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Abstract

Researchers and practitioners face many choices when estimating an

asset’s sensitivities toward risk factors, i.e., betas. Using the entire U.S.

stock universe and a sample period of more than 50 years, we find that

a historical estimator based on daily return data with an exponential

weighting scheme as well as simple shrinkage adjustments yield the best

predictions for future beta. Adjustments for asynchronous trading, macroe-

conomic conditions, or regression-based combinations, on the other hand,

typically yield very high prediction errors and fail to create market-neutral

anomaly portfolios. Finally, we document a robust link between stock

characteristics and beta predictability.
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I Introduction

Researchers and practitioners need estimates of betas for a wide variety of applications.

Typically, historical data is used to estimate beta. Many researchers use the simple histor-

ical estimate. Others shrink the estimates toward the average beta of similar stocks. Some

condition their estimates on macroeconomic state variables while others apply a weighting

scheme on the historical data. Finally, some directly combine estimates obtained from differ-

ent methods. Often, these decisions are made ad hoc without much guidance and discussion

on how they impact the resulting estimates. The primary goal of this study is to deliver

guidance for making the optimal choice among these and many more options one faces when

estimating beta.1

To be more precise, we study the impact that these choices – e.g., different data sampling

frequencies, estimation windows, forecast adjustments, and forecast combinations – have

on estimates for beta. We analyze the impact of these choices both unconditionally and

conditionally for stocks with different stock characteristics.

We use a large cross-section of stocks and more than 50 years of data to comprehensively

study the estimation of beta. Relative to existing studies, we substantially expand the scope

both in the asset space and in the time dimension. We also illuminate several aspects of

the estimation of beta. We evaluate the predictability for realized beta by computing the

average root mean squared error (RMSE) of all approaches, testing the significance in mean

squared and median squared forecast errors. In addition, we examine the economic value of

more accurate beta forecasts in portfolio formation. We test if the beta estimators are able

to generate market-neutral anomaly portfolios.

We examine several estimation and adjustment approaches. First, we study the impact

of different estimation windows and data sampling frequencies. Regarding the estimation
1While betas are generally estimated with respect to various possible state variables, we focus our analysis

on market beta.
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window, the researcher faces a trade-off between conditionality, i.e., using the most recent

data, and a sufficient sample size that reduces measurement errors when predicting a time-

varying beta using historical data. We find that a historical window of 1 year typically

yields the lowest average prediction errors and performs well in generating market-neutral

anomaly portfolios. Furthermore, consistent with the findings of Hollstein et al. (2018), we

find that the data frequency should be as high as possible, i.e., estimators based on daily

data outperform those based on monthly or quarterly data.

Second, we examine the impact of different weighting schemes. Conceptually, exponen-

tially weighing past observations could deliver a possible solution to the conditionality vs.

sample size trade-off because one can “have it both ways”, placing a higher weight on more

recent observations to get a conditional estimate and using a long historical window to re-

duce measurement noise. Indeed, we find that exponentially weighting the observations

yields significantly more precise estimates for beta and brings the realized betas of ex-ante

market-neutral portfolios toward zero.

Third, we examine the impact of imposing priors for the beta estimates. The idea behind

this approach is that the beta estimate of a stock should not be too dissimilar to that of other

stocks with similar characteristics. We find that the shrinkage adjustments of Vasicek (1973),

Karolyi (1992), and Cosemans et al. (2016) reduce average squared prediction errors. The

simple shrinkage approach of Vasicek (1973) also performs better than the simple historical

estimator in forming market-neutral anomaly portfolios while the more informative prior

models of Karolyi (1992) and Cosemans et al. (2016) perform worse.

Fourth, we examine the effect of adjustments for asynchronous trading. Scholes &

Williams (1977) and Dimson (1979) suggest that we can account for asynchronous trad-

ing by including betas with respect to lagged market returns. Arguing that it takes investors

time to process and understand the impact of systematic news on opaque firms, Gilbert et al.

(2014) suggest using quarterly instead of daily data to estimate beta. However, contrary to
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these arguments, we find that the Dimson adjusted beta and, as indicated previously, esti-

mators based on monthly and quarterly data, yield very high RMSEs and average realized

betas in absolute terms in the portfolio formation test.

Fifth, following Shanken (1990) and Ferson & Schadt (1996), we also examine the impact

of conditioning information from macroeconomic state variables for beta estimation and find

that all estimators that build on such information underperform the simple historical model.

Sixth, we investigate forecast combinations. We examine simple, regression-based, and

Bayesian combinations. We find that a simple forecast combination of an exponentially

weighted and a prior-based historical estimator yields the lowest average prediction errors

overall. However, more elaborated combination approaches perform considerably worse,

especially if we combine many individual models.

We also analyze why certain estimators perform well while others perform very poorly.

We find that weighting schemes and shrinking the estimates toward informative priors work

well because both approaches correct for measurement errors, particularly in stocks with

very high and very low betas. On the other hand, asynchronicity adjustments, macroeco-

nomic conditioning variables, and model-based forecast combinations increase measurement

errors. The RMSE difference of betas based on macroeconomic variables is typically strongly

correlated with the conditioning variables. It thus seems that individual stock betas are not

related to macroeconomic variables and imposing this structure therefore induces systematic

measurement errors. Model-based forecast combinations appear to overfit the dynamics of

beta in-sample and thus perform very poorly out-of-sample.

Finally, we analyze the link between stock characteristics and the performance of different

approaches. We find that betas are particularly hard to predict for stocks with extreme (high

or low) betas or momentum, small and illiquid stocks, as well as those with high idiosyncratic

volatility. The betas for value stocks are harder to predict than those for growth stocks.

Additionally, we detect a heterogeneous degree of predictability across different industries
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with betas of stocks, e.g., of the manufacturing sector being markedly more predictable than

those of the energy sector. For all the sorted portfolios, we obtain similar results in terms of

ranking our main approaches. Those estimators that perform well unconditionally, typically

also do so conditional on certain stock characteristics.

We test the robustness of our results, and find that these are largely similar for forecast

horizons of 1, 3, 6, 12, and 60 months. Our results are also robust to computing hedging

error ratios or estimators for realized beta that account for infrequent trading. Finally, we

obtain qualitatively similar results for equally and value-weighted RMSEs, for an evaluation

in the time series of individual firms, as well as for an alternative statistical loss function.

Our study is related to but materially different from Hollstein & Prokopczuk (2016).

The authors examine the performance of different option-implied and time-series based es-

timators of beta and the historical estimator, finding that the option-implied estimator of

Buss & Vilkov (2012) performs best. Our focus is considerably broader. While Hollstein

& Prokopczuk (2016) face limitations imposed by option-implied estimators (only large-cap

stocks of the S&P 500 and a relatively short sample period), we can analyze how to opti-

mally estimate beta for all stocks, especially those for which there is no sufficient options

data available. Furthermore, we use numerous estimators that are not included in Hollstein

& Prokopczuk (2016) and link beta predictability to different stock characteristics.

More recently, Hollstein et al. (2018) make use of the results of Bollerslev & Zhang

(2003), Barndorff-Nielsen & Shephard (2004), and Andersen et al. (2006) and show that,

using high-frequency data, betas can be estimated more precisely for the firms of the S&P

500. However, the same shortcoming as for option-implied estimators applies for estimators

relying on high-frequency data: they are only reliable for the subset of the most liquid stocks.

Thus, our research directly complements these studies.

Our paper also connects to studies on the conditional capital asset pricing model (CCAPM).

Shanken (1990), Ferson & Schadt (1996), Lettau & Ludvigson (2001), and Guo et al. (2017)
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condition on macroeconomic variables to obtain time-varying betas. In contrast, Lewellen &

Nagel (2006) use the simple historical estimator based on short windows for the same pur-

pose. We complement these studies by examining the predictive accuracy of the estimators

based on linear macroeconomic conditioning variables relative to the historical estimator and

other models.

Our paper also adds to the literature on forecast combinations. Bates & Granger (1969),

Clemen (1989), and Timmermann (2006) show that forecast combinations can be beneficial

in many fields of financial forecasting. The authors show that forecast combinations are

especially beneficial when the combined forecasts use data from different sources. We extend

the forecast combinations literature in the context of beta estimation.

Lastly, we also connect to the literature on forecast adjustments for beta pioneered by

Vasicek (1973). The author shrinks beta estimates toward the cross-sectional average beta.

Recent developments turn towards more informative priors, as in Karolyi (1992) and Cose-

mans et al. (2016). We thoroughly examine the performance of prior-based combinations

vis-à-vis single models and other possible forecast combinations. Levi & Welch (2017) test

different shrinking approaches and suggest best practices to obtain cost-of-capital estimates.

The remainder of this paper is organized as follows. In Section II, we introduce the

data and the methodology for the estimation of the different models. We present our main

empirical results for estimating beta in Section III. In Section IV, we examine why some

models work while others do not. Section V analyzes the impact of stock characteristics on

beta predictability. In Section VI, we present additional analyses and test the robustness of

our results. Section VII concludes.
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II Data and Methodology

A Data

We obtain daily data on stock returns and shares outstanding from the Center for Re-

search in Security Prices (CRSP). We use all stocks traded on the New York Stock Exchange

(NYSE), the American Stock Exchange (AMEX), and the National Association of Securities

Dealers Automated Quotations (NASDAQ). We start our sample period in January 1963 and

end it in December 2015. Our sample period thus starts after the cross-section expansion

of CRSP in the mid-1962 and spans more than 50 years. We obtain data on the risk-free

(1-month Treasury Bill) rate from Kenneth French’s data library. To proxy for the market

return, we use the CRSP value-weighted index.

B Estimation Methodology

Historical Beta We consider historical beta estimates (HIST) following, e.g., Fama

& MacBeth (1973), regressing an asset’s excess return on a constant and the market excess

return:

rj,τ − rf,τ = αj,t + βHIST
j,t (rM,τ − rf,τ ) + εj,τ , (1)

where βHIST
j,t denotes the estimate for the historical beta of asset j at time t. We use data

from time t− k to t, observed at discrete intervals τ , where k is the length of the estimation

window. rj,τ is the return on asset j, rM,τ denotes the return of the market portfolio, and

rf,τ is the risk-free rate, all observed at time τ .

EWMA Beta We also examine a weighted version of the historical estimator with

an exponentially weighted moving average structure. To be precise, we estimate Equation

(1) with weighted least squares (WLS) using the weights exp(−|t−τ |h)∑t−1
τ=1 exp(−|t−τ |h)

with h = log(2)
ι

. ι
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characterizes the horizon, to which the half-life of the weights converges for large samples.

We try two alternatives for ι: (i) one third and (ii) two thirds of the number of observations

of the (initial) estimation window.2

This estimator is similar in spirit to that of Ang & Kristensen (2012), who estimate

conditional betas using a kernel-weighted ordinary least squares (OLS) approach. The esti-

mator used here can be regarded as a special case, only using past data and implementing

an exponentially-weighted kernel. The Gaussian kernel used in Ang & Kristensen (2012) is

not computable in real time since it hinges on future return data.

Shrinkage Beta Following Vasicek (1973), we obtain a posterior belief of beta by

combining the historical estimate (βHIST
j,t ) with one or multiple priors (bi,j,t) in the following

way:

βShr
j,t =

βHIST
j,t +

∑
i

σ2

βHIST
j,t

s2bi,j,t
bi,j,t

1 +
∑

i

σ2

βHIST
j,t

s2bi,j,t

. (2)

σ2
βHIST
j,t

and s2
bi,j,t

are the variances of the historical estimate and the prior(s), respectively.

Hence, the degree of shrinkage depends on the relative precision of the historical estimate

and the priors. We use as priors (i) the cross-sectional average beta (Vasicek, 1973) (βV), (ii)

a multiple shrinkage adjustment using the cross-sectional average beta, the cross-sectional

average beta of firms in the same Global Industry Classification Standard (GICS) industry

sector, and the cross-sectional average beta of firms in the same size decile (Karolyi, 1992)

(βK), and (iii) the fundamentals-based prior of Cosemans et al. (2016) (βI).3

Dimson Beta Following Dimson (1979) and Lewellen & Nagel (2006), we account for
2We try both a rolling window estimation using the same window as for HIST and an expanding window.

To reduce the computational burden, we limit the maximum amount of daily returns used to 10 years.
3Cosemans et al. (2016) use the firms’ size, book-to-market ratio, operating leverage, financial leverage,

momentum, and industry classification, as well as the default yield spread to estimate the prior. For further
information, we refer to the original article. We obtain the balance sheet data necessary to compute the
above ratios from Compustat.
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potential infrequent trading effects. If stocks trade less frequently than the market index,

stock prices adjust gradually to new information. Therefore, Dimson (1979) adds lagged

market returns in the regression:

rj,τ − rf,τ = αj,t + β
(0)
j,t (rM,τ − rf,τ ) + β

(1)
j,t (rM,τ−1 − rf,τ−1) (3)

+β
(2)
j,t

(
N∑
n=2

rM,τ−n − rf,τ−n

)
+ εj,τ .

We incorporate N = 1 up to N = 5 lagged returns. In the case N = 1, the term associated

with β(2)
j,t drops. The estimator for beta is then βDim(N)

j,t =
∑min(2,N)

i=0 β
(i)
j,t , where min(·) is the

minimum operator.

Scholes–Williams Beta We also examine the beta estimator of Scholes & Williams

(1977). That is, we estimate three separate regressions as in Equation (1), once using the

contemporaneous market return, exactly as in Equation (1). Once, we estimate a similar

regression using the lagged market excess return, that is rj,τ − rf,τ = αj,t + β−j,t(rM,τ−1 −

rf,τ−1) + εj,τ and once we use the leaded market excess return rj,τ − rf,τ = αj,t+β+
j,t(rM,τ+1−

rf,τ+1) + εj,τ . The final estimator for beta is:

βSW
j,t =

β−j,t + βHIST
j,t + β+

j,t

1 + 2ρ
, (4)

where ρ is the first order autocorrelation of the market excess return.

Correlation-separated Beta Following Frazzini & Pedersen (2014), we use an esti-

mator that separates the estimation of volatilities and correlations. The authors estimate

volatilities from daily return data and correlations from overlapping 3-day returns to account

for asynchronous trading. Additionally, Frazzini & Pedersen (2014) argue that correlations

move more slowly over time, allowing for different estimation windows used to compute
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volatilities and correlations. We thus obtain the beta as:

βFPhor

j,t = ρhor
j,M,t

σj,t
σM,t

, (5)

where ρhor
j,M,t is the correlation between the return of asset j with the market during the past

hor months and σj,t and σM,t are the volatilities of the return of asset j and the market,

respectively.

Macro Beta We follow Shanken (1990) and Ferson & Schadt (1996) in assuming that

βMac
j,t is a linear function of state variable(s):

βMac
j,t = b0,j +B′jzt. (6)

We define zt as the vector of deviations of the state variables from their average up to time

t, so that b0,j can be interpreted as the average beta while the elements in the matrix Bj

determine the sensitivity of beta to the state variable(s). We estimate the parameters for

Equation (6) using the time series of past (quarterly) macroeconomic variables and estimates

for historical beta as on the left-hand side. We use a rolling estimation window of 20

quarters.4

We use the variables examined by Goyal & Welch (2008). The dataset is available from

Amit Goyal’s webpage. Specifically, we examine the book-to-market ratio of the Dow Jones

Industrial Average (bm), the consumption–wealth–income ratio (Lettau & Ludvigson, 2001,

cay), the default yield spread (dfy), the dividend–price (dp) and earnings–price (ep) ratios

of the S&P 500, the investment–capital ratio (ic), inflation (inf), the long-term government

bond yield (lty), and Treasury Bill rates (tbl).5 We also use the 1-month macroeconomic

uncertainty (unc) of Jurado et al. (2015) from Sydney Ludvigson’s webpage and the unem-
4We also try an expanding window and find that the results are qualitatively similar, while the prediction

errors for the expanding window are typically slightly higher.
5For further description of the construction of the variables, we refer to Goyal & Welch (2008).
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ployment rate (une) from the Federal Reserve Economic Database.

We follow Goyal & Welch (2008) and also estimate a “kitchen-sink” (all) regression using

all these variables. In a recent study, Guo et al. (2017) find that the earnings–price ratio,

inflation, and the unemployment rate are the best predictors for the beta of the value pre-

mium. The authors cannot reject the null hypothesis of a linear relationship of the state

variables and beta, which supports our choice of a simple linear specification.

Forecast Combinations Bates & Granger (1969) note that the combination of esti-

mation techniques may prove worthwhile, especially when the combined estimates exploit (at

least partially) different information sets. To investigate whether combinations are worth-

while for estimating beta, we try several approaches. The first is a simple equally weighted

combination of different estimates. However, while such a simple ad hoc combination is easy

to implement, the procedure might not provide the optimal result.

Second, we estimate weights by performing multivariate regressions for each stock.6 We

employ an expanding window to make use of a maximum length of history to be able to

estimate the parameters with greater precision.7 The regression equation takes the following

form:

βR
j,τ = aj,t +

M∑
m=1

b
(m)
j,t β

(m)
j,τ + εj,τ . (7)

β
(m)
j,τ is the beta estimate for asset j of approach m at time τ . We combine the estimates

of M different models. βR
j,τ denotes the corresponding realized beta of that asset. At every

point in time the estimation moves forward, one additional observation is added to each of

these vectors. After obtaining the time-t regression coefficients, we adjust the beta estimates,
6We use the first 100 months as our initial training sample. At each point in time t, we use estimates of

beta up to t− k, since realized beta with a k-month window is only available up to the period t− k until t
at time t.

7We also try a rolling window approach. The results indicate that the expanding window approach
indeed yields superior results.
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using the following equation:

βC
j,t = âj,t +

M∑
m=1

b̂
(m)
j,t β

(m)
j,t . (8)

βC
j,t is the combined beta forecast for asset j at time t and âj,t, b̂

(m)
j,t are the respective

regression coefficients, i.e., weights.8

We also consider the Bayesian shrinkage approach proposed by Diebold & Pauly (1990).

This approach shrinks regression coefficients towards a prior of equal weights for each forecast

and an intercept of zero. To obtain βshr
j,t , we use Equations (7) and (8) with the empirical

Bayes estimator.

Bayesian Model Averaging Finally, we examine optimal forecast combinations us-

ing Bayesian model averaging. The basic idea of this approach is that there are K different

possibilities to combine M different forecasts. To be more precise, one can use one single

forecast only (M different possibilities), there are various possible combinations of two fore-

casts, three forecasts, and so forth. The models thus differ in the subset of predictors used.

Under the uninformative prior specification of Fernandez et al. (2001), assuming that all

variables are equally likely to enter the model, and that the likelihood that a variable enters

the model is independent of that of another variable, the optimal combinations are (Stock

& Watson, 2006):

βBMA
j,t =

K∑
k=1

ωkβ
(k)
j,t , (9)

where β(k)
j,t is the OLS combination (as of Equation (8)) of forecast models for one possible

8Note that now the β(k)
j,t have a t-subscript. This is because we only use the current beta estimates

instead of the vector of all previous beta estimates.
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way k to combine the M forecasts. The weights ωk are:

ωk =
a(g)

1
2
Pk [1 + g−1SSRU

k /SSR
R]−

1
2
dfR∑K

i=1 a(g)
1
2
Pi [1 + g−1SSRU

i /SSR
R]−

1
2
dfR

. (10)

Essentially, we first estimate a restricted forecasting model as in Equation (7) with OLS using

only the variables that ought to be included in each model.9 From this, we get the sum of

squared residuals (SSRR). Second, we estimate a forecasting model as of Equation (7) for

each of the K possible combinations of predictors and get the forecast β(k)
j,t and the sum of

squared residuals (SSRU
k ). Pk is the number of parameters in the kth regression combination,

dfR is the number of the degrees of freedom of the restricted model, and a(g) = g/(1 + g)

with g = 1/min(T,M2) following Fernandez et al. (2001). T is the number of time periods

in the estimation window.

C Evaluation Methodology

Realized Beta To evaluate predictions for beta, we follow Andersen et al. (2006)

and use the realized beta (RB). Andersen et al. (2006) show that under weak regulatory

conditions, RB is a consistent estimator of the underlying beta. We use daily (log-)returns

during the prediction window t until T to estimate:10

βR
j,t =

∑T
τ=t+1 rj,τrM,τ∑T
τ=t+1 r

2
M,τ

, (11)

where rj,τ and rM,τ refer to the return of asset j and the market return at time τ , respectively.

Throughout our main empirical analysis, we follow Chang et al. (2012) and Hollstein &
9When empirically implementing the approach, specifying variables that are included in each model can

substantially reduce the computational effort.
10Note that the formula for realized beta makes use of the expanded formula for the variance, neglecting

the drift term. Andersen et al. (2006) note that the effect of the drift term vanishes as the sampling frequency
is reduced, which effectively “annihilates” the mean. However, the average daily excess-return of the CRSP
value-weighted index amounts to only 2.37 basis points. Thus, it is unlikely that this simplification induces
a material bias.
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Prokopczuk (2016) and focus on a prediction horizon for realized beta of 6 months.11

Root Mean Squared Error (RMSE) To examine the out-of-sample forecast accu-

racy of the different approaches, we perform the analysis using the RMSE, a loss function

commonly applied in the literature:12

RMSEj =

√√√√1

o

o∑
j=1

(βR
j,t − βj,t)2, (12)

where o is the number of out-of-sample observations of realized and predicted betas at one

point in time. βRj,t is the realized beta in the period ranging from t to T , and βj,t denotes

an estimate for beta. We rely on the RMSE criterion since it is robust to the presence of

(mean zero) noise in the evaluation proxy while other commonly employed loss functions

are not (Patton, 2011). We test for significance in RMSE differences using the modified

Diebold–Mariano test proposed by Harvey et al. (1997). We use Newey & West (1987)

standard errors with 4 lags. To test for significance in root median squared error (RMedSE)

differences, we employ the non-parametric Wilcoxon signed rank test.13 In general, the

results for the RMedSE and its significance are similar to those for the RMSE. Hence, when

discussing our results, we mainly focus on the RMSE results.

We believe that the combination of realized beta and the RMSE criterion is appropriate

for evaluating forecasts for beta. Given that realized beta is a consistent estimator, in finite

samples, the main concern with using this to evaluate beta forecasts is that it might be a

noisy proxy of the true underlying beta. However, the RMSE criterion is robust to this noise

(if it is zero on average). Thus, this combination appears to be well-suited.
11For all estimators, we require at least half of the data to be available in order to obtain an estimate.
12In Section VI.H, we also examine the Mean Absolute Error (MAE) loss function as an alternative, and

obtain largely similar results as for the RMSE.
13Strictly speaking, the Wilcoxon signed rank test incorporates the joint null hypothesis of zero median

in the loss differentials as well as a symmetric distribution. We stick to this test instead of an alternative
only testing on zero median, like the simple sign test, since the Wilcoxon signed rank test turns out to be
more powerful in many applications (Conover, 1999).
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Market-Neutral Anomaly Portfolios For estimating a firm’s cost of capital and

other applications, individual betas are very relevant. However, the ability of different beta

estimation methods to create market-neutral portfolios is an interesting economic criterion on

which to assess different beta estimation approaches that is at least as important. Therefore,

along with the RMSE, we evaluate the average ex-post realized betas of ex-ante market-

neutral long–short anomaly portfolios. We use several anomaly variables, which we describe

in Section A of the Appendix.

Each month, we sort the stocks to form the different anomaly portfolios based on NYSE

breakpoints. For size and value, as in Lewellen & Nagel (2006), we build 25 independently

sorted portfolios. S is the average of the 5 low market-cap portfolios and B is the average of

the 5 high market-cap portfolios while SMB is their difference. Similarly, L is the average

of the 5 low book-to-market portfolios and H is the average of the 5 high book-to-market

portfolios. HML is the difference between the value and growth portfolios. For momentum,

we sort the stocks into 10 portfolios based on their return over the past 12 months while

skipping the most recent month (Jegadeesh & Titman, 1993). W and L are the top and

bottom deciles while WML is their difference. For idiosyncratic volatility (Ivol) and illiquidity

(Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low

portfolios, respectively. For leverage, we follow the same approach as for the book-to-market

ratio, that is, we build 25 portfolios, independently sorted on size and leverage and form the

high-minus-low portfolio.

For each beta estimator, we compute the long portfolio beta and the short portfolio beta

predictions. We set the weight υj,t so that it fulfills the equation υj,tβlong
j,t − βshort

j,t = 0.14 We

thus create anomaly portfolios that are ex-ante market-neutral. We then test whether the

ex-post realized beta of the anomaly portfolios is indeed 0 on average.
14The results are qualitatively similar when keeping the weight of the long side at 1 and instead weighing

the short side to make the portfolios market neutral.
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III Estimating Beta

A Optimal Window Length and Sampling Frequency

We start the main analysis looking for the optimal sampling frequency and window length

for the simple historical estimator. For the historical estimator, we consider windows of 1, 3,

6, 12, 24, 36, and 60 months when using daily data. Additionally, we consider the historical

estimator based on monthly data (HISTmon) using windows of 12, 36, and 60 months, as well

as an estimator based on quarterly data using the returns over the previous 10 years.15

In Table 1, we present the summary statistics of these estimators. Several properties of

the different estimators are worth mentioning. First, the value-weighed average beta, which

should be equal to 1 when examining a complete market, is close to that value for most ap-

proaches. Values below 1 provide some indication that stocks are traded infrequently or that

opacity prevents market participants from fully understanding the impact of systematic news

during the chosen return interval. Values above 1 indicate that an estimator overestimates

the systematic risk on average.

Second, we examine the average cross-sectional standard deviation of the approaches.

A high standard deviation might be an indication of high measurement errors, whereas a

very low standard deviation might indicate that an approach fails to sufficiently capture the

heterogeneity in the estimates. Naturally, the average cross-sectional standard deviation is

larger and the quantiles are wider for shorter estimation windows. Thus, the short-window

historical estimators likely suffer from high measurement errors.

Third, we examine the average value-weighted correlation among the estimates. We find

that the correlations are far from perfect even though we use exactly the same estimator

for all approaches, and only change the historical window size and sampling frequency. For
15The subscript of the HIST estimators denotes the return frequency. This is left blank for daily data. We

use the subscript “mon” for monthly and “q” for quarterly data. The superscript of the estimators indicates
the period included in the estimation window (expressed in months).
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example, the correlation of the historical estimator based on daily data and a 1-month

historical window with that using a 60-month window is as low as 0.40. Additionally, even

when using the same data window, the correlation of the 60-month historical estimator based

on daily data with that based on monthly data is only 0.65.

To find the optimal combination of window length and sampling frequency, in Table 2

we present the average out-of-sample prediction errors of different historical estimators. We

detect the typical trade-off between conditionality and sample size. On the one hand, beta

changes over time. Hence, an estimate based on a short historical window delivers a more

timely conditional estimate. On the other, estimates based on a small sample are prone to

measurement error. Starting with daily data, we find that the average value-weighted RMSE

is highest for the 1-month horizon. It falls gradually up to the 12-month horizon and begins

to rise again for longer estimation windows. The average RMSE of the 12-month historical

estimator (HIST12) is significantly lower than that of the 1-month horizon 59% of the time,

compared to the 3-month horizon estimator 42% of the time, and relative to the 60-month

estimator 17% of the time.

Additionally, we find that low-frequency estimators, i.e., those based on monthly and

quarterly data, yield very high average RMSEs, which are significantly higher than the

RMSE of HIST12 about 80% of the time. This result is also in line with the finding of

Hollstein et al. (2018), who examine the stocks of the S&P 500 and show that estimators

based on higher-frequency data outperform those based on lower-frequency data. It thus

seems that estimators based on higher-frequency data are generally preferable whenever

reliable data are available.

In Table 3, we further test to what extent the estimators help create market-neutral

anomaly portfolios. We find results that are broadly consistent with those when using the

RMSE. For the 12-month estimation window using daily data, the average ex-post realized

betas of the anomaly portfolios are small and significant for only 2 out of the 6 anomaly
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portfolios. For very long or short horizons, the magnitude of the average realized betas is

typically larger and the average ex-post realized betas are statistically significant more fre-

quently. A very good alternative is also the 24-month estimation window. For this estimation

window, only 1 anomaly portfolio has a statistically significant realized beta. However, the

point estimates and standard errors are typically higher for the 24-month window compared

to the 12-month window.

Overall, the daily historical estimator using a 12-month window both yields the most

accurate predictions and fares well in creating market-neutral anomaly portfolios. In the

following sections, we therefore concentrate on the 12-month estimation window, indicate

HIST12 simply by HIST, and examine if we can further improve its predictive accuracy by

imposing different adjustments on the estimator.

B Different Weighting Schemes

In the previous section, we address the trade-off between conditionality and sample size

by searching for an optimal window that balances both arguments. However, it may also

be possible to resolve this trade-off in an alternative manner. While, thus far, we weigh all

observations equally, independently of whether the returns occur 11 months or 1 week before

the date of the estimation, one could also implement an exponentially decaying weighting

scheme. This way, we can use a large sample to estimate the parameters precisely and, at

the same time, give a higher weight to more recent observations that likely carry better in-

formation on the current conditional beta. We use two different half-lifes for the exponential

weighting, one that has a higher level of conditionality, where the half-life corresponds to

84 trading days (indicated by the additional subscript “s” for “short”) and one where it is

168 trading days.16 Additionally, we use each of the two half-lifes together with an expand-
16We compute this as 12 (months) times 21 (average daily return observations per month) times 1

3 in the
former and 2

3 in the latter case.
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ing window (HISTewma,s,ex and HISTewma,ex), where we have an even larger sample size that

might further increase the precision of the estimates.17

In Table 1, we present summary statistics for the exponentially weighted historical es-

timator.18 We find that the overall properties of HISTewma and HISTewma,ex are similar to

those of HIST12 and the correlation is high with the 12-month historical estimator employing

equal weights. Thus, we expect that the differences might not be very large.

We present the results on prediction errors when using an exponential weighting scheme

in Table 4. We find that, independently of the specification, the exponential weighting

reduces the average value-weighted RMSE. We obtain the lowest average value-weighted

RMSE for HISTewma,ex. The value-weighted RMSE is significantly lower for HISTewma,ex

compared to HIST 30% of the time. Thus, the exponential weighting, especially combined

with an expanding estimation window, can reduce prediction errors in beta.

In Table 5, we present the portfolio results. We find that most approaches perform

similarly well as HIST. The best approach, just like for the RMSE, is HISTewma,ex, which

is able to create ex-post market-neutral portfolios on average for all anomalies except for

momentum.

C Imposing Priors

Another way to correct for potential measurement errors is to shrink potentially noisy

estimates toward an informative prior. Estimates that have higher standard errors are thus

shrunk more heavily toward their prior than estimates with lower standard errors. We use

three different shrinkage estimators, HISTV, HISTK, and HISTI.

Summary statistics of these estimators are presented in Table 1. Naturally, we find that
17One might wonder how much of the weight is assigned to observations more than 1 year past, when

using an expanding window. For ι = 84, this is roughly 12% and for ι = 168, about 35% of the weight is
placed on observations further back.

18To enhance the exposition, we only present the summary statistics for the estimator with ι = 168.
Those with a shorter half-life of the weights (ι = 84) are qualitatively similar.
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the distributions of HISTV, HISTK, and HISTI are narrower than that of the unadjusted 12-

month historical estimator; also, quite naturally, since HISTV, HISTK, and HISTI are directly

derived from HIST12 the estimators are highly cross-sectionally correlated with it and among

each other. The correlation with HIST12 decreases with the amount of information imposed

for the prior from 0.98 for HISTV to 0.83 for HISTI. On the other hand, the value-weighted

average for HISTV and HISTK is slightly below 1 because HISTV and HISTK shrink the beta

estimates toward an equally weighted average, which is typically below 1.19 For HISTI, we

have far fewer observations compared to the simple historical approaches. This is because the

approach requires accounting data that is not as widely available as stock data and because

we need an initial window to estimate the parameters. The value-weighted average of HISTI

of 1.02 slightly exceeds 1.

We present the prediction errors of the different prior-adjusted betas in Table 6.20 We

find that HISTV, HISTK, and HISTI yield lower average value-weighted RMSEs compared

to HIST. The differences are significant 8%, 14%, and 4% of the time, respectively. HISTK,

which shrinks the beta estimates three times, is slightly better than the less informative

HISTV, which shrinks estimates toward the overall average beta only. The individual-priors-

based estimator, HISTI yields a slightly lower average RMSE compared to HISTV (which

becomes visible in the decimal places not tabulated) but a higher average RMSE than HISTK.

The differences are generally stronger in the median. HISTI yields a relatively high RMedSE.

Our findings are in line with Karolyi (1992), who shows that the Vasicek (1973) beta

adjustment yields a substantially lower RMSE compared to HIST and, furthermore, the

multiple priors approach by Karolyi (1992) performs even better than HIST and than HISTV.
19We also try HISTV and HISTK shrinking the beta estimates toward a value-weighted average. We find

that in that case the value-weighted averages are closer to 1. The overall performance of the two estimators
is qualitatively similar and generally even slightly better when shrinking towards the value-weighted average.

20Note that the average RMSE for HIST is different from that of Table 2 because both the sample period
and stock universe differ slightly. We only include stock–month observations, for which all approaches in
the table yield an estimate. The number of firm–month observations reduces because we need an in-sample
period to first estimate the prior for HISTI and because many firms lack accounting data.
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Our findings are also consistent with those in Cosemans et al. (2016). The authors find

that their individual-priors-based approach yields lower average RMSEs compared to HIST,

HISTV, and a version of the Karolyi (1992) estimator. We confirm these results in that we

find that HISTI yields a lower average RMSE than HIST and HISTV, but the average RMSE

is higher than that of HISTK. The reason for this finding is that Cosemans et al. (2016) use

a weaker specification of the Karolyi (1992) estimator, only shrinking the beta estimates to

the industry average instead of the three-step shrinkage adjustment which Karolyi (1992)

uses in his initial paper. When we use this weaker version of the Karolyi (1992) estimator

used by Cosemans et al. (2016), we are able to confirm the findings of the authors that the

Cosemans et al. (2016) estimator yields a slightly lower average RMSE.

Table 7 presents the results for market-neutral anomaly portfolios. We find that the

more informative the prior, the worse the performance in generating ex-post market-neutral

portfolios. While HISTV only fails in creating market-neutral momentum portfolios, HISTK

fails for 3 portfolios, and HISTI even fails for 5 out of the 6 portfolios. Since the prior for

HISTI is based on a characteristics-augmented monthly regression, the poor result for HISTI

in creating market-neutral anomaly portfolios is consistent with poor results for estimators

based on monthly data. Thus, shrinkage toward more informative priors helps reduce mean

squared errors but worsens the performance in portfolio formation.21

D Asynchronicity Adjustments

A possible concern when estimating betas is that some stocks might be traded less fre-

quently than the market portfolio. If the stock price reacts days after the arrival of systematic

news, the usual historical beta estimator will be biased downward. The usual approach to
21Cosemans et al. (2016) find that HISTI performs well in creating a market-neutral minimum variance

portfolio (MVP). For their MVP approach, we obtain similar results as they do. However, their approach has
to make structural assumptions on the covariance matrix, which makes the test a joint test of the performance
of a beta estimator and these structural assumptions. Furthermore, we feel that anomaly portfolios are a
more relevant application, especially in practice.
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handle this are the Scholes & Williams (1977) and Dimson (1979) adjustments, which also

account for betas with respect to the leaded and lagged market return(s). Additionally, we

use the correlation-separated beta of Frazzini & Pedersen (FP) (2014).

We present summary statistics for Dimson-betas with 1, 3, and 5 lags, SW, as well as

FP betas with 12-month and 60-month correlations in Table 1. We find that the overall

value-weighted averages of the Dimson-betas and SW are similar to that of HIST12. Hence,

the estimators do not appear to be systematically biased. Interestingly however, the value-

weighted averages of FP12 and FP60 amount to 1.06 and 1.09, respectively, which indicates

some upward bias for the estimator. We find that the standard deviation as well as the

quantile range rise the more lags we use. Additionally, the correlations with HIST12 fall

with an increasing number of lags. The average value-weighted cross-sectional correlation

between HIST12 and Dim(5) is 0.70. Thus, adding betas with respect to lagged market returns

materially affects the properties of the historical estimator.

We present the results for prediction errors when using up to 5 lags for the Dimson beta,

SW, and 3 different horizons for the FP beta in Table 8. We find that the asynchronicity-

adjustment does not improve the beta estimates on average. The more lags we use, the

higher the average value-weighted RMSE. Those of Dim(1), Dim(5), and SW are significantly

higher than that of HIST 48%, 77%, and 50% of the time, respectively. Hence, there is very

little evidence to warrant a lag adjustment.22 For the FP beta, we find a similar performance

of the estimator whose correlation is based on a 12-month window as for Dim(1), while the

average RMSE of FP is substantially smaller than that of, e.g., Dim(3) and Dim(5). Hence,

the FP beta may be a bit better suited for beta estimation than the Dimson adjustment.

The longer the estimation window for correlations, the worse is the performance of the FP
22Since we evaluate the predictions using realized beta without an adjustment for infrequent trading in

the measurement of this quantity, we might fail to capture infrequent trading effects ex-post. We account for
this possibility in Section VI.F and show that even under an evaluation that accounts for potential infrequent
trading, the Dimson-adjusted estimator still falls short of the simple historical estimator.
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estimator. Thus, it seems that correlations also exhibit substantial time-variation.

In Table 9, we examine the ability of the estimators to create ex-post market-neutral

anomaly portfolios. Consistent with the RMSE results, we find that all estimators perform

poorly and create a significant market exposure for at least 4 out of the 6 anomaly portfolios.

E Macroeconomic Conditioning Information

If betas change over the business cycle, one could make use of information on macroe-

conomic state variables to obtain better estimates for conditional betas. Thus, we examine

the predictions of several potential state variables.

To enhance the exposition, in Table 1, we only present the summary statistics on one

of the betas combined with macroeconomic state variables, Betacay (Lettau & Ludvigson,

2001). The results of the other estimators are qualitatively similar. Since we first need initial

data to estimate Equation (6), we have fewer overall observations. We find that the value-

weighted average beta is very close to 1. The cross-sectional standard deviation and quantile

range of Betacay are neither very large nor very small and correlations to other approaches

are rather low in comparison to those of most estimators.

In Table 10, we present the prediction error results for different macroeconomic condi-

tioning variables. Because information on some of these is issued only on a quarterly basis,

we sample the betas at the end of each quarter instead of at the end of each month.23 We find

that all of the estimators based on macroeconomic conditioning variables substantially and

significantly underperform HIST. The performance of the “kitchen-sink” approach Betaall is

particularly poor. The portfolio formation results of Table 11 are similarly poor. Thus, it ap-

pears to be much more favorable to roughly follow Lewellen & Nagel (2006), and use a (short)

historical 12-month window to estimate conditional betas instead of using macroeconomic
23The results when sampling monthly for all variables that are available at that frequency are qualitatively

similar.
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conditioning variables as in, e.g., Lettau & Ludvigson (2001) or Guo et al. (2017).

F Forecast Combinations

Finally, we examine whether one can improve upon HIST by combining different esti-

mates. We use two different sets of models to be combined: (i) only the estimators that

performed best during the previous sections, HISTewma,ex and HISTK (Best), and (ii) a much

larger subset of the different possible adjustments (All). For the latter, we combine HIST,

HISTewma,ex, HISTK, HISTI, Dim(5), and Betacay.24 For both model sets, we use four combi-

nation possibilities: (i) a simple combination, (ii) a model-based combination as of Equation

(8), (iii) a model-based combination as in (ii) with the shrinkage approach of Diebold &

Pauly (1990), and (iv) Bayesian model averaging.

Table A1 of the Online Appendix presents summary statistics on these combinations. We

find that the properties of Bestsim are overall very similar to those of HIST and the average

value-weighted cross-sectional correlation is 0.98. For the model-based combinations, we

typically have far fewer observations. This is because we first need observations for each of

the models we combine. Additionally, we need an initial window to perform the estimation

of the weights. This further reduces the number of observations available when combining

many models in All. Overall, we find that the value-weighted average, especially of the

model combinations, slightly exceeds 1, which indicates that these combinations yield a bias

on average.

We present the prediction error results in Table 12. We find that the simple combination

Bestsim yields a significantly lower average value-weighted RMSE compared to HIST 32% of

the time. The model-based combinations BestC, Bestshr, and BestBMA perform similarly to

HIST, while the Bayesian approaches perform slightly better than the non-Bayesian com-
24We choose to only use a subset of all adjustments in the paper, since using too many highly correlated

approaches creates problems of multicollinearity and yields extreme weights for the OLS-based combinations.
Our overall conclusions are not sensitive to different choices of the models from the respective subsets.
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bination BestC. When combining all approaches, independently of whether they work or

not individually, only the simple combination Allsim performs better than HIST, but not as

well as the simple combination of the best models. The model-based combinations of all ap-

proaches work clearly less well. These underperform HIST about 50% of the time and more

often. Interestingly, we find that the Bayesian combinations perform even worse than AllC.

Hence, simple equally weighted combinations typically yield lower prediction errors than

more elaborated regression-based combinations, even when these use a Bayesian approach.

The portfolio formation results in Table 13 reveal that the combinations generally do

not outperform HIST in making anomaly portfolios market-neutral. Bestsim and AllC work

reasonably well, but overall not better than HIST. Thus, combining estimators appears to

reduce the RMSE, but the evidence for portfolio formation is mixed.

G Which is the Best Approach?

Thus far, we examine which of the approaches yields an improvement relative to HIST.

However, it is of course of high practical interest to know which of the adjustments and

combinations yields the lowest prediction errors overall. We present the results for the best

models of the previous sections, HISTewma,ex, HISTK, an approach that directly imposes the

industry-based prior on the EWMA Beta, HISTK
ewma,ex, and the simple combination of the 2

best models, Bestsim in Table 14.25

We find that, individually, HISTewma,ex yields a slightly lower average value-weighted

RMSE compared to HISTK. Directly applying the prior suggested by Karolyi (1992) yields

another small improvement for HISTewma,ex. However, the simple combination Bestsim yields

the overall lowest average value-weighted RMSE. While the differences in RMSE between
25One might wonder why the prediction errors of Table 14 are partially higher than those in Tables 2,

6, and 12 for the same models. As already indicated in footnote 20, for each table, we use only firm–
month observations that are available for all the approaches presented. This yields a substantial reduction
of firm–month observations in the earlier tables.
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Bestsim and HISTewma,ex as well as HISTK
ewma,ex are only rarely significant, Bestsim significantly

outperforms HIST 52% of the time.

For portfolio formation, the overall picture of Section III indicates that the best ap-

proaches are HIST, HIST24, HISTewma,ex, and HISTV.

IV Why do the Adjustments “Work”?

Given that some of the adjustments and combinations improve the predictability for beta

while others yield substantially higher prediction errors, one may wonder what the reason

for these different results is. We address this by performing a decomposition of the mean

squared errors (MSE). To do so, we follow Mincer & Zarnowitz (1969) and decompose the

MSE in the following fashion:

MSEj = (β̄R
j − β̄j)2︸ ︷︷ ︸

bias

+ (1− bj)2σ2(βj)︸ ︷︷ ︸
inefficiency

+ (1− ρ2
j)σ

2(βR
j )︸ ︷︷ ︸

random error

. (13)

bj is the slope coefficient of the regression βR
j = aj + bjβj + εj and ρ2

j is the coefficient of

determination of this regression. A bias indicates that the prediction is, on average, different

from the realization. Inefficiency represents a tendency of an estimator to systematically

yield positive forecast errors for low values and negative forecast errors for high values or

vice versa. The remaining random forecast errors are unrelated to the predictions and

realizations.

We present the results of the MSE decomposition for different adjustments that “work”

and for others that “do not work” in Table 15. Furthermore, we present key statistics about

forecast errors in Table 16. We choose to report a subset of the estimators in order to study

the main mechanisms while keeping the presentation manageable. The results for other

estimators of the same group are generally very similar.
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Weighting Schemes Comparing HISTewma,ex to HIST, Table 15 shows that for the

weighted estimator, the bias and random error parts are of similar magnitude, but HISTewma,ex

substantially reduces the inefficiency compared to HIST. Thus, the larger estimation win-

dow appears to reduce the likelihood of high measurement error in low-beta and high-beta

stocks. The weighting scheme ensures that the estimates are conditional. Table 16 confirms

this interpretation. The share of very high squared forecast errors is substantially reduced.

Particularly for very high and very small realized betas, HISTewma,ex works better than HIST.

Imposing Priors We find that HISTK, HISTI, and HISTK
ewma,ex reduce the inefficiency

relative to HIST. Thus, it seems that the approaches partially correct the tendency of HIST

of underestimating the betas of low-beta stocks and overestimating the betas of high-beta

stocks. The correction mechanism is especially intuitive for the shrinkage approaches: some

betas will mechanically be estimated with high measurement error. It is particularly likely

that very low beta estimates contain negative measurement errors while very high beta

estimates contain positive measurement errors. The Bayesian prior approaches take a step

toward detecting and correcting these measurement errors. If the standard error in a beta

estimate is high, it is shrunk more strongly toward an informative prior.

The forecast error statistics reveal further interesting patterns: compared to HIST,

HISTK reduces the share of very high squared forecast errors and works better particularly

for stocks with very high or very low realized betas. For HISTI, the results are somewhat

different. HISTI yields the lowest RMSE among all approaches for stocks with high realized

betas. However, the approach performs very poorly for stocks with low realized betas and

has an overall higher share than HIST with very high squared forecast errors. This pattern

also delivers an explanation for the poor results of HISTI in creating market-neutral anomaly

portfolios. These extreme long–short portfolios typically contain disproportionate numbers

of low-beta stocks.

The portfolio formation results indicate that HISTK and HISTI place too much weight
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on their respective priors. In particular, the prior beta of Cosemans et al. (2016) changes

mechanically when new accounting data becomes available, which might not be very in-

formative about a stock’s beta. Our findings are thus consistent with recent evidence in

Dittmar & Lundblad (2017), who find that market betas are only weakly related to stock

characteristics.

Asynchronicity Adjustments The estimators Dim(1), Dim(3), and Dim(5) do not

strongly increase the bias, but both the inefficiency and the random error increase with

increasing number of lags. In particular the increase in random errors indicates that adding

lagged betas introduces a lot of noise on the estimators, amplifying measurement errors.

FP12 exhibits a large bias part, which is more than double that of HIST, a high inefficiency

when compared to the best models, but a random error that is only slightly above that of

HIST. Thus, the correlation-adjustment to three-day correlations induces substantially less

noise than the Dimson adjustment. The forecast error statistics corroborate these findings.

The Dimson estimators yield a very high share of stocks with high squared forecast errors,

the share increasing with the number of lags.

Macroeconomic Conditioning Information The beta augmented by macroeco-

nomic conditioning variables, Betacay, yields a higher bias component compared to HIST, a

high inefficiency, and a very high random error. Thus, the approach using macroeconomic

conditioning variables appears to yield systematic measurement errors for high-beta and

low-beta stocks. More importantly, the approach seems to add a lot of noise to beta esti-

mates. Since the reasons for the failure of the macroeconomic conditioning variables might

be diverse, we present the forecast error statistics for all estimators in Table A2 of the Online

Appendix. All approaches yield a large share of high squared forecast errors and perform

poorly for particularly for stocks with high realized betas. Part of the motivation to use

macroeconomic conditioning variables is that betas might adapt more quickly to changing

economic conditions. However, all approaches work poorly in both expansions and recessions,

28



as well as in the transition between expansion and recession and vice versa.

Finally, a common scheme seems to be that the average RMSEs and the difference in

RMSE to HIST are both significantly correlated with the underlying conditioning variables.

This correlation results when a majority of the slope estimates of Equation (6) share the

same sign but the realized beta does not follow the imposed dynamics. For few variables, the

RMSE is largely uncorrelated to the underlying conditioning variables, indicating that the

stocks have heterogeneous slope estimates. However, these variables also do not work better

than those correlated with the RMSEs. Overall, it seems that individual stock betas are not

systematically related to macroeconomic variables and imposing macroeconomic conditioning

variables induces random noise by assuming a spurious relation between macroeconomic

variables and betas.

Combinations For the combinations, we find that Bestsim yields a similar bias as

HIST, but a very low inefficiency part and the lowest overall random error part. Thus, by

simply averaging two of the overall best approaches, the estimator diversifies and reduces

random measurement errors. This is also visible when looking at the forecast error statistics:

Bestsim yields the lowest share of high squared forecast errors.

The model-based combinations typically have a higher inefficiency part and the combina-

tions including a large number of predictors yield a very high random error part. Particularly

AllC and AllBMA yield huge shares of very high squared forecast errors. These large errors are

likely caused by in-sample overfitting of the beta dynamics during the estimation window.

Because the beta estimates are typically strongly correlated, we often observe that slope

coefficients turn negative. This is also the case for the Bayesian approaches. That in-sample

overfitted models generate high prediction errors is a common result in financial economics

(e.g., Stock & Watson, 2006; Goyal & Welch, 2008).
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V Beta Estimation and Stock Characteristics

In the previous sections, we examine the performance of different beta estimation tech-

niques unconditionally, i.e., without regard to the specific characteristics of the stocks as

well as by their ability to create market-neutral anomaly portfolios. In this section, we com-

plement our previous analysis with a deeper examination of how stock characteristics affect

the optimality of different beta estimators. In the following, we explicate the results for each

sorting characteristic, presented in Table 17.26

Past Beta First, we sort on the observation of HIST, obtained using data from t− 24

until t− 12.27 Overall, we find that the squared prediction errors are highest in the extreme

portfolios, i.e., those with the lowest and highest past betas. Thus, it seems to be particularly

difficult to accurately predict the betas of the stocks with very high or very low systematic

risk. Comparing the performance of the different estimators, we find that those that perform

best unconditionally also perform well for each of the quintiles. In total, HIST and the best

adjustments perform almost similarly well. Thus, in general it seems that building portfolios

helps reduce the inefficiency of HIST. Dim(5) performs particularly badly for the portfolio

with the lowest past betas, where the asynchronicity correction might be most relevant.

Thus, one should interpret this result with caution. However, also for the stocks with high

past beta, where we can compare the performance more accurately since an upward-bias

due to infrequent trading is highly unlikely, Dim(5) falls short of the best approaches. FP12

performs poorly across all quintiles.

Size Sorting the stocks according to the market capitalizations, we find that for P5,
26An alternative way to study such a question are panel regressions, where we can include several vari-

ables at the same time. However, it is likely that the relationship between the prediction errors and the
characteristics is highly non-linear. Therefore, we decided to use portfolio sorts, where we do not have to
take a stance on the parametric form of the relation. The results of multivariate panel regressions, when
applied nevertheless, are largely similar to those of the portfolio sorts.

27Thus, the periods we use for sorting and the estimation of HIST are strictly non-overlapping. For all
stocks, for which we cannot obtain a past beta due to lack of sufficient data during the period t − 24 until
t− 12, we set it to 1.
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the RMSE is markedly low, amounting to less than half of that of the other portfolios. This

result holds for each beta estimation approach. Hence, for large stocks it is considerably less

difficult to accurately estimate betas than for the majority of stocks. Among the different

estimators, we find that the unconditionally best adjustments and HIST perform similarly

well. Bestsim yields the lowest average RMSE over the quintiles. Dim(5) and FP12 also yield

higher RMSEs than the best approaches for the portfolios of the largest stocks (P4 and P5).

Thus, at a minimum, the asynchronicity adjustment is harmful for estimating the betas of

large stocks, for which the realized beta should not be affected by non-synchronous trading.

Book-to-market For value stocks (high book-to-market ratios), betas appear to be

harder to estimate than for growth stocks. For all approaches, the RMSE is higher for the

value portfolio (P5) compared to the growth portfolio (P1). Overall, the RMSEs are lowest

for P2 and P3. The pattern across the different approaches is similar as for the previous

sorts.

Momentum When sorting on past performance, we observe a distinct pattern for all

approaches: the highest RMSEs are in the portfolios of the stocks with the worst (P1) and

best (P5) past performance. This pattern is consistent with the evidence found in Kothari

& Shanken (1992) and Daniel & Moskowitz (2016), who show that the extreme momentum

portfolios exhibit substantial time-variation in beta. Furthermore, Chen et al. (2016) argue

that past winners in general exhibit high betas and vice versa. Thus, these extreme betas in

general do not persist in future periods. Consistent with this, in Section III, we find that most

approaches fail in creating market-neutral momentum portfolios. Among the approaches,

the relation is largely similar as before. However, interestingly, for the momentum winner

portfolio (P5), the RMSEs of Dim(5) and FP12 are comparably low. Thus, in part, the lag

and correlation adjustments of these approaches appear to be helpful in correcting for the

measurement error typically present in high-momentum stocks. On the other hand, the

simple historical estimator performs better than Dim(5) and FP12 for all other portfolios.
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Idiosyncratic volatility Sorting on idiosyncratic volatility, we detect a natural pat-

tern. For the stocks with the lowest idiosyncratic volatilities (P1 and P2), the betas are most

accurately predictable while for the remaining portfolios, the RMSEs rise with idiosyncratic

volatility.

Illiquidity For illiquidity, the results are largely inverse to those for size. The cross-

sectional correlation among those two variables exceeds −90%. Thus, the conclusions we

can draw are similar.

Leverage In case of sorting on the stocks’ leverage, we find that the betas of the

stocks in the extreme portfolios are least accurately predictable for all our approaches. For

the intermediate leverage portfolios, the RMSEs for all approaches are lower than for the

extremes.

Industries For the industry portfolios, we observe the lowest RMSEs across all ap-

proaches for Other, Manufacturing, Shops, and Non-Durables. In contrast, the betas for

stocks of Energy, High-Tech, Health, Telecommunication, and Utilities stocks are substan-

tially harder to predict by the approaches we study.28 Comparing the different approaches,

as observed throughout all portfolio sorts, we find that Bestsim yields the lowest RMSE for

6 out of the 10 industry portfolios, while Dim(5) and FP12 always yield higher RMSEs than

HIST.
28One might wonder whether this result is mechanical, driven by different levels of idiosyncratic volatility

among the different industries. However, we find that there is essentially no relation detectable. Other and
Shops are among the sectors with the highest average idiosyncratic volatilities while Telecommunication and
Utilities belong to the industries with the lowest average idiosyncratic volatilities.
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VI Additional Analyses and Robustness

A Different Horizons

In this section, we examine the results for different forecast horizons of 1, 3, 12, and 60

months. Table A3 of the Online Appendix presents these results. To enhance the exposition,

we only report the results on the best models and an estimation horizon of 12 months. The

results for the remaining specifications are qualitatively similar as those for the 6-month

forecast horizon.29

We start the analysis by examining 1-month forecasts. We present these results in Panel

A of Table A3. We find that for all approaches, the average value-weighted RMSE is higher

than for the 6-month horizon. This is most likely due to higher measurement errors in

the estimator for realized beta which suffers from a reduced evaluation window.30 We find

that the adjustments that “work” for the 6-month horizon also yield lower average value-

weighted RMSEs than the simple historical model. Similar to the 6-month horizon, the

simple combination Bestsim yields the lowest overall average value-weighted RMSE.

The results for the 3-month horizon are presented in Panel B of Table A3. With the longer

evaluation horizon, for all approaches the average value-weighted RMSEs are substantially

lower than for the 1-month horizon. All other results are qualitatively similar to the 1- and

6-month horizons.

Panel C of Table A3 presents the results for the 12-month forecast horizon. We find

that for all approaches, the average value-weighted RMSEs are lower than for the 6-month

horizon. This pattern indicates that 12-month betas are slightly more predictable than betas

of shorter horizons. All adjustments that perform better than the simple historical model
29For the 1- and 3-month horizons, the 12-month historical window also turns out optimal. For the 12- and

60-month forecast horizons, longer historical windows yield slightly lower average value-weighted RMSEs.
30However, as indicated previously, the RMSE criterion is still a robust evaluation criterion if the sampling

error is zero on average (Patton, 2011).
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for the 6-month horizon also do so for the 12-month horizon.

Finally, we present the results for the 60-month forecast horizon, relevant for long-term

investors, in Panel D of Table A3. We find that the average value-weighted RMSEs for all

approaches are slightly higher than for the 12-month horizon. Thus, it appears that time-

variation in beta renders 60-month betas slightly harder to predict than 12-month betas.

However, the average value-weighted RMSEs are still slightly lower than for the 6-month

horizon. Apart from that, the results for the 60-month horizon are qualitatively similar to

those for other horizons. Overall, Bestsim yields the lowest average value-weighted RMSE.

B Hedging Errors

The RMSE results show that the approaches HISTewma,ex, HISTK, HISTK
ewma,ex, and

Bestsim yield the best results, while, e.g., Dim(5) performs very poorly. To account for

the possibility that our ex-post realized betas are measured with error, we follow Liu et al.

(2018) and examine the out-of-sample hedging errors of our main approaches. If realized beta

estimates are biased, we may falsely conclude that an approach is superior simply because

it is biased in a similar fashion. We thus compute the hedging error for each stock as

hj,t,T = (rj,t,T − rf,t,T )− βj,t(rM,t,T − rf,t,T ). (14)

rj,t,T is the return of stock j between t and T . rf,t,T and rM,t,T are the risk-free rate and

the return on the market portfolio over the same horizon. We use 1-month returns. βt is

the estimate for beta, using data up to time t. Liu et al. (2018) show that under certain

assumptions the hedging error variance ratio var(hj,t,T )

var(rM,t,T−rf,t,T )
is approximately equal to the

mean squared error relative to the true realized beta plus a term that is unrelated to the beta

estimation, i.e., constant across all estimation approaches. We follow Liu et al. (2018) and

estimate the variance ratios using rolling 5-year windows to account for the possibility that
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the variances in the numerator and denominator change over time. We report the average

ratio over time.

We present the results in Table A4 of the Online Appendix. These results are consistent

with our previous results relying on the RMSE and realized beta computations. We find that

HISTewma,ex, HISTK, HISTK
ewma,ex, as well as Bestsim yield significantly lower mean average

hedging error ratios than HIST. Dim(5) yields a substantially and significantly higher mean

average hedging error ratio than HIST. HISTK
ewma,ex achieves the lowest mean average hedging

error ratio. Thus, our main results appear to be robust to the specification of forecast error

measurement.

C Mincer–Zarnowitz Regressions

As an alternative way to evaluate the performance of the beta estimators, we use simple

Mincer & Zarnowitz (1969) regressions. We regress the 6-month (ex-post) realized beta on

the different predictions for beta:

βR
j,t = a+ bβj,t + εj,t, (15)

where all variables are as previously defined.

The regression model in Equation (15) is designed to test for unbiasedness of differ-

ent estimators. We use univariate regressions to test for unbiasedness using a Wald test,

which imposes the joint hypothesis that a = 0 and b = 1. If the model is unbiased, the

joint hypothesis of the Wald test cannot be rejected.31 We stick to level Mincer–Zarnowitz

regressions instead of logarithmically transforming our variables since beta is theoretically

unbounded and can also take on negative values. Hansen & Lunde (2006) show that level
31Mincer–Zarnowitz regressions are also designed to test for informational efficiency in multivariate re-

gressions. However, since the estimates of our models are partially very highly cross-sectionally correlated,
we consider the significance tests for differences in RMSE as more sensible to directly rank the models. We
thus refrain from performing multivariate regressions.
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Mincer–Zarnowitz regressions are robust to (mean zero) errors in the evaluation proxy.

We present the results in Table A5 of the Online Appendix. Consistent with our previous

results, we find that the models performing best thus far are also less biased than HIST. For

all adjustment models, the average intercept coefficient is closer to 0 and the slope is closer

to 1. However, in the vast majority of the cases, we still reject unbiasedness of the models.

Also consistent with our previous results, Dim(5) and FP12 yield heavily biased forecasts for

realized beta.

D Equally Weighted Results

Thus far, we present primarily value-weighted results. We regard this as the most relevant

case, since for investment decisions the stocks provide investment opportunities relative to

their total market capitalizations. However, small stocks make up a very large fraction of

the total number of stocks and, thus, it is also interesting to examine to what extent the

adjustments are beneficial for these. Therefore, in this section, we examine the robustness

of our main findings when weighing all stocks equally.

We present the equally weighted prediction error results in Table A6 of the Online Ap-

pendix.32 We find that all the average RMSEs are higher for all approaches than for the

value-weighted examination. This is consistent with previous results showing that it is con-

siderably more difficult to estimate the betas of small stocks than it is for large stocks. Apart

from that, the adjustment approaches that work best when value-weighting also significantly

outperform HIST when weighing equally. Typically, the difference in the equally weighted

RMSE is significant considerably more often than that in the value-weighted RMSE. Thus,

the adjustments appear to be even more beneficial for small stocks compared to large stocks.
32One might wonder whether the asynchronicity adjustment performs better for small stocks. However,

we find that the Dimson beta estimators are even more clearly inferior compared to HIST when weighing all
stocks equally. The average RMSE is significantly higher than that of HIST nearly all the time, independent
of the number of lags used.
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Overall, HISTK
ewma,ex yields the lowest average RMSE.

E Firm-Level Evaluation

In the main part of this paper we evaluate the forecasts cross-sectionally. That is, each

month we examine how well one approach predicts future betas of all stocks in the cross-

section. However, it may also be of interest to see how the adjustment approaches perform

for different stocks on average in the time series dimension. To perform this analysis, and

in order to assess the statistical significance and to prevent stocks which are only available

over short intervals during our sample period from biasing our results, we use only stocks

with more than 100 observations. Essentially, this approach implies that we potentially lose

information from stocks available for a shorter sample period.

We present the results in Table A7 of the Online Appendix. These are qualitatively

similar to those for the cross-sectional evaluation. The best adjustments also yield lower

value-weighted average RMSEs compared to HIST. Bestsim yields the overall lowest value-

weighted average RMSE.

F Dimson Evaluation

To further test the robustness of our main results to infrequent trading effects, in this

section, we present the results when evaluating estimates with respect to a Dimson realized

beta. We estimate the realized beta as the sum of the realized beta as of Equation (11) with

0 up to 5 lags.33,34

We present the results in Table A8 of the Online Appendix. First, we find that the

average value-weighted RMSEs are higher for all approaches. Thus, it seems to be very

hard to predict future Dimson realized betas. This is most likely due to higher measurement
33E.g., for 1 lag, in the numerator we multiply rj,τ by rM,τ−1 instead of rM,τ , etc.
34Using the ex-post historical Dimson estimator of Equation (4) instead yields results that are qualitatively

similar.
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error caused by adding betas with respect to lagged market returns. Second, we find the

same patterns as when using realized beta without lags. The best approaches also yield

improvements over HIST under the Dimson realized beta. Finally, we find that Dim(5) yields

a higher average value-weighted RMSE than HIST even under the Dimson realized beta

evaluation. However, the difference is considerably smaller and significant less frequent than

under the regular realized beta.35 Interestingly, however, under the Dimson realized beta

evaluation, FP12 yields the lowest average RMSE. Thus, the infrequent trading adjustment

of Frazzini & Pedersen (2014) might have some benefit in selected cases.

G Monthly Evaluation

In the previous section, we account for infrequent trading effects by evaluating the fore-

casts with a Dimson realized beta. However, as we show in Section IV, the Dimson estimators

yield a substantial increase in both the inefficiency and the random error compared to HIST.

Therefore, in this section, we examine an alternative possibility to account for asynchronous

trading in realized beta: the use of monthly data. We estimate the realized beta using

monthly data over a 5-year horizon. Since this approach mixes a change in the data fre-

quency and estimation window, it is probably most suitable to compare the results to those

in Panel D of Table A3 of the Online Appendix.

Table A9 of the Online Appendix presents the results. These are very similar to those

when using daily returns for realized beta. For the monthly evaluation, the average value-

weighted RMSEs of all approaches are larger than for daily evaluation over 60 months. This

indicates that realized beta with monthly data is also difficult to predict, likely because it

is more prone to measurement errors than realized beta with daily data. Additionally, we
35Untabulated results reveal that, e.g., when we use 3 lags only both for the estimation (Dim(3)) and the

realized beta, Dim(3) also yields a slightly higher average value-weighted RMSE than HIST. Interestingly,
contrary to what one might expect, for all numbers of lags, HIST is even more strongly favorable when
weighting all stocks equally. Thus, the Dimson adjustment seems to work even less well for the stocks it was
initially designed for.
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find that Bestsim yields the lowest overall average value-weighted RMSE. Finally, Dim(5) and

FP12 still yield substantially and often significantly higher average value-weighted RMSEs

compared to HIST and even more so compared to Bestsim. Hence, in general, estimators

that do not account for infrequent trading appear to be superior to those that use a Dimson

or FP adjustment.

H Mean Absolute Error

Finally, we examine the robustness of our results to the loss function employed. As an

alternative to the RMSE, in this section, we use the mean absolute error (MAE):

MAE =
1

o

o∑
t=1

| βRj,t − βj,t |, (16)

where all variables are as previously defined. The MAE penalizes all forecast errors in the

same way. Hence large forecast errors are less influential under the MAE than under the

RMSE. We present the results in Table A10 of the Online Appendix. These are very similar

to those using the RMSE. The best models under the RMSE also yield improvements over

HIST under the MAE, the differences are significant for similar shares of the time, and

Bestsim yields the lowest value-weighted average MAE.

VII Conclusion

We examine the effects of different historical windows, sampling frequencies, and various

forecast adjustments on beta estimation. We find that using daily data over a 12-month

horizon generally yields lower prediction errors than alternative historical windows and es-

timators based on low-frequency data. Furthermore, exponential weighting schemes, simple

shrinkage adjustments toward a prior, as well as simple combinations, yield improvements.
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For portfolio formation, the results are generally similar. However, elaborated shrinkage

methods and forecast combinations perform worse.

In contrast, adjusting for asynchronous trading, conditioning beta on the deviations of

macroeconomic state variables from their historical averages, and regression-based as well

as Bayesian model averaging combinations, typically yield high prediction errors and fail to

create market-neutral portfolios.

Analyzing the cross-section of beta predictability with respect to different stock charac-

teristics, we find that in particular stocks with high and low betas, low size, high and low

momentum, and high idiosyncratic volatility, are relatively difficult to predict.
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Appendix

A Cross-Sectional Variables

• Book-to-market (Fama & French, 1992) is the most current observation for book

equity divided by the current market capitalization. Following the standard literature,

we assume that the book equity of the previous year’s balance sheet statement becomes

available at the end of June. Book equity is defined as stockholders’ equity, plus balance

sheet deferred taxes and investment tax credit, plus post-retirement benefit liabilities,

minus the book value of preferred stock. We obtain the data necessary from Compustat.

• Idiosyncratic volatility (Ang et al., 2006, “Ivol”) is the standard deviation of the

residuals εj,τ in the Fama & French (1993) 3-factor model rj,τ − rf,τ = αj,t+βMj,t(rM,τ −

rf,τ ) + βSj,tSMBτ + βHj,tHMLτ + εj,τ , using daily returns over the previous year.

• Illiquidity (Amihud, 2002, “Illiq”) is the absolute value of the stock’s return divided

by the daily dollar volume, averaged over the previous year. Specifically, it is Illiqt =

1
n

∑n
τ=1

|rj,τ |
V olume$τ

, with the daily dollar volume (V olume$τ , in thousand dollars) being

calculated as last trade price times shares traded on day τ , while the summation is

taken over all n trading days during the examination period.

• Industry Classifications employ the definition for 10 industry portfolios applied by

Kenneth French. “NoDur” is Consumer Non-Durables, “Durbl” is Consumer Durables,

“Manuf” is Manufacturing, “Enrgy” is the oil, gas, and coal extraction industry, “HiTec”

is Business Equipment, “Telcm” is Telephone and Television Transmission, “Shops” are

Wholesale, Retail, and Services, “Hlth” is Healthcare, Medical Equipment, and Drugs,

“Utils” is Utilities, and “Other” contains Mines, Construction, Construction Materials,

Transport, Hotels, Bus Services, Entertainment, as well as Finance.

• Leverage (Bhandari, 1988) is defined as one minus book equity (see “Book-to-market”)

divided by total assets (Compustat: AT). Book equity and total assets are updated

every 12 months at the end of June. We obtain the data necessary from Compustat.
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• Momentum (Jegadeesh & Titman, 1993) is the cumulative stock return over the

period from t− 12 until t− 1.

• Size (Banz, 1981) is the current market capitalization of a firm. Market capitalization

is computed as the product of the stock price and the number of shares outstanding.
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Table 4: Prediction Errors – Different Weighting Schemes

This table presents the out-of-sample prediction errors for the exponentially weighted estimators. We measure

the realized beta with daily returns over the horizon of 6 months. Each month, we compute the value-

weighted RMSE for the approaches considered using the entire cross-section of stocks. The first row reports

the average value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic

font. The remainder of the table reports the differences in prediction errors. The upper triangular matrix

reports the average differences in RMSE and the lower triangular matrix reports the average differences in

RMedSE. We report the error loss differential between the model [name in row] and the model [name in

column]. The absolute values of the numbers in parentheses indicate the share of time periods for which the

difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test

the significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTewma,s HISTewma,s,ex HISTewma HISTewma,ex

avg. RMSE 0.322 0.317 0.309 0.317 0.308

HIST 0.004 0.013 0.005 0.013
(0.15) (0.32) (0.29) (0.30)

HISTewma,s 0.001 0.009 0.001 0.009
(0.09) (0.43) (–0.02) (0.14)

HISTewma,s,ex –0.008 –0.009 –0.008 0.001
(–0.53) (–0.85) (–0.32) (–0.03)

HISTewma –0.002 –0.003 0.006 0.009
(–0.23) (–0.35) (0.59) (0.19)

HISTewma,ex –0.014 –0.015 –0.006 –0.012
(–0.74) (–0.63) (–0.34) (–0.67)
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Table 5: Market-Neutral Anomaly Portfolios – Different Weighting Schemes

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using an

exponential weighting scheme. Each month, we sort the stocks to form the different anomaly portfolios based

on NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is the average

of the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while SMB is

their difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average of

the 5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For

momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1

month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility

(Ivol) and illiquidity (Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low

portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,

we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation υj,tβ
long
j,t −βshort

j,t = 0 and applying

the resulting weight υj,t to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

HIST HISTewma,s HISTewma,s,ex HISTewma HISTewma,ex

SMB –0.007 –0.006 –0.012 –0.008 –0.013
(s.e.) (0.019) (0.016) (0.017) (0.018) (0.020)
HML 0.011 0.019 0.006 0.015 –0.022
(s.e.) (0.016) (0.013) (0.014) (0.015) (0.015)
WML 0.052*** 0.030* 0.050*** 0.041** 0.089***
(s.e.) (0.020) (0.016) (0.017) (0.018) (0.021)
Ivol (1–5) 0.064*** 0.065*** 0.043** 0.065*** –0.007
(s.e.) (0.025) (0.020) (0.021) (0.022) (0.024)
Illiq (5–1) 0.034 0.025 0.022 0.028 0.024
(s.e.) (0.022) (0.018) (0.019) (0.020) (0.022)
Lev (5–1) 0.007 0.004 0.003 0.005 0.006
(s.e.) (0.009) (0.008) (0.008) (0.009) (0.010)
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Table 6: Prediction Errors – Imposing Priors

This table presents the out-of-sample prediction errors for the shrinkage estimators. We measure the realized

beta with daily returns over the horizon of 6 months. Each month, we compute the value-weighted RMSE

for the approaches considered using the entire cross-section of stocks. The first row reports the average

value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The

remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the

average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of time periods for which the difference

is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the

significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTV HISTK HISTI

avg. RMSE 0.295 0.289 0.285 0.289

HIST 0.006 0.009 0.006
(0.08) (0.14) (0.04)

HISTV –0.008 0.004 0.000
(–0.83) (0.16) (0.02)

HISTK –0.014 –0.006 –0.004
(–0.77) (–0.63) (0.02)

HISTI 0.012 0.020 0.026
(0.25) (0.61) (0.71)
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Table 7: Market-Neutral Anomaly Portfolios – Imposing Priors

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using

the shrinkage estimators. Each month, we sort the stocks to form the different anomaly portfolios based

on NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is the average

of the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while SMB is

their difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average of

the 5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For

momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1

month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility

(Ivol) and illiquidity (Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low

portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,

we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation υj,tβ
long
j,t −βshort

j,t = 0 and applying

the resulting weight υj,t to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

HIST HISTV HISTK HISTI

SMB –0.007 0.009 0.020 –0.179***
(s.e.) (0.019) (0.019) (0.019) (0.023)
HML 0.011 –0.023 –0.052*** –0.018
(s.e.) (0.016) (0.016) (0.016) (0.013)
WML 0.052*** 0.046** 0.040* 0.056**
(s.e.) (0.020) (0.020) (0.022) (0.024)
Ivol (1–5) 0.064*** –0.031 –0.130*** 0.069**
(s.e.) (0.025) (0.024) (0.024) (0.035)
Illiq (5–1) 0.034 0.032 0.003 –0.162***
(s.e.) (0.022) (0.022) (0.022) (0.025)
Lev (5–1) 0.007 0.002 0.007 0.025**
(s.e.) (0.009) (0.009) (0.010) (0.011)
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Table 8: Prediction Errors – Asynchronicity

This table presents the out-of-sample prediction errors for the estimators with asynchronicity adjustment.

We measure the realized beta with daily returns over the horizon of 6 months. Each month, we compute

the value-weighted RMSE for the approaches considered using the entire cross-section of stocks. The first

row reports the average value-weighted RMSE over our sample period. We indicate the lowest average

RMSE with italic font. The remainder of the table reports the differences in prediction errors. The upper

triangular matrix reports the average differences in RMSE and the lower triangular matrix reports the

average differences in RMedSE. We report the error loss differential between the model [name in row] and

the model [name in column]. The absolute values of the numbers in parentheses indicate the share of time

periods for which the difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of

the time). We test the significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests

for the upper and lower triangular matrix, respectively. The sign of the number in parentheses indicates the

direction of the significant differences.

HIST Dim(1) Dim(2) Dim(3) Dim(4) Dim(5) SW FP12 FP36 FP60

avg. RMSE 0.322 0.356 0.372 0.396 0.418 0.440 0.360 0.354 0.366 0.376

HIST –0.034 –0.051 –0.074 –0.096 –0.119 –0.039 –0.032 –0.044 –0.054
(–0.48) (–0.55) (–0.63) (–0.69) (–0.77) (–0.50) (–0.36) (–0.39) (–0.44)

Dim(1) 0.044 –0.016 –0.040 –0.062 –0.084 –0.005 0.002 –0.010 –0.020
(0.90) (–0.21) (–0.44) (–0.61) (–0.72) (0.04) (0.11) (0.06) (–0.01)

Dim(2) 0.068 0.023 –0.023 –0.046 –0.068 0.012 0.018 0.007 –0.003
(0.96) (0.95) (–0.41) (–0.54) (–0.64) (0.23) (0.24) (0.20) (0.09)

Dim(3) 0.094 0.050 0.026 –0.022 –0.045 0.035 0.042 0.030 0.020
(0.98) (0.99) (0.96) (–0.37) (–0.51) (0.38) (0.38) (0.33) (0.27)

Dim(4) 0.117 0.073 0.050 0.023 –0.022 0.057 0.064 0.052 0.042
(0.99) (1.00) (0.99) (0.95) (–0.37) (0.50) (0.48) (0.41) (0.36)

Dim(5) 0.142 0.097 0.074 0.048 0.024 0.080 0.086 0.074 0.065
(1.00) (1.00) (0.99) (0.98) (0.95) (0.58) (0.62) (0.52) (0.45)

SW 0.046 0.001 –0.022 –0.048 –0.072 –0.096 0.006 –0.005 –0.015
(0.93) (0.15) (–0.68) (–0.91) (–0.94) (–0.97) (0.20) (0.09) (–0.02)

FP12 0.055 0.010 –0.013 –0.039 –0.063 –0.087 0.009 –0.012 –0.022
(0.86) (0.14) (–0.42) (–0.75) (–0.86) (–0.90) (0.04) (–0.04) (–0.13)

FP36 0.060 0.016 –0.007 –0.034 –0.057 –0.081 0.015 0.006 –0.010
(0.60) (–0.14) (–0.43) (–0.60) (–0.66) (–0.75) (–0.18) (–0.13) (–0.13)

FP60 0.067 0.022 –0.001 –0.027 –0.051 –0.075 0.021 0.012 0.006
(0.63) (0.11) (–0.18) (–0.40) (–0.57) (–0.71) (0.04) (0.05) (0.11)
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Table 9: Market-Neutral Anomaly Portfolios – Asynchronicity

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using

estimators with asynchronicity adjustment. Each month, we sort the stocks to form the different anomaly

portfolios based on NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is

the average of the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while

SMB is their difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average

of the 5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For

momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1

month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility

(Ivol) and illiquidity (Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low

portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,

we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation υj,tβ
long
j,t −βshort

j,t = 0 and applying

the resulting weight υj,t to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

HIST Dim(1) Dim(2) Dim(3) Dim(4) Dim(5) SW FP12 FP36 FP60

SMB –0.007 –0.171*** –0.208*** –0.253*** –0.281*** –0.312*** –0.144*** –0.156*** –0.177*** –0.176***
(s.e.) (0.019) (0.020) (0.019) (0.020) (0.021) (0.020) (0.019) (0.019) (0.022) (0.023)
HML 0.011 0.028* 0.016 0.012 0.011 0.002 0.035** 0.003 –0.084*** –0.122***
(s.e.) (0.016) (0.015) (0.015) (0.016) (0.017) (0.017) (0.015) (0.015) (0.015) (0.015)
WML 0.052*** 0.037* 0.051** 0.068*** 0.089*** 0.110*** 0.057*** 0.064*** 0.171*** 0.189***
(s.e.) (0.020) (0.020) (0.021) (0.023) (0.026) (0.029) (0.019) (0.019) (0.023) (0.024)
Ivol (1–5) 0.064*** 0.186*** 0.210*** 0.262*** 0.323*** 0.380*** 0.214*** 0.180*** 0.197*** 0.191***
(s.e.) (0.025) (0.029) (0.029) (0.031) (0.033) (0.034) (0.029) (0.027) (0.034) (0.036)
Illiq (5–1) 0.034 –0.205*** –0.248*** –0.304*** –0.335*** –0.370*** –0.164*** –0.178*** –0.203*** –0.209***
(s.e.) (0.022) (0.021) (0.020) (0.021) (0.021) (0.022) (0.021) (0.021) (0.022) (0.023)
Lev (5–1) 0.007 0.021** 0.021* 0.021* 0.021 0.026* 0.018* 0.005 0.016 0.018
(s.e.) (0.009) (0.010) (0.012) (0.013) (0.013) (0.015) (0.010) (0.010) (0.011) (0.011)
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Table 12: Prediction Errors – Combinations

This table presents the out-of-sample prediction errors for forecast combinations. We measure the realized

beta with daily returns over the horizon of 6 months. Each month, we compute the value-weighted RMSE

for the approaches considered using the entire cross-section of stocks. The first row reports the average

value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The

remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the

average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of time periods for which the difference

is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the

significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.
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A
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M
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avg. RMSE 0.344 0.326 0.350 0.347 0.344 0.333 0.469 0.475 0.650

HIST 0.018 –0.006 –0.004 –0.001 0.010 –0.126 –0.132 –0.306
(0.32) (–0.12) (–0.07) (–0.08) (0.09) (–0.56) (–0.49) (–0.78)

Bestsim –0.018 –0.024 –0.022 –0.019 –0.008 –0.144 –0.150 –0.324
(–0.90) (–0.42) (–0.32) (–0.50) (–0.20) (–0.62) (–0.56) (–0.79)

BestC 0.002 0.020 0.002 0.005 0.016 –0.120 –0.126 –0.300
(–0.12) (0.72) (0.16) (0.14) (0.30) (–0.55) (–0.47) (–0.78)

Bestshr –0.003 0.015 –0.005 0.003 0.014 –0.122 –0.128 –0.302
(–0.27) (0.68) (–0.68) (0.06) (0.18) (–0.54) (–0.47) (–0.79)

BestBMA –0.009 0.009 –0.011 –0.006 0.011 –0.125 –0.131 –0.305
(–0.45) (0.64) (–0.28) (–0.09) (0.19) (–0.55) (–0.48) (–0.79)

Allsim –0.005 0.013 –0.007 –0.002 0.004 –0.136 –0.142 –0.316
(–0.37) (0.57) (–0.36) (–0.16) (0.03) (–0.61) (–0.55) (–0.78)

AllC 0.077 0.095 0.075 0.080 0.086 0.082 –0.006 –0.180
(0.97) (0.98) (1.00) (0.99) (0.99) (0.97) (0.23) (–0.46)

Allshr 0.052 0.071 0.051 0.055 0.061 0.058 –0.025 –0.174
(0.91) (0.99) (0.99) (1.00) (0.97) (0.97) (–0.98) (–0.50)

AllBMA 0.102 0.120 0.100 0.105 0.111 0.107 0.025 0.050
(0.98) (0.99) (0.98) (0.99) (1.00) (0.97) (0.42) (0.85)
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Table 13: Market-Neutral Anomaly Portfolios – Combinations

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using

forecast combinations. Each month, we sort the stocks to form the different anomaly portfolios based on

NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is the average of

the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while SMB is their

difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average of the

5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For

momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1

month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility

(Ivol) and illiquidity (Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low

portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,

we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation υj,tβ
long
j,t −βshort

j,t = 0 and applying

the resulting weight υj,t to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, **, and *** indicate significance at the 10%, 5%, and 1% level,

respectively.
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SMB –0.007 0.000 –0.049** –0.042* 0.044* –0.120*** –0.001 –0.039 0.106***
(s.e.) (0.019) (0.019) (0.024) (0.023) (0.025) (0.022) (0.027) (0.026) (0.038)
HML 0.011 –0.036** –0.055*** –0.051*** –0.013 –0.043*** –0.020 –0.027* –0.017
(s.e.) (0.016) (0.015) (0.016) (0.016) (0.015) (0.014) (0.017) (0.016) (0.023)
WML 0.052*** 0.063*** 0.064** 0.061** 0.054*** 0.071*** 0.085*** 0.076** 0.122***
(s.e.) (0.020) (0.021) (0.025) (0.024) (0.021) (0.027) (0.030) (0.029) (0.037)
Ivol (1–5) 0.064*** –0.065*** –0.028 –0.038 0.050* 0.029 –0.044 –0.012 0.064
(s.e.) (0.025) (0.024) (0.030) (0.028) (0.027) (0.031) (0.038) (0.035) (0.048)
Illiq (5–1) 0.034 0.010 –0.012 –0.006 0.120*** –0.108*** 0.041 –0.006 0.278***
(s.e.) (0.022) (0.021) (0.026) (0.026) (0.032) (0.023) (0.029) (0.027) (0.075)
Lev (5–1) 0.007 0.006 0.035*** 0.047*** 0.016 0.023* 0.030* 0.039** 0.091**
(s.e.) (0.009) (0.009) (0.012) (0.018) (0.011) (0.013) (0.016) (0.015) (0.037)
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Table 14: Prediction Errors – Best Models

This table presents the out-of-sample prediction errors of the best estimators. We measure the realized

beta with daily returns over the horizon of 6 months. Each month, we compute the value-weighted RMSE

for the approaches considered using the entire cross-section of stocks. The first row reports the average

value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The

remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the

average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of time periods for which the difference

is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the

significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.368 0.352 0.355 0.349 0.346

HIST 0.016 0.013 0.019 0.022
(0.44) (0.24) (0.33) (0.52)

HISTewma,ex –0.015 –0.003 0.003 0.006
(–0.79) (–0.04) (0.07) (0.21)

HISTK –0.017 –0.002 0.006 0.009
(–0.80) (–0.11) (0.26) (0.37)

HISTK
ewma,ex –0.021 –0.005 –0.004 0.003

(–0.85) (–0.73) (–0.30) (0.12)
Bestsim –0.021 –0.006 –0.004 –0.001

(–0.94) (–0.56) (–0.45) (0.05)
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Table 15: Forecast Error Decomposition

This table presents the decomposition of mean squared forecast errors for selected estimators. We measure

the realized beta with daily returns over the horizon of 6 months. We decompose the MSE for all approaches

into a bias, inefficiency, and a random error part. We perform the decomposition for each stock and weight

the results by the stocks’ average market capitalizations.

Bias Inefficiency Random Error

HIST 0.003 0.017 0.102

HISTewma,ex 0.003 0.011 0.100

HISTK 0.005 0.008 0.102
HISTI 0.003 0.013 0.103
HISTK

ewma,ex 0.003 0.010 0.100

Dim(1) 0.004 0.026 0.122
Dim(3) 0.005 0.045 0.140
Dim(5) 0.005 0.079 0.154
FP12 0.008 0.026 0.111

Betacay 0.005 0.060 0.151

Bestsim 0.003 0.008 0.099
BestC 0.004 0.013 0.110
BestBMA 0.003 0.017 0.102
AllC 0.006 0.078 0.147
AllBMA 0.007 0.296 0.163
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Table 17: Characteristics Sorts

At the end of each month, we sort the stocks into 5 portfolios according to the characteristic indicated in the

panel headings. P1–P5 indicate the 5 portfolios, where P1 contains the 20% of the stocks with the lowest

values of the sorting characteristic and P5 contains the 20% with the highest values. Within the portfolios,

the stocks are value-weighted. avg. RMSE reports the average RMSE over our sample period. In each

column, we indicate the lowest (average) RMSE with italic font. (share) presents the relative frequency with

which the model [name in row] achieves the lowest RMSE for the different portfolios.

Panel A. Past HIST

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.138 0.107 0.084 0.065 0.149 0.109 (0.40)
HISTewma,ex 0.152 0.115 0.088 0.070 0.159 0.117 (0.00)
HISTK 0.129 0.100 0.085 0.073 0.136 0.105 (0.40)
HISTK

ewma,ex 0.143 0.113 0.088 0.068 0.140 0.111 (0.00)
Bestsim 0.130 0.105 0.085 0.067 0.123 0.102 (0.20)
Dim(5) 0.233 0.175 0.121 0.094 0.169 0.159 (0.00)
FP12 0.160 0.141 0.121 0.119 0.208 0.150 (0.00)

Panel B. Size

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.151 0.149 0.154 0.131 0.054 0.128 (0.40)
HISTewma,ex 0.151 0.143 0.156 0.132 0.055 0.128 (0.00)
HISTK 0.149 0.146 0.163 0.144 0.064 0.133 (0.00)
HISTK

ewma,ex 0.149 0.142 0.159 0.136 0.054 0.128 (0.20)
Bestsim 0.147 0.142 0.156 0.133 0.055 0.126 (0.40)
Dim(5) 0.436 0.394 0.339 0.277 0.063 0.302 (0.00)
FP12 0.275 0.268 0.249 0.220 0.102 0.223 (0.00)

Panel C. Book-to-Market

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.097 0.072 0.077 0.097 0.120 0.093 (0.20)
HISTewma,ex 0.096 0.074 0.078 0.100 0.114 0.093 (0.40)
HISTK 0.125 0.075 0.076 0.102 0.123 0.100 (0.00)
HISTK

ewma,ex 0.100 0.073 0.078 0.102 0.114 0.093 (0.00)
Bestsim 0.105 0.071 0.075 0.098 0.115 0.093 (0.40)
Dim(5) 0.116 0.088 0.103 0.123 0.157 0.117 (0.00)
FP12 0.141 0.130 0.125 0.132 0.153 0.136 (0.00)
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Table 17: Characteristics Sorts (continued)

Panel D. Momentum

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.185 0.117 0.086 0.078 0.147 0.123 (0.20)
HISTewma,ex 0.175 0.123 0.088 0.077 0.165 0.126 (0.00)
HISTK 0.181 0.117 0.084 0.082 0.212 0.135 (0.00)
HISTK

ewma,ex 0.165 0.121 0.087 0.077 0.185 0.127 (0.20)
Bestsim 0.166 0.116 0.083 0.077 0.186 0.126 (0.60)
Dim(5) 0.300 0.160 0.107 0.109 0.166 0.168 (0.00)
FP12 0.253 0.171 0.138 0.124 0.154 0.168 (0.00)

Panel E. Idiosyncratic Volatility

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.083 0.075 0.147 0.227 0.304 0.167 (0.00)
HISTewma,ex 0.082 0.072 0.136 0.205 0.289 0.157 (0.60)
HISTK 0.081 0.077 0.169 0.273 0.381 0.196 (0.00)
HISTK

ewma,ex 0.081 0.071 0.138 0.222 0.335 0.169 (0.00)
Bestsim 0.080 0.070 0.142 0.223 0.314 0.166 (0.40)
Dim(5) 0.104 0.125 0.218 0.338 0.591 0.275 (0.00)
FP12 0.105 0.161 0.240 0.320 0.401 0.245 (0.00)

Panel F. Illiquidity

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.057 0.112 0.134 0.148 0.174 0.125 (0.00)
HISTewma,ex 0.058 0.110 0.134 0.148 0.170 0.124 (0.40)
HISTK 0.067 0.122 0.142 0.151 0.161 0.128 (0.20)
HISTK

ewma,ex 0.057 0.112 0.137 0.150 0.163 0.124 (0.20)
Bestsim 0.058 0.111 0.135 0.147 0.161 0.123 (0.20)
Dim(5) 0.076 0.251 0.303 0.341 0.385 0.271 (0.00)
FP12 0.100 0.202 0.221 0.238 0.276 0.207 (0.00)

Panel G. Leverage

P1 P2 P3 P4 P5 avg. RMSE (share)

HIST 0.141 0.073 0.072 0.076 0.128 0.098 (0.00)
HISTewma,ex 0.132 0.069 0.076 0.078 0.127 0.096 (0.40)
HISTK 0.161 0.084 0.073 0.082 0.133 0.107 (0.00)
HISTK

ewma,ex 0.136 0.069 0.075 0.078 0.126 0.097 (0.00)
Bestsim 0.138 0.072 0.071 0.076 0.124 0.096 (0.60)
Dim(5) 0.164 0.094 0.085 0.100 0.174 0.124 (0.00)
FP12 0.179 0.110 0.119 0.130 0.185 0.145 (0.00)
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Estimating Beta: Forecast Adjustments and the Impact

of Stock Characteristics for a Broad Cross-Section
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Table A1: Summary Statistics – Combinations

This table presents value-weighted summary statistics for estimators based on forecast combinations as

well as value-weighted averages of firm-level correlations. Nobs indicates the total number of firm–month

observations for which we have estimates. Meanvw is the overall value-weighted average of the estimates

over the entire sample period. Std. dev. presents the average cross-sectional standard deviation. q0.05 and

q0.95 indicate the averages of the cross-sectional 5% and 95% quantiles, respectively. The sample period runs

from January 1963 until December 2015.
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Table A3: Prediction Errors – Different Horizons

This table presents the out-of-sample prediction errors for selected estimators and various forecast horizons.

We measure the realized beta with daily returns over the horizons of 1 month (Panel A), 3 Months (Panel

B), 12 Months (Panel C), and 60 Months (Panel D). Each month, we compute the value-weighted RMSE

for the approaches considered using the entire cross-section of stocks. The first row reports the average

value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font.

The remainders of the panels report the differences in prediction errors. The upper triangular matrices

report the average differences in RMSE and the lower triangular matrices report the average differences in

RMedSE. We report the error loss differential between the model [name in row] and the model [name in

column]. The absolute values of the numbers in parentheses indicate the share of time periods for which the

difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test

the significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

Panel A. 1-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.616 0.609 0.612 0.608 0.606

HIST 0.007 0.004 0.008 0.010
(0.19) (0.04) (0.11) (0.21)

HISTewma,ex –0.007 –0.003 0.001 0.003
(–0.48) (–0.03) (–0.00) (0.10)

HISTK –0.009 –0.001 0.004 0.006
(–0.51) (–0.08) (0.16) (0.20)

HISTK
ewma,ex –0.010 –0.003 –0.001 0.002

(–0.58) (–0.39) (–0.15) (0.08)
Bestsim –0.011 –0.004 –0.002 –0.001

(–0.74) (–0.38) (–0.28) (–0.04)

Panel B. 3-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.427 0.415 0.419 0.414 0.411

HIST 0.012 0.008 0.013 0.016
(0.33) (0.12) (0.24) (0.37)

HISTewma,ex –0.012 –0.003 0.002 0.005
(–0.68) (–0.04) (0.02) (0.16)

HISTK –0.013 –0.001 0.005 0.008
(–0.71) (–0.08) (0.22) (0.32)

HISTK
ewma,ex –0.016 –0.004 –0.003 0.003

(–0.75) (–0.58) (–0.31) (0.12)
Bestsim –0.017 –0.005 –0.004 –0.001

(–0.88) (–0.50) (–0.44) (0.03)
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Table A3: Prediction Errors – Different Horizons (continued)

Panel C. 12-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.343 0.321 0.323 0.316 0.314

HIST 0.023 0.020 0.027 0.030
(0.59) (0.39) (0.51) (0.67)

HISTewma,ex –0.020 –0.003 0.005 0.007
(–0.83) (–0.03) (0.17) (0.29)

HISTK –0.022 –0.002 0.007 0.009
(–0.91) (–0.17) (0.23) (0.34)

HISTK
ewma,ex –0.027 –0.007 –0.005 0.002

(–0.90) (–0.86) (–0.27) (0.12)
Bestsim –0.027 –0.007 –0.005 0.001

(–0.97) (–0.61) (–0.39) (0.11)

Panel D. 60-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.369 0.334 0.322 0.321 0.320

HIST 0.035 0.047 0.047 0.049
(0.78) (0.85) (0.82) (0.95)

HISTewma,ex –0.028 0.012 0.013 0.014
(–0.89) (0.31) (0.49) (0.58)

HISTK –0.039 –0.011 0.001 0.002
(–1.00) (–0.57) (–0.06) (0.07)

HISTK
ewma,ex –0.041 –0.013 –0.002 0.001

(–0.95) (–0.99) (–0.05) (0.24)
Bestsim –0.039 –0.012 –0.001 0.002

(–1.00) (–0.81) (0.15) (0.16)
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Table A4: Hedging Errors

This table presents the ratio of hedging error variances to the market variance for different approaches. For

each stock, estimator, and month, we obtain the hedging error over the next month as hi,t = Rj,t−βj,tRM,t.

We estimate the ratio of the hedging error variance to the market variance. We estimate the variances using

rolling 5-year windows and use the average ratio over time. We present the mean hedging error ratios across

all stocks. Additionally, we report differences of the mean to that of HIST (Diff). The lowest mean average

hedging error ratio is indicated by italic font. *, **, and *** indicate significance at the 10%, 5%, and 1%

level, respectively.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim Dim(5) FP12

Mean 14.086 14.033 14.031 14.016 14.021 14.137 14.056
Diff –0.0524*** –0.0541*** –0.0698*** –0.0648*** 0.0515*** –0.0292***
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Table A6: Prediction Errors – Equally Weighted

This table presents the out-of-sample prediction errors when weighting the results equally. We measure the

realized beta with daily returns over the horizon of 6 months. Each month, we compute the equally weighted

RMSE for the approaches considered using the entire cross-section of stocks. The first row reports the

average equally weighted RMSE over our sample period. We indicate the lowest average RMSE with italic

font. The remainder of the table reports the differences in prediction errors. The upper triangular matrix

reports the average differences in RMSE and the lower triangular matrix reports the average differences in

RMedSE. We report the error loss differential between the model [name in row] and the model [name in

column]. The absolute values of the numbers in parentheses indicate the share of time periods for which the

difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test

the significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.627 0.591 0.572 0.569 0.570

HIST 0.036 0.055 0.058 0.057
(0.90) (0.84) (0.92) (0.97)

HISTewma,ex –0.015 0.020 0.023 0.021
(–0.79) (0.46) (0.82) (0.81)

HISTK –0.017 –0.002 0.003 0.002
(–0.80) (–0.11) (0.15) (0.11)

HISTK
ewma,ex –0.021 –0.005 –0.004 –0.001

(–0.85) (–0.73) (–0.30) (–0.11)
Bestsim –0.021 –0.006 –0.004 –0.001

(–0.94) (–0.56) (–0.45) (0.05)
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Table A7: Prediction Errors – Firm-Level Evaluation

This table presents the out-of-sample prediction errors when evaluating the forecasts at the firm-level. We

measure the realized beta with daily returns over the horizon of 6 months. For each stock, we compute the

RMSE for the approaches considered using the entire time series. The first row reports the value-weighted

average RMSE. We indicate the lowest average RMSE with italic font. The remainder of the table reports

the differences in prediction errors. The upper triangular matrix reports the average differences in RMSE,

averaged over all stocks. Similarly, the lower triangular matrix reports the average differences in RMedSE.

We report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of time periods for which the difference

is significant at 5% (e.g., 0.4 indicates that the difference is significant for firms representing 40% of the

average total market capitalization). We test the significance using the modified Diebold–Mariano and the

Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the number

in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.381 0.367 0.370 0.365 0.360

HIST 0.014 0.011 0.016 0.020
(0.12) (0.24) (0.12) (0.27)

HISTewma,ex –0.007 –0.003 0.003 0.007
(–0.09) (–0.01) (0.06) (0.06)

HISTK –0.008 –0.001 0.006 0.010
(–0.16) (0.01) (0.02) (0.09)

HISTK
ewma,ex –0.008 –0.001 0.000 0.004

(–0.11) (–0.06) (–0.02) (0.02)
Bestsim –0.013 –0.006 –0.004 –0.004

(–0.23) (–0.04) (–0.11) (–0.02)
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Table A8: Prediction Errors – Dimson Evaluation

This table presents the out-of-sample prediction errors when estimates are evaluated relative to the Dimson

beta. We measure the realized beta using the Dimson approach and 5 lags with daily returns over the horizon

of 6 months. Each month, we compute the value-weighted RMSE for the approaches considered using the

entire cross-section of stocks. The first row reports the average value-weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim Dim(5) FP12

avg. RMSE 0.682 0.671 0.677 0.672 0.670 0.699 0.661

HIST 0.011 0.005 0.010 0.012 –0.017 0.021
(0.34) (0.12) (0.21) (0.32) (–0.14) (0.37)

HISTewma,ex –0.013 –0.005 –0.001 0.001 –0.028 0.010
(–0.62) (–0.09) (0.01) (0.07) (–0.22) (0.21)

HISTK –0.009 0.003 0.005 0.007 –0.023 0.016
(–0.48) (0.05) (0.17) (0.28) (–0.19) (0.21)

HISTK
ewma,ex –0.015 –0.003 –0.006 0.002 –0.027 0.011

(–0.63) (–0.42) (–0.24) (0.08) (–0.23) (0.21)
Bestsim –0.014 –0.002 –0.005 0.001 –0.029 0.009

(–0.75) (–0.20) (–0.28) (0.08) (–0.25) (0.17)
Dim(5) –0.008 0.004 0.001 0.007 0.006 0.038

(0.03) (0.13) (0.06) (0.14) (0.12) (0.43)
FP12 –0.035 –0.022 –0.026 –0.020 –0.021 –0.027

(–0.37) (–0.13) (–0.15) (–0.09) (–0.11) (–0.52)
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Table A9: Prediction Errors – Monthly Evaluation

This table presents the out-of-sample prediction errors when using monthly data for to evaluate the estimates.

We measure the realized beta with monthly returns over the horizon of 60 months. Each month, we compute

the value-weighted RMSE for the approaches considered using the entire cross-section of stocks. The first

row reports the average value-weighted RMSE over our sample period. We indicate the lowest average

RMSE with italic font. The remainder of the table reports the differences in prediction errors. The upper

triangular matrix reports the average differences in RMSE and the lower triangular matrix reports the

average differences in RMedSE. We report the error loss differential between the model [name in row] and

the model [name in column]. The absolute values of the numbers in parentheses indicate the share of time

periods for which the difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of

the time). We test the significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests

for the upper and lower triangular matrix, respectively. The sign of the number in parentheses indicates the

direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim Dim(5) FP12

avg. RMSE 0.524 0.496 0.490 0.489 0.488 0.544 0.537

HIST 0.029 0.034 0.035 0.037 –0.020 –0.013
(0.77) (0.67) (0.71) (0.80) (–0.16) (–0.16)

HISTewma,ex –0.025 0.005 0.007 0.008 –0.049 –0.042
(–0.82) (0.24) (0.29) (0.41) (–0.41) (–0.59)

HISTK –0.035 –0.010 0.002 0.003 –0.054 –0.047
(–0.87) (–0.46) (–0.10) (0.03) (–0.48) (–0.58)

HISTK
ewma,ex –0.036 –0.011 –0.001 0.001 –0.056 –0.049

(–0.85) (–0.78) (0.12) (0.19) (–0.46) (–0.61)
Bestsim –0.034 –0.010 0.000 0.001 –0.057 –0.050

(–0.92) (–0.56) (0.22) (0.08) (–0.49) (–0.65)
Dim(5) 0.004 0.029 0.039 0.040 0.039 0.007

(0.08) (0.40) (0.49) (0.51) (0.50) (0.03)
FP12 –0.018 0.007 0.017 0.018 0.016 –0.022

(–0.42) (0.04) (0.16) (0.20) (0.18) (–0.48)
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Table A10: Prediction Errors – MAE

This table presents the out-of-sample mean absolute prediction errors. We measure the realized beta with

daily returns over the horizon of 6 months. Each month, we compute the value-weighted MAE for the

approaches considered using the entire cross-section of stocks. The first row reports the average value-

weighted MAE over our sample period. We indicate the lowest average MAE with italic font. The remainder

of the table reports the differences in prediction errors. The upper triangular matrix reports the average

differences in RMSE and the lower triangular matrix reports the average differences in MedAE. We report

the error loss differential between the model [name in row] and the model [name in column]. The absolute

values of the numbers in parentheses indicate the share of time periods for which the difference is significant

at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the significance using the

modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular matrix,

respectively. The sign of the number in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.270 0.259 0.261 0.257 0.255

HIST 0.011 0.010 0.013 0.016
(0.56) (0.52) (0.56) (0.77)

HISTewma,ex –0.015 –0.002 0.002 0.004
(–0.79) (–0.17) (0.24) (0.25)

HISTK –0.017 –0.002 0.004 0.006
(–0.80) (–0.10) (0.29) (0.48)

HISTK
ewma,ex –0.021 –0.005 –0.004 0.003

(–0.84) (–0.74) (–0.30) (0.08)
Bestsim –0.021 –0.006 –0.004 –0.001

(–0.94) (–0.56) (–0.44) (0.03)
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