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Abstract  

Diarylamine-substituted osmanaphthalyne complexes featuring two redox centers 

linked by the rigid skeleton of the metallacycle (C ∧ C+), viz. [OsCl2(PPh3)2{(C ∧

C+)NAr2}][BF4
‒]  (Ar = Ph (1a), p-MeOPh (1b)) and their open-ring precursors 

[OsHCl2(PPh3)2{(≡C‒C(PPh3
+)=CHPh)NR2}][BF4

‒] (Ar = Ph (2a), p-MeOPh (2b)), were 

successfully synthesized and characterized by 1H, 13C and 31P NMR spectroscopy, ESI-MS, 

and elemental analysis. The solid-state molecular structures of complexes 1a and 2a were 

ascertained by single-crystal X-ray diffraction. The Os≡C bond length in both 1a and 2a 

falls within the range reported for similar osmanaphthalynes and osmium carbyne 

complexes, respectively. The structural parameters determined for 1a, appreciably 

reproduced by theoretical calculations, point to a π-delocalized metallacycle structure. The 

purple colour of 1a and 1b is determined by diarylamine→Os(metallacycle) charge transfer 

absorption in the visible region. The neutral, one-electron-oxidized and one-electron 

reduced states of 1a, 1b and a reference complex lacking the diarylamine substituent, 

[OsCl2(PPh3)2{(C∧C+)}][BF4
‒] (1′), were investigated by cyclic and square-wave 

voltammetry, UV-vis-NIR spectroelectrochemistry, and DFT calculations. The spin density 



in singly oxidized [1a]+ and [1b]+ is dominantly residing on the aminyl segment, with 

osmium involvement controlled by the diphenylamine substitution. Spin density in stable 

singly-reduced [1']‒ is distributed mainly over the osmanaphthalyne metallacycle.  

 

Keywords: Osmanaphthalyne metallacycle; Diphenylamine donor; Redox states; DFT 

calculations; Spectroelectrochemistry.  

 

 

Introduction 

Three years after Thorn and Hoffmann had predicted the existence of transition metal 

heteroaromatics,1 Roper and co-workers reported in 1982 the first isolated 

metallabenzene.2 Since then, the chemistry of transition metal-containing aromatics has 

attracted considerable attention, both experimentally and theoretically, and an impressive 

progress has been made in this field of organometallic chemistry. Several types of third-

row late-transition-metal heteroaromatics, including metallabenzene,2,3 metallafuran,4 

metallabenzyne,5 metallapyridine,6 metallanaphthalene,7 metallanaphthalyne,8 

metallapentalynes, metallapentalenes and their derivatives9 were successfully isolated and 

characterized in the past decades. A unique cyclic second-row transition metal-carbyne 

complex (ruthenapentalyne with a strongly bent Ru≡C‒C moiety) has recently been 

reported by Xia and co-workers.10 Displaying both aromaticity of fused organic 

heterocyclic compounds and characteristics of organometallics, these compounds have 

attracted wide attention of an increasing numbers of researchers. Over the past few years, 

the studies mainly focused on their reactivity.11 However, other special features such as 

optical12 and magnetic13 have gradually been discovered and reported. At the same time, 

studies of redox properties of such metallacycles (e.g., osmabenzene14) are scarce.  

Mixed-valence (MV) compounds have been investigated intensively over the past half 

century.15 According to Creutz and Taube, the most common MV compounds are 

represented by the general formula [Ma
n−BL−Mb

n+1], where BL refers to an organic bridge 



and Ma and Mb are usually redox-active inorganic or organometallic redox centers.16 

Transition metal complexes decorated with additional redox-active units represent one type 

of promising photoelectric materials that display intriguing electrochemical and 

photophysical properties and are potentially useful for applications in molecular 

electronics,17 information storage,18 charge-transporting,19 light scavenging and solar 

cells.20 In most cases, the BL backbones in these MV systems are readily oxidizable organic 

bridge cores, for example, unsaturated sp/sp2-carbon-based chains (oligoyne, oligoene) or 

fused aromatic rings (heterocycles, oligoacene).21 However, a mixed-valence system 

bridged by the backbone of a metallacycle has remained largely unexplored.22 Pertinent 

information obtained from studies of charge-transfer processes in such systems is supposed 

to pave a way to design and syntheses of new kinds of organometallic molecular wires. 

Triarylamines, NAr3, are most widely studied among diverse redox-active groups in 

organic MV systems, both in the bridging and terminal positions.23 The readily accessible 

NAr3/NAr3
•+ redox process and good stability of the oxidized NAr3

•+ species are highly 

advantageous.24 Moreover, their good electron-donating and hole-transporting abilities 

make them widely used in optoelectronic devices.25 Based on our recent studies of 

aminophenylferrocene and diphenylaminoferrocene,26 (methoxy-substituted) 

diphenylamine (NAr2) as a terminal group lowers the anodic potential of the Fe(II) centre 

due to its donor capacity while not integrating itself with the adjacent ferrocenyl Cp ring 

into a single redox-active unit but showing an independent irreversible anodic wave. More 

integration is expected when binding NAr2 to an aromatic ring system of a metallacycle. 

Herein, we report a new kind of asymmetric donor-bridge-acceptor (D−B−A) system, 

where D stands for redox active diphenylamine, A for the metallacycle acceptor of 

osmanaphthalyne and B for the osmanaphthalyne backbone. The synthetic routes toward 

the metallacycle in the studied osmanaphthalyne complexes 1a and 1b have been based on 

C‒H activation reactions (see Scheme 1). The thorough study of their structural, 

spectroscopic, and redox properties provides detailed understanding of the charge-transfer 



characteristics in these hybrid D−B−A systems, being complemented by quantum chemical 

calculations to rationalize the electrochemical and spectroscopic observations. To the best 

of our knowledge, this is the first spectro-electrochemical study of the redox behavior of a 

metallanaphthalyne system reported to date.  

 

Results and Discussion 

Syntheses and Characterization 

Unsubstituted reference compound 1′ was synthesized following a reported 

procedure.27 An alternative photochemical route to 1′ has recently been published by our 

group.28 The general synthetic route to osmanaphthalyne complexes 1a and 1b is outlined 

in Scheme 1. Intermediates 3a and 3b were obtained in high yields by nucleophilic addition 

of HC≡CMgBr to corresponding aldehydes. The target cationic osmanaphthalyne 

compounds were then obtained by intramolecular C−H activation of precursor alkenyl 

carbynes 2a and 2b under an O2 atmosphere in moderate yields. The addition of the 

diphenylamino substituets to 1′ does not compromise the stability of the osmanaphthalyne 

system protected by the bulky phosphonium substituent, under ambient conditions. Notably, 

the original green color of 1′ turns deep purple for 1a and 1b, due to a new low-lying 

charge-transfer electronic transition discussed in detail hereinafter in the theoretical section. 

All the three osmanaphthalyne complexes are readily soluble in common organic solvents 

of different polarity, such as dichloromethane, chloroform, acetone, acetonitrile, or 

tetrahydrofuran (THF). Remarkably, though, no solvatochromism was observed for 1a.  

NMR spectra exhibit important features proving the existence of the osmium carbyne 

unit in the open and ring structures. The 1H NMR signal of the hydride ligand at Os was 

found at ca. -6.2 ppm for both 2a and 2b, and the characteristic low-field signal of ≡C‒

C(PPh3
+)=CH was also observed at 9.69 and 9.66 ppm, respectively. In the 13C NMR 

spectra of 2a and 2b, the signals at 252.6 and 253.6 ppm, respectively, have been attributed 

to Os≡C. For 1a and 1b, the 13C NMR resonance of Os≡C shifts to 267.9 and 269.2 ppm, 



respectively, which is close to the value of 264.9 ppm reported27 for osmanaphthalyne 1′.  

Scheme 1. General synthetic routes toward complexes 1a and 1b, and the molecular structure of 

reference27 complex 1′. 

 

X-ray Crystallography 

Complexes 1a and 2a have been structurally characterized by single-crystal X-ray 

diffraction (Figures 1 and 2, Table 1, and ESI, Tables S1-S4). For complexes 1a and 2a, 

crystals suitable for the X-ray analysis were grown at room temperature from a 

dichloromethane solution layered with hexane (1a) and tetrahydrofuran (2a). Complex 2a 

crystallized with two and a half dichloromethane molecules in the unit cell (ESI, Table S1). 

The crystal structure of 2a (Figure 1) shows the short Os1‒C1 bond of 1.701(10) Å falling 

within the range of Os≡C bond lengths reported for osmium carbyne complexes (1.694(4)–



1.841(16) Å).29 The C1‒C2 and C2‒C21 distances of 1.461(13) Å and 1.399(14) Å, 

respectively, lie between the values characteristic of C‒C and C=C bonds. The C2‒C1‒

Os1 (174.2(7)º) bond angle reaches nearly the ideal value of 180º, slightly exceeding those 

reported for [OsH(κ2-O2CCH3)(≡CCH=CPh2)(PiPr3)2]BF4 (171.2(3)º)30 and 

[OsH(≡CCH=CPh2)(H2O)2(PiPr3)2][BF4]2 (168.0(5)º).31 It is worth noting that, compared 

to a very close osmium carbyne complex (with terminal phenyl instead of TPA),13 the Os≡C 

bond in 2a is shorter and the C2‒C1‒Os1 bond angle closer to 180º (ESI, Table S5). In the 

DFT-optimized molecular geometry of 2a (ESI, Figure S1), the N‒C bond linking the 

diphenyl amine (DPA) substituent to the vinyl benzene ring (1.377 Å) is much shorter 

compared to the two N‒C(phenyl) bonds (1.438 Å and 1.439 Å), in agreement with the 

crystal data for 2a (Table S4). This difference may reflect some electronic interaction 

between the osmium center and the diphenylamine substituent. The C1‒C2‒C21 and C2‒

C21‒C22 bond angles are 125.9(8) and 131.8(10)º, respectively. In line with structural data 

reported for a similar phenyl-terminated osmium carbyne complex,13 the existence of the 

alkenyl carbyne backbone in 2a (Scheme 1) is obvious.  

Target complex 1a contains an essentially planar osmanaphthalyne unit (Figure 2). 

The sum of angles in the ring constructed by Os1, C21, C20, C19, C16, and C17 is 718.8°, 

which is very close to the value of 720° for the ideal aromatic benzene ring. For comparison, 

unsubstituted complex 1′ exhibits the value of 719.9°.27 It is worth mentioning that the 

Os1−C21 (1.740(5) Å) and Os1−C17 (2.117(5) Å) bond lengths fall within the range 

typical for Os≡C bonds (1.694(4)–1.841(16) Å)29,32 and Os−C(aryl) bonds (2.02–2.18Å),33 

respectively. They are also very close to the corresponding values determined for the 

osmanaphthalyne reported by Jia and co-workes, viz. 1.732(4) Å and 2.127(3) Å, 

respectively.34 The other bonds in the metallacycle lie within the C‒C and C=C bond length 

interval, without significant alternation, suggesting a delocalized ring structure. The Os1‒

C21‒C20 bond angle reaches 152.8(4)°, which is similar to values encountered in Jia’s 

osmanaphthalyne (155.0(3)°) and osmabenzynes (148.3(6)–154.9(9)°).5c,29 The crystal 



data have been well reproduced in the corresponding DFT (G09-B3LYP)-optimized 

structure presented in Table 1 and Table S2. 

 

 

Figure 1. X−ray crystal structure of 2a (terminal TPA) shown with thermal ellipsoids at the 50% 

probability level. The phenyl moieties in PPh3 (P2, P3) and PPh3
+ (P1), the counter anion (BF4

−), 

hydrogen atoms (except the hydride ligand at Os, H1) and the co-crystallized dichloromethane 

molecules are omitted for clarity. 

 

 

Figure 2. X−ray crystal structure of 1a shown with thermal ellipsoids at the 50% probability level. The 

phenyl moieties in PPh3 (P2, P3) and PPh3
+ (P1), the counter anion (BF4

−), and hydrogen atoms are 

omitted for clarity. 

 



Table 1. Selected bond lengths (Å) and angles (deg) for complex 1a and its DFT (G09-B3LYP)-

optimized structure. 

Parameter Crystal  Calculated 

Os(1)−C(21) 

Os(1)−C(17) 

C(13)−N(1) 

C(13)−C(14) 

C(13)−C(18) 

C(14)−C(15) 

C(15)−C(16) 

C(16)−C(19) 

C(16)−C(17) 

C(17)−C(18) 

C(19)−C(20) 

C(20)−C(21) 

C(21)−Os(1)−C(17) 

N(1)−C(13)−C(14) 

N(1)−C(13)−C(18) 

C(14)−C(13)−C(18) 

C(15)−C(14)−C(13) 

C(14)−C(15)−C(16) 

C(19)−C(16)−C(15) 

C(19)−C(16)−C(17) 

C(15)−C(16)−C(17) 

C(18)−C(17)−C(16) 

1.740(5) 

2.117(5) 

1.380(7) 

1.406(8) 

1.410(8) 

1.358(8) 

1.423(8) 

1.396(7) 

1.447(7) 

1.369(7) 

1.416(8) 

1.388(7) 

81.0(2) 

121.4(5) 

119.4(5) 

119.2(5) 

118.8(5) 

122.6(5) 

115.6(5) 

125.4(5) 

118.8(5) 

116.6(5) 

 1.760 

 2.136 

 1.379 

1.429 

 1.415 

 1.363 

1.437 

1.405 

1.466 

1.393 

1.415 

1.387 

82.5 

119.8 

121.1 

119.0 

118.8 

122.7 

114.9 

125.5 

119.5 

115.4 



C(18)−C(17)−Os(1) 

C(16)−C(17)−Os(1) 

C(17)−C(18)−C(13) 

C(16)−C(19)−C(20) 

C(21)−C(20)−C(19) 

C(20)−C(21)−Os(1) 

119.4(4) 

123.9(4), 

123.7(5), 

124.0(5) 

111.6(5) 

152.8(4) 

122.2 

122.3 

124.4 

125.6 

111.4 

152.0 

      

 

Electrochemical Studies 

The redox properties of cationic osmanaphthalyne complexes 1′, 1a and 1b were 

studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) in deaerated 

dry dichloromethane containing 0.1 M n-Bu4NPF6 as the supporting electrolyte (Figure 3). 

The relevant electrochemical data are presented in Table 2. 

As shown in Figure 3, reference complex 1′ exhibits two reversible redox processes, 

viz. reduction to [1′]‒ at E1/2 = ‒1.19 V, and oxidation to [1′]+ at E1/2 = +1.20 V vs. Fc/Fc+. 

Compound 1a containing the diphenylamine substituent exhibits three redox steps within 

the available potential window. The cathodic wave at E1/2 = ‒1.42 V assigned to the 

reduction of [1a] to [1a]‒, is shifted negatively from reference 1′, reflecting the amine 

donor power. In the anodic region, the first reversible oxidation at E1/2 = +0.88 could be 

attributed either to the oxidation of the diphenylamine group or the osmanaphthalyne 

metallacycle. Combination of cyclic voltammetry with UV-vis spectroelectrochemistry and 

theoretical calculations in the following sections prioritizes the diphenylamine oxidation. 

The subsequent metallacycle-localized irreversible oxidation of [1a]+ at Ep,a = +1.68 V is 

shifted positively compared to that of 1′ due to the electron-deficient aminium substituent 

on the metallacycle. Both anodic waves of 1b bearing the stronger bis(4-

methoxyphenyl)amine donor, are negatively shifted compared to 1a; the second oxidation 

generating [1b]2+ becomes more reversible due to the stabilizing effect of the methoxy 



groups. On the other hand, both [1a]‒ and [1b]‒ are less stable than [1′]‒ lacking the amine 

substituents. This is documented by the irreversible reduction of 1a and 1b (Ip,a/Ip,c < 1). 

The reverse anodic scan triggered beyond the parent cathodic waves shows in both cases a 

new anodic wave beyond the parent anodic counterwave due to a secondary oxidized 

species. The cathodic spectroelectrochemistry at ambient conditions in the following 

section was therefore carried out only for 1′.   

 

 

-1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6

 
 

Figure 3. Left: cyclic voltammograms (CV) of complexes 1′, 1a, 1b in CH2Cl2/n-Bu4NPF6 at v = 50 

mV s-1. Right: corresponding square-wave voltammograms (SWV) of complexes 1′, 1a, 1b at f = 10 Hz 

and tp = 25 mV.  



 

Table 2. Electrochemical dataa,b for complexes 1′, 1a and 1b. 

Complex 
E1/2(1) / V  

(ΔEp / mV) 

E1/2(2) / V  

(ΔEp / mV) 

E1/2(3) / V 

(ΔEp / mV) 

 1′ ‒1.19 (72) -- +1.20 (70) 

1a ‒1.39 (100) +0.89 (90) +1.60 c  

 ‒1.34 d +0.81  +1.34 

1b ‒1.52 (135)  +0.48 (80) +0.94 (100) 

a All the redox potentials are referenced against the standard ferrocene/ferrocenium (Fc/Fc+) couple at 

(v = 0.05 V s−1).  b Potential values determined in dichloromethane/10−1 M n-Bu4NPF6, unless stated 

otherwise.  c Ep,a value. d Acetonitrile /10−1 M n-Bu4NPF6. (Under the experimental conditions used in 

this work, E1/2 (Fc/Fc+) = +0.46 V vs Ag/Ag+ in dichloromethane and +0.43 V vs Ag/Ag+ in acetonitrile; 

ΔEp (Fc/Fc+) = 70 mV in dichloromethane.)  

 

 

UV-visible Electronic Absorption of Parent Osmanaphthalynes 

Electronic absorption spectra of osmanaphthalynes 1′, 1a and 1b in the UV-vis region 

are shown in Figure 4. All three complexes feature a distinct absorption band between 

15000-25000 cm-1 (Table 3), which determines their color. The lowest-energy absorption 

of purple 1a and 1b is significantly red-shifted compared to that of green reference 1′. This 

section will focus on the analysis of this dominant absorption feature to understand the 

difference in the electronic properties between the amine-appended and unsubstituted 

osmanaphtalynes. 
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Figure 4. UV-vis electronic absorption spectra of 1a, 1b and reference complex 1′ (10-5 M) in CH2Cl2 

at 298 K. 

 

Quantum mechanical calculations, presented in detail hereinafter, have revealed that 

the lowest-energy electronic excitation of diphenylamine (DPA)-substituted 1a has a 

dominant (95%) HOMO→LUMO character and can be assigned to the 

DPA→Os(metallacycle) charge transfer, resulting in a charge separated excited state. The 

experimental lowest-energy absorption maximum at 18300 cm-1 (calculated at 19300 cm-

1, Table 4), roughly corresponds (within 1500 cm-1) with the HOMO-LUMO gap estimated 

from the CV data of 1a (Table 2), thereby providing strong support for the TDDFT 

assignment. For closely related 1b, the lowest absorption maximum at 18100 cm-1 

(calculated at 17750 cm-1) deviates appreciably from the estimated HOMO-LUMO gap, by 

additional 2000 cm-1 compared to 1a. The difference can be explained by the reduced (64%, 

Table 4) HOMO→LUMO contribution in this case. Much larger deviation applies to 1′ 

absorbing at 24100 cm-1 (calculated at 24500 cm-1) where the difference from the estimated 

HOMO-LUMO gap increases by additional 3000 cm-1 compared to 1b. The significant 

blue shift of the lowest electronic absorption compared to 1a, and the big difference from 



the estimated HOMO-LUMO gap reflect a different nature of the electronic excitation 

involving a lower-lying occupied orbital, viz. HOMO-7→LUMO (79%, Table 4), which 

originates in the absence of DPA from the Os-bound Cl‒ and PPh3 donor ligands, Cl‒

/PPh3→Os(metallacycle).      

 It is worth mentioning that despite the strong charge-transfer character of the lowest 

electronic excitation in 1a, the corresponding absorption band does not show any apparent 

solvatochromism, as documented by the results collected in ESI, Table S6 and 

corresponding Figure S3. A plausible explanation for this behaviour is the same absolute 

molecular dipole, but with changed polarity signs, in the ground state and the lowest 

optically populated excited state of 1a.35   

 

Table 3. UV−Vis−NIR electronic absorption of complexes 1′, 1a, 1b and their different redox forms in 

dichloromethane/n-Bu4NPF6. 

Complex ῦmax (cm-1) (εmax (dm3 mol-1 cm-1)) 

1′ 

 [1′]+ 

[1′]-  

1a 

23950 (10100), 38100 (54350) 

ca. 19600
 a 

24100 (6550) 

18300 (30100), 38050 (51300) 

[1a]+ 11400 (4900), 14450 (13550)  

1b 18100 (23500), 38050 (58350) 

[1b]+ 12550 (5600) 
  

a Poorly resolved weak and broad absorption. 

 

Anodic and Cathodic UV-vis-NIR Spectroelectrochemistry 

To further explore the reversible redox processes revealed by the CV of 1a, 1b and 

reference complex 1', UV-vis-NIR spectroelectrochemical experiments were conducted at 

298 K in dichloromethane with an optically transparent thin-layer electrochemical (OTTLE) 

cell. Corresponding spectral changes are shown in Figures 5(a, b) and 6, and Figure S4.  

The one-electron oxidation of complex 1' to corresponding (di)cation [1']+ did not 



result in a substantial change in the UV-vis absorption (Figure 5(a)). Diagnostically it is 

important to note that (i) [1']+ does not absorb at all in the far red-NIR region, and (ii) only 

weak absorption appears in the course of the electrochemical oxidation of the metallacycle 

(see the next theoretical section) in the range of 21000-14000 cm-1. According to the time-

dependent (TD) DFT calculations (Table 4) the low-energy absorption of [1']+ is supposed 

to be more intense. The low conversion may be ascribed to working electrode passivation. 

In contrast, both DPA-substituted complexes 1a and 1b afford stable singly oxidized states 

characterized by absorption bands of a moderate intensity in the far red visible/NIR region. 

Figure 6 documents the twin absorption of [1a]+ between  15000–10000 cm-1 that testifies 

to the formation of the DPA+ moiety populated by the electronic excitation in this spectral 

region. The same qualitative reasoning applies for [1b]+, prepared by both electrochemical 

(Figure S4) and chemical (Figure S5) oxidation, which shows a well-resolved absorption 

band at 12550 cm-1 encompassing several excitations directed into the β-LUSO localized 

dominantly on the oxidized methoxy-substituted DPA+ group (Table 4).   

The reductive UV-vis spectroelectrochemistry at ambient conditions was conducted 

only with 1' that shows the reversible cathodic CV response (Figure 3). Passing the 

cathodic wave resulted in the transformation of the lowest-energy absorption band at 23950 

cm-1 to a slightly blue-shifted broader band of a lower intensity (Figure 5b, Table 3). The 

same spectral change was observed when 1' was swiftly reduced to [1′]‒ chemically with 

cobaltocene (Figure S6). The assignment of the new low-energy absorption is not trivial, 

with nearly the whole reduced metallacycle being involved, and requires support from 

theoretical calculations presented in the following section. 
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Figure 5. UV-vis spectral changes recorded during the oxidation (a) and reduction (b) of complex 1' in 

CH2Cl2/n-Bu4NPF6 at 298 K within an OTTLE cell. 

 



35000 30000 25000 20000 15000 10000

0

10000

20000

30000

40000

50000

60000

70000

 

 


 

d
m

3
m

o
l-1

c
m

-1

Wavenumber / cm-1
 

Figure 6. UV-vis-NIR spectral changes recorded during the oxidation of complex 1a to [1a]+ in 

CH2Cl2/10-1 M n-Bu4NPF6 at 298 K within an OTTLE cell. 

 

 

Theoretical Calculations 

To facilitate accurate description of bonding and electronic properties of the studied 

osmanaphthalynes in the diverse redox states, DFT and TDDFT calculations on their 

optimized structures (B3LYP/6-31G*) were carried out. Optimized bond lengths and -

angles have correlated well with the X-ray crystal structure data available for 1a (Table 1), 

thereby proving the applicability of the chosen basis set and functional. 

The geometry-optimized complexes 1a and 1b are showed in Figure S7. Modelled 

complex 1a exhibita much shorter N‒C bond (1.379 Å) linking DPA with the 

osmanaphthalyne metallacycle, compared to the other two N‒C bonds in the DPA unit 

(1.437 Å and 1.440 Å), in agreement with the crystal data for 1a (Table 1). These results 

indicate some conjugation between the osmanaphthalyne metallacycle and the DPA unit, 

affecting their oxidation potentials but not combining the two parts into a single redox-

active unit, in line with the results of the preceding electrochemical study. For complex 1b, 

the additional methoxy groups on DPA do not affect the three N‒C bond lengths 

significantly (1.375 Å, 1.437 Å, 1.439 Å respectively). However, they affect strongly the 

anodic potentials by the push electron effect (Table 2). 



The frontier orbitals, HOMOs and LUMOs, of 1', 1a and 1b are presented in the 

Figure 7. In the neutral state (neglecting the positive charge on the phosphonium 

substituent), the HOMOs of the complexes 1a and 1b are localized for a great deal on the 

DPA redox centers (51% and 67%, respectively). The Os center is underrepresented in the 

HOMO description, with only 5% contribution in 1b. The spin density distribution of one-

electron-oxidized [1']+, [1a]+, [1b]+ is visualized in Figure 8. In reference radical [1']+ 

lacking DPA, the spin density mainly resides on the Os center and the Os‒Cl bonds most 

affected by the initial oxidation, as inferred from the combined experimental voltammetric 

and spectroelectrochemical results. In [1a]+ and [1b]+ the spin density resides largely on 

the DPA segment, with a minor involvement of the osmanaphthalyne metallacycles. Some 

π-interaction between DPA and the ligated osmium center mediated by the metallacycle 

backbone is apparent from the HOMOs of 1a and 1b (Figure 7). This contact opens chances 

for electronic excitation from the metallacycle (donor ligands on Os) to DPA+ in both [1a]+ 

and [1b]+ (see below). 

The localization of the one-electron reduction of complexes 1', 1a and 1b could not 

be judged convincingly by the analysis of their CV responses, and the cathodic SEC (for 

1') data. The the spin density distribution in radicals [1']‒, [1a]‒, [1b]‒ has therefore been 

obtained from DFT calculations on their approved models, as visualized in Figure 9. In all 

three cases the spin density distribution in the singly-reduced states is very similar, 

involving the whole metallacycle with a only minor (< 5%) participation of the DPA pπ(N) 

site. These data have revealed that the osmanaphthalyne metallacycle plays a major role in 

the reduction process, which makes it possible to apprehend the corresponding UV-Vis 

spectroelectrochemical spectral changes (Figure 5(a)).  

 



 

Figure 7. HOMOs and LUMOs molecular orbitals of complex 1', 1a, 1b. Contour values: ±0.02 

(e/bohr3)1/2. B3LYP/6-31G*(Os: Lanl2DZ) /CPCM /CH2Cl2. 

 

Figure 8.  Calculated spin-density distribution in [1']+, [1a]+, [1b]+ Contour values:  ±0.02  

(e/bohr3)1/2. B3LYP/6-31G*(Os: Lanl2DZ) /CPCM /CH2Cl2. 

 

 



 

Figure 9.  Calculated spin-density distribution in [1']‒, [1a]‒, [1b]‒. Contour values: ±0.02  

(e/bohr3)1/2. B3LYP/6-31G*(Os: Lanl2DZ) /CPCM /CH2Cl2. 

 

Finally, we briefly analyze the electronic absorption spectra in the studied 

osmanaphthalyne redox series with the aid of TDDFT calculations (conducted at the same 

level of theory for each species), focusing on 1' and the effect of the DPA substituents on 

the nature of the low-energy optical excitation. The main relevant electronic transitions in 

[1']n, [1a]n and [1b]n (n = +1, 0 and ‒1) investigated with UV-vis-NIR SEC (Table 3) are 

presented in Table 4 and depicted in Figure 10.  

The TDDFT results help to assign the main visible absorption of parent 

osmanaphtalynes at around 24000 cm-1 (1') and 18000 cm-1 (1a and 1b) to 

HOMO−7→LUMO (for 1') and HOMO→LUMO (for 1a and 1b) transitions. With 

reference to the composition of the contributing molecular orbitals, this means that 

compound 1' undergoes a Cl‒/PPh3→Os(metallacycle) charge transfer that changes for 1a 

and 1b to a DPA→Os(metallacycle) charge transfer. 

The asymmetric broad absorptions of [1a]+ and [1b]+ in the far red-NIR region mainly 

belong to β-HOSO-9→β-LUSO (77%) and β-HOSO-6/β-HOSO-8→β-LUSO (69%) 

transitions, respectively. Both β-LUSO of compounds 1a and 1b are localized on the 

oxidized TPA+ units, while the β-HOSO-9 of 1a and β-HOSO-6/β-HOSO-8 of 1b are 

mainly localized on the Cl‒ ligands, metallacycle and PPh3 ligands bound to the Os center. 

Herewith, they both represent charge transfer from the osmanaphthalyne metallacycle and 



Os-PPh3 sites to the DPA+ units. For oxidized reference compound [1']+, there is a broad 

and weak electronic absorption between 20000-15000 cm-1. Based on the theoretical 

calculations, this optical excitation can be attributed to β-HOSO-18→β-LUSO (52%) 

featuring a PPh3/Cl→Os(C^C)+ charge transfer character. 

The original low-energy absorption of 1' at 23950 cm-1 gradually decreased upon the 

one-electron reduction (Figure 5(b)) and became replaced by a new, only slightly shifted 

and less intense absorption of [1']‒ at 24100 cm-1. This energetic position was reproduced 

by TDDFT calculations for an electronic excitation shown to involve the most significant 

β-HOSO-1→β-LUSO (33%) component. Based on this credible result the lowest-energy 

absorption of [1']‒ can be attributed a π(ClOs≡CC)→PPh3
+ charge transfer character.  

 



 

Figure 10. Spin orbitals involved in the major electronic excitations in [1']+ (left), [1a]+ (middle) and  

[1b]+ (right) presented in Table 4. B3LYP/6-31G* (Os:Lanl2DZ) /CPCM/CH2Cl2. 

 

 



Table 4. Major electronic excitations in [1']+, [1a]+ and [1b]+ determined by the TD-DFT method.a 

Complex 
Excited 

State 

λ (nm) 

[ῦ (cm-1)] 

Osc. 

Strength 

(ƒ) 

Major 

Contributions 
Assignment 

ῦ (cm-1) 

(experiment) 

[1'] D9 
408 

[24500] 
0.04 

HOMO-7→LUMO 

(79%) 
Cl‒/PPh3→Os(C^C) 23950 

[1']- D25 
415 

[24100] 
0.02 

β-HOSO-1→β-

LUSO (33%) 
π(ClOs≡CC)→PPh3

+ 24100 

 [1']+ D17 
656 

[15250] 
0.02 

β-HOSO-18→β-

LUSO (52%) 

PPh3→Os(C^C)+ 

Cl‒→Os(C^C)+  

21000-14000 

unresolved 

β-HOSO-16→β-

LUSO  

(20%) 

β-HOSO-14→β-

LUSO (18%) 

[1a] D2 
518 

[19300] 
0.41 

HOMO→LUMO 

(95%) 
DPA→Os(metallacycle)  18300 

[1a]+ 

D9 

907 

[11000] 
0.03 

β-HOSO-9→β-

LUSO (77%) 

β-HOSO-11→β-

LUSO (12%) 

ClOs(C^C)/PPh3→DPA+ 

11400 

 

D13 

771 

[13000] 
0.02 

β-HOSO-12→β-

LUSO (32%) 

β-HOSO-14→β-

LUSO (19%) 

Os(C^C)/PPh3→DPA+ 

D20 
648 

[15450] 
0.04 

β-HOSO-17→β-

LUSO (22%) 

   DPA+ (intraligand)     

      Cl‒→DPA+ 

14450 

 

[1b] D2 
564 

[17750] 
0.30 

HOMO→LUMO 

(64%) 
DPA→Os(metallacycle) 18100 

[1b]+ D8 
773 

[12950] 
0.03 

β-HOSO-6→β-

LUSO (19%) 

β-HOSO-8→β-

LUSO (50%) 

ClOs(C^C)/PPh3→DPA+  
12550 

 



D9 
759 

[13200] 
0.10 

β-HOSO-7→β-

LUSO (59%) 

β-HOSO-8→β-

LUSO (21%) 

DPA+ (intraligand)  

ClOs(C^C)→DPA+  

D15 
647 

[15450] 
0.02 

β-HOSO-12→β-

LUSO (18%) 

β-HOSO-13→β-

LUSO (18%) 

Os(C^C)/PPh3→DPA+  

aThe DFT method was B3LYP/6-31G* (Os: Lanl2DZ) /CPCM/CH2Cl2. 

 

Conclusions 

In summary, we have described the syntheses, crystal structures, spectroscopic and 

redox properties of highly stable diphenylamine (DPA)-substituted osmanaphthalyne 

complexes 1a and 1b of a D-B-A-type, where the Os and DPA centers are linked by the 

backbone of the osmanaphthalyne metallacycle. The experimental results supported by 

theoretical calculations, unveiled the DPA redox site to oxidize prior to the oxidation of the 

metallacycle encountered for bare reference 1'. Charge transfers to DPA+ from the π-donor 

chlorido ligands and the Os(metallacycle) introduce new absorption in the far red-NIR 

spectral region, which may be further explored for application in optical materials. The 

metallacycle is also reducible but the donor DPA appendices compromise the stability of 

the radical anionic products. In general, electronic delocalization between the donor DPA 

and acceptor Os(metallacycle) moieties is limited. Direct electronic communication 

between these redox centres is evident from the strong donor-to-acceptor charge-transfer 

absorption in the visible spectral region. Variation of ligands in the Os coordination sphere 

and substituents at the metallacycle is assumed to have a huge impact on both redox and 

electronic absorption properties of these systems, and investigations along this research 

line have been in progress. 

 



Experimental Section 

General Materials. Manipulations were carried out under an atmosphere of dry argon by 

using standard Schlenk techniques, unless stated otherwise. Solvents were dried by 

recommended procedures and distilled under an inert atmosphere prior to use. The starting 

materials 4-(diphenylamino)benzaldehyde (4a)36 and 4-(bis(4-

methoxyphenyl)amino)benzaldehyde (4b)37, and reference osmanapthalyne complex 1′ 

(ref.27) were prepared by procedures described in the literature. Other reagents, and 

ferrocene, decamethylferrocene and cobaltocene used in the electrochemical studies, were 

received from commercial suppliers and used without further purification. Thianthrenium 

hexafluorophosphate (TAPF6) used for the chemical oxidation of 1b, was prepared by a 

published procedure.38 

 

Syntheses. Preparation of 3a. 4-(diphenylamino)benzaldehyde (4a) (4 g, 14.6 mmol) 

was dissolved in THF (100 mL) under argon and cooled down to 0 °C. In the following 

step, 0.5 M ethynylmagnesium bromide in tetrahydrofuran (33 mL, 16 mmol) was added 

to the reaction mixture that was then warmed up to room temperature. After standing for 4 

h, the reaction mixture was quenched with a saturated aqueous solution of ammonium 

chloride and extracted with ethyl acetate. The combined organic extracts were dried upon 

anhydrous sodium sulfate, filtered, and concentrated in vacuo to obtain the crude product 

that was purified by column chromatography (eluent: petroleum ether/ethyl acetate, 10/1 

(v/v)). Product 3a was obtained as a yellow solid. Yield: 3.9 g (90%). 1H NMR (600 MHz, 

CDCl3; Figure S14): δ 7.39-7.41 (d, J = 12 Hz, 2H, Ar-H), 7.23-7.26 (t, J = 18 Hz, 4H, Ar-

H), 7.06-7.09 (t, J = 18 Hz, 6H, Ar-H), 7.01-7.03 (t, J = 12 Hz, 2H, Ar-H), 5.40 (d, J = 6 

Hz, 1H, ArCHOH), 2.66 (d, J = 6 Hz, 1H, CCH), 2.27 (s, 1H, OH). 13C NMR (150 MHz, 

CDCl3; Figure S15): δ 147.9, 147.3, 133.6, 129.1, 127.6, 124.3, 123.2, 122.9 (Ar), 83.6, 

83.5 (CCH), 63.7 (ArCHOH). EI-MS (Figure S8): m/z: 299.02 [M]+; calculated exact mass: 



299.13. Anal. Calcd (%) for C21H17NO: C, 84.25; H, 5.72; N, 4.68. Found: C, 84.23; H, 

5.70; N, 4.66. 

Preparation of 2a. Complex 3a (1.03 g, 3.44 mmol) was added under argon to a 

solution of [OsCl2(PPh3)3] (3 g, 2.86 mmol) in THF (20 mL),. The reaction mixture was 

stirred for 6 h at room temperature to give a yellow-brown solution. Diethyl ether (80 mL) 

was then added to the solution to induce precipitation. A deep-yellow precipitate was 

collected by filtration, washed with diethyl ether (3 × 50 mL), and dried under vacuum to 

give a yellow solid (2.78 g, 72%). Still under argon, a suspension of the yellow solid in 

methanol (20 mL) was treated with HBF4·Et2O (0.48 mL, 3.2 mmol) and heated to reflux 

for about 3 h. Cooling down the reaction mixture afterwards to ambient temperature led to 

separation of deep purple solid 2a that was collected by filtration, washed by methanol and 

dried under vacuum. Yield: 1.5 g (51%). 1H NMR (600 MHz, CDCl3; Figure S18): δ 9.69 

(s, 1H, OsCC(PPh3)CH), 6.60-7.75 (m, 60H, other aromatic protons), -6.21 (t, J = 30 Hz, 

1H, OsH). 31P NMR (160 MHz, CDCl3; Figure S19): δ 16.7 (OsPPh3), 4.1 (CPPh3). 
13C 

NMR (150 MHz, CDCl3; Figure S20): δ 252.6 (Os≡C), 155.2, 154.6, 154.5, 143.7, 140.3, 

140.3, 136.9, 136.7, 135.4, 134.4, 132.7, 132.5, 132.3, 130.2, 130.0, 129.9, 127.7, 127.3, 

126.7, 125.4, 125.3, 119.7, 117.5, 117.3, 116.7, 115.1, 114.5 (other aromatic carbon atoms). 

HRMS (ESI): m/z calcd for [C75H61Cl2NOsP3]
+, 1330.3009; found: 1330.2973 (Figure 

S11). Anal. Calcd (%) for C75H61BCl2F4NOsP3: C, 63.56; H, 4.34; N, 0.99. Found: C, 63.75; 

H, 4.57; N, 1.05. 

Preparation of 1a. Complex 2a (200 mg, 0.14 mmol) was dissolved in 1,2-

dichloroethane (5 mL). The solution was heated to reflux for 12 h under an O2 atmosphere 

and cooled afterwards to ambient temperature. The solvent was evaporated under vacuum 

to reduce the solution volume to ca 2 mL. Subsequent addition of diethyl ether (15 mL) led 

to separation of deep purple solid 1a that was collected by filtration, washed by methanol 

and dried in vacuo. Yield: 141 mg (71%). 1H NMR (400 MHz, CDCl3; Figure S24): δ 7.76 

(t, J = 6.8 Hz, 4H), 7.68–7.54 (m, 7H), 7.42 (dd, J = 12.4, 5.4 Hz, 13H), 7.28 – 7.09 (m, 



19H), 6.98 (t, J = 7.5 Hz, 12H), 6.63 (s, 3H), 6.35 (dd, J = 9.1, 2.4 Hz, 1H). 31P NMR (160 

MHz, CDCl3; Figure S25): δ 12.3 (OsPPh3), -7.9 (CPPh3). 
13C NMR (100 MHz, CDCl3; 

Figure S26): δ 267.9 (Os≡C), 175.5, 164.5, 153.2, 146.2, 143.1, 135.1, 134.7, 134.0, 132.2, 

132.1, 132.0, 131.7, 131.5, 131.2, 130.7, 130.6, 130.5, 129.9, 129.5, 128.6, 128.5, 127.7, 

127.6, 127.6, 126.9, 126.29, 122.4, 119.9, 119.0, 112.3, 112.2, 112.2, 94.4, 93.2 (other 

aromatic carbon atoms). HRMS (ESI): m/z calcd for [C75H59Cl2NOsP3]
+, 1328.2852; found: 

1328.2761 (Figure S10). Anal. Calcd (%) for C75H59BCl2F4NOsP3: C, 63.66; H, 4.20; N, 

0.99. Found: C, 63.43; H, 4.32; N, 1.03. 

Preparation of 3b. 4-(bis(4-methoxyphenyl)amino)benzaldehyde (4b) (4.4 g, 13.2 

mmol) was dissolved under argon in tetrahydrofuran (100 mL) and cooled down to 0 °C. 

In the following step, 0.5 M ethynylmagnesium bromide in THF (30 mL, 15 mmol) was 

added to the reaction mixture that was then warmed up to room temperature. After standing 

for 4 h, the reaction mixture was quenched with a saturated aqueous solution of ammonium 

chloride and extracted with ethyl acetate. The combined organic extracts were dried with 

anhydrous sodium sulfate, filtered, and concentrated in vacuo to obtain the crude product 

that was purified by column chromatography (eluent: petroleum ether/ethyl acetate, 5/1 

(v/v)). Product 3b was obtained as a yellow oil. Yield: 4.2 g (89%). 1H NMR (400 MHz, 

CDCl3; Figure S14): δ 7.32-7.35 (d, J = 12 Hz, 2H, Ar-H), 7.03-7.07 (m, 4H, Ar-H), 6.90-

6.92 (m, 2H, Ar-H), 6.81-6.85 (m, 4H, Ar-H), 5.38 (dd, J1 = 2 Hz, J2 = 2 Hz, 1H, ArCHOH), 

3.80 (s, 6H, OCH3), 2.66 (d, J = 2.2 Hz, 1H, CCH), 2.12-2.14 (d, J = 8 Hz, 1H, OH). 13C 

NMR (150 MHz, CDCl3; Figure S15): δ 155.4, 148.5, 140.4, 131.7, 127.4, 126.2, 119.9, 

114.4 (Ar), 83.8 (CCH), 74.2 (CCH), 63.4 (ArCHOH), 55.1 (OCH3). EI-MS: m/z: 359.06 

[M]+; calculated exact mass: 359.15 (Figure S9). Anal. Calcd (%) for C23H21NO3: C, 76.86; 

H, 5.89; N, 3.90. Found: C, 76.85; H, 5.86; N, 3.94. 

Preparation of 2b. Complex 3b (2.22 g, 6.18 mmol) was added under argon to a 

solution of [OsCl2(PPh3)3] (5.4 g, 5.15 mmol) in THF (30 mL),. The reaction mixture was 

stirred for 6 h at room temperature to give a brown solution. Subsequent addition of diethyl 



ether (80 mL) to the solution gave a deep yellow precipitate that was collected by filtration, 

washed with diethyl ether (3 × 50 mL) and dried under vacuum to give a deep yellow solid. 

Yield 5 g (70%). Still under argon, a suspension of the deep yellow solid in methanol (30 

mL) was treated with HBF4·Et2O (0.82 mL, 5.5 mmol) and then heated to reflux for ca 3 

h. Cooling down the reaction mixture afterwards to ambient temperature led to separation 

of dark blue solid 2b that was collected by filtration, washed by methanol and dried in 

vacuo. Yield: 2.78 g (53%). 1H NMR (400 MHz, CDCl3; Figure S21): δ 9.68-9.66 (d, J = 

8 Hz, 1H, OsCC(PPh3)CH), 7.78-7.71 (m, 5H), 7.50-7.37 (m, 30H), 7.20-7.13 (m, 14H), 

6.94 (d, J = 8.6 Hz, 5H), 6.64-6.59 (m, 5H), 3.85 (s, 6H), -6.27 (td, J = 15.2, 2.8 Hz, 1H). 

31P NMR (160 MHz, CDCl3; Figure S22): δ 18.01 (OsPPh3), 5.78 (CPPh3). 
13C NMR (100 

MHz, CDCl3; Figure S23): δ 253.6 (Os≡C), 158.8, 158.2, 157.8, 156.1, 154.2, 141.0, 137.4, 

136.7, 135.4-132.0, 130.4, 130.1, 130.0, 129.9, 129.7, 128.6-127.5, 126.2, 125.3, 122.2, 

119.1, 118.1, 117.2, 116.9, 115.5, 115.1-114.7, 113.8, 113.0 (other aromatic carbon atoms), 

55.6, 55.6 (OCH3). HRMS (ESI): m/z calcd for [C77H65Cl2NO2OsP3]
+, 1390.3220; found: 

1390.3176 (Figure S13). Anal. Calcd (%) for C77H65BCl2F4NO2OsP3: C, 62.61; H, 4.44; N, 

0.95. Found: C, 62.96; H, 4.60; N, 1.12. 

Preparation of 1b. Complex 2b (200 mg, 0.135 mmol) was dissolved in 1,2-

dichloroethane (5 mL) and heated to reflux for 12 h under an O2 atmosphere. The reaction 

mixture was then cooled down to ambient temperature and the solvent was evaporated 

under vacuum to reduce the volume to ca 2 mL. Subsequent addition of diethyl ether (30 

mL) to the solution led to separation of deep purple solid 1b that was collected by filtration, 

washed three times with diethyl ether and dried in vacuo. Yield: 140 mg (70%). 1H NMR 

(400 MHz, CDCl3; Figure S27): δ 7.76-6.25 (m, 57H, other aromatic protons), 3.80 (s, 6H, 

OCH3). 
31P NMR (160 MHz, CDCl3; Figure S28): δ 12.08 (OsPPh3), -7.93 (CPPh3). 

13C 

NMR (100 MHz, CD3CN; Figure S29): δ 269.2 (Os≡C), 176.3, 167.4, 162.6, 162.5, 159.4, 

158.0, 156.3, 154.9, 145.4, 141.7, 140.0, 139.6, 137.1-134.3, 132.5-128.5, 127.4-119.8, 

116.3-115.3, 111.8, 94.3, 93.2 (other aromatic carbon atoms), 56.3, 56.2 (OCH3). HRMS 



(ESI): m/z calcd for [C77H63Cl2NO2OsP3]
+, 1388.3063; found: 1388.3054 (Figure S12). 

Anal. Calcd (%) for C77H65BCl2F4NO2OsP3: C, 62.69; H, 4.30; N, 0.95. Found: C, 62.30; 

H, 4.58; N, 1.13. 

 

Crystallographic Details  

Single crystals of complexes 1a and 2a suitable for X-ray analysis were grown at room 

temperature by slow diffusion of hexane into a saturated solution in dichloromethane, and 

tetrahydrofuran into a saturated solution in dichloromethane, respectively. Crystals having 

approximate dimensions of 0.20 × 0.15 × 0.10 mm3 for 1a and 0.15 × 0.12 × 0.10 mm3 for 

2a were mounted on a glass fiber for diffraction experiments. Intensity data for these 

crystals were collected at room temperature on a Nonius Kappa CCD diffractometer with 

Mo Kα radiation (0.71073 Å). The structures were solved by SHELXS-9739 and Fourier 

difference techniques, and refined by SHELXL-2014.40 Crystal data for 1a and 2a and 

details of the data collection are summarized in Table S1. Selected bond distances and 

angles in 1a and 2a are given in Tables S2 and S3, respectively. The CCDC numbers for 

1a and 2a are 1841463 and 1841462, respectively.   

 

Physical Measurements 

 1H, 13C, and 31P NMR spectra were collected on Varian Mercury Plus 400 (400 MHz) 

or Varian Mercury Plus (600 MHz) spectrometers. 1H and 13C NMR chemical shifts are 

given relative to TMS, and 31P NMR chemical shifts relative to 85% H3PO4. Elemental 

analyses (C, H, N) were performed with an Elementar Vario EL III instrument. The high-

resolution mass spectra (HRMS) were recorded on a Thermo Exactive plus mass 

spectrometer. Electrochemical measurements were carried out with a CHI 660C 

potentiostat. The analyte and supporting electrolyte (n-Bu4NPF6) concentrations were 10−3 

and 10−1 mol dm−3, respectively, in dry argon-saturated dichloromethane (or acetonitrile 

for 1a). The air-tight single-compartment cell for cyclic voltammetry and Osteryoung 



square-wave voltammetry contained a d = 0.5 mm platinum disk working electrode (pre-

polished carefully with 0.25-μm diamond paste), a coiled platinum wire counter electrode, 

and a coiled Ag wire electrode. Ferrocene and decamethylferrocene were added as internal 

potential standards. Spectroelectrochemical experiments were carried out at room 

temperature with an optically transparent thin-layer electrochemical (OTTLE) cell (optical 

path length of ca. 200 μm) equipped with a Pt minigrid working electrode and CaF2 

windows.41 The OTTLE cell was placed in the sample compartment of a Shimadzu UV-

3600 UV-vis-NIR spectrophotometer. The controlled-potential electrolyses were 

conducted with a CHI 660C potentiostat. The concentrations of the analyte and supporting 

electrolyte (n-Bu4NPF6) were ca. 2×10−3 mol dm−3 and 3×10−1 mol dm−3, respectively. 

 

Computational Details 

DFT calculations were performed with the Gaussian 09 program42 at the B3LYP43/6-

31G* (Lanl2DZ for the osmium atom) levels of theory. Geometry optimization was 

performed without any symmetry constraints. The MO contributions were generated by 

using the Multiwfn2.6.1_bin_Win package, and plotted by GaussView 5.0 and the 

electronic transitions were calculated by the method of TD-DFT. The solvation effects in 

dichloromethane were simulated by having employed the conductor-like polarizable 

continuum model (CPCM).44  
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Two intriguing diphenylamino (DPA)-substituted heterocyclic 

osmanaphthalyne complexes were successfully synthesized and characterized. 

They show remarkable non-solvatochromic charge transfer absorption in the 

visible region, proving electronic communication between the donor DPA and 

acceptor metallacycle redox centers. Results of combined spectro-

electrochemical and DFT studies reveal that the spin density in the singly 

oxidized osmanaphtalynes is dominantly residing on the aminyl segment. In 

the reference unsubstituted osmanaphthalyne, both one-electron oxidation and 

reduction are localized on the metallacycle. 
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