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Abstract  

Free-text keystroke dynamics is invariably hampered by the huge amount of data needed to train the system. 

This problem has been addressed in this paper by suggesting a system that combines two methods, both of 

which provide a reduced training requirement for user authentication using free-text keystrokes.  The two 

methods were fused to achieve error rates lower than those produced by each method separately. Two fusion 

schemes, namely: decision-level fusion and feature-level fusion, were applied. Feature-level fusion was 

done by concatenating two sets of features before the learning stage. The two sets of features were: a timing 

feature set and a non-conventional feature set. Moreover, decision-level fusion was used to merge the output 

of two methods using majority voting. One is Support Vector Machines (SVMs) together with Ant Colony 

Optimization (ACO) feature selection and the other is decision trees (DTs). Even though the classifiers using 

the parameters merged at feature level produced low error rates, its results were outperformed by the results 

achieved by the decision-level fusion scheme. Decision-level fusion was employed to achieve the best 

performance of 0.00% False Accept Rate (FAR) and 0.00% False Reject Rate (FRR). 

 

Keywords Free-text keystroke dynamics authentication, feature-level fusion, decision-level fusion, 

SVMs, ACO, decision tree 
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1 Introduction 

Keystroke dynamics is an effortless behaviour-based method for authenticating users, which employs the 

person’s typing patterns for validating his/her identity. As mentioned by [1], keystroke dynamics is “not 

what you type, but how you type.” In this approach, the user types in text, as usual, without any extra work 

to be done for authentication. Moreover, it only involves the user’s own keyboard and no other external 

hardware. These criteria make keystroke dynamics an excellent alternative or add on to the conventional 

ID/password authentication scheme. 

Unfortunately, passwords are prone to social engineering and can be easily cracked using methods such as 

dictionary attack and brute force attack. Therefore, users are obliged to use extreme measures to safeguard 

their passwords, a procedure which includes remembering long and complex passwords in addition to the 

need for changing their passwords periodically [2]. This causes frustration and apprehension for users, 

especially when a single user is most likely responsible for more than a hand-full of ID/passwords spread 

over multiple systems. 

However, the main drawback of keystroke dynamics authentication is the large amount of training data it 

requires. Typing large amounts of text in the enrolment phase is time consuming and not user-friendly. A 

key-pairing method, which is based on the keyboard’s key-layout, has been suggested as a way to enable 

one user’s typing pattern to be distinguished from another user’s. The method extracts several timing 

features from specific key-pairs. This technique was developed to use the smallest amount of training data 

in the best way possible. In addition, non-conventional features were also defined and extracted from the 

input stream typed by the user in order to understand typing behaviours based on limited input data. 

As fusion was proven to reduce the error rate in classification tasks compared with single classifiers [3], 

these two techniques were fused in order to increase the performance of keystroke recognition whilst using 

a small amount of training data. In this study, we apply two different types of fusion techniques, namely: 

feature-level fusion and decision-level fusion. Specifically, this work attempts to implement both kinds of 

fusion and then compare between the two methods in order to find the fusion technique that produces the 

best recognition rate in free-text keystroke dynamics systems with limited training.      

The feature-level fusion is done by joining keystroke timing features and non-conventional typing features 

before the learning phase. Meanwhile the decision-level fusion is done by combining the output of a method 

involving timing features and SVMs/ACO and another method utilizing non-conventional features and 

decision trees. Both SVMs and DTs are classifiers that follow non-iterative approaches.  
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The rest of this paper proceeds as follows. Section 2 introduces keystroke dynamics theory and describes 

some of the work previously carried out in the area of keystroke dynamics user authentication. Section 3 

discusses the feature sets used in this experiment. Section 4 describes the different fusion techniques. In 

Section 5, we point to the experimental results and discussion, in which the data space and the experimental 

results are indicated. A discussion about our results and some comparisons with previous studies is also 

performed in this section. The final section concludes the topic and points out our research contributions 

and future work. 

2 Keystroke Dynamics 

There are two basic classes of keystroke dynamics, namely: fixed-text and free-text [4]. The fixed-text 

keystroke dynamics method uses the typing pattern of the user while entering a predefined text. This text 

has been previously used to train the system and is delivered by the user at log-in time. Contrariwise, the 

free-text keystroke method is considered easier for the user as it overcomes the problem of memorizing the 

text, something that fixed-text keystrokes suffers from.  As its name suggest in free-text keystrokes, the text 

used for enrolment does not have to be the same as the text used for log-in. Moreover, free-text keystroke 

dynamics is used for enhancing security through continuous and nonintrusive authentication [5]. Thus, the 

latter method is the one that has been considered in this paper as it can be applied in many useful settings to 

aid in real life situations in addition to the benefit it provides in balancing between security and usability 

[4]. Nonetheless, long text is provided by the user to train the system at the enrolment phase [5]. 

Keystroke dynamics is utilized in user’s authentication by extracting timing features at the log-in session 

and comparing them with the timing features extracted at the enrolment session. These features include, 

among others: typing latency [6], keystroke duration [1], typing speed and shift key usage patterns [7].  

Another feature which requires a specific keyboard for its measurement is typing pressure [8]. If the 

extracted features are adequately similar, the user is authenticated and if not the user might be denied access 

or at least asked to provide further identity information.  

A large amount of research has been carried out over the years to investigate how keystroke dynamics can 

aid in user authentication. Joyce and Gupta [6] used a statistical method that employs the absolute distances 

between the means of the signature data and test data; each of which consists of a fixed-text that includes 

username, password, first name, and last name.  

Moreover, Gunetti and Picardi [9] introduced an effective method for free-text authentication which was 

further explored by many other researchers. Their method was based on two measures: relative (R) measure 
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and absolute (A) measure. These measures were used to calculate the degree of disorder and the absolute 

distance between two samples that share some n-graphs, i.e. n-characters-long letter combinations. 

Other researchers relied on pattern recognition classifying methods such as the work done by Hu et al. [10]. 

They used the k-nearest neighbor approach together with the distance measurement proposed by  Gunetti 

and Picardi [9] in order to classify the users’ keystroke dynamics profiles.  

Neural Networks have also been used for keystroke pattern classification; such as the research conducted 

by Raghu et al. [11] in which they incorporated a three-layered back propagation neural network to verify 

the identity of users.  

Furthermore, a research that has considered fusion in keystroke dynamics is that conducted by Teh et al. 

[12]. The authors of this research proposed a fusion between two methods. The first being the Gaussian 

similarity score between a reference template and a test data template. The second being the Direction 

Similarity Measure (DSM) for comparing the typing patterns of the user. The two scores were fused by 

using a weighted sum rule. Fifty participants were requested to type-in their username, password and a 

special fixed phrase repeatedly ten times. The performance achieved using only the Gaussian probability 

density function yielded an EER of 11.6897%, while the performance of using only the Direction Similarity 

Measure produced an EER of 19.74%. Combining the two methods delivered the best result of an EER of 

6.36%.  

Hocquet et al. [13] performed a study for authenticating users using a fusion of three methods in. The first 

used the mean and the variance of each latency time and compared it to a threshold. The second method 

used a measure of typing rhythm disorder where the time was classified into five different classes according 

to the speed. The difference between the numbers of the classes in the profile data and in the test data was 

calculated and then the sum of all these differences was compared to a threshold.  The third and last method 

was based on the ranks of the latencies; this was performed by ordering the latencies based on their speed. 

The latency time of each observation was ordered from the slowest to the fastest for each user’s profile. The 

Euclidean distance between the user’s profile and the new data was then used to guess if the new observation 

belonged to that user. Even though these methods work well on their own, the authors studied the possibility 

of combining all three with the help of a fusion rule after normalizing the scores from each method. For 

testing these methods, 15 users were asked to give a login password ten times, followed by 30-to-100 log-

in attempts over a six months period. The results of using each of these techniques separately gave a best 
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performance of 3.70% EER. The fusion of all three methods, on the other hand, significantly improved the 

performance to an EER of around 1.8%. 

Moreover, Curtin et al. [14] employed feature fusion, in which the authors combined non-conventional 

features and traditional keystroke dynamics in user authentication. A total of 58 features were used. In 

addition to the usual key-press duration and di-graph’s down-down and down-up features, other features 

were utilized in this study; such as: typing speed and the percentages of key presses of some special 

characters including punctuation and space bar. Other features captured the editing pattern of the user which 

includes the usage of specific keys i.e. Home, End, Arrow keys, Backspace, Delete keys, Insert, shortcut 

keys … etc. A Nearest Neighbour classifier which uses Euclidean distance was used in this study to compare 

the feature vector of the test sample and training set. An accuracy of 0.985 was produced by a dataset 

consisting of eight individuals. 

Based on the literature, not many studies have shown an interest in understanding the differences between 

using decision-level and feature-level fusion in the area of free-text keystroke dynamics authentication. In 

this study we therefore explore two fusion techniques with the aim of finding which one is more suitable for 

the task of uniquely recognizing the typist involved using reduced training. 

3 Keystroke Features  

Timing features and non-conventional features are utilized in this study. A description of both features is 

presented in this section 

 

3.1 Timing Features 

The timing features used in this study are extracted between two keys (key-pair) that are pressed 

consecutively and have a relationship on the keyboard layout. This relationship depends mainly on the key 

position of each character on the keyboard in relation to the other characters. Moreover, these relationships 

can vary depending on the location of the two keys with respect to the overall keyboard layout.  

There are five categories for key-pair relationships: 

1. Adjacent: keys located next to each other on the keyboard. 

2. Second adjacent: keys that are one key apart from each other. 

3. Third adjacent: keys that are two keys apart. 
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4. Fourth adjacent: keys that are three keys apart. 

5. None adjacent: keys that are more than three keys apart. 

 

An example is provided in Fig. 1. demonstrating the key relationship concept; while considering the key 

‘G’. 

 

Fig. 1: Key-pair classification. 

 

Each of these categories can fall into one of the following overall locations: 

1. Both keys are on the right hand side of the keyboard. 

2. Both keys are on the left hand side of the keyboard. 

3. The two keys are located on different sides of the keyboard, i.e. the first key is located on the right hand 

side while the second key is on the left or vice versa. 

 

The text is broken down into di-graphs, or key-pairs, and each di-graph typed on the main part of the 

keyboard is classified using the above categories and locations. In total, there are fifteen different 

combinations of key-pairs that any two keys can be classified into. Based on the previously explained 

technique, the key-pair “vr” is categorized as: SecondAdjacent/LeftSide. 

Given that the key-pairing method significantly boosts the number of key-pairs that can be found and 

compared in the training and testing samples, it was adapted as a way to increase the soundness of the means 

of the timing features extracted from these key-pairs. This will help to increase the stability of the timing 

vectors. This is a clear benefit of the suggested scheme because it enables it to facilitate a small amount of 

text to compare two samples, i.e. uses a small amount of typing data in the best possible way. 

For example, given the following training data: “University of Reading” and testing data: “Systems 

Engineering,” there are only two similar key-pairs (“in” and “ng”) whose typing times can be compared in 
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the authentication process, using standard keystroke schemes such as the one introduced in [9]. However, 

this is not the case when using the key-pairing method introduced here because there are more instants for 

each kind of key-pair extracted from both the training and testing data.  

Once the key-pairs have been obtained from the users’ raw data, the keystroke features are extracted [12]. 

These features were computed for every key and key-pair using two main values, specifically: the press time 

(Dn) and the release time (Un) of each key (n) in milliseconds. These features are (as shown in Fig. 2): 

1. Hold time: is the time a key is pressed until it is released. Consequently, each key-pair has two hold times: 

a. Hold time for the first key (H1). 

b. Hold time for the second key (H2). 

2. Keystroke latencies: are features that involve computing the time elapses between two actions that were 

performed on two key. There are three types of latencies: 

a. Down-Down (DD): is the interval time between two successive key presses. 

b. Up-UP (UU): is the interval time between two successive key releases. 

c. Up-Down (UD): is the interval time between a key release and the next key press. 

 

 

Fig. 2: Timing features for a key-pair. 

 

Thus, five timing features were defined for each key-pair appearance in the text. This was done for all fifteen 

types of key-pairs. Therefore, the overall number of timing features was 75 (5 timing features * 15 key-

pairs). Table 1 lists all the 75 features extracted from all key-pairs. The features abbreviations listed in the 

table combine the key-pair category and the timing feature, for example: “AR-H1” stands for: 

Adjacent/RightSide-Hold1 and so on. 
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Table 1: Overview of the timing features. 

Key-pair Category Feature Set 

Adjacent/RightSide AR-H1 AR-H2 AR-DD AR-UU AR-UD 

Adjacent/LeftSide AL-H1 AL-H2 AL-DD AL-UU AL-UD 

Adjacent/DifferentSide AD-H1 AD-H2 AD-DD AD-UU AD-UD 

SecondAdjacent/RightSide SR-H1 SR-H2 SR-DD SR-UU SR-UD 

SecondAdjacent/LeftSide SL-H1 SL-H2 SL-DD SL-UU SL-UD 

SecondAdjacent/DifferentSide SD-H1 SD-H2 SD-DD SD-UU SD-UD 

ThirdAdjacent/RightSide TR-H1 TR-H2 TR-DD TR-UU TR-UD 

ThirdAdjacent/LeftSide TL-H1 TL-H2 TL-DD TL-UU TL-UD 

ThirdAdjacent/DifferentSide TD-H1 TD-H2 TD-DD TD-UU TD-UD 

FourthAdjacent/RightSide FR-H1 FR-H2 FR-DD FR-UU FR-UD 

FourthAdjacent/LeftSide FL-H1 FL-H2 FL-DD FL-UU FL-UD 

FourthAdjacent/DifferentSide FD-H1 FD-H2 FD-DD FD-UU FD-UD 

NonAdjacent/RightSide NR-H1 NR-H2 NR-DD NR-UU NR-UD 

NonAdjacent/LeftSide NL-H1 NL-H2 NL-DD NL-UU NL-UD 

NonAdjacent/DifferentSide ND-H1 ND-H2 ND-DD ND-UU ND-UD 

 

The timing vector (V) for a single sample that is stored it in the database of a user consist of eleven sub-

vectors representing each key-pair. Thus, the following equations show a timing vector that describes a 

user’s single typing sample: 

V= {VAR, VAL, VSR, VSL, VSD, VTR, VTL, VTD, VFL, VFD, VND}                                  (1) 

VAR= {µAR-H1, µAR-H2, µAR-DD, µAR-UU, µAR-UD}                        (2) 

⋮ 

VND = {µND-H1, µ ND-H2, µ ND-DD, µ ND-UU, µ ND-UD}                                                                         (3) 

Where: 

µAR-H1: denotes the mean of the H1 timing feature for all adjacent key-pairs on the right side of the keyboard 

in that sample. 

µAR-H2: denotes the mean of the H2 timing feature for all adjacent key-pairs on the right side of the keyboard 

in that sample. 

… and so on. 
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Thus, the data base consisted of twenty-five users’ profiles. Each user’s profile included eight vectors similar 

to the one in Equation 1 representing each of the eight samples for each individual. 

The key-pairing method introduced in this paper is a new method which deals with key-pairs to extract 

specific timing features from the typed text as appose to standard keystroke dynamics research such as the 

ones in [9, 15, 16].  Standard keystroke dynamics research involves comparing two samples based on the 

timing features of the di-graphs shared between samples. These di-graphs are specific two characters typed 

after each other with no concern about the key-pair group they belong to, i.e. example of some di-graphs: 

“em”, “et”, “as”… etc. Nonetheless, using such di-graphs in free-text input is challenged by the need to 

collect the same di-graphs from training and testing samples to carry-out the comparison task. Therefore, it 

is hampered by using a large amount of text. 

 

3.2 Non-conventional Features 

Non-conventional typing features are extracted collectively during the whole text input, in which more 

information is available, such as the percentage of performing a specific action on the keyboard. This 

enlarges the amount of information that can be extracted from user input and therefore assembles better 

indications about his or her typing behaviour using a small amount of input data. 

The non-conventional features used here include two types of typing features, namely: semi-timing features 

and editing features. Both categories are explained in this section. 

 
3.2.1 Semi-timing Features  

Semi-timing features are different from the standard timing features, as the time calculation followed in this 

category is slightly different from that of the regular timing features. These features have a collective 

property, as all of them are calculated during the whole typing time. The features included in this category 

are: 

1. Word-per-Minute (WPM): measures the user’s average typing speed.  

2. Negative Up-Down (negUD): measures the percentage of negative Up-Down actions detected in the 

user’s typing stream. Negative Up-Down is due to the overlap happening between two successive keys being 

typed. This particular typing behaviour is found in the typing stream of users who have the tendency to press 

the second key before releasing the first one. Fig. 3. illustrates a negative UD caused by two-key sequences 
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overlapping.  It has been found in the experimentation undertaken in this study that some users have 

absolutely no negative UDs whilst others have a fair amount, which was consistent in all the typing tasks 

they produced. This gives a good indication that comparing the percentage of negative UDs can be a good 

method to assist in user recognition.  

3. Negative Up-Up (negUU): measures the percentage of negative Up-Up actions detected in the user’s 

typing stream. Negative Up-Up occurs when the typist tends to release the second key before releasing the 

first key. Negative UU only happens when there is a negative UD between the two successive keys. 

Moreover, this characteristic happened with a few of the volunteers who participated in the data collection 

and it was consistent among all of their typing tasks. 

 

Fig. 3: Negative UD caused by overlapping keystroke events. 

3.2.2 Editing Features 

Editing features does not give any attention to the time a user spends typing, rather it considers the way a 

user goes about the process of typing. The features included in this category are: 

1. Error rate: captures the percentage of times a user performs a typing error.  

2. Capital letters incorporation practices: this subcategory is concerned with the specific ways a capital letter 

is included in the user’s typing stream. This is usually done using either Caps Lock key or shift key. It has 

been noted that if a user has the habit of using the CapsLock key, then he or she will hardly ever use the 

shift key for capitalizing letters, and vice versa. Therefore, using these two attributes simultaneously might 

lead to better understanding of the user’s editing habits. Thus, the following features are employed: 

a. CapsLock usage: calculates the percentage of the CapsLock keys being used to produce capital letters 

in a given typing task. 
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b. Shift Key usage: this subcategory has two different aspects of user’s habits. The first shift key usage 

attribute is the right/left shift key choice. Some users use strictly the right shift or strictly the left shift and 

others alternate between the two [7]. The second attribute is the order of which the shift/letter keys are 

released. The shift key is always pressed before the letter key if the user is intending to produce a capital 

version of that letter. However, there are two orders that users go about when releasing those keys, they 

either release the letter key before releasing the shift key or they release the letter key after releasing the 

shift key. Based on the previous observations, four different features that combine the two aspects of shift 

key usage are used: 

i. Percentage of Right Shift released after letter (RSA). 

ii. Percentage of Right Shift released before letter (RSB). 

iii. Percentage of Left Shift released after letter (LSA).  

iv. Percentage of Left Shift released before letter (LSB).   

 
Table 2 gives an overview of all the nine non-conventional typing features used.  

Table 2: Overview of the non-conventional typing features. 

Category Features 

Semi-Timing Features 

WPM 

negUD 

negUU 

Editing Features 

Error Rate 

CapsLock 
Usage 

RSA 

RSB 

LSA 

LSB 

4 Fusion 

Decision support systems (DSS) are schemes to create a model that is able to produce correct decisions 

given a minimum amount of input data. There are two different ways to go about DSS [17]. The first of 

which suggests that the progress of DSS should be based on continuous improvement of existing methods 

and establishing new ones. The second approach recommends combining existing methods that perform 

well, anticipating that better results will be achieved as the limits of the existing individual method are 

reached and it is not possible to develop anything better.  Such fusion of information seems to be worth 

applying in terms of uncertainty reduction. As each of the individual methods produce some errors, different 
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methods performing on different data should produce different errors. Assuming that all individual methods 

perform well, a combination of such methods should reduce the overall classification error [17]. 

Fusion of data/information can be carried out on three levels: data-level fusion, feature-level fusion, and 

decision-level fusion (also called classifier-level fusion) [18]. Data-level fusion combines multiple sensor 

data that measures correlated parameters [19]. Using multiple sensor systems has many advantages 

including: higher signal-to-noise ratio, increased robustness and reliability in the case of sensor failure, 

reduced uncertainty and increased confidence. Thus, integration of data from a multiple sensor system, i.e. 

data-level fusion, is important to improve decision making [19]. 

In feature-level fusion, feature sets obtained from several data sources can be fused to create a new feature 

set representing a single object. The most common way to accomplish feature level fusion is by a simple 

concatenation of the feature sets obtained from multiple information sources [20]. The concatenated feature 

set demonstrates better discrimination capability than the individual feature vectors obtained from one 

source separately [21].  

Furthermore, a number of decision-level fusion methods have been produced to find an alternative approach 

leading to a potential improvement in the classification performance. There are two categories of decision-

level fusion techniques: methods operating on classifiers and methods operating on outputs.  

Approaches in the methods operating on classifiers category generally put an emphasis on the development 

of the classifier structure [22]. They do not consider classifier outputs until the combination process finds 

single best classifier or a selected group of classifiers and only then their outputs are taken as a final decision 

or for further processing. On the other hand, approaches in the methods operating on outputs category 

operate mainly on classifiers outputs, in which the combination of classifiers outputs is calculated [23].  

Both feature-level fusion and decision-level fusion were applied in this study in order to highlight the impact 

of using either of the two methods on the overall system performance. This was done in order to find the 

best fusing method for producing a free-text keystroke authentication system with a low training 

requirement.  

5 Experiments, Results and Discussion 

This section presents the experiment results and discussion, in which the data collection, data space and the 

experimental results are indicated. A discussion about the experiment results and some comparisons with 

previous studies is performed in this section as well. 
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5.1 Data Space 

A total of twenty-five users participated in this study’s experimentation. They had different levels of typing 

skills that varied between moderate and very good. During data collection, the participants were asked to 

perform eight typing tasks each of which consisted of around 900 characters. The text included was an 

excerpt from the Guardian newspaper and it included both upper and lower case letters in addition to 

numbers and punctuation marks. Furthermore, the data was acquired in different sessions as the users were 

requested to complete each of the eight tasks in a separate session. Users were directed to enter the samples 

in the most natural way possible, i.e. the same way they usually follow when typing. They were also allowed 

to enter carriage returns and backspaces if needed.  

The data collection was performed on a GUI program implemented using the C++ language. The application 

was downloaded on the users’ personal machines to maximize their comfort as they are more familiar with 

their own machine and its surroundings. Therefore, they were able to feel more at ease, and thus to perform 

the typing tasks in a manner closer to that of their real typing behaviour.  

Although there were 75 timing features captured from each user’s typing stream, there were not enough 

instances that appeared in the used text for some of the key-pairs which made it unfeasible to include them 

in the final feature set. Indeed this was the reason for excluding four of the key-pair categories from the 

study. The omitted key-pairs, with less than 10 instances, are: Adjacent/DifferentSide, 

FourthAdjacent/RightSide, NonAdjacent/RightSide and NonAdjacent/LeftSide. Therefore 20 timing 

features corresponding to these key-pairs were excluded from the final feature set. Thus, a total of 55 timing 

feature were considered in the experimentation.  

When observing the timing data collected in this experiment, a number of outliers occurred. Outlier data has 

been identified to be as much as three standard deviations above or below the mean as suggested by Joyce 

and Gupta [6]. These particularly very large or very small data points were discarded from the final data as 

they were deemed to represent noise that might affect the overall system performance.  

In addition, timing data was normalized before handing it to the machine learning technology [24]. 

Therefore, all the data was normalized to be between [0,1] to add a sense of uniformity to the data as 

attributes in greater numeric ranges might otherwise have dominated those in smaller numeric ranges [25]. 

The final step of data pre-processing for the timing features involved creating the timing vector and storing 

it in the database as the user’s profile. This process was carried-out by dividing the data into 8 equal sections 

each of which represented a different typing sample.  
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This was done by extracting the feature vector (which included all the instances of that feature) for each of 

the 55 features from each typing task separately (there were eight typing tasks as mentioned before). Then, 

each feature vector from all the tasks are concatenated to produce 55 large vectors, one for each feature. 

These large vectors were stored in a feature matrix for each user. 

Each of the large vectors was divided equally into 8 parts. The size of each part, among different features, 

varied depending on the number of times the key-pair associated with that timing feature appeared in the 

text. Although the number of each key-pair appearance may vary, it is fairly similar between participants as 

they all typed similar text. The mean of each feature among these 8 divisions is computed and then stored 

in the corresponding user’s timing vector (V). Thus, there are eight timing vectors (Vs) for each user which 

were employed as the user’s typing samples. 

For non-conventional typing features, there was no need for outlier discarding as the features did not rely 

on a time factor that might add noise in the form of too large or too small time lags. Moreover, no scaling 

was needed as the non-conventional features are all quantities that represent percentages which vary between 

0 and 1. Lastly the non-conventional typing features were calculated and stored in the non-conventional 

features vector at the database as the user’s profile. Similar to the timing features, each one of the eight 

typing tasks was considered as a single typing sample.   

 

5.2 Experiment and Results 

As mentioned earlier, two types of fusion techniques are applied in this study. They are: feature-level fusion 

and decision-level fusion (as illustrated in Figure 4). A description of how each type of fusion was applied 

is presented in this section. 

 
5.2.1 Feature-level Fusion 

Timing features and non-conventional features were combined to produce a larger set of features. This 

allowed for the 55 timing features and the 9 non-conventional typing features to be joined in order to create 

a 64 mixed features dataset. This set was exploited in two classification processes. One of which was done 

using the SVMs/ACO technique and the other was done using decision trees (DTs). 

SVMs and DTs were used in this experiment for comparison purposes as they are both simple and successful 

classification techniques [26,27]. These two classifiers were chosen as rivals because they follow 
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completely different mechanisms for distinguishing classes [28]. In SVMs, the classification is performed 

by finding the optimum separating hyperplane [29], whereas classification in decision trees is purely based 

on decision rules [30]. 

Nonetheless, many pattern recognition and machine learning methods were utilized for classification in the 

area of keystroke dynamics. For example: Bayes classifier [31], K-nearest neighbour [32], Fuzzy logic [33] 

and Random Forests [34] were used. Moreover, Neural networks were also implemented for the purpose of 

distinguishing between the typing behaviour of different users, as in [11, 35]. Although using Neural 

networks yielded good results, it is considerably slow to apply and train. 

 

 

Fig. 4: An overview of the proposed algorithm. 

Both methods, i.e. SVMs and DTs, were carried-out through cross-validation which is a statistical sampling 

technique that aims to ensure that every example from the original dataset has the same chance of appearing 

in the training and testing set [36]. N-fold cross-validation divides the data up into n chunks and trains it n 

times, treating a different chunk as the test sample each time; such that for each of n experiments, it uses n-

1 folds for training and the remaining one for testing.  

In our experiment, eight samples were used to perform eight cross-validation experiments. Seven of the 

samples were treated as the training sample set and the remaining sample was regarded as the testing sample. 

In each experiment, a different sample was selected to act as the test data.  
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Furthermore, two error rates were used to infer the performance, namely: False Accept Rate (FAR) and 

False Reject Rate (FRR). FAR is the percentage of impostors who have successfully gained access to the 

system whereas FRR indicates the percentage of legitimate users who were denied access to the system [9]. 

Equation 4 and 5 are used to compute FAR and FRR, respectively [37]. The final error rates resulting from 

the feature-level fusion are shown in Table 3. 

FAR =
୳୫ୠୣ୰ ୭ ୟ୪ୱୣ ୟୡୡୣ୮୲ ୟ୲୲ୣ୫୮୲ୱ (ୟୡୡୣ୮୲ୣୢ ୧୫୮୭ୱ୲ୣ୰ୱ)

 ୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୧୫୮୭ୱ୲୭୰ ୟ୲୲ୣ୫୮୲ୱ
=  

ி௦ ௦௧௩

்௨ ே௧௩ାி  ே௧௩ 
  (4) 

FFR =  
୳୫ୠୣ୰ ୭ ୟ୪ୱୣ ୰ୣ୨ୣୡ୲ ୟ୲୲ୣ୫୮୲ୱ (୰ୣ୨ୣୡ୲ୣୢ ୪ୣ୧୲୧୫ୟ୲ୣ ୳ୱୣ୰ୱ)

୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୪ୣ୧୲୧୫ୟ୲ୣ ୟ୲୲ୣ୫୮୲ୱ
=

ி௦ ே௧௩

்௨ ௦௧௩ାி  ௦௧௩
  (5) 

 

Table 3: Feature-level fusion of timing features and non-conventional features 

 FAR FRR 

SVMs/ACO 0.0156 0.375 

DTs 0.00896 0.215 

 

5.2.2 Decision-level Fusion 

 The outputs of two approaches were fuse to achieve decision-level fusion in this study. The two approaches 

are described in this section. 

Approach (A) utilized Support Vector Machines (SVMs) to classify the timing features. Having a large 

feature set, such as the timing features in this study, increases computational cost; in addition to raising the 

complexity of the classification process. Therefore, it was necessary to incorporate a feature subset selection 

mechanism to reduce redundancy [38]. Feature subset selection is considered as an optimization problem, 

in which the space of all possible features is scrutinized to find the feature or set of features that produce 

optimal or near-optimal performance, i.e. those that minimize the classification error [39]. Ant Colony 

Optimization (ACO) proved to be a good candidate for achieving that goal [38]. Thus, ACO was applied to 

the timing features to select a features subset fed to the SVMs classifier. The RBF-kernel SVMs multiclass 

classification process was implemented on MATLAB with the aid of the LIBSVM library [40]. The 

LIBSVM library uses the one-against-one multiclass strategy. In this method, there are N(N +1)/2 classifiers 

built for N classes, one for each pair of classes [29]. After that voting is implemented to select the label with 

the most votes among the classifiers. 
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Radial Basis Function (RBF) kernel was used in this study as it succeeds in separating more complicated 

datasets compared with other kernels [41]. In addition, many studies suggests the use of the RBF as it 

nonlinearly maps samples into a higher dimensional space when there is a complicated relationship between 

the class labels and its attributes which fits to the keystroke dynamics problem [24]. 

SVMs parameters C and gamma were chosen using grid search and cross-validation. A range from 10-3 to 

103 was set for both C and gamma values as recommended by the research done in [24]. All combinations 

of C and gamma were tested using a 10-fold cross-validation. The best performing value pair for C and 

gamma was chosen. The C & gamma pair chosen for this study was: C= 101, gamma=100. 

In Approach (B), the non-conventional features were analysed using a DTs classifier. Building a decision 

tree depends on choosing which attribute to test at each node in the tree. A process that incorporates implicit 

feature subset selection, in which redundant features are excluded from the tree building process [42]. The 

tree structure, i.e. the order in which attributes were chosen to be tested at each node, differed each time a 

different training set was used. The Statistics toolbox in MATLAB was used to fit the tree and predict the 

class of each of the test data.  

Both approaches were carried-out using cross-validation in the same manner described in the previous 

section. Additionally, as both Classifiers, from approaches (A) and (B), produced crisp, single class labels, 

we used the majority voting method to fuse the two classifiers.   Majority voting was utilized because of its 

simplicity and effectiveness [43].  

General voting follows the logic reported by Ruta and Gabrys [17]: let the output of the classifiers form the 

decision vector d defined as: d = [dଵ, dଶ, … , d୬] where d୧ ∈ [cଵ, cଶ, … , c୫, r], ci denotes the label of the 

i-th class and r is the rejection of assigning the input sample to any class. Let binary characteristic function 

be defined as follows: 

B୨(c୧) =  ቊ
1 if d୨ = c୧ 

0 if d୨ ≠ c୧
                        (1) 

Then the general voting routine can be defined as: 

E(d) =  ൜
c୧  if ∀୲∈{ଵ,…,୫}  ∑ B୨(c୲) ≤୬

୨ୀଵ ∑ B୨(c୧) ≥ α. m + k(d)୬
୨ୀଵ

r                                                                             otherwise
                 (2) 

Where k(d) is a function that provides additional voting constraints and α= 0.5 is used in the majority vote 

[17].  
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Using cross validation, each of the 8 typing tasks was considered a single sample, each of which was used 

as a test sample in the eight cross validation experiments. This was done for both approaches yielding in 16 

different cross-validation experiments. Each experiment’s result was considered as a vote, i.e. there were 16 

results to be included in the overall voting. Eight of these results belong to approach (A) and the other eight 

belong to approach (B). Using the majority voting scheme, the overall error rates resulting from this 

decision-level fusion yielded both 0.00 FAR and 0.00 FRR.  

 

5.3 Discussion 

This experiment attempts to improve two methods that were applied using timing features and non-

conventional features to reduce the training requirement for free-text keystroke dynamics. In the first study 

(applying approach (A)), we exploited the timing features extracted from key-pairs and used ACO to select 

a feature subset that was fed into an SVMs classifier. The resulting FAR was satisfactory whilst the FRR 

was not. Moreover, in the second study (applying approach (B)), the non-conventional typing features were 

utilized to distinguish between users using the DTs classifier. Good FAR and FRR were produced yet the 

FRR was still higher than desired. Thus a fusion of these two methods was the next step to improve the user 

verification rate in order to achieve better authentication performance. Table 4 shows the error rates 

produced in the previous studies.  

Table 4: Previous studies performance. 

Study Approach Features Method FAR FRR 

Study1 Approach (A) Timing feat. SVMs/ACO 0.00245 0.384 

Study 2 Approach (B) Non-conv. feat. DTs 0.0104 0.25 

 

In feature-level fusion, SVMs/ACO produced average rates, yet it very slightly improved Approach (A)’s 

FRR. Meanwhile, DTs produced overall good error rates and it was able to slightly enhancing both error 

rates of Approach (B). Therefore, the fusion of the two feature sets had improved the FRR figure yet the 

FAR was only improved in the DTs case.  

Furthermore, DTs proved to have better recognition outcome compared with SVMs/ACO; as shown in Table 

3, DTs are able to produce lower error rates compared with SVMs/ACO. That is due to its ability to build a 

classification tree that finds the attributes returning the most homogeneous branches, i.e. choose the features 

that provide the best representation of human typing patterns [44]. This has a lot to do with the nature of the 

data in this case and its ability to convert into rules used by DTs to separate the data [45]. 
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To improve the results further an ensemble of decision trees can be used to create a random forest classifier. 

Whereas a decision tree is built using the whole dataset considering all features, in random forests, each tree 

uses only a fraction of the features which are selected at random [46]. Therefore, a number of decision trees 

are grown with different subset and hence each decision tree will be different. Each tree will vote for a 

particular class and the class with the majority of votes is the predicted class. It is argued that the random 

forest is always at least as good in terms of model fit and stability to decision trees. But it’s less intuitive 

and harder to interpret and fix [47]. 

It is noteworthy that both methods, i.e. SVMs and DTs, include some form of feature subset selection. ACO 

is a feature subset selection technique applied to the fused features to select the most suitable ones before 

being fed to SVMs [38]. DTs are also performing feature subset selection on the fused typing features when 

building and pruning the decision tree [48]. However, using all features with no feature selection did not 

produce good results as the level of noise was larger in such high features dimensionality [49]. The Curse 

of Dimensionality can be used to explain the performance deterioration when using a larger number of 

features. The Curse of Dimensionality corresponds to the problem that the amount of training needed grows 

exponentially with the number of features [50]. As we only have 8 samples per person, the number of 

features should be as small as possible to correctly represent the small number of samples. 

When looking more closely at the features selected to be utilized in both methods, we found that non-

conventional features were in the majority over timing ones. Four features out of five selected by ACO, in 

the first method, and six features out of nine chosen by DTs to be included in the tree building, in the second 

method, were non-conventional features. This supports the belief that non-conventional features represent 

human typing patterns more precisely compared with timing features in a reduced training free-text 

keystroke system. The selected features for both methods are listed in Table 5. Consequently, non-

conventional features appear to have a strong relationship between input values and target values, in this 

data set. A strong input-target relationship is formed when knowledge of the value of an input improves the 

ability to predict the value of the target which helps in understanding the characteristics of the target [29]. 

Table 5: Selected subsets of features. 

 Timing feat. Non-conventional feat. 

SVMs/ACO SL-H2 Error rate | RSA | LSA | LSB 

DTs AL-H1 | SL-UD | FL-H1 WPM | negUD | negUU | Error rate | RSA | LSA 
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In decision-level fusion, using majority voting has considerably improved the results of Approach (A) and 

Approach (B), individually. Perfect recognition rate was achieved using decision-level fusion. Even though 

not all votes were for the correct class, there was no common wrong class. The majority of votes were either 

for the correct class or for random classes which has no effect on the majority vote. Approach (B), i.e. DTs 

| non-conventional features, have contributed the most to this astounding results. It produced more correct 

votes which lead to correct overall decision. This supports our existing finding which state that non-

conventional features represent the human typing behavior better than timing ones.  

Combining classifiers have been shown to reduce the error rate in classification tasks opposite to single 

classifiers [3]. Moreover, combining different techniques to come up with a final decision makes the 

performance of the system more robust against the difficulties that each individual classifier may have on 

each particular data set [51]. This is due to different reasons such as statistical, computational or 

representational reasons [3]. In the case of free-text keystroke dynamics, applying fusion will help to 

improve the system performance while satisfying the low amount of training data requirement. This happens 

because the different classifiers handle the same data differently to obtain the predicted class. Which allows 

for the combining of power of the two classifiers to improve the final decision.  

Using a fusion between SVMs and DTs which are both simple classifiers that perform training in a fast 

manner produces a fairly simple system [26, 27]. In contrast, other classifiers such as Neural networks 

produced a much more complex system as it is considerably slow to apply and train [11]. 

 

 

Figure 5: Comparison between the error rates produced by feature-level fusion and decision-level fusion. 
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A comparison between the error rates produced by feature-level fusion and decision-level fusion is 

illustrated in Figure 5. It demonstrates the low error rates produced by feature-level fusion in the case of the 

ACO/SVMs and DTs classifiers. It also shows a slight advantage of the DTs method over the ACO/SVMs. 

Moreover, the decision-level fusion produced zero FAR and FRR which proved that using majority voting 

decision-level fusion produces better system performance compared with the feature level-fusion and 

succeeds in producing a very good recognition system. 

Comparing the performance of keystroke dynamics systems and therefore determining the method to follow 

for achieving the best authentication accuracy is not a straightforward task. Due to the variation of conditions 

that might be affecting the study participants, environment or procedure, the comparison between two or 

more methods is not always accurate [5]. This makes comparing the fusion methods followed in this study 

with other fusion performed in the literature a hard task. Nonetheless, two similar studies that involved a 

decision-level and a feature-level fusion, respectively, are presented here to give an idea of similar current 

research, as shown in Table 6.  In addition, for comparison, some single-method keystroke dynamics studies 

are also presented in Table 6. 

Table 6: Comparison with state-of-the-art studies. 

Study Participant 
no. 

Characters 
no. 

Fusion 
Features System performance 

Conv. Non-conv. Accuracy FAR FRR 

Davoudi & Kabir [52] 21 11700- 13500  √   0.001 0.188 

Zahid et al. [53] 25 12500  √   0.292 0.308 

Hempstalk et al. [54] 10 10800- 30000   √  0.113 0.331 

Curtin et al. [14] 8 15000 √ √ √ 0.985   

Ahmed & Traore [55] 53 11000 √ √   0.001 0.048 

This study (Feature-level fusion) 25 7200 √ √ √ 0.80 0.009 0.215 

This study (Decision-level fusion) 25 7200 √ √ √ 1.0 0.000 0.000 

 

Decision-level fusing of the two methods suggested in the study conducted by Ahmed and Traore [55] has 

produced low error rates, yet the decision-level fusion proposed here succeeded in achieving zero error rates. 

The number of participants, however, is larger in the Ahmed and Traore study which might be a contributing 
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factor. In addition, the accuracy produced from the feature-level fusing in this study is fairly similar to that 

produced from fusing the timing and non-conventional features, in the work conducted by Curtin et al. [14], 

despite the very low number of participants included in the latter study. 

The main goal of this research which is relieving the users from the tedious training input to achieve a user-

friendly authentication system. This was not followed in most of the studies reported literature. As illustrated 

in table 6, in the studies mentioned for comparison, long input was collected from users as the system 

required substantial amounts of data for training.  

Although the work done by Davoudi & Kabir  [52] and Ahmed & Traore [55] resulted in an FAR very close 

to zero, it was not exactly zero which implies that there was a little percentage of individuals that were 

mistakenly identified as legitimate users. In our study, on the other hand, there was no unauthorized persons 

mistakenly identified as legitimate (thus zero FAR.) This showcases the slight superiority of the method 

used in this study compared with other methods found in the state of the art literature. 

Moreover, the method introduced in this study used the least number of characters compared with previous 

studies, i.e. 7200 characters. This corresponds to the aim of the method introduced in this research which is 

reducing the text used in order to relieve the users from the tedious training input and thus achieve a user-

friendly authentication system. 

The number of participants included in this study, i.e. 25 individuals, is considered very close to most of 

previous studies i.e. Davoudi & Kabir  [52]: 21, Zahid et al. [53]:25, etc. Which leads to believing that the 

results produced by these studies’ have the same level of credibility. Nonetheless, Ahmed & Traore’s [55] 

study was applied to a larger number of participants, i.e. 53, which increase the credibility of its results. 

Increasing the number of participants included in this research is necessary to provide some judgment about 

the trustworthiness of our method. This will be targeted in future work. 

6 Conclusion 

In this paper, fusion was applied to improve the performance of keystroke dynamics authentication whilst 

using the least amount of data for training. Moreover, a comparison between decision-level and feature-level 

fusion has been presented to improve free-text keystroke dynamics authentication. Feature-level fusion was 

performed to combine timing features and non-conventional typing features while decision-level fusion was 

carried-out to merge the outcomes of two classification approaches using the majority voting approach. In 

the first approach, SVMs were used to classify a subset of the timing features that was selected using ACO 

while the second method used DTs to classify non-conventional typing features.  
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Decision-level fusion proved to be superior to feature-level fusion as it succeeded in producing zero FAR 

and FRR. This dramatic enhancement shows the fact that using majority voting on the joint decision of the 

two approaches provides a good indication of the users’ typing behaviour. This will eventually provide a 

good assessment of the user’s identity. It also has been noted that non-conventional typing features have the 

edge over the timing features as they provided a better recognition rate throughout the study. The results 

produced by this study offer sufficient evidence that the fusion strategies proposed here is worthy of further 

study. 

There is much more that can be done to improve on this study. One example of which is to investigate other 

feature subset selection techniques and classification methods. Experimenting with more fusion techniques 

might also contribute positively to the overall system performance.  
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