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Abstract 

This study provides new data on the evolution of the landscape in south-western Amazonia during 

the Holocene and the impact of climate change and fluvial dynamics on the region’s ecosystems. 

South-western Amazonia is covered by an extensive seasonally flooded savannah, known as the 

Llanos de Moxos. Severe drought during the southern hemisphere winter, followed by months of 

permanent waterlogging, means that forests only grow on the most elevated parts of the landscape, 

mostly river and paleoriver levees and crevasse splays. Paleoclimate reconstructions from 

surrounding areas show that a shift to wetter conditions at around 4 kyr BP caused an increase in 

forest cover. However, the impact that this change in climate had on the landscape of the Llanos de 

Moxos is unknown. Published lacustrine archives from the area only cover the last 2 kyr. Here we 

present new data from the analysis of paleosols located along a 300 km transect across the central 

Llanos. The analyses of stable carbon isotopes, from 36 paleosols, and biogenic silica, from 29 

paleosols, show that the patchwork of forests and savannahs that we see today was established after 

the 4 kyr BP climate change. During the dry period between 8 and 4 kyr BP, most of the central 

Llanos de Moxos, nowadays covered with seasonally flooded savannah, were covered by Cerrado-like 

savannah in the west and by forest in the east. However, results also suggest that, at both regional 

and local scales, vegetation cover has been influenced by changes in topography resulting from the 

region’s river dynamics. 

Introduction 



Tropical savannahs are the second largest biome in South America, after the Amazonian rainforest 

(Cardoso Da Silva and Bates, 2002). Understanding how these savannahs were affected by past 

changes in climate is key to predict their sensitivity to future climate change (Vegas-Vilarrúbia et al., 

2011; Willis et al., 2010). South-western (SW) Amazonia offers an excellent opportunity to study past 

changes in savannah ecosystems, as it contains a continuous transition from seasonally flooded 

savannahs (the Central and Southern Moxos – CSM, in figure 1) to Cerrado-like vegetation (the 

Cerrado Beniano in figure 1).  

 

Figure 1. The Llanos de Moxos in Bolivia, south-western Amazonia. A: The geographic setting of the study area with 
modern and paleo river networks. Black arrows show the direction of drainage; red dots show the coring locations (as in 
C). B: Sub-regions of the Llanos de Moxos (based on Langstroth, 2011) and locations of the paleoecological archives cited 
in the text. C: Locations and labels of the cored paleosols. 

The Llanos de Moxos (LM) is the second largest seasonally flooded savannah in South America, 

where the flooded area can cover up to 78,000 km2 (Ovando et al., 2018; Pouilly et al., 2004). The LM 

corresponds to the infilling of a slightly deformed Andean foreland basin (Baby et al., 1997). The 

thickness of the sediments varies from 6000 meters, in the western LM, to 0 meters in the eastern 

LM, where the Brazilian Shield outcrops (Hanagarth, 1993). The most common soil types are Gleysols 

in the savannahs, Fluvisols in the recent fluvial levees and Luvisols,Cambisols and Plithosols in the 

older palaeolevees (Boixadera et al., 2003; Langstroth, 1996; Lombardo et al., 2015; Rodrigues et al., 

2017). The LM includes the Transitional Zone, Baures and the Central and Southern Moxos, CSM (Fig. 

1). To the North of the LM is the Cerrado Beniano, an upland area formed mostly by Tertiary and pre-

Cambrian rocks (Larrea-Alcázar et al., 2011; Navarro, 2011). The Cerrado Beniano contains all the 27 

most common plant species of the Brazilian Cerrado (Langstroth, 2011). The CSM is mostly covered 

by seasonally flooded savannahs with Cyperaceae and relatively fertile soils (Langstroth, 2011; 

Navarro, 2011). In these seasonally flooded savannahs, the forest-savannah ecotone is controlled by 

the local topography and the inundation pattern, with forests relegated to the most elevated part of 

the landscape, often coinciding with fluvial deposits such as levees and crevasse splays (Lombardo, 

2014; Mayle et al., 2007). The Transitional Zone is also covered by seasonally flooded savannahs, but 

here soils are more weathered and less fertile than in the CSM, with exchangeable aluminium easily 

reaching toxic levels (Rodrigues et al., 2017). The landscape of the Transitional Zone is characterized 

by the presence of termite and earthworm mounds, which offer elevated ground for small trees, 

mostly Curatella spp, to grow (Langstroth, 2011). Here we find the largest concentration of 



abandoned pre-Columbian raised fields (Lombardo et al., 2011a; Rodrigues et al., 2018). These fields 

stay above the water level all year around and are colonized by shrubs and trees typical of the 

Cerrado. 

Amazonian savannahs can be either “wet” savannahs, such as the Llanos del Orinoco, Llanos de 

Moxos or the savannahs of Roraima and Rupununi (Junk, 2013) or “dry” savannahs, such as the 

Brazilian Cerrado. An important difference between the two is their response to waterlogging: while 

seasonally flooded savannahs develop on waterlogged soils, where forests cannot grow (Mayle et al., 

2007), Cerrado vegetation always grows on well-drained soils, because it is intolerant of waterlogging 

(Ratter et al., 1997). Therefore, a change in rainfall would affect the forest - seasonally flooded 

savannahs ecotone in the opposite way it would affect the forest-Cerrado ecotone. 

What we know about the evolution of the landscape and vegetation cover of SW Amazonia 

throughout the Holocene is largely derived from lacustrine archives located outside the seasonally 

flooded savannahs of the CSM. These studies have been carried out in the Cerrado Beniano (Brugger 

et al., 2016), the uplands north of Baures (Carson et al., 2014), the uplands to the east of CSM, close 

to the border with Brazil (Mayle et al., 2000), in upper Beni, to the west of the LM (Urrego et al., 

2013) and in the Pantanal region (Whitney et al., 2011) (Fig. 1). From these studies we know that 

tropical dry forest expanded during the early to mid-Holocene in the Pantanal, to the southeast of 

the LM (Whitney et al., 2011) and that an increase in precipitation at the beginning of the late 

Holocene induced a replacement of savannah with evergreen forest, in the uplands to the north and 

east of the LM (Brugger et al., 2016; Carson et al., 2014; Mayle et al., 2000); while the Andean 

piedmont was continuously covered by evergreen forest (Urrego et al., 2013). On the other hand, the 

Holocene environmental history of most of the LM is largely unknown, as there is no paleoecological 

archive from the CSM going back to the mid-Holocene. The main reason for this lack of data is that 

the lacustrine sediments from the hundreds of lakes that dot the central and southern LM are 

extremely difficult to core due to their stiff clay sediments (Mayle et al., 2007) and, if cored, provide 

very shallow sedimentary archives, spanning only a few thousand years (Lombardo and Veit, 2014; 

Whitney et al., 2013).  

A growing number of studies suggest that the Holocene has been a period of important 

paleoecological and landscape changes in SW Amazonia, with great potential to have influenced the 

land cover. These changes have been triggered by a combination of factors: neotectonics, climate 

change, river avulsions and human agency. The uplift of the Fitzcarrald arch (Espurt et al., 2007; 

Regard et al., 2009) (Fig. 1) caused the formation of several ria lakes in the Cerrado Beniano during 

the early to mid-Holocene and temporarily reduced the drainage of the whole Mamoré River basin 

(Dumont and Fournier, 1994; Hanagarth, 1993; Lombardo, 2014). The southern movement of the 

South American Summer Monsoon caused an increase in precipitations at about 4 to 3 kyr BP and 

the southward expansion of the Amazonian rainforest into north-eastern LM at the expense of the 

savannah (Carson et al., 2014; Mayle et al., 2000). Large scale river shifts, such as those of the Beni 

River (Dumont, 1996), the Mamoré (Plotzki et al., 2013), the Grande River (Lombardo et al., 2012; 

Plotzki et al., 2015) and several other tributaries of the Mamoré (Lombardo, 2014; Lombardo, 2016), 

formed fluvial distributary systems that covered most of the CSM (Lombardo et al., 2018). During the 

late Holocene, the combined action of strong winds and waves formed the hundreds of geometric 

and oriented lakes that dot the LM landscape (Lombardo and Veit, 2014). Furthermore, during the 

last two millennia, important transformations of the landscape resulted from the activity of pre-

Columbian populations, who built extensive earthworks, such as monumental mounds, causeways, 



raised fields and other earthworks in most parts of the LM (Blatrix et al., 2018; Erickson, 2006; 

Lombardo et al., 2011b; Lombardo et al., 2013a; Rodrigues et al., 2015; Rodrigues et al., 2016; 

Walker, 2008). How these changes affected the land cover of CSM is currently unknown.  

Because of the lack of suitable lakes to carry out Holocene environmental reconstructions in most of 

the LM, the present study is based on stratigraphic archives built by past catastrophic floods caused 

by river avulsions and crevasses; each time a floodplain river changes its course in the LM, new areas 

are flooded and covered with new alluvial sediment. In subsiding sedimentary basins like the LM, 

which is the foredeep of the South American foreland basin (DeCelles and Giles, 1996; Espurt et al., 

2007), fluvial dynamics dominate the construction of the landscape (Schumm et al., 2002). The study 

of modern river dynamics in the LM shows that the river network here is very active, with frequent 

crevasses, avulsions and severe floods (Lombardo, 2016; Lombardo, 2017). The infilling of subsiding 

basins is often made of successions of fine-grained alluvia and paleosols; the latter are valuable 

archives for paleoenvironmental and paleoclimatic reconstructions (Kraus and Aslan, 1993; Sheldon 

and Tabor, 2009). These paleosols are currently the only available paleoecological archives in CSM. 

Early to mid-Holocene paleosols have been found below the sediments of a distal part of the Grande 

River fan (Lombardo et al., 2012) and below the alluvia covering most of the south-western LM 

(Lombardo et al., 2018). The present study builds on previous research carried out in the region 

(Lombardo et al, 2018). Here, bio-geochemical analyses from the paleosols described in Lombardo et 

al. (2018) are used in order to reconstruct past vegetation dynamics. 

Mayle et al. (2007) hypothesized that reduced seasonal flooding might cause tree populations to 

expand into the low-lying plains. According to the climate records from the Titicaca lake (Baker et al., 

2005) and the hypothesis of Mayle et al. (2007), we expect to see a transition from seasonally 

flooded savannahs to forest at the beginning of the mid-Holocene dry period and a transition back to 

seasonally flooded savannahs at the beginning of the late Holocene, when records show increased 

precipitation. To test this hypothesis and reconstruct the evolution of the land cover in the Llanos de 

Moxos during the Holocene, we analysed stable carbon isotopes and biogenic silica assemblages of 

paleosols found along a 300 km long stratigraphic transect across the LM (Fig. 1) which included 36 

stratigraphic profiles (Lombardo et al., 2018).  

Methods 

Stratigraphic profiles (N=36) were taken across the CSM, along a 300 km long east-west transect (Fig 

1). These include: four river outcrops (518, 481, 499 and 35); one dug profile (SB_29); one dug profile 

plus auger (296); two profiles from pits excavated with heavy machinery for road maintenance (40 

and 480) and 17 cores taken with a Wacker vibra-corer. 

The cored paleosols have been analysed for stable carbon (δ13C) isotopes (36 samples), in order to 

estimate the contribution of C3 and C4 plants to the stock of organic matter contained in the 

paleosols, and for biogenic silica (29 samples) in order to strengthen the results of the stable isotope 

analysis and get a better insight into the vegetation cover and soil hydrology.   

For stable carbon isotope analysis, about 15 g of sample were sieved through a 2 mm sieve and 

pulverized with a disk mill. Between 30 and 50 mg of pulverized samples were packed into tin boats 

(Elementar, Hanau, Germany) and analyzed for C and N concentrations and δ13C with an Elemental 

Analyzer (EA; VarioEL III, Elementar, Hanau, Germany) coupled online to an Isotope Ratio Mass 

Spectrometer (IRMS; IsoPrime, Manchester, England). Isotope reference material IAEA-CH6 (δ13C = -



10.449 ± 0.033‰; IAEA, Vienna, Austria), IAEA-CH7 (δ13C = -32.151 ± 0.05‰), EMA-P2 (δ13C = -28.19 

± 0.14‰; Elemental Microanalysis, Okehampton, England) and EMA soil (δ13C = -27.46 ± 0.11‰) 

were analyzed in triplicate to calibrate the instrument for δ13C. We used three subsequent samples 

of glutamic acid and sulfanilic acid (Merck, Darmstadt, Germany) to calibrate the EA for C and N.  

Measurements of sulfanilic acid, glutamic acid and EMA-P2 were also repeated every 12 samples to 

check the stability of the IRMS source and allow for drift correction, if necessary. Moreover, these 

samples were also used to control C and N concentration. The analytical precision for δ13C was < 

0.07‰. 

Biogenic silica extraction from paleosol samples followed the method as in Lombardo et al. (2016). 

Slides with permanent mounting (Entellan®) were observed under an Olympus BX51 transmitted 

light microscope at 500x magnification. This analysis had two objectives: to assess the biogenic silica 

assemblage in the paleosols, and to calculate the Forest-Savannah phytolith index (FSi). We counted 

250 single-cell phytoliths per sample. Morphotypes with low taxonomic resolution (e.g. elongate 

psilates and globular psilates) were excluded. Only diatoms and sponge spicules identified during the 

phytolith analysis were counted. The FSi we calculated is modified from the FI-t ratio (Strömberg, 

2009; Strömberg and McInerney, 2011). We calculated the FSi as (non-bambusoid Poaceae)/((non-

bambusoid Poaceae) + (forest indicator phytoliths)). Forest indicator phytoliths include woody dicot 

morphotypes, monocot palms and bambusoid Poaceae. High values of the index indicate open 

vegetation or grasslands while low values indicate forested vegetation. Morphotypes were described 

following the International Code for Phytolith Nomenclature 1.0 (Madella et al., 2005) and identified 

using available literature (Barboni et al., 1999; Barboni et al., 2007; Bremond et al., 2008; Calegari et 

al., 2013; Dickau et al., 2013; Gu et al., 2016; Iriarte et al., 2010; Morcote-Ríos et al., 2016; Neumann 

et al., 2009; Piperno, 2006; Piperno and Pearsall, 1998; Watling et al., 2016).  

The use of stable carbon isotope composition of soil organic matter to infer past vegetation is well 

established in the Neotropics (De Freitas et al., 2001; Pessenda et al., 1998) and elsewhere (Mariotti 

and Peterschmitt, 1994; McPherson et al., 1993). In tropical regions, δ13C isotopic signature 

discriminates between grasslands and forests (Dorn and DeNiro, 1985; Tieszen and Boutton, 1989). 

From the biogenic silica contained in the paleosols we counted phytoliths, sponge spicules and 

diatoms. The analysis of phytoliths as a proxy for past vegetation dynamics in the neo-tropics is a 

more recent, but very promising tool (Dickau et al., 2013; McMichael et al., 2012; Piperno and 

Becker, 1996; Watling et al., 2017; Watling et al., 2016). The types of land cover we use here to 

classify the past vegetation are broadly defined as Forest, Bamboo forest, Seasonally flooded 

savannah (SF savannah) and Cerrado-like savannah. These are based on the vegetation types 

currently present in SW Amazonia. We therefore assume that past changes resulted in expansion or 

contractions of those vegetation types rather than appearance or disappearance of new ones. With 

Forest, we refer to any type of forest except bamboo forest, as we cannot differentiate among 

different types of forest based on our proxies. We call Forest those samples with low δ13C and FSi 

values. We call Bamboo forest those samples that show low δ13C and FSi values together with very 

high amounts of bamboo phytoliths. We call SF savannah those samples that show high values of FSi 

and δ13C together with high amounts of sponge spicule and diatoms (that we use as a proxy for 

frequent/prolonged flooding). SF savannah is analogous to the modern savannah in CSM.  When SF 

savannah samples have a large number of arboreal phytolits, we call these samples Woody SF 

savannahs and we consider them analogous to the modern vegetation in the seasonally flooded 

areas of the transitional zone (Fig. 1). When FSi and δ13C indicates savannah, but there are neither 

sponge spicules nor diatoms, we call these Cerrado-like savannahs. These would be analogous to the 



vegetation type of the Cerrado Beniano. In a recent study that looked at the reliability of different 

proxies for past vegetation reconstructions (Aleman et al., 2012), it has been suggested that mean 

residence time in the soil is shorter for biogenic silica than for organic matter. However, in tropical 

soils, organic matter turnover rate (the half-life of Corg in soil) varies on the order of decades (Feller 

and Beare, 1997; Wilcke and Lilienfein, 2004). On the contrary, phytoliths are very stable and can be 

preserved in acidic tropical soil and paleosols for thousands of years (Blinnikov et al., 2002; Piperno, 

2006). Here, we use phytolith assemblages as a proxy for the “average” vegetation cover during the 

whole period of soil formation, while δ13C is used as a proxy for the vegetation cover at the moment 

of alluvial deposition and burial of the soil. In this sense, when δ13C based reconstruction coincides 

with the vegetation reconstructed using the phytolith assemblage, we conclude that land cover was 

constant during the whole period of soil formation. The opposite scenario would indicate changes in 

land cover during the period of soil formation. Sponge spicules and diatoms have been counted, but 

not identified, as their presence is indicative of moist environments: lakes, rivers, bogs and 

waterlogged soils (Brewer, 1955; Clarke, 2003). Description of grain size, oxides and identification of 

stratigraphic units are based on field observation. Radiocarbon dating was performed by three 

laboratories: Poznan Radiocarbon Laboratory (POZ), Direct AMS (D-AMS) and the LARA AMS 

Laboratory at the University of Bern (Szidat et al., 2014). Radiocarbon ages were calibrated with 

CALIB 7.1 (http://calib.qub.ac.uk/calib/calib.html) using the SHCal13 calibration curve (Hogg et al., 

2013). Radiocarbon dating was undertaken on different fractions (humines, humates and bulk). In 

most cases, humates and bulk fractions provided consistent ages, while humines were either present 

in insufficient quantity for dating or yielded anomalously old ages (Lombardo, et al., 2018). The 

humine fraction has been interpreted as resulting from the most recalcitrant part of the soil’s organic 

matter, and thus more likely signifies the average age of the palesol rather than the time of its burial 

(Lombardo, et al., 2018). Therefore, the bulk fraction (or humate fraction if bulk was not available) 

was used to date the time of the burial of the paleosol. However, for samples 296 and 40, only the 

humine fraction was available. 

Results and interpretation 

Stable carbon isotopes and a phytolith based forest-savannah index have been measured in order to 

provide two independent and complementary proxies for past land cover. The measurements of δ13C 

from the paleosols’ organic matter range from -26.17‰ (paleosol at -320 cm in core 447) to -13.19‰ 

(core 40). The only modern soils δ13C published from the region range between −30.5‰, in terra 

firme evergreen forest, to −18.1‰, in seasonally inundated savannah, with -27‰ given as the 

threshold between wooded savannah and forest (Dickau et al., 2013). The difference between our 

dataset and the one published by Dickau et al. (2013) could be due to the δ13C enrichment caused by 

carbon isotope fractionation during the decomposition of organic matter, which could account for up 

to a +5‰ (Wang et al., 2008; Wynn, 2007). δ13C enrichment of subsoil samples, compared with that 

of modern vegetation, has also been observed in the Acre region (Watling et al., 2017). Therefore, 

we consider that δ13C values lower than -22‰ are indicative of forest; δ13C values higher than -18‰ 

are indicative of savannah and values between -22‰ and -18‰ are indicative of C3/C4 mixed 

vegetation, most likely Cerrado-like savannah (Mayle et al., 2007; Ratnam et al., 2011). The forest 

savannah phytolith index (FSi) ranges from 75.4% (indicating savannah) to 22.9% (indicating forest). 

The plot in figure 2 shows a general agreement between the two proxies, consistent with existing 

studies (Dickau et al., 2013; Watling et al., 2017), although with some outliers. In order to help 

interpret the plot in figure 2, we performed a principal component analysis (PCA) of the assemblage 

of phytoliths, diatoms and sponge spicules (Fig. 3). The first dimension of the PCA, which explains 

http://calib.qub.ac.uk/calib/calib.html


about 33% of the variability, probably indicates the presence of prolonged floods, on the left, vs no 

flood, on the right part of the plot. The second dimension, which explains 23% of the variability, is 

mostly the result of bambusoid Poaceae vs non-bambusoid Poaceae and arboreal phytoliths.  

Combining δ13C, FSi, biogenic silica assemblages and stratigraphic evidence, we identified several 

potential types of land cover. The first type shows high δ13C and FSi values and is characterized by 

high counts of non-bambusoid Poaceae, diatoms, sponge spicules and presence of Cyperaceae. This 

group is represented by samples 183, 480, 416-1, 416-2, 189, 40, 419 and 481-2. We interpret this 

first group as SF savannah. However, in the case of sample 419, the presence of diatoms and spicules 

could be due to a change in the local hydrology that preceded the burial of the soil, as the presence 

of gypsum crystals below sample 419 (absent in all modern soils in the transect) suggests drier 

conditions than those under current climatic conditions (Fig. 5). Paleosol 419 could have been 

covered with a Cerrado-like open savannah before becoming a seasonally flooded savannah. A 

second group comprises the samples 447-3 and 415, which have low δ13C and FSi values. In these 

samples, bambusoid phytoliths account for 53% (447-3) and 41% (415) of the total phytolith 

assemblage (Fig. 4); we interpret these as bamboo forest (Watling et al., 2017). A third group 

comprises those samples on the right side of the PCA plot (Fig. 3). This includes samples 442, 296, 

414-1. These samples have low values of both δ13C and FSi, which we interpret to signify forest. A 

fourth group is identified in the lower part of the PCA plot. This includes samples 52, 417, 499-1, 499-

2, 185, 447-4 and 414-2. These samples have high values of δ13C and mid to high values of FSi, but 

have very few diatoms and sponge spicules and relatively high levels of arboreal phytoliths, 

compared to the samples in the first group. Gypsum crystals are found below samples 499-2 and 185. 

Based on Dickau et al. (2013), we interpret this group as Cerrado-like savannah, similar to the 

modern Cerrado Beniano. Samples toward the right of the PCA, with lower FSi values (414-2, 499-2 

and 447-4), are more closed Cerrado-like savannahs, while the rest of the samples are more open 

Cerrado-like savannahs.  The fifth group comprises samples in the central part of the δ13C vs FSi plot 

(205-1, 205-2, 158, 170, 440, 217, 481-1, 481-3 and 418-3). These samples include some of the 

outliers of figure 2 (205-1, 158, 170, 481-3 and 440), where the δ13C value does not agree with the 

FSi. We interpret these as samples where the land cover has changed during the period of soil 

formation. Vegetation shifts seem to have happened in different ways. Samples 205-1, 205-2, 158, 

170, and 217, would be interpreted as SF savannah based on the FSi values and the high abundance 

of diatoms and spicules, but would instead be interpreted as forest or open forest/closed savannah 

based on the δ13C values. We interpret these as a seasonally flooded savannah that switched to 

forest before being buried. We do not think that these samples indicate a flooded forest, as 

Arecaceae phytoliths are less frequent than arboreal phytoliths and, overall, these samples are 

dominated by Poaceae phytoliths (Dickau et al., 2013). Sample 481-3, with high δ13C, low FSi and no 

diatoms or spicules, is interpreted as a Forest that switched to a Cerrado-like savannah during the 

period of soil formation. Samples 440 and 481-1 have high δ13C values and high counts of diatoms 

and spicules, but the FSi is in the range of Cerrado-like savannahs, suggesting a shift from Cerrado-

like Savannah to SF savannah. Sample 418-3 is clearly a savannah as it has both high δ13C and FSi 

values and contains some diatoms and spicules, but in lower abundance than would be expected for 

arboreal phytoliths. We interpret this sample as woody seasonally flooded savannah. See figure 4 for 

a summary of vegetation types assigned to each paleosol. 



 

Figure 2. δ13C vs FSi. 

 

Figure 3. Principal component analysis performed using diatoms, sponge spicules and phytoliths.  



 

Figure 4. Biogenic silica assemblage of the studied paleosols and land cover class assigned to each paleosol. Phytolith 
assemblages are expressed as percentages while diatoms and sponge spicules are shown as raw counts. 



 

Figure 5. Cored profiles along a 300 km transect across the central and southern LM. Numbers in parentheses below the 
core number indicate the elevation (in m) above sea level. Oval symbols depict the radiocarbon ages as calibrated years 
before present, while the square symbols show the δ13C (above) and FSi (below) values. Letters after the radiocarbon 
ages indicate the fraction dated (B for bulk, S for soluble - humates, and R for residual - humines). After Lombardo et al., 
2018. 

 



 

Figure 6. δ13C of the paleosols plotted against distance from the Andes (A) and calibrated radiocarbon ages (B). ‘No Phyt-
‘:  samples for which only δ13C values are available. 

The stratigraphic profiles belong to the four largest paleoriver systems identified in the CSM (Fig. 1 

and Fig. 5). All the samples, except those in the “Grande” group (Fig. 5), have been taken west of the 

Mamoré River. Here, a correlation exists between the type of vegetation cover and the distance from 

the Andes. Figure 6A shows that the three Forest samples are the closest to the Andes, followed by 

Bamboo forest and Cerrado-like savannah. Most of the samples between 100 and 200 km from the 

Andes are SF savannahs. This trend is consistent with the fact that, closer to the Andes, the soil forms 

on relatively more pronounced slopes, with coarser material and less weathered (hence relatively 

more fertile) sediments. All these factors would favour forest growth. Further away from the Andes, 

the landscape is flatter and soils more clayey, favouring prolonged water logging and, hence, SF 

savannahs. This pattern is similar to that of the vegetation’s modern distribution. More complex is 

the case of cores belonging to the Maniqui system (Fig. 5). Here, important changes in the values of 

δ13C are found between adjacent cores (i.e. 414 and SB_29 during the late Holocene) or between 

different paleosols belonging to the same core (i.e. 414 and 447). This great variability of land cover 

during the same period and at the very same location in different periods suggests that local 

drainage had a stronger control over the vegetation type than regional variables such as climate. A 

different situation is found on the eastern side of the Mamoré River, the furthest away from the 

Andes. Most of this area was covered with a sedimentary lobe deposited by the Río Grande 

(Lombardo et al., 2012; Plotzki et al., 2015). All the samples that indicate a vegetation shift from SF 

savannah to Forest are located here. This vegetation shift happened before the former soils were 

covered by sediment, suggesting that, in an important part of this area, a change in the local 

hydrology preceded the deposition of the sedimentary lobe.  

Changes in vegetation type are also consistent with changes in past climate, as suggested by existing 

paleoclimatic reconstructions (Baker et al., 2001; Mayle et al., 2000). SF savannahs are found in the 

early Holocene (one sample) and during the last 4k years (six samples) (Fig. 6B), periods for which 

paleoclimatic data suggests higher precipitation. Most of the paleosols that were buried during the 

dry period between ~8 and ~4 kyr BP were covered by forest or Cerrado-like savannah. It is during 

this dry period that we observe the transition from SF savannah to Forest in the eastern side of the 

transect (Fig. 6). We interpret the presence of Cerrado-like savannah between 4K and 2k years BP 



(samples 499-1, 499-2, 414-2 and 417) as indicating that the transition from one type of vegetation 

to another was not necessarily a direct response to climate change, but instead a complex mix of 

factors including local hydrology and pedologic conditions. These local dynamics need to be further 

investigated. 

Discussion 

The environment of the Llanos de Moxos, in SW Amazonia, changed during the Holocene due to 

several factors: climate, tectonics, fluvial activity and human action (Carson et al., 2014; Dumont and 

Fournier, 1994; Lombardo, 2014; Lombardo et al., 2012; Mayle et al., 2000; Mayle and Power, 2008). 

It is extremely difficult to disentangle how and when each of these drivers affected the land cover, 

not only because of the implicit difficulties in reconstructing past vegetation per se, but also because 

we lack a chronological framework for neotectonics (Dumont and Fournier, 1994; Lombardo, 2014) 

and have a rather general one for climate and fluvial events (Lombardo et al., 2018). The lack of 

lacustrine archives from the region makes matters worse, as these would provide a more solid 

chronology for vegetation changes.  

As suggested by Mayle et al (2007), it is possible that in CSM there could have been a vegetation shift 

from seasonally flooded savannah to forest at around 8 kyr BP, when the climate became drier, and 

from forest back to seasonally flooded savannah at around 4 kyr BP, when the climate became 

wetter again. Using δ13C and biogenic silica from paleosols, we provide for the first time a 

reconstruction of land cover changes in CSM. Biogenic silica assemblages and δ13C of the paleosols 

dated between 8 and 4 kyr BP show a prevalence of forest and Cerrado-like savannahs, a situation 

very different from the modern one, suggesting that climate contributed to land cover change in 

CSM. Past presence of Cerrado-like vegetation in the western side of the CSM has also been inferred 

from the phytolith assemblage from undated subsoils (Iriarte and Dickau, 2012). The late Holocene 

abundance of seasonally flooded savannah paleosols confirms that the dry period did end at the 

beginning of the late Holocene, when a landscape similar to the modern one was established. 

Despite this general picture, our data also suggest different scenarios in different parts of the CSM, 

indicating that climate was not the only factor influencing the type of land cover during the 

Holocene. In the western part of the transect (Fig. 6A), we observe that past land cover type also 

correlates with the location of the paleosols, with SF savannahs located at a greater distance from 

the Andes, mimicking the modern situation and suggesting that the local hydrology played an 

important role in controlling the past land cover. The paleosols of profile 499, taken from an outcrop 

along a Mamoré River bank, are quite surprising. Paleosols along the Mamoré outcrops have been 

interpreted as cumulative soils formed by continued deposition of clay particles, but the 

geomorphological context under which these clays were deposited is still unclear (Lombardo, 2014; 

May et al., 2015). The two lowest paleosols, ca. 160 cm (499-2) and 340 cm (499-3) below the level of 

the modern flood plain, are dated 3730 ± 101 cal yr BP and 9138 ± 133 cal yr BP, respectively. Despite 

being within the Mamoré floodplain, both paleosols contain gypsum crystals, with paleosol 499-2 

having a biogenic silica assemblage consistent with Cerrado-like savannah. These are very similar to 

the 420 and 159 paleosols, which also show gypsum crystals, but very different from paleosol 480 

(10486 ± 221 cal yr BP), which has by far the highest amount of diatoms and sponge spicules. Similar 

paleosols containing gypsum crystals, dated between ~8 and 6 kyr BP, have been described 

elsewhere along the Mamoré River banks and interpreted as backswamps of the Mamoré River (May 

et al., 2015) or as resulting from a downriver tectonic uplift and establishment of a lake-like 

environment (Lombardo, 2014). However, neither of these two hypotheses alone explain the 



formation of gypsum crystals or the establishment of Cerrado-like vegetation in the 499-2 paleosol.  

The deposition of silts on top of the 499-2 paleosol, and the age of 499-1, suggests a more energetic 

fluvial system after ca. ~3.5 kyr BP. This is compatible with an increase in river discharge triggered by 

increased precipitation. It is not clear under which hydrological conditions paleosol 480 formed, but 

its high number of sponge spicules and diatoms suggests that site 480 could have been a permanent 

wetland. More paleosols, at incrementally increasing distance from the Mamoré River, need to be 

analysed in order to clarify the processes that led to sediment deposition and soil formation along 

the Mamoré River.  

The paleosols located on the eastern side of the Mamoré, below the sedimentary lobe deposited by 

Río Grande, show a different pattern of change than the one observed in the western side. All the 

samples which we interpreted as a temporal sequence of SF savannah replaced by Forest come from 

this region. Overall, eight out of the eleven studied paleosols here were forest (six) or Cerrado-like 

savannah (two) at the time of their burial, the rest being SF savannah. Six out of the seven we dated 

are mid-Holocene in age. These results are consistent with the hypothesis formulated by Mayle et al. 

(2007) that drier conditions in the seasonally flooded savannah would trigger the expansion of forest. 

At this stage, it is difficult to explain why the vegetation in the eastern and the western sides of the 

Mamoré responded differently to the dry period. Cerrado savannah, in order to be maintained, 

needs fire (Hoffmann et al., 2012) and people had already settled in SW Amazonia by the beginning 

of the Holocene (Hilbert et al., 2017; Lombardo et al., 2013b). Therefore, the differences we see 

between the western and eastern sides of the Mamoré could be due to differences in land-use. 

Further research is needed in order to understand the differential response between the eastern and 

western areas of the CSM to past climate change and to assess to what extent these differences were 

due to human action. 

Despite these vegetation changes (Fig. 7), the Llanos de Moxos was likely always characterized by 

mosaics of forest, seasonally flooded savannah and Cerrado-like vegetation. This is consistent with 

the fact that several endemic animals currently found in these savannahs are adapted to these 

mosaics, suggesting that a patchwork of forest and savannahs has been present here since the 

Pleistocene (Langstroth, 2011; Mayle et al., 2007).  

Our study provides important insights into the role of local geomorphology and hydrology in 

controlling the type and direction of land cover change associated with mid-to Late Holocene climate 

change land cover (Wanner et al., 2008). We confirm that Amazonian ecotonal areas are very 

sensitive to climate change (Mayle and Power, 2008) and, therefore, will likely be impacted by future 

anthropogenic global warming. However, it is difficult to predict how the seasonally flooded 

savannahs of the LM could change as a result of future climate change. Climate models predict 

positive changes in P-E (precipitation – evaporation) along the eastern flank of the Andes and 

negative P-E changes in the Llanos de Moxos (Marengo et al., 2012). This scenario would likely affect 

the western and eastern CSM in different ways. In the former, increased precipitation in the river 

basins would induce more frequent river avulsions and crevasses in the lowlands, likely maintaining 

the current mosaic of forest and seasonally flooded savannahs but with higher frequency of forest 

die-off events (Lombardo, 2017) and formation of topographic elevations (crevasse splays and 

levees) that would then be covered by new forest (Lombardo, 2016). In the eastern CSM, where the 

elevation of the Grande River sedimentary lobe prevents this area from being flooded by river 

overflows (Lombardo et al., 2012), we would expect forest expansion, as recorded in the mid-

Holocene and as hypothesized by Mayle et al. (2007).  



 

Figure 5. Schematic representation of the reconstructed changes in the land cover of Central and Southern Moxos during 
the Holocene. 

 

Conclusions 

This study provides new data on the evolution of land cover in central and southern LM, in the 

Bolivian Amazon, throughout the Holocene. We show that past climate change affected the land 

cover of the areas nowadays covered by seasonally flooded savannahs. During the dry period, from 

~8 to ~4 kyr BP, the eastern part of the central and southern LM was mostly covered by forest, while 

the western part was mostly covered by Cerrado-like savannah. The reasons for this difference are 

currently unclear. We show that climate alone does not explain the whole variability of land cover 

types across time and space in SW Amazonia; neotectonics, river dynamics and potentially human 

fires also contributed to land cover changes. We demonstrate the importance of combining the 

whole assemblage of biogenic silica with stable carbon isotopes from sedimentary sequences in 

order to reconstruct past vegetation dynamics in areas where lacustrine pollen records are not 

available. The study shows the great potential of paleoflood archives in reconstructing past 

environments. 
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