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Abstract

Researchers and practitioners face many choices when estimating an
asset’s sensitivities toward risk factors, i.e., betas. Using the entire U.S.
stock universe and a sample period of more than 50 years, we find that
a historical estimator based on daily return data with an exponential
weighting scheme as well as simple shrinkage adjustments yield the best
predictions for future beta. Adjustments for asynchronous trading, macroe-
conomic conditions, or regression-based combinations, on the other hand,
typically yield very high prediction errors and fail to create market-neutral
anomaly portfolios. Finally, we document a robust link between stock

characteristics and beta predictability.
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I Introduction

Researchers and practitioners need estimates of betas for a wide variety of applications.
Typically, historical data is used to estimate beta. Many researchers use the simple histor-
ical estimate. Others shrink the estimates toward the average beta of similar stocks. Some
condition their estimates on macroeconomic state variables while others apply a weighting
scheme on the historical data. Finally, some directly combine estimates obtained from differ-
ent methods. Often, these decisions are made ad hoc without much guidance and discussion
on how they impact the resulting estimates. The primary goal of this study is to deliver
guidance for making the optimal choice among these and many more options one faces when
estimating beta.!

To be more precise, we study the impact that these choices — e.g., different data sampling
frequencies, estimation windows, forecast adjustments, and forecast combinations — have
on estimates for beta. We analyze the impact of these choices both unconditionally and
conditionally for stocks with different stock characteristics.

We use a large cross-section of stocks and more than 50 years of data to comprehensively
study the estimation of beta. Relative to existing studies, we substantially expand the scope
both in the asset space and in the time dimension. We also illuminate several aspects of
the estimation of beta. We evaluate the predictability for realized beta by computing the
average root mean squared error (RMSE) of all approaches, testing the significance in mean
squared and median squared forecast errors. In addition, we examine the economic value of
more accurate beta forecasts in portfolio formation. We test if the beta estimators are able
to generate market-neutral anomaly portfolios.

We examine several estimation and adjustment approaches. First, we study the impact

of different estimation windows and data sampling frequencies. Regarding the estimation

"'While betas are generally estimated with respect to various possible state variables, we focus our analysis
on market beta.



window, the researcher faces a trade-off between conditionality, i.e., using the most recent
data, and a sufficient sample size that reduces measurement errors when predicting a time-
varying beta using historical data. We find that a historical window of 1 year typically
yields the lowest average prediction errors and performs well in generating market-neutral
anomaly portfolios. Furthermore, consistent with the findings of Hollstein et al. (2018), we
find that the data frequency should be as high as possible, i.e., estimators based on daily
data outperform those based on monthly or quarterly data.

Second, we examine the impact of different weighting schemes. Conceptually, exponen-
tially weighing past observations could deliver a possible solution to the conditionality vs.
sample size trade-off because one can “have it both ways”, placing a higher weight on more
recent observations to get a conditional estimate and using a long historical window to re-
duce measurement noise. Indeed, we find that exponentially weighting the observations
yields significantly more precise estimates for beta and brings the realized betas of ex-ante
market-neutral portfolios toward zero.

Third, we examine the impact of imposing priors for the beta estimates. The idea behind
this approach is that the beta estimate of a stock should not be too dissimilar to that of other
stocks with similar characteristics. We find that the shrinkage adjustments of Vasicek (1973),
Karolyi (1992), and Cosemans et al. (2016) reduce average squared prediction errors. The
simple shrinkage approach of Vasicek (1973) also performs better than the simple historical
estimator in forming market-neutral anomaly portfolios while the more informative prior
models of Karolyi (1992) and Cosemans et al. (2016) perform worse.

Fourth, we examine the effect of adjustments for asynchronous trading. Scholes &
Williams (1977) and Dimson (1979) suggest that we can account for asynchronous trad-
ing by including betas with respect to lagged market returns. Arguing that it takes investors
time to process and understand the impact of systematic news on opaque firms, Gilbert et al.

(2014) suggest using quarterly instead of daily data to estimate beta. However, contrary to



these arguments, we find that the Dimson adjusted beta and, as indicated previously, esti-
mators based on monthly and quarterly data, yield very high RMSEs and average realized
betas in absolute terms in the portfolio formation test.

Fifth, following Shanken (1990) and Ferson & Schadt (1996), we also examine the impact
of conditioning information from macroeconomic state variables for beta estimation and find
that all estimators that build on such information underperform the simple historical model.

Sixth, we investigate forecast combinations. We examine simple, regression-based, and
Bayesian combinations. We find that a simple forecast combination of an exponentially
weighted and a prior-based historical estimator yields the lowest average prediction errors
overall. However, more elaborated combination approaches perform considerably worse,
especially if we combine many individual models.

We also analyze why certain estimators perform well while others perform very poorly.
We find that weighting schemes and shrinking the estimates toward informative priors work
well because both approaches correct for measurement errors, particularly in stocks with
very high and very low betas. On the other hand, asynchronicity adjustments, macroeco-
nomic conditioning variables, and model-based forecast combinations increase measurement
errors. The RMSE difference of betas based on macroeconomic variables is typically strongly
correlated with the conditioning variables. It thus seems that individual stock betas are not
related to macroeconomic variables and imposing this structure therefore induces systematic
measurement errors. Model-based forecast combinations appear to overfit the dynamics of
beta in-sample and thus perform very poorly out-of-sample.

Finally, we analyze the link between stock characteristics and the performance of different
approaches. We find that betas are particularly hard to predict for stocks with extreme (high
or low) betas or momentum, small and illiquid stocks, as well as those with high idiosyncratic
volatility. The betas for value stocks are harder to predict than those for growth stocks.

Additionally, we detect a heterogeneous degree of predictability across different industries



with betas of stocks, e.g., of the manufacturing sector being markedly more predictable than
those of the energy sector. For all the sorted portfolios, we obtain similar results in terms of
ranking our main approaches. Those estimators that perform well unconditionally, typically
also do so conditional on certain stock characteristics.

We test the robustness of our results, and find that these are largely similar for forecast
horizons of 1, 3, 6, 12, and 60 months. Our results are also robust to computing hedging
error ratios or estimators for realized beta that account for infrequent trading. Finally, we
obtain qualitatively similar results for equally and value-weighted RMSEs, for an evaluation
in the time series of individual firms, as well as for an alternative statistical loss function.

Our study is related to but materially different from Hollstein & Prokopczuk (2016).
The authors examine the performance of different option-implied and time-series based es-
timators of beta and the historical estimator, finding that the option-implied estimator of
Buss & Vilkov (2012) performs best. Our focus is considerably broader. While Hollstein
& Prokopczuk (2016) face limitations imposed by option-implied estimators (only large-cap
stocks of the S&P 500 and a relatively short sample period), we can analyze how to opti-
mally estimate beta for all stocks, especially those for which there is no sufficient options
data available. Furthermore, we use numerous estimators that are not included in Hollstein
& Prokopczuk (2016) and link beta predictability to different stock characteristics.

More recently, Hollstein et al. (2018) make use of the results of Bollerslev & Zhang
(2003), Barndorff-Nielsen & Shephard (2004), and Andersen et al. (2006) and show that,
using high-frequency data, betas can be estimated more precisely for the firms of the S&P
500. However, the same shortcoming as for option-implied estimators applies for estimators
relying on high-frequency data: they are only reliable for the subset of the most liquid stocks.
Thus, our research directly complements these studies.

Our paper also connects to studies on the conditional capital asset pricing model (CCAPM).

Shanken (1990), Ferson & Schadt (1996), Lettau & Ludvigson (2001), and Guo et al. (2017)



condition on macroeconomic variables to obtain time-varying betas. In contrast, Lewellen &
Nagel (2006) use the simple historical estimator based on short windows for the same pur-
pose. We complement these studies by examining the predictive accuracy of the estimators
based on linear macroeconomic conditioning variables relative to the historical estimator and
other models.

Our paper also adds to the literature on forecast combinations. Bates & Granger (1969),
Clemen (1989), and Timmermann (2006) show that forecast combinations can be beneficial
in many fields of financial forecasting. The authors show that forecast combinations are
especially beneficial when the combined forecasts use data from different sources. We extend
the forecast combinations literature in the context of beta estimation.

Lastly, we also connect to the literature on forecast adjustments for beta pioneered by
Vasicek (1973). The author shrinks beta estimates toward the cross-sectional average beta.
Recent developments turn towards more informative priors, as in Karolyi (1992) and Cose-
mans et al. (2016). We thoroughly examine the performance of prior-based combinations
vis-a-vis single models and other possible forecast combinations. Levi & Welch (2017) test
different shrinking approaches and suggest best practices to obtain cost-of-capital estimates.

The remainder of this paper is organized as follows. In Section II, we introduce the
data and the methodology for the estimation of the different models. We present our main
empirical results for estimating beta in Section III. In Section IV, we examine why some
models work while others do not. Section V analyzes the impact of stock characteristics on
beta predictability. In Section VI, we present additional analyses and test the robustness of

our results. Section VII concludes.



II Data and Methodology

A Data

We obtain daily data on stock returns and shares outstanding from the Center for Re-
search in Security Prices (CRSP). We use all stocks traded on the New York Stock Exchange
(NYSE), the American Stock Exchange (AMEX), and the National Association of Securities
Dealers Automated Quotations (NASDAQ). We start our sample period in January 1963 and
end it in December 2015. Our sample period thus starts after the cross-section expansion
of CRSP in the mid-1962 and spans more than 50 years. We obtain data on the risk-free
(1I-month Treasury Bill) rate from Kenneth French’s data library. To proxy for the market

return, we use the CRSP value-weighted index.

B Estimation Methodology

Historical Beta We consider historical beta estimates (HIST) following, e.g., Fama
& MacBeth (1973), regressing an asset’s excess return on a constant and the market excess

return:

Tie —Trr = o+ B (Page — 1) + €, (1)

HIST
j!t

where denotes the estimate for the historical beta of asset j at time ¢. We use data
from time t — k to t, observed at discrete intervals 7, where k is the length of the estimation
window. 7, - is the return on asset j, ry, denotes the return of the market portfolio, and
s, is the risk-free rate, all observed at time 7.

EWMA Beta We also examine a weighted version of the historical estimator with

an exponentially weighted moving average structure. To be precise, we estimate Equation

(1) with weighted least squares (WLS) using the weights th’ip (_;Z_Qh) 5 With h = log@)
r—1 €TP(—|t—T 2



characterizes the horizon, to which the half-life of the weights converges for large samples.
We try two alternatives for ¢: (i) one third and (ii) two thirds of the number of observations
of the (initial) estimation window.?

This estimator is similar in spirit to that of Ang & Kristensen (2012), who estimate
conditional betas using a kernel-weighted ordinary least squares (OLS) approach. The esti-
mator used here can be regarded as a special case, only using past data and implementing
an exponentially-weighted kernel. The Gaussian kernel used in Ang & Kristensen (2012) is
not computable in real time since it hinges on future return data.

Shrinkage Beta Following Vasicek (1973), we obtain a posterior belief of beta by

combining the historical estimate ( ;I,;IST) with one or multiple priors (b; ;) in the following
way:
2HIST
gk
BT+ 20— biga
Shr _ bisjot 9
gt o2 : ( )
HIST
L+>% ey

O'EE%ST and sgm are the variances of the historical estimate and the prior(s), respectively.
Hence, the degree of shrinkage depends on the relative precision of the historical estimate
and the priors. We use as priors (i) the cross-sectional average beta (Vasicek, 1973) (8Y), (ii)
a multiple shrinkage adjustment using the cross-sectional average beta, the cross-sectional
average beta of firms in the same Global Industry Classification Standard (GICS) industry
sector, and the cross-sectional average beta of firms in the same size decile (Karolyi, 1992)
(8%), and (iii) the fundamentals-based prior of Cosemans et al. (2016) (8").3

Dimson Beta Following Dimson (1979) and Lewellen & Nagel (2006), we account for

2We try both a rolling window estimation using the same window as for HIST and an expanding window.
To reduce the computational burden, we limit the maximum amount of daily returns used to 10 years.

3Cosemans et al. (2016) use the firms’ size, book-to-market ratio, operating leverage, financial leverage,
momentum, and industry classification, as well as the default yield spread to estimate the prior. For further
information, we refer to the original article. We obtain the balance sheet data necessary to compute the
above ratios from Compustat.



potential infrequent trading effects. If stocks trade less frequently than the market index,
stock prices adjust gradually to new information. Therefore, Dimson (1979) adds lagged

market returns in the regression:

0 1
Tir = Tfr = Q¢ + 6]('71/) (TM,T - rf,’r) + BJ(',t) (TM,T—l - Tf,T—l) (3)
N
+6§? (Z "Mr—n — Tf,T—TL) + €57
n=2

We incorporate N =1 up to N = 5 lagged returns. In the case N = 1, the term associated
with ﬁj(-i) drops. The estimator for beta is then ﬁftimm) = 223(2’]\0 B](Zt), where min(-) is the
minimum operator.

Scholes—Williams Beta We also examine the beta estimator of Scholes & Williams
(1977). That is, we estimate three separate regressions as in Equation (1), once using the
contemporaneous market return, exactly as in Equation (1). Once, we estimate a similar
regression using the lagged market excess return, that is r;, —ry. = a;: + 5, (a1 —

T¢r-1)+¢€;- and once we use the leaded market excess return v, — 7y, = a;; + 6;rt(rM7T+1 —

rfr+1) + €j. The final estimator for beta is:

sw _ Bt B 48
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where p is the first order autocorrelation of the market excess return.
Correlation-separated Beta Following Frazzini & Pedersen (2014), we use an esti-
mator that separates the estimation of volatilities and correlations. The authors estimate
volatilities from daily return data and correlations from overlapping 3-day returns to account
for asynchronous trading. Additionally, Frazzini & Pedersen (2014) argue that correlations

move more slowly over time, allowing for different estimation windows used to compute



volatilities and correlations. We thus obtain the beta as:

FPhor h g "t
Bit = i (5)
OMt

)

where p?‘,%,t is the correlation between the return of asset j with the market during the past

hor months and o,; and o), are the volatilities of the return of asset j and the market,
respectively.

Macro Beta We follow Shanken (1990) and Ferson & Schadt (1996) in assuming that

Mac

119¢ is a linear function of state variable(s):

Y = bo + Bz (6)
We define z; as the vector of deviations of the state variables from their average up to time
t, so that by ; can be interpreted as the average beta while the elements in the matrix B;
determine the sensitivity of beta to the state variable(s). We estimate the parameters for
Equation (6) using the time series of past (quarterly) macroeconomic variables and estimates
for historical beta as on the left-hand side. We use a rolling estimation window of 20
quarters.?

We use the variables examined by Goyal & Welch (2008). The dataset is available from
Amit Goyal’s webpage. Specifically, we examine the book-to-market ratio of the Dow Jones
Industrial Average (bm), the consumption-wealth-income ratio (Lettau & Ludvigson, 2001,
cay), the default yield spread (dfy), the dividend—price (dp) and earnings—price (ep) ratios
of the S&P 500, the investment—capital ratio (ic), inflation (inf), the long-term government

bond yield (Ity), and Treasury Bill rates (tbl).> We also use the 1-month macroeconomic

uncertainty (unc) of Jurado et al. (2015) from Sydney Ludvigson’s webpage and the unem-

4We also try an expanding window and find that the results are qualitatively similar, while the prediction
errors for the expanding window are typically slightly higher.
SFor further description of the construction of the variables, we refer to Goyal & Welch (2008).
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ployment rate (une) from the Federal Reserve Economic Database.

We follow Goyal & Welch (2008) and also estimate a “kitchen-sink” (all) regression using
all these variables. In a recent study, Guo et al. (2017) find that the earnings—price ratio,
inflation, and the unemployment rate are the best predictors for the beta of the value pre-
mium. The authors cannot reject the null hypothesis of a linear relationship of the state
variables and beta, which supports our choice of a simple linear specification.

Forecast Combinations Bates & Granger (1969) note that the combination of esti-
mation techniques may prove worthwhile, especially when the combined estimates exploit (at
least partially) different information sets. To investigate whether combinations are worth-
while for estimating beta, we try several approaches. The first is a simple equally weighted
combination of different estimates. However, while such a simple ad hoc combination is easy
to implement, the procedure might not provide the optimal result.

Second, we estimate weights by performing multivariate regressions for each stock.® We
employ an expanding window to make use of a maximum length of history to be able to
estimate the parameters with greater precision.” The regression equation takes the following

form:

M
o= Y WY e (7)

m=1

ﬁ](-ff) is the beta estimate for asset j of approach m at time 7. We combine the estimates
of M different models. ;{T denotes the corresponding realized beta of that asset. At every

point in time the estimation moves forward, one additional observation is added to each of

these vectors. After obtaining the time-¢ regression coefficients, we adjust the beta estimates,

6We use the first 100 months as our initial training sample. At each point in time ¢, we use estimates of
beta up to t — k, since realized beta with a k-month window is only available up to the period t — k until ¢
at time t.

"We also try a rolling window approach. The results indicate that the expanding window approach
indeed yields superior results.
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using the following equation:

M
c = 7 (m) p(m)
o= a ) b eY. (8)
m=1
](-?t is the combined beta forecast for asset j at time ¢ and a;y, ZSET) are the respective

regression coefficients, i.e., weights.®
We also consider the Bayesian shrinkage approach proposed by Diebold & Pauly (1990).

This approach shrinks regression coefficients towards a prior of equal weights for each forecast

shr
j?t ?

and an intercept of zero. To obtain we use Equations (7) and (8) with the empirical
Bayes estimator.

Bayesian Model Averaging Finally, we examine optimal forecast combinations us-
ing Bayesian model averaging. The basic idea of this approach is that there are K different
possibilities to combine M different forecasts. To be more precise, one can use one single
forecast only (M different possibilities), there are various possible combinations of two fore-
casts, three forecasts, and so forth. The models thus differ in the subset of predictors used.
Under the uninformative prior specification of Fernandez et al. (2001), assuming that all
variables are equally likely to enter the model, and that the likelihood that a variable enters

the model is independent of that of another variable, the optimal combinations are (Stock

& Watson, 2006):
K
=D by, (9)
k=1

where /BJ(I? is the OLS combination (as of Equation (8)) of forecast models for one possible

8Note that now the BJ(-}? have a t-subscript. This is because we only use the current beta estimates
instead of the vector of all previous beta estimates.
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way k to combine the M forecasts. The weights wy are:

 a(g)}™[1+ g"'SSRY/SSRR]-3U"
YK a(g)?R[1 + g ISSRY [SSRR] ™

(10)

Essentially, we first estimate a restricted forecasting model as in Equation (7) with OLS using
only the variables that ought to be included in each model.” From this, we get the sum of
squared residuals (SSRT). Second, we estimate a forecasting model as of Equation (7) for
each of the K possible combinations of predictors and get the forecast ﬂj(l? and the sum of
squared residuals (SSRY). P, is the number of parameters in the kth regression combination,
df® is the number of the degrees of freedom of the restricted model, and a(g) = g/(1 + g)
with g = 1/min(T, M?) following Fernandez et al. (2001). T is the number of time periods

in the estimation window.

C Evaluation Methodology

Realized Beta To evaluate predictions for beta, we follow Andersen et al. (2006)
and use the realized beta (RB). Andersen et al. (2006) show that under weak regulatory
conditions, RB is a consistent estimator of the underlying beta. We use daily (log-)returns

during the prediction window ¢ until 7' to estimate:!°

T
R ZT:H—I 57T M,r

Jt ZT r2 !
T=t+1" M,

(11)

where r; ; and 7y - refer to the return of asset j and the market return at time 7, respectively.

Throughout our main empirical analysis, we follow Chang et al. (2012) and Hollstein &

9When empirically implementing the approach, specifying variables that are included in each model can
substantially reduce the computational effort.

10Note that the formula for realized beta makes use of the expanded formula for the variance, neglecting
the drift term. Andersen et al. (2006) note that the effect of the drift term vanishes as the sampling frequency
is reduced, which effectively “annihilates” the mean. However, the average daily excess-return of the CRSP
value-weighted index amounts to only 2.37 basis points. Thus, it is unlikely that this simplification induces
a material bias.
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Prokopcezuk (2016) and focus on a prediction horizon for realized beta of 6 months.'!
Root Mean Squared Error (RMSE) To examine the out-of-sample forecast accu-
racy of the different approaches, we perform the analysis using the RMSE, a loss function

commonly applied in the literature:'?

Q

RMSE; =

S lr

(B} — Bje)*, (12)

J=1

where o is the number of out-of-sample observations of realized and predicted betas at one
point in time. 5]@ is the realized beta in the period ranging from ¢ to 7', and 3;; denotes
an estimate for beta. We rely on the RMSE criterion since it is robust to the presence of
(mean zero) noise in the evaluation proxy while other commonly employed loss functions
are not (Patton, 2011). We test for significance in RMSE differences using the modified
Diebold-Mariano test proposed by Harvey et al. (1997). We use Newey & West (1987)
standard errors with 4 lags. To test for significance in root median squared error (RMedSE)
differences, we employ the non-parametric Wilcoxon signed rank test.!® In general, the
results for the RMedSE and its significance are similar to those for the RMSE. Hence, when
discussing our results, we mainly focus on the RMSE results.

We believe that the combination of realized beta and the RMSE criterion is appropriate
for evaluating forecasts for beta. Given that realized beta is a consistent estimator, in finite
samples, the main concern with using this to evaluate beta forecasts is that it might be a
noisy proxy of the true underlying beta. However, the RMSE criterion is robust to this noise

(if it is zero on average). Thus, this combination appears to be well-suited.

HFor all estimators, we require at least half of the data to be available in order to obtain an estimate.

12Tn Section VI.H, we also examine the Mean Absolute Error (MAE) loss function as an alternative, and
obtain largely similar results as for the RMSE.

13Strictly speaking, the Wilcoxon signed rank test incorporates the joint null hypothesis of zero median
in the loss differentials as well as a symmetric distribution. We stick to this test instead of an alternative
only testing on zero median, like the simple sign test, since the Wilcoxon signed rank test turns out to be
more powerful in many applications (Conover, 1999).

14



Market-Neutral Anomaly Portfolios For estimating a firm’s cost of capital and
other applications, individual betas are very relevant. However, the ability of different beta
estimation methods to create market-neutral portfolios is an interesting economic criterion on
which to assess different beta estimation approaches that is at least as important. Therefore,
along with the RMSE, we evaluate the average ex-post realized betas of ex-ante market-
neutral long—short anomaly portfolios. We use several anomaly variables, which we describe
in Section A of the Appendix.

Each month, we sort the stocks to form the different anomaly portfolios based on NYSE
breakpoints. For size and value, as in Lewellen & Nagel (2006), we build 25 independently
sorted portfolios. S is the average of the 5 low market-cap portfolios and B is the average of
the 5 high market-cap portfolios while SMB is their difference. Similarly, L is the average
of the 5 low book-to-market portfolios and H is the average of the 5 high book-to-market
portfolios. HML is the difference between the value and growth portfolios. For momentum,
we sort the stocks into 10 portfolios based on their return over the past 12 months while
skipping the most recent month (Jegadeesh & Titman, 1993). W and L are the top and
bottom deciles while WML is their difference. For idiosyncratic volatility (Ivol) and illiquidity
(Ilig), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low
portfolios, respectively. For leverage, we follow the same approach as for the book-to-market
ratio, that is, we build 25 portfolios, independently sorted on size and leverage and form the
high-minus-low portfolio.

For each beta estimator, we compute the long portfolio beta and the short portfolio beta
predictions. We set the weight v, so that it fulfills the equation Uj7tﬁjl-?tng — phet = 0.1 We
thus create anomaly portfolios that are ex-ante market-neutral. We then test whether the

ex-post realized beta of the anomaly portfolios is indeed 0 on average.

The results are qualitatively similar when keeping the weight of the long side at 1 and instead weighing
the short side to make the portfolios market neutral.

15



III Estimating Beta

A Optimal Window Length and Sampling Frequency

We start the main analysis looking for the optimal sampling frequency and window length
for the simple historical estimator. For the historical estimator, we consider windows of 1, 3,
6, 12, 24, 36, and 60 months when using daily data. Additionally, we consider the historical
estimator based on monthly data (HIST,,.,) using windows of 12, 36, and 60 months, as well
as an estimator based on quarterly data using the returns over the previous 10 years.'

In Table 1, we present the summary statistics of these estimators. Several properties of
the different estimators are worth mentioning. First, the value-weighed average beta, which
should be equal to 1 when examining a complete market, is close to that value for most ap-
proaches. Values below 1 provide some indication that stocks are traded infrequently or that
opacity prevents market participants from fully understanding the impact of systematic news
during the chosen return interval. Values above 1 indicate that an estimator overestimates
the systematic risk on average.

Second, we examine the average cross-sectional standard deviation of the approaches.
A high standard deviation might be an indication of high measurement errors, whereas a
very low standard deviation might indicate that an approach fails to sufficiently capture the
heterogeneity in the estimates. Naturally, the average cross-sectional standard deviation is
larger and the quantiles are wider for shorter estimation windows. Thus, the short-window
historical estimators likely suffer from high measurement errors.

Third, we examine the average value-weighted correlation among the estimates. We find
that the correlations are far from perfect even though we use exactly the same estimator

for all approaches, and only change the historical window size and sampling frequency. For

15The subscript of the HIST estimators denotes the return frequency. This is left blank for daily data. We
use the subscript “mon” for monthly and “q” for quarterly data. The superscript of the estimators indicates
the period included in the estimation window (expressed in months).
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example, the correlation of the historical estimator based on daily data and a 1-month
historical window with that using a 60-month window is as low as 0.40. Additionally, even
when using the same data window, the correlation of the 60-month historical estimator based
on daily data with that based on monthly data is only 0.65.

To find the optimal combination of window length and sampling frequency, in Table 2
we present the average out-of-sample prediction errors of different historical estimators. We
detect the typical trade-off between conditionality and sample size. On the one hand, beta
changes over time. Hence, an estimate based on a short historical window delivers a more
timely conditional estimate. On the other, estimates based on a small sample are prone to
measurement error. Starting with daily data, we find that the average value-weighted RMSE
is highest for the 1-month horizon. It falls gradually up to the 12-month horizon and begins
to rise again for longer estimation windows. The average RMSE of the 12-month historical
estimator (HIST'?) is significantly lower than that of the 1-month horizon 59% of the time,
compared to the 3-month horizon estimator 42% of the time, and relative to the 60-month
estimator 17% of the time.

Additionally, we find that low-frequency estimators, i.e., those based on monthly and
quarterly data, yield very high average RMSEs, which are significantly higher than the
RMSE of HIST'? about 80% of the time. This result is also in line with the finding of
Hollstein et al. (2018), who examine the stocks of the S&P 500 and show that estimators
based on higher-frequency data outperform those based on lower-frequency data. It thus
seems that estimators based on higher-frequency data are generally preferable whenever
reliable data are available.

In Table 3, we further test to what extent the estimators help create market-neutral
anomaly portfolios. We find results that are broadly consistent with those when using the
RMSE. For the 12-month estimation window using daily data, the average ex-post realized

betas of the anomaly portfolios are small and significant for only 2 out of the 6 anomaly

17



portfolios. For very long or short horizons, the magnitude of the average realized betas is
typically larger and the average ex-post realized betas are statistically significant more fre-
quently. A very good alternative is also the 24-month estimation window. For this estimation
window, only 1 anomaly portfolio has a statistically significant realized beta. However, the
point estimates and standard errors are typically higher for the 24-month window compared
to the 12-month window.

Overall, the daily historical estimator using a 12-month window both yields the most
accurate predictions and fares well in creating market-neutral anomaly portfolios. In the
following sections, we therefore concentrate on the 12-month estimation window, indicate
HIST!? simply by HIST, and examine if we can further improve its predictive accuracy by

imposing different adjustments on the estimator.

B Different Weighting Schemes

In the previous section, we address the trade-off between conditionality and sample size
by searching for an optimal window that balances both arguments. However, it may also
be possible to resolve this trade-off in an alternative manner. While, thus far, we weigh all
observations equally, independently of whether the returns occur 11 months or 1 week before
the date of the estimation, one could also implement an exponentially decaying weighting
scheme. This way, we can use a large sample to estimate the parameters precisely and, at
the same time, give a higher weight to more recent observations that likely carry better in-
formation on the current conditional beta. We use two different half-lifes for the exponential
weighting, one that has a higher level of conditionality, where the half-life corresponds to
84 trading days (indicated by the additional subscript “s” for “short”) and one where it is

168 trading days.'® Additionally, we use each of the two half-lifes together with an expand-

16We compute this as 12 (months) times 21 (average daily return observations per month) times 3 in the
former and % in the latter case.
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ing window (HISTewmasex and HISTewmaex), Wwhere we have an even larger sample size that
might further increase the precision of the estimates.!”

In Table 1, we present summary statistics for the exponentially weighted historical es-
timator.!® We find that the overall properties of HIST¢yma and HIST ewmaex are similar to
those of HIST'? and the correlation is high with the 12-month historical estimator employing
equal weights. Thus, we expect that the differences might not be very large.

We present the results on prediction errors when using an exponential weighting scheme
in Table 4. We find that, independently of the specification, the exponential weighting
reduces the average value-weighted RMSE. We obtain the lowest average value-weighted
RMSE for HISTewmaex- The value-weighted RMSE is significantly lower for HISTewma,ex
compared to HIST 30% of the time. Thus, the exponential weighting, especially combined
with an expanding estimation window, can reduce prediction errors in beta.

In Table 5, we present the portfolio results. We find that most approaches perform
similarly well as HIST. The best approach, just like for the RMSE, is HIST ¢ymaex, Which
is able to create ex-post market-neutral portfolios on average for all anomalies except for

momentum.

C Imposing Priors

Another way to correct for potential measurement errors is to shrink potentially noisy
estimates toward an informative prior. Estimates that have higher standard errors are thus
shrunk more heavily toward their prior than estimates with lower standard errors. We use
three different shrinkage estimators, HISTV, HISTX, and HIST".

Summary statistics of these estimators are presented in Table 1. Naturally, we find that

17One might wonder how much of the weight is assigned to observations more than 1 year past, when
using an expanding window. For ¢ = 84, this is roughly 12% and for ¢ = 168, about 35% of the weight is
placed on observations further back.

18To enhance the exposition, we only present the summary statistics for the estimator with + = 168.
Those with a shorter half-life of the weights (. = 84) are qualitatively similar.
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the distributions of HISTV, HISTX, and HIST' are narrower than that of the unadjusted 12-
month historical estimator; also, quite naturally, since HISTV, HISTX, and HIST' are directly
derived from HIST'? the estimators are highly cross-sectionally correlated with it and among
each other. The correlation with HIST'? decreases with the amount of information imposed
for the prior from 0.98 for HISTV to 0.83 for HIST'. On the other hand, the value-weighted
average for HISTV and HISTX is slightly below 1 because HISTY and HIST¥ shrink the beta
estimates toward an equally weighted average, which is typically below 1.1° For HIST!, we
have far fewer observations compared to the simple historical approaches. This is because the
approach requires accounting data that is not as widely available as stock data and because
we need an initial window to estimate the parameters. The value-weighted average of HIST!
of 1.02 slightly exceeds 1.

We present the prediction errors of the different prior-adjusted betas in Table 6.2° We
find that HISTY, HISTX, and HIST! yield lower average value-weighted RMSEs compared
to HIST. The differences are significant 8%, 14%, and 4% of the time, respectively. HISTX,
which shrinks the beta estimates three times, is slightly better than the less informative
HISTV, which shrinks estimates toward the overall average beta only. The individual-priors-
based estimator, HIST! yields a slightly lower average RMSE compared to HISTY (which
becomes visible in the decimal places not tabulated) but a higher average RMSE than HISTX.
The differences are generally stronger in the median. HIST! yields a relatively high RMedSE.

Our findings are in line with Karolyi (1992), who shows that the Vasicek (1973) beta
adjustment yields a substantially lower RMSE compared to HIST and, furthermore, the

multiple priors approach by Karolyi (1992) performs even better than HIST and than HISTV.

19We also try HISTV and HISTX shrinking the beta estimates toward a value-weighted average. We find
that in that case the value-weighted averages are closer to 1. The overall performance of the two estimators
is qualitatively similar and generally even slightly better when shrinking towards the value-weighted average.

2ONote that the average RMSE for HIST is different from that of Table 2 because both the sample period
and stock universe differ slightly. We only include stock—month observations, for which all approaches in
the table yield an estimate. The number of firm—month observations reduces because we need an in-sample
period to first estimate the prior for HIST! and because many firms lack accounting data.
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Our findings are also consistent with those in Cosemans et al. (2016). The authors find
that their individual-priors-based approach yields lower average RMSEs compared to HIST,
HISTV, and a version of the Karolyi (1992) estimator. We confirm these results in that we
find that HIST! yields a lower average RMSE than HIST and HISTV, but the average RMSE
is higher than that of HISTX. The reason for this finding is that Cosemans et al. (2016) use
a weaker specification of the Karolyi (1992) estimator, only shrinking the beta estimates to
the industry average instead of the three-step shrinkage adjustment which Karolyi (1992)
uses in his initial paper. When we use this weaker version of the Karolyi (1992) estimator
used by Cosemans et al. (2016), we are able to confirm the findings of the authors that the
Cosemans et al. (2016) estimator yields a slightly lower average RMSE.

Table 7 presents the results for market-neutral anomaly portfolios. We find that the
more informative the prior, the worse the performance in generating ex-post market-neutral
portfolios. While HISTY only fails in creating market-neutral momentum portfolios, HISTX
fails for 3 portfolios, and HIST! even fails for 5 out of the 6 portfolios. Since the prior for
HIST! is based on a characteristics-augmented monthly regression, the poor result for HIST!
in creating market-neutral anomaly portfolios is consistent with poor results for estimators
based on monthly data. Thus, shrinkage toward more informative priors helps reduce mean

squared errors but worsens the performance in portfolio formation.?!

D Asynchronicity Adjustments

A possible concern when estimating betas is that some stocks might be traded less fre-
quently than the market portfolio. If the stock price reacts days after the arrival of systematic

news, the usual historical beta estimator will be biased downward. The usual approach to

21Cosemans et al. (2016) find that HIST! performs well in creating a market-neutral minimum variance
portfolio (MVP). For their MVP approach, we obtain similar results as they do. However, their approach has
to make structural assumptions on the covariance matrix, which makes the test a joint test of the performance
of a beta estimator and these structural assumptions. Furthermore, we feel that anomaly portfolios are a
more relevant application, especially in practice.
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handle this are the Scholes & Williams (1977) and Dimson (1979) adjustments, which also
account for betas with respect to the leaded and lagged market return(s). Additionally, we
use the correlation-separated beta of Frazzini & Pedersen (FP) (2014).

We present summary statistics for Dimson-betas with 1, 3, and 5 lags, SW, as well as
FP betas with 12-month and 60-month correlations in Table 1. We find that the overall
value-weighted averages of the Dimson-betas and SW are similar to that of HIST'?. Hence,
the estimators do not appear to be systematically biased. Interestingly however, the value-
weighted averages of FP'? and FP% amount to 1.06 and 1.09, respectively, which indicates
some upward bias for the estimator. We find that the standard deviation as well as the
quantile range rise the more lags we use. Additionally, the correlations with HIST'? fall
with an increasing number of lags. The average value-weighted cross-sectional correlation
between HIST'? and Dim® is 0.70. Thus, adding betas with respect to lagged market returns
materially affects the properties of the historical estimator.

We present the results for prediction errors when using up to 5 lags for the Dimson beta,
SW, and 3 different horizons for the FP beta in Table 8. We find that the asynchronicity-
adjustment does not improve the beta estimates on average. The more lags we use, the
higher the average value-weighted RMSE. Those of Dim™®, Dim®), and SW are significantly
higher than that of HIST 48%, 77%, and 50% of the time, respectively. Hence, there is very
little evidence to warrant a lag adjustment.?? For the FP beta, we find a similar performance
of the estimator whose correlation is based on a 12-month window as for Dim", while the
average RMSE of FP is substantially smaller than that of, e.g., Dim® and Dim®. Hence,
the FP beta may be a bit better suited for beta estimation than the Dimson adjustment.

The longer the estimation window for correlations, the worse is the performance of the FP

22Since we evaluate the predictions using realized beta without an adjustment for infrequent trading in
the measurement of this quantity, we might fail to capture infrequent trading effects ex-post. We account for
this possibility in Section VI.F and show that even under an evaluation that accounts for potential infrequent
trading, the Dimson-adjusted estimator still falls short of the simple historical estimator.
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estimator. Thus, it seems that correlations also exhibit substantial time-variation.
In Table 9, we examine the ability of the estimators to create ex-post market-neutral
anomaly portfolios. Consistent with the RMSE results, we find that all estimators perform

poorly and create a significant market exposure for at least 4 out of the 6 anomaly portfolios.

E Macroeconomic Conditioning Information

If betas change over the business cycle, one could make use of information on macroe-
conomic state variables to obtain better estimates for conditional betas. Thus, we examine
the predictions of several potential state variables.

To enhance the exposition, in Table 1, we only present the summary statistics on one
of the betas combined with macroeconomic state variables, Beta®™ (Lettau & Ludvigson,
2001). The results of the other estimators are qualitatively similar. Since we first need initial
data to estimate Equation (6), we have fewer overall observations. We find that the value-
weighted average beta is very close to 1. The cross-sectional standard deviation and quantile
range of Beta® are neither very large nor very small and correlations to other approaches
are rather low in comparison to those of most estimators.

In Table 10, we present the prediction error results for different macroeconomic condi-
tioning variables. Because information on some of these is issued only on a quarterly basis,
we sample the betas at the end of each quarter instead of at the end of each month.?* We find
that all of the estimators based on macroeconomic conditioning variables substantially and
significantly underperform HIST. The performance of the “kitchen-sink” approach Beta®! is
particularly poor. The portfolio formation results of Table 11 are similarly poor. Thus, it ap-
pears to be much more favorable to roughly follow Lewellen & Nagel (2006), and use a (short)

historical 12-month window to estimate conditional betas instead of using macroeconomic

23The results when sampling monthly for all variables that are available at that frequency are qualitatively
similar.
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conditioning variables as in, e.g., Lettau & Ludvigson (2001) or Guo et al. (2017).

F Forecast Combinations

Finally, we examine whether one can improve upon HIST by combining different esti-
mates. We use two different sets of models to be combined: (i) only the estimators that
performed best during the previous sections, HISTeyma.ex and HISTX (Best), and (ii) a much
larger subset of the different possible adjustments (All). For the latter, we combine HIST,
HIST cyma,ex, HISTX, HIST!, Dim® | and Beta®®.?* For both model sets, we use four combi-
nation possibilities: (i) a simple combination, (ii) a model-based combination as of Equation
(8), (iii) a model-based combination as in (ii) with the shrinkage approach of Diebold &
Pauly (1990), and (iv) Bayesian model averaging.

Table A1 of the Online Appendix presents summary statistics on these combinations. We
find that the properties of Best™ are overall very similar to those of HIST and the average
value-weighted cross-sectional correlation is 0.98. For the model-based combinations, we
typically have far fewer observations. This is because we first need observations for each of
the models we combine. Additionally, we need an initial window to perform the estimation
of the weights. This further reduces the number of observations available when combining
many models in All. Overall, we find that the value-weighted average, especially of the
model combinations, slightly exceeds 1, which indicates that these combinations yield a bias
on average.

We present the prediction error results in Table 12. We find that the simple combination
Bests™ yields a significantly lower average value-weighted RMSE compared to HIST 32% of
the time. The model-based combinations Best®, Best™", and BestPMA perform similarly to

HIST, while the Bayesian approaches perform slightly better than the non-Bayesian com-

24We choose to only use a subset of all adjustments in the paper, since using too many highly correlated
approaches creates problems of multicollinearity and yields extreme weights for the OLS-based combinations.
Our overall conclusions are not sensitive to different choices of the models from the respective subsets.
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bination Best®. When combining all approaches, independently of whether they work or
not individually, only the simple combination AlIS™ performs better than HIST, but not as
well as the simple combination of the best models. The model-based combinations of all ap-
proaches work clearly less well. These underperform HIST about 50% of the time and more
often. Interestingly, we find that the Bayesian combinations perform even worse than All€.
Hence, simple equally weighted combinations typically yield lower prediction errors than
more elaborated regression-based combinations, even when these use a Bayesian approach.
The portfolio formation results in Table 13 reveal that the combinations generally do
not outperform HIST in making anomaly portfolios market-neutral. Best™ and All® work
reasonably well, but overall not better than HIST. Thus, combining estimators appears to

reduce the RMSE, but the evidence for portfolio formation is mixed.

G  Which is the Best Approach?

Thus far, we examine which of the approaches yields an improvement relative to HIST.
However, it is of course of high practical interest to know which of the adjustments and
combinations yields the lowest prediction errors overall. We present the results for the best
models of the previous sections, HIST eyma ex, HISTX, an approach that directly imposes the
industry-based prior on the EWMA Beta, HIST?WIHMX, and the simple combination of the 2
best models, Best*™ in Table 14.2

We find that, individually, HISTeymaex yields a slightly lower average value-weighted
RMSE compared to HISTX. Directly applying the prior suggested by Karolyi (1992) yields

another small improvement for HISTeymaex. However, the simple combination Best*™ yields

the overall lowest average value-weighted RMSE. While the differences in RMSE between

250mne might wonder why the prediction errors of Table 14 are partially higher than those in Tables 2,
6, and 12 for the same models. As already indicated in footnote 20, for each table, we use only firm—
month observations that are available for all the approaches presented. This yields a substantial reduction
of firm—month observations in the earlier tables.
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Best®™ and HIS Teyma,ex as well as HISTE are only rarely significant, Best*™ significantly

outperforms HIST 52% of the time.
For portfolio formation, the overall picture of Section III indicates that the best ap-

proaches are HIST, HIST?*, HISTewma,ex, and HISTV.

IV Why do the Adjustments “Work’?

Given that some of the adjustments and combinations improve the predictability for beta
while others yield substantially higher prediction errors, one may wonder what the reason
for these different results is. We address this by performing a decomposition of the mean
squared errors (MSE). To do so, we follow Mincer & Zarnowitz (1969) and decompose the

MSE in the following fashion:

MSE; = (8} = B;)° + (1= b)*a*(8;) + (1 - pj)o*(B}"). (13)
I:igs inefﬁ‘Cirency rando; error

b; is the slope coefficient of the regression BJR = a; + b;5; + ¢; and p? is the coefficient of
determination of this regression. A bias indicates that the prediction is, on average, different
from the realization. Inefficiency represents a tendency of an estimator to systematically
yield positive forecast errors for low values and negative forecast errors for high values or
vice versa. The remaining random forecast errors are unrelated to the predictions and
realizations.

We present the results of the MSE decomposition for different adjustments that “work”
and for others that “do not work” in Table 15. Furthermore, we present key statistics about
forecast errors in Table 16. We choose to report a subset of the estimators in order to study
the main mechanisms while keeping the presentation manageable. The results for other

estimators of the same group are generally very similar.
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Weighting Schemes Comparing HISTeypmaex to HIST, Table 15 shows that for the
weighted estimator, the bias and random error parts are of similar magnitude, but HIST eyma,ex
substantially reduces the inefficiency compared to HIST. Thus, the larger estimation win-
dow appears to reduce the likelihood of high measurement error in low-beta and high-beta
stocks. The weighting scheme ensures that the estimates are conditional. Table 16 confirms
this interpretation. The share of very high squared forecast errors is substantially reduced.
Particularly for very high and very small realized betas, HISTcyma ex Works better than HIST.

Imposing Priors  We find that HISTX, HIST', and HISTG,,,, ., reduce the inefficiency
relative to HIST. Thus, it seems that the approaches partially correct the tendency of HIST
of underestimating the betas of low-beta stocks and overestimating the betas of high-beta
stocks. The correction mechanism is especially intuitive for the shrinkage approaches: some
betas will mechanically be estimated with high measurement error. It is particularly likely
that very low beta estimates contain negative measurement errors while very high beta
estimates contain positive measurement errors. The Bayesian prior approaches take a step
toward detecting and correcting these measurement errors. If the standard error in a beta
estimate is high, it is shrunk more strongly toward an informative prior.

The forecast error statistics reveal further interesting patterns: compared to HIST,
HISTX reduces the share of very high squared forecast errors and works better particularly
for stocks with very high or very low realized betas. For HIST!, the results are somewhat
different. HIST! yields the lowest RMSE among all approaches for stocks with high realized
betas. However, the approach performs very poorly for stocks with low realized betas and
has an overall higher share than HIST with very high squared forecast errors. This pattern
also delivers an explanation for the poor results of HIST! in creating market-neutral anomaly
portfolios. These extreme long—short portfolios typically contain disproportionate numbers
of low-beta stocks.

The portfolio formation results indicate that HISTX and HIST! place too much weight
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on their respective priors. In particular, the prior beta of Cosemans et al. (2016) changes
mechanically when new accounting data becomes available, which might not be very in-
formative about a stock’s beta. Our findings are thus consistent with recent evidence in
Dittmar & Lundblad (2017), who find that market betas are only weakly related to stock
characteristics.

Asynchronicity Adjustments The estimators Dim™®, Dim®, and Dim® do not
strongly increase the bias, but both the inefficiency and the random error increase with
increasing number of lags. In particular the increase in random errors indicates that adding
lagged betas introduces a lot of noise on the estimators, amplifying measurement errors.
FP'? exhibits a large bias part, which is more than double that of HIST, a high inefficiency
when compared to the best models, but a random error that is only slightly above that of
HIST. Thus, the correlation-adjustment to three-day correlations induces substantially less
noise than the Dimson adjustment. The forecast error statistics corroborate these findings.
The Dimson estimators yield a very high share of stocks with high squared forecast errors,
the share increasing with the number of lags.

Macroeconomic Conditioning Information The beta augmented by macroeco-

cay

nomic conditioning variables, Beta®, yields a higher bias component compared to HIST, a
high inefficiency, and a very high random error. Thus, the approach using macroeconomic
conditioning variables appears to yield systematic measurement errors for high-beta and
low-beta stocks. More importantly, the approach seems to add a lot of noise to beta esti-
mates. Since the reasons for the failure of the macroeconomic conditioning variables might
be diverse, we present the forecast error statistics for all estimators in Table A2 of the Online
Appendix. All approaches yield a large share of high squared forecast errors and perform
poorly for particularly for stocks with high realized betas. Part of the motivation to use

macroeconomic conditioning variables is that betas might adapt more quickly to changing

economic conditions. However, all approaches work poorly in both expansions and recessions,
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as well as in the transition between expansion and recession and vice versa.

Finally, a common scheme seems to be that the average RMSEs and the difference in
RMSE to HIST are both significantly correlated with the underlying conditioning variables.
This correlation results when a majority of the slope estimates of Equation (6) share the
same sign but the realized beta does not follow the imposed dynamics. For few variables, the
RMSE is largely uncorrelated to the underlying conditioning variables, indicating that the
stocks have heterogeneous slope estimates. However, these variables also do not work better
than those correlated with the RMSEs. Overall, it seems that individual stock betas are not
systematically related to macroeconomic variables and imposing macroeconomic conditioning
variables induces random noise by assuming a spurious relation between macroeconomic
variables and betas.

Combinations For the combinations, we find that Best*™ yields a similar bias as
HIST, but a very low inefficiency part and the lowest overall random error part. Thus, by
simply averaging two of the overall best approaches, the estimator diversifies and reduces
random measurement errors. This is also visible when looking at the forecast error statistics:
Best*™ yields the lowest share of high squared forecast errors.

The model-based combinations typically have a higher inefficiency part and the combina-
tions including a large number of predictors yield a very high random error part. Particularly
All€ and AlIBMA vield huge shares of very high squared forecast errors. These large errors are
likely caused by in-sample overfitting of the beta dynamics during the estimation window.
Because the beta estimates are typically strongly correlated, we often observe that slope
coefficients turn negative. This is also the case for the Bayesian approaches. That in-sample
overfitted models generate high prediction errors is a common result in financial economics

(e.g., Stock & Watson, 2006; Goyal & Welch, 2008).
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V Beta Estimation and Stock Characteristics

In the previous sections, we examine the performance of different beta estimation tech-
niques unconditionally, i.e., without regard to the specific characteristics of the stocks as
well as by their ability to create market-neutral anomaly portfolios. In this section, we com-
plement our previous analysis with a deeper examination of how stock characteristics affect
the optimality of different beta estimators. In the following, we explicate the results for each
sorting characteristic, presented in Table 17.26

Past Beta First, we sort on the observation of HIST, obtained using data from ¢ — 24
until ¢ — 12.27 Overall, we find that the squared prediction errors are highest in the extreme
portfolios, i.e., those with the lowest and highest past betas. Thus, it seems to be particularly
difficult to accurately predict the betas of the stocks with very high or very low systematic
risk. Comparing the performance of the different estimators, we find that those that perform
best unconditionally also perform well for each of the quintiles. In total, HIST and the best
adjustments perform almost similarly well. Thus, in general it seems that building portfolios
helps reduce the inefficiency of HIST. Dim® performs particularly badly for the portfolio
with the lowest past betas, where the asynchronicity correction might be most relevant.
Thus, one should interpret this result with caution. However, also for the stocks with high
past beta, where we can compare the performance more accurately since an upward-bias
due to infrequent trading is highly unlikely, Dim® falls short of the best approaches. FP'?
performs poorly across all quintiles.

Size Sorting the stocks according to the market capitalizations, we find that for P5,

26 An alternative way to study such a question are panel regressions, where we can include several vari-
ables at the same time. However, it is likely that the relationship between the prediction errors and the
characteristics is highly non-linear. Therefore, we decided to use portfolio sorts, where we do not have to
take a stance on the parametric form of the relation. The results of multivariate panel regressions, when
applied nevertheless, are largely similar to those of the portfolio sorts.

2"Thus, the periods we use for sorting and the estimation of HIST are strictly non-overlapping. For all
stocks, for which we cannot obtain a past beta due to lack of sufficient data during the period ¢ — 24 until
t — 12, we set it to 1.
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the RMSE is markedly low, amounting to less than half of that of the other portfolios. This
result holds for each beta estimation approach. Hence, for large stocks it is considerably less
difficult to accurately estimate betas than for the majority of stocks. Among the different
estimators, we find that the unconditionally best adjustments and HIST perform similarly
well. Best®™ yields the lowest average RMSE over the quintiles. Dim® and FP'? also yield
higher RMSEs than the best approaches for the portfolios of the largest stocks (P4 and P5).
Thus, at a minimum, the asynchronicity adjustment is harmful for estimating the betas of
large stocks, for which the realized beta should not be affected by non-synchronous trading.

Book-to-market  For value stocks (high book-to-market ratios), betas appear to be
harder to estimate than for growth stocks. For all approaches, the RMSE is higher for the
value portfolio (P5) compared to the growth portfolio (P1). Overall, the RMSEs are lowest
for P2 and P3. The pattern across the different approaches is similar as for the previous
sorts.

Momentum When sorting on past performance, we observe a distinct pattern for all
approaches: the highest RMSEs are in the portfolios of the stocks with the worst (P1) and
best (P5) past performance. This pattern is consistent with the evidence found in Kothari
& Shanken (1992) and Daniel & Moskowitz (2016), who show that the extreme momentum
portfolios exhibit substantial time-variation in beta. Furthermore, Chen et al. (2016) argue
that past winners in general exhibit high betas and vice versa. Thus, these extreme betas in
general do not persist in future periods. Consistent with this, in Section III, we find that most
approaches fail in creating market-neutral momentum portfolios. Among the approaches,
the relation is largely similar as before. However, interestingly, for the momentum winner
portfolio (P5), the RMSEs of Dim® and FP'? are comparably low. Thus, in part, the lag
and correlation adjustments of these approaches appear to be helpful in correcting for the
measurement, error typically present in high-momentum stocks. On the other hand, the

simple historical estimator performs better than Dim® and FP'? for all other portfolios.
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Idiosyncratic volatility = Sorting on idiosyncratic volatility, we detect a natural pat-
tern. For the stocks with the lowest idiosyncratic volatilities (P1 and P2), the betas are most
accurately predictable while for the remaining portfolios, the RMSEs rise with idiosyncratic
volatility.

Iliquidity  For illiquidity, the results are largely inverse to those for size. The cross-
sectional correlation among those two variables exceeds —90%. Thus, the conclusions we
can draw are similar.

Leverage In case of sorting on the stocks’ leverage, we find that the betas of the
stocks in the extreme portfolios are least accurately predictable for all our approaches. For
the intermediate leverage portfolios, the RMSEs for all approaches are lower than for the
extremes.

Industries  For the industry portfolios, we observe the lowest RMSEs across all ap-
proaches for Other, Manufacturing, Shops, and Non-Durables. In contrast, the betas for
stocks of Energy, High-Tech, Health, Telecommunication, and Utilities stocks are substan-
tially harder to predict by the approaches we study.?® Comparing the different approaches,
as observed throughout all portfolio sorts, we find that Best*™ yields the lowest RMSE for
6 out of the 10 industry portfolios, while Dim® and FP'? always yield higher RMSEs than

HIST.

280ne might wonder whether this result is mechanical, driven by different levels of idiosyncratic volatility
among the different industries. However, we find that there is essentially no relation detectable. Other and
Shops are among the sectors with the highest average idiosyncratic volatilities while Telecommunication and
Utilities belong to the industries with the lowest average idiosyncratic volatilities.
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VI Additional Analyses and Robustness

A Different Horizons

In this section, we examine the results for different forecast horizons of 1, 3, 12, and 60
months. Table A3 of the Online Appendix presents these results. To enhance the exposition,
we only report the results on the best models and an estimation horizon of 12 months. The
results for the remaining specifications are qualitatively similar as those for the 6-month
forecast horizon.?’

We start the analysis by examining 1-month forecasts. We present these results in Panel
A of Table A3. We find that for all approaches, the average value-weighted RMSE is higher
than for the 6-month horizon. This is most likely due to higher measurement errors in
the estimator for realized beta which suffers from a reduced evaluation window.® We find
that the adjustments that “work” for the 6-month horizon also yield lower average value-
weighted RMSEs than the simple historical model. Similar to the 6-month horizon, the
simple combination Bests™ yields the lowest overall average value-weighted RMSE.

The results for the 3-month horizon are presented in Panel B of Table A3. With the longer
evaluation horizon, for all approaches the average value-weighted RMSEs are substantially
lower than for the 1-month horizon. All other results are qualitatively similar to the 1- and
6-month horizons.

Panel C of Table A3 presents the results for the 12-month forecast horizon. We find
that for all approaches, the average value-weighted RMSEs are lower than for the 6-month
horizon. This pattern indicates that 12-month betas are slightly more predictable than betas

of shorter horizons. All adjustments that perform better than the simple historical model

29For the 1- and 3-month horizons, the 12-month historical window also turns out optimal. For the 12- and
60-month forecast horizons, longer historical windows yield slightly lower average value-weighted RMSEs.

30However, as indicated previously, the RMSE criterion is still a robust evaluation criterion if the sampling
error is zero on average (Patton, 2011).
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for the 6-month horizon also do so for the 12-month horizon.

Finally, we present the results for the 60-month forecast horizon, relevant for long-term
investors, in Panel D of Table A3. We find that the average value-weighted RMSEs for all
approaches are slightly higher than for the 12-month horizon. Thus, it appears that time-
variation in beta renders 60-month betas slightly harder to predict than 12-month betas.
However, the average value-weighted RMSEs are still slightly lower than for the 6-month
horizon. Apart from that, the results for the 60-month horizon are qualitatively similar to

those for other horizons. Overall, Best*™ yields the lowest average value-weighted RMSE.

B Hedging Errors

The RMSE results show that the approaches HISTewma,ex, HISTX, HISTE,, . o and
Best®™ yield the best results, while, e.g., Dim® performs very poorly. To account for
the possibility that our ex-post realized betas are measured with error, we follow Liu et al.
(2018) and examine the out-of-sample hedging errors of our main approaches. If realized beta

estimates are biased, we may falsely conclude that an approach is superior simply because

it is biased in a similar fashion. We thus compute the hedging error for each stock as

hjor = (Tjur —rrer) — Bia(ravar — rrar)- (14)

rj¢r is the return of stock j between ¢ and T'. 7;,7 and 7y are the risk-free rate and
the return on the market portfolio over the same horizon. We use 1-month returns. f; is

the estimate for beta, using data up to time ¢. Liu et al. (2018) show that under certain

var(hjyt,T)

var(raer—ryor) 18 approximately equal to the

assumptions the hedging error variance ratio
mean squared error relative to the true realized beta plus a term that is unrelated to the beta
estimation, i.e., constant across all estimation approaches. We follow Liu et al. (2018) and

estimate the variance ratios using rolling 5-year windows to account for the possibility that
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the variances in the numerator and denominator change over time. We report the average
ratio over time.

We present the results in Table A4 of the Online Appendix. These results are consistent
with our previous results relying on the RMSE and realized beta computations. We find that
HISTewma,ex; HISTX, HISTE, ., o> as well as Best™™ yield significantly lower mean average
hedging error ratios than HIST. Dim® yields a substantially and significantly higher mean

K

ewma,ex

average hedging error ratio than HIST. HIST achieves the lowest mean average hedging
error ratio. Thus, our main results appear to be robust to the specification of forecast error

measurement.

C Mincer—Zarnowitz Regressions

As an alternative way to evaluate the performance of the beta estimators, we use simple
Mincer & Zarnowitz (1969) regressions. We regress the 6-month (ex-post) realized beta on
the different predictions for beta:

Jf}t = a+ bﬁj,t + €t (15)
where all variables are as previously defined.

The regression model in Equation (15) is designed to test for unbiasedness of differ-
ent estimators. We use univariate regressions to test for unbiasedness using a Wald test,
which imposes the joint hypothesis that ¢« = 0 and b = 1. If the model is unbiased, the
joint hypothesis of the Wald test cannot be rejected.®® We stick to level Mincer-Zarnowitz

regressions instead of logarithmically transforming our variables since beta is theoretically

unbounded and can also take on negative values. Hansen & Lunde (2006) show that level

31 Mincer-Zarnowitz regressions are also designed to test for informational efficiency in multivariate re-
gressions. However, since the estimates of our models are partially very highly cross-sectionally correlated,
we consider the significance tests for differences in RMSE as more sensible to directly rank the models. We
thus refrain from performing multivariate regressions.
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Mincer—Zarnowitz regressions are robust to (mean zero) errors in the evaluation proxy.

We present the results in Table A5 of the Online Appendix. Consistent with our previous
results, we find that the models performing best thus far are also less biased than HIST. For
all adjustment models, the average intercept coefficient is closer to 0 and the slope is closer
to 1. However, in the vast majority of the cases, we still reject unbiasedness of the models.
Also consistent with our previous results, Dim® and FP'? yield heavily biased forecasts for

realized beta.

D Equally Weighted Results

Thus far, we present primarily value-weighted results. We regard this as the most relevant
case, since for investment decisions the stocks provide investment opportunities relative to
their total market capitalizations. However, small stocks make up a very large fraction of
the total number of stocks and, thus, it is also interesting to examine to what extent the
adjustments are beneficial for these. Therefore, in this section, we examine the robustness
of our main findings when weighing all stocks equally.

We present the equally weighted prediction error results in Table A6 of the Online Ap-
pendix.??> We find that all the average RMSEs are higher for all approaches than for the
value-weighted examination. This is consistent with previous results showing that it is con-
siderably more difficult to estimate the betas of small stocks than it is for large stocks. Apart
from that, the adjustment approaches that work best when value-weighting also significantly
outperform HIST when weighing equally. Typically, the difference in the equally weighted
RMSE is significant considerably more often than that in the value-weighted RMSE. Thus,

the adjustments appear to be even more beneficial for small stocks compared to large stocks.

320ne might wonder whether the asynchronicity adjustment performs better for small stocks. However,
we find that the Dimson beta estimators are even more clearly inferior compared to HIST when weighing all
stocks equally. The average RMSE is significantly higher than that of HIST nearly all the time, independent
of the number of lags used.
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Overall, HISTK yields the lowest average RMSE.

ewma,ex

E Firm-Level Evaluation

In the main part of this paper we evaluate the forecasts cross-sectionally. That is, each
month we examine how well one approach predicts future betas of all stocks in the cross-
section. However, it may also be of interest to see how the adjustment approaches perform
for different stocks on average in the time series dimension. To perform this analysis, and
in order to assess the statistical significance and to prevent stocks which are only available
over short intervals during our sample period from biasing our results, we use only stocks
with more than 100 observations. Essentially, this approach implies that we potentially lose
information from stocks available for a shorter sample period.

We present the results in Table A7 of the Online Appendix. These are qualitatively
similar to those for the cross-sectional evaluation. The best adjustments also yield lower
value-weighted average RMSEs compared to HIST. Bests'™ yields the overall lowest value-

weighted average RMSE.

F Dimson Evaluation

To further test the robustness of our main results to infrequent trading effects, in this
section, we present the results when evaluating estimates with respect to a Dimson realized
beta. We estimate the realized beta as the sum of the realized beta as of Equation (11) with
0 up to 5 lags.3334
We present the results in Table A8 of the Online Appendix. First, we find that the

average value-weighted RMSEs are higher for all approaches. Thus, it seems to be very

hard to predict future Dimson realized betas. This is most likely due to higher measurement

33E.g., for 1 lag, in the numerator we multiply r; . by rasr—1 instead of rs ,, etc.
34Using the ex-post historical Dimson estimator of Equation (4) instead yields results that are qualitatively
similar.
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error caused by adding betas with respect to lagged market returns. Second, we find the
same patterns as when using realized beta without lags. The best approaches also yield
improvements over HIST under the Dimson realized beta. Finally, we find that Dim® yields
a higher average value-weighted RMSE than HIST even under the Dimson realized beta
evaluation. However, the difference is considerably smaller and significant less frequent than
under the regular realized beta.?> Interestingly, however, under the Dimson realized beta
evaluation, FP'? yields the lowest average RMSE. Thus, the infrequent trading adjustment

of Frazzini & Pedersen (2014) might have some benefit in selected cases.

G Monthly Evaluation

In the previous section, we account for infrequent trading effects by evaluating the fore-
casts with a Dimson realized beta. However, as we show in Section IV, the Dimson estimators
yield a substantial increase in both the inefficiency and the random error compared to HIST.
Therefore, in this section, we examine an alternative possibility to account for asynchronous
trading in realized beta: the use of monthly data. We estimate the realized beta using
monthly data over a 5-year horizon. Since this approach mixes a change in the data fre-
quency and estimation window, it is probably most suitable to compare the results to those
in Panel D of Table A3 of the Online Appendix.

Table A9 of the Online Appendix presents the results. These are very similar to those
when using daily returns for realized beta. For the monthly evaluation, the average value-
weighted RMSEs of all approaches are larger than for daily evaluation over 60 months. This
indicates that realized beta with monthly data is also difficult to predict, likely because it

is more prone to measurement errors than realized beta with daily data. Additionally, we

35Untabulated results reveal that, e.g., when we use 3 lags only both for the estimation (Dim(3)) and the
realized beta, Dim(®) also yields a slightly higher average value-weighted RMSE than HIST. Interestingly,
contrary to what one might expect, for all numbers of lags, HIST is even more strongly favorable when
weighting all stocks equally. Thus, the Dimson adjustment seems to work even less well for the stocks it was
initially designed for.
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find that Best®™ yields the lowest overall average value-weighted RMSE. Finally, Dim® and
FP!2 still yield substantially and often significantly higher average value-weighted RMSEs
compared to HIST and even more so compared to Best*™. Hence, in general, estimators
that do not account for infrequent trading appear to be superior to those that use a Dimson

or FP adjustment.

H Mean Absolute Error

Finally, we examine the robustness of our results to the loss function employed. As an

alternative to the RMSE, in this section, we use the mean absolute error (MAE):

MAB = U305~ (16)
where all variables are as previously defined. The MAE penalizes all forecast errors in the
same way. Hence large forecast errors are less influential under the MAE than under the
RMSE. We present the results in Table A10 of the Online Appendix. These are very similar
to those using the RMSE. The best models under the RMSE also yield improvements over
HIST under the MAE, the differences are significant for similar shares of the time, and

Best®™ yields the lowest value-weighted average MAE.

VII Conclusion

We examine the effects of different historical windows, sampling frequencies, and various
forecast adjustments on beta estimation. We find that using daily data over a 12-month
horizon generally yields lower prediction errors than alternative historical windows and es-
timators based on low-frequency data. Furthermore, exponential weighting schemes, simple

shrinkage adjustments toward a prior, as well as simple combinations, yield improvements.
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For portfolio formation, the results are generally similar. However, elaborated shrinkage
methods and forecast combinations perform worse.

In contrast, adjusting for asynchronous trading, conditioning beta on the deviations of
macroeconomic state variables from their historical averages, and regression-based as well
as Bayesian model averaging combinations, typically yield high prediction errors and fail to
create market-neutral portfolios.

Analyzing the cross-section of beta predictability with respect to different stock charac-
teristics, we find that in particular stocks with high and low betas, low size, high and low

momentum, and high idiosyncratic volatility, are relatively difficult to predict.
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Appendix

A Cross-Sectional Variables

e Book-to-market (Fama & French, 1992) is the most current observation for book
equity divided by the current market capitalization. Following the standard literature,
we assume that the book equity of the previous year’s balance sheet statement becomes
available at the end of June. Book equity is defined as stockholders’ equity, plus balance
sheet deferred taxes and investment tax credit, plus post-retirement benefit liabilities,

minus the book value of preferred stock. We obtain the data necessary from Compustat.

e Idiosyncratic volatility (Ang et al., 2006, “Ivol”) is the standard deviation of the
residuals ;- in the Fama & French (1993) 3-factor model 7, — 1y, = aj ¢+ B (rar- —

Trr) + BftS MB, + ﬁﬁH M L. + €, using daily returns over the previous year.

e Illiquidity (Amihud, 2002, “Illiq”) is the absolute value of the stock’s return divided
by the daily dollar volume, averaged over the previous year. Specifically, it is Illiq, =

%Z" izl with the daily dollar volume (Volume$,, in thousand dollars) being

7=1 Volume$,’

calculated as last trade price times shares traded on day 7, while the summation is

taken over all n trading days during the examination period.

e Industry Classifications employ the definition for 10 industry portfolios applied by
Kenneth French. “NoDur” is Consumer Non-Durables, “Durbl” is Consumer Durables,
“Manuf” is Manufacturing, “Enrgy” is the oil, gas, and coal extraction industry, “HiTec”
is Business Equipment, “Telem” is Telephone and Television Transmission, “Shops” are
Wholesale, Retail, and Services, “Hlth” is Healthcare, Medical Equipment, and Drugs,
“Utils” is Utilities, and “Other” contains Mines, Construction, Construction Materials,

Transport, Hotels, Bus Services, Entertainment, as well as Finance.

e Leverage (Bhandari, 1988) is defined as one minus book equity (see “Book-to-market”)
divided by total assets (Compustat: AT). Book equity and total assets are updated

every 12 months at the end of June. We obtain the data necessary from Compustat.
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e Momentum (Jegadeesh & Titman, 1993) is the cumulative stock return over the

period from t — 12 until ¢ — 1.

e Size (Banz, 1981) is the current market capitalization of a firm. Market capitalization

is computed as the product of the stock price and the number of shares outstanding.
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Table 4: Prediction Errors — Different Weighting Schemes

This table presents the out-of-sample prediction errors for the exponentially weighted estimators. We measure
the realized beta with daily returns over the horizon of 6 months. Each month, we compute the value-
weighted RMSE for the approaches considered using the entire cross-section of stocks. The first row reports
the average value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic
font. The remainder of the table reports the differences in prediction errors. The upper triangular matrix
reports the average differences in RMSE and the lower triangular matrix reports the average differences in
RMedSE. We report the error loss differential between the model [name in row/ and the model [name in
column/. The absolute values of the numbers in parentheses indicate the share of time periods for which the
difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test
the significance using the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTewma,s HISTewma,s,ex HISTewma HISTewma,ex
avg. RMSE 0.322 0.317 0.309 0.317 0.308
HIST 0.004 0.013 0.005 0.013

(0.15) (0.32) (0.29) (0.30)

HIST ema.s 0.001 0.009 0.001 0.009

(0.09) (0.43) (-0.02) (0.14)
HIS T ewma.s.ex ~0.008 ~0.009 ~0.008 0.001

(-0.53) (-0.85) (-0.32) (-0.03)
HISTewma ~0.002 -0.003 0.006 0.009

(-0.23) (-0.35) (0.59) (0.19)
HIST eyymaex -0.014 -0.015 ~0.006 ~0.012

(-0.74) (~0.63) (-0.34) (-0.67)
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Table 5: Market-Neutral Anomaly Portfolios — Different Weighting Schemes

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using an
exponential weighting scheme. Each month, we sort the stocks to form the different anomaly portfolios based
on NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is the average
of the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while SMB is
their difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average of
the 5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For
momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1
month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility
(Ivol) and illiquidity (Tllig), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low
portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,
we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation v; + Blong — pshort — 0 and applying

Jrt Jot
the resulting weight v;; to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, ** and *** indicate significance at the 10%, 5%, and 1% level,

respectively.
HIST HIST ewma,s HIST ¢wma,s,ex HIST ¢wma HIST ¢wma,ex
SMB -0.007 —-0.006 -0.012 —0.008 -0.013
(s.e.) (0.019) (0.016) (0.017) (0.018) (0.020)
HML 0.011 0.019 0.006 0.015 -0.022
(s.e.) (0.016) (0.013) (0.014) (0.015) (0.015)
WML 0.052%** 0.030* 0.050*** 0.041** 0.089%**
(s.e.) (0.020) (0.016) (0.017) (0.018) (0.021)
Ivol (1-5) 0.064*** 0.065%** 0.043** 0.065%** -0.007
(s.e.) (0.025) (0.020) (0.021) (0.022) (0.024)
Illiq (5-1) 0.034 0.025 0.022 0.028 0.024
(s.e.) (0.022) (0.018) (0.019) (0.020) (0.022)
Lev (5-1) 0.007 0.004 0.003 0.005 0.006
(s.e.) (0.009) (0.008) (0.008) (0.009) (0.010)
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Table 6: Prediction Errors — Imposing Priors

This table presents the out-of-sample prediction errors for the shrinkage estimators. We measure the realized
beta with daily returns over the horizon of 6 months. Each month, we compute the value-weighted RMSE
for the approaches considered using the entire cross-section of stocks. The first row reports the average
value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The
remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the
average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We
report the error loss differential between the model /name in row/ and the model [name in column/. The
absolute values of the numbers in parentheses indicate the share of time periods for which the difference
is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the
significance using the modified Diebold—Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTV HISTK HIST!
avg. RMSE 0.295 0.289 0.285 0.289
HIST 0.006 0.009 0.006
(0.08) (0.14) (0.04)
HISTV -0.008 0.004 0.000
(-0.83) (0.16) (0.02)
HISTK -0.014 ~0.006 ~0.004
(-0.77) (-0.63) (0.02)
HIST! 0.012 0.020 0.026
(0.25) (0.61) (0.71)
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Table 7: Market-Neutral Anomaly Portfolios — Imposing Priors

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using
the shrinkage estimators. Each month, we sort the stocks to form the different anomaly portfolios based
on NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is the average
of the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while SMB is
their difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average of
the 5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For
momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1
month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility
(Ivol) and illiquidity (Tllig), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low
portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,

we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation v; ; ;Otn & — gehort = 0 and applying
the resulting weight v;; to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, ** and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

HIST HISTVY HISTX HIST!
SMB -0.007 0.009 0.020 —0.179%***
(s.e.) (0.019) (0.019) (0.019) (0.023)
HML 0.011 -0.023 —0.052%** -0.018
(s.e.) (0.016) (0.016) (0.016) (0.013)
WML 0.0527%** 0.046** 0.040%* 0.056**
(s.e.) (0.020) (0.020) (0.022) (0.024)
Ivol (1-5) 0.064*** -0.031 —0.130%*** 0.069**
(s.e.) (0.025) (0.024) (0.024) (0.035)
Illiq (5-1) 0.034 0.032 0.003 —0.162***
(s.e.) (0.022) (0.022) (0.022) (0.025)
Lev (5-1) 0.007 0.002 0.007 0.025**
(s.e.) (0.009) (0.009) (0.010) (0.011)
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Table 8: Prediction Errors — Asynchronicity

This table presents the out-of-sample prediction errors for the estimators with asynchronicity adjustment.
We measure the realized beta with daily returns over the horizon of 6 months. Each month, we compute
the value-weighted RMSE for the approaches considered using the entire cross-section of stocks. The first
row reports the average value-weighted RMSE over our sample period. We indicate the lowest average
RMSE with italic font. The remainder of the table reports the differences in prediction errors. The upper
triangular matrix reports the average differences in RMSE and the lower triangular matrix reports the
average differences in RMedSE. We report the error loss differential between the model [name in row] and
the model [name in column/. The absolute values of the numbers in parentheses indicate the share of time
periods for which the difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of
the time). We test the significance using the modified Diebold-Mariano and the Wilcoxon signed rank tests
for the upper and lower triangular matrix, respectively. The sign of the number in parentheses indicates the

direction of the significant differences.

HIST Dim® Dim® Dim® Dim® Dim® SW Fp!2 FP36 FPoo

avg. RMSE  0.322 0.356 0.372 0.396 0.418 0.440 0.360 0.354 0.366 0.376

HIST -0.034 -0.051 -0.074 -0.096 -0.119 -0.039 -0.032 -0.044 —0.054
(-0.48) (-0.55) (-0.63) (-0.69) (-0.77) (-0.50) (-0.36) (-0.39) (-0.44)
Dim® 0.044 -0.016 —0.040 —0.062 —0.084 -0.005 0.002 —-0.010 —0.020
(0.90) (-0.21) (-0.44) (-0.61) (-0.72) (0.04) (0.11)  (0.06) (-0.01)
Dim® 0.068  0.023 -0.023 -0.046 -0.068 0.012  0.018  0.007  -0.003
(0.96)  (0.95) (-0.41) (-0.54) (-0.64) (0.23)  (0.24)  (0.20)  (0.09)
Dim®) 0.094  0.050  0.026 -0.022 —0.045 0.035  0.042  0.030  0.020
(0.98)  (0.99)  (0.96) (-0.37) (-0.51)  (0.38)  (0.38)  (0.33)  (0.27)
Dim® 0.117  0.073  0.050  0.023 -0.022  0.057  0.064  0.052  0.042
(0.99)  (1.00)  (0.99)  (0.95) (-0.37)  (0.50)  (0.48)  (0.41)  (0.36)
Dim() 0.142 0.097 0.074 0.048 0.024 0.080 0.086 0.074 0.065
(1.00)  (1.00)  (0.99)  (0.98)  (0.95) (0.58)  (0.62)  (0.52)  (0.45)
SW 0.046  0.001 —0.022 —0.048 —0.072 —0.096 0.006 -0.005 —0.015
(0.93)  (0.15) (-0.68) (-0.91) (-0.94) (-0.97) (0.20)  (0.09)  (-0.02)
FP!2 0.055  0.010 -0.013 -0.039 -0.063 -0.087  0.009 -0.012  -0.022
(0.86)  (0.14) (-0.42) (-0.75) (-0.86) (-0.90)  (0.04) (-0.04) (-0.13)
FPp36 0.060  0.016 —0.007 —0.034 -0.057 -0.081  0.015 0.006 -0.010
(0.60)  (-0.14) (-0.43) (-0.60) (-0.66) (-0.75) (-0.18) (-0.13) (-0.13)
FPoo 0.067  0.022 -0.001 -0.027 -0.051 -0.075  0.021 0.012  0.006

(0.63)  (0.11) (-0.18) (-0.40) (-0.57) (-0.71) (0.04)  (0.05)  (0.11)
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Table 9: Market-Neutral Anomaly Portfolios — Asynchronicity

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using
estimators with asynchronicity adjustment. Each month, we sort the stocks to form the different anomaly
portfolios based on NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is
the average of the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while
SMB is their difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average
of the 5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For
momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1
month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility
(Ivol) and illiquidity (Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low
portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,
we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We
make the anomaly portfolios ex-ante beta-neutral by solving the equation Uj,tﬂ;?f & ;};0” = 0 and applying
the resulting weight v;; to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, ** and *** indicate significance at the 10%, 5%, and 1% level,

respectively.

HIST Dim® Dim® Dim® Dim® Dim® SW Fp2 FP36 Fpoo
SMB ~0.007  —0.171%FF Q.208%FF  _(.253%FF  _(281FFF  _(.312%FF (. 144%FF (. 156%FF Q. 177FFF (. 176%F*
(s.e.) (0.019) (0.020) (0.019) (0.020) (0.021) (0.020) (0.019) (0.019) (0.022) (0.023)
HML 0.011 0.028* 0.016 0.012 0.011 0.002 0.035%* 0.003 —0.084%F*  _(.122%**
(s.e.) (0.016) (0.015) (0.015) (0.016) (0.017) (0.017) (0.015) (0.015) (0.015) (0.015)
WML 0.052%%* 0.037* 0.051%F  0.068%**  0.089%¥*% (. 110%¥*  Q.057F¥F  0.064%¥*  (.171%FF  (.189%F*
(s.e.) (0.020) (0.020) (0.021) (0.023) (0.026) (0.029) (0.019) (0.019) (0.023) (0.024)
Ivol (1-5)  0.064%%*  0.186%%*  (.210%%*  (.262%%*  (.323%%*  (.380%*%*  (.214%%*  (.180%**  (.197+FF  (.191%**
(s.e.) (0.025) (0.029) (0.029) (0.031) (0.033) (0.034) (0.029) (0.027) (0.034) (0.036)
Tlliq (5-1) 0.034 —0.205%FF  0.248%FF (. 304%FF  _(.335%FFK  _(.370%FF  (.164%FF  (.178%FF  _(.203%FF  _(.209%**
(s.e.) (0.022) (0.021) (0.020) (0.021) (0.021) (0.022) (0.021) (0.021) (0.022) (0.023)
Lev (5-1) 0.007 0.021%* 0.021* 0.021* 0.021 0.026* 0.018* 0.005 0.016 0.018
(s.e.) (0.009) (0.010) (0.012) (0.013) (0.013) (0.015) (0.010) (0.010) (0.011) (0.011)
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Table 12: Prediction Errors — Combinations

This table presents the out-of-sample prediction errors for forecast combinations. We measure the realized
beta with daily returns over the horizon of 6 months. Each month, we compute the value-weighted RMSE
for the approaches considered using the entire cross-section of stocks. The first row reports the average
value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The
remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the
average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We
report the error loss differential between the model /name in row/ and the model [name in column/. The
absolute values of the numbers in parentheses indicate the share of time periods for which the difference
is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the
significance using the modified Diebold—Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

<
g E = 3 <
o= M o M s < < < <

avg. RMSE  0.344 0.326 0.350 0.347 0.344 0.333 0.469 0.475 0.650
HIST 0.018  -0.006 —0.004 -0.001 0.010 -0.126 -0.132  —0.306
(0.32)  (-0.12) (-0.07) (-0.08)  (0.09) (-0.56) (-0.49) (-0.78)
Bestsim -0.018 -0.024  -0.022 -0.019 -0.008 -0.144 -0.150 -0.324
(-0.90) (-0.42) (-0.32) (-0.50) (-0.20) (-0.62) (-0.56) (-0.79)
Best© 0.002 0.020 0.002 0.005 0.016 -0.120 —0.126  —0.300
(-0.12)  (0.72) (0.16)  (0.14) (0.30)  (-0.55) (-0.47) (-0.78)
Bestshr -0.003  0.015  —0.005 0.003 0.014  -0.122 -0.128  -0.302
(-0.27)  (0.68)  (-0.68) (0.06) (0.18)  (-0.54) (-0.47) (-0.79)
BestBMA -0.009  0.009 -0.011 -0.006 0.011 -0.125  -0.131  -0.305
(-0.45)  (0.64)  (-0.28)  (-0.09) (0.19)  (-0.55) (-0.48) (-0.79)
Alpsim -0.005  0.013  -0.007 -0.002  0.004 -0.136  -0.142  -0.316
(-0.37)  (0.57)  (-0.36) (-0.16)  (0.03) (-0.61)  (-0.55)  (-0.78)
All€ 0.077 0.095 0.075 0.080 0.086 0.082 -0.006  —0.180
(0.97) (0.98)  (1.00) (0.99)  (0.99) (0.97) (0.23)  (-0.46)
Alpshr 0.052 0.071 0.051 0.055 0.061 0.058  —0.025 -0.174
(0.91) (0.99)  (0.99) (1.00)  (0.97) (0.97)  (-0.98) (-0.50)

AlBMA 0.102 0.120 0.100 0.105 0.111 0.107 0.025 0.050

(0.98)  (0.99)  (0.98)  (0.99)  (1.00)  (0.97)  (0.42)  (0.85)
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Table 13: Market-Neutral Anomaly Portfolios — Combinations

This table presents average ex-post realized betas of ex-ante beta-neutral anomaly portfolios when using
forecast combinations. Each month, we sort the stocks to form the different anomaly portfolios based on
NYSE breakpoints. For size and value, we build 25 independently sorted portfolios. S is the average of
the 5 low-market-cap portfolios and B is the average of the 5 high-market-cap portfolios while SMB is their
difference. Similarly, L is the average of the 5 low-book-to-market portfolios and H is the average of the
5 high-book-to-market portfolios. HML is the difference between the Value and Growth portfolios. For
momentum, we sort the stocks into 10 portfolios based on their return over the past 12 months (skipping 1
month). W and L are the top and bottom deciles while WML is their difference. For idiosyncratic volatility
(Ivol) and illiquidity (Illiq), we sort the stocks into 5 portfolios and form low-minus-high and high-minus-low
portfolios, respectively. For leverage, we follow the same approach as for the book-to-market ratio, that is,
we build 25 portfolios, independently sorted on size and leverage and form the high-minus-low portfolio. We

make the anomaly portfolios ex-ante beta-neutral by solving the equation v; B;Otn & ;ff”

= 0 and applying
the resulting weight v;; to the long side of the anomaly. In parentheses, we present robust Newey & West

(1987) standard errors, using 6 lags. *, ** and *** indicate significance at the 10%, 5%, and 1% level,

respectively.
5 3 <
— D (] [ [} — —
T M M m m < << << <<
SMB -0.007 0.000 —0.049** -0.042%* 0.044* —0.120%** -0.001 -0.039 0.106***
(s.e.) (0.019)  (0.019)  (0.024)  (0.023)  (0.025)  (0.022)  (0.027)  (0.026)  (0.038)
HML 0.011 —0.036**  —0.055%*F*F  —0.051*** -0.013 —0.043%** -0.020 -0.027* -0.017
(s.e.) (0.016) (0.015) (0.016) (0.016) (0.015) (0.014) (0.017) (0.016) (0.023)
WML 0.052%%* 0.063*** 0.064** 0.061** 0.054%%* 0.071%** 0.085%** 0.076** 0.122%%*
(se.) (0.020) (0.021) (0.025) (0.024) (0.021) (0.027) (0.030) (0.029) (0.037)
Ivol (1-5)  0.064***  —0.065%** -0.028 —0.038 0.050* 0.029 -0.044 -0.012 0.064
(s.e.) (0.025)  (0.024)  (0.030)  (0.028)  (0.027)  (0.031)  (0.038)  (0.035)  (0.048)
Tlig (5-1) 0.034 0.010 -0.012 -0.006 0.120%**  —0.108*** 0.041 -0.006 0.278%**
(s.e.) (0.022) (0.021) (0.026) (0.026) (0.032) (0.023) (0.029) (0.027) (0.075)
Lev (5-1) 0.007 0.006 0.035%** 0.047*** 0.016 0.023* 0.030* 0.039** 0.091**
(se.) (0.009) (0.009) (0.012) (0.018) (0.011) (0.013) (0.016) (0.015) (0.037)
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Table 14: Prediction Errors — Best Models

This table presents the out-of-sample prediction errors of the best estimators. We measure the realized
beta with daily returns over the horizon of 6 months. Each month, we compute the value-weighted RMSE
for the approaches considered using the entire cross-section of stocks. The first row reports the average
value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The
remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the
average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We
report the error loss differential between the model [name in row/ and the model [name in column/. The
absolute values of the numbers in parentheses indicate the share of time periods for which the difference
is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the
significance using the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HIST ewma,ex HISTK HISTE, ma ox Bestsim
avg. RMSE 0.368 0.352 0.355 0.349 0.346
HIST 0.016 0.013 0.019 0.022
(0.44) (0.24) (0.33) (0.52)
HIST eyma,ex -0.015 -0.003 0.003 0.006
(-0.79) (-0.04) (0.07) (0.21)
HISTX -0.017 -0.002 0.006 0.009
(-0.80) (-0.11) (0.26) (0.37)
HISTX 14 ox -0.021 -0.005 -0.004 0.003
(-0.85) (-0.73) (-0.30) (0.12)
Best®i™ -0.021 -0.006 -0.004 -0.001
(-0.94) (-0.56) (-0.45) (0.05)
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Table 15: Forecast Error Decomposition

This table presents the decomposition of mean squared forecast errors for selected estimators. We measure
the realized beta with daily returns over the horizon of 6 months. We decompose the MSE for all approaches
into a bias, inefficiency, and a random error part. We perform the decomposition for each stock and weight

the results by the stocks’ average market capitalizations.

Bias Inefliciency Random Error
HIST 0.003 0.017 0.102
HIST eyoma,ex 0.003 0.011 0.100
HISTX 0.005 0.008 0.102
HIST! 0.003 0.013 0.103
HISTE, 1 ox 0.003 0.010 0.100
Dim® 0.004 0.026 0.122
Dim® 0.005 0.045 0.140
Dim® 0.005 0.079 0.154
FP12 0.008 0.026 0.111
Betac® 0.005 0.060 0.151
Bestsim 0.003 0.008 0.099
Best®© 0.004 0.013 0.110
BestBMA 0.003 0.017 0.102
AlI€ 0.006 0.078 0.147
AlIBMA 0.007 0.296 0.163
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At the end of each month, we sort the stocks into 5 portfolios according to the characteristic indicated in the

panel headings. P1-P5 indicate the 5 portfolios, where P1 contains the 20% of the stocks with the lowest

Table 17: Characteristics Sorts

values of the sorting characteristic and P5 contains the 20% with the highest values. Within the portfolios,

the stocks are value-weighted. avg. RMSE reports the average RMSE over our sample period. In each

column, we indicate the lowest (average) RMSE with italic font. (share) presents the relative frequency with

which the model [name in row/ achieves the lowest RMSE for the different portfolios.

Panel A. Past HIST

P1 P2 P3 P4 P5 avg. RMSE (share)
HIST 0.138 0.107 0.084 0.065 0.149 0.109 (0.40)
HISTewma,ex 0.152 0.115 0.088 0.070 0.159 0.117 (0.00)
HISTX 0.129 0.100 0.085 0.073 0.136 0.105 (0.40)
HISTE 14 ox 0.143 0.113 0.088 0.068 0.140 0.111 (0.00)
Bestsim 0.130 0.105 0.085 0.067 0.123 0.102 (0.20)
Dim(®) 0.233 0.175 0.121 0.094 0.169 0.159 (0.00)
Fp12 0.160 0.141 0.121 0.119 0.208 0.150 (0.00)

Panel B. Size

P1 P2 P3 P4 P5 avg. RMSE (share)
HIST 0.151 0.149 0.15/ 0.131 0.054 0.128 (0.40)
HIST eyma,ex 0.151 0.143 0.156 0.132 0.055 0.128 (0.00)
HISTX 0.149 0.146 0.163 0.144 0.064 0.133 (0.00)
HISTE 10 ex 0.149 0.142 0.159 0.136 0.054 0.128 (0.20)
Best®i™ 0.147 0.142 0.156 0.133 0.055 0.126 (0.40)
Dim(®) 0.436 0.394 0.339 0.277 0.063 0.302 (0.00)
Fp!2 0.275 0.268 0.249 0.220 0.102 0.223 (0.00)

Panel C. Book-to-Market

P1 P2 P3 P4 P5 avg. RMSE (share)
HIST 0.097 0.072 0.077 0.097 0.120 0.093 (0.20)
HIST eyma,ex 0.096 0.074 0.078 0.100 0.114 0.093 (0.40)
HISTK 0.125 0.075 0.076 0.102 0.123 0.100 (0.00)
HISTE, 10 ex 0.100 0.073 0.078 0.102 0.114 0.093 (0.00)
Bestsim 0.105 0.071 0.075 0.098 0.115 0.093 (0.40)
Dim(®) 0.116 0.088 0.103 0.123 0.157 0.117 (0.00)
Fp!2 0.141 0.130 0.125 0.132 0.153 0.136 (0.00)
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Panel D. Momentum

Table 17: Characteristics Sorts (continued)

P1 P2 P3 P4 P5 avg. RMSE (share)
HIST 0.185 0.117 0.086 0.078 0.147 0.123 (0.20)
HIST oyma,ex 0.175 0.123 0.088 0.077 0.165 0.126 (0.00)
HISTX 0.181 0.117 0.084 0.082 0.212 0.135 (0.00)
HISTX 14 ox 0.165 0.121 0.087 0.077 0.185 0.127 (0.20)
Best®™ 0.166 0.116 0.083 0.077 0.186 0.126 (0.60)
Dim(®) 0.300 0.160 0.107 0.109 0.166 0.168 (0.00)
FpP'2 0.253 0.171 0.138 0.124 0.154 0.168 (0.00)
Panel E. Idiosyncratic Volatility
P1 P2 P3 P4 P5 avg. RMSE  (share)
HIST 0.083 0.075 0.147 0.227 0.304 0.167 (0.00)
HIST cymaex 0.082 0.072 0.136 0.205 0.289 0.157 (0.60)
HISTX 0.081 0.077 0.169 0.273 0.381 0.196 (0.00)
HISTX, o ex 0.081 0.071 0.138 0.222 0.335 0.169 (0.00)
Best®™ 0.080 0.070 0.142 0.223 0.314 0.166 (0.40)
Dim®) 0.104 0.125 0.218 0.338 0.591 0.275 (0.00)
FpP!2 0.105 0.161 0.240 0.320 0.401 0.245 (0.00)
Panel F. Illiquidity
P1 P2 P3 P4 P5 avg. RMSE (share)
HIST 0.057 0.112 0.134 0.148 0.174 0.125 (0.00)
HIST ewma,ex 0.058 0.110 0.134 0.148 0.170 0.124 (0.40)
HISTX 0.067 0.122 0.142 0.151 0.161 0.128 (0.20)
HISTK, o ex 0.057 0.112 0.137 0.150 0.163 0.124 (0.20)
Best®i™ 0.058 0.111 0.135 0.147 0.161 0.123 (0.20)
Dim(®) 0.076 0.251 0.303 0.341 0.385 0.271 (0.00)
FP!2 0.100 0.202 0.221 0.238 0.276 0.207 (0.00)
Panel G. Leverage
P1 P2 P3 P4 P5 avg. RMSE (share)
HIST 0.141 0.073 0.072 0.076 0.128 0.098 (0.00)
HIST eyma,ex 0.132 0.069 0.076 0.078 0.127 0.096 (0.40)
HISTX 0.161 0.084 0.073 0.082 0.133 0.107 (0.00)
HISTK, 1o ox 0.136 0.069 0.075 0.078 0.126 0.097 (0.00)
Best®™ 0.138 0.072 0.071 0.076 0.124 0.096 (0.60)
Dim(®) 0.164 0.094 0.085 0.100 0.174 0.124 (0.00)
Fp!2 0.179 0.110 0.119 0.130 0.185 0.145 (0.00)
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Table Al: Summary Statistics — Combinations

This table presents value-weighted summary statistics for estimators based on forecast combinations as
well as value-weighted averages of firm-level correlations. Nobs indicates the total number of firm—month
observations for which we have estimates. Mean"" is the overall value-weighted average of the estimates
over the entire sample period. Std. dev. presents the average cross-sectional standard deviation. ¢°% and
¢"9% indicate the averages of the cross-sectional 5% and 95% quantiles, respectively. The sample period runs

from January 1963 until December 2015.

g % g ;« ; <
0 g = @ 0 G A g = s
2 g ; 8 2 2 7 % % Z © Z &
) ) = 3 i @ 3 3 ) = = = =
z = n el ) M M s o < < < <
HIST 3,354,313  1.00 063 005 1.89 098 0.89 086 096 096 076 0.77 0.62
Bests™  3274,082 098 049 0.08 1.63 * 091 088 097 098 0.78 079 0.64
Best® 2,385,441 1.01 0.57 0.04 1.73 * 0.93 092 092 080 0.80 0.60
Bests™ 2385441 1.01 061 0.04 1.71 * 0.87 091 0.79 079 0.60
BestBMA  2906,006 1.02 0.58 0.02 1.75 * 0.95 0.76 0.76  0.63
Alpsim 1,403,858 1.00 0.45 0.16 1.64 * 0.78 079 0.64
Al 1,047,550 1.03 0.72 -0.14 1.91 * 0.92 0.58
Alpshr 1,047,550 1.02 0.68 -0.04 1.83 * 0.56
AlIBMA 912,912 1.05 094 -0.34 2.09 *
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Table A3: Prediction Errors — Different Horizons

This table presents the out-of-sample prediction errors for selected estimators and various forecast horizons.
We measure the realized beta with daily returns over the horizons of 1 month (Panel A), 3 Months (Panel
B), 12 Months (Panel C), and 60 Months (Panel D). Each month, we compute the value-weighted RMSE
for the approaches considered using the entire cross-section of stocks. The first row reports the average
value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font.
The remainders of the panels report the differences in prediction errors. The upper triangular matrices
report the average differences in RMSE and the lower triangular matrices report the average differences in
RMedSE. We report the error loss differential between the model fname in row] and the model [name in
column/. The absolute values of the numbers in parentheses indicate the share of time periods for which the
difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test
the significance using the modified Diebold—Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

Panel A. 1-Month Forecast Horizon

HIST HIST eyymaex HISTK HISTE 1o ox Bestsm
avg. RMSE 0.616 0.609 0.612 0.608 0.606
HIST 0.007 0.004 0.008 0.010
(0.19) (0.04) (0.11) (0.21)
HIST eqma.ex ~0.007 ~0.003 0.001 0.003
(-0.48) (-0.03) (-0.00) (0.10)
HISTK -0.009 -0.001 0.004 0.006
(-0.51) (-0.08) (0.16) (0.20)
HISTE o ox -0.010 -0.003 -0.001 0.002
(-0.58) (-0.39) (-0.15) (0.08)
Bests™ ~0.011 ~0.004 ~0.002 ~0.001
(-0.74) (-0.38) (-0.28) (-0.04)

Panel B. 3-Month Forecast Horizon

HIST HIST evyma,ex HISTK HISTX, a o Bestsim
avg. RMSE 0.427 0.415 0.419 0.414 0.411
HIST 0.012 0.008 0.013 0.016
(0.33) (0.12) (0.24) (0.37)
HIST evyma.ex ~0.012 ~0.003 0.002 0.005
(-0.68) (-0.04) (0.02) (0.16)
HISTK -0.013 -0.001 0.005 0.008
(-0.71) (-0.08) (0.22) (0.32)
HISTE 1o ex -0.016 ~0.004 ~0.003 0.003
(-0.75) (-0.58) (-0.31) (0.12)
Bestsim -0.017 ~0.005 -0.004 ~0.001
(-0.88) (-0.50) (-0.44) (0.03)




Panel C. 12-Month Forecast Horizon

Table A3: Prediction Errors — Different Horizons (continued)

HIST HIST ¢wma,ex HISTX HIST(Ifwma,ex Bestsim
avg. RMSE 0.343 0.321 0.323 0.316 0.314
HIST 0.023 0.020 0.027 0.030
(0.59) (0.39) (0.51) (0.67)
HIST cwma,ex -0.020 —-0.003 0.005 0.007
(-0.83) (-0.03) (0.17) (0.29)
HISTX -0.022 -0.002 0.007 0.009
(-0.91) (-0.17) (0.23) (0.34)
HISTSwm&eX -0.027 -0.007 —-0.005 0.002
(-0.90) (-0.86) (-0.27) (0.12)
Bestsim -0.027 -0.007 —-0.005 0.001
(-0.97) (-0.61) (-0.39) (0.11)
Panel D. 60-Month Forecast Horizon
HIST HIST ewma,ex HISTXK HIST?WHWCX Bestsim
avg. RMSE 0.369 0.334 0.322 0.321 0.320
HIST 0.035 0.047 0.047 0.049
(0.78) (0.85) (0.82) (0.95)
HIST evwma,ex -0.028 0.012 0.013 0.014
(-0.89) (0.31) (0.49) (0.58)
HISTX -0.039 -0.011 0.001 0.002
(~1.00) (-0.57) (-0.06) (0.07)
HISTgwm&ex -0.041 -0.013 —-0.002 0.001
(-0.95) (-0.99) (-0.05) (0.24)
Bestsim -0.039 -0.012 —0.001 0.002
(-1.00) (-0.81) (0.15) (0.16)




Table A4: Hedging Errors

This table presents the ratio of hedging error variances to the market variance for different approaches. For
each stock, estimator, and month, we obtain the hedging error over the next month as h; s = R; ¢+ — 85+ R e
We estimate the ratio of the hedging error variance to the market variance. We estimate the variances using
rolling 5-year windows and use the average ratio over time. We present the mean hedging error ratios across
all stocks. Additionally, we report differences of the mean to that of HIST (Diff). The lowest mean average
hedging error ratio is indicated by italic font. *, ** and *** indicate significance at the 10%, 5%, and 1%

level, respectively.

HIST HISTewma,ex ~ HISTX  HISTK ...  Bests™ Dim(®) Fp!2
Mean 14.086 14.033 14.031 14.016 14.021 14.137 14.056
Diff —0.0524%*%F  —0.0541%%*  —0.0698%**  —0.0648***  0.0515%*F  (.0292%**
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Table A6: Prediction Errors — Equally Weighted

This table presents the out-of-sample prediction errors when weighting the results equally. We measure the
realized beta with daily returns over the horizon of 6 months. Each month, we compute the equally weighted
RMSE for the approaches considered using the entire cross-section of stocks. The first row reports the
average equally weighted RMSE over our sample period. We indicate the lowest average RMSE with italic
font. The remainder of the table reports the differences in prediction errors. The upper triangular matrix
reports the average differences in RMSE and the lower triangular matrix reports the average differences in
RMedSE. We report the error loss differential between the model [name in row/ and the model [name in
column/. The absolute values of the numbers in parentheses indicate the share of time periods for which the
difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test
the significance using the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HIST ewma,ex HISTK HISTE, ma ox Bestsim
avg. RMSE 0.627 0.591 0.572 0.569 0.570
HIST 0.036 0.055 0.058 0.057
(0.90) (0.84) (0.92) (0.97)
HIST eyma,ex -0.015 0.020 0.023 0.021
(-0.79) (0.46) (0.82) (0.81)
HISTX -0.017 -0.002 0.003 0.002
(-0.80) (-0.11) (0.15) (0.11)
HISTX 14 ox -0.021 -0.005 -0.004 -0.001
(-0.85) (-0.73) (-0.30) (-0.11)
Best®i™ -0.021 -0.006 -0.004 -0.001
(-0.94) (-0.56) (-0.45) (0.05)




Table A7: Prediction Errors — Firm-Level Evaluation

This table presents the out-of-sample prediction errors when evaluating the forecasts at the firm-level. We
measure the realized beta with daily returns over the horizon of 6 months. For each stock, we compute the
RMSE for the approaches considered using the entire time series. The first row reports the value-weighted
average RMSE. We indicate the lowest average RMSE with italic font. The remainder of the table reports
the differences in prediction errors. The upper triangular matrix reports the average differences in RMSE,
averaged over all stocks. Similarly, the lower triangular matrix reports the average differences in RMedSE.
We report the error loss differential between the model [name in row/] and the model [name in column/. The
absolute values of the numbers in parentheses indicate the share of time periods for which the difference
is significant at 5% (e.g., 0.4 indicates that the difference is significant for firms representing 40% of the
average total market capitalization). We test the significance using the modified Diebold—Mariano and the
Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the number

in parentheses indicates the direction of the significant differences.

HIST HIST ewma,ex HISTK HISTE, ma ox Bestsim
avg. RMSE 0.381 0.367 0.370 0.365 0.360
HIST 0.014 0.011 0.016 0.020
(0.12) (0.24) (0.12) (0.27)
HIST eyma,ex -0.007 -0.003 0.003 0.007
(-0.09) (-0.01) (0.06) (0.06)
HISTX ~0.008 ~0.001 0.006 0.010
(-0.16) (0.01) (0.02) (0.09)
HISTX 14 ox -0.008 -0.001 0.000 0.004
(-0.11) (-0.06) (-0.02) (0.02)
Best®i™ -0.013 -0.006 -0.004 -0.004
(-0.23) (-0.04) (-0.11) (-0.02)




Table A8: Prediction Errors — Dimson Evaluation

This table presents the out-of-sample prediction errors when estimates are evaluated relative to the Dimson
beta. We measure the realized beta using the Dimson approach and 5 lags with daily returns over the horizon
of 6 months. Each month, we compute the value-weighted RMSE for the approaches considered using the
entire cross-section of stocks. The first row reports the average value-weighted RMSE over our sample period.
We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences
in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower
triangular matrix reports the average differences in RMedSE. We report the error loss differential between
the model [name in row] and the model /name in column/. The absolute values of the numbers in parentheses
indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the
difference is significant 40% of the time). We test the significance using the modified Diebold-Mariano and
the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTewmaex HISTK  HISTE, .. Best™ Dim(®) FP12
avg. RMSE 0.682 0.671 0.677 0.672 0.670 0.699 0.661
HIST 0.011 0.005 0.010 0.012 -0.017 0.021
(0.34) (0.12) (0.21) (0.32) (-0.14) (0.37)
HISTewmaex  —0.013 ~0.005 -0.001 0.001 -0.028 0.010
(-0.62) (-0.09) (0.01) (0.07) (-0.22) (0.21)
HISTX ~0.009 0.003 0.005 0.007 -0.023 0.016
(-0.48) (0.05) (0.17) (0.28) (-0.19) (0.21)
HISTK, aex 0015 -0.003 ~0.006 0.002 -0.027 0.011
(-0.63) (-0.42) (-0.24) (0.08) (-0.23) (0.21)
Bestsim -0.014 ~0.002 ~0.005 0.001 -0.029 0.009
(-0.75) (-0.20) (-0.28) (0.08) (-0.25) (0.17)
Dim(®) -0.008 0.004 0.001 0.007 0.006 0.038
(0.03) (0.13) (0.06) (0.14) (0.12) (0.43)
Fp12 -0.035 —0.022 —0.026 -0.020 -0.021 -0.027
(-0.37) (-0.13) (-0.15) (-0.09) (-0.11) (-0.52)




This table presents the out-of-sample prediction errors when using monthly data for to evaluate the estimates.
We measure the realized beta with monthly returns over the horizon of 60 months. Each month, we compute
the value-weighted RMSE for the approaches considered using the entire cross-section of stocks. The first
row reports the average value-weighted RMSE over our sample period. We indicate the lowest average
RMSE with italic font. The remainder of the table reports the differences in prediction errors. The upper
triangular matrix reports the average differences in RMSE and the lower triangular matrix reports the
average differences in RMedSE. We report the error loss differential between the model [name in row] and
the model [name in column/. The absolute values of the numbers in parentheses indicate the share of time
periods for which the difference is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of
the time). We test the significance using the modified Diebold-Mariano and the Wilcoxon signed rank tests

for the upper and lower triangular matrix, respectively. The sign of the number in parentheses indicates the

Table A9: Prediction Errors — Monthly Evaluation

direction of the significant differences.

HIST HISTewmaex HISTK  HISTE, .. Best™ Dim(®) FP12
avg. RMSE 0.524 0.496 0.490 0.489 0.488 0.544 0.537
HIST 0.029 0.034 0.035 0.037 -0.020 -0.013
(0.77) (0.67) (0.71) (0.80) (-0.16) (-0.16)
HISTewmaex  —0.025 0.005 0.007 0.008 -0.049 -0.042
(-0.82) (0.24) (0.29) (0.41) (-0.41) (-0.59)
HISTX -0.035 -0.010 0.002 0.003 -0.054 -0.047
(-0.87) (-0.46) (-0.10) (0.03) (-0.48) (-0.58)
HISTX, acx  —0.036 -0.011 -0.001 0.001 ~0.056 ~0.049
(-0.85) (-0.78) (0.12) (0.19) (-0.46) (-0.61)
Bestsim -0.034 -0.010 0.000 0.001 -0.057 ~0.050
(-0.92) (-0.56) (0.22) (0.08) (-0.49) (-0.65)
Dim(®) 0.004 0.029 0.039 0.040 0.039 0.007
(0.08) (0.40) (0.49) (0.51) (0.50) (0.03)
Fp12 -0.018 0.007 0.017 0.018 0.016 -0.022
(-0.42) (0.04) (0.16) (0.20) (0.18) (-0.48)
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Table A10: Prediction Errors — MAE

This table presents the out-of-sample mean absolute prediction errors. We measure the realized beta with
daily returns over the horizon of 6 months. Each month, we compute the value-weighted MAE for the
approaches considered using the entire cross-section of stocks. The first row reports the average value-
weighted MAE over our sample period. We indicate the lowest average MAE with italic font. The remainder
of the table reports the differences in prediction errors. The upper triangular matrix reports the average
differences in RMSE and the lower triangular matrix reports the average differences in MedAE. We report
the error loss differential between the model [name in row/ and the model [name in column/. The absolute
values of the numbers in parentheses indicate the share of time periods for which the difference is significant
at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the significance using the
modified Diebold—Mariano and the Wilcoxon signed rank tests for the upper and lower triangular matrix,

respectively. The sign of the number in parentheses indicates the direction of the significant differences.

HIST HIST eyymaex HISTK HISTE 1o ox Bestsim
avg. RMSE 0.270 0.259 0.261 0.257 0.255
HIST 0.011 0.010 0.013 0.016
(0.56) (0.52) (0.56) (0.77)
HIST eyyma.ex ~0.015 ~0.002 0.002 0.004
(-0.79) (-0.17) (0.24) (0.25)
HISTK -0.017 -0.002 0.004 0.006
(-0.80) (-0.10) (0.29) (0.48)
HISTE 1o ox -0.021 ~0.005 ~0.004 0.003
(-0.84) (-0.74) (-0.30) (0.08)
Bestsim -0.021 -0.006 -0.004 ~0.001
(-0.94) (-0.56) (-0.44) (0.03)
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