
Synthesis and antibacterial profiles of 
targeted triclosan derivatives 
Article 

Accepted Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Howse, G. L., Bovill, R. A., Stephens, P. J. and Osborn, H. M. 
I. ORCID: https://orcid.org/0000-0002-0683-0457 (2019) 
Synthesis and antibacterial profiles of targeted triclosan 
derivatives. European Journal of Medicinal Chemistry, 162. pp.
51-58. ISSN 0223-5234 doi: 
https://doi.org/10.1016/j.ejmech.2018.10.053 Available at 
https://centaur.reading.ac.uk/80312/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.ejmech.2018.10.053 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Accepted Manuscript

Synthesis and antibacterial profiles of targeted triclosan derivatives

Gemma L. Howse, Richard A. Bovill, Peter J. Stephens, Helen M.I. Osborn

PII: S0223-5234(18)30923-1

DOI: https://doi.org/10.1016/j.ejmech.2018.10.053

Reference: EJMECH 10839

To appear in: European Journal of Medicinal Chemistry

Received Date: 5 July 2018

Accepted Date: 22 October 2018

Please cite this article as: G.L. Howse, R.A. Bovill, P.J. Stephens, H.M.I. Osborn, Synthesis and
antibacterial profiles of targeted triclosan derivatives, European Journal of Medicinal Chemistry (2018),
doi: https://doi.org/10.1016/j.ejmech.2018.10.053.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ejmech.2018.10.053
https://doi.org/10.1016/j.ejmech.2018.10.053


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Synthesis and Antibacterial profiles of Targeted Triclosan 

Derivatives 

Gemma L. Howse,a Richard A. Bovill,b# Peter J. Stephens,b Helen M. I. Osborna#  

a Reading School of Pharmacy, University of Reading, Whiteknights, Reading. RG6 6AD. UK 

b ThermoFisher Scientific, Wade Road, Basingstoke, Hampshire. RG24 8PW. UK 
# To whom correspondence should be addressed. Richard Bovill : Richard.bovill@thermofisher.com; 

Helen Osborn : h.m.i.osborn@reading.ac.uk 

  

Abstract  

There is an ongoing urgent need for new targeted antibacterial compounds with novel mechanisms of 

action for the treatment of infections caused by bacteria that are resistant to currently available materials. 

Since the expression of glycosidase enzymes within bacteria is unequally distributed, glycoside derivatives 

of antibacterial agents offer potential as targeted prodrugs for bacterial infections. Herein we report the 

synthesis and characterisation of four α-D-glycopyranosides and three β-D-glycopyranosides of the broad 

antibacterial agent triclosan, in generally very good synthetic yields, and with excellent purities. Each 

glycoside was analysed to determine its ability to inhibit the growth of a wide range of Gram-negative and 

Gram-positive organisms, including many of clinical significance. All of the triclosan glycosides that were 

synthesized demonstrated antibacterial activity against many of the organisms that were examined. For 

example, β-galactoside (3a) and α-arabinoside (3c) had MIC values of 0.5 µg/ml for several strains of S. 

aureus and S. haemolyticus. The triclosan glycosides were also generally found to be more water soluble 

and much more selective than the underivatized triclosan, making them ideal both for the targeted inhibition 

of bacterial growth and as agents for the selective recovery of bacteria from mixed cultures. In the latter case, 

two Bacillus strains could be identified from various strains of Bacillus and Staphylococcus after inoculation 

onto Nutrient Agar No. 2 with 0.25 µg/ml triclosan-α-D-glucopyranoside (3e).   This glucoside may, 

therefore, be of use for the isolation and identification of the food-poisoning organism Bacillus cereus. 

 

Keywords: antibacterial, prodrug, selective recovery 

Introduction 

The need for new antibacterial compounds to treat human bacterial infections has never been more 

important. The introduction of antibiotics into clinical use represented one of the most significant milestones 

in medicine, and allowed huge advances in areas such as organ transplantation, major surgeries and cancer 
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chemotherapy. However, this extensive use, alongside their widespread misuse, has contributed to the 

spread of antibiotic resistance. Strains of bacteria demonstrating widespread resistance to antibiotics 

(“Multi-drug-resistant”, “Pan-drug-resistant”) are being isolated at an alarming rate (1).  It is estimated that 

by 2050, 10 million lives a year and a cumulative 100 trillion USD of economic output are at risk due to the 

rise of drug-resistant infections.  Even today, 700,000 people die of resistant infections every year (2). In a 

recent WHO study it was found that very few new antibiotics are in the clinical pipeline and most of those 

are modifications of existing classes to which resistant mechanisms are arising. Very few potential treatment 

options were identified for those antibiotic-resistant infections posing the greatest threat to health, including 

drug-resistant tudeculosis which kills around 250,000 people each year (3). 

Triclosan (TCS; 5-chloro-2-[2,4-dichlorophenoxy]phenol) (Figure 1) also known as irgasan is a 

synthetic, non-ionic, bis-aryl antimicrobial which has been shown to have anti-fungal and anti-viral 

properties (4-9). It is non-toxic to humans but has a broad-spectrum of activity inhibiting all commonly 

encountered pathogens. Its mechanism of antibacterial action at higher concentrations is towards the cell 

wall but at lower concentrations it inhibits fatty acid synthesis at the enoyl-acyl carrier protein reductase 

(FabI) step (10-13). Fatty acid synthesis is essential in bacteria and inhibition causes disruption of the cell 

membrane and cell breakdown (14-16).  

Whilst triclosan has been extensively used as a disinfectant and has become widely used in many food 

preparation and household products, its low solubility at physiological pH has limited its antibacterial usage 

to topical treatments. Derivatizing the hydroxyl group, which is an essential functional group for 

antibacterial activity, to form a glycoside would be expected to improve its aqueous solubility and enhance 

its uptake into bacterial cells via active carbohydrate transport mechanisms (17-19) whilst also limiting its 

toxicity to those organisms that are able to remove the sugar using the appropriate glycosidase enzyme. 

Since glycosidases are unevenly distributed throughout bacterial taxa (20-24) these targeted bacterial growth 

inhibitors would offer the advantage of not disturbing the natural bioflora of the patient. The triclosan 

glycosides would also be useful as selective agents in bacterial isolation media, hence allowing more easy 

ideintification of bacterial pathogens in food and clinical samples.  

The aim of this investigation was therefore to synthesise a range of novel α- and β-linked triclosan 

glycosides with enhanced aqueous solubility and targeted antibacterial properties compared with triclosan.  

 

 

Figure 1 
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Results and Discussion 

Triclosan-β-D-galactopyranoside (3a), β-D-glucopyranoside (3b) and α-D-arabinopyranoside (3c) 

were each synthesized in two steps as summarised in Scheme 1. The first step involved reaction of the 

bromide donor with triclosan (1) in the presence of 1M NaOH (1.06 eq.) to yield, selectively, the desired 

trans-linked protected glycopyranosides (2a-2c) in generally good yields. These were then deprotected by 

treatment with MeOH and catalytic K2CO3 (0.1 eq.) to afford the required triclosan glycosides (3a-3c) in 

very good to excellent yields (25).  

 

 

 

Scheme I. i) 45 % HBr in AcOH, 0 °C, 1.5-3 h: ii)  triclosan (1), 1M NaOH, H2O/ acetone, r.t, 18 h: iii)  

MeOH, K2CO3, r.t, 2-17.5 h.  

 

Synthesis of the thermodynamically favoured α-galacto, gluco and mannopyranosides, and β-

arabinopyranoside (2d, 2e, 2f, 2g respectively), was achieved via glycosidation of the acetate donors under 

thermodynamic conditions. Removal of the acetyl protecting groups was again achieved using catalytic 

amounts of potassium carbonate (0.1 eq.) in the presence of methanol to afford the triclosan glycosides (3d, 

3e, 3f, 3g ) in generally excellent yields. 

 

 

 

Scheme II. i) triclosan (1), BF3.OEt2, CH2Cl2, 0°C- r.t, 18 h: ii)  MeOH, K2CO3, r.t, 3h. 

The structures of the synthesized intermediates and final compounds were confirmed by 1H and 13C 

NMR spectroscopy and mass spectrometry. In all cases free triclosan and unreacted sugars could not be 

detected in the final products using HPLC analysis and purities were  ≥97%.  
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The Minimum Inhibitory Concentrations (MICs) for triclosan and its glycosides against a wide range 

of Gram-negative and Gram-positive bacteria, including many of clinical significance, were generated using 

the Bioscreen system. Data is summarized in Table 1 (Gram-negative organisms) and Table 2 (Gram-

positive organisms) below.  

 

Tables 1 and 2 MIC (µg/ml) of triclosan glycosides for a range of Gram-negative and Gram-

positive organisms in Nutrient Broth. 

 
Gram-negative 

organism 

No. of 

strains 

Triclosan 

(1) 

β-gal 

(3a) 

β-glu 

(3b) 

α-ara 

(3c) 

α-gal 

(3d) 

α-glu 

(3e) 

α-man 

(3f) 

β-ara 

(3g) 

Aer. hydrophila 1 8 256 >256 128 >256 256 >256 >256 

Cit. freundii  1 0.5 8 64 8 64 4 64 64 

Cr. sakazakii 1 0.5 8 64 8 128 8 128 128 

Ent.  aerogenes 1 0.5 8 64 8 128 8 32 128 

Ent. cloacae 1 0.5 0.5 16 0.5 32 1 8 16 

E. coli 8 0.1-0.5 0.5-32 8-64 0.5-4 16-64 2-8 4-64 8-32 

E. hermanii 1 0.5 2 16 1 32 1 16 32 

Hafnia alvei 1 0.1 0.5 4 0.5 16 1 4 4 

Kleb.  aerogenes 1 0.5 4 32 4 32 2 32 32 

Kleb.  1 0.1 0.5 0.5 0.5 1 1 4 4 

Pr. mirabilis 1 0.5 4 16 4 32 2 16 32 

Pr. vulgaris 1 0.5 8 64 16 64 4 32 128 

Ps. aeruginosa 1 32 >256 >256 >256 >256 >256 >256 >256 

Salmonella 11 0.5-1 2-16 16-32 2-8 32-64 2-8 16-64 32-64 

Ser. marcescens 1 64 >256 >256 >256 >256 >256 >256 >256 

 

 

Gram-positive 

organism 

No. of 

strains 

Underiv. 

triclosan 

(1) 

β-gal 

(3a) 

β-gluc 

(3b) 

α-ara 

(3c) 

α-gal 

(3d) 

α-gluc 

(3e) 

α-man 

(3f) 

β-ara 

(3g) 

B. cereus 1 2 256 256 128 >256 128 256 128 

B. subtilis 1 1 32 256 32 256 32 128 128 

Entero. faecalis 1 8 128 16 128 >256 128 256 256 

Entero. faecium 1 4 >256 >256 256 >256 256 256 256 

S. aureus 8 0.01 0.5 4 - 8 0.5 8 - 16 1 2-8 4 - 8 

S. epidermidis 3 0.01 0.5 8 - 16 0.5 8 - 32 1 4-8 8 - 16 

S. haemolyticus 1 0.01 0.5 16 0.5 16 1 8 128 

S. saprophyticus 1 0.01 8 64 8 64 4 32 64 

Str. agalactiae 1 4 256 256 128 >256 128 128 128 

Str. pneumoniae 1 1 128 128 64 128 32 64 64 
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Str. pyogenes 1 1 128 32 16 256 32 32 32 

Str. viridans 1 4 256 256 128 >256 128 128 128 

 

 

 

From Tables 1 and 2 it can be seen that all of the triclosan glycosides that were synthesized 

demonstrated antibacterial activity against many of the organisms that were examined. In particular, the α-

arabinoside (3c) and β-galactoside (3a) both had MICs of 0.5 µg/ml for several organisms including the 

pathogenic staphylococcal species S. aureus and S. haemolyticus. It is well recognised that Methicillin 

Resistant Staphylococcus aureus (MRSA) can be difficult to treat and often last resort compounds, that may 

have toxic side-effects, are therefore used (26, 27). That S. aureus was one of the most sensitive organisms 

to the triclosan glycosides is therefore particularly significant from a clinical perspective. Moreover, 

although various resistance mechanisms are involved for bacteria, resistance in MRSA is mainly due to the 

production of high levels of β-lactamase (28, 29).  Currently, drugs with toxic side-effects are often used 

(30-32) and hence antibiotics such as those described herein that have a different mode of activity are likely 

to be particularly valuable.  

From Tables 1 and 2 it can also be seen that in contrast to the broad toxicity exhibited by the parent 

triclosan, the toxicities of the triclosan glycosides varied considerably according to the organism. As an 

example, the MIC for triclosan was 0.5 µg/ml for eight Gram-negative organisms but MICs for the α-

arabinoside (3c) for these organisms was from 0.5 to 16 µg/ml. This presumably is a reflection of 

differences in glycosidase activity and/ or transport rates of the arabinoside into the cell, and reinforces the 

hypothesis that derivatisation of triclosan as glycosides is a useful strategy for enhancing selectivity. 

Moreover, since the solubility of the triclosan glycosides in growth media and buffers at physiological pH is 

much improved compared to underivatised triclosan, which is reflected in the calculated cLogP values for 

the hexose glycosides of 3.02 compared to 4.80 for triclosan (33), it should be possible to use the β-

galactoside (3a) and the α-arabinoside (3c) in peroral and parenteral treatments of MRSA infections rather 

than only in topical applications, as is the current case for triclosan. 

Generally if an organism was resistant to free triclosan it was also resistant to glycosides formed from 

it, indicating that any resistance is probably due to rapid efflux of triclosan, or its inability to cause 

disruption to fatty acid biosynthesis rather than poor transport into the cell. Thus, strains of Aeromonas 

hydrophila, Bacillus cereus, Enterococcus faecium, Ps. aeruginosa, S. marcescens, Streptococcus 

agalactiae and Streptococcus viridans all demonstrated MIC of 2 or greater for triclosan and 128 or greater 

for the glycosides. An exception was Enterococcus faecalis with a MIC of 16µg/ml for the β-glucoside (3b); 

only one doubling dilution higher than that for free triclosan. 

 

As the activities of the triclosan glycosides were much more bacterial selective than the 

underivatized triclosan, this also demonstrates their excellent potential for enriching food or clinical 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
specimens for pathogens prior to instrumental, moleular or traditional means of identification. For example, 

the results in Table 2 demonstrate that the addition of triclosan α-arabinoside (3c) in selective enrichment 

broth at 1.0 µg/ml would allow recovery of Salmonellae but inhibit the growth of many organisms that 

outgrow it such as strains of Enterobacter cloacae, Escherichia hermanii, Escherichia coli, Hafnia alvei, 

Klebsiella pneumoniae and Staphylococcus. Triclosan α-mannoside (3f) at 64 µg/ml also demonstrated 

inhibition profiles that would be particularly useful for the selective recovery of Cronobacter sakazakii 

which is of particular concern when present in infant formula milk (34, 35). To determine whether such 

differences in toxicity of the triclosan glycosides could indeed be used in selective isolation plates as well as 

in broth cultures, MIC values were also determined in Nutrient Agar. Pleasingly, results were essentially the 

same as those obtained in broth (data not shown). As an example, to demonstrate the effectiveness of 

triclosan glycosides in isolation plates, recovery of Bacillus cereus in the presence of strains of 

staphylococci was investigated. Bacillus cereus is an important foodborne pathogen in humans causing 

severe nausea, vomiting, and diarrhoea (36). It is often present in samples with large numbers of other 

organisms and so can be difficult to isolate. PEMBA medium containing polymyxin B and cycloheximide 

with egg yolk precipitation as a presumptive identification is usually used (37).  The Bacillus and 

Staphylococcus strains were inoculated onto Nutrient Agar plates with and without 8 µg/ml triclosan-α-D-

glucopyranoside (3e). Although all strains grew well on Nutrient Agar only the Bacillus cereus strain could 

be recovered on plates containing the inhibitor (Figure 2) and its growth was not affected by free triclosan 

that may have been released from dead staphylocococcal cells; presumably amounts were too low or did not 

permeate through the agar.  

 

 

 

 

 

 

 

Figure 2. Nutrient agar plates inoculated with strains of Bacillus and Staphylococcus. Left, without and 

right with 8µg/ml triclosan-α-D-glucopyranoside (3e). Only the 2 Bacillus strains could be recovered on 

plates containing the inhibitor. 
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Conclusions 

Chemical derivatization of the antibacterial agent triclosan was optimised to afford four novel 

triclosan-α-D-glycopyranosides and three novel triclosan-β-D-glycopyranosides in generally very good 

yields, and excellent purities. The abilities of the glycosides to inhibit the growth of a broad range of gram-

positive and gram-negative bacterial organsisms, including many of clinical and industrial relevance, were 

probed and many were shown to be potent, selective, antibacterial agents. For example, β-galactoside (3a) 

and α-arabinoside (3c) had MIC values of 0.5 µg/ml for several strains of S. aureus and S. haemolyticus. 

Since Methicillin Resistant Staphylococcus aureus can be difficult to treat, and last resort compounds that 

may have toxic side-effects are often used, this is a significant advance. In addition, since antibacterial 

resistance in many cases is due to the production of high levels of β-lactamase, antibiotics with a different 

mode of activity such as those described herein are highly beneficial. Moreoever, as the glycoside 

derivatives prepared herein have increased aqueuous solubilities compared with free triclosan, as 

demonstrated by calculated logP values, this now provides opportunities for triclosan to be used perorally 

for the treatment of systemic infections.  

Since the novel glycosides were designed to be hydrolysed to afford triclosan in a bacteria dependent 

manner, based on the glycosidase profiles of the bacteria, their application for the selective recovery of 

bacteria from mixed bacterial populations was also explored. The activity of the triclosan glycosides was 

indeed generally found to be much more selective than the underivatized triclosan, and this was clearly 

demonstrated when considering the profiles of triclosan α-arabinoside (3c) and triclosan α-mannoside (3f). 

For the former, inclusion in selective recovery media at 1.0 µg/ml would allow recovery of Salmonella by 

inhibition of the growth of many of organisms that compete with Salmonella, such as strains of Enterobacter 

cloacae, Escherichia hermanii, Escherichia coli, Hafnia alvei, Klebsiella pneumoniae and Staphylococcus. 

Triclosan α-mannoside (3f) also demonstrated inhibition profiles that would be particularly useful for 

selective recovery, and hence identification, of Cronobacter sakazakii which is of particular concern when 

present in infant formula milk. In general, results from broth cultures were replicated in selective isolation 

plates that used Nutrient Agar No. 2. This was exemplified by recovery of two Bacillus strains from various 

strains of Bacillus and Staphylococcus after inoculation onto NA2 with 0.25 µg/ml triclosan-α-D-

glucopyranoside (3e).   This glucoside is, therefore, of use for the isolation of the food-poisoning organism 

Bacillus cereus. 

Taken together, these results therefore demonstrate that glycoside derivatives of triclosan offer 

considerable advantages as antibacterial agents compared with triclosan itself, specifically enhanced 

aqueous solubilities, targeted antibacterial profiles, and a mechanism of action that is complementary with 

those of existing antibacterial agents. These features have also allowed additional impact to be realised 

through the selective recovery of bacteria from mixed bacterial populations. 
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Materials and methods 

Analytical 

High Performance Liquid Chromatography (Agilent 1100 series) was used to determine the purity of the 

synthesised triclosan-α/β-D-glycopyranosides. A Primsep-B column (weak anion exchange, Hichrom, UK) 

was used and eluted with 0.1% formic acid and acetonitrile with a flow rate of 1.5 ml/min. Detection of 

triclosan (1) and triclosan-α/β-D-glycopyranosides was determined to be optimal at 275 nm. Calibration 

curves of both triclosan (1) and the triclosan-α/β-D-glycopyranosides (dissolved in H2O: Acetonitrile, 1:1) 

were constructed using a concentration range of 7.8 µg/ml to 1000µg/ml and used to determine the 

concentration of any triclosan (1) impurity.  

NMR spectra were recorded on a Bruker DPX 400 MHz instrument running ICON NMR 2.1 under 

TOPSPIN 1.3 at the University of Reading (Reading, UK). NMR spectra were analysed using MestreNova 

v.8.1.4-12489 software (Mestrelab, Santiago de Compostela, Spain). Samples were analysed in either 

deuterated chloroform (CDCl3) or dimethyl sulfoxide (DMSO-d6). Chemical shifts are quoted in parts per 

million using the abbreviations: s, singlet, d, doublet, at, apparent triplet, as, apparent singlet m, multiplet. 

All coupling constants are quoted to the nearest 0.5 Hz. 

 

Synthesis (25) 

General procedure A:  Glycosylation with 1M NaOH 

Triclosan (1) (1.06 eq.) was suspended in water (10.4 ml per mmol), 1M NaOH (1.06 eq) was then added. 

To this was added acetone (5.8 ml per mmol). Separately, acetobromo-derivative (1 eq.) was dissolved in 

acetone (6.2 ml per mmol). This solution was then added in one portion to the stirred solution of triclosan 

and sodium hydroxide and then stirred at room temperature for 18 hours. The reaction was then extracted 

with CH2Cl2, dried (MgSO4), and concentrated in vacuo. The crude product was then purified by column 

chromatography (eluent 3:2 hexane/ethyl acetate).  

Synthesis of O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-5-chloro-2-(2,4-

dichlorophenoxy)phenol (2a). Following general procedure A: Triclosan (1) (1.01 g, 3.5 mmol) was 

reacted with acetobromogalactose (1.36 g, 3.3 mmol) to yield (2a) as a clear oil (1 g, 49 %). [α]D
20°C   -5.1 (c 

13.9, CHCl3). 
1H NMR (400 MHz, CDCl3), 1.79 (3H, s, OAc), 1.90 (3H, s, OAc), 2.02 (3H, s, OAc), 2.09 

(3H, s, OAc), 3.61-4.39 (3H, m, H5, H6', H6), 4.96-5.04 (2H, m, H1, H3), 5.31 (1H, dd, J 10.5, 8.0 Hz, H2), 

5.36 (1H, dd, J 3.5, 1.0 Hz, H4), 6.64 (1H, d, J 9.0 Hz, H18), 6.74 (1H, d, J 8.5 Hz, H9), 6.96 (1H, dd, J 8.5, 
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2.5 Hz, H10), 7.07 (1H, dd, J 9.0, 2.5 Hz, H17), 7.22 (1H, d, J 2.5 Hz, H12), 7.37 (1H, d, J 2.5 Hz, H15). 
13C NMR (100 MHz, CDCl3), 20.3 (OAc), 20.5 (OAc), 20.6 (OAc), 20.6 (OAc), 61.7 (C6), 66.9 (C4), 68.2 

(C2), 70.6 (C3), 71.4 (C5), 100.1 (C1), 119.0 (C18), 119.8 (C12), 121.1 (C9), 124.2 (C10), 125.1 (ArQ), 

127.9 (C17), 128.6 (ArQ), 129.8 (ArQ), 130.4 (C15), 144.4 (ArQ), 148.1 (ArQ), 151.4 (ArQ)168.9 (OAc), 

169.9 (OAc), 170.1 (OAc), 170.4 (OAc). IR νmax/cm-1 (thin film), 3085 (C-H arene), 2971 (C-H), 1757 

(C=O), 1589 (C=C), 1367 (C-O), 1064 (C-C), 736 (C-C), 643 (C-Cl). FTMS (ESI, M+Na), 641.0338 

C26H25O11Cl3Na, req. 641.0355.  

Synthesis of O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol 

(2b). Following general procedure A: Triclosan (1) (1.1 g, 3.8 mmol) was reacted with acetobromoglucose 

(1.47 g, 3.6 mmol) to yield (2b) as a clear oil (1 g, 45 %). [α]D
20°C        -6.26 (c 4.6, CHCl3). 

1H NMR (400 

MHz, CDCl3), 1.86 (3H, s, OAc), 2.00 (3H, s, OAc), 2.05 (3H, s, OAc), 2.12 (3H, s, OAc), 3.92-3.97 (1H, 

m, H5), 4.20-4.24 (2H, m, H6', H6), 5.10 (1H, app. t. J 8.0 Hz, H4), 5.13-5.18 (2H, m, H1, H2/3), 5.24-5.35 

(1H, m, H2/3), 6.71 (1H, d, J 9.0 Hz, H18), 6.86 (1H, d, J 8.5 Hz, H9), 7.05 (1H, dd, J 8.5, 2.5 Hz, H10), 

7.14 (1H, dd, J 9.0, 2.5 Hz, H17), 7.28 (1H, d, J 2.5 Hz, H12), 7.44 (1H, d, J 2.5 Hz, H15). 13C NMR (100 

MHz, CDCl3), 20.2 (OAc), 20.4 (OAc), 20.4 OAc), 20.6 (OAc), 62.0 (C6), 68.25 (C4), 70.7 (C2/3), 72.2 

(C5), 72.4 (C2/3), 99.26 (C1), 118.7 (C18), 119.0 (C12), 121.4 (C9), 124.1 (C10), 124.9 (ArQ), 127.8 

(C17), 128.5 (ArQ), 129.8 (ArQ), 130.3 (C15), 144.0 (ArQ), 148.1 (ArQ), 151.0 (ArQ), 168.8 (OAc), 169.3 

(OAc), 169.9 (OAc), 170.4 (OAc). IR νmax/cm-1 (thin film), 3069 (C-H arene), 2961 (C-H), 1746 (C=O), 

1594 (C=C), 1364 (C-O), 731 (C-C), 651 (C-Cl). FTMS (ESI, M+Na), 641.0334 C26H25O11Cl3Na, req. 

641.0355. 

Synthesis of O-(2,3,4-tri-O-acetyl-α-D-arabinopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol 

(2c). Following general procedure A: Triclosan (1) (8.1 g, 28 mmol) was reacted with acetobromoarabinose 

(9.03 g, 26 mmol) to yield (2c) as a clear oil (1.78 g, 13 %). [α]D
20°C +11 (c 0.9, CHCl3). 

1H NMR (400 

MHz, CDCl3), 1.95 (3H, s, OAc), 1.99 (3H, s, OAc), 2.05 (3H, s, OAc), 3.72 (1H, dd, J 13.0, 2.5 Hz, H5'), 

4.09-4.15 (1H, m, H5), 5.10-5.12 (2H, m, H1, H2/H3), 5.27-5.31 (2H, m, H2/H3, H4), 6.73 (1H, d, J 9.0 Hz, 

H18), 6.79 (1H, d, J 8.5 Hz, H9), 7.03 (1H, dd, J 8.5, 2.5 Hz, H10), 7.16 (1H, dd, J 9.0, 2.5 Hz, H17), 7.26 

(1H, d, J 2.5 Hz, H12), 7.46 (1H, d, J 2.5 Hz, H15). 13C NMR (100 MHz, CDCl3), 20.5 (OAc), 20.6 (OAc), 

20.9 (OAc), 21.1 (OAc), 60.4 (C5), 66.7 (C2/C3/C4), 68.7 (C2/C3/C4), 69.2 (C2/C3/C4), 99.4 (C1), 119.2 

(C18), 120.0 (C12), 121.0 (C9), 124.2 (C10), 128.0 (C17), 130.5 (C15). IR νmax/cm-1 (thin film), 1748 

(C=O), 1636 (C=C), 1474 (C=C), 1371 (C-O), 1227 (C-O). FTMS (+ p APCI, M+Na) 569.0141 

C23H21O9Cl3Na req. 569.0143. FTMS (ESI, M+Na) 569.0141 C23H21O9Cl3Na req. 569.0143. 

General procedure B: Glycosylation with BF3.OEt2 

Under argon, the per-O-acetylated carbohydrate (1 eq.) was dissolved in anhydrous CH2Cl2. To this was 

added triclosan (1) (1.06 eq.). The reaction was then cooled to 0 °C and BF3.OEt2 (3 eq.) was then added. 

The reaction was then allowed to warm to room temperature and stirred for 18 hours. Water was then added 

to quench the reaction, which was then stirred for a further 15 minutes. The reaction was then diluted with 
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CH2Cl2, washed with water, brine, dried (MgSO4), filtered and concentrated in vacuo. The crude product 

was then purified by column chromatography (eluent 3:2 hexane/ethyl acetate) to yield the desired product.  

 

Synthesis of O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-5-chloro-2-(2,4-

dichlorophenoxy)phenol (2d). Following general procedure B: 1,2,3,4,6-Penta-O-acetyl-β-D-

galactopyranoside (2 g, 5.12 mmol) was reacted with triclosan (1) (1.57 g, 5.43 mmol) in the presence of 

BF3.OEt2 (1.9 ml, 15.4 mmol) to yield (2d) as a clear oil (400 mg, 13 %). [α]D
20°C +23 (c 1.1, CHCl3). 

1H 

NMR (400 MHz, CDCl3), 1.91 (3H, s, OAc), 1.99 (3H, s, OAc), 2.03 (3H, s, OAc), 2.15 (3H, s, OAc), 4.09-

4.14 (2H, m, H6', H6), 4.28 (1H, app.t, J 7.0 Hz, H5), 5.18-5.25 (2H, m, H2, H3), 5.45-5.46 (1H, m, H4), 

5.80 (1H, d, J 3.0 Hz, H1), 6.77 (1H, d, J 9.0 Hz, H18), 6.89 (1H, d, J 8.5 Hz, H9), 7.04 (1H, dd, J 8.5, 2.5 

Hz, H10), 7.17 (1H, dd, J 9.0, 2.5 Hz, H17), 7.25 (1H, d, J 2.5 Hz, H12), 7.50 (1H, d, J 2.5 Hz, H15). 13C 

NMR (100 MHz, CDCl3), 20.4 (OAc), 20.5 (OAc), 20.5 (OAc), 20.9 (OAc), 61.7 (C6), 67.2 

(C2/C3/C4/C5), 67.4 (C2/C3/C4/C5), 67.6 (C2/C3/C4/C5), 67.6 (C2/C3/C4/C5), 95.8 (C1), 119.1 (C18), 

119.3 (C12), 121.2 (C9), 123.9 (C10), 125.2 (ArQ), 127.9 (C17), 128.9 (ArQ), 129.8 (ArQ), 130.7 (C15), 

144.7 (ArQ), 147.1 (ArQ), 151.6 (ArQ), 169.5 (OAc), 170.0 (OAc), 170.3 (OAc), 170.3 (OAc). IR νmax/cm-1 

(oil), 1757 (C=O), 1472 (C=C), 1370 (C-O), 1095 (C-O), 829 (C-H), 727 (C-Cl). FTMS (ESI, M+Na) 

641.0356 C26H25O11Cl3Na req. 641.0355. 

Synthesis of O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol 

(2e). Following general procedure B: 1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranside (500 mg, 1.28 mmol) 

was reacted with triclosan (1) (393 mg, 1.36 mmol) in the presence of BF3.OEt2 (0.5 ml, 3.84 mmol) to yield 

(2e)  as a clear oil (103 mg, 13 %). [α]D
20°C +5.3 (c 0.5, CHCl3). 

1H NMR (400 MHz, CDCl3) 1.94 (3H, s, 

OAc), 2.01 (3H, s, OAc), 2.05 (3H, s, OAc), 2.06 (3H, s, OAc), 3.88 (1H, ddd, J 10.0, 5.5, 2.0 Hz, H5), 4.03 

(1H, dd, J 12.0, 2.0 Hz, H6'), 4.17 (1H, dd, J 12.0, 5.5 Hz, H6), 4.92 (1H, dd, J 10.0, 3.5 Hz, H2), 5.02 (1H, 

dd, J 10.0, 9.5 Hz, H4), 5.16 (1H, app.t, J 9.5 Hz, H3), 5.73 (1H, d, J 3.5 Hz, H1), 6.71 (1H, d, J 9.0 Hz, 

H18), 6.97 (1H, d, J 8.5 Hz, H9), 7.06 (1H, dd, J 8.5, 2.5 Hz, H10), 7.15 (1H, dd, J 9.0, 2.5 Hz, H17), 7.21 

(1H, d, J 2.5 Hz, H12), 7.54 (1H, d, J 2.5 Hz, H15). 13C NMR (100 MHz, CDCl3), 20.5 (2 x OAc), 20.6 (2 x 

OAc), 61.8 (C6), 68.1 (C4), 68.3 (C5), 69.8 (C3), 70.2 (C2), 94.7 (C1), 118.4 (C12), 118.4 (C18), 121.9 

(C9), 123.9 (C10), 127.8 (C17), 131.1 (C15). IR νmax/cm-1 (oil), 1746 (C=O), 1599 (C=C), 1409 (C=C), 

1248 (C-O), 1023 (C-O), 849 (C-H), 812 (C-H), 757 (C-Cl). FTMS (ESI, M+Na) 641.0356 C26H25O11Cl3Na 

req. 641.0355. 

Synthesis of O-(2,3,4,6-tetra-O-acetyl-α-D-mannopyranosyl)-5-chloro-2-(2,4-

dichlorophenoxy)phenol (2f). Following general procedure B: 1,2,3,4,6-penta-O-acetyl-α/β-D-

mannopyranoside (5.0 g, 13 mmol) was reacted with triclosan (1) (3.99 g, 14 mmol) in the presence of 

BF3.OEt2 (4.8 ml, 39 mmol) to yield (2f) as a clear oil (3.39 g, 42 %). [α]D
20°C +27.7 (c 1.3, CHCl3). 

1H 

NMR (500 MHz, CDCl3), 1.98 (3H, s, OAc), 2.06 (3H,s OAc), 2.07 (3H, s, OAc), 2.15 (3H, s, OAc), 3.83 

(1H, ddd, J 10.0, 6.5, 2.0 Hz, H5), 4.05 (1H, dd, J 12.0, 2.0 Hz, H6), 4.18 (1H, dd, J 12.0, 6.5 Hz, H6), 4.89 

(1H, dd,  J 10.0 3.5 Hz, H3), 5.18-5.23 (2H, m, H2, H4), 5.51 (1H, d, J 1.8 Hz, H1), 6.70 (1H, d, J 9.0 Hz, 
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H18), 7.07-7.8 (2H, m. H9, H10), 7.16 (1H, dd, J 9.0, 2.5 Hz, H17), 7.26-7.27 (1H, m, H12), 7.49 (1H, d, J 

2.5 Hz, H15). 13C NMR (126 MHz, CHCl3), 20.3 (OAc), 20.4 (OAc), 20.5 (OAc), 20.5 (OAc), 62.0 (C6), 

65.5 (C2/C4), 68.2 (C3), 68.6 (C2/C4), 69.3 (C5), 95.9 (C1), 117.5 (C18/C12), 117.9 (C18/C12), 122.4 

(C9/C10), 123.6 (C9/C10), 124.4 (ArQ), 127.7 (C17), 128.1 (ArQ), 130.2 (ArQ), 130.8 (C15), 143.6 (ArQ), 

146.5 (ArQ), 152.0 (ArQ), 169.0 (OAc), 169.4 (OAc), 169.6 (OAc), 170.2 (OAc). IR νmax/cm-1 (oil), 1746 

(C=O), 1595 (C=C), 1475 (C=C), 1222 (C-O), 1045 (C-O), 829 (C-H), 822 (C-H), 812 (C-H), 608 (C-Cl). 

FTMS (ESI, M+Na) 569.0150 C23H21O9Cl3Na req. 569.0143. 

Synthesis of O-(2,3,4-tri-O-acetyl-β-D-arabinopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol 

(2g). Following general procedure B: 1,2,3,4-tetra-O-acetyl-α/β-D-arabinpyranose/1,2,3,4-tetra-O-acetyl-

α/β-D-arabinofuranose (5.26 g, 17 mmol) was reacted with triclosan (1) (5.2 g, 18 mmol) in the presence of 

BF3.OEt2 (6.29 ml, 51 mmol) to yield (2g) as a clear oil (4.15 g, 45 %). [α]D
20°C -53.6 (c 1.2, CHCl3). 

1H 

NMR (400 MHz, CDCl3), 1.93 (3H, s, OAc), 2.01 (3H, s, OAc), 2.13 (3H, s, OAc), 3.74 (1H, dd, J 13.0, 2.0 

Hz, H5’), 3.96 (1H, app. d, J 12.5 Hz, H5), 5.17 (1H, dd, J 11.0, 3.5 Hz, H3), 5.25 (1H, dd, J 11.0, 3.5, H2), 

5.32-5.33 (1H, m, H4), 5.81 (1H, d, J 3.5 Hz, H1), 6.74 (1H, d, J 9.0 Hz, H18), 6.96 (1H, d, J 8.5 Hz, H9), 

7.03 (1H, dd, J 8.5, 2.5 Hz, H10), 7.15 (1H, dd, J 9.0, 2.5 Hz, H17), 7.23 (1H, d, J 2.5 Hz, H12), 7.49 (1H, 

d, J 2.5 Hz, H15). 13C NMR (100 MHz, CDCl3), 20.4 (OAc), 20.5 (OAc), 20.7 (OAc), 61.4 (C5), 66.8 (C3), 

67.52 (C2), 68.5 (C4), 95.9 (C1), 118.4 (C18/C12), 118.5 (C18/C12), 121.8 (C9), 123.5 (C10), 124.8 (ArQ), 

127.6 (C17), 128.4 (ArQ), 130.2 (ArQ), 130.6 (C15), 144.2 (ArQ), 147.5 (ArQ), 151.9 (ArQ), 169.4 (OAc), 

169.9 (OAc), 170.2 (OAc). IR νmax/cm-1 (oil), 1745 (C=O), 1599 (C=C), 1495 (C=C), 1248 (C-O), 1095 (C-

O), 862 (C-H), 800 (C-H), 709 (C-Cl). FTMS (ESI, M+Na) 569.0150 C23H21O9Cl3Na req. 569.0143. 

General procedure C: Deprotections 

Under argon, the protected sugar (1eq) was dissolved in anhydrous MeOH (1 ml per mmol). K2CO3 (0.1 

eq) was then added. The reaction was then stirred until it was deemed to be complete as evidenced by TLC 

analysis. Amberlite IR-120 (plus) resin was then added and the reaction was stirred for a further 30 minutes. 

The resin was then filtered off and the filtrate concentrated in vacuo to yield the desired product.  

Synthesis of triclosan-β-D-galactopyranoside (3a). Following general procedure C: O-(2,3,4,6-tetra-O-

acetyl-β-D-galactopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2a) (715 mg, 1.15 mmol) was 

reacted with potassium carbonate (16 mg, 0.115 mmol) to yield (3a) as an amorphous foam (429 mg, 83 %). 

[α]D
20°C -28.29 (c 0.35, MeOH). 1H NMR (400 MHz, MeOD), 3.59 (1H, dd, J 10.0, 3.0 Hz, H3), 3.66-3.80 

(4H, m, H6', H6, H2, H5), 3.91 (1H, app. d, J 3.0 Hz, H4), 4.98 (1H, d, J 8.0 Hz, H1), 6.85 (1H, d, J 9.0 Hz, 

H18), 6.87 (1H, d, J 8.5 Hz, H9), 7.02 (1H, dd, J 8.5 Hz, 2.5 Hz, H10), 7.22 (1H, dd, J 9.0, 2.5 Hz, H17), 

7.38 (1H, d, J 2.5 Hz, H12), 7.49 (1H, d, J 2.5 Hz, H15). 13C NMR (100 MHz, MeOD), 62.3 (C6), 70.1 

(C4), 72.1 (C2/5), 74.9 (C3), 77.1 (C2/5), 103.0 (C1), 119.3 (C12), 120.9 (C18), 122.5 (C9), 124.0 (C10), 

126.2 (ArQ), 129.4 (C17), 129.62 (ArQ), 131.2 (C15), 131.26 (ArQ), 145.5 (ArQ), 150.6 (ArQ), 153.4 

(ArQ). IR νmax/cm-1 (thin film), 3391 (OH), 1652 (C=C), 1449 (C=C), 1026 (C-O), 668 (C-Cl). FTMS (ESI, 

M+Na), 472.9914 C18H17O7Cl3Na, req. 472.9932. 
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Synthesis of triclosan-β-D-glucopyranoside (3b). Following general procedure C: O-(2,3,4,6-tetra-O-

acetyl-β-D-glucopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2b) (500 mg, 0.81 mmol) was reacted 

with potassium carbonate (11 mg, 0.081 mmol) to yield (3b) as an amorphous foam (258 mg, 71 %). 

[α]D
20°C -21 (c 0.5, MeOH). 1H NMR (400 MHz, MeOD), 3.27-3.53 (4H, m, H2, H3, H4, H5), 3.70 (1H, dd, 

J 12.0, 5.5 Hz, H6'), 3.88 (1H, dd, J 12.0, 2.0 Hz, H6), 5.04 (1H, d, J 8.0 Hz, H1), 6.85 (1H, d, J 9.0 Hz, 

H18), 6.88 (1H, d, J 8.5 Hz, H9), 7.03 (1H, dd, J 8.5, 2.5 Hz, H10), 7.22 (1H, dd, J 9.0, 2.5 Hz, H17), 7.36 

(1H, d, J 2.5 Hz, H12), 7.49 (1H, d, J 2.5 Hz, H15). 13C NMR (100 MHz, MeOD), 62.4 (C6), 71.1 

(C2/3/4/5), 74.8 (C2/3/4/5), 78.0 (C2/3/4/5), 78.3 (C2/3/4/5), 102.3 (C1), 119.3 (C12), 120.9 (C18), 122.5 

(C9), 124.1 (C10), 126.2 (ArQ), 129.4 (C17), 129.6 (ArQ), 131.2 (C15), 131.3 (ArQ), 145.5 (ArQ), 150.4 

(ArQ), 153.4 (ArQ). IR νmax/cm-1 (thin film), 3411 (OH), 1652 (C=C), 1450 (C=C), 1031 (C-O), 758 (C-C). 

FTMS (ESI, M+Na), 472.9924 C18H17O7Cl3Na, req. 472.9932. 

 

Synthesis of triclosan-α-D-arabinopyranoside (3c). Following general procedure C: O-(2,3,4-tri-O-

acetyl-α-D-arabinopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2c) (1.47 g, 2.69 mmol) was reacted 

with potassium carbonate (37 mg, 0.269 mmol) to yield (3c) as an amorphous foam (1.195 g, 99 %). [α]D
20°C 

+17.6 (c 1.1, MeOH). 1H NMR (400 MHz, MeOD), 3.63 (1H, dd, J 8.5, 3.5 Hz, H3), 3.71 (1H, dd, J 12.5, 

2.0 Hz, H5'), 3.74 (1H, dd, J 8.5, 6.5 Hz, H2), 3.86-3.89 (1H, m, H4), 3.93 (1H, dd, J 12.5, 3.5 Hz, H5), 5.00 

(1H, d, J 6.5 Hz, H1), 6.84 (1H, d, J 9.0 Hz, H18), 6.92 (1H, d, J 8.5 Hz, H9), 7.06 (1H, dd, J 8.5, 2.5 Hz, 

H10), 7.25 (1H, dd, J 9.0, 2.5 Hz, H17), 7.32 (1H, d, J 2.5 Hz, H12), 7.53 (1H, d, J 2.5 Hz, H15). 13C NMR 

(100 MHz, MeOD), 66.8 (C5), 69.1 (C4), 72.0 (C2), 73.9 (C3), 102.7 (C1), 119.5 (C12), 120.6 (C18), 122.6 

(C9), 124.1 (C10), 126.3 (ArQ), 129.3 (C17), 129.8 (ArQ), 131.2 (C15), 145.7 (ArQ), 150.2 (ArQ), 153.3 

(ArQ). IR νmax/cm-1 (solid), 3359 (O-H), 1595 (C=C), 1471 (C=C), 1223 (C-C), 1067 (C-C), 1011 (C-C), 

906 (C-H), 778 (C-Cl). FTMS (ESI, M+Na) 442.9824 C17H15O6Cl3Na, req.442.9826. 

 

Synthesis of triclosan-α-D-galactopyranoside (3d). Following general procedure C: O-(2,3,4,6-tetra-O-

acetyl-α-D-galactopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2d) (432 mg, 0.7 mmol) was reacted 

with potassium carbonate (10 mg, 7 x 10-5 mol) to yield (3d)  as an orange oil (166 mg, 37 %). [α]D
20°C 

+88.6 (c 1.3, MeOH). 1H NMR (400 MHz, MeOD), 3.56 (1H, dd, J 10.0, 3.5 Hz, H3), 3.65-3.66 (2H, m, 

H6', H6), 3.74-3.78 (1H, m, H5), 3.85 (1H, dd, J 3.5, 1.5 Hz, H4), 3.92 (1H, dd, J 10.0, 3.5 Hz, H2), 5.34 

(1H, d, J 3.5 Hz, H1), 3.92 (1H, d, J 9.0 Hz, H18), 7.01 (1H, d, J 8.5 Hz, H9), 7.07 (1H, dd, J 8.5, 2.5 Hz, 

H10), 7.23 (1H, dd, J 8.5, 2.5 Hz, H12), 7.43 (1H, d, J 2.5 Hz, H12), 7.53 (1H, d, J 2.5 Hz, H15). 13C NMR 

(100 MHz, MeOD), 62.4 (C6), 69.7 (C2), 70.7 (C4), 71.2 (C3), 73.8 (C5), 100.0 (C1), 119.4 (C12), 119.8 

(C18), 123.3 (C9/C10), 124.0 (C9/C10), 125.6 (ArQ), 129.3 (C17), 131.3 (C15), 131.7 (ArQ), 145.4 (ArQ), 

150.0 (ArQ x 2), 153.8 (ArQ). IR νmax/cm-1 (solid), 3358 (O-H), 2935 (C-H), 1569 (C=C), 1491 (C=C), 

1259 (C-C), 1073 (C-C), 949 (C-C), 866 (C-H), 754 (C-Cl). FTMS (ESI, M+Na) 472.9930 C18H17O7Cl3Na, 

req. 472.9932. 
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Synthesis of triclosan-α-D-glucopyranoside (3e). Following general procedure C: O-(2,3,4,6-tetra-O-

acetyl-α-D-glucopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2e) (345 mg, 0.56 mmol) was reacted 

with potassium carbonate (8 mg 5.6 x 10-5 mol) to yield (3e) as an amorphous foam (250 mg, 99 %). 

[α]D
20°C +7.9 (c 12.5, MeOH). 1H NMR (400 MHz, MeOD), 3.44 (1H, dd, J 10.5, 8.5 Hz, H3/H4), 3.56-3.72 

(5H, m, H6', H6, H2/H3/H4/H5), 5.59 (1H, d, J 3.0 Hz, H1), 6.83 (1H, d, J 9.0 Hz, H18), 6.94 (1H, d, J 8.5 

Hz, H9), 7.05 (1H, dd, J 8.5, 2.5 Hz, H10), 7.23 (1H, dd, J 9.0, 2.5 Hz, H17), 7.44 (1H, d, J 2.5 Hz, H12), 

7.50 (1H, d, J 2.5, H15). 13C NMR (100, MeOD), 62.1 (C6), 70.9 (C2/C3/C4/C5), 73.1 (C2/C3/C4/C5), 74.7 

(C2/C3/C4/C5), 75.0 (C2/C3/C4/C5), 100.4 (C1), 119.8 (C12), 120.2 (C18), 122.8 (C9), 124.8 (C10), 125.9 

(ArQ), 129.4 (C17), 131.3 (C15), 131.4 (ArQ), 145.8 (ArQ), 150.2 (ArQ), 153.5 (ArQ). IR νmax/cm-1 (solid), 

3356 (O-H), 2938 (C-H), 1569 (C=C), 1471 (C=C), 1224 (C-C), 1056 (C-C), 863 (C-H), 783 (C-Cl). FTMS 

(ESI, M+Na) 472.9929 C18H17O7Cl3Na, req.472.9932. 

Synthesis of triclosan-α-D-mannopyranoside (3f). Following general procedure C: O-(2,3,4,6-tetra-O-

acetyl-α-D-mannopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2f) (381 mg, 0.6 mmol) was reacted 

with potassium carbonate (8.5 mg, 0.06 mmol) to yield (3f) as an amorphous foam (246 mg, 89 %).  [α]D
20°C 

+41.9 (c 0.82, MeOH). 1H NMR (400 MHz, MeOD), 3.46-3.76 (6H, m, H2, H3, H4, H5, H6, H6’), 5.45 

(1H, d, J 1.5 Hz, H1), 6.75 (1H, d, J 9.0 Hz, H18), 7.06-707 (2H, m, H9, H10), 7.21 (1H, dd, J 9.0, 2.5 Hz, 

H17), 7.48 (1H, d, J 2.5 Hz, H12), 7.51 (1H, d, J 2.5 Hz, H15). 13C NMR (100 MHz, MeOD), 62.5 (C6), 

68.0 (C2/C3/C4/C5), 71.6 (C2/C3/C4/C5), 72.2 (C2/C3/C4/C5), 75.8 (C2/C3/C4/C5), 101.2 (C1), 119.2 

(C18), 119.5 (C12), 123.6 (C10/C9), 124.2 (C10/9), 125.4 (ArQ), 129.3 (ArQ), 129.3 (C17), 131.3 (C15), 

131.8 (ArQ), 145.0 (ArQ), 149.8 (ArQ), 153.9 (ArQ). IR νmax/cm-1 (solid), 3325 (O-H), 2933 (C-H), 1597 

(C=C), 1490 (C=C) 1258 (C-O), 1098 (C-C), 1000 (C-C), 751 (C-Cl). FTMS (ESI, M+Na) 472.9930 

C18H17O7Cl3Na, req.472.9932. 

 

Synthesis of triclosan-β-D-arabinopyranoside (3g). Following general procedure C: O-(2,3,4-tri-O-

acetyl-β-D-arabinopyranosyl)-5-chloro-2-(2,4-dichlorophenoxy)phenol (2g) (3.5g, 6.4 mmol) was reacted 

with potassium carbonate (88 mg, 0.64 mmol) to yield (3g) as an amorphous foam (2.37 g, 88 %). [α]D
20°C -

56.4 (c 0.85, MeOH). 1H NMR (400 MHz, MeOD), 3.61 (1H, dd, J 12.5, 2.0 Hz, H5’), 3.63 (1H, dd, J 10.0, 

3.5 Hz, H3), 3.76 (1H, dd, J 12.5, 1.0 Hz, H5), 3.81-3.82 (1H, m, H4), 3.95 (1H, dd, J 10.0, 3.5 Hz, H2), 

5.64 (1H, d, J 3.5 Hz, H1), 6.78 (1H, d, J 9.0 Hz, H18), 6.99 (1H, d, J 8.5 Hz, H9), 7.05 (1H, dd, J 8.5, 2.5 

Hz, H10), 7.20 (1H, dd, J 9.0, 2.5 Hz, H17), 7.35 (1H, d, J 2.5 Hz, H12), 7.50 (1H, d, J 2.5 Hz, H15). 13C 

NMR (100 MHz, MeOD), 65.6 (C5), 69.7 (c2), 70.5 (C4), 70.6 (C3), 100.6 (C1), 119.5 (C12), 119.8 (C18), 

123.4 (C9), 124.1 (C10), 125.6 (ArQ), 129.3 (C17), 129.5 (ArQ), 131.3 (C15), 131.7 (ArQ), 145.5 (ArQ), 

150.0 (ArQ), 153.7 (ArQ). IR νmax/cm-1 (solid), 3360 (O-H), 2931 (C-H), 1596 (C=C), 1224 (C-O), 1076 (C-

C), 999 (C-C), 756 (C-Cl). FTMS (ESI, M+Na) 442.9824 C17H15O6Cl3Na, req.442.9826. 

 

Bacterial strains.  All strains were from the American Type Culture Collection (ATCC University 

Boulevard, Manassas, VA, USA) except as indicated NCTC (National Collection of Type Cultues, Public 
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Health England, Porton Down, Salisbury, UK), OCC (Oxoid Culture Collection (Thermofisher Scientific, 

Wade Road, Basingstoke, UK). Gram negative: Aeromonas hydrophila OCC 778, Citrobacter freundii 

8090, OCC 851, Enterobacter aerogenes 13048, Enterobacter cloacae 13047, Cronobacter sakazakii 

29544, Escherichia coli 8739, 10536, 11775, 25922, 35218, 700728, NCTC 13216, OCC 122, Escherichia 

hermanii 33650, Hafnia alvei 13337, Klebsiella aerogenes NCTC 8167, Klebsiella pneumoniae 10031, 

13883, Proteus mirabilis 12453, Proteus vulgaris OCC 195, Pseudomonas aeruginosa 27853, Salmonella 

enterica subspecies enterica serotypes: Abony NCTC 6017, Arizonae OCC 706, Dublin OCC 627, Enteritidis 

13076, Indiana OCC 597, Infantis OCC 2133, Nottingham NCTC 7832, Poona NCTC 4840, Pullorum OCC 

273, Typhimurium 14028 and Virchow NCTC 5742, Serratia marcescens OCC 217. Gram positive: Bacillus 

cereus 14579, Bacillus subtilis NCTC 10073, Enterococcus faecalis 29212, 33186, Enterococcus faecium 

19434, Staphylococcus aureus 6538, 6538P, 9144, 25923, 29213, NCTC 13758, OCC 104, OCC 106, 

Staphylococcus epidermidis 155, 12228, 14990, Staphylococcus haemolyticus OCC 2223, Staphylococcus 

saprophyticus 15305, Streptococcus agalactiae OCC 182, Streptococcus pneumoniae 6305, 49619, 

Streptococcus pyogenes 19615, Streptococcus viridans OCC 234. 

 

MIC determination in broth growth medium. Triclosan and its glycosides were dissolved in ethanol 

then amounts of these stock solutions diluted in Nutrient Broth (NB2; “Oxoid”, ThermoFisher, Basingstoke, 

UK) to give concentrations of 0.01µg/ml to 128µg/ml for triclosan and 0.25µg/ml to 256µg/ml for its 

glycosides. Volumes (180µl) were then added to wells of microtitre plates. Bacteria were grown overnight at 

37oC in NB2 from plate inoculum. Cultures were diluted 1 in 104 in saline and 20µl amounts added to the 

triclosan/ triclosan glycoside solutions. Once filled, plates were covered, placed in a Bioscreen C MBR 

instrument (Oy Growth Curves Ab Ltd. Helsinki, Finland), incubated at 37oC and optical density (OD) of 

each well measured every 15 minutes after agitation. The minimum inhibitory concentration (MIC) of a 

compound was defined as the lowest concentration of inhibitor that was required to eliminate an increase in 

OD after 18 hours incubation at 37oC. 

 

MIC determination on agar plates. Amounts of triclosan glycoside solutions prepared as described 

above were added to Nutrient Agar (NA2; “Oxoid”, ThermoFisher) and the media autoclaved for 15 minutes 

at 121oC. Plates were poured, dried and stored at 4oC using within one week of pouring. Cultures were 

prepared as above, diluted 1 in 102 in saline and inoculated onto plates using an “Oxoid” replicator system. 
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Highlights 

 

• Synthesis and characterisation of four α-D-glycopyranosides and three β-D-

glycopyranosides of the broad antibacterial agent triclosan, in generally very good 

synthetic yields, and with excellent purities 

• All of the triclosan glycosides that were synthesized demonstrated antibacterial 

activity against many of the organisms that were examined. 

• β-Galactoside (3a) and α-arabinoside (3c) had MIC values of 0.5 µg/ml for several 

strains of S. aureus and S. haemolyticus. 

• Two Bacillus strains could be identified from various strains of Bacillus and 

Staphylococcus after inoculation onto Nutrient Agar No. 2 with 0.25 µg/ml triclosan-

α-D-glucopyranoside (3e) 

 

 


