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Abstract

We comprehensively analyze the predictive power of several option-implied variables

for monthly S&P 500 excess returns and realized variance. The correlation risk

premium (CRP ) and the variance risk premium (V RP ) emerge as strong predictors

of both excess returns and realized variance. This is true both in- and out-of-sample.

Our results also reveal that statistical evidence of predictability does not necessarily

lead to economic gains. However, a timing strategy based on the CRP leads to utility

gains of more than 5.03 % per annum. Forecast combinations provide stable forecasts

for both excess returns and realized variance, and add economic value.
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I. Introduction

A growing literature, e.g. Jiang & Tian (2005), Bollerslev et al. (2009), and Driessen

et al. (2013), documents the predictive power of option-implied variables for equity excess

returns and realized variance. The growing number of option-implied predictors raises several

questions: Which variables really forecast market excess returns? Do the variables that

predict market excess returns also forecast realized variance? Does predictability lead to

economic gains? These are some of the questions we want to study.

The main contribution of this paper is to provide a comprehensive analysis of the

forecasting ability of variables separately proposed in the recent literature on option-implied

predictors. We perform our analysis following the methodological background of Goyal

& Welch (2008). Importantly, we do not only analyze return predictability, but consider

the predictability of variance at the same time. This is important from a portfolio choice

perspective, since both quantities are needed for a portfolio decision. As such, we do not

only consider statistical predictability, but also analyze the economic significance of return

and variance predictability. We find that several variables, including the correlation risk

premium (CRP ) and the variance risk premium (V RP ), predict the monthly excess return

of the S&P 500. This is the case both in- and out-of-sample. We also show that both the

CRP and the V RP predict not only the market excess return but also its realized variance.

On the other hand, while most predictors are based on the option-implied moments of Bakshi

et al. (2003), we note that the risk-neutral moments themselves have strong predictive power

only for realized variance but not for the market excess return.

When studying the economic effects of the documented predictability in the context of

portfolio choice, we find that relative to the agent who assumes that the mean and variance of

the market return are unpredictable, a mean–variance agent with a risk-aversion coefficient

of 3 who uses the information content of the CRP would realize utility gains of 5.03 % per
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annum (p.a.). Relatedly, we find that a return timing strategy based on the V RP leads to

lower utility gains than those afforded by the strategy based on the recursive mean. This

indicates that the statistical evidence of predictability of excess returns and realized variance,

respectively, by the V RP does not always translate into economic gains. We conjecture that

this result is due to the fact that individual variables lead to a large dispersion in the forecast

estimation. Forecast combinations instead appear to generate stable forecasts for both excess

returns and realized variance, and add economic value. Further, we link this result also to

the sign-switching behavior of the V RP around economically important periods.

A variable is considered to have predictive power if it passes two tests. First, it has to

generate statistically significant forecasts. In this case the variable contains key information

about the variation in the market risk premium and the realized variance, respectively.

Bollerslev et al. (2009) and Drechsler & Yaron (2011) argue that time-varying economic

uncertainty is captured by the variance risk premium and, thus, affects the variation in the

market risk premium. Driessen et al. (2009, 2013) state that the time-varying correlation

risk is linked to economic uncertainty and, thus, also relates to the market price of return

risk. Second, the variable needs to add economic value. Since the predictability, measured

by the R2 is, in general, small in magnitude, the question arises whether it is economically

meaningful. Does an investor obtain an increase in utility by taking the variable into account?

This aspect is often ignored in the existing literature. Our results show that the CRP emerges

as the only predictor that passes both tests.

For robustness, we analyze the predictability of different specifications of the V RP . We

follow Andersen & Bondarenko (2010), Andersen et al. (2015), and Feunou et al. (2015) and

decompose the total variance risk premium into the downside and upside components. The

results show that the upside and downside variance risk premia significantly predict excess

returns and realized variance in-sample and add economic value based on a timing strategy.

Our work relates to the literature on the predictability of the market excess return
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and/or its associated realized variance using option-implied quantities. Bollerslev et al.

(2009) document the predictive power of the variance risk premium for S&P 500 excess

returns, and Bollerslev et al. (2014) document similar results for a broad range of

international equity indices. Pyun (2016) provides evidence of a weak out-of-sample

performance of the variance risk premium for S&P 500 excess returns. Driessen et al.

(2009, 2013) show that the correlation risk premium predicts S&P 500 excess returns,

whereas Cosemans (2011) points out that the correlation risk premium and the systematic

part of individual variance risk premia drive the predictive power of the variance risk

premium for market excess returns. Zhou (2013) documents the predictive power of the

S&P 500 implied correlation index for S&P 500 index returns. Xing et al. (2010) find that

the option-implied smirk contains information about the cross-section of equity returns.

Cremers & Weinbaum (2010) document that deviations from the put–call parity, measured

as the difference in implied volatility between pairs of call and put options of U.S. stocks,

contain information about the cross-section of stock returns and have predictive power for

these. Rehman & Vilkov (2012) and Stilger et al. (2016) show that implied skewness of

individual U.S. stocks has predictive power for future returns. Bali et al. (2011) introduce

an option-implied generalized measure of riskiness and provide evidence for its predictive

power for the cross-section of individual stock returns. Bali et al. (2012) and Bali et al.

(2015) extend the analysis and document the predictive power of the generalized measure

for economic downturns and future market excess returns. Leiss et al. (2015) and Leiss & Nax

(2018) examine non-parametric risk-neutral densities from S&P 500 index options. Leiss &

Nax (2018) provide evidence for the predictive power of an option-implied riskiness measure

based on Foster & Hart (2009) for future downturns. Bali et al. (2017) document a relation

between the risk-neutral moments of Bakshi et al. (2003) and expected stock returns.

Jiang & Tian (2005) and Kourtis et al. (2016) establish the forecasting power of the

S&P 500 option-implied variance for realized variance. The above mentioned studies use
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different sample periods and statistical techniques to document their results, thus making

the interpretation and comparison of the findings somewhat difficult. We use a common

sample period and recent developments in the literature on predictability to thoroughly

analyze all these variables.

Our study also relates to the literature on the economic value of predictability. Typically,

the literature analyzes the implications of return predictability for a return timing strategy

(e.g., Campbell & Thompson, 2008; Çakmaklı & van Dijk, 2016). Similarly, studies on

realized variance predictability only explore the implications for a volatility/variance timing

strategy (Fleming et al., 2001). Unlike these studies, we jointly study the impact of return

and variance timing. This is important because in a mean–variance framework, the optimal

portfolio weight invested in the risky asset depends on both the expected return and the

expected realized variance. If a forecasting variable predicts both the market excess return

and the realized variance, it might be potentially important to account for these two effects

when computing the optimal weight.

The remainder of this paper proceeds as follows. Section II. introduces the data and

explains the construction of the main variables. Section III. presents the main empirical

results. Section IV. discusses some further results. Section V. provides additional results.

Finally, Section VI. concludes.

II. Data and Methodology

II.A Data

We obtain our data from three distinct sources. First, we retrieve the monthly time

series of the S&P 500 total return index as well as the corresponding dividend payments

from the Center for Research in Security Prices (CRSP) database. Second, we obtain S&P
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500 index option data from OptionMetrics. The OptionMetrics dataset contains information

about option contracts available in the market as well as standardized options, both of which

are useful for our analysis (see Section II.B). Third, we use intraday data on the S&P 500

index sampled at the 5-minute frequency from Thomson Reuters Tick History (TRTH). In

sampling the intraday data, we focus on the normal trading hours, i.e. from 09:30 AM to

04:00 PM Eastern Daylight Time (EDT). Our sample period extends from January 1996

to December 2014. It is worth pointing out that although the CRSP database covers a

period starting before 1996, this is not the case for the OptionMetrics and TRTH. Starting

our sample in January 1996 allows us to guarantee the availability of data from all three

databases.

II.B Variables

Armed with the dataset introduced above, we are now able to construct our main

variables.

Market Excess Return We compute the excess return on the S&P 500 index by

subtracting the riskless rate for the corresponding period from the total return on the equity

index:

ERt+1 = 12× log

(
Pt+1

Pt

)
− rf t, (1)

where ERt+1 is the (annualized) monthly excess return on the S&P 500 index at the end of

month t+ 1. Pt+1 and Pt denote the total return price index at the end of months t+ 1 and

t, respectively. rf t refers to the (annualized) riskless rate observed at the end of month t.1

Following Goyal & Welch (2008), we use the 1-month T-bill rate to proxy for the riskless

rate.

1Throughout this paper, we use the convention that the riskless rate is given the subscript for the time
when it is observed. Thus, the riskless rate is observed at time t even though it is realized at time t+ 1.
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Realized Variance In order to estimate the realized variance of the stock market, we

exploit developments in the literature on high-frequency financial econometrics. Andersen

et al. (2003) show that by sampling data at the intraday level, one can improve the accurate

measurement of realized variance. Building on this insight, we use intraday prices sampled

at the 5-minute frequency to compute the realized variance of the asset:

RV t+1 =
360

N
×

 N∑
i=1

m−1∑
j=1

log

(
St+ i

N
,j+1

St+ i
N
,j

)2
+ log

(
St+ i

N
,1

St+ i−1
N
,m

)2
 , (2)

where RV t+1 is the realized variance at the end of month t + 1. The first term to the

right of the equality sign simply annualizes the variance estimate, where N is the number of

days between the end of month t and that of month t + 1. Each day contains m intraday

observations. St+ i
N
,j+1 and St+ i

N
,j are the spot prices observed on day t+ i

N
at times j + 1

and j, respectively. The last term to the right of the equality sign simply reflects the effect

of overnight returns. In particular, it captures the impact of the return from the end of the

previous day to the opening of the following day.

Option-Implied Moments Recent studies document the information content of option-

implied moments, e.g. Jiang & Tian (2005), Prokopczuk & Wese Simen (2014), and Kourtis

et al. (2016), for realized variance. We exploit the theoretical results of Bakshi et al. (2003)

to construct the risk-neutral (i) variance (V ARBKM), (ii) skewness (SKEWBKM), and (iii)

excess kurtosis (EXKURTBKM):

V ARBKM =
erτV − µ2

τ
, (3)

SKEWBKM =
erτW − 3µerτV + 2µ3

[erτV − µ2]3/2
, (4)

EXKURTBKM =
erτX − 4µerτW + 6erτµ2V − 3µ4

[erτV − µ2]2
− 3, (5)
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where r denotes the continuously compounded (annualized) interest rate for the period from

t to t+τ . We use the Ivy curve from OptionMetrics to proxy for the interest rate. Essentially,

this curve is based on London Interbank Offered Rate (LIBOR) and Eurodollar futures.2 τ

indicates the time to expiration of each option, expressed as a fraction of a year. Note that

all variables are contemporaneously observed. In the expressions above V , W , X, and µ are

defined as follows:

V =

∫ S

K=0

2(1 + log[ SK ])

K2 P (K)dK +

∫ ∞
K=S

2(1− log[KS ])

K2 C(K)dK, (6)

W =

∫ ∞
K=S

6 log[KS ]− 3(log[KS ])2

K2 C(K)dK −
∫ S

K=0

6 log[ SK ] + 3(log[ SK ])2

K2 P (K)dK, (7)

X =

∫ ∞
K=S

12(log[KS ])2 + 4(log[KS ])3

K2 C(K)dK +

∫ S

K=0

12(log[ SK ])2 + 4(log[ SK ])3

K2 P (K)dK, (8)

µ = erτ − 1− erτ

2
V − erτ

6
W − erτ

24
X, (9)

where K and S are the strike and spot prices, respectively. C(K) and P (K) denote the call

and put prices of strike K, respectively. All other variables are as previously defined.

At the end of each calendar month, we use the OptionMetrics database to extract the

standardized options data of 1-month maturity, the contemporaneous spot price, and the

interest rate of corresponding maturity. We retain only out-of-the-money option prices. It is

worth pointing out that the integrals in the formulas above implicitly assume the existence

of a wide range of strike prices. Alas, this is not perfectly true in the market. Thus, we follow

Chang et al. (2012) by computing a fine grid of 1,000 equidistant interpolated moneyness

levels, i.e. K/S, ranging from 1 % to 300 %. For each moneyness level on that grid, we

interpolate the implied volatility using a spline interpolation method. For moneyness levels

outside of the moneyness range observed in the market, we extrapolate the implied volatilities

2We use this interest rate curve to be consistent with the empirical literature on option prices (e.g., Bali
& Hovakimian, 2009; McGee & McGroarty, 2017). Obviously, one may wonder if our main results hold if
we substitute the OptionMetrics curve with the term-structure of Treasury rates. The effect on our main
findings is negligible. The intuition behind this result is that most of our analysis focuses on options of short
time to maturity. Because the interest rate is always multiplied by the time to maturity, we find that the
interest rate proxy has very little impact on our results.
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(Jiang & Tian, 2005). In practice, this means that if a moneyness level is lower (higher)

than the lowest (highest) moneyness level available in the market, we simply use the implied

volatility corresponding to the lowest (highest) level of moneyness available in the market.

Next, we plug the implied volatilities into the Black & Scholes (1973) option pricing model

to obtain the corresponding out-of-the-money option prices. Finally, we follow Bali et al.

(2017) by using a trapezoidal rule to approximate the integrals that appear in the formulas

above and obtain the risk-neutral moments of 1-month maturity.

Variance Risk Premium The variance risk premium is defined as the difference between

the risk-neutral and physical expectations of variance:

V RP t = EQ
t (σ2

t+1)− EP
t (σ2

t+1), (10)

where Et(·) is the expectation operator conditional on the information available at time t.

The superscripts Q and P indicate that the expectation is computed under the risk-neutral

and physical measures, respectively. In order to proxy for the risk-neutral expectation of

variance, we use V ARBKM . This choice is motivated by Du & Kapadia (2012) who show

that the risk-neutral variance of Bakshi et al. (2003) is robust to jumps.

While the expression above clearly defines the variance risk premium, it is of very little

practical use. The reason for this is that it involves the physical expectation of future

variance, which is not directly observable. Therefore, we follow the lead of Bollerslev et al.

(2009) and Driessen et al. (2013) in positing a simple random walk model for the future

variance under the physical measure. That is, we assume that the expectation of the future

variance under the physical measure equals its most recent realization. Thus, we can compute

the V RP as follows:

V RP t = V ARBKM
t −RV t. (11)

8



Note that all variables are annualized and observed at the end of each calendar month.

Correlation Risk Premium Driessen et al. (2013) establish the predictive power of the

correlation risk premium for future aggregate stock returns. The authors observe that the

equity index is a portfolio of individual equities (Driessen et al., 2009). An upshot of this

is that the variance of the market index return is equal to the weighted average variance

of individual stocks and covariance terms. Assuming further that the pairwise correlation

between different stocks is the same for all stocks, they are able to derive the following

formula:

ICt =
EQ
t [
∫ t+τ
t

σ2
Ψ,s ds]−

∑Θ
ψ=1 ω

2
ψ E

Q
t [
∫ t+τ
t

σ2
ψ,s ds]∑Θ

ψ=1

∑
χ 6=ψ ωψωχ

√
EQ
t [
∫ t+τ
t

σ2
ψ,s ds]

√
EQ
t [
∫ t+τ
t

σ2
χ,s ds]

, (12)

where ICt is the implied correlation at time t. Θ denotes the number of stocks in the

stock market. EQ
t [
∫ t+τ
t

σ2
Ψ,s ds] and EQ

t [
∫ t+τ
t

σ2
ψ,s ds] are the risk-neutral expected variance

of the index (Ψ) and of the individual stock (ψ), respectively. As before, we proxy these

expectations with the risk-neutral variance of Bakshi et al. (2003). wψ and wχ are the weights

of stocks ψ and χ in the market index Ψ, respectively.

The intuition developed above also holds under the physical measure, thus yielding the

following formula for the realized correlation at time t:

RCt =
EP
t [
∫ t+τ
t

σ2
Ψ,s ds]−

∑Θ
ψ=1 ω

2
ψ E

P
t [
∫ t+τ
t

σ2
ψ,s ds]∑Θ

ψ=1

∑
χ 6=ψ ωψωχ

√
EP
t [
∫ t+τ
t

σ2
ψ,s ds]

√
EP
t [
∫ t+τ
t

σ2
χ,s ds]

, (13)

where RCt is the realized correlation at time t. All other variables are as previously defined.

As before, we use the historical variance computed over the most recent period to proxy for

the physical expectation of the future variance.

The CRP at time t is then defined as the difference between the risk-neutral and physical
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expectations of future correlation, yielding the following result:

CRP t = ICt −RCt. (14)

To obtain this variable, we use standardized options (of time to maturity of one month)

on the S&P 500 index as well as options data on all constituents of the index. All options

are observed at the end of each calendar month.

Implied Volatility Smirk Measure Xing et al. (2010) document the predictive power

of the implied volatility smirk.3 Our construction of this variable broadly mirrors theirs. At

the end of each calendar month, we retain all S&P 500 index options with positive open

interest and a time to maturity between 10 and 60 days. We discard all option prices with a

midquote price below $0.125. We also purge all options with implied volatility outside of the

interval [3 %; 200 %]. We define the out-of-the-money put options as the put options with

a moneyness level between 0.8 and 0.95. Note that by moneyness level, we understand the

ratio of the strike price over the stock price, i.e. K/S. Relatedly, we define at-the-money call

options as call options with a moneyness level between 0.95 and 1.05. The smirk measure is

simply computed as follows:

SMIRKt = V OLOTMP
t − V OLATMC

t , (15)

where SMIRKt is the smirk measure at time t. V OLOTMP
t denotes the implied volatility of

out-of-the-money puts. To be more precise, this is the volume-weighted average of the implied

volatilities of all out-of-the-money put options. V OLATMC
t refers to the volume-weighted

3Xing et al. (2010) analyze the predictive ability of the implied volatility smirk in the cross-section of
stock returns. Motivated by the intertemporal capital asset pricing model (ICAPM) of Merton (1973), if
SMIRK is priced in the cross-section, it also has to predict the investment opportunity set in the time series
(Maio & Santa-Clara, 2012).
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average of all implied volatilities of at-the-money calls at time t.

Risk-Neutral Riskiness Leiss & Nax (2018) apply the result of Foster & Hart (2009) to

the risk-neutral density of the S&P 500 index to derive an option-implied riskiness measure.

We follow Leiss & Nax (2018) and first obtain the risk-neutral density of the S&P 500

using the approach of Figlewski (2010). That is, for the center of the distribution, i.e. the

moneyness range observed in the market, we interpolate the implied volatilities using a 4th

order spline with one knot at-the-money, computing the density using the corresponding

Black & Scholes (1973) option prices. Finally, we parameterize the distributions of the left

and right tails by separately fitting Generalized Extreme Value (GEV) distributions. Using

the obtained distribution, we compute the risk-neutral Foster–Hart (FH) riskiness measure

by solving the following equation:

∫ ∞
ST=0

log(1 +
ST − S0

S0

FH)f(ST )dST = 0, (16)

where ST and S0 are the stock prices at expiration and t = 0, respectively. f(ST ) is the

risk-neutral density at ST . We numerically compute the integral using a trapezoidal rule

and repeat this procedure on every trading day. Leiss & Nax (2018) remark that in some

cases, Equation (16) does not have a solution, FH ∈ (0, 1), in which case they set FH to 1 if

the option-implied expected return (
∫∞
ST=0

ST−S0

S0
f(ST )dST ) is positive. If the option-implied

return is negative and Equation (16) does not have a solution, we set FH to 0. FH may be

interpreted as the fraction of wealth that can be invested in an asset so that no-bankruptcy

is guaranteed. For this measure, we use data on traded option prices for all options on the

S&P 500 for maturities between 10 and 50 days, each day picking the time to maturity
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closest to 30 days.4 For the empirical tests, we follow Leiss & Nax (2018) and use a 21-day

moving average of FH instead of the raw measure.

Generalized Measure of Riskiness Based on both Foster & Hart (2009) and Aumann

& Serrano (2008), Bali et al. (2011) introduce a generalized measure of riskiness (GMR).

We obtain GMR by solving the equation:

∫ S

K=0

fR(K)P (K)dK +

∫ ∞
K=S

fR(K)C(K)dK − rτ

1 + rτ

1

GMR
= 0, (17)

with

fR(K) =
(1− δ)
S2GMR2

(
1 +

K/S − 1

GMR

)δ−2

. (18)

Following Bali et al. (2011), we set δ = −2. All other variables are as previously defined. We

compute the integrals for each trading day as described in the paragraph “Option-Implied

Moments” using the standardized options with time to maturity of one month.

III. Main Results

Before discussing our main findings, it is instructive to look at the summary statistics

reported in Table I. We can observe a positive market risk premium of around 6 % p.a. The

risk premium exhibits a standard deviation of around 16 % p.a. We also notice that the

sample moments of the V RP and the CRP are consistent with those reported in previous

works (Driessen et al., 2009, 2013). In particular, we can see that although positive on

average, the V RP is negatively skewed and prone to extreme movements as indicated by its

high kurtosis, suggesting a sign-switching behavior. This observation could carry important

4For most measures in this study, we rely on the standardized options, provided by OptionMetrics.
However, these are not suitable to obtain the entire risk-neutral density because they do not provide
observations for deep out-of-the-money options which are necessary to accurately parametrize the GEV
distributions.
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implications for the predictive ability of this variable. We shall return to this point later.

The table also reports the AR(1) coefficient of each variable. We notice that the

autoregressive coefficient of these variables is typically lower than that of the valuation ratios

such as the (log) dividend to price ratio routinely analyzed in empirical works, e.g. Goyal &

Welch (2003). This suggests that our analysis does not suffer from the statistical issues that

affect these earlier works. We can also see that the AR(1) coefficient of the realized variance

is much higher than that of the market risk premium, likely indicating that there might be

a stronger evidence of predictability in the realized variance series than in the market excess

returns.

Table II presents the sample correlation coefficients among all the predictive variables.

While most variables are only weakly correlated, there is a high correlation between

SKEWBKM and EXKURTBKM (–0.92). This suggests that these variables contain very

similar information.

III.A Return Predictability

In-Sample Analysis We start by assessing the in-sample predictability of the equity risk

premium. To do so, we estimate the standard regression model of the month-ahead excess

return on a constant and the predictive variable(s):

ERt+1 = β0 + β1Xt + εt+1, (19)

where ERt+1 is the excess return on the market realized at the end of month t + 1. β0

and β1 are the intercept and slope parameters, respectively. Xt represents the forecasting

variable(s) observed at the end of month t. Finally, εt+1 is the regression error term at t+ 1.

Table III summarizes the results for each predictive variable. The regression model

enables us to ascertain whether the equity risk premium is time-varying or constant. Under
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the null hypothesis that the future excess return cannot be predicted using Xt, we would

expect that β1 = 0. As a result, the expected market excess return would simply be constant.

One implication of this is that the best estimate of the future excess return is simply its

recursive mean. If there is evidence of predictability, we would expect to see that the slope

loading is statistically significant. To avoid a small-sample bias (Stambaugh, 1999) and serial

correlation in the error terms (Richardson & Stock, 1989), we base our statistical inference

on the bootstrapped distribution obtained by implementing the framework of Rapach &

Wohar (2006).5

We can see that the CRP , GMR, SMIRK, and V RP are statistically significant

predictors in the univariate regressions. This is documented by their t-statistics of 2.76,

2.09, –2.06, and 4.26, respectively. The positive and significant slope estimate related to the

V RP confirms and updates, using a more recent sample period, the result of Bollerslev et al.

(2009). It is also consistent with the authors’ intuition that the V RP encodes information

about time-variations in economic uncertainty. Note also that if, as argued by Driessen et al.

(2013), CRP accounts for most of the V RP , then one would expect that CRP predicts future

excess returns with a positive sign as we find in the data, since it has been documented that

the V RP predicts the market excess return (Bollerslev et al., 2009).

The result that CRP predicts future returns is consistent with that in Driessen et al.

(2009, 2013). There is a strong relationship between correlations and returns. It seems that

correlations between stocks are time-varying and that correlations increase when returns are

5We estimate the process under the null hypothesis of no predictability, i.e. ERt = a0 + ε1,t and
Xt = b0 + b1 Xt−1 + ε2,t, where a0, b0, and b1 are the regression coefficients and ε1,t and ε2,t are the error
terms, respectively. We then form a series of error terms and set up our pseudo sample. For the pseudo
sample, we compute the in-sample and out-of-sample statistics. Finally, we repeat this procedure 1,000
times. In the case of multiple regressions, we adjust the procedure by taking the multiple variables into
account and, in-sample, by using the F -statistic rather than the individual t-statistic.
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low.6,7 Moreover, the authors document a strong predictive power of IC for future returns,

supported by a correlation of 0.24 between IC and V RP , shown in Table II.8 Pollet & Wilson

(2010) provide evidence for the predictive power of (average) realized correlations for stock

returns at a quarterly horizon.

The result of GMR for predicting future market returns confirms the findings of Bali

et al. (2015). The authors find that GMR acts as a significant positive in-sample predictor

of future aggregate market returns. The positive sign is consistent with the interpretation of

GMR as a fundamental measure of risk: higher riskiness is associated with higher aggregate

excess returns in the future.

The finding that SMIRK predicts future returns with a negative sign extends the results

of Xing et al. (2010) to the time series of the market excess return. The intuition behind this

result is simple. An increase in SMIRK implies a stronger demand for out-of-the-money

put options. This increased demand signals that investors are actively purchasing insurance

against expected declines in the stock index. The negative slope estimate of SMIRK is

consistent with this intuition.

It is also worth comparing the predictive power of individual variables. A cursory look

at the in-sample R2 reveals that V RP has the highest predictive power for future excess

returns (R2 = 7.47 %). The second most powerful predictor is the CRP , with an R2 of

3.28 %. While the slope estimate on the V RP is similar to that documented by Bollerslev

6They show that an increase in market correlations has two main effects. First, diversification possibilities
are lower, thus, investors face limitations in their portfolio formations and suffering from a welfare reduction.
Second, there is a rise in market volatility. One implication is that index options become relatively expensive
compared to individual options. They represent a hedge against changes in market correlations, thus, also
against losses due to diversification limitations.

7The use of CRP (and of IC and RC) can be theoretically motivated by the ICAPM of Merton (1973).
It directly affects future investment opportunities, i.e. investors’ future diversification benefits as well as the
market variance. Moreover, Driessen et al. (2013) argue that CRP appears to drive the volatility of dividend
growth, and also the volatility of dividend growth volatility, consistent with the argument of Bollerslev et al.
(2009) for V RP . One implication is that CRP matters for both return as well as variance predictability.

8Driessen et al. (2009, 2013) document that IC strictly exceeds RC, indicating the existence of a large
CRP . Our data support these findings. We observe a mean IC (RC) of 41.66 % (32.25 %), generating a
mean CRP of 9.41 %.
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et al. (2009), it is worth noticing that the predictive power we document at the monthly

horizon is much higher, indicating that, if anything, the predictive ability of the V RP is

much stronger in the more recent sample period.

It is worthwhile to analyze the performance of individual variables over time. Figure 1

plots the in-sample cumulative differences in squared forecast errors (CDSFE).9 We observe

a similar (in-sample) performance in the case of the CRP and V RP , indicated by a sharp

increase during the global financial crisis in 2008/2009, and a steady rise during the post

crisis period. The findings suggest the outperformance of the unrestricted model to the

restricted model, particularly in times of distress. It seems that investors can exploit the

information content of both variables in times of high risk-aversion.

In the case of EXKURTBKM and SKEWBKM , we find an increase in performance

during the global financial crisis; however, afterwards there is a steady decline, suggesting

the superior performance of the restricted model. Both variables appear to have substantial

predictive power, particularly in crises. The CDFSE plot for GMR indicates that most of

the predictive power stems from economic downturns.

SMIRK shows the strongest increase in the CDSFE plot during the global financial crisis,

indicating that investors look for a hedge against a further market downturn, by buying put

options. Finally, in the case of V ARBKM , we see no strong fluctuations in its CDSFE,

suggesting a similar performance of both the unrestricted and restricted model. Generally,

we also find a strong increase in the performance after the dot-com bubble in 2001. This is

true for all variables, except SMIRK.

To analyze the joint predictive ability of different variables, we perform three multiple

regressions. Due to the high correlation between SKEWBKM and EXKURTBKM , we run

9Please note that whenever there is a rise of the in-sample (or out-of-sample) performance, the
unrestricted model outperforms the restricted model, and vice versa. In this case, a variable provides a
better forecast than the benchmark model.
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the regressions also once without the first and once without the second variable.10 In all

cases we find that only SMIRK and V RP retain their statistical significance.11 Overall,

the adjusted R2 increases to 8.81 %, 8.95 %, and 8.59 % in the first, second, and third case,

respectively.

Out-of-Sample Results We now turn our focus to the out-of-sample evidence of return

predictability. We use an initial training window of 5 years to first estimate the forecasting

model presented in Equation (19). Equipped with the parameter estimates and the most

recent observation of the forecasting variable in the training window, we are able to generate

the first excess return forecast. The following month, we expand the training window by

one observation month and re-estimate the forecasting model. With the new parameter

estimates, we forecast the market excess return for the next month. We proceed analogously

for all months, except the last month of our sample period.

In order to assess the out-of-sample performance of different models, we follow Campbell

& Thompson (2008) and define the out-of-sample R2 (R2
oos) as follows:

R2
oos = 1− MSEu

MSEr

, (20)

where MSEu and MSEr are the mean squared errors of the unrestricted and restricted

models, respectively. The unrestricted model is based on Equation (19). The restricted

model imposes the null hypothesis that returns are unpredictable, i.e. β1 = 0. Thus the R2
oos

sheds light on the question: How large an improvement in forecast accuracy can one achieve

by accounting for the predictive power of variable Xt? The higher the R2
oos the better. A

10We present the results of the multiple regressions only for return predictability. In the case of realized
variance predictability, we skip these regressions due to multicollinearity.

11The CRP does not retain its statistical significance in the multiple regressions. It seems that other
variables, mainly the V RP , capture its information. In-sample multiple regressions have no explanatory
power for out-of-sample predictability. For further details, wee also refer to the forthcoming out-of-sample
analysis.
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variable has notable predictive power if it exhibits a positive and significant R2
oos, indicating

an overall outperformance of the predictive variable.

In order to gauge whether the potential improvement is statistically significant, we

compute the MSE − F statistic of McCracken (2007):

MSE − F = H ×
(
MSEr −MSEu

MSEu

)
, (21)

where H denotes the number of out-of-sample forecasts. All other variables are as previously

defined. Briefly, the null hypothesis is that the restricted model performs at most as well

as the unrestricted model, i.e. MSEr ≤ MSEu. The alternative is that the unrestricted

model provides smaller forecast errors than the restricted model. As can be seen from the

last row of Table III, only CRP and V RP yield statistically significant improvements in the

out-of-sample performance relative to the simple recursive mean. This result is noteworthy

given that Goyal & Welch (2003) argue that the recursive mean is a tough benchmark to beat.

Overall, these results suggest that the CRP and the V RP contain important information

about next-month’s market excess returns both in- and out-of-sample. In contrast, the

multiple regressions do not improve the predictive power out-of-sample. In Figure 1, we

observe a similar development of the out-of-sample performances as in-sample, except for

V ARBKM , showing a sharp drop during the global financial crisis, indicating a superior

performance of the restricted model. It seems that investors have to rely on the historical

mean rather than on V ARBKM in times of distress.

III.B Variance Predictability

We now turn our attention to the predictability of the realized variance. In particular,

we ask the question: Can any of the forecasting variables be used to predict next-month’s

realized variance?
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In-Sample Using all the sample information, we estimate the following regression model:

RV t+1 = γ0 + γ1Xt + γ2RVt + εt+1, (22)

where γ0, γ1, and γ2 are the intercept and slope parameters, respectively. All other variables

are as previously defined. We include the lag of realized variance, because realized variance

is a strongly persistent process, indicated by its AR(1) coefficient of 0.63, shown in Table

I.12 To account for the persistence, we use a fitted AR(1) process as naive benchmark rather

than the historical mean variance.13

Table IV summarizes the results of the in-sample analysis. We notice that the

variables have predictive power for future realized variance, as evidenced by their statistically

significant R2s.14 This is true for all variables, except FH and GMR. The R2s range from

40.80 % to 43.03 %. These results are interesting for several reasons. First, they indicate

that the predictability of realized variance is much stronger than that of excess returns.

Second, they reveal that CRP , SMIRK, and V RP are able to predict (in-sample) not

only next-month’s market excess return (see Table III) but also realized variance. Third,

the risk-neutral variables of Bakshi et al. (2003) that do not predict future excess returns

matter for realized variance forecasting. For instance, EXKURTBKM predicts next-month’s

realized variance with a predictive power equal to 41.60 %. GMR appears to predict only

market returns, whereas FH predicts neither market returns nor realized variance. A likely

cause for the rather poor performance of the two measures is that both variables exhibit

clear breakpoints, especially around the financial crisis (see the time-series of these variables

for example in Figure 1 of Bali et al. (2015) as well as Figure 1 of Leiss & Nax (2018)).

12Since realized variance is strongly persistent, future realized variance is primarily predictable by its
current value. Ignoring the lag of realized variance allows the other lagged variables to partially capture this
persistence. In particular V ARBKM and RV are highly correlated. We refer to this point later in Table IV.

13In Section V.C , we use the historical mean variance as naive benchmark and show the results.
14Although CRP has a t-statistic of –1.59, this variable generates a statistically significant improvement

in the in-sample R2 of 40.80 %. We also refer to Section V.C .
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An implication of this result is that when assessing the information content of a predictive

variable, it is advisable to investigate whether it predicts not only excess returns but also

realized variance. We observe that V ARBKM and V RP have similar t-statistics and R2s,

which is not surprising due to the construction of V RP and the used regression model in

Equation (22).

Figure 2 shows the CDSFE for all individual variables predicting the next month’s

realized variance. There is a similar pattern for the variables. We observe a strong

increase in their performance during the global financial crisis in 2008/2009, indicating the

outperformance of the unrestricted model to the restricted model. It seems that investors

can exploit the information content of the variables, particularly in times of high variance.

Out-of-Sample We use the first 5 years of observations to initially estimate the model

parameters (see Equation (22)). Having done this, we then make a forecast for the following

month. We expand the training window by one observation month and repeat all steps. This

procedure mirrors that used for the return predictability analysis with the only difference

that we assume a fitted AR(1) process as naive benchmark and that we forecast realized

variance rather than the market excess return. The last row of Table IV shows the R2
ooss.

All variables that predict realized variance in-sample are also good predictors out-of-sample.

The R2
ooss range from 2.40 % for SKEWBKM to 3.89 % for SMIRK. In Figure 2, we observe

a similar pattern as in-sample. In particular in times of distress, investors should rely on the

information content of the predictive variables rather than on the forecast of a fitted AR(1)

model.

III.C Portfolio Choice Implications

We now study the portfolio choice implications of the predictability results reported

earlier. To do this, we consider an investor with mean–variance preferences. The agent
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allocates a fraction ωt of her wealth to the risky portfolio and the remainder, i.e. 1− ωt, to

the risk-free asset. The agent’s objective function is:

max
wt

EP
t

(
rp,t+1 −

γ

2
σ2
p,t+1

)
, (23)

where EP
t (·) is the physical expectation operator. rp,t+1 is the next-period’s (simple) return on

the investor’s portfolio. γ is the coefficient of relative risk-aversion. σ2
p,t+1 is the conditional

variance of the portfolio from t to t+ 1. This return is the weighted average of the (simple)

return on the risky stock and on the risk-free asset. Because our earlier analysis focuses on

log-returns rather than simple returns, we use a second-order Taylor expansion to express the

simple return as a function of the log-return and realized variance.15 Thus, we can express

the objective function as follows:

max
wt

Et

(
Rp,t+1 −

γ − 1

2
σ2
p,t+1

)
, (24)

where Rp,t+1 is the log-return on the portfolio and all other variables are as previously defined.

Using the first-order condition, it is straightforward to derive the optimal weight invested

in the risky asset (Jordan et al., 2014):

ωt =
Et(ERt+1 + 1

2
RV t+1)

γEt(RV t+1)
=

Et(ERt+1)

γEt(RV t+1)
+

1

2γ
. (25)

The expression above shows that the optimal allocation to the risky asset depends on the

expected excess return, the risk-aversion parameter, and the expected realized variance. One

implication of this expression is that, holding everything else constant, the allocation to the

15More precisely, the approximation yields the following relationship:

Rt ≈ rt −
1

2
RV t,

where Rt, rt, and RV t are the log-return, simple return, and realized variance at time t, respectively.
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risky stock rises with expected returns. In other words, if realized variance is unpredictable

and a forecasting variable Xt positively (negatively) predicts excess returns, then the agent

would invest more (less) in the risky stock as Xt increases. In contrast, if a variable Xt

positively predicts future variance (and not returns), then the share of wealth invested in

the risky stock decreases with the variable Xt.

Note that the preceding discussion focuses only on the predictability of either returns

or variance and does not explore the case where both moments are predictable by the same

variable. The share of the position in the stock will be determined by two (potentially

offsetting) forces, one that increases with the expected excess return and the other that

decreases with the expected realized variance.

In light of the preceding discussion, we find it interesting to distinguish between three

cases. The first one deals with the case where only excess returns might be predictable. The

second case allows for the predictability of realized variance alone. The third case deals with

the possibility that both excess returns and realized variance are predictable by the same

variable Xt.
16

For a given case (ξ) and each calendar month of our out-of-sample window, we compute

the weight ωt and also the realized return of the portfolio. We impose the restriction that

whenever the forecast of the market excess return or of the realized variance (or of both) in

Equation (25) equals zero, we set the portfolio weight equal to 1/(2γ). Further, following

Campbell & Thompson (2008) and Jordan et al. (2017), we impose the restriction that ωt

is bounded from below by 0 and from above by 1.5. Economically, the lower bound implies

that the agent does not short-sell the risky asset. The upper bound prevents the agent from

taking on excessive leverage. At the end of the sample period, we compute the certainty

16To be consistent with Section III.B , we predict realized variance by the variable Xt and the lag of
realized variance.
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equivalent return as follows:

CER(ξ) = r̄p −
γ

2
σ2
p, (26)

where CER(ξ) is the certainty equivalent return associated with strategy ξ. This number is

expressed in percent per annum. r̄p is the average (annualized) return on the portfolio. σ2
p

is the variance of the portfolio returns.

Our approach consists in computing the utility gain (∆CER(ξ)), the difference between

CER(ξ) and the certainty equivalent return of the naive strategy that assumes that the first

two moments are unpredictable, and thus relies on simple historical averages. We do this for

each of the three scenarios.

We also compute the Sharpe Ratio (SR) of each strategy ξ:

SR(ξ) =
R̄p − rf
σ2
p

, (27)

where R̄p is the average log-return on the portfolio. Similar to the certainty equivalent return

analysis, we compute the improvement in SR by taking the difference between SR(ξ) and

the SR linked to the naive strategy that assumes that the market excess return and realized

variance are unpredictable. We use an approach suggested by Jobson & Korkie (1981), and

after taking into account the correction suggested by Memmel (2003), we test whether the

improvement is statistically significant.

Table V reports our results for different values of risk-aversion. We can see that

statistical evidence of excess return predictability does not necessarily imply important

economic gains. For instance, while the V RP predicts both excess returns and realized

variance, a timing strategy relying on this variable would have underperformed the naive

strategy. One possible explanation for this result is the following. Shortly before the crisis
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period, the variance risk premium is high (since the historical variance is low). Because the

V RP predicts future returns with a positive sign, this result implies that an agent should

hold more (rather than less) stocks. As a result of this increased position, the strategy incurs

more severe losses as the economy slides into recession. Similarly, as the economy recovers,

the variance risk premium is low, implying that the agent should hold a small position in

the stock. Because of this, the agent misses out on the rally in the market. Further, it seems

that, though V RP predicts both returns and variance individually with a positive sign,

the joint predictability is associated with large variance, thus generating negative certainty

equivalent returns.17

In contrast, one can see that relative to an agent with risk-aversion γ = 3 who assumes

that the market excess return and the realized variance are unpredictable, the agent who

exploits the information content of the CRP , would improve her utility by 5.03 % p.a. The

finding is consistent with Driessen et al. (2009, 2013) who document that index options

represent a hedge against changes in market correlations, and also against losses due to

diversification limitations.

Our results are in line with those of Fleming et al. (2001), who show that volatility

timing leads to notable utility gains for short-horizon investors. The positive economic value

generated by the CRP is consistent with the work of Buss et al. (2018), who document

a positive CER for the market timing strategy based on the CRP . Overall, our findings

suggest that investors might earn larger utility gains when taking the predictability of both

excess returns and realized variance into account.

Table A1 of the Online Appendix shows the portfolio choice implications taking into

account turnover and transaction costs. Following DeMiguel et al. (2009), we define the

17We refer to Section IV.B for further details.
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turnover for strategy ξ as the average sum of the absolute values of the trades, i.e.:

Turnover =
1

T −H

T−H∑
t=1

(
|ω(ξ)
t+1 − ω

(ξ)

t
+ |
)
, (28)

where T − H is the number of out-of-sample observations and ω
(ξ)

t
+ is the portfolio weight

before rebalancing at t+ 1. All other variables are as previously defined. For the benchmark

strategy, we observe an absolute value of the turnover (Turnoverabs) of 0.0448, which can be

interpreted as the average percentage of wealth traded in each out-of-sample period. For our

three strategies, we report the turnover (Turnover
(ξ)
rel) relative to the benchmark case. We

notice that all strategies exhibit higher turnovers than the benchmark, indicated by values

larger than one.

We follow Balduzzi & Lynch (1999) and include transaction costs of 50 basis points per

transaction proportional to the asset’s traded size |ω(ξ)
t+1 − ω

(ξ)

t
+ | . Table A1 of the Online

Appendix reports the corresponding utility gains and Sharpe Ratios. We observe that

transaction costs have an impact on the results; however, the results are qualitatively similar.

An agent who relies on the CRP would still improve her utility by 1.38 % p.a.

IV. Further Analyses

IV.A Sign Restriction

Campbell & Thompson (2008) propose imposing two economically motivated restric-

tions when studying the question of predictability. The authors suggest setting the slope

estimate in the out-of-sample analysis equal to zero whenever its sign differs from that of

the in-sample analysis. They also suggest setting the out-of-sample forecast equal to zero

whenever its negative. Before discussing our findings, it is worth emphasizing that the first

constraint is not implementable in real-time. This is because the implementation would
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require the agent to know about the sign of the in-sample slope parameter, i.e. to have

information about future data, thus, introducing a look-ahead bias.

The first set of results in Table VI reports the findings when imposing the first restriction.

Panel A shows that the main results are similar: the CRP and V RP are the two best

option-implied predictors for the market excess return. It is worth noticing that imposing

the restriction has very little effect on the R2
oos related to the forecasting variables (see Table

III for comparison). This suggests that the sign of the relationship between the forecasting

variables CRP and V RP and future excess returns is relatively stable out-of-sample.

We also impose the restriction on the slope of the realized variance forecasting regression.

In other words, we set the slope estimate equal to zero, if the sign of the recursively estimated

parameter is different from that obtained in-sample.18 Overall, we can see from Panel B of

Table VI that this restriction has very little impact on our main results.

The second set of results in Table VI reports the findings when imposing the second

restriction. Finally, the last entries of each panel show the results when we jointly impose

the restrictions (on the sign of the slope and the sign of the return/variance forecast).

Summarized, in both cases our main results remain unchanged.19 We also repeat our

economic value analysis using these economically motivated constraints. Tables VII to IX

document that imposing the restriction(s) does (do) not affect our main conclusions on the

economic value of the predictive power of both CRP and V RP .

18To be consistent with Section III.B , we impose the restriction for both the variable Xt and the lag of
realized variance.

19Table A2 of the Online Appendix reports the absolute frequency of how often the restrictions are
binding. Panel A shows the results for return predictability. We observe that the first restriction is not
binding. This is true for all variables, except FH, GMR, and V ARBKM , indicated by a frequency of 12, 8,
and 35. The second restriction is binding more frequently, indicated by frequencies from 7 for GMR to 77 for
V RP . It seems that the forecast restriction matters more for excess return predictability. Panel B of Table
A2 shows the frequencies in the case of variance predictability. We find that the first (second) restriction

is binding only for CRP , FH, and GMR (EXKURTBKM ) with a frequency of 75, 76, and 3 (3). Lagged
realized variance appears to be not affected by the (first) restriction(s) at all, indicating the persistence of
that variable. The findings reveal that the imposition of economically motivated restrictions matters more
for return rather than variance predictability.
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IV.B Forecast Combination

Rapach et al. (2010) suggest the use of forecast combinations. The pooled forecast

is the weighted average of all G individual forecasts, where g = 1, ..., G, i.e., ÊR
pool

t+1 =∑G
g=1 xg,tÊRg,t+1 and R̂V

pool

t+1 =
∑G

g=1 xg,tR̂V g,t+1, based on Equation (19) and (22),

respectively. xg,t is the weight of the individual forecast in the pooled one.

Following the literature, we use three approaches. Table X shows the out-of-sample R2s

of (i) the mean forecast combination, where the weight is simply 1/G for g = 1, ..., G, (ii) the

median forecast combination, where the pooled forecast is just the median of all individual

forecasts, and (iii) the trimmed mean forecast combination, where xg,t = 0 in the case of the

individual forecasts with the smallest and largest value, respectively, and xg,t = 1/(G − 2)

for the remaining forecasts.

The mean forecast combination exhibits superior performance in the case of return

predictability (R2
oos = 1.76 %), whereas the median forecast combination works better in the

case of variance predictability (R2
oos = 4.12 %).20 The findings are interesting for several

reasons. First, they support the results of Rapach & Zhou (2013), who argue that forecast

combinations yield more stable forecasts and increase the forecasting performance. Second,

the findings show a substantial increase in the magnitude of the R2
ooss. In the case of

return predictability, the mean forecast combination generates an R2
oos which is substantially

larger than for all individual variables, except for V RP .21 The median forecast combination

outperforms all individual variables, predicting realized variance. Third, the findings support

our previous conclusion. It seems that individual predictive variables generate notable

20Since FH and GMR show an overall weak performance, we additionally compute the forecast
combinations without these two variables. In that case, the mean forecast combination exhibits a superior
performance, indicated by an R2

oos of 3.11 %, whereas the median forecast combination generates an R2
oos of

4.83 %.
21In detail, when using all predictive variables of our sample, the mean forecast combination generates an

R2
oos which is similar to all individual variables, except for V RP . However, by excluding FH and GMR, the

mean forecast combination generates an R2
oos which is substantially larger than for all individual variables,

except for V RP .
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variance when predicting excess returns and realized variance, respectively.

Table XI reports the economic value for different values of risk-aversion. Compared

with our previous findings, all forecast combinations, in particular the median forecast

combination, generate substantial certainty equivalent returns. For γ = 3, an annualized

utility gain of 6.73 % (relative to the naive strategy) may be achieved, when both return and

variance are predicted by the combined forecast. It seems that forecast combinations rather

than individual variables, generate more stable forecasts, thus, leading to significant positive

utility gains.

IV.C Predictability of the Sharpe Ratio

After predicting excess returns and realized variance in isolation, we want to answer the

question: What predictive power do the variables have, when predicting excess returns and

realized variance jointly? In doing so, we estimate the following regression model:

ERt+1√
RVt+1

= ϕ0 + ϕ1Xt + εt+1, (29)

where
ERt+1√
RVt+1

is the Sharpe Ratio, and ϕ0, and ϕ1 are the intercept and slope parameters,

respectively. All other variables are as previously defined.

Table XII documents the results for each predictive variable. The regression model

(29) enables us to assess whether each variable has predictive power, when predicting excess

returns and realized variance jointly. We find that CRP , GMR, SKEWBKM , and V RP

have predictive power for the future Sharpe Ratios, shown by their statistically significant

t-statistics of 2.43, 1.77, –1.79, and 2.17. A look at the in-sample R2s reveals that CRP and

V RP have the highest (in-sample) predictive power of 2.56 % and 2.04 %, respectively.

Further analysis reveals that CRP and V RP also contain important information about

the future Sharpe Ratio out-of-sample, indicated by R2
ooss of 2.99 % and 1.54 %.
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V. Additional Analysis

To use more information when estimating the realized variance, we follow Corsi (2009)

and Sévi (2014) and use the heterogenous autoregressive (HAR) model. The HAR–RV

model provides a conditional estimate for realized variance that accounts for different trading

horizons. Further, in the previous analysis, we examine the total variance risk premium.

However, Andersen & Bondarenko (2010), Andersen et al. (2015), and Feunou et al. (2015)

show how to decompose the variance risk premium into downside and upside components.

In the following section, we analyze the predictability of both components separately.

We follow Andersen & Bondarenko (2010) and Andersen et al. (2015) and use the

downside and upside model-free implied variance. Following the arguments of Feunou et al.

(2015), investors dislike increases in the volatility of the underlying, which is associated

with an increase in the probability of severe losses. Investors hedge against these downward

movements, thus, we expect that the downside variance risk premium is the main driver of

the variance risk premium. Further, to get a better estimate for the physical expectation of

variance, we analogously use the downside and upside realized variance.

V.A Variables

Variance Risk Premium based on HAR–RV Model We define the variance risk

premium based on theHAR–RV model (V RPHAR) as the difference between the risk-neutral

variance (V ARBKM) and the RV , estimated on the basis of the HAR model (RV HAR):

V RPHAR
t = V ARBKM

t −RV HAR
t , (30)
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where V ARBKM
t is as previously defined. Analogously to Section II.B and using Equation

(2), we follow Christoffersen (2012) and define

RVD,t+ i
N
≡ RVt+ i

N
, (31)

RVW,t+ i
N
≡ RV(t+ i

N
)−4,t+ i

N

=
[
RV(t+ i

N
)−4 +RV(t+ i

N
)−3 +RV(t+ i

N
)−2 +RV(t+ i

N
)−1 +RVt+ i

N

]
/ 5,

(32)

RVM,t+ i
N
≡ RV(t+ i

N
)−20,t+ i

N
=
[
RV(t+ i

N
)−20 +RV(t+ i

N
)−19 + ...+RVt+ i

N

]
/ 21 (33)

as the daily, weakly, and monthly realized variance on day t + i
N

, respectively.22 Further,

RV(t+ i
N

)+1,(t+ i
N

)+20 is the realized variance over the next 21 days, i.e.:

RV(t+ i
N

)+1,(t+ i
N

)+20 =
[
RV(t+ i

N
)+1 +RV(t+ i

N
)+2 + ...+RV(t+ i

N
)+20

]
/ 21. (34)

Finally, to compute RV HAR
t , we run the following regression:

RV(t+ i
N

)+1,(t+ i
N

)+20 = φ0 + φDRVD,t+ i
N

+ φWRVW,t+ i
N

+ φMRVM,t+ i
N

+ ε(t+ i
N

)+1,(t+ i
N

)+20,

(35)

where φ0, φD, φW , and φM are the regression coefficients, and ε(t+ i
N

)+1,(t+ i
N

)+20 is the error

term over the next 21 days. The fitted values are the forecasted RV and represent RV HAR
t .

Downside and Upside Variance Risk Premium We define the downside and upside

variance risk premium (V RPDOWN and V RPUP ) as the difference between the downside

and upside model-free implied variance ((σQ−
t )2 and (σQ+

t )2) and the downside and upside

22Since we now work with daily rather than intraday data, we follow the common approach and define
one month as 21 trading days.

30



realized variance (RV DOWN and RV UP ), respectively:

V RPDOWN
t =

(
σQ−
t

)2

−RV DOWN
t , (36)

V RPUP
t =

(
σQ+
t

)2

−RV UP
t . (37)

To obtain (σQ−
t )2 and (σQ+

t )2, we follow Andersen & Bondarenko (2010) and Andersen et al.

(2015) and use their corridor implied volatility method to decompose the model-free implied

variance into different parts, and define the model-free implied variance ((σQ
t )2) as:

(
σQ
t

)2

= 2

∫ ∞
0

M(K)

K2 dK = (σQ−
t )2 + (σQ+

t )2, (38)

where M(K) = min (P (K), C(K)) is the minimum price of the put and call with maturity

of 1 month and strike K. Consistently, we also compute the grid of 1,000 equidistant

interpolated moneyness levels of out-of-the money option prices, as described above. Finally,

to compute (σQ−
t )2 and (σQ+

t )2, we assume the threshold Seθ with θ = 0:

(
σQ−
t

)2

= 2

∫ Se
θ

0

M(K)

K2 dK, (39)(
σQ+
t

)2

= 2

∫ ∞
Se
θ

M(K)

K2 dK. (40)

We then use the trapezoidal rule to approximate the integrals, as outlined above.

Following Barndorff-Nielsen et al. (2010), we decompose the realized variance into the

upside and downside realized variance for a given threshold κ. Imposing κ = 0, we compute

RV DOWN
t (RV UP

t ) on the basis of Equation (2), however, using only log-returns that are at

most (least) equal to κ.

Downside and Upside Variance Risk Premium based on HAR–RV Model We

define the downside and upside variance risk premium based on the HAR–RV model
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(V RPDOWN,HAR and V RPUP,HAR) as the difference between the downside and upside

model-free implied variance ((σQ−
t )2 and (σQ+

t )2) and the downside and upside realized

variance, estimated on the basis of the HAR model (RV DOWN,HAR and RV UP,HAR),

respectively:

V RPDOWN,HAR
t =

(
σQ−
t

)2

−RV DOWN,HAR
t , (41)

V RPUP,HAR
t =

(
σQ+
t

)2

−RV UP,HAR
t , (42)

where (σQ−
t )2 and (σQ+

t )2 are as previously defined. To compute RV DOWN,HAR
t (RV UP,HAR

t ),

we follow the steps described above, however, using RV DOWN (RV UP ) instead of RV .

V.B Results

Table A3 of the Online Appendix reports the regression results for the different

specifications predicting the next month’s excess return and realized variance, respectively.

In Panel A, we observe that all specifications exhibit an inferior performance in predicting

excess returns compared to the V RP as proposed by Bollerslev et al. (2009). However,

we notice that V RPUP , V RPDOWN , and V RPUP,HAR have still (in-sample) significant

predictive power, indicated by t-statistics between 2.47 and 2.17, and in-sample R2s from

2.65 % to 2.05 %.

In Panel B of Table A3 of the Online Appendix, we find that all specifications have a

similar (insignificant) in-sample predictive power for RV as V RP . We observe noteworthy

significant out-of-sample predictability for V RPHAR (R2
oos = 3.40 %), V RPDOWN (R2

oos =

4.34 %), and V RPUP,HAR (R2
oos = 4.63 %).

We now turn our attention to the portfolio choice implications. Table A4 of the Online

Appendix reports the results of the economic value. For an agent with risk-aversion of γ = 3,

we observe that V RPUP (V RPDOWN) provides substantial improvements in the utility gain
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of 6.74 % p.a. (6.31 % p.a.) and in the Sharpe Ratio of 0.71 (0.59).

Overall, the results confirm our previous findings in providing evidence for a stronger

variance than return predictability. We also observe that V RPDOWN , V RPUP , and

V RPUP,HAR predict in-sample both returns and realized variance. In addition, we notice that

V RPHAR, V RPDOWN , and V RPUP,HAR strongly predict realized variance out-of-sample.

Finally, the results reveal that V RPUP and V RPDOWN provide evidence for generating

statistically significant economic value.

V.C Alternative Approach of Variance Predictability

In our main analysis, we included lagged realized variance as an additional predictor

when predicting realized variance, as it is well known that variance is a persistent process.

To see whether our results are driven by this choice, we repeat the analysis without including

lagged realized variance. We now estimate the following regression model for realized

variance:

RV t+1 = γ0 + γ1Xt + εt+1, (43)

where all variables are as previously defined. Under the null hypothesis of no predictability,

the variable Xt has no predictive power for future realized variance. In this case, we

expect that γ1 = 0, and that the best estimate for future realized variance would be its

mean. Accordingly, the historical mean variance serves as benchmark model. Using this

specification, we are able to analyze the individual predictive power of variables subject

to the standard approach in extant literature. Tables A5 and A6 of the Online Appendix

summarize the results of the predictability and economic value analysis.

In Table A5, we find that all variables, except FH, have in-sample predictive power

for future realized variance. CRP turns out to have significant predictive ability, indicated

by a t-statistic of –3.72. We notice that the in-sample R2s are smaller compared with our
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previous results. They range from 3.19 % for SKEWBKM to 38.83 % for V ARBKM .

In the out-of-sample analysis, we observe that in general the variables that predict

realized variance in-sample are also predictors out-of-sample. All variables, with the

exception of FH, GMR, and V RP , yield an improvement relative to the recursive mean.

The reason for the poor behavior of these three variables is likely twofold: FH and GMR

perform poorly in general and the V RP exhibits a sign-switching behavior as discussed

previously. The R2
ooss range from 1.88 % for CRP to 34.65 % for V ARBKM . It seems that,

using the standard methodology, the predictive power of some variables increases, compared

to our previous results.

In the economic value analysis, shown in Table A6, we find similar results as before.

It seems that statistical evidence of predictability does not necessarily imply important

economic gains. One can see that relative to an agent with risk-aversion γ = 3 who assumes

that the market excess return and the realized variance are unpredictable, the agent who

exploits the information content of CRP would improve her utility by 4.63 % p.a. Overall,

the results confirm our previous findings.

VI. Conclusion

This paper comprehensively studies the predictive power of option-implied variables for

future excess returns and realized variance. A variable is considered to have predictive power

if it exhibits statistically significant forecasting power and also adds economic value. We

find that the correlation risk premium and the variance risk premium emerge as statistically

significant predictors of both the market excess return and the realized variance. This is

true both in- and out-of-sample.

We then investigate the economic value of the documented predictability. Our results

highlight an important contrast between the two variables. Relative to a naive strategy that
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assumes that excess returns and realized variance are unpredictable, the agent who relies

on the correlation risk premium as a timing signal realizes utility gains of 5.03 % p.a. In

contrast, the timing strategy that uses the variance risk premium as timing signal yields lower

certainty equivalent returns than a naive strategy that assumes constant excess returns and

realized variance. Thus, our analysis shows that statistical evidence of predictability does

not necessarily translate into economic value. Moreover, we find that forecast combinations

generate stable forecasts for both excess returns and realized variance, and that they add

substantial economic value.

We further decompose the total variance risk premium into the downside and upside

components, and analyze the predictability of different versions of the variance risk premium.

We show that the upside and downside variance risk premia have noteworthy (in-sample)

predictive power for excess returns and realized variance. Further, a timing strategy provides

substantial utility gains.

Future research could analyze the predictive power of option-implied variables for

specific industry returns as well as different asset classes. Furthermore, we believe that

it would be interesting to study whether the CRP performs similarly well in predicting

equity returns in further developed and emerging markets. Finally, it could be interesting to

test whether forward-looking option-implied information drives out the predictive power of

U.S. returns for developed and emerging countries, as documented by Rapach et al. (2013).
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Figure 1: Return Predictability

This figure plots the in- and out-of-sample performances of individual variables. We regress monthly

excess returns on a constant and the lagged predictive variable. On the ordinate, there are the

cumulative differences in squared forecast errors (CDSFE). The in-sample performance is the

difference between the cumulative squared demeaned excess return and the cumulative squared

regression residual, and the out-of-sample performance is the difference between the cumulative

squared forecast error from the restricted model and the cumulative squared forecast error from the

unrestricted model. The grey bars indicate the U.S. recessions, published by the NBER. All data

are sampled at the monthly frequency and relate to the S&P 500 index.
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Figure 2: Variance Predictability

This figure plots the in- and out-of-sample performances of individual variables. We regress monthly

realized variance on a constant, the lagged predictive variable, and the lagged realized variance.

On the ordinate, there are the cumulative differences in squared forecast errors (CDSFE). The

in-sample performance is the difference between the cumulative squared demeaned excess return

and the cumulative squared regression residual, and the out-of-sample performance is the difference

between the cumulative squared forecast error from the restricted model and the cumulative squared

forecast error from the unrestricted model. The grey bars indicate the U.S. recessions, published by

the NBER. All data are sampled at the monthly frequency and relate to the S&P 500 index.
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Table I: Summary Statistics

This table summarizes key statistics about several variables. CRP denotes the correlation risk

premium. IC is the implied correlation. RC is the realized correlation. ER is the market excess

return. EXKURTBKM is the risk-neutral kurtosis of Bakshi et al. (2003). FH is the risk-neutral

riskiness measure of Leiss & Nax (2018). GMR is the generalized measure of riskiness of Bali

et al. (2011). RV is the realized variance. SKEWBKM is the risk-neutral skewness of Bakshi

et al. (2003). SMIRK is the option smirk. V ARBKM is the risk-neutral variance of Bakshi et al.

(2003). V RP is the variance risk premium computed as the difference between the risk-neutral

variance of Bakshi et al. (2003) and the most recent observation of the realized variance. V RPHAR

denotes the variance risk premium based on the HAR-RV model. V RPDOWN is the downside

variance risk premium. V RPUP is the upside variance risk premium. V RPDOWN,HAR is the

downside variance risk premium based on the HAR–RV model. Finally, V RPUP,HAR is the upside

variance risk premium based on the HAR–RV model. “Mean”, “Std Dev”, “Skew”, and “Kurt”

denote the mean, standard deviation, skewness, and kurtosis, respectively. The last two columns

show the AR(1) coefficient and the number of observations, respectively. All data are sampled at

the monthly frequency and relate to the S&P 500 index.

Mean Std Dev Skew Kurt AR(1) Nobs

CRP 0.0941 0.1019 0.1409 3.2970 0.2496 228
IC 0.4166 0.1403 0.5092 3.1725 0.7621 228
RC 0.3225 0.1398 0.8731 3.5571 0.5854 228
ER 0.0591 0.1555 -0.8294 4.4268 0.0900 228

EXKURTBKM 0.7571 0.2840 0.4887 3.0378 0.7522 228
FH 0.4302 0.3250 0.0241 1.4467 0.9250 228
GMR 9.0972 12.5814 2.3413 11.0123 0.8818 228
RV 0.0317 0.0519 7.3129 75.2277 0.6333 228

SKEWBKM -0.8698 0.1978 0.2588 3.0325 0.6611 228
SMIRK 0.1326 0.2522 0.1584 3.4828 0.3299 228

V ARBKM 0.0474 0.0427 3.3066 18.0518 0.7880 228
V RP 0.0157 0.0284 -5.0586 61.7528 0.1340 228

V RPHAR 0.0459 0.0414 3.2330 17.3103 0.7887 228

V RPDOWN -0.0136 0.0249 -7.5246 79.4665 0.5899 228

V RPUP -0.0143 0.0244 -7.5439 78.4141 0.6219 228

V RPDOWN,HAR 0.0016 0.0015 2.7589 13.2030 0.7708 228

V RPUP,HAR 0.0007 0.0007 1.7649 7.6611 0.5894 228
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Table IV: Variance Predictability

This table reports the regression results of monthly realized variance on a constant, which we denote

by γ0, the lagged predictive variable, and the lagged realized variance RV . We report the t-statistics

in parentheses. Statistical inferences are based on a bootstrapped distribution. The forecast of

a fitted AR(1) model serves as naive benchmark. CRP denotes the correlation risk premium.

EXKURTBKM is the risk-neutral kurtosis of Bakshi et al. (2003). FH is the risk-neutral riskiness

measure of Leiss & Nax (2018). GMR is the generalized measure of riskiness of Bali et al. (2011).

SKEWBKM is the risk-neutral skewness of Bakshi et al. (2003). SMIRK is the option smirk.

V ARBKM is the risk-neutral variance of Bakshi et al. (2003). Finally, V RP is the variance risk

premium computed as the difference between the risk-neutral variance of Bakshi et al. (2003) and the

most recent observation of the realized variance. R2 and R2
oos are the in-sample and out-of-sample

R2, respectively. ∗, ∗∗, and ∗∗∗ indicate the significance at the 10 %, 5 %, and 1 % significance

levels, respectively. The sample period extends from January 1996 to December 2014. All data are

sampled at the monthly frequency and relate to the S&P 500 index.

γ0 0.016*** 0.031*** 0.012** 0.011*** 0.035*** 0.010*** 0.002 0.002
(3.80) (3.57) (2.43) (3.28) (2.78) (2.98) (0.49) (0.49)

RV 0.612*** 0.596*** 0.633*** 0.631*** 0.621*** 0.585*** 0.374*** 0.750***
(11.51) (11.14) (12.20) (11.66) (12.01) (10.67) (4.06) (12.26)

CRP -0.043
(-1.59)

EXKURTBKM -0.024**
(-2.37)

FH 0.000
(-0.05)

GMR 0.000
(0.15)

SKEWBKM 0.026*
(1.91)

SMIRK 0.027**
(2.40)

V ARBKM 0.376***
(3.37)

V RP 0.376***
(3.37)

R2 40.80** 41.60** 40.13 40.14 41.09** 41.64** 43.03** 43.03**

R2
oos 3.18*** 3.34*** -1.41 -5.42 2.40*** 3.89*** 3.78*** 3.78***
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Table VI: Out-of-Sample Analysis: Restriction

This table reports the results of the out-of-sample analysis after imposing economically motivated

restrictions. We report the MSE-F statistics in parenthesis. CRP denotes the correlation risk

premium. EXKURTBKM is the risk-neutral kurtosis of Bakshi et al. (2003). FH is the risk-

neutral riskiness measure of Leiss & Nax (2018). GMR is the generalized measure of riskiness of

Bali et al. (2011). SKEWBKM is the risk-neutral skewness of Bakshi et al. (2003). SMIRK is

the option smirk. V ARBKM is the risk-neutral variance of Bakshi et al. (2003). Finally, V RP is

the variance risk premium computed as the difference between the risk-neutral variance of Bakshi

et al. (2003) and the most recent observation of the realized variance. The historical mean return,

and the forecast of a fitted AR(1) model for realized variance serve as naive benchmarks. “(I)”

denotes the imposition of the first restriction, where we set the slope estimate in the out-of-sample

analysis equal to zero, whenever its sign differs from that of the in-sample analysis. “(II)” denotes

the imposition of the second restriction, where we set the forecast equal to zero, whenever it is

negative. “(I+II)” denotes the joint imposition of both restrictions. R2
oos is the out-of-sample

R2. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10 %, 5 %, and 1 % significance levels,

respectively. All data are sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: Return Predictability

C
R
P

E
X
K
U
R
T

B
K

M

F
H

G
M
R

S
K
E
W

B
K

M

S
M
I
R
K

V
A
R

B
K

M

V
R
P

(I) R2
oos 2.81*** -1.22 -2.70 -3.27 -0.53 0.07 -3.84 5.50***

(4.83) (-2.02) (-4.39) (-5.30) (-0.87) (0.12) (-6.18) (9.73)

(II) R2
oos 2.69** 0.37 -1.40 -3.69 0.56 0.93 -3.39 4.43***

(4.61) (0.62) (-2.31) (-5.94) (0.95) (1.57) (-5.48) (7.74)

(I+II) R2
oos 2.69** 0.37 -1.38 -3.27 0.56 0.93 -2.95 4.43***

(4.61) (0.62) (-2.27) (-5.30) (0.95) (1.57) (-4.79) (7.74)

Panel B: Variance Predictability

C
R
P

E
X
K
U
R
T

B
K

M

F
H

G
M
R

S
K
E
W

B
K

M

S
M
I
R
K

V
A
R

B
K

M

V
R
P

(I) R2
oos 3.28*** 3.34*** -1.82 -11.23 2.40** 3.89*** 3.78*** 3.78***

(5.67) (5.77) (-2.98) (-16.87) (4.10) (6.76) (6.57) (6.57)

(II) R2
oos 3.18** 3.44*** -1.41 -5.42 2.40** 3.89*** 3.78*** 3.78**

(5.48) (5.95) (-2.32) (-8.58) (4.10) (6.76) (6.57) (6.57)

(I+II) R2
oos 3.28** 3.44** -1.82 -11.23 2.40** 3.89*** 3.78** 3.78**

(5.67) (5.95) (-2.98) (-16.87) (4.10) (6.76) (6.57) (6.57)
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Table X: Out-of-Sample Analysis: Forecast Combinations

This table reports the results of the out-of-sample analysis after the use of forecast combinations.

The mean forecast combination [MeanFC], the median forecast combination [MedianFC], and the

trimmed mean forecast combination [TrMeanFC] are used as alternative specifications. We report

the MSE-F statistics in parenthesis. The historical mean return, and the forecast of a fitted AR(1)

model for realized variance serve as naive benchmarks. Six forecasting variables are used. CRP

denotes the correlation risk premium. EXKURTBKM is the risk-neutral kurtosis of Bakshi et al.

(2003). FH is the risk-neutral riskiness measure of Leiss & Nax (2018). GMR is the generalized

measure of riskiness of Bali et al. (2011). SKEWBKM is the risk-neutral skewness of Bakshi

et al. (2003). SMIRK is the option smirk. V ARBKM is the risk-neutral variance of Bakshi

et al. (2003). Finally, V RP is the variance risk premium computed as the difference between

the risk-neutral variance of Bakshi et al. (2003) and the most recent observation of the realized

variance. R2
oos is the out-of-sample R2. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10 %,

5 %, and 1 % significance levels, respectively. All data are sampled at the monthly frequency and

relate to the S&P 500 index.

Panel A: Return Predictability

M
ea
n
F
C

M
ed
ia
n
F
C

T
rM

ea
n
F
C

R2
oos 1.76*** 0.91** 1.36***

(2.99) (1.54) (2.31)

Panel B: Variance Predictability

M
ea
n
F
C

M
ed
ia
n
F
C

T
rM

ea
n
F
C

R2
oos 2.50*** 4.12*** 3.06***

(4.28) (7.18) (5.27)
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Table XI: Economic Value: Forecast Combinations

This table reports utility gains and Sharpe Ratios for each of the three scenarios based on forecast

combinations. Scenario 1 assumes that realized variance is unpredictable and that the forecast

combination only predicts excess returns. Scenario 2 assumes that excess returns are unpredictable

but that the forecast combination predicts the variance of market returns. Scenario 3 implicitly

assumes that excess returns and variance can be predicted by the forecast combination. The

historical mean return and the forecast of a fitted AR(1) model for realized variance serve as

naive benchmarks. ∆CER(1), ∆CER(2), and ∆CER(3) are the annualized utility gains relative to

a strategy that assumes unpredictable excess returns and realized variance, achieved by following

strategy 1, 2, and 3, respectively. Similarly, ∆SR(1), ∆SR(2), and ∆SR(3) are the annualized

improvements in Sharpe Ratios achieved by following strategy 1, 2, and 3, respectively. ∗, ∗∗, and
∗∗∗ indicate the significance at the 10 %, 5 %, and 1 % significance levels, respectively. All data

are sampled at the monthly frequency and relate to the S&P 500 index.

Panel A: Mean Forecast Combination

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

γ = 3 1.21 6.07 5.80 0.11 0.50*** 0.50***
γ = 6 0.83 3.76 3.76 0.14 0.55*** 0.60***
γ = 9 0.55 2.52 2.59 0.14 0.54*** 0.62***
γ = 12 0.41 1.89 1.94 0.14 0.54*** 0.62***

Panel B: Median Forecast Combination

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

γ = 3 2.00 6.08 6.22 0.18 0.54*** 0.57***
γ = 6 0.57 3.68 3.85 0.10 0.58*** 0.64***
γ = 9 0.38 2.46 2.62 0.10 0.57*** 0.65***
γ = 12 0.28 1.85 1.96 0.10 0.57*** 0.65***

Panel C: Trimmed Mean Forecast Combination

∆CER(1) ∆CER(2) ∆CER(3) ∆SR(1) ∆SR(2) ∆SR(3)

γ = 3 1.63 6.05 5.94 0.14 0.52*** 0.52***
γ = 6 0.69 3.69 3.80 0.12 0.56*** 0.62***
γ = 9 0.46 2.47 2.56 0.12 0.56*** 0.62***
γ = 12 0.34 1.86 1.92 0.12 0.56*** 0.62***
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Table A1: Economic Value with Turnover and Transaction Costs

This table reports the turnover, the utility gains, and the Sharpe Ratios for each of the three

scenarios. Scenario 1 assumes that the realized variance is unpredictable and that the forecasting

variable [name in column] only predicts the excess returns. Scenario 2 assumes that the excess

returns are unpredictable but that the variable [name in column] and the lagged realized variance

predict the realized variance. Scenario 3 implicitly assumes that the excess returns and the realized

variance can be predicted by the forecasting variable [name in column], and in the latter case, by

the forecasting variable [name in column] and the lagged realized variance. The historical mean

return, and the forecast of a fitted AR(1) model for realized variance serve as naive benchmarks.

Turnoverabs is the monthly absolute value of the turnover for the naive strategy. Turnover
(i)
rel

represents the monthly relative turnover of strategy i related to the benchmark. ∆CER(1),

∆CER(2), and ∆CER(3) are the annualized utility gains relative to a strategy that assumes

unpredictable excess returns and realized variance, achieved by following strategy 1, 2, and 3,

respectively. Similarly, ∆SR(1), ∆SR(2), and ∆SR(3) are the annualized improvements in Sharpe

Ratios achieved by following strategy 1, 2, and 3, respectively. ∗, ∗∗, and ∗∗∗ indicate the significance

at the 10 %, 5 %, and 1 % significance levels, respectively. All data are sampled at the monthly

frequency and relate to the S&P 500 index.

Panel A: γ = 3

CRP EXKURTBKM FH GMR SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0448 0.0448 0.0448 0.0448 0.0448 0.0448 0.0448 0.0448

Turnover
(1)
rel 12.1906 5.4513 4.5365 3.0830 5.5545 8.9341 2.2193 9.6821

Turnover
(2)
rel 4.8831 5.5580 1.2842 2.0465 2.9157 2.7424 2.7127 3.9283

Turnover
(3)
rel 14.6331 8.2202 4.1985 2.0576 6.6146 10.9321 3.4473 11.5826

∆CER(1) 2.48 4.19 1.03 -4.31 0.64 0.85 -7.62 -8.46

∆CER(2) -1.03 1.60 1.43 4.39 1.81 1.87 5.94 7.04

∆CER(3) 1.38 4.46 3.17 2.36 2.33 0.55 -4.91 -5.47

∆SR(1) 0.21 0.39** 0.12 -0.14 0.06 0.05 -0.43*** -0.57***

∆SR(2) 0.06 0.20 0.12* 0.24*** 0.21 0.21** 0.36*** 0.47***

∆SR(3) 0.13 0.36* 0.26** 0.22* 0.20 0.06 -0.22 -0.25

Panel B: γ = 6

CRP EXKURTBKM FH GMR SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247 0.0247

Turnover
(1)
rel 15.9051 7.0084 5.7696 5.5303 7.0350 9.3238 4.2300 12.5610

Turnover
(2)
rel 10.6311 10.8603 2.2327 2.5870 6.8986 4.7041 5.8114 9.8254

Turnover
(3)
rel 25.8225 16.2198 8.4137 5.2987 13.7024 18.2632 5.2006 18.7912

∆CER(1) 0.88 3.03 -0.79 -9.52 0.30 0.85 -11.25 -10.32

∆CER(2) -5.70 0.95 -1.58 2.76 0.29 0.26 4.83 4.18

∆CER(3) -1.36 2.62 -0.68 -3.30 0.64 -0.28 -6.18 -10.91

∆SR(1) 0.18 0.49*** 0.07 -0.38*** 0.10 0.10 -0.61*** -0.73***

∆SR(2) -0.14 0.25 0.02 0.21*** 0.20* 0.16 0.44*** 0.49***

∆SR(3) 0.12 0.41* 0.22 0.08 0.27 0.06 -0.28 -0.54**
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Table A1: Economic Value with Turnover and Transaction Costs
(continued)

Panel C: γ = 9

CRP EXKURTBKM FH GMR SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0151 0.0151 0.0151 0.0151 0.0151 0.0151 0.0151 0.0151

Turnover
(1)
rel 18.4886 8.8266 7.1716 6.7321 9.2375 10.2124 5.7328 15.0938

Turnover
(2)
rel 15.6516 16.8364 3.4586 2.6537 10.1848 5.1486 6.6592 17.8674

Turnover
(3)
rel 36.6566 26.1824 11.1854 7.8807 20.6825 24.7431 5.7841 22.0822

∆CER(1) 0.15 2.11 -0.62 -7.43 -0.18 0.57 -10.81 -9.58

∆CER(2) -6.59 0.70 -2.11 1.82 0.03 0.13 3.25 2.20

∆CER(3) -2.17 1.01 -3.55 -4.35 -1.03 -0.41 -4.53 -9.70

∆SR(1) 0.13 0.50*** 0.08 -0.40*** 0.07 0.10 -0.65*** -0.74***

∆SR(2) -0.18 0.25* -0.01 0.18*** 0.18* 0.14 0.44*** 0.49***

∆SR(3) 0.14 0.39 0.07 -0.01 0.22 0.10 -0.29 -0.59***

Panel D: γ = 12

CRP EXKURTBKM FH GMR SKEWBKM SMIRK V ARBKM V RP

Turnoverabs 0.0108 0.0108 0.0108 0.0108 0.0108 0.0108 0.0108 0.0108

Turnover
(1)
rel 19.5157 9.1852 7.4131 7.4079 10.0488 10.6805 6.4946 15.8094

Turnover
(2)
rel 18.2998 21.0369 4.5438 2.6821 12.2949 5.3345 6.8723 24.3221

Turnover
(3)
rel 45.3856 34.0648 12.6527 9.0251 25.9198 27.6275 6.0582 23.5223

∆CER(1) 0.07 1.58 -0.49 -6.05 -0.17 0.43 -8.86 -7.25

∆CER(2) -7.04 0.49 -2.40 1.36 -0.24 0.08 2.43 0.77

∆CER(3) -2.90 0.09 -4.75 -3.49 -1.78 -0.48 -3.45 -8.30

∆SR(1) 0.12 0.50*** 0.08 -0.41*** 0.07 0.10 -0.65*** -0.75***

∆SR(2) -0.21 0.25* -0.04 0.18*** 0.14 0.13 0.44*** 0.43**

∆SR(3) 0.11 0.38 -0.01 -0.01 0.21 0.09 -0.29 -0.59***
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Table A2: Out-of-Sample Analysis: Restriction – Frequencies

This table reports the absolute frequency of how often the economically motivated restrictions

imposed are binding in the out-of-sample analysis, shown in Table VI. Panel A shows the frequency

for each individual variable, predicting the next month’s excess return. Panel B shows the frequency

for each individual variable as well as lagged realized variance, predicting the next month’s realized

variance. CRP denotes the correlation risk premium. EXKURTBKM is the risk-neutral kurtosis

of Bakshi et al. (2003). FH is the risk-neutral riskiness measure of Leiss & Nax (2018). GMR is

the generalized measure of riskiness of Bali et al. (2011). SKEWBKM is the risk-neutral skewness

of Bakshi et al. (2003). SMIRK is the option smirk. V ARBKM is the risk-neutral variance of

Bakshi et al. (2003). Finally, V RP is the variance risk premium computed as the difference

between the risk-neutral variance of Bakshi et al. (2003) and the most recent observation of the

realized variance. The historical mean return, and the forecast of a fitted AR(1) model for realized

variance serve as naive benchmarks. “(I)” denotes the imposition of the first restriction, where we

set the slope estimate in the out-of-sample analysis equal to zero, whenever its sign differs from

that of the in-sample analysis. “(II)” denotes the imposition of the second restriction, where we

set the forecast equal to zero, whenever it is negative. “(I+II)” denotes the joint imposition of both

restrictions. “(I+II) (I)” (“(I+II) (II)”) refers to the frequency of the first (second) restriction in

the case of the joint imposition of both restrictions. All data are sampled at the monthly frequency

and relate to the S&P 500 index.

Panel A: Return Predictability

C
R
P

E
X
K
U
R
T

B
K

M

F
H

G
M
R

S
K
E
W

B
K

M

S
M
I
R
K

V
A
R

B
K

M

V
R
P

(I) 0 0 12 8 0 0 35 0
(II) 53 32 8 7 29 62 56 77
(I+II) (I) 0 0 12 8 0 0 35 0
(I+II) (II) 53 32 9 0 29 62 50 77

Panel B: Variance Predictability

C
R
P

E
X
K
U
R
T

B
K

M

F
H

G
M
R

S
K
E
W

B
K

M

S
M
I
R
K

V
A
R

B
K

M

V
R
P

(I) 75 0 76 3 0 0 0 0
(II) 0 3 0 0 0 0 0 0
(I+II) (I) 75 0 76 3 0 0 0 0
(I+II) (II) 0 3 0 0 0 0 0 0

Lagged Realized Variance

(I) 0 0 0 0 0 0 0 0
(II) - - - - - - - -
(I+II) (I) 0 0 0 0 0 0 0 0
(I+II) (II) - - - - - - - -
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Table A3: Return and Variance Predictability of VRP Specifications

Panel A of this table reports the regression results of monthly excess returns on a constant, which

we denote by β0, and the lagged predictive variable. Panel B reports the regression results of

monthly realized variance on a constant, which we denote by γ0, the lagged predictive variable,

and the lagged realized variance. Statistical inferences are based on a bootstrapped distribution.

The historical mean return, and the forecast of a fitted AR(1) model for realized variance serve

as naive benchmarks. V RPHAR denotes the variance risk premium based on the HAR–RV model.

V RPDOWN is the downside variance risk premium. V RPUP is the upside variance risk premium.

V RPDOWN,HAR is the downside variance risk premium based on the HAR–RV model. Finally,

V RPUP,HAR is the upside variance risk premium based on the HAR–RV model. R2 and R2
oos are

the in-sample and out-of-sample R2, respectively. We report the t-statistics in parentheses. ∗, ∗∗,

and ∗∗∗ indicate the significance at the 10 %, 5 %, and 1 % significance levels, respectively. The

sample period extends from January 1996 to December 2014. All data are sampled at the monthly

frequency and relate to the S&P 500 index.

Panel A: Return Predictability

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

R2 0.00 2.23** 2.65** 0.38 2.05**

R2
oos -5.37 -1.13 -2.38 -4.10 -1.25

t− stat (0.10) (2.26) (2.47) (0.93) (2.17)

Panel B: Variance Predictability

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

R2 42.95 41.03 40.34 41.19 43.94

R2
oos 3.40*** 4.34*** -3.46 -4.05 4.63***

t− stat (3.32) (1.85) (0.89) (2.01) (3.90)
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Table A4: Economic Value of VRP Specifications

This table reports utility gains and Sharpe Ratios for each of the three scenarios. Scenario

1 assumes that the realized variance is unpredictable and that the forecasting variable [name

in column] only predicts the excess returns. Scenario 2 assumes that the excess returns are

unpredictable but that the variable [name in column] and the lagged realized variance predict

the realized variance. Scenario 3 implicitly assumes that the excess returns and the realized

variance can be predicted by the forecasting variable [name in column], and in the latter case,

by the forecasting variable [name in column] and the lagged realized variance. The historical mean

return, and the forecast of a fitted AR(1) model for realized variance serve as naive benchmarks.

∆CER(1), ∆CER(2), and ∆CER(3) are the annualized utility gains relative to a strategy that

assumes unpredictable excess returns and realized variance, achieved by following strategy 1, 2,

and 3, respectively. Similarly, ∆SR(1), ∆SR(2), and ∆SR(3) are the annualized improvements in

Sharpe Ratios achieved by following strategy 1, 2, and 3, respectively. ∗, ∗∗, and ∗∗∗ indicate the

significance at the 10 %, 5 %, and 1 % significance levels, respectively. All data are sampled at the

monthly frequency and relate to the S&P 500 index.

Panel A: γ = 3

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

∆CER(1) -7.41 0.24 2.25 -9.33 -9.25

∆CER(2) 6.29 7.40 6.73 5.17 5.11

∆CER(3) -4.36 6.31 6.74 -4.99 -8.24

∆SR(1) -0.43*** 0.04 0.19** -0.55*** -0.58***

∆SR(2) 0.38*** 0.69*** 0.71*** 0.37*** 0.40***

∆SR(3) -0.20 0.59*** 0.71*** -0.29* -0.51**

Panel B: γ = 6

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

∆CER(1) -10.71 -1.91 0.96 -11.09 -10.73

∆CER(2) 5.47 5.94 5.12 3.70 4.81

∆CER(3) -6.36 4.47 6.13 -6.32 -8.17

∆SR(1) -0.60*** -0.12 0.17* -0.64*** -0.69***

∆SR(2) 0.46*** 0.74*** 0.60*** 0.40*** 0.62***

∆SR(3) -0.27 0.61** 0.79*** -0.37** -0.59***
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Table A4: Economic Value of VRP Specifications (continued)

Panel C: γ = 9

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

∆CER(1) -10.65 -2.43 0.63 -10.89 -9.83

∆CER(2) 3.72 4.24 3.21 2.49 4.36

∆CER(3) -4.72 3.39 4.63 -5.68 -6.97

∆SR(1) -0.62*** -0.21 0.17* -0.65*** -0.73***

∆SR(2) 0.47*** 0.67*** 0.45** 0.36*** 0.76***

∆SR(3) -0.29 0.64** 0.80*** -0.40** -0.60***

Panel D: γ = 12

V
R
P

H
A
R

V
R
P

D
O
W

N

V
R
P

U
P

V
R
P

D
O
W

N
,H

A
R

V
R
P

U
P
,H

A
R

∆CER(1) -8.65 -2.20 0.47 -10.35 -7.82

∆CER(2) 2.78 3.15 2.25 1.85 3.43

∆CER(3) -3.60 2.53 3.25 -4.61 -5.49

∆SR(1) -0.63*** -0.23* 0.17* -0.62*** -0.72***

∆SR(2) 0.47*** 0.61*** 0.43* 0.34*** 0.80***

∆SR(3) -0.29 0.65** 0.76** -0.40** -0.59***
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