N max
M>1,j≤N

∣∣〈ΦM, Ψj
〉∣∣ (6.9)

Where, µ ∈ [1,
√

N], and 1 gives the maximum incoherence. It was stated that

using any random matrix as Φ for a fixed orthogonal Ψ, gives sufficiently high

incoherence to enable accurate reconstruction.

For x ∈ RN represented by an K-Sparse matrix and coherence µ(Ψ, Φ) within

A = ΦΨ defined by equation 6.9, the number of measurements M required for

signal recovery is defined becomes,

M ≥ Cµ2(Ψ, Φ)KlogN (6.10)

Where, C is a positive constant. From this equation, it becomes evident that as

µ reaches towards 1, the number of measurements M required for an exact recov-

ery also decreases. The ideal minimum number of samples is KlogN when µ = 1.
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But for any other case with sufficient sparsity and incoherence, the minimum

requirement for data recovery was found to be 4KlogN [132].

In some cases, signal recovery is not possible when the measurement matrix

Φ only samples the zero values, where the observed yk = 〈x, Φk〉 = 0. To avoid

such type of measurements, another criteria called Restricted Isometry Property

is defined.

Restricted Isometric Property (RIP)

The restricted isometry sets a rule for the distribution of the the sparse coefficients

along the topography of the matrix to ensure non-zero samples necessary for

reconstruction. It preserves the Euclidean length of the K-sparse signals so that

it does not give 0 value in the Φ domain [36]. For a sensing matrix A of size M

by N, this property states that the isometric coefficient δK, (for K-sparse vector)

should be small enough such that,

(1− δK) ‖s‖l2 ≤ ‖As‖l2 ≤ (1 + δK) ‖s‖l2 (6.11)

When the condition of RIP holds true 2K columns of the measurement matrix

Φ form a set that is linearly independent [133]. With this property, compression

does not return null vector and gives a more accurate reconstruction of x with

equation 6.5.

Another advantage of compressive sampling is that it is highly robust against

noise. For any data that is sensed inaccurately, x = sΦ, the sampled data y =

As + e, with e as the stochastic error term with ‖e‖l2 ≤ ε, the compressed sensing

can be adapted for efficiently recovering the signal data.

For noisy data, the sensed data, ỹ, is represented by l1-norm minimization of

the coefficient matrix ‖s̃‖l1 subject to, ‖As̃− y‖l2 ≤ ε.

Φ of size M×N should be constructed such that subsets of its columns are or-

thogonal. Among the measurement techniques, there is Gaussian Method, where,

the values are sampled from a zero mean and 1/N variance Gaussian proba-

bility distribution. For a basis Ψ that does not exhibit any particular structure,

random matrices were found to be sufficient for signal recovery. Other meth-

ods include Binary Measurements and Fourier Measurements [36]. The restricted

isometry constant for any random matrix is δ2K < 1 when the number of samples

is M ≥ (K · (N/K))/ε) [133] and thus fulfils the conditions for signal recovery.
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With the conditions for robust signal recovery defined by sparsity, incoherence

and RIP, the convex optimization problems can be solved using many different

algorithms [134]. Apart from the l1-norm minimization, there are other meth-

ods such as greedy algorithms have also been introduced for recovery of sparse

signals. The CoSAMP (compressive sampling) was one of the earlier algorithms

that demonstrated a highly accurate signal recovery in a greedy iterative process

[133][135].

6.2.2 Compressed sensing in computer vision

Recently, CS has already found its use in many computer vision applications such

as face recognition [136], object detection, MRI [36].

In most of the task specific vision applications, the CS implementation starts

at the sparse representation and subsequent compression techniques applied on

the whole image. In the multi stage models based on the visual cortex such as

HMAX, the image data is processed in a patches or localized receptive fields (RF).

The visual data from each RF is encoded as sparse representation over a basis set.

The bases in the first layer function as low level edge detectors and in the higher

layers, they represent more complex features. The bases or filters in each layer

are modelled after the simple and complex neurons of the primary visual cortex.

With sparse algorithms such as [25], [30],[33], the first condition of sparsity for

the CS process is already satisfied.

The main purpose of the model is to extract the distinctive features of the

images in multiple stages. Since any information that lost in the lower layers is

not recovered in the next, it is important for any compression technique to pre-

serve the data as accurately as possible. In the earlier models, compression was

carried out by PCA which also served the dual purpose of minimizing linear cor-

relations. Although these are effective methods, compression follows after data

storage. The memory requirement for signals of larger dimensions makes the

model impractical. CS allows for direct compression after the layer output is ob-

tained. Effective compression thus becomes important for large scale adaptation

of cognitive models.
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6.3 Compression in the visual cortex

The possibility of a compressed form of data acquisition using CS has been stud-

ied in neuroscience to gain insights into signal encoding in cortex[137]. Com-

pression is said to arise due to sparsity of neuronal activation. Down sampling

of signals in the visual cortex was observed with the number of receptor cells

reducing in the higher layers. As an example, signal from 150 million rods and

cones transmit to only 1.5 million retinal ganglion cells [137].

6.4 Compressed Sensing in HMAX model

Compressed sensing has also been considered within the context of HMAX mod-

els by Serre in [138]. It was hypothesized that the S units gather a fraction of its

afferent units in a random sampling method. It was observed that HMAX models

using ISA and TICA categorises the bases such that units within a subspace or

neighbourhood can be pooled. In this way, signal dimensionality is somewhat

reduced while maintaining its selectivity and invariance. Although similar meth-

ods have been compared to memory processing in the V2 layer of the cortex [82],

dimension reduction is limited to the number of subspaces, neighbourhoods or

clusters.

In the feedforward ISA-HMAX model in chapter 4, the data from each Cib layer

was sampled by the next layer units after which data whitening and normalization

was applied. If the square receptive field width of a unit is p and number of

filters outputs in its afferent lower layer is R̃, the dimension of each sampled

response is p× p× R̃. The dimension of the unit is also p× p× R̃. The memory

penalty is proportional to R̃, so for a larger scale model, increasing the number

of R̃ makes computation difficult. Signal compression is thus an important step

towards building faster and efficient vision models. (The term Ψ in equation 6.1

is represented as by R or R̃ for pooled units).

Since there is no concrete evidence about compression mechanisms in the

visual cortex, CS can potentially be applied in any stage of the HMAX model.

Efficiency of compression depends on the signal sparsity and sensing matrix.

Although the type of bases R̃ can vary according to learning method such as ISA

or TICA, the sensing matrix should be designed such that it satisfies the RIP. It

was observed that whenever a sensing matrix demonstrated a high reconstruction

error the accuracy of multi-class categorization declined. In the next section, the
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application of CS will be demonstrated on the ISA HMAX model of chapter 4.

Compression of jointly sparse signals

The dimension of measurement matrix Φ is of size M×N, where M is the number

of measurements and N is the dimension of the sparse signal. For the basis

vectors learned with ISA/ICA, any random measurement matrix exhibits good

RIP. Since a layer is defined by a single set of basis, a single two dimensional

measurement matrix is applied to compress all the data in that layer.

Since natural signals show variation in sparsity, a threshold was applied such

that K highest activations are retained. This is not ideal since suppression of val-

ues leads to information loss. If the number of activations is low enough such

that K << M, this measure would not be required. In this case, the value of

K is the same both for the compressed and uncompressed model to compare its

performance. For models where the set of signals have variable K, the measure-

ment matrix Φ (or sensing matrix A) is designed for the signal with largest K for

minimum information loss. If a sensing matrix A can compress K1-sparse sig-

nal x1 with low recovery error, the same matrix A can be applied to compress a

K2-sparse signal x2 where K2 < K1, as illustrated in 6.1.

Using these principles, compressed sensing was applied at the V2 layer of the

ISA HMAX model in figure 4.9. In chapter 4, it was observed that a large number

of V2 filters contributed to a better classification performance. Since it encodes

more complex variations of data, a high number of complex feature detectors are

desirable. Therefore, the V2 layer tends to be quite large, so compression at this

stage is more of a requirement than V1.

Implementation of CS in a hierarchical model

In the first model, the CS was applied after spatial pooling in the Cib layer (where,

i represents the V layer from figure 4.9), as illustrated in the figure 6.2. Compres-

sion at this stage proved to be difficult since the maximum number of non zero

elements increased within the afferent receptive field. This is due to pooling of

neighbouring values which concentrates the number of non-zero data within a

smaller area.

Because K was not significantly smaller than N, compression was not entirely

efficient. For larger models, if the value K remains relatively low even after max

pooling, CS can be effectively applied at this stage.
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Figure 6.1: Reconstruction of three different signals with sparsity K1 > K2 > K3

using the same measurement matrix Φ
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Figure 6.2: CS after Cib of the HMAX model

A more straightforward method is to apply CS right after the Cia layer as il-

lustrated in figure 6.3. For any input image, the Si layer output is of dimension

m× n× R, where R is the number of bases. For ISA models, the output gets re-

duced to m× n× R̃, where R̃ = R/Z. Although the equations 6.5 and incoherence

properties refer to orthogonal bases, it has been noted in [36] that orthogonality is

not completely essential for compressed sampling. The figure 6.3 shows a single

layer of the HMAX model. The highlighted part represents data in its compressed

form, which is then further transformed by higher layer operations. The following

steps were applied to compress the data in figure 6.3.

1. A sample S of size 1 × R̃ size is chosen (figure 6.4A). (If the value of K

across the signals are non-uniform, the sample with the largest value of K

is chosen).

2. A measurement matrix Φ is constructed which such that it satisfies the con-

ditions of incoherence and restricted isometry property. In this case, Φ was

comprised of random variables.

3. To select the most optimal Φ, the value of ’M’, which represents the size of

compression was kept around 3K.
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4. For a given Φ, a fast reconstruction algorithm was applied and reconstruc-

tion error ε was calculated. After setting a threshold for ε, for a number

of iterations, Φ was randomly generated. The one with lowest ε was then

selected as the final measurement matrix.

5. The measurement matrix was then applied to the rest of the data and for

every other input images as well (figure 6.4B).

Cic =
m∗n
∑
j=1

Sj ∗Φ (6.12)

Figure 6.3: CS after Cia layer of the HMAX model

The compressed form of the input image after S layer operation followed by

CS is Sc = m× n×M, where M is the number of measurements taken from the

sparse signal.

6.4.0.1 Effect of compression on saliency maps

In this model, data is sent in its compressed form to the next layer. Any further

operation such as max pooling at Cib should preserve the inherent features of the

object. In the previous chapter, the model utilized the features of the hierarchical

model to obtain saliency maps. Linear weighted summation of the C1b outputs
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Figure 6.4: Applying CS on a 1D sample of Cia output and applying the same

measurement matrix to the complete dataset
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generated an initial saliency map which was then used for directing the selection

of samples for learning the feature detectors in the next layer.

When data is compressed with CS, linear combination of the resulting feature

maps should produce saliency maps similar to uncompressed data. For Cia → Cic ,

from equation 5.7, saliency map is obtained by,

Abc =
M

∑
j=1

Cic (6.13)

Where, M is the number of measurements which is dependent on the sparsity

K of the uncompressed data Cia . Cic is the compressed data of dimension Cib =

m̃× ñ×M.

In the following example, saliency map is demonstrated for an uncompressed

and compressed first layer of an HMAX model. The number of bases R1 is 300

(generated using ISA). The original uncompressed model had an S1 layer output

of dimension m̃ × ñ × 300. The subspace size is 2, which makes the dimension

of the output at Cia = m̃ × ñ × 150. The number of measurements M for the

compressed model is 30. This makes the compressed layer output Cic = m̃× ñ×
30.

Figure 6.5, top row, shows the saliency map obtained by linear combination of

the C1a features. After applying compressed sensing to each value of C1a with a

measurement matrix (equation 6.12), its dimensions get reduced. It becomes sim-

ilar to a weighted summation of features. The bottom row displays the saliency

maps formed by combining the compressed features with equation 6.13. Figure

6.6 is the result of C1b features after compression. The saliency maps are unaltered

when a measurement matrix with low reconstruction error is applied on the C1a

values.

6.4.1 Implementation for object recognition model

For evaluating multi-class object recognition, compressed sensing was applied in

the V2 layer of the model in figure 4.9. Due to higher complexity of features,

larger number of S2 units are essential for encoding image information. With

large dictionary size, its compressibility plays an important role for reducing the

dimensions of the output.

The specifications of the model is given in table 6.1. M2 represents number

of features after compression, e2 is the reconstruction error for the selected mea-
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Figure 6.5: Compressive HMAX saliency maps (Input image from [15])

Figure 6.6: Compressive HMAX saliency maps (Input image from [15])
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surement matrix and compression size. In this model, only the K = 30 highest

activation values were allowed for the S2 layer outputs which resulted in an over-

all reduction in classification accuracy. In model 1a, CS is applied directly on the

S2 features, and in model 2a, CS is applied on the Cia features.

Table 6.1: Model specifications

Models

V1, p1 = 11 V2, p2 = 10 V3, p3 = 9

C1a C2a

S1 (R1) Z1 R̃1 S2 (R2) Z2 R̃2 M2 e2 S3 (R3)

Uncompressed 144 9 16 300 2 150 - - 100

Model 1a 144 9 16 300 - - 100 0.007 100

Model 2a 144 9 16 300 2 150 90 0.006 100

Ten categories of Caltech101 images [15] were used for multi-category object

classification. Since the purpose is to examine the applicability of compressed

sensing, the entire dataset was not used.

Figure 6.7: Classification accuracy of compressed models

The figure 6.7 shows the performance of models 1a and 2a for multi-class ob-
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ject categorization. Model 1a shows displays less accuracy than 2a even though

the number of measurements M2 is larger. This could have occurred due to the

higher reconstruction error for the sensing matrix in comparison to 2a, but an-

other contributing factor could also be the result of bypassing the C2a step, which

is connected to the phase invariance property of the model.

To test the influence of reconstruction error of the compressed representation

on classification accuracy, another set of models in table 6.2 was evaluated. Here,

the number of S2 bases was increased to 400. With the larger dictionary size, the

value of K was reduced to 12. Cia size is compressed from 200 to 100. All models

have the same parameters, with the exception of measurement matrix M2 and its

associated recovery error.

Table 6.2: Model specifications

Models

V1, p1 = 11 V2, p2 = 10 V3, p3 = 9

C1a C2a

S1 (R1) Z1 R̃1 S2 (R2) Z2 R̃2 M2 e2 S3 (R3)

Uncompressed 144 9 16 400 2 200 - - 200

CS Model 1b 144 9 16 400 2 200 100 0.00140 200

CS Model 2b 144 9 16 400 2 200 100 0.00095 200

CS Model 3b 144 9 16 400 2 200 100 0.00070 200

The baseline in this case is the uncompressed model, which was very time

consuming and memory intensive. With half the number of V2 features, the com-

pressed models in figure 6.8 display similar results but with a reduced data di-

mension. Also, from figure 6.8, it can be observed that the model 1b, which

has the highest recovery error shows a lower classification performance than the

rest. Although the difference in value of e2 for 2b and 3b is smaller, the model

3b with smaller e2 displays a slightly higher accuracy. From these results, it can

be inferred that the accuracy of the compressed models depend on measurement

matrix that recovers the signal with lowest error using equation 6.5 or any other

standard recovery algorithm.

This can be compared to the 1 ∗ 1 convolution method in chapter 4 where data

size reduction was applied. For the ISA-HMAX models, it led to a reduction in

performance accuracy. Also, using a random matrix to compress a model does

not provide any method for preserving (or improving) the models classification

accuracy. But with a random matrix with low reconstruction error, with the CS

method can compression of the data with least amount of information loss can be
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Figure 6.8: Classification accuracy of compressed models

achieved.

6.5 Summary

In this chapter, the application of compressed sensing on multi layered vision

models was explored. If the sparsity of response in each S layer of the model is

determined, CS can be applied to reduce its dimension without a significant loss

of information. A common measurement matrix generated at random, with the

smallest recovery error for a signal with largest number of non zero elements was

applied on all the data. The model results in terms of saliency map generation and

classification accuracy performs on par with its uncompressed counterpart. For

a object robust classification, the sparse representation of image data should be

as accurate as possible. With CS modulated models, the only possible drawbacks

would stem from poor transformation in its sparse form. Additionally, the value

of K needs to be reasonably small for higher compression.

CS modulated vision framework can be seen as a viable solution for data pro-

cessing in bigger models which contain large number of S units in multiple layers.
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With this method, the dimensions can be reduced to a fraction of its original size.

The size of the higher layer S units are also reduced without compromising its

functional properties.

With better measurement matrix design, further improvements can be made to

the existing models. For now, random matrices have proved to be highly efficient

sensing sparse data. In the future, design of deterministic sensing matrices based

on the receptive field (or basis vector) characteristics of model can be considered

as a direction of research for enhanced compression in biologically plausible vi-

sion models.



Chapter 7

Conclusion and Future research

7.1 Introduction

Models based on the visual cortex are important step towards understanding vi-

sion. Biological vision system is still a vastly complex field of study that has been

explored from different viewpoints such as neuroscience and cognitive psychol-

ogy.

The most fundamental and well established trait is the hierarchy of informa-

tion processing, which is adopted in all the biologically inspired vision models.

Each layer comprises of cells that have a unique characteristic and receptive field

(RF). The increase in receptive field sizes along the layers correspond to the in-

crease in the complexity of the cells. All these contribute to invariant response

high selectivity which computer vision aims to replicate. The second integral

property is the the attentional modulation which serves to optimize processing

of large amount of visual data that enters the cortex. The direction of focus to-

wards salient regions emerges from interaction between external stimulus driven

activation and internal knowledge based response. And lastly, the sparse firing

of neurons, that ensures that only a fraction of neurons remain active at a time.

By incorporating these properties, ways to develop an enhanced object detection

model was explored.

7.1.1 Key contributions

The main contribution of this thesis was to demonstrate that the combined ef-

fect of the L2-pooling and max pooling non-linearities has a positive impact on

the classification performance of self-taught hierarchical learning models. It im-

plementation was carried out by sparsity based ISA and TICA algorithms which

grouped them into subspaces or neighbourhoods according to the correlation of

their energies. The resulting feature vectors were highly tolerant towards scale,

position, and rotation variations while maintaining high degree of selectivity for
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an object class. Its classification accuracy on the Caltech-101 dataset was higher

than most of the current unsupervised models. Along with high accuracy, the

non-linear functions also resulted in reducing the dimensions of the data.

Comparison of object classification performance for both the ISA and TICA

models with similar parameters showed ISA to perform better with than TICA

when large subspace sizes or pooling neighbourhood sizes were used. TICA

models performs best when the pooling neighbourhood size is small with respect

to the topography size.

Building on the ISA models, the framework was then augmented with a feed-

forward saliency mechanism. Existing saliency methods involving bottom-up

saliency such as the GBVS [19] and SUN [20] were also integrated with the vision

model. Evaluation on a limited dataset showed slight improvement in classi-

fication accuracy when the number of sampled patches were reduced. But in

comparison with models with large sample sizes, the performance lagged behind

considerably. This highlighted the need for more accurate saliency maps for an

unsupervised attention-recognition model.

Since sparsity based algorithms were applied for the models, the data dimen-

sions were further reduced using compressed sensing. For a small dataset of 10

categories, it was found that compression can be achieved without drastically af-

fecting the classification accuracy, if the reconstruction error of the compression

matrix is low enough.

7.1.2 Future work

Convolutional Neural Networks

As seen from the classification accuracy for CNNs, for both the Caltech-101 and

Caltech-256 the model from [63] outperformed the ISA-HMAX described in chap-

ter 4. However, the number of parameters of the model and training images that

were used was much higher than the ISA-HMAX. This shows that the ISA model

has the potential to improve its feature extraction ability with a wider variety of

mid-layer filters.

Also, there is the possibility of applying a fully connected layer on top the final

S3 layer to build a convolutional neural network. The unsupervised learning to

initialize parameters could be applied similar to [58], where a pre-training stage

is used for reducing the number of required training images.
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Scale invariance

Although the models listed above displayed a high degree of invariant response

and selectivity, pooling between different spatial resolutions was not applied.

This has been addressed in chapter 4, but a scale invariant model without increas-

ing the final layer parameters was not successful. The SiCNN [95] model applies

the multiple architecture and feature concatenation method, but since CNNs are

functionally different, equivalent comparisons cannot be made. The only models

that have incorporated this property do fas has been the HMAX models where

Gabor filters of multiple scales are used. But since its final multi-category classi-

fication performance is lower, the same architecture may not be suitable for the

ISA-HMAX models.

Attentional modulation

As observed in chapter 5, a fully integrated attention-recognition model has not

reached its potential yet. The initial feed-forward model only applied attention

for the learning stage and not the inference stage. When the saliency maps were

applied to suppress information directly on the image, the performance declined

drastically. Due to incorrect saliency maps, the possibility of information loss is

high.

An attention based feedback model based on learned filters is also one of

the directions where these models can be extended. The purpose is to use the

already learnt low and high level filters to direct attention towards salient regions

of an image. This could model the dorsal and ventral streams within the same

hierarchical model without the need of separate architectures.

Sparsity and compression

In chapter 6, the sparsity of response was used to compress the data within the

layers. To apply this property, the number of non-zero responses had to be rela-

tively low. So there is a need for better representation of data with sparse algo-

rithms to be able to allow a higher degree of compressibility.

Biological plausibility

The activation patterns of the final layer of the models resemble a pattern similar

to neurons firing. In the face detection experiment from chapter 4, it was discov-



7.2. Conclusion 122

ered that these hierarchical models learn high level ’face neurons’ with completely

unlabelled data. This was also previously demonstrated in [13]. In terms of the

visual cortex, each of the final S layer filters could resemble the different channels

of signals. As mentioned in chapter 2, it has been theorized that a synchronous

oscillation occurs within the various channels when perception occurs [50]. But

due to the lack of experimental data, it is difficult to determine if the phase syn-

chronous activity of channels contributes towards object perception.

7.2 Conclusion

Modelling biological vision remains a daunting task mainly due to the numer-

ous factors that come into play during perception. Most of the models that are

currently in use in computer science are an oversimplification of a very complex

model. The models presented here only cover a few common features of the

visual cortex. The next step towards building a cognitive model should be to

integrate additional properties into the model. Another important step is to de-

velop larger scale of unsupervised models to be able to learn features from larger

databases.

Although a lot of progress has been made within the field of neuroscience and

computer vision, there is not much access for validating these models with respect

to empirical data. Therefore, there is an increasing need for bringing together

research from both fields to understand the mechanisms behind perception.
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Appendix A

Appendices

NOTE: Sources edited manually for line-break adjustment. This usually follow

some logic. In the case of matlab scripts, in a matlabic way (any [()]).

A.1 Matlab codes

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Set parameter values for hierarchical ISA/TICA models

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 alg = 'isa'; %select algorithm isa or tica%

6 inh=0; %threshold below which filter response is set to zerp

7 flg1=1; % for ISA or TICA flg=1 activates pooling within subspaces or

8 %neighborhood

9 flg2=1;

10 flg3=0;

11 Image_size=200;

12

13 nscales=1; % number of scales

14 tica_type=1; % tica_type=1: neighborhood elements do not overlap.

15 learn_dir = ''; % sample dataset for learning S layer filters

16

17 data_path= strcat(datadir,category);

18 C1layer = ['C1_train'];

19 C2layer = ['C2_train'];

20

21

22 p_1= 11; %RF size of layer V1

23 R_1 = 100; %Total number of S1 filters

24 samplesize1 = 50000;

25 ra_1 = 3;

26

27

28 p_2 = 12; %RF size of layer V2

29 R_2 = 300; %Total number of S2 filters
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30 samplesize2 = 50000;

31 ra_2 = 2;

32

33

34 p_3 =13; %RF size of layer V3

35 R_3 = 1000; %Total number of S3 filters

36 samplesize3 = 50000;

37

38

39 %%%%%%%%%%%%Parameters for ISA and TICA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40 %functions adapted from https://research.ics.aalto.fi/ica/imageica/

41 %isaparam.groups: number of subspaces

42 %isaparam.groupsize: subspace size

43 %epsi: positive constant

44

45

46

47 isaparam1=icaparam1;

48 isaparam1.groups=25;

49 isaparam1.groupsize=4;

50 isaparam1.epsi=0.5;

51

52 isaparam2=isaparam1;

53 isaparam2.groups=60;

54 isaparam2.groupsize=5;

55

56 isaparam3=isaparam1;

57 isaparam3.groups=100;

58 isaparam3.groupsize=10;

59

60 ticaparam1.model='tica';

61 ticaparam1.algorithm='gradient';

62 ticaparam1.xdim=12;

63 ticaparam1.ydim=12;

64 ticaparam1.maptype='torus';

65 ticaparam1.neighborhood='ones3by3';

66 ticaparam1.stepsize=1;

67 ticaparam1.epsi=0.5;

68 ticaparam1.nb=2;

69 ticaparam1.ol=0;

70

71 ticaparam2=ticaparam1;

72 ticaparam2.xdim=10;
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73 ticaparam2.ydim=10;

74 ticaparam2.nb=2;

75 ticaparam2.ol=0;

76

77 ticaparam3=ticaparam1;

78 ticaparam3.xdim=20;

79 ticaparam3.ydim=20;

80 ticaparam3.nb=1;

81 ticaparam3.ol=0;

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 S1filters=['ISAS1_cal101' '.mat'];

84 S2filters=['ISAS2_cal101' '.mat'];

85 S3filters=['ISAS3_cal101' '.mat'];

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %Training hierarchical ISA/TICA vision models

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 param; %set the model parameters

6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 % Learn S1 filters

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11

12 fprintf('Sampling data...\n')

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14 % Download from :

15 X = sampleimages(data_path ,samplesize1, p_1,ra_1,Image_size,1);

16 X = patch_normalize(X);

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

19 if strcmp(alg,'isa')

20 [V1,~,~]=pca(X,R_1);

21 Z=V1*X; % Whiten to remove linear dependencies

22 fname='tempS1';

23 estimateISA(Z,V1, fname, isaparam1); % from:

24 load('tempS1.mat','isa')

25 base.S1=isa{1}.A;

26 base.S1w=(isa{1}.B)';

27 base.V1=V;

28 save(S1filters,'base');

29

30 elseif strcmp(alg,'tica')
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31 [V1,~,~]=pca(X,R_1);

32 Z=V1*X; % Whiten to remove linear dependencies

33 fname='tempS1';

34 estimateTICA(Z,V1, fname, ticaparam1); % from:

35 load('tempS1.mat','tica')

36 base.S1=tica{1}.A;

37 base.S1w=(tica{1}.B)';

38 base.V1=V;

39 save(S1filters,'base');

40 end

41

42

43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44 % C1 layer: L2 pooling + max pooling

45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46

47 if strcmp(alg,'isa')

48 load(S1filters,'base');

49 layerC1(data_path,C1layer,base,ra_1,Image_size,alg,isaparam1,flg1);

50

51 elseif strcmp(alg,'tica')

52 load(S1filters,'base');

53 layerC1(data_path,C1layer,base,ra_1,Image_size,alg,ticaparam1,flg1);

54

55 end

56

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 % Learn S2 (and S3) filters

59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

60

61 database=CFileStat(C1layer); % downloaded from:

62

63 if (strcmp(alg,'isa'))

64 nR_1=R_1/isaparam1.groupsize;

65 elseif strcmp(alg,'tica')&& flg1==1

66 nR_1=(ticaparam1.xdim/ticaparam1.nb)*(ticaparam1.ydim/ticaparam1.nb);

67 end

68

69 if (saliency==0)

70 X=sample3D(database,C1layer,samplesize2,p_2,nR_1); %from:

71 else

72 X=sample3D_sal(database,C1layer,samplesize2,p_2,nR_1,per_sal);

73 end
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74 [mr,~]=size(X);

75 fun = @(block_struct) patch_normalize(block_struct.data); % from :

76 X = blockproc(X,[mr 100],fun);

77 fprintf('Doing PCA and whitening data...\n');

78

79 if strcmp(alg,'isa')

80 [V2,~,~]=pca(X,rdim2);

81 Z=V2*X;

82 clear X

83 fname='tempS2';

84 estimateISA(Z,V2, fname, isaparam2);

85 load('tempS2.mat','isanetwork')

86 S2=isanetwork{1}.A;

87 S2w=(isanetwork{1}.B)';

88 save(S2filters,'S2w','S2','V2');

89 elseif strcmp(alg,'tica')

90 [V2,~,~]=pca(X,rdim2);

91 Z=V2*X;

92 clear X

93 fname='tempS2';

94 estica( Z,V2, [],fname, ticaparam2 )

95 load('tempS2.mat','isanetwork')

96 S2=isanetwork{1}.A;

97 S2w=(isanetwork{1}.B)';

98 save(S2filters,'S2w','S2','V2');

99 end

100

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

102 % C1 layer: L2 pooling + max pooling

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104

105 if strcmp(alg,'isa')

106 load(S2filters,'S2w','S2','V2');

107 layerCS2_multi2(C1layer,C2layer,S2w,V2,ra_2,alg,...

108 isaparam2,flg2,nscales,inh,ticatype)

109 elseif strcmp(alg,'tica')

110 load(S2filters,'S2w','S2','V2');

111 layerCS2_multi2(C1layer,C2layer,S2w,V2,ra_2,alg,...

112 ticaparam2,flg2,nscales,inh,ticatype)

113 end

114

1 %%%%%%%%%%%%%%%%%%% V1 layer response %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Smap_pooling.m from:sparseHMAX-v1.2
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3 % calculates V1 layer response

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 function layerC1(datadir,C1layer,base,ratio,imsiz,alg,param,flg,inh)

6 if ~exist(C1layer,'dir'), mkdir(C1layer); end

7

8 catlist=dir(datadir); %list of object categories

9 catlist(2)=[];

10 catlist(1)=[];

11 catnum=size(catlist,1);

12 filepaths=cell(1,catnum);

13

14

15 %% %%%%%%%%For different categories of data %%%%%%%%%%%%%%%%%

16 files=cell(1,catnum);

17 for i=1:catnum

18 filepaths{i}=fullfile(datadir,catlist(i).name);

19 files{i}=dir( fullfile(filepaths{i},'*.jpg') );

20 end

21

22

23 for i=1:(length(r))

24 filestruct=files{r(i)};

25 for j=1:(size(filestruct,1))

26 filename=filestruct(j).name;

27 X=imread(fullfile(filepaths{i},filename));

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 [sy, sx, ~] = size(X);

30 rescale_factor = imsiz / min(sy, sx);

31 X = imresize(X, round([sy, sx]*rescale_factor));

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 str=strcat('_',int2str(i));

34 filename=regexprep(filename, '_',str);

35 matfile= regexprep(filename, '.jpg', '.mat');

36 Vresp_name=fullfile(C1layer,matfile);

37 filter=base.A1pca;

38 w_bases=base.V1;

39 %patch=sqrt((size(w_bases,2)/3)); %% for colour

40 patch=sqrt(size(w_bases,2));

41 Ca=layer_SCa(X,w_bases,filter,patch,alg,param,flg,inh);

42

43 C=Smap_pooling(Ca, ratio, ratio, ...

44 mod(size(S1map,1),ratio),mod(size(S1map,2),ratio),'max');

45
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46 save(Vresp_name,C)

47 end

48 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%V2layer response%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Smap_pooling from: sparseHMAX-v1.2

3 % layerC2: calculates V2 layer response

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 function layerC2(C1layer,C2layer,sfilt,s_wh,p_2,ratio,alg,param,flg,inh)

6 if ~exist(C2layer,'dir'), mkdir(C2layer); end

7 filelist=dir( fullfile(C1layer,'*.mat') );

8 for i=1:length(filelist)

9 filename=filelist(i).name;

10 fullname=fullfile(C2respdir,filename);

11 fullname1=fullfile(C1respdir,filename);

12 resp=load(fullname1, 'C');

13 resp=resp.C; % 3D response vector from the previous layer

14

15 C2a=layer_SCa(resp,s_wh,sfilt,p_2,alg,param,flg,inh);

16 C=Smap_pooling(C2a, ratio, ratio, ...

17 mod(size(S2map,1),ratio),mod(size(S2map,2),ratio), 'max');

18

19 savefile(fullname,C);

20 end

21

22

23 %% Matlab code for simple S + complex Ca layer of the HMAX model

24 % patch_normalize from : sparseHMAX-v1.2

25 function Sout=layer_SCa(X,w_filt,sfilt,rf,alg,param,flg,inh)

26

27 [row,col,nfilters]=size(X);

28 if nfilters==1

29 X_patches=im2col(X,[rf rf],'sliding');

30 else

31 X_patches=im3col(X,rf,rf,nfilters);

32 end

33 X_patches=single(X_patches);

34

35 %% Normalize the features

36 X_patches=patch_normalize(X_patches);

37 X_patches=w_filt*X_patches;

38

39 if strcmp(alg,'isa')

40 S=X_patches'*sfilt;



A.1. Matlab codes 131

41 if flg==1

42 ssize=param.groupsize; % subspace size

43 S= resp_Ca_isa(S,ssize,sfilt); % L2 subspace pooling

44 S=S';

45 end

46

47 elseif strcmp(alg,'tica')

48 S=X_patches'*sfilt;

49 if flg==1

50 %ssize=param.nb;

51 S= resp_Ca_tica(S',param); % L2 neighbourhood pooling

52 S=S';

53 end

54 end

55 newsz=size(S,2);

56 Sout=reshape(single(full(S)),row-rf+1,col-rf+1,newsz);

57

58 %%%%%%%%L2 pooling for ISA%%%%%%%%%%%%%%%%%%%

59 function Sresp=resp_Ca_isa(S,ssize,sfilt)

60 Sn=S';

61 Sn(Sn<0)=0;

62 Sresp=[];

63 i=1;

64 while i<size(sfilt,2)

65 temp=Sn(:,:,(i:i+(ssize-1)));

66 Smax=(sqrt(temp.^2));

67 Sresp=[Sresp;Smax];

68 i=i+ssize;

69 end

70 %%%%%%%%L2 pooling for TICA%%%%%%%%%%%%%%%%%%%

71 function Sresp= resp_Ca_tica(Sn,param)

72 Sn(Sn<0)=0;

73 Sresp=[];

74 Ind=1:param.xdim*param.ydim;

75 In=reshape(Ind,param.xdim,param.ydim)';

76 Indices=im2col(In,[nb,nb],'distinct');

77 for i=1:size(Indices,2)

78 temp=Sn(Indices(:,i),:);

79 Smax=(sqrt(temp.^2));

80 Sresp=[Sresp;Smax];

81 end

82

83 function savefile(fullname,C)
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84 save(fullname,'C');

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % FUNCTION: infer_S3resp

3 % Extracts highlevel feature response

4 % saves in resultsdir directory.

5 % OUTPUT: fvector: feature vector of size M X N; M=total number of images

6 % N=number of S3 filters

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 function fvector=infer_S3resp(datadir,resultsdir,base,~,S2w,V2,S3w,V3,

9 alg,param1,param2,ra_1,ra_2,flg1,flg2,imsiz,inh,nimages,R_3)

10 if ~exist(resultsdir,'dir'), mkdir(resultsdir); end

11 catlist=dir(datadir); %list of object categories

12 catlist(2)=[];

13 catlist(1)=[];

14 catnum=size(catlist,1);

15 filepaths=cell(1,catnum);

16

17 filelist=cell(1,catnum);

18 for i=1:catnum

19 filepaths{i}=fullfile(datadir,catlist(i).name);

20 filelist{i}=dir( fullfile(filepaths{i},'*.jpg') );

21 end

22

23 r=1:length(filelist);

24

25 rcount=0;

26 fvector=zeros(nimages,R_3); %Size of the feature vector

27 for i=1:(length(r));

28 filestruct=filelist{r(i)};

29 for j=1:(size(filestruct,1))

30 filename=filestruct(j).name;

31 Xi=imread(fullfile(filepaths{i},filename));

32 [sy, sx, ~] = size(Xi);

33 rescale_factor = imsiz / min(sy, sx);

34 Xn = imresize(Xi, round([sy, sx]*rescale_factor));

35 X=single(mean(Xn,3));

36

37

38 %%%%%%%%%%%%%%%%%%%%%%%%% LAYER 1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

39 f=base;

40 filter=f.S1;

41 S1w=f.S1w;

42 % patch=sqrt((size(pmat,2))/3); %%for colour
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43 patch=sqrt(size(S1w,2));

44

45 tic;

46 C1a=layer_SCa(X,S1w,filter,patch,alg,param1,flg1,inh);

47 C=Smap_pooling(C1a, ra_1, ra_1, ...

48 mod(size(C1a,1),ra_1),mod(size(C1a,2),ra_1),'max');

49

50

51 %%%%%%%%%%%%%%%%%%%%%%%%% LAYER 2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

52

53 patch=sqrt(size(V2,2)/size(C,3));

54 C2a=layer_SCa(C,V2,S2w,patch,alg,param2,flg2,inh);

55

56 C=Smap_pooling(C2a, ra_2, ra_2, ...

57 mod(size(C2a,1),ra_2),mod(size(C2a,2),ra_2), 'max');

58 toc;

59

60 %%%%%%%%%%%%%%%%%%%%%%%%% LAYER 3%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 sz=sqrt(size(V3,2)/size(C,3));

62 d=layer_Sfinal(C,V3,S3w,sz,alg);

63 d(d<0)=0;

64 fd=sqrt(sum(sum(d.^2)));

65 fvector(rcount,:)=fd;

66 rcount=rcount+1;

67 C=reshape(fd,1,size(C,3));

68

69 str=strcat('_',int2str(i));

70 filename=regexprep(filename, '_',str);

71 matfile= regexprep(filename, '.jpg', '.mat');

72 Sfile=fullfile(resultsdir,matfile);

73 save(Sfile,C)

74

75 end

76 end

77

1 %%%%%%%%%%%%%%%%%%%Sample patches based on saliency maps%%%%%%%%%%%%%%%%%

2 %Calculates saliency map based on feature integration theory

3 %Identifies random points on the salient regions of the map

4 %Extracts patches on the corresponding image based on the points

5 function X = sample3D_sal(database,layer,samples, winsize,numbases,perc)

6

7 % Number of patches per map

8 num_files = length(database);
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9 getsample = round(samples/num_files);

10 samples = getsample * num_files;

11

12 % Initialize the matrix to hold the patches

13 X = zeros(winsize^2*(numbases),samples, 'single');

14

15 for i=(1:num_files)

16

17 % Load the map.

18 load(fullfile(layer,database(i).Cfile),'C');

19 % extract patches at random from C map to make data vector X

20 [rowsz,colsz]=size(C(:,:,1));

21 smap1=sum(C,3); % primary saliency map

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 [allPosIndices] = selectSal(smap1, perc, getsample, [rowsz,colsz]);

24 [xp, yp]=ind2sub([rowsz,colsz], allPosIndices);

25

26 imshow(mat2gray(smap1))

27 hold on

28 for j=1:getsample

29 r=xp(j);

30 c=yp(j);

31 if r>=(rowsz-winsize+1) && c>=(colsz-winsize+1)

32 rd=r-winsize+1;

33 cd=c-winsize+1;

34 X(:,(i-1)*getsample+j) = reshape(C(rd:r,cd:c,(1:numbases)),...

35 (numbases)*winsize^2,1);

36 rectangle('Position', [c-winsize, r-winsize,winsize, winsize],...

37 'EdgeColor','r', 'LineWidth', 3);

38 plot(c, r, 'rd', 'MarkerFaceColor','g','MarkerSize',8 )

39 elseif r>=(rowsz-winsize+1) && c<(colsz-winsize+1)

40 rd=r-winsize+1;

41 cd=c+winsize-1;

42 X(:,(i-1)*getsample+j) = reshape(C(rd:r,c:cd,(1:numbases)),...

43 (numbases)*winsize^2,1);

44 rectangle('Position', [c, r-winsize,winsize, winsize],...

45 'EdgeColor','r', 'LineWidth', 3);

46 plot(c, r, 'rd', 'MarkerFaceColor','g','MarkerSize',8 )

47 elseif r<(rowsz-winsize+1) && c>=(colsz-winsize+1)

48 rd=r+winsize-1;

49 cd=c-winsize+1;

50 X(:,(i-1)*getsample+j) = reshape(C(r:rd,cd:c,(1:numbases)),...

51 (numbases)*winsize^2,1);
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52 rectangle('Position', [c-winsize, r,winsize, winsize],...

53 'EdgeColor','r', 'LineWidth', 3);

54 plot(c, r, 'rd', 'MarkerFaceColor','g','MarkerSize',8 )

55 else

56 rd=r+winsize-1;

57 cd=c+winsize-1;

58 X(:,(i-1)*getsample+j) = reshape(C(r:rd,c:cd,(1:numbases)),...

59 (numbases)*winsize^2,1);

60 rectangle('Position', [c, r,winsize, winsize],...

61 'EdgeColor','r', 'LineWidth', 3);

62 plot(c, r, 'rd', 'MarkerFaceColor','g','MarkerSize',8 )

63 end

64 end

65

66 end

67

68 % Adapted from: selectSamplesPerImg

69 % Matlab tools for "Learning to Predict Where Humans Look" ICCV 2009

70 % Tilke Judd, Kristen Ehinger, Fredo Durand, Antonio Torralba

71 function [salient_points] = selectSal(C, p, num_salPoints, dims)

72

73 % select samples examples randomly from top p salient

74

75 pIndx = [];

76 C=reshape(C, [dims(1)*dims(2), 1]);

77 [~, X] = sort(C, 'descend');

78

79 % Find the positive examples in the top p percent

80 i = ceil((p/100)*length(C)*rand([num_salPoints, 1]));

81 pos_indx = X(i);

82 salient_points = [pIndx, pos_indx'];

1 %%%%%%%%%%%%%%Compress sparse 3D data using compressed sensing%%%%%%%%%%%

2 %%Requires Model-CS Toolbox v1.1

3

4 function [rec,Yc]=compress(X,M,rmslim,i)

5

6 % compresses a single sparse vector with measurement matrix Phi

7 % and then applies it to the rest of the data

8

9 s=sum(X~=0); %number of non zero entries in each patch

10 sz=size(X,1);

11

12 [test,idx]=max(s);
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13 N=size(X,1);

14 Bm=X(:,idx); %Reference data

15 K=test; %number of non zero elements of signal Bm

16 iter=10;

17 rms=0;

18 maxiter=0;

19

20 temp=cell(1,2);

21 rmsct=cell(1,2);

22 maxvalue=5000;

23 while maxiter<maxvalue

24 fprintf('cosamp rms %6.4f\n',rms);

25 Phi = ((1/sqrt(M))*abs(randn(M,N)));

26 y = Phi*Bm;

27

28 [xhat,~]=cosamp(y,Phi,K,iter); % from: Model-CS Toolbox v1.1 .

29 % [xhat,~] = cosamp_fun(y, Phi_f, PhiT_f, N, K, iter);

30

31 rms = sqrt(mean((Bm(:)-xhat(:)).^2));

32 if rms < rmslim

33 Phi_s=Phi;

34 rms_s=rmsct{1};

35 rec.iter=iter;

36 rec.N=N;

37 rec.M=M;

38 rec.K=K;

39 rec.Phi=Phi;

40 % rmsval=checkfullcompress(Phi,X,K,iter);

41 % rms_full=rmsval;

42 break;

43 end

44

45 if maxiter==0

46 temp{1}=Phi;

47 rmsct{1}=rms;

48 else

49 temp{2}=Phi;

50 rmsct{2}=rms;

51 if rmsct{1}>rmsct{2}

52 temp{1}=temp{2};

53 rmsct{1}=rmsct{2};

54 end

55
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56 end

57

58 maxiter=maxiter+1;

59 if maxiter==maxvalue-1;

60 fprintf('max reached: No further compression');

61 options.Interpreter = 'tex';

62 qstring = ['rms=',num2str(rmsct{1}),':','Is rms less than',num2str(rmslim),'?'];

63 choice = questdlg(qstring,'Boundary Condition',...

64 'Yes','No',options);

65 if strcmp(choice,'No')

66 error('rms standard not met: K to large');

67 else

68 Phi_s=temp{1};

69 rms_s=rmsct{1};

70 rec.iter=iter;

71 rec.N=N;

72 rec.M=M;

73 rec.K=K;

74 rec.Phi=Phi;

75 end

76 end

77 end

78

79 nameCS=['CS_',num2str(sz),'_to_',num2str(M),'_',num2str(i)];

80 save(nameCS,'Phi_s','rms_s') % save measurement matrix

81 Yc=zeros(M,size(X,2));

82

83 for i=1:size(X,2) % compress rest of the data

84 Yc(:,i)=rec.Phi*(X(:,i));

85 end
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