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Abstract

We comprehensively analyze the predictive power of several option-implied variables
for monthly S&P 500 excess returns and realized variance. The correlation risk
premium (CRP) and the variance risk premium (V RP) emerge as strong predictors
of both excess returns and realized variance. This is true both in- and out-of-sample.
Our results also reveal that statistical evidence of predictability does not necessarily
lead to economic gains. However, a timing strategy based on the CRP leads to utility
gains of more than 5.03 % per annum. Forecast combinations provide stable forecasts

for both excess returns and realized variance, and add economic value.
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I. Introduction

A growing literature, e.g. Jiang & Tian (2005), Bollerslev et al. (2009), and Driessen
et al. (2013), documents the predictive power of option-implied variables for equity excess
returns and realized variance. The growing number of option-implied predictors raises several
questions: Which variables really forecast market excess returns? Do the variables that
predict market excess returns also forecast realized variance? Does predictability lead to
economic gains? These are some of the questions we want to study.

The main contribution of this paper is to provide a comprehensive analysis of the
forecasting ability of variables separately proposed in the recent literature on option-implied
predictors. We perform our analysis following the methodological background of Goyal
& Welch (2008). Importantly, we do not only analyze return predictability, but consider
the predictability of variance at the same time. This is important from a portfolio choice
perspective, since both quantities are needed for a portfolio decision. As such, we do not
only consider statistical predictability, but also analyze the economic significance of return
and variance predictability. We find that several variables, including the correlation risk
premium (C'RP) and the variance risk premium (V' RP), predict the monthly excess return
of the S&P 500. This is the case both in- and out-of-sample. We also show that both the
CRP and the V RP predict not only the market excess return but also its realized variance.
On the other hand, while most predictors are based on the option-implied moments of Bakshi
et al. (2003), we note that the risk-neutral moments themselves have strong predictive power
only for realized variance but not for the market excess return.

When studying the economic effects of the documented predictability in the context of
portfolio choice, we find that relative to the agent who assumes that the mean and variance of
the market return are unpredictable, a mean—variance agent with a risk-aversion coefficient

of 3 who uses the information content of the C RP would realize utility gains of 5.03 % per



annum (p.a.). Relatedly, we find that a return timing strategy based on the VRP leads to
lower utility gains than those afforded by the strategy based on the recursive mean. This
indicates that the statistical evidence of predictability of excess returns and realized variance,
respectively, by the VRP does not always translate into economic gains. We conjecture that
this result is due to the fact that individual variables lead to a large dispersion in the forecast
estimation. Forecast combinations instead appear to generate stable forecasts for both excess
returns and realized variance, and add economic value. Further, we link this result also to
the sign-switching behavior of the V RP around economically important periods.

A variable is considered to have predictive power if it passes two tests. First, it has to
generate statistically significant forecasts. In this case the variable contains key information
about the variation in the market risk premium and the realized variance, respectively.
Bollerslev et al. (2009) and Drechsler & Yaron (2011) argue that time-varying economic
uncertainty is captured by the variance risk premium and, thus, affects the variation in the
market risk premium. Driessen et al. (2009, 2013) state that the time-varying correlation
risk is linked to economic uncertainty and, thus, also relates to the market price of return
risk. Second, the variable needs to add economic value. Since the predictability, measured
by the R? is, in general, small in magnitude, the question arises whether it is economically
meaningful. Does an investor obtain an increase in utility by taking the variable into account?
This aspect is often ignored in the existing literature. Our results show that the C'RP emerges
as the only predictor that passes both tests.

For robustness, we analyze the predictability of different specifications of the VRP. We
follow Andersen & Bondarenko (2010), Andersen et al. (2015), and Feunou et al. (2015) and
decompose the total variance risk premium into the downside and upside components. The
results show that the upside and downside variance risk premia significantly predict excess
returns and realized variance in-sample and add economic value based on a timing strategy.

Our work relates to the literature on the predictability of the market excess return



and/or its associated realized variance using option-implied quantities. Bollerslev et al.
(2009) document the predictive power of the variance risk premium for S&P 500 excess
returns, and Bollerslev et al. (2014) document similar results for a broad range of
international equity indices. Pyun (2016) provides evidence of a weak out-of-sample
performance of the variance risk premium for S&P 500 excess returns. Driessen et al.
(2009, 2013) show that the correlation risk premium predicts S&P 500 excess returns,
whereas Cosemans (2011) points out that the correlation risk premium and the systematic
part of individual variance risk premia drive the predictive power of the variance risk
premium for market excess returns. Zhou (2013) documents the predictive power of the
S&P 500 implied correlation index for S&P 500 index returns. Xing et al. (2010) find that
the option-implied smirk contains information about the cross-section of equity returns.
Cremers & Weinbaum (2010) document that deviations from the put—call parity, measured
as the difference in implied volatility between pairs of call and put options of U.S. stocks,
contain information about the cross-section of stock returns and have predictive power for
these. Rehman & Vilkov (2012) and Stilger et al. (2016) show that implied skewness of
individual U.S. stocks has predictive power for future returns. Bali et al. (2011) introduce
an option-implied generalized measure of riskiness and provide evidence for its predictive
power for the cross-section of individual stock returns. Bali et al. (2012) and Bali et al.
(2015) extend the analysis and document the predictive power of the generalized measure
for economic downturns and future market excess returns. Leiss et al. (2015) and Leiss & Nax
(2018) examine non-parametric risk-neutral densities from S&P 500 index options. Leiss &
Nax (2018) provide evidence for the predictive power of an option-implied riskiness measure
based on Foster & Hart (2009) for future downturns. Bali et al. (2017) document a relation
between the risk-neutral moments of Bakshi et al. (2003) and expected stock returns.
Jiang & Tian (2005) and Kourtis et al. (2016) establish the forecasting power of the

S&P 500 option-implied variance for realized variance. The above mentioned studies use



different sample periods and statistical techniques to document their results, thus making
the interpretation and comparison of the findings somewhat difficult. We use a common
sample period and recent developments in the literature on predictability to thoroughly
analyze all these variables.

Our study also relates to the literature on the economic value of predictability. Typically,
the literature analyzes the implications of return predictability for a return timing strategy
(e.g., Campbell & Thompson, 2008; Cakmakli & van Dijk, 2016). Similarly, studies on
realized variance predictability only explore the implications for a volatility /variance timing
strategy (Fleming et al., 2001). Unlike these studies, we jointly study the impact of return
and variance timing. This is important because in a mean—variance framework, the optimal
portfolio weight invested in the risky asset depends on both the expected return and the
expected realized variance. If a forecasting variable predicts both the market excess return
and the realized variance, it might be potentially important to account for these two effects
when computing the optimal weight.

The remainder of this paper proceeds as follows. Section II. introduces the data and
explains the construction of the main variables. Section [III. presents the main empirical
results. Section I'V. discusses some further results. Section V. provides additional results.

Finally, Section VI. concludes.

II. Data and Methodology

II.A Data

We obtain our data from three distinct sources. First, we retrieve the monthly time
series of the S&P 500 total return index as well as the corresponding dividend payments

from the Center for Research in Security Prices (CRSP) database. Second, we obtain S&P



500 index option data from OptionMetrics. The OptionMetrics dataset contains information
about option contracts available in the market as well as standardized options, both of which
are useful for our analysis (see Section II.B). Third, we use intraday data on the S&P 500
index sampled at the 5-minute frequency from Thomson Reuters Tick History (TRTH). In
sampling the intraday data, we focus on the normal trading hours, i.e. from 09:30 AM to
04:00 PM Eastern Daylight Time (EDT). Our sample period extends from January 1996
to December 2014. It is worth pointing out that although the CRSP database covers a
period starting before 1996, this is not the case for the OptionMetrics and TRTH. Starting
our sample in January 1996 allows us to guarantee the availability of data from all three

databases.

II.B Variables

Armed with the dataset introduced above, we are now able to construct our main

variables.

Market Excess Return We compute the excess return on the S&P 500 index by
subtracting the riskless rate for the corresponding period from the total return on the equity

index:

P
ERypy =12  log (?) - 1)

t
where FR, . is the (annualized) monthly excess return on the S&P 500 index at the end of
month ¢t 4+ 1. P, and P, denote the total return price index at the end of months ¢ + 1 and
t, respectively. rf, refers to the (annualized) riskless rate observed at the end of month ¢.!
Following Goyal & Welch (2008), we use the 1-month T-bill rate to proxy for the riskless

rate.

1Throughout this paper, we use the convention that the riskless rate is given the subscript for the time
when it is observed. Thus, the riskless rate is observed at time ¢ even though it is realized at time ¢ + 1.



Realized Variance In order to estimate the realized variance of the stock market, we
exploit developments in the literature on high-frequency financial econometrics. Andersen
et al. (2003) show that by sampling data at the intraday level, one can improve the accurate
measurement of realized variance. Building on this insight, we use intraday prices sampled

at the 5-minute frequency to compute the realized variance of the asset:

2 2
Sy
RV, = 36 Z Zlog< t+N,J+1> +log <St+—N1> , 2)

i=1 H’ij t+%7m

where RV, is the realized variance at the end of month ¢ + 1. The first term to the
right of the equality sign simply annualizes the variance estimate, where N is the number of
days between the end of month ¢ and that of month ¢ + 1. Each day contains m intraday
observations. S, i1 and Syt i ; are the spot prices observed on day ¢ + + at times j + 1
and j, respectively. The last term to the right of the equality sign simply reflects the effect
of overnight returns. In particular, it captures the impact of the return from the end of the

previous day to the opening of the following day.

Option-Implied Moments Recent studies document the information content of option-
implied moments, e.g. Jiang & Tian (2005), Prokopczuk & Wese Simen (2014), and Kourtis
et al. (2016), for realized variance. We exploit the theoretical results of Bakshi et al. (2003)
to construct the risk-neutral (i) variance (VARP* ) (ii) skewness (SKEW"*M) and (iii)

excess kurtosis (EX KURTP*M):

TTV 2
VARBEM  _ %’ (3)
BKM GTTW — 3/L€TTV + 2#3
SKEW = oy (4)
T'TX _ 4 TTW 6 rT 2V 3
EXKURTPEM — ¢ pe W +0e iy (5)
[V — i)



where r denotes the continuously compounded (annualized) interest rate for the period from
t to t+7. We use the Ivy curve from OptionMetrics to proxy for the interest rate. Essentially,
this curve is based on London Interbank Offered Rate (LIBOR) and Eurodollar futures.” 7
indicates the time to expiration of each option, expressed as a fraction of a year. Note that
all variables are contemporaneously observed. In the expressions above V', W, X, and u are

defined as follows:

v /S 2(1 +log[]) C(K)dK, (6)

K=0 K2 P(K)dK-l-/oo 2(1;(%[%])

2
K=S K

. /oo Glogl 51~ 3008l 5D" g - [ Slo8lR] +3008IRD” e e (7)
Kes K K=0 K
00 K1\2 K1\3 S1)2 S

v / 12(log[ %)) —;4(log[§]) (R + % 12(log[7]) v;4(1og[f]) P(K)AK, (8)
K=8 K K=0 K

po= oo Ve Se W X, Y

where K and S are the strike and spot prices, respectively. C'(K) and P(K) denote the call
and put prices of strike K, respectively. All other variables are as previously defined.

At the end of each calendar month, we use the OptionMetrics database to extract the
standardized options data of 1-month maturity, the contemporaneous spot price, and the
interest rate of corresponding maturity. We retain only out-of-the-money option prices. It is
worth pointing out that the integrals in the formulas above implicitly assume the existence
of a wide range of strike prices. Alas, this is not perfectly true in the market. Thus, we follow
Chang et al. (2012) by computing a fine grid of 1,000 equidistant interpolated moneyness
levels, i.e. K/S, ranging from 1% to 300 %. For each moneyness level on that grid, we
interpolate the implied volatility using a spline interpolation method. For moneyness levels

outside of the moneyness range observed in the market, we extrapolate the implied volatilities

*We use this interest rate curve to be consistent with the empirical literature on option prices (e.g., Bali
& Hovakimian, 2009; McGee & McGroarty, 2017). Obviously, one may wonder if our main results hold if
we substitute the OptionMetrics curve with the term-structure of Treasury rates. The effect on our main
findings is negligible. The intuition behind this result is that most of our analysis focuses on options of short
time to maturity. Because the interest rate is always multiplied by the time to maturity, we find that the
interest rate proxy has very little impact on our results.



(Jiang & Tian, 2005). In practice, this means that if a moneyness level is lower (higher)
than the lowest (highest) moneyness level available in the market, we simply use the implied
volatility corresponding to the lowest (highest) level of moneyness available in the market.
Next, we plug the implied volatilities into the Black & Scholes (1973) option pricing model
to obtain the corresponding out-of-the-money option prices. Finally, we follow Bali et al.
(2017) by using a trapezoidal rule to approximate the integrals that appear in the formulas

above and obtain the risk-neutral moments of 1-month maturity.

Variance Risk Premium The variance risk premium is defined as the difference between

the risk-neutral and physical expectations of variance:

VRP, = EX(01,1) — E; (0711), (10)

where F,(-) is the expectation operator conditional on the information available at time ¢.
The superscripts Q and P indicate that the expectation is computed under the risk-neutral
and physical measures, respectively. In order to proxy for the risk-neutral expectation of
variance, we use VARPXM  This choice is motivated by Du & Kapadia (2012) who show
that the risk-neutral variance of Bakshi et al. (2003) is robust to jumps.

While the expression above clearly defines the variance risk premium, it is of very little
practical use. The reason for this is that it involves the physical expectation of future
variance, which is not directly observable. Therefore, we follow the lead of Bollerslev et al.
(2009) and Driessen et al. (2013) in positing a simple random walk model for the future
variance under the physical measure. That is, we assume that the expectation of the future
variance under the physical measure equals its most recent realization. Thus, we can compute
the VRP as follows:

VRP, = VARPKM _ Rv/,. (11)



Note that all variables are annualized and observed at the end of each calendar month.

Correlation Risk Premium Driessen et al. (2013) establish the predictive power of the
correlation risk premium for future aggregate stock returns. The authors observe that the
equity index is a portfolio of individual equities (Driessen et al., 2009). An upshot of this
is that the variance of the market index return is equal to the weighted average variance
of individual stocks and covariance terms. Assuming further that the pairwise correlation
between different stocks is the same for all stocks, they are able to derive the following

formula:
ERf oy, ds] — Yo wi ERLf ol ds]

PONED DNIANEN \/E@ "o o ds] \/E@ "o% s ds]

where IC, is the implied correlation at time ¢. © denotes the number of stocks in the

1C, = , (12)

stock market. ER[[ 7oy, ds] and E2[[/ 707, ds] are the risk-neutral expected variance
of the index (V) and of the individual stock (v)), respectively. As before, we proxy these
expectations with the risk-neutral variance of Bakshi et al. (2003). w,, and w,, are the weights
of stocks ¥ and y in the market index W, respectively.

The intuition developed above also holds under the physical measure, thus yielding the

following formula for the realized correlation at time ¢:

Ef[[ 0% ds] = 30w B[, 07 ds]
22:1 Zx#ww¢wx \/Et t+r 2 . ds] \/Et t+r 2 ds]

Rct - ) (13)
where RC is the realized correlation at time t. All other variables are as previously defined.
As before, we use the historical variance computed over the most recent period to proxy for

the physical expectation of the future variance.

The CRP at time ¢ is then defined as the difference between the risk-neutral and physical



expectations of future correlation, yielding the following result:

To obtain this variable, we use standardized options (of time to maturity of one month)
on the S&P 500 index as well as options data on all constituents of the index. All options

are observed at the end of each calendar month.

Implied Volatility Smirk Measure Xing et al. (2010) document the predictive power
of the implied volatility smirk.® Our construction of this variable broadly mirrors theirs. At
the end of each calendar month, we retain all S&P 500 index options with positive open
interest and a time to maturity between 10 and 60 days. We discard all option prices with a
midquote price below $0.125. We also purge all options with implied volatility outside of the
interval [3 %; 200 %]. We define the out-of-the-money put options as the put options with
a moneyness level between 0.8 and 0.95. Note that by moneyness level, we understand the
ratio of the strike price over the stock price, i.e. K/S. Relatedly, we define at-the-money call
options as call options with a moneyness level between 0.95 and 1.05. The smirk measure is

simply computed as follows:

SMIRK, = VOLS™PF _yorim™e, (15)

where SMIRK, is the smirk measure at time t. VOLZ™* denotes the implied volatility of
out-of-the-money puts. To be more precise, this is the volume-weighted average of the implied

volatilities of all out-of-the-money put options. VOLITMY refers to the volume-weighted

3Xing et al. (2010) analyze the predictive ability of the implied volatility smirk in the cross-section of
stock returns. Motivated by the intertemporal capital asset pricing model (ICAPM) of Merton (1973), if
SMIRK is priced in the cross-section, it also has to predict the investment opportunity set in the time series
(Maio & Santa-Clara, 2012).

10



average of all implied volatilities of at-the-money calls at time .

Risk-Neutral Riskiness Leiss & Nax (2018) apply the result of Foster & Hart (2009) to
the risk-neutral density of the S&P 500 index to derive an option-implied riskiness measure.
We follow Leiss & Nax (2018) and first obtain the risk-neutral density of the S&P 500
using the approach of Figlewski (2010). That is, for the center of the distribution, i.e. the
moneyness range observed in the market, we interpolate the implied volatilities using a 4th
order spline with one knot at-the-money, computing the density using the corresponding
Black & Scholes (1973) option prices. Finally, we parameterize the distributions of the left
and right tails by separately fitting Generalized Extreme Value (GEV) distributions. Using
the obtained distribution, we compute the risk-neutral Foster—Hart (FH) riskiness measure

by solving the following equation:

/ log(1 + wnf) F(Sy)dSy =0, (16)
S 0

7=0

where S; and S, are the stock prices at expiration and ¢ = 0, respectively. f(Sy) is the
risk-neutral density at S;. We numerically compute the integral using a trapezoidal rule
and repeat this procedure on every trading day. Leiss & Nax (2018) remark that in some

cases, Equation (16) does not have a solution, F'H € (0, 1), in which case they set F'H to 1 if

St—Sg
So

the option-implied expected return ( |, ;; o f(S7)dSy) is positive. If the option-implied
return is negative and Equation (16) does not have a solution, we set F'H to 0. F'H may be
interpreted as the fraction of wealth that can be invested in an asset so that no-bankruptcy

is guaranteed. For this measure, we use data on traded option prices for all options on the

S&P 500 for maturities between 10 and 50 days, each day picking the time to maturity

11



closest to 30 days.* For the empirical tests, we follow Leiss & Nax (2018) and use a 21-day

moving average of F'H instead of the raw measure.

Generalized Measure of Riskiness Based on both Foster & Hart (2009) and Aumann
& Serrano (2008), Bali et al. (2011) introduce a generalized measure of riskiness (GMR).

We obtain GM R by solving the equation:

S

e rT 1
- Fr(K)P(K)dK + . Ta(K)C(K)AK — e =0, (17)
with
. (1-9) K/S—1\°"?
k) =g (14 ") (1s)

Following Bali et al. (2011), we set 6 = —2. All other variables are as previously defined. We
compute the integrals for each trading day as described in the paragraph “Option-Implied

Moments” using the standardized options with time to maturity of one month.

III. Main Results

Before discussing our main findings, it is instructive to look at the summary statistics
reported in Table I. We can observe a positive market risk premium of around 6 % p.a. The
risk premium exhibits a standard deviation of around 16 % p.a. We also notice that the
sample moments of the VRP and the CRP are consistent with those reported in previous
works (Driessen et al., 2009, 2013). In particular, we can see that although positive on
average, the V RP is negatively skewed and prone to extreme movements as indicated by its

high kurtosis, suggesting a sign-switching behavior. This observation could carry important

“For most measures in this study, we rely on the standardized options, provided by OptionMetrics.
However, these are not suitable to obtain the entire risk-neutral density because they do not provide
observations for deep out-of-the-money options which are necessary to accurately parametrize the GEV
distributions.

12



implications for the predictive ability of this variable. We shall return to this point later.

The table also reports the AR(1) coefficient of each variable. We notice that the
autoregressive coefficient of these variables is typically lower than that of the valuation ratios
such as the (log) dividend to price ratio routinely analyzed in empirical works, e.g. Goyal &
Welch (2003). This suggests that our analysis does not suffer from the statistical issues that
affect these earlier works. We can also see that the AR(1) coefficient of the realized variance
is much higher than that of the market risk premium, likely indicating that there might be
a stronger evidence of predictability in the realized variance series than in the market excess
returns.

Table II presents the sample correlation coefficients among all the predictive variables.
While most variables are only weakly correlated, there is a high correlation between
SKEWPEM and EXKURTP* (-0.92). This suggests that these variables contain very

similar information.

IIT.A Return Predictability

In-Sample Analysis We start by assessing the in-sample predictability of the equity risk
premium. To do so, we estimate the standard regression model of the month-ahead excess

return on a constant and the predictive variable(s):

ERy = By + 51Xy + €41, (19)

where ER;,, is the excess return on the market realized at the end of month ¢t + 1. f,
and [, are the intercept and slope parameters, respectively. X, represents the forecasting
variable(s) observed at the end of month ¢. Finally, €, is the regression error term at ¢+ 1.

Table IIT summarizes the results for each predictive variable. The regression model

enables us to ascertain whether the equity risk premium is time-varying or constant. Under

13



the null hypothesis that the future excess return cannot be predicted using X,, we would
expect that 8; = 0. As a result, the expected market excess return would simply be constant.
One implication of this is that the best estimate of the future excess return is simply its
recursive mean. If there is evidence of predictability, we would expect to see that the slope
loading is statistically significant. To avoid a small-sample bias (Stambaugh, 1999) and serial
correlation in the error terms (Richardson & Stock, 1989), we base our statistical inference
on the bootstrapped distribution obtained by implementing the framework of Rapach &
Wohar (2006).°

We can see that the CRP, GMR, SMIRK, and VRP are statistically significant
predictors in the univariate regressions. This is documented by their t-statistics of 2.76,
2.09, —2.06, and 4.26, respectively. The positive and significant slope estimate related to the
V RP confirms and updates, using a more recent sample period, the result of Bollerslev et al.
(2009). It is also consistent with the authors’ intuition that the V RP encodes information
about time-variations in economic uncertainty. Note also that if, as argued by Driessen et al.
(2013), C RP accounts for most of the VV RP, then one would expect that C'RP predicts future
excess returns with a positive sign as we find in the data, since it has been documented that
the V RP predicts the market excess return (Bollerslev et al., 2009).

The result that C'RP predicts future returns is consistent with that in Driessen et al.
(2009, 2013). There is a strong relationship between correlations and returns. It seems that

correlations between stocks are time-varying and that correlations increase when returns are

®We estimate the process under the null hypothesis of no predictability, i.e. ER, = ay + ¢, and
Xy = by + by Xy_1 + €94, where ag, by, and by are the regression coefficients and ¢; ; and €, ; are the error
terms, respectively. We then form a series of error terms and set up our pseudo sample. For the pseudo
sample, we compute the in-sample and out-of-sample statistics. Finally, we repeat this procedure 1,000
times. In the case of multiple regressions, we adjust the procedure by taking the multiple variables into
account and, in-sample, by using the F-statistic rather than the individual ¢-statistic.

14



low.%" Moreover, the authors document a strong predictive power of IC' for future returns,
supported by a correlation of 0.24 between IC and V RP, shown in Table I1.® Pollet & Wilson
(2010) provide evidence for the predictive power of (average) realized correlations for stock
returns at a quarterly horizon.

The result of GM R for predicting future market returns confirms the findings of Bali
et al. (2015). The authors find that GM R acts as a significant positive in-sample predictor
of future aggregate market returns. The positive sign is consistent with the interpretation of
G MR as a fundamental measure of risk: higher riskiness is associated with higher aggregate
excess returns in the future.

The finding that SM I RK predicts future returns with a negative sign extends the results
of Xing et al. (2010) to the time series of the market excess return. The intuition behind this
result is simple. An increase in SMIRK implies a stronger demand for out-of-the-money
put options. This increased demand signals that investors are actively purchasing insurance
against expected declines in the stock index. The negative slope estimate of SMIRK is
consistent with this intuition.

It is also worth comparing the predictive power of individual variables. A cursory look
at the in-sample R? reveals that VRP has the highest predictive power for future excess
returns (R® = 7.47%). The second most powerful predictor is the CRP, with an R* of

3.28 %. While the slope estimate on the VRP is similar to that documented by Bollerslev

6They show that an increase in market correlations has two main effects. First, diversification possibilities
are lower, thus, investors face limitations in their portfolio formations and suffering from a welfare reduction.
Second, there is a rise in market volatility. One implication is that index options become relatively expensive
compared to individual options. They represent a hedge against changes in market correlations, thus, also
against losses due to diversification limitations.

"The use of CRP (and of IC and RC) can be theoretically motivated by the ICAPM of Merton (1973).
It directly affects future investment opportunities, i.e. investors’ future diversification benefits as well as the
market variance. Moreover, Driessen et al. (2013) argue that C RP appears to drive the volatility of dividend
growth, and also the volatility of dividend growth volatility, consistent with the argument of Bollerslev et al.
(2009) for VRP. One implication is that C'RP matters for both return as well as variance predictability.

®Driessen et al. (2009, 2013) document that IC strictly exceeds RC, indicating the existence of a large
CRP. Our data support these findings. We observe a mean IC' (RC) of 41.66 % (32.25 %), generating a
mean CRP of 9.41 %.
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et al. (2009), it is worth noticing that the predictive power we document at the monthly
horizon is much higher, indicating that, if anything, the predictive ability of the VRP is
much stronger in the more recent sample period.

It is worthwhile to analyze the performance of individual variables over time. Figure 1
plots the in-sample cumulative differences in squared forecast errors (CDSFE).9 We observe
a similar (in-sample) performance in the case of the CRP and V RP, indicated by a sharp
increase during the global financial crisis in 2008/2009, and a steady rise during the post
crisis period. The findings suggest the outperformance of the unrestricted model to the
restricted model, particularly in times of distress. It seems that investors can exploit the
information content of both variables in times of high risk-aversion.

In the case of EXKURT®*M and SKEWPXM  we find an increase in performance
during the global financial crisis; however, afterwards there is a steady decline, suggesting
the superior performance of the restricted model. Both variables appear to have substantial
predictive power, particularly in crises. The CDFSE plot for GM R indicates that most of
the predictive power stems from economic downturns.

SMIRK shows the strongest increase in the CDSFE plot during the global financial crisis,
indicating that investors look for a hedge against a further market downturn, by buying put
options. Finally, in the case of VARP®M we see no strong fluctuations in its CDSFE,
suggesting a similar performance of both the unrestricted and restricted model. Generally,
we also find a strong increase in the performance after the dot-com bubble in 2001. This is
true for all variables, except SMIRK.

To analyze the joint predictive ability of different variables, we perform three multiple

regressions. Due to the high correlation between SK EWBEM and EXKURTP*M  we run

Please note that whenever there is a rise of the in-sample (or out-of-sample) performance, the
unrestricted model outperforms the restricted model, and vice versa. In this case, a variable provides a
better forecast than the benchmark model.
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the regressions also once without the first and once without the second variable.'® In all
cases we find that only SMIRK and V RP retain their statistical significance."* Overall,
the adjusted R? increases to 8.81%, 8.95%, and 8.59 % in the first, second, and third case,

respectively.

Out-of-Sample Results We now turn our focus to the out-of-sample evidence of return
predictability. We use an initial training window of 5 years to first estimate the forecasting
model presented in Equation (19). Equipped with the parameter estimates and the most
recent observation of the forecasting variable in the training window, we are able to generate
the first excess return forecast. The following month, we expand the training window by
one observation month and re-estimate the forecasting model. With the new parameter
estimates, we forecast the market excess return for the next month. We proceed analogously
for all months, except the last month of our sample period.

In order to assess the out-of-sample performance of different models, we follow Campbell
& Thompson (2008) and define the out-of-sample R* (R2,,) as follows:

MSE
R, =1-— U
MSE,’

(20)

where MSE, and MSE, are the mean squared errors of the unrestricted and restricted
models, respectively. The unrestricted model is based on Equation (19). The restricted
model imposes the null hypothesis that returns are unpredictable, i.e. 5; = 0. Thus the R(Q,OS
sheds light on the question: How large an improvement in forecast accuracy can one achieve

by accounting for the predictive power of variable X,? The higher the R%,, the better. A

1OWe present the results of the multiple regressions only for return predictability. In the case of realized
variance predictability, we skip these regressions due to multicollinearity.

"The CRP does not retain its statistical significance in the multiple regressions. It seems that other
variables, mainly the V RP, capture its information. In-sample multiple regressions have no explanatory
power for out-of-sample predictability. For further details, wee also refer to the forthcoming out-of-sample
analysis.
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variable has notable predictive power if it exhibits a positive and significant R2,,, indicating
an overall outperformance of the predictive variable.
In order to gauge whether the potential improvement is statistically significant, we

compute the MSE — F statistic of McCracken (2007):

(21)

MSE — F = H x (MSE” _ MSE“>,

MSE,

where H denotes the number of out-of-sample forecasts. All other variables are as previously
defined. Briefly, the null hypothesis is that the restricted model performs at most as well
as the unrestricted model, i.e. MSE, < MSFE,. The alternative is that the unrestricted
model provides smaller forecast errors than the restricted model. As can be seen from the
last row of Table III, only CRP and V RP yield statistically significant improvements in the
out-of-sample performance relative to the simple recursive mean. This result is noteworthy
given that Goyal & Welch (2003) argue that the recursive mean is a tough benchmark to beat.
Overall, these results suggest that the C RP and the V RP contain important information
about next-month’s market excess returns both in- and out-of-sample. In contrast, the
multiple regressions do not improve the predictive power out-of-sample. In Figure 1, we
observe a similar development of the out-of-sample performances as in-sample, except for
VARPEM. showing a sharp drop during the global financial crisis, indicating a superior
performance of the restricted model. It seems that investors have to rely on the historical

BKM
R

mean rather than on VA in times of distress.

III.B Variance Predictability

We now turn our attention to the predictability of the realized variance. In particular,
we ask the question: Can any of the forecasting variables be used to predict next-month’s

realized variance?
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In-Sample Using all the sample information, we estimate the following regression model:

RV 1 =7 + X + RV, + €44, (22)

where 7, 71, and v, are the intercept and slope parameters, respectively. All other variables
are as previously defined. We include the lag of realized variance, because realized variance
is a strongly persistent process, indicated by its AR(1) coefficient of 0.63, shown in Table
I."? To account for the persistence, we use a fitted AR(1) process as naive benchmark rather
than the historical mean variance.™

Table IV summarizes the results of the in-sample analysis. We notice that the
variables have predictive power for future realized variance, as evidenced by their statistically
significant R*s."* This is true for all variables, except FH and GMR. The R*s range from
40.80 % to 43.03%. These results are interesting for several reasons. First, they indicate
that the predictability of realized variance is much stronger than that of excess returns.
Second, they reveal that CRP, SMIRK, and VRP are able to predict (in-sample) not
only next-month’s market excess return (see Table III) but also realized variance. Third,
the risk-neutral variables of Bakshi et al. (2003) that do not predict future excess returns

THPEM predicts next-month’s

matter for realized variance forecasting. For instance, EXKUR
realized variance with a predictive power equal to 41.60%. GM R appears to predict only
market returns, whereas F'H predicts neither market returns nor realized variance. A likely
cause for the rather poor performance of the two measures is that both variables exhibit

clear breakpoints, especially around the financial crisis (see the time-series of these variables

for example in Figure 1 of Bali et al. (2015) as well as Figure 1 of Leiss & Nax (2018)).

2Since realized variance is strongly persistent, future realized variance is primarily predictable by its
current value. Ignoring the lag of realized variance allows the other lagged variables to partially capture this
persistence. In particular VARPEM and RV are highly correlated. We refer to this point later in Table IV.

3In Section V.C , we use the historical mean variance as naive benchmark and show the results.

14Although CRP has a t-statistic of —1.59, this variable generates a statistically significant improvement
in the in-sample R of 40.80 %. We also refer to Section V.C.
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An implication of this result is that when assessing the information content of a predictive
variable, it is advisable to investigate whether it predicts not only excess returns but also
realized variance. We observe that VARPEM and VRP have similar t-statistics and R*s,
which is not surprising due to the construction of V RP and the used regression model in
Equation (22).

Figure 2 shows the CDSFE for all individual variables predicting the next month’s
realized variance. There is a similar pattern for the variables. We observe a strong
increase in their performance during the global financial crisis in 2008,/2009, indicating the
outperformance of the unrestricted model to the restricted model. It seems that investors

can exploit the information content of the variables, particularly in times of high variance.

Out-of-Sample We use the first 5 years of observations to initially estimate the model
parameters (see Equation (22)). Having done this, we then make a forecast for the following
month. We expand the training window by one observation month and repeat all steps. This
procedure mirrors that used for the return predictability analysis with the only difference
that we assume a fitted AR(1) process as naive benchmark and that we forecast realized
variance rather than the market excess return. The last row of Table IV shows the R2,.s.
All variables that predict realized variance in-sample are also good predictors out-of-sample.
The R?,,s range from 2.40 % for SK EW 55 0 3.89 % for SMIRK . In Figure 2, we observe
a similar pattern as in-sample. In particular in times of distress, investors should rely on the
information content of the predictive variables rather than on the forecast of a fitted AR(1)

model.

II1.C Portfolio Choice Implications

We now study the portfolio choice implications of the predictability results reported

earlier. To do this, we consider an investor with mean—variance preferences. The agent
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allocates a fraction w; of her wealth to the risky portfolio and the remainder, i.e. 1 — w,, to
the risk-free asset. The agent’s objective function is:

~
max EJ:P (Tp,t-i-l - §U§,t+l> ) (23)

Wy

where E} (-) is the physical expectation operator. r, ;. is the next-period’s (simple) return on
the investor’s portfolio. «y is the coefficient of relative risk-aversion. Uz,t 41 is the conditional
variance of the portfolio from ¢ to ¢t + 1. This return is the weighted average of the (simple)
return on the risky stock and on the risk-free asset. Because our earlier analysis focuses on
log-returns rather than simple returns, we use a second-order Taylor expansion to express the
simple return as a function of the log-return and realized variance.'® Thus, we can express
the objective function as follows:

v—1
max E; (Rp,t+1 - TU;tJrl) ) (24)

where R, ;.4 is the log-return on the portfolio and all other variables are as previously defined.
Using the first-order condition, it is straightforward to derive the optimal weight invested

in the risky asset (Jordan et al., 2014):

. — E(ERy1 + 5BV 1) _ E(ERyy,) L (25)
VE(RV 141) VE(RV i) 2y

The expression above shows that the optimal allocation to the risky asset depends on the
expected excess return, the risk-aversion parameter, and the expected realized variance. One

implication of this expression is that, holding everything else constant, the allocation to the

“More precisely, the approximation yields the following relationship:
1
Rt ~ Ty — iRVt,

where Ry, r;, and RV, are the log-return, simple return, and realized variance at time ¢, respectively.
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risky stock rises with expected returns. In other words, if realized variance is unpredictable
and a forecasting variable X, positively (negatively) predicts excess returns, then the agent
would invest more (less) in the risky stock as X, increases. In contrast, if a variable X,
positively predicts future variance (and not returns), then the share of wealth invested in
the risky stock decreases with the variable X,.

Note that the preceding discussion focuses only on the predictability of either returns
or variance and does not explore the case where both moments are predictable by the same
variable. The share of the position in the stock will be determined by two (potentially
offsetting) forces, one that increases with the expected excess return and the other that
decreases with the expected realized variance.

In light of the preceding discussion, we find it interesting to distinguish between three
cases. The first one deals with the case where only excess returns might be predictable. The
second case allows for the predictability of realized variance alone. The third case deals with
the possibility that both excess returns and realized variance are predictable by the same
variable X,.*

For a given case (§) and each calendar month of our out-of-sample window, we compute
the weight w, and also the realized return of the portfolio. We impose the restriction that
whenever the forecast of the market excess return or of the realized variance (or of both) in
Equation (25) equals zero, we set the portfolio weight equal to 1/(27). Further, following
Campbell & Thompson (2008) and Jordan et al. (2017), we impose the restriction that w,
is bounded from below by 0 and from above by 1.5. Economically, the lower bound implies
that the agent does not short-sell the risky asset. The upper bound prevents the agent from

taking on excessive leverage. At the end of the sample period, we compute the certainty

T be consistent with Section II1.B , we predict realized variance by the variable X; and the lag of
realized variance.

22



equivalent return as follows:

CER® =7 %02 (26)

where CER® is the certainty equivalent return associated with strategy . This number is
expressed in percent per annum. 7, is the average (annualized) return on the portfolio. 012,
is the variance of the portfolio returns.

Our approach consists in computing the utility gain (AC’ER(O), the difference between
CER"® and the certainty equivalent return of the naive strategy that assumes that the first
two moments are unpredictable, and thus relies on simple historical averages. We do this for
each of the three scenarios.

We also compute the Sharpe Ratio (SR) of each strategy &:

SR = Lﬁ, (27)

Ip

where Rp is the average log-return on the portfolio. Similar to the certainty equivalent return
analysis, we compute the improvement in SR by taking the difference between SR® and
the SR linked to the naive strategy that assumes that the market excess return and realized
variance are unpredictable. We use an approach suggested by Jobson & Korkie (1981), and
after taking into account the correction suggested by Memmel (2003), we test whether the
improvement is statistically significant.

Table V reports our results for different values of risk-aversion. We can see that
statistical evidence of excess return predictability does not necessarily imply important
economic gains. For instance, while the V RP predicts both excess returns and realized
variance, a timing strategy relying on this variable would have underperformed the naive

strategy. One possible explanation for this result is the following. Shortly before the crisis
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period, the variance risk premium is high (since the historical variance is low). Because the
V RP predicts future returns with a positive sign, this result implies that an agent should
hold more (rather than less) stocks. As a result of this increased position, the strategy incurs
more severe losses as the economy slides into recession. Similarly, as the economy recovers,
the variance risk premium is low, implying that the agent should hold a small position in
the stock. Because of this, the agent misses out on the rally in the market. Further, it seems
that, though V RP predicts both returns and variance individually with a positive sign,
the joint predictability is associated with large variance, thus generating negative certainty
equivalent returns.'”

In contrast, one can see that relative to an agent with risk-aversion v = 3 who assumes
that the market excess return and the realized variance are unpredictable, the agent who
exploits the information content of the C'RP, would improve her utility by 5.03% p.a. The
finding is consistent with Driessen et al. (2009, 2013) who document that index options
represent a hedge against changes in market correlations, and also against losses due to
diversification limitations.

Our results are in line with those of Fleming et al. (2001), who show that volatility
timing leads to notable utility gains for short-horizon investors. The positive economic value
generated by the CRP is consistent with the work of Buss et al. (2018), who document
a positive CER for the market timing strategy based on the C'RP. Overall, our findings
suggest that investors might earn larger utility gains when taking the predictability of both
excess returns and realized variance into account.

Table A1 of the Online Appendix shows the portfolio choice implications taking into

account turnover and transaction costs. Following DeMiguel et al. (2009), we define the

"We refer to Section IV.B for further details.
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turnover for strategy & as the average sum of the absolute values of the trades, i.e.:

Z (I - 1), (28)

Turnover =

where T' — H is the number of out-of-sample observations and wt(f) is the portfolio weight
before rebalancing at t 4+ 1. All other variables are as previously defined. For the benchmark
strategy, we observe an absolute value of the turnover (Turnovery,) of 0.0448, which can be
interpreted as the average percentage of wealth traded in each out-of-sample period. For our
three strategies, we report the turnover (T urnoverg) relative to the benchmark case. We
notice that all strategies exhibit higher turnovers than the benchmark, indicated by values
larger than one.

We follow Balduzzi & Lynch (1999) and include transaction costs of 50 basis points per
transaction proportional to the asset’s traded size |wt(i)1 — wﬁ)|. Table Al of the Online
Appendix reports the corresponding utility gains and Sharpe Ratios. We observe that

transaction costs have an impact on the results; however, the results are qualitatively similar.

An agent who relies on the C'RP would still improve her utility by 1.38 % p.a.

IV. Further Analyses

IV.A Sign Restriction

Campbell & Thompson (2008) propose imposing two economically motivated restric-
tions when studying the question of predictability. The authors suggest setting the slope
estimate in the out-of-sample analysis equal to zero whenever its sign differs from that of
the in-sample analysis. They also suggest setting the out-of-sample forecast equal to zero
whenever its negative. Before discussing our findings, it is worth emphasizing that the first

constraint is not implementable in real-time. This is because the implementation would
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require the agent to know about the sign of the in-sample slope parameter, i.e. to have
information about future data, thus, introducing a look-ahead bias.

The first set of results in Table VI reports the findings when imposing the first restriction.
Panel A shows that the main results are similar: the CRP and VRP are the two best
option-implied predictors for the market excess return. It is worth noticing that imposing
the restriction has very little effect on the R2,, related to the forecasting variables (see Table
III for comparison). This suggests that the sign of the relationship between the forecasting
variables CRP and V RP and future excess returns is relatively stable out-of-sample.

We also impose the restriction on the slope of the realized variance forecasting regression.
In other words, we set the slope estimate equal to zero, if the sign of the recursively estimated
parameter is different from that obtained in-sample.’® Overall, we can see from Panel B of
Table VI that this restriction has very little impact on our main results.

The second set of results in Table VI reports the findings when imposing the second
restriction. Finally, the last entries of each panel show the results when we jointly impose
the restrictions (on the sign of the slope and the sign of the return/variance forecast).
Summarized, in both cases our main results remain unchanged.'” We also repeat our
economic value analysis using these economically motivated constraints. Tables VII to IX
document that imposing the restriction(s) does (do) not affect our main conclusions on the

economic value of the predictive power of both CRP and VRP.

8T6 be consistent with Section III.B, we impose the restriction for both the variable X, and the lag of
realized variance.

YTable A2 of the Online Appendix reports the absolute frequency of how often the restrictions are
binding. Panel A shows the results for return predictability. We observe that the first restriction is not
binding. This is true for all variables, except FH, GM R, and VARBKM7 indicated by a frequency of 12, 8,
and 35. The second restriction is binding more frequently, indicated by frequencies from 7 for GM R to 77 for
VRP. It seems that the forecast restriction matters more for excess return predictability. Panel B of Table
A2 shows the frequencies in the case of variance predictability. We find that the first (second) restriction
is binding only for CRP, FH, and GM R (EXKURTBKM) with a frequency of 75, 76, and 3 (3). Lagged
realized variance appears to be not affected by the (first) restriction(s) at all, indicating the persistence of
that variable. The findings reveal that the imposition of economically motivated restrictions matters more
for return rather than variance predictability.
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IV.B Forecast Combination

Rapach et al. (2010) suggest the use of forecast combinations. The pooled forecast

——pool

is the weighted average of all G individual forecasts, where ¢ = 1,...,G, ie., ER;; =
Zle :Egytﬁgiﬂ and El\/fﬁl = Zle xg’tﬁ‘\/gﬁl, based on Equation (19) and (22),
respectively. x,, is the weight of the individual forecast in the pooled one.

Following the literature, we use three approaches. Table X shows the out-of-sample R”s
of (i) the mean forecast combination, where the weight is simply 1/G for g = 1, ..., G, (ii) the
median forecast combination, where the pooled forecast is just the median of all individual
forecasts, and (iii) the trimmed mean forecast combination, where z,, = 0 in the case of the
individual forecasts with the smallest and largest value, respectively, and z,;, = 1/(G — 2)
for the remaining forecasts.

The mean forecast combination exhibits superior performance in the case of return
predictability (R2,, = 1.76 %), whereas the median forecast combination works better in the

case of variance predictability (R%,, = 4.12%).>° The findings are interesting for several

00s
reasons. First, they support the results of Rapach & Zhou (2013), who argue that forecast
combinations yield more stable forecasts and increase the forecasting performance. Second,
the findings show a substantial increase in the magnitude of the R%.s. In the case of
return predictability, the mean forecast combination generates an R, which is substantially
larger than for all individual variables, except for VRP.*' The median forecast combination

outperforms all individual variables, predicting realized variance. Third, the findings support

our previous conclusion. It seems that individual predictive variables generate notable

Since FH and GMR show an overall weak performance, we additionally compute the forecast
combinations without these two variables. In that case, the mean forecast combination exhibits a superior
performance, indicated by an Rios of 3.11 %, whereas the median forecast combination generates an Rios of
4.83%.

1 detail, when using all predictive variables of our sample, the mean forecast combination generates an
Rias which is similar to all individual variables, except for VRP. However, by excluding FH and GM R, the
mean forecast combination generates an Rzos which is substantially larger than for all individual variables,
except for VRP.
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variance when predicting excess returns and realized variance, respectively.

Table XI reports the economic value for different values of risk-aversion. Compared
with our previous findings, all forecast combinations, in particular the median forecast
combination, generate substantial certainty equivalent returns. For 7 = 3, an annualized
utility gain of 6.73 % (relative to the naive strategy) may be achieved, when both return and
variance are predicted by the combined forecast. It seems that forecast combinations rather
than individual variables, generate more stable forecasts, thus, leading to significant positive

utility gains.

IV.C Predictability of the Sharpe Ratio

After predicting excess returns and realized variance in isolation, we want to answer the
question: What predictive power do the variables have, when predicting excess returns and

realized variance jointly? In doing so, we estimate the following regression model:

= o+ 1 X; + €141, (29)

ERyy,

where is the Sharpe Ratio, and ¢,, and ¢, are the intercept and slope parameters,

i1
respectively. All other variables are as previously defined.

Table XII documents the results for each predictive variable. The regression model
(29) enables us to assess whether each variable has predictive power, when predicting excess
returns and realized variance jointly. We find that CRP, GMR, SKEWPXM and VRP
have predictive power for the future Sharpe Ratios, shown by their statistically significant
t-statistics of 2.43, 1.77, —1.79, and 2.17. A look at the in-sample R*s reveals that CRP and
V RP have the highest (in-sample) predictive power of 2.56 % and 2.04 %, respectively.

Further analysis reveals that C RP and V RP also contain important information about

the future Sharpe Ratio out-of-sample, indicated by R2,s of 2.99 % and 1.54 %.
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V. Additional Analysis

To use more information when estimating the realized variance, we follow Corsi (2009)
and Sévi (2014) and use the heterogenous autoregressive (HAR) model. The HAR-RV
model provides a conditional estimate for realized variance that accounts for different trading
horizons. Further, in the previous analysis, we examine the total variance risk premium.
However, Andersen & Bondarenko (2010), Andersen et al. (2015), and Feunou et al. (2015)
show how to decompose the variance risk premium into downside and upside components.
In the following section, we analyze the predictability of both components separately.

We follow Andersen & Bondarenko (2010) and Andersen et al. (2015) and use the
downside and upside model-free implied variance. Following the arguments of Feunou et al.
(2015), investors dislike increases in the volatility of the underlying, which is associated
with an increase in the probability of severe losses. Investors hedge against these downward
movements, thus, we expect that the downside variance risk premium is the main driver of
the variance risk premium. Further, to get a better estimate for the physical expectation of

variance, we analogously use the downside and upside realized variance.

V.A Variables

Variance Risk Premium based on HAR-RV Model We define the variance risk
premium based on the H AR-RV model (VRPHAR ) as the difference between the risk-neutral

variance (VARP*M) and the RV, estimated on the basis of the HAR model (RV 7).

VRPM'R = VARPEM — RYAR (30)
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where VARP*M is as previously defined. Analogously to Section II.B and using Equation

(2), we follow Christoffersen (2012) and define

RVp, o =RV, ¢, (31)

BVip i = RV i) g4y

= RV(H%)% + RV(H%)*S + RV(H%)*Z + RV(H%)A + RVQ%] /5,

RVM,H—% = Rv(t—i—%)—QO,t—i-% - RV(H—%)—% + Rv(t-i—%)—lQ +o T vaﬁ} /21 (33)

K

3 mspectively.22 Further,

as the daily, weakly, and monthly realized variance on day ¢ +

RV(H%Q)H,(H%)HO is the realized variance over the next 21 days, i.e.:

RV iy eriy420 = [Rv(t—i—%)—f—l + RV iyo o T Ry 00| /21 (34)

HAR

Finally, to compute RV, , we run the following regression:

RVl iy iyioo = Qo+ o BRVp i + 0w Ry, i (35)

+ ¢MRVM,t+% + €t )41, (t+ ) +200

where ¢g, ¢p, dw, and ¢y, are the regression coeflicients, and €, i), q 44 1)49 18 the error
N ’ N

term over the next 21 days. The fitted values are the forecasted RV and represent RVtHAR )

Downside and Upside Variance Risk Premium We define the downside and upside
variance risk premium (VRPDOWN and VRPY") as the difference between the downside

and upside model-free implied variance ((o ) and (02")?) and the downside and upside

*2Gince we now work with daily rather than intraday data, we follow the common approach and define
one month as 21 trading days.
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realized variance (RV?"™ and RVUT), respectively:

2
VRPPOVN  — <09—) _ RV,POWN (36)

2
VRPUP — <a;@+) _ RVVP. (37)

To obtain (o2 )? and (o272, we follow Andersen & Bondarenko (2010) and Andersen et al.
(2015) and use their corridor implied volatility method to decompose the model-free implied

variance into different parts, and define the model-free implied variance ((02)?) as:

(o8) =2 [ an = 0P 4 (02 (39)

where M (K) = min (P(K),C(K)) is the minimum price of the put and call with maturity
of 1 month and strike K. Consistently, we also compute the grid of 1,000 equidistant
interpolated moneyness levels of out-of-the money option prices, as described above. Finally,

to compute (62 )% and (o02")?, we assume the threshold Se’ with 6 = 0:

2 se? MK
a;@*> — 9 (Z)dK, (39)
0
2 © M(K
<<79+> =2/, ) 1k (40)

We then use the trapezoidal rule to approximate the integrals, as outlined above.
Following Barndorff-Nielsen et al. (2010), we decompose the realized variance into the

upside and downside realized variance for a given threshold k. Imposing k = 0, we compute

RVPOYN (RVYTY on the basis of Equation (2), however, using only log-returns that are at

most (least) equal to k.

Downside and Upside Variance Risk Premium based on HAR-RV Model We

define the downside and upside variance risk premium based on the HAR-RV model
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(VRPDOWN’HAR and VRPUP’HAR) as the difference between the downside and upside
model-free implied variance ((62)® and (62°")?) and the downside and upside realized

variance, estimated on the basis of the HAR model (RVPOWNHAR anq RyURHAR)

respectively:

VRPtDOWN,HAR _ <09—)2 _ RV;DOWN,HAR’ (41)

2
VRPtUP,HAR _ <09+> _ RV];UP,HAR’ (42)

Q,

where (027)? and (621)? are as previously defined. To compute RV;POWVNHAR (R URHAR)

Y

we follow the steps described above, however, using RVZOVY (RVUP) instead of RV.

V.B Results

Table A3 of the Online Appendix reports the regression results for the different
specifications predicting the next month’s excess return and realized variance, respectively.
In Panel A, we observe that all specifications exhibit an inferior performance in predicting
excess returns compared to the VRP as proposed by Bollerslev et al. (2009). However,
we notice that VRPY", VRPPOVYN —and VRPYPHAE have still (in-sample) significant
predictive power, indicated by t-statistics between 2.47 and 2.17, and in-sample R?s from
2.65 % to 2.05 %.

In Panel B of Table A3 of the Online Appendix, we find that all specifications have a
similar (insignificant) in-sample predictive power for RV as VRP. We observe noteworthy
significant out-of-sample predictability for VRP#A® (R2 - = 3.40 %), VRPN (R2, =
4.34 %), and VRPVPHAR (B2~ — 4,63 %).

We now turn our attention to the portfolio choice implications. Table A4 of the Online
Appendix reports the results of the economic value. For an agent with risk-aversion of v = 3,

we observe that VRPY? (VRPDOWN) provides substantial improvements in the utility gain
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of 6.74 % p.a. (6.31 % p.a.) and in the Sharpe Ratio of 0.71 (0.59).

Overall, the results confirm our previous findings in providing evidence for a stronger
variance than return predictability. We also observe that VRPDOWN, VRPYF and
V RpUhHAR predict in-sample both returns and realized variance. In addition, we notice that
VRPHAR, VRPDOWN, and VRpUDHAR strongly predict realized variance out-of-sample.
Finally, the results reveal that VRPY" and VRPPOYN brovide evidence for generating

statistically significant economic value.

V.C Alternative Approach of Variance Predictability

In our main analysis, we included lagged realized variance as an additional predictor
when predicting realized variance, as it is well known that variance is a persistent process.
To see whether our results are driven by this choice, we repeat the analysis without including
lagged realized variance. We now estimate the following regression model for realized
variance:

th+1 = +nX; + €rt1s (43)

where all variables are as previously defined. Under the null hypothesis of no predictability,
the variable X, has no predictive power for future realized variance. In this case, we
expect that v; = 0, and that the best estimate for future realized variance would be its
mean. Accordingly, the historical mean variance serves as benchmark model. Using this
specification, we are able to analyze the individual predictive power of variables subject
to the standard approach in extant literature. Tables A5 and A6 of the Online Appendix
summarize the results of the predictability and economic value analysis.

In Table A5, we find that all variables, except F'H, have in-sample predictive power
for future realized variance. C'RP turns out to have significant predictive ability, indicated

by a t-statistic of —3.72. We notice that the in-sample R*s are smaller compared with our
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previous results. They range from 3.19 % for SKEWP*M t0 38.83 % for VARPXM.

In the out-of-sample analysis, we observe that in general the variables that predict
realized variance in-sample are also predictors out-of-sample. All variables, with the
exception of FH, GMR, and VRP, yield an improvement relative to the recursive mean.
The reason for the poor behavior of these three variables is likely twofold: FFH and GM R
perform poorly in general and the VRP exhibits a sign-switching behavior as discussed
previously. The R2,.s range from 1.88 % for CRP to 34.65 % for VARPXM Tt scems that,
using the standard methodology, the predictive power of some variables increases, compared
to our previous results.

In the economic value analysis, shown in Table A6, we find similar results as before.
It seems that statistical evidence of predictability does not necessarily imply important
economic gains. One can see that relative to an agent with risk-aversion v = 3 who assumes
that the market excess return and the realized variance are unpredictable, the agent who
exploits the information content of C RP would improve her utility by 4.63 % p.a. Overall,

the results confirm our previous findings.

VI. Conclusion

This paper comprehensively studies the predictive power of option-implied variables for
future excess returns and realized variance. A variable is considered to have predictive power
if it exhibits statistically significant forecasting power and also adds economic value. We
find that the correlation risk premium and the variance risk premium emerge as statistically
significant predictors of both the market excess return and the realized variance. This is
true both in- and out-of-sample.

We then investigate the economic value of the documented predictability. Our results

highlight an important contrast between the two variables. Relative to a naive strategy that
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assumes that excess returns and realized variance are unpredictable, the agent who relies
on the correlation risk premium as a timing signal realizes utility gains of 5.03% p.a. In
contrast, the timing strategy that uses the variance risk premium as timing signal yields lower
certainty equivalent returns than a naive strategy that assumes constant excess returns and
realized variance. Thus, our analysis shows that statistical evidence of predictability does
not necessarily translate into economic value. Moreover, we find that forecast combinations
generate stable forecasts for both excess returns and realized variance, and that they add
substantial economic value.

We further decompose the total variance risk premium into the downside and upside
components, and analyze the predictability of different versions of the variance risk premium.
We show that the upside and downside variance risk premia have noteworthy (in-sample)
predictive power for excess returns and realized variance. Further, a timing strategy provides
substantial utility gains.

Future research could analyze the predictive power of option-implied variables for
specific industry returns as well as different asset classes. Furthermore, we believe that
it would be interesting to study whether the C'RP performs similarly well in predicting
equity returns in further developed and emerging markets. Finally, it could be interesting to
test whether forward-looking option-implied information drives out the predictive power of

U.S. returns for developed and emerging countries, as documented by Rapach et al. (2013).
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Figure 1: Return Predictability

This figure plots the in- and out-of-sample performances of individual variables. We regress monthly
excess returns on a constant and the lagged predictive variable. On the ordinate, there are the
cumulative differences in squared forecast errors (CDSFE). The in-sample performance is the
difference between the cumulative squared demeaned excess return and the cumulative squared
regression residual, and the out-of-sample performance is the difference between the cumulative
squared forecast error from the restricted model and the cumulative squared forecast error from the
unrestricted model. The grey bars indicate the U.S. recessions, published by the NBER. All data
are sampled at the monthly frequency and relate to the SEP 500 index.
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Figure 2: Variance Predictability

This figure plots the in- and out-of-sample performances of individual variables. We regress monthly
realized variance on a constant, the lagged predictive variable, and the lagged realized variance.
On the ordinate, there are the cumulative differences in squared forecast errors (CDSFE). The
in-sample performance is the difference between the cumulative squared demeaned excess return
and the cumulative squared regression residual, and the out-of-sample performance is the difference
between the cumulative squared forecast error from the restricted model and the cumulative squared
forecast error from the unrestricted model. The grey bars indicate the U.S. recessions, published by
the NBER. All data are sampled at the monthly frequency and relate to the SEP 500 index.
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Table I: Summary Statistics

This table summarizes key statistics about several variables. CRP denotes the correlation risk
premium. I1C is the implied correlation. RC is the realized correlation. ER is the market excess
return. EXKURTP*M s the risk-neutral kurtosis of Bakshi et al. (2003). FH is the risk-neutral
riskiness measure of Leiss & Nax (2018). GMR is the generalized measure of riskiness of Bali
et al. (2011). RV is the realized variance. SKEWPEM s the risk-neutral skewness of Bakshi
et al. (2003). SMIRK is the option smirk. VARPBEM s the risk-neutral variance of Bakshi et al.
(2003). VRP is the variance risk premium computed as the difference between the risk-neutral
variance of Bakshi et al. (2003) and the most recent observation of the realized variance. VRPHAR
denotes the variance risk premium based on the HAR-RV model. VRPPOWN s the downside
variance risk premium. VRPY? s the upside variance risk premium. VRPPOWNHAR ;o ype
downside variance risk premium based on the HAR-RV model. Finally, VRPYPHAR o 4he upside
variance risk premium based on the HAR-RV model. “Mean”, “Std Dev”, “Skew”, and “Kurt”
denote the mean, standard deviation, skewness, and kurtosis, respectively. The last two columns
show the AR(1) coefficient and the number of observations, respectively. All data are sampled at
the monthly frequency and relate to the S&P 500 indez.

Mean Std Dev Skew Kurt AR(1) Nobs
CRP 0.0941 0.1019 0.1409 3.2970 0.2496 228
IC 0.4166 0.1403 0.5092 3.1725 0.7621 228
RC 0.3225 0.1398 0.8731 3.5571 0.5854 228
ER 0.0591 0.1555 -0.8294 4.4268 0.0900 228
EXKURTBEM 0.7571 0.2840 0.4887 3.0378 0.7522 228
FH 0.4302 0.3250 0.0241 1.4467 0.9250 228
GMR 9.0972 12.5814 2.3413 11.0123 0.8818 298
RV 0.0317 0.0519 7.3129 75.2277 0.6333 228
SKEWPEM -0.8698 0.1978 0.2588 3.0325 0.6611 228
SMIRK 0.1326 0.2522 0.1584 3.4828 0.3299 228
vV ARBEM 0.0474 0.0427 3.3066 18.0518 0.7880 228
VRP 0.0157 0.0284 -5.0586 61.7528 0.1340 228
vV RpHAR 0.0459 0.0414 3.2330 17.3103 0.7887 228
V RPPOWN -0.0136 0.0249 -7.5246 79.4665 0.5899 228
VRPYF -0.0143 0.0244 -7.5439 78.4141 0.6219 2928
V RpPOWN.HAR 0.0016 0.0015 2.7589 13.2030 0.7708 2928
VvV RpYDHAR 0.0007 0.0007 1.7649 7.6611 0.5894 2928
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Table IV: Variance Predictability

This table reports the regression results of monthly realized variance on a constant, which we denote
by 7o, the lagged predictive variable, and the lagged realized variance RV. We report the t-statistics
in parentheses. Statistical inferences are based on a bootstrapped distribution. The forecast of
a fitted AR(1) model serves as naive benchmark. CRP denotes the correlation risk premium.
EXKURTP*M is the risk-neutral kurtosis of Bakshi et al. (2003). FH is the risk-neutral riskiness
measure of Leiss & Nax (2018). GMR is the generalized measure of riskiness of Bali et al. (2011).
SKEWPEM s the risk-neutral skewness of Bakshi et al. (2003). SMIRK is the option smirk.
VARBEM s the risk-neutral variance of Bakshi et al. (2003). Finally, VRP is the variance risk
premium computed as the difference between the risk-neutral variance of Bakshi et al. (2003) and the
most recent observation of the realized variance. R? and R?,OS are the in-sample and out-of-sample
R?, respectively. *, **, and *** indicate the significance at the 10%, 5%, and 1% significance
levels, respectively. The sample period extends from January 1996 to December 2014. All data are
sampled at the monthly frequency and relate to the SEP 500 index.

Yo 0.016%*F  0.031%%*  0.012%%  0.011%%* 0.035%*%%  0.010%**  0.002 0.002

(3.80) (3.57) (2.43) (3.28) (2.78) (2.98) (0.49) (0.49)
RV 0.612%F%  (.596%%*  (.633%%*  0.631F%F  0.621%%F  (.585%FF  (.374%F% (. 750%k

(11.51) (11.14)  (12.20)  (11.66)  (12.01)  (10.67) (4.06) (12.26)
CRP -0.043

(-1.59)
EXKURTEBEM -0.024*%*

(-2.37)
FH 0.000
(-0.05)
GMR 0.000
(0.15)
SKEWBKM 0.026*
(1.91)
SMIRK 0.027%*
(2.40)
VARBEM 0.376%**
(3.37)
VRP 0.376%**
(3.37)

R? 40.80%*  41.60**  40.13 4014 41.09%*  41.64%*%  43.03%%  43.03**
R2,. R B Ve -1.41 -5.492 2.40%Fk  3QQwkE g ygiik 3 ygiik
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Table VI: Out-of-Sample Analysis: Restriction

This table reports the results of the out-of-sample analysis after imposing economically motivated
restrictions. We report the MSE-F statistics in parenthesis. CRP denotes the correlation risk
premium. EXKURTP®M s the risk-neutral kurtosis of Bakshi et al. (2003). FH is the risk-
neutral riskiness measure of Leiss € Nax (2018). GMR is the generalized measure of riskiness of
Bali et al. (2011). SKEWPEM s the risk-neutral skewness of Bakshi et al. (2003). SMIRK is
the option smark. VARPEM s the risk-neutral variance of Bakshi et al. (2003). Finally, VRP is
the variance risk premium computed as the difference between the risk-neutral variance of Bakshi
et al. (2003) and the most recent observation of the realized variance. The historical mean return,
“(I) »”
denotes the imposition of the first restriction, where we set the slope estimate in the out-of-sample
analysis equal to zero, whenever its sign differs from that of the in-sample analysis. “(II)” denotes
the tmposition of the second restriction, where we set the forecast equal to zero, whenever it is
“(I+I1)” denotes the joint imposition of both restrictions. Rfms is the out-of-sample

ok

and the forecast of a fitted AR(1) model for realized variance serve as naive benchmarks.

negative.
2 * k%
R 7,7,

respectively. All data are sampled at the monthly frequency and relate to the SEP 500 index.

and indicate statistical significance at the 10%, 5%, and 1% significance levels,

Panel A: Return Predictability

>
Q =
&~ > <
Ao Q K <
= 2 E et Q
A, ~ & - o A,
& < i = » = < &
Q K 53 O] %) %) SN ~
(1) R%,, 281%F 122 270 -327 -0.53  0.07 -3.84 5.50%F*
(4.83)  (-2.02) (-4.39) (-5.30) (-0.87) (0.12) (-6.18)  (9.73)
(IT) R%, 2.69% 037  -140  -3.69 0.56 0.93  -3.39  4.43%k*
(4.61)  (0.62) (-2.31) (-5.94) (0.95) (1.57) (-5.48) (7.74)
(I+11) RZ,, 2.69** 037  -1.38  -3.27 0.56 0.93  -2.95  4.43%**
(4.61)  (0.62) (-2.27) (-5.30) (0.95) (1.57) (-4.79) (7.74)
Panel B: Variance Predictability
S
) =
&~ = <
o Q A ;
> = o q
o, ~ & S = & a,
o5 > s = i = < 5
) S I, ) @ @ N N
(1) R2,, 3.28%%% 334%kk 182  _11.23  2.40%F 3.89Fk 3 7gEkk 3 7gwkk
(5.67)  (5.77)  (-2.98) (-16.87) (4.10)  (6.76)  (6.57)  (6.57)
(I1) R2,.  3.18%F  344%% 141 2542 2.40%F  3.89%kx 3 7Rk 3 7Rkk
(5.48)  (5.95) (-2.32) (-8.58) (4.10) (6.76)  (6.57)  (6.57)
(I4+11)  R2,, 3.28%F  3.44%F  _1.82  -11.23  240%% 3.89%k*  378%* 3 78%*
(5.67)  (5.95) (-2.98) (-16.87) (4.10) (6.76)  (6.57)  (6.57)
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Table X: Out-of-Sample Analysis: Forecast Combinations

This table reports the results of the out-of-sample analysis after the use of forecast combinations.
The mean forecast combination [MeanFC], the median forecast combination [MedianFC], and the
trimmed mean forecast combination [TrMeanFC] are used as alternative specifications. We report
the MSE-F statistics in parenthesis. The historical mean return, and the forecast of a fitted AR(1)
model for realized variance serve as naive benchmarks. Siz forecasting variables are used. CRP
denotes the correlation risk premium. EXKURTPEM s the risk-neutral kurtosis of Bakshi et al.
(2003). FH is the risk-neutral riskiness measure of Leiss & Nax (2018). GMR is the generalized
measure of riskiness of Bali et al. (2011). SKEWBEM s the risk-neutral skewness of Bakshi
et al. (2003). SMIRK is the option smirk. VARP® M s the risk-neutral variance of Bakshi
et al. (2003). Finally, VRP is the variance risk premium computed as the difference between
the risk-neutral variance of Bakshi et al. (2003) and the most recent observation of the realized
variance. R2,, is the out-of-sample R*. *, **, and ***
5%, and 1% significance levels, respectively. All data are sampled at the monthly frequency and
relate to the SEP 500 index.

indicate statistical significance at the 10 %,

Panel A: Return Predictability

FC

MeanFC
MedianFC
TrMean

R2,, 176%F%  0.91%%  1.36%%*
(2.99)  (1.54)  (2.31)

Panel B: Variance Predictability

MeanFC
MedianFC
TrMeanFC

R2,,  2.50%Fk  412%k% 3 (GFF*
(4.28)  (7.18) (5.27)

o1



Table XI: Economic Value: Forecast Combinations

This table reports utility gains and Sharpe Ratios for each of the three scenarios based on forecast
combinations. Scenario 1 assumes that realized variance is unpredictable and that the forecast
combination only predicts excess returns. Scenario 2 assumes that excess returns are unpredictable
but that the forecast combination predicts the variance of market returns. Scenario 8 implicitly
assumes that excess returns and variance can be predicted by the forecast combination. The
historical mean return and the forecast of a fitted AR(1) model for realized variance serve as
naive benchmarks. AC’ER(U, AC’ER(2>, and ACER® are the annualized utility gains relative to
a strategy that assumes unpredictable excess returns and realized variance, achieved by following
strategy 1, 2, and 3, respectively. Similarly, ASR(I), ASR(Q), and ASR® are the annualized
improvements in Sharpe Ratios achieved by following strateqy 1, 2, and 3, respectively. ™, ™™, and
*** indicate the significance at the 10 %, 5 %, and 1 % significance levels, respectively. All data
are sampled at the monthly frequency and relate to the SEP 500 index.

Panel A: Mean Forecast Combination

ACERY ACER® ACER® ASRY ASR® ASR®

v=3 1.21 6.07 5.80 0.11 0.50%**  (.50%***
v = 0.83 3.76 3.76 0.14 0.55%#%  (0.60%***
v=9 0.55 2.52 2.59 0.14 0.54%¥%  (.62%**
v=12 0.41 1.89 1.94 0.14 0.54%¥%  (.62%**

Panel B: Median Forecast Combination

ACERY ACER® ACER® ASrRY ASR® ASR®

v=3 2.00 6.08 6.22 0.18 0.54%¥% (57
v=6 0.57 3.68 3.85 0.10 0.58%**  (.64***
v=9 0.38 2.46 2.62 0.10 0.57#F%%  0.65%***
v =12 0.28 1.85 1.96 0.10 0.57#¥F% (.65 **

Panel C: Trimmed Mean Forecast Combination

ACERY ACER® ACER® ASRY ASR® ASR®

=3 1.63 6.05 5.94 0.14 0.52%*%  (.52%H*
v = 0.69 3.69 3.80 0.12 0.56%*%  (.62%**
vy=9 0.46 2.47 2.56 0.12 0.56%*%  (.62%**
v=12 0.34 1.86 1.92 0.12 0.56%**  (0.62%**

02
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Table Al: Economic Value with Turnover and Transaction Costs

This table reports the turnover, the utility gains, and the Sharpe Ratios for each of the three
scenarios. Scenario 1 assumes that the realized variance is unpredictable and that the forecasting
variable [name in column] only predicts the excess returns. Scenario 2 assumes that the excess
returns are unpredictable but that the variable [name in column] and the lagged realized variance
predict the realized variance. Scenario 3 implicitly assumes that the excess returns and the realized
variance can be predicted by the forecasting variable [name in column/, and in the latter case, by
the forecasting variable [name in column] and the lagged realized variance. The historical mean
return, and the forecast of a fitted AR(1) model for realized variance serve as naive benchmarks.
Turnover,,, is the monthly absolute value of the turnover for the naive strategy. Turnovergie)l
represents the monthly relative turnover of strateqy i related to the benchmark. ACER(D,
AC’ER(Q), and ACER® are the annualized utility gains relative to a strategy that assumes
unpredictable excess returns and realized variance, achieved by following strategy 1, 2, and 3,
respectively. Similarly, ASR(D, ASR(2), and ASR®) are the annualized improvements in Sharpe
Ratios achieved by following strategy 1, 2, and 3, respectively. ™, ™™, and ™" indicate the significance
at the 10 %, 5 %, and 1 % significance levels, respectively. All data are sampled at the monthly
frequency and relate to the SEIP 500 index.

Panel A: v=3

CRP EXKURTP*M rH  GMR SKEWPXM SMIRK VARPXM  vyRP
Turnover,,, — 0.0448 0.0448 0.0448  0.0448 0.0448 0.0448 0.0448 0.0448
Turnover'l)  12.1906 5.4513 45365  3.0830 5.5545 8.9341 2.2193 9.6821
Turnover'?)  4.8831 5.5580 1.2842 20465 2.9157 2.7424 2.7127  3.9283
Turnover)  14.6331 8.2202 41985  2.0576 6.6146 10.9321 3.4473  11.5826
ACERW 2.48 4.19 .03 -4.31 0.64 0.85 7.62 -8.46
ACER® -1.03 1.60 1.43 4.39 1.81 1.87 5.94 7.04
ACER® 1.38 4.46 3.17 2.36 2.33 0.55 -4.91 -5.47
ASRW 0.21 0.39%* 012  -0.14 0.06 0.05 S0.43%%% Q5T
ASR® 0.06 0.20 0.12%  0.24%%* 0.21 0.217%* 0.36%%%  .47H0k
ASR® 0.13 0.36* 0.26%*  0.22% 0.20 0.06 -0.22 -0.25

Panel B: v =6

CRP EXKURTPEM FH GMR SKEWBEM gy TIRK  VARPEM  yRPp
Turnover,,, — 0.0247 0.0247 0.0247  0.0247 0.0247 0.0247 0.0247 0.0247
Turnover't)  15.9051 7.0084 5.7696  5.5303 7.0350 9.3238 42300  12.5610
Turnover)  10.6311 10.8603 2.2327  2.5870 6.8986 4.7041 5.8114 9.8254
Turnover?)  25.8225 16.2198 8.4137  5.2087 13.7024 18.2632 52006  18.7912
ACERW 0.88 3.03 079 -9.52 0.30 0.85 -11.25 -10.32
ACER® 5.70 0.95 -1.58 2.76 0.29 0.26 4.83 4.18
ACER® -1.36 2.62 0.68  -3.30 0.64 -0.28 -6.18 -10.91
ASRY 0.18 0.49%%* 0.07  -0.38%%x 0.10 0.10 S0.61FFF .73k
ASR® 0.14 0.25 0.02  0.21%** 0.20% 0.16 0.44%%%  ().49%k*
ASR® 0.12 0.41% 0.22 0.08 0.27 0.06 -0.28 -0.54%%




Table Al: Economic Value with Turnover and Transaction Costs
(continued)

Panel C: v =9

CRP EXKURTP*™  FH GMR SKEWBXM gSMIRK VARPXM  VERP
Turnover,,, 0.0151 0.0151 0.0151  0.0151 0.0151 0.0151 0.0151 0.0151
Turnover'l)  18.4886 8.8266 71716 6.7321 9.2375 10.2124 5.7328  15.0938
Turnover)  15.6516 16.8364 3.4586  2.6537 10.1848 5.1486 6.6592  17.8674
Turnover)  36.6566 26.1824 111854 7.8807 20.6825 24.7431 57841  22.0822
ACERW 0.15 2.11 -0.62 743 -0.18 0.57 -10.81 -9.58
ACER® -6.59 0.70 2.11 1.82 0.03 0.13 3.25 2.20
ACER® 217 1.01 -3.55 4.35 -1.03 -0.41 -4.53 -9.70
ASRY 0.13 0.50%%% 0.08  -0.40%** 0.07 0.10 S0.65%FF .74
ASR® -0.18 0.25% 20.01  0.18%x 0.18* 0.14 0.44%%% () 49%%%
ASR®) 0.14 0.39 0.07 -0.01 0.22 0.10 -0.29 -0.59%%%

Panel D: v =12

CRP EXKURTP*M  FH GMR SKEWEBEM gy IRK VARPEM  yERP
Turnover,,,  0.0108 0.0108 0.0108  0.0108 0.0108 0.0108 0.0108 0.0108
Turnover'l)  19.5157 9.1852 74131 7.4079 10.0488 10.6805 6.4946  15.8094
Turnover)  18.2998 21.0369 45438 2.6821 12.2949 5.3345 6.8723  24.3221
Turnover)  45.3856 34.0648 12.6527  9.0251 25.9198 27.6275 6.0582  23.5223
ACERY 0.07 1.58 -0.49 6.05 0.17 0.43 -8.86 7.25
ACER® 7.04 0.49 2.40 1.36 0.24 0.08 2.43 0.77
ACER® -2.90 0.09 475 -3.49 -1.78 -0.48 -3.45 -8.30
ASRY 0.12 0.50%%* 0.08  -0.41%%x 0.07 0.10 J0.65%FF 0.75%x
ASR®? -0.21 0.25% 20.04  0.18%x 0.14 0.13 0.44%%%  ().43%
ASR® 0.11 0.38 -0.01 -0.01 0.21 0.09 -0.29 -0.59%%*




Table A2: Out-of-Sample Analysis: Restriction — Frequencies

This table reports the absolute frequency of how often the economically motivated restrictions
imposed are binding in the out-of-sample analysis, shown in Table VI. Panel A shows the frequency
for each individual variable, predicting the next month’s excess return. Panel B shows the frequency
for each individual variable as well as lagged realized variance, predicting the next month’s realized
variance. CRP denotes the correlation risk premium. EXK URTPEM s the risk-neutral kurtosis
of Bakshi et al. (2003). FH is the risk-neutral riskiness measure of Leiss € Nax (2018). GMR is
the generalized measure of riskiness of Bali et al. (2011). SKEWBEM s the risk-neutral skewness
of Bakshi et al. (2003). SMIRK is the option smirk. VARPEM s the risk-neutral variance of
Bakshi et al. (2003). Finally, VRP is the variance risk premium computed as the difference
between the risk-neutral variance of Bakshi et al. (2003) and the most recent observation of the
realized variance. The historical mean return, and the forecast of a fitted AR (1) model for realized
variance serve as naive benchmarks. “(I)” denotes the imposition of the first restriction, where we
set the slope estimate in the out-of-sample analysis equal to zero, whenever its sign differs from
that of the in-sample analysis. “(11)” denotes the imposition of the second restriction, where we
set the forecast equal to zero, whenever it is negative. “(I+I11)” denotes the joint imposition of both
restrictions. “(I+II) (I)” (“(I+II) (II)”) refers to the frequency of the first (second) restriction in
the case of the joint imposition of both restrictions. All data are sampled at the monthly frequency
and relate to the SEIP 500 index.

Panel A: Return Predictability

E
q =
&~ X S
= Tk ©
2 [ E < Q
TS ST
& < B S x = = &
O R K T n »n > >
@) 0 0 12 8 0 0 35 0
(I1) 53 32 8 7 29 62 56 77
(I+11) (I) 0 0 12 8 0 0 35 0
(I+I) (II) 53 32 9 0 29 62 50 77
Panel B: Variance Predictability
3
9 =
& X <
x Tk g
= = 2 a
X & R = x g
& o< Z S k= %K
O R K T nnw n =~ >
(I 7w 0 7% 3 0 0 0 0
(I1) 0o 3 0 0 0 0O 0 O
(I+11) O 7% 0 76 3 0 0 0 O
(I+11) (I o 3 0 0 O 0O 0 O
Lagged Realized Variance
(1) 0 0 0 O O 0O 0 O
(I1) - - - - - - - -
(I+11) () 0o 0 0 0O O 0O 0 O
(I+11) (11 - - S




Table A3: Return and Variance Predictability of VRP Specifications

Panel A of this table reports the regression results of monthly excess returns on a constant, which
we denote by By, and the lagged predictive variable. Panel B reports the regression results of
monthly realized variance on a constant, which we denote by g, the lagged predictive variable,
and the lagged realized variance. Statistical inferences are based on a bootstrapped distribution.
The historical mean return, and the forecast of a fitted AR(1) model for realized variance serve
as naive benchmarks. VRPEAR denotes the variance risk premium based on the HAR-RV model.
VRPPOYN s the downside variance risk premium. VRPYT is the upside variance risk premium.
VRPPOWNHAR o ype downside variance risk premium based on the HAR-RV model. Finally,
VRPUPHAR o the upside variance risk premium based on the HAR-RV model. R? and Rzos are
the in-sample and out-of-sample RQ, respectively. We report the t-statistics in parentheses. ™, ™",
and ™" indicate the significance at the 10%, 5%, and 1% significance levels, respectively. The
sample period extends from January 1996 to December 2014. All data are sampled at the monthly
frequency and relate to the SEIP 500 index.

Panel A: Return Predictability

=
N
= = =
& 2 3 5
< Q a Q A
T Q =) Q =)
A, R, o, R, R,
& & A~ & &
N ~ N N N
R? 0.00 2.23%F 265%F 038  2.05%*
R2,, 537 -1.13 238 -4.10  -1.25

t—stat  (0.10) (2.26) (2.47) (0.93) (2.17)

Panel B: Variance Predictability

&
=
> - =
5 2 2 T
< Q a, o a
as Q D Q D
A, a, o, a, o,
x ~ ~ ~
~ -~ ~ -~ ~
R? 42.95 41.03 4034 41.19 43.94

R2,, 3.40%F%  A34FFF 346 -4.05  4.63FFF
t—stat  (3.32)  (1.85)  (0.89) (2.01)  (3.90)




Table A4: Economic Value of VRP Specifications

This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario
1 assumes that the realized variance is unpredictable and that the forecasting variable [name
in column/ only predicts the excess returns. Scenario 2 assumes that the excess returns are
unpredictable but that the variable [name in column] and the lagged realized variance predict
the realized variance. Scenario 8 implicitly assumes that the excess returns and the realized
variance can be predicted by the forecasting variable [name in column/, and in the latter case,
by the forecasting variable [name in column] and the lagged realized variance. The historical mean
return, and the forecast of a fitted AR(1) model for realized variance serve as naive benchmarks.
AC’ER(I), AC’ER(Q), and ACER® are the annualized utility gains relative to a strategy that
assumes unpredictable excess returns and realized variance, achieved by following strategy 1, 2,
and 3, respectively. Similarly, ASR(l), ASR(Z), and ASR®) are the annualized improvements in
Sharpe Ratios achieved by following strategy 1, 2, and 8, respectively. ™, ™, and *™**
significance at the 10 %, 5 %, and 1 % significance levels, respectively. All data are sampled at the
monthly frequency and relate to the SEP 500 indez.

indicate the

Panel A: v =3

s
=
2 z =
& 2 2 ]
< Qo Q, Q a,
T Q D Q =
a, R a, R, a,
< = < = <
N N N N N
ACERM 741 0.24 2.95 -9.33 -9.25
ACER®  6.29 7.40 6.73 5.17 5.11
ACER®  _4.36 6.31 6.74 -4.99 -8.24

ASRW 043%FF0.04  0.19%%  L0.55FFF 058
ASRP  0.38%FF  (69FFF  (71FRF (37RRE (.40%FF
ASR® 20.20  0.59%FF QTIRRFL0.29%  -0.51%

Panel B: v =6

et
N
> = 5
= 3 2 T
< Q A Q Y
as] Q =) Q =)
A, A, A, R, Q,
< & & = <
N N N N N
ACER™ 1071 -1.91 0.96 211.09  -10.73
ACER® 547 5.94 5.12 3.70 4.81
ACER®  -6.36 4.47 6.13 6.32 8.17

ASRM  L0.60%FF 012 0.17F -0.64FFF  0.69%%*
ASR®  046FFF  0.74%FF (.60%FFF  0.40%FF  0.62%FF
ASR® 0.27  0.61%F  0.79%FX  0.37FF (.59%**




Table A4: Economic Value of VRP Specifications (continued)

Panel C: v=9

v
=
2 z S
= S 2 ]
< Qo Q, Q a,
= Q =) Q =)
- A, 8 A, :
o & < = <
N N N N N
ACERM  -10.65 243 0.63 -10.89 9.83
ACER® 372 4.24 3.21 2.49 4.36
ACER® 472 3.39 4.63 -5.68 -6.97
ASRY 0620 .21 0.17%  -0.65%**F (. 73%%*
ASR® 0.ATF  QETHRF (.45%%  (.36%FF  (.76%%*
ASR® 20.29  0.64%F  0.80%FF  _0.40%*  _0.60%**
Panel D: v =12
x
=
> = =
& B 2 ol
< Q A, Q a
T Q o Q o
A, a, A, a, A,
o < < < &
N N N N N
ACERY 865 -2.20 047  -10.35 7.82
ACER® 278 3.15 2.25 1.85 3.43
ACER®  -3.60 2.53 3.25 -4.61 -5.49
ASRY  L0.63%FF  0.23% 0.7 -0.62%F% (725
ASR® 0.47HF%  Q.61%F%  0.43%  (.34%F*  (.80%F*
ASR® 2029 0.65%F  0.76%F  _0.40%F  -0.59%%*
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