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The representation of sub-grid scale convection is a weak aspect of weather and climate
prediction models and the assumption that no net mass is transported by convection
in parameterisations is increasingly unrealistic as models enter the grey zone, partially
resolving convection. The solution of conditionally averaged equations of motion (multi-fluid
equations) is proposed in order to avoid this assumption. Separate continuity, temperature and
momentum equations are solved for inside and outside convective plumes which interact via
mass transfer terms, drag and by a common pressure. This is not a convection scheme that
can be used with an existing dynamical core – this requires a whole new model.
This paper presents stable numerical methods for solving the multi-fluid equations including
large transfer terms between the environment and plume fluids. Without transfer terms the
two fluids are not sufficiently coupled and solutions diverge. Two transfer terms are presented
which couple the fluids together in order to stabilise the model: diffusion of mass between
the fluids (similar to turbulent entrainment) and drag between the fluids. Transfer terms are
also proposed to move buoyant air into the plume fluid and vice-versa as would be needed to
represent initialisation and termination of sub-grid-scale convection. The transfer terms are
limited (clipped in size) and solved implicitly in order to achieve bounded, stable solutions.
Results are presented of a well resolved warm bubble with rising air being transferred to the
plume fluid. For stability, equations are formulated in advective rather than flux form and
solved using bounded finite volume methods. Discretisation choices are made to preserve
boundedness and conservation of momentum and energy when mass is transferred between
fluids.
The formulation of transfer terms in order to represent sub-grid convection is the subject of
future work.

Received . . .

1. Introduction

The representation of sub-grid scale convection is arguably the
weakest aspect of weather and climate prediction models (eg.
Stephens et al. 2010; Sherwood et al. 2013; Holloway et al.
2014) and leads to poor predictions of weather and climate in
the extratropics (eg. Lean et al. 2008) and the tropics (Chapter
8, Solomon et al. 2007). The problem gets worse when modelling
convection in the grey zone, where convection is partially resolved
and so the assumptions made by most convection schemes are
particularly bad (eg. Gerard and Geleyn 2005). Two specific
assumptions are identified which we aim to avoid:

1. Net mass flux by convection; traditional mass flux (and
other) convection schemes assume that convection does not
create a net transport of mass in the vertical (eg. Gregory
and Rowntree 1990). Instead mass is mixed within each
column.

2. Non-equilibrium dynamics; traditional convection schemes
ignore effects due to changes in time of the properties of
convection (eg. Kain and Fritsch 1990).

If a convection scheme transports mass as well as heat, moisture
and momentum, all of the same equations of motion should be
solved both inside and outside the convective plumes. Therefore
it no longer makes sense to have a convection parameterisation
as an external module to a dynamical core – they should both
be solving the same equations and so the same model should be
used for both. Dynamical cores all have some form of implicit
time stepping to control divergence, either treating acoustic waves
implicitly, at least in the vertical direction (eg. Weller et al. 2013),
so that they do not lead to severe time-step restrictions, or some
form of implicit technique to ensure (psuedo)-incompressibility
(eg. Simmons et al. 1989). Once convection schemes can transport
mass, they will trigger acoustic and gravity waves and so terms
of the equations related to convective mass transport must appear
in whatever method that the dynamical core uses to control
divergence. If a significant fraction of a grid box contains a
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2 H. Weller and W. McIntyre

convective plume, a model will become unstable if the mass
transported by that plume is treated explicitly and deposited at
the top of the plume in one time-step. This mass transport must be
treated consistently with the mass transport of the resolved flow.

The conditional averaging (or filtering) process for convection
was described by Thuburn et al. (2018) and involves multiplying
each equation of motion by an indicator function and averaging
over a volume (or applying a different filter). This leads to
equations which are similar to those of a mass flux convection
scheme but without the approximation of zero net mass flux in
each column. The conditionally averaged equations also have
transfer terms to transfer mass, momentum, heat and moisture
between the fluids. These terms have a similar role to the
closures for cloud base mass flux and convective entrainment and
detrainment.

There are schemes which account for aspects of non-
equilibrium dynamics (eg. Gerard and Geleyn 2005; Yano and
Plant 2012; Park 2014) but fewer that allow net mass flux due
to convection, (exceptions being Kuell and Bott 2008; Arakawa
and Wu 2013). Kuell et al. (2007) and Kuell and Bott (2008)
extend a mass flux convection scheme to transport mass in the
vertical by creating a source term of the continuity equation due
to sub-grid scale convection. Their approach is not as general or
consistent as that proposed by Thuburn et al. (2018) and it is also
not clear if their numerical technique will be stable for moderate
time-steps. Other attempts to allow net mass flux by convection
(eg. Gerard and Geleyn 2005; Arakawa and Wu 2013) have relied
on statistical approximations to define the area fraction associated
with convection rather than on prognostic equations, as laid out
by Thuburn et al. (2018). A significant advance is the extended
EDMF scheme (Tan et al. 2018) which presents conditionally
averaged equations of motion with different fluids for the
environment and convective plume, including transport equations
for the plume area fraction. Tan et al. (2018) combine conditional
averaging and Reynolds averaging, presenting transport equations
for sub-grid scale variability in each fluid. However the numerical
solutions that they present are in a single column and they assume
that no net mass is transferred out of the column in order to
simplify their numerical solution. In order to make full use of the
extended EDMF scheme, a robust numerical method is needed
to solve conditionally averaged equations for convection in three
dimensions.

Conditional averaging has been used in other fields for decades;
Dopazo (1977) described how it could be used for representing
intermittent turbulent flows but it has more commonly been used
to represent multiphase flow (eg. Lance and Bataille 1991; Guelfi
et al. 2007) with separate fluids for different phases which share a
single pressure. The conditionally averaged Euler equations with a
single pressure and without transfers between the fluids are in fact
ill-posed (Stewart and Wendroff 1984) and are usually regularised
by including coupling between phases such as drag and other
relaxation transfers. Alternatively, Holm and Kupershmidt (1984)
regularised these equations using multiple pressures for problems
with surface tension. Thuburn et al. (2019) are also working on
a single column solution of conditionally averaged equations and
show that the incompressible conditionally averaged equations are
unstable without additional coupling between the fluids.

This paper presents a stable numerical method for solving
the conditionally averaged equations in arbitrary dimensions and
proposes transfer terms that transfer resolved convection into the
buoyant fluid and stable air back into the stable fluid. These
transfer terms are not designed to be used to represent sub-
grid scale convection as this would require more information
about sub-grid scale variability. Instead they are designed to be
large source terms that will act to challenge the stability of the
numerical method as they are too big to be treated explicitly

and they will introduce new mass, temperature and momentum
extrema in one fluid. We use two techniques to regularise the
multifluid equations; the first is with drag between fluids and
the second is with diffusion between the fluids, similar to lateral
entrainment and detrainment.

2. The Conditionally Averaged Euler Equations

Traditional mass flux convection schemes solve simplified
equations of motion with temperature, vertical velocity and
moisture inside convective plumes. This is therefore a form of
conditional averaging with variables averaged inside and outside
plumes. However we can take the process further and avoid some
of the crude assumptions made by mass flux schemes such as
vanishing convective area fraction and no net mass flux due to
convection. The conditional averaging (or filtering) process for
convection was described by Thuburn et al. (2018) and involves
multiplying each equation of motion by an indicator function, Ii,
for a number of different conditions labelled by i. At each point, Ii
is one if conditions i is true and zero otherwise. Fluid i = 0 may be
for example the stable environment, fluid i = 1 convective plumes
and fluid i = 2 may be downdrafts. A filter (typically volume
average) is then applied and averages for each condition can be
found over each filter region. The volume fraction in fluid i is
defined to be

σi = Ĩi (1)

where the ˜ implies the application of the filter (or volume
average). Density, potential temperature and velocity can then be
defined for each fluid:

ρi = Ĩiρ/σi (2)

θi = Ĩiρθ

/
(σiρi) (3)

ui = Ĩiρu

/
(σiρi) (4)

and averages over all fluids (denoted by overbar) are:

1 =
∑
i

σi (5)

ρ =
∑
i

σiρi (6)

ρθ =
∑
i

σiρiθi (7)

ρui =
∑
i

σiρiui. (8)

As with Reynolds or Favre averaging, non-linear conditionally
averaged terms such as Ĩiρuθ and Ĩiρuu are not equal to
the products of conditionally averaged terms. The difference is
expressed as a sub-filter scale flux:

Ĩiρuθ = σiρiuiθi + FθiSF (9)

Ĩiρuu = σiρiuiui + FuiSF (10)

where FθiSF is a vector and FuiSF is a tensor. The sub-filter scale
fluxes could be due to turbulent motions within each fluid.
Parameterisations for sub-filter scale fluxes are not considered in
this paper. We are still able to find stable solutions of the equations
because the flow that we are solving is well resolved.

The same averaging can be applied to pressure but we
will assume that pressure is uniform across all fluids. Pressure
differences between the plume and the environment will be
parameterised as form drag which is discussed in section 2.1.1.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



Multi-Fluid Modelling of Convection 3

Conditional averaging is also used to represent multi-phase
flows (eg. Guelfi et al. 2007) and uniform pressure across phases
is assumed. A single pressure for compressible multiphase flows
is known to lead to an ill-posed problem (Stewart and Wendroff
1984) but the equations can be regularised with some kind of
coupling between fluids which will be discussed in section 2.1.
Tan et al. (2018) do not assume that the pressure is equal in each
fluid but they do assume that density is equal in both fluids, except
where it influences buoyancy. Tan et al. (2018) also assume that
drag is high enough that horizontal velocities are equal between
fluids.

Conditional averaging is applied to the dry, adiabatic, rotating,
compressible Euler equations in flux form, assuming uniform
pressure between fluids and ignoring sub-fiter scale fluxes. This
leads to the following conditionally averaged Euler equations for
mass, potential temperature and momentum:

∂σiρi
∂t

+ ∇ · (σiρiui) =
∑
j 6=i

(
σjρjSji − σiρiSij

)
(11)

∂σiρiθi
∂t

+ ∇ · (σiρiuiθi) (12)

=
∑
j 6=i

(
σjρjθjSji − σiρiθiSij − σiρiHij

)
∂σiρiui
∂t

+ ∇ · (σiρiuiui) = −2σiρiΩ× ui (13)

− σiρicpθi∇π + σiρig

+
∑
j 6=i

(
σjρjujSji − σiρiuiSij − σiσjdij

)
where π = (p/p0)κ is the Exner pressure, p is the pressure, p0 is
a reference pressure, κ = R/cp, R is the gas constant of dry air,
cp is the heat capacity of dry air at constant pressure, θ = T/π

is the potential temperature, Ω is the rotation rate of the domain,
g is the acceleration due to gravity, σiρiSij is the transfer rate
of mass from fluid i to fluid j, dij is the drag exerted from
fluid i onto fluid j and Hij is the heat transfer from fluid i to
j. Formulation of the transfer terms, Sij , Hij and dij is needed
to create a parameterisation of convection. The mass transfer, Sij ,
will be dependent on the definitions of each fluid and on sub-grid
scale variability. Heat transfer and drag between fluids, Hij and
dij , will depend on the surface area between fluids. When mass
is transferred, we assume that its mean properties are taken with
it which is why Sij appears in all equations. We then also assume
the equation of state for dry air both globally and for each fluid is
given by:

p0π
1−κ
κ = Rρiθi = Rρθ = R

∑
i

σiρiθi. (14)

The temperature and momentum equations can be expressed in
advective form so that the primitive variables ui and θi are well
defined when σi is zero:

∂θi
∂t

+ ui · ∇θi =
∑
j 6=i

(
σjρj
σiρi

Sji(θj − θi)−Hij
)

(15)

∂ui
∂t

+ ui · ∇ui = −2Ω× ui − cpθi∇π + g (16)

+
∑
j 6=i

(
σjρj
σiρi

Sji(uj − ui)−Dij

)
where Dij = σjdij/ρi. Note that if σi is zero, there is a division
by zero in the mass transfer terms in eqns (15) and (16) which
leads to an infinite source term when θ and u are transferred to an
empty fluid. This is appropriate because when mass is transferred
to an empty fluid, the properties should instantaneously become
those of the transferred fluid; the old properties of the empty fluid
should not have any influence. However this infinite source term
will require careful numerical treatment.

2.1. Transfers and Exchanges between Fluids

In order to represent sub-grid scale convection with the multi-fluid
equations we first need to give labels to parts of the fluid with
different properties. For example, fluid zero could be the stable
environment fluid, fluid one could be the convectively unstable
buoyant plumes and fluid two could be downdrafts. For now it
doesn’t matter precisely how this is done. The next essential stage
is to formulate transfer terms, Dij , Sij andHij . Sij is particularly
important for moving mass in and out of the fluid related to
convection and will presumably be associated with sub-grid scale
variability of buoyancy and other properties related to convection.
In this paper we do not propose new closures for how mass moves
from the stable to the convectively active fluid (such as cloud
base mass flux). Instead we will use transfer terms formulated
in terms of differential operators that transfer fluid based on
the properties of the resolved flow, neglecting sub-grid-scale
variability. The purpose of this is to test the stability, boundedness
and conservation properties of the numerical methods rather than
proposing a useful parameterisation of convection.

We also include transfer terms to stabilise the equations.
For further justification of the need for stabilisation, we should
consider the physical meaning of a mixture of fluids. 0 < σ0 < 1

implies that at least two fluids are present at scales down to the
grid-scale. This implies that there will be a large surface area
between the two fluids and so they are likely to exchange mass
and momentum. We therefore couple the two fluids using mass
exchanges or drag between the fluids. Sensible and radiative heat
transfer between fluids is not considered in this paper and appears
not to be needed for stability because the temperature of the fluids
does not diverge.

We will consider one form of drag and three types of mass
transfer. The total mass transfer from fluid i to j is:

Sij = Sdij + Sbij + Shij (17)

where Sdij is due to diffusion of σ, Sbij is due to buoyancy
perturbations and Shij is due to horizontal divergence. Sbij and
Shij are forms of cloud base mass flux. The diffusion of σ,
Sdij , mixes the fluids in regions where the gradient of σ varies
rapidly. Sdij could be similar to lateral entrainment and is used to
regularise the ill-posed equations. These and the drag term will be
described next. Throughout we assume Hij = 0.

2.1.1. Drag in the Momentum Equation

Pressure differences between the fluid are parameterized as form
drag. We use a model for the drag on a rising bubble based
on Roghair et al. (2011) which is similar to the form used by
Simpson and Wiggert (1969) for modelling buoyant plumes and
the form recommended by Romps and Charn (2015) for deep
convection. Assuming exactly two fluids and remembering that
we need σiρiDij = −σjρjDji we can use:

Dij =
σj
ρi

CDρij
rc
|ui − uj |

(
ui − uj

)
(18)

where CD is a drag coefficient, rc is a radius and ρij = (σiρi +

σjρj)/(σi + σj). The radius, rc, needs to be the same for both
fluids and could be, for example, the plume radius or a length scale
for the region of fluid with lower volume fraction. Initial testing
without any form of stabilisation showed that the velocity of the
vanishing fluid diverges which is clearly unrealistic – a tiny bubble
of a different fluid would move with the main fluid. This can be
achieved by making rc small as σi becomes small in any fluid
which increases the drag between fluids. If we assume a maximum

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



4 H. Weller and W. McIntyre

and minimum radius, rmax and rmin, then rc can take the form:

rc = max
(
rmin, σiσjrmax

)
. (19)

For a more realistic scheme, future work could draw on existing
parameterisations of cloud radius. From geometric arguments, it
is reasonable to expect rc to be small when σ is small but stability
restrictions on rc are not known.

2.1.2. Diffusion of σ

A diffusive mass transfer term is created to smooth out high
curvature or oscillations in σ. The form used ensures that total
mass is not diffused and that mass transfer terms are never
negative:

σiρiSdij =
Kσ
2

max
(
∇2 (σjρj − σiρi) , 0

)
(20)

where Kσ is a diffusion coefficient which can be chosen so as
to obey stability constraints if the mass transfer term is treated
explicitly in equation (11). This mixing of the fluids is similar
to turbulent entrainment at the lateral edges of plumes but eqn
(20) is different from entrainment rates in other schemes which
depend on buoyancy and vertical velocity (eg. Tan et al. 2018) or
on plume radius (eg. de Rooy et al. 2013). In future work, existing
parameterisations for entrainment could be used to set Kσ .

2.1.3. Transfers based on buoyancy perturbations

This transfer term has only been derived considering two fluids:
the stable environment (i = 0) and the buoyant plume (i = 1). It is
formulated to mimic a parameterisation for cloud base mass flux
rather than to regularise the equations: transfer from fluid i = 0 to
fluid i = 1 could introduce new extrema of σi, θ1 and u1. Air will
rise if buoyancy perturbations make it lighter than the air above or
lighter that the surroundings. These observations are usually used
in closures for cloud base mass flux by testing the (conditional)
stability of a parcel (eg. Gregory and Rowntree 1990). We want to
formulate transfer terms in terms of PDEs rather than introducing
criteria comparing the buoyancy of grid boxes with surrounding
grid boxes. Therefore we use the Laplacian of θ to inform us
of positive and negative perturbations. There will be a positive
perturbation if ∇2θ < 0 and vice versa. :

Sb01 =

{
−Kθ∇

2θ0
θ0

when ∇2θ0 < 0

0 otherwise
(21)

Sb10 =

{
Kθ
∇2θ1
θ1

when ∇2θ1 > 0

0 otherwise
(22)

where Kθ is a diffusivity. These transfer terms do not guarantee
that fluid 0 is stable or that fluid 1 is buoyant but that is the ultimate
aim.

2.1.4. Transfers Based on Horizontal Divergence and Vertical
Velocity

This transfer term has also been derived considering only two
fluids, the stable environment (i = 0) and the buoyant plume
(i = 1). It is also formulated to mimic convection rather than to
regularise the equations. The transfer term moves fluid from fluid
zero to one when fluid zero is converging in the horizontal and
rising, and moves fluid from fluid one to fluid zero when fluid one

is diverging in the horizontal and falling:

σ0ρ0Sh01 =


−∇h · (σ0ρ0u0) if ∇h · (σ0ρ0u0) < 0

and u0 · g < 0

0 otherwise

(23)

σ1ρ1Sh10 =


∇h · (σ1ρ1u1) if ∇h · (σ1ρ1u1) > 0

and u1 · g > 0

0 otherwise.
(24)

3. Semi-Implicit Numerical Solution

Solving the conditionally averaged equations needs an entire
atmospheric model rather than just the convection parameterisa-
tion. Once the sub-grid-scale convection interacts with the grid-
scale continuity equation, convection can no longer be an isolated
parameterisation – the whole model needs to change, particularly
if the mass changes due to convection are to be treated implicitly,
which is needed to avoid time-step restrictions based on the
acoustic or gravity wave speed. Therefore the entire numerical
model is described here. Aspects that are not specific to the
stability of solving the conditionally averaged equations are given
in appendix A.

The equations are discretised and solved using the OpenFOAM
library (https://openfoam.org) and the full implementa-
tion is part of the AtmosFOAM repository (https://github.
com/AtmosFOAM/). The spatial discretisation uses standard
OpenFOAM operators.

3.1. Spatial Discretisation

Most of the spatial discretisation is not specific to the stable
solution of the conditionally averaged equations and is described
in appendix A. The spatial discretisation uses a finite-volume C-
grid for an arbitrary mesh, similar to that described by Weller
and Shahrokhi (2014) with θi , σiρi and π defined as volumetric
mean quantities (or at cell centres) and normal components of
velocity defined on cell faces. All the meshes used are orthogonal
and, as the focus of this paper is not spatial discretisation,
the discretisation is only described for orthogonal meshes for
simplicity.

Specific to the conditionally averaged equations, it is important
to use bounded advection of σi. A total variation diminishing
(TVD) advection scheme with a van-Leer limiter is described in
appendix A.4. Note that it is the advection of σi that is bounded,
not the advection of σiρi because it is necessary to discretise
ρi consistently with the pressure for both stability and energy
conservation. This is described in more detail in sections 3.2.2
and 3.2.6. Bounded advection of ρi is not needed because density
is sufficiently smooth and far from zero that it remains positive.

3.2. Time Stepping Algorithm

It is crucial to get the time-stepping right for the stable solution
of the conditionally averaged equations. In this section we will
distinguish between convenient modelling choices and choices
that are specific to the stable solution of the conditionally averaged
equations. The solution of the conditionally averaged equations is
interwoven with a semi-implicit method so that acoustic waves are
treated implicitly for any value of σi.

The terms of the Euler equations involved in acoustic waves are
solved using second-order Crank-Nicolson time-stepping. Other
implicit schemes could be chosen and optionally gravity waves
could also be treated implicitly. For the stable solution of the
conditionally averaged equations it is necessary to include updates
from both the plume and environment momentum and continuity
equations in the implicit solution of the pressure equation.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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Multi-Fluid Modelling of Convection 5

Non-linear terms and advection are treated explicitly using
second-order Runge-Kutta time-stepping for convenience (Weller
et al. 2013). An inner loop solves the pressure equation for π
and ui twice with explicit terms updated for the second iteration.
The inner iterations are indexed with ` = 1, 2. An outer loop
solves the continuity and temperature equations explicitly for σiρi
and θi. The outer iterations are indexed with k = 1, 2. This low
Mach number semi-implicit method follows Weller and Shahrokhi
(2014) and is similar to Wood et al. (2014) in the number of inner
and outer loops.

All transfer terms are solved using operator split either explicit
or implicit first-order time-stepping. The operator splitting is a
straightforward way to ensure positivity. Implicit updates are
necessary for stable treatment of the large source terms (the source
terms of the temperature equation (15) momentum equation (16)
with σiρi in the denominator which can tend to infinity as σi →
0).

3.2.1. Initialisation

The prognostic variables are Ui, σiρi, θi where Ui = ui · Sf is
the volume flux across each cell face (Sf is the vector normal to
each face with magnitude of the face area). Transport equations
are solved for Ui, σiρi, θi and π. This system is overspecified
because π can be calculated for all of the σiρi and θi using the
equation of state. To avoid over specification, only ui, σi, θi and
π are read in at initialisation and each ρi is calculated from the
equation of state (14). A separate code for calculating the initial
conditions calculates π that is in discrete hydrostatic balance with
θ0 (i.e. θ for fluid zero).

In order to start each time-step, (σiρi)
k=0 is set to (σiρi)

n

where n is the label for the old time step, θk=0
i is set to θni , π`=0

is set to πn and U`=0
i to Uni . After the loops over k and `, the

values at time n+ 1 are set equal to the final values at the end of
the iterations.

3.2.2. Solving the Continuity Equation

The first equations to be solved in the outer loop are the continuity
equations for each σiρi (11). When transfer terms are included
(which lead to terms with σiρi in the denominator of the source
terms of the temperature (15) and momentum (16) equations)
it is essential to keep σiρi positive for stability. The continuity
equations are solved using operator splitting, first advecting
σiρi and then applying the transfer terms. This is the most
straightforward way to maintain positivity. We have chosen a
TVD advection scheme with a van-Leer limiter (section A.4) to
calculate σi inside the divergence for iterations k = 1, 2:

(σiρi)
′ = (σiρi)

n −∆t ∇ ·
([

(1− α)ρni uni + αρk−1i u`−1i

]
σni

)
(25)

where ∆t is the time-step and α is the off-centering parameter.
For all the simulations presented, α = 1/2 is used making the
time-stepping second-order accurate. ρi inside the divergence is
calculated using linear interpolation. (σiρi)

k for all values of k
and the intermediate values (σiρi)

′ share the same memory as
(σiρi)

n+1.
Only σni appears on the right hand side of eqn (25), no newer

values such as σk−1i . This is because the advection scheme
assumes that the upwind values are at the old time-level and it
is only guaranteed bounded when using σni on the right hand side.
However updated values of ρi are used on the right hand side of
eqn (25) so that the solution of eqn (25) remains consistent with
the Exner pressure, π.

Next the mass transfer terms are calculated using σ′i, u`−1i and
θ`−1i (the most up to date values) and limited to ensure that σiρi

remains positive:

Slim
ij =

1

(σiρi)′
min

(
(σiρi)

′Sij ,
(σiρi)

′ − σminρ
k−1
i

∆t

)
(26)

where σmin = 10−9 is used in the simulations presented in section
4. Then the mass transfer is used to update σiρi explicitly with
operator splitting:

(σiρi)
k = (σiρi)

′ + ∆t
(

(σjρj)
′Slim
ji − (σiρi)

′Slim
ij

)
. (27)

3.2.3. Solving the θi equation

After the continuity equation, the θi equation (15) is solved
using operator splitting; first advecting θi then applying the mass
transfer terms to the advected θi. Because we are using a finite
volume model to solve equations in advective form, the advection
of θi is calculated as:

θ′i = θni −∆t

(
(1− α) [∇ · (θiui)− θi∇ · ui]n

+ α
[
∇ · (θk−1i u`−1i )− θk−1i ∇ · u`−1i

])
(28)

where the spatial discretisation is described in section A.5.
The mass transfer terms are applied implicitly because they can

be very large due to the presence of σiρi in the denominator.
The implicit addition of mass transfer terms is formulated to be
specific for having two fluids although it would be straightforward
to generalise. In order to derive the equations for adding the mass
transfer terms to θi we will write the θi equation as:

θki = θ′i + ∆t
∑
j 6=i

(
(σjρj)

′

(σiρi)′
Slim
ji (θkj − θ

k
i )

)
. (29)

Note values at level k are on the left and right hand side making
this an implicit solution. For i = 0, 1 this can be re-arranged to
give:

θk0 =
(1 + ∆t T01) θ′0 + ∆t T10θ

′
1

1 + ∆t T10 + ∆t T01
(30)

θk1 =
θ′1 + ∆t T01θ

k
0

1 + ∆t T01
(31)

where Tij =
(σiρi)

′

(σjρj)′
Slim
ij is calculated just before eqn (27) so

as to use (σiρi)
′ before it is over-written by (σiρi)

k. For
conservation of internal energy, it is necessary that the values of
σiρi from after advection but before the mass transfer are used
in the calculation of Tij . This ensures that

∑
cells
∑
i(σiρiθi)

n =∑
cells
∑
i(σiρiθi)

n+1. Calculation of θki from eqns (30) and (31)
also ensures boundedness of θi (θki will remain between θk−1i and
θk−1j ).

3.2.4. Diagnosing σi

After the updates of prognostic variables (σiρi) and θi, the
diagnostic variable σi can be updated. σi is not used in isolation
from ρi anywhere in the equations (11, 14-16). However σi and ρi
may be needed independently in closure assumptions, such as the
approximation of the drag (18). Firstly, each ρi is calculated from
the equation of state using the most up to date values:

ρki =
p0π

1−κ
κ

Rθi
=
ρθ

θi
. (32)

Then each σi can be calculated:

σki =
(σiρi)

k

ρki
. (33)

This calculation will guarantee
∑
i σi = 1.
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6 H. Weller and W. McIntyre

3.2.5. Momentum and Continuity

Here we describe how a standard semi-implicit algorithm is
adapted to solve the momentum (16) and continuity (11) equations
from all fluids simultaneously. The momentum and continuity
equations are combined to form a Helmholtz equation for π. This
is done by expressing the volume flux, Ui, and the mean density, ρ,
as linear functions of π and substituting these into the continuity
equation. This is done twice per outer loop, in an inner loop
indexed by `.

The normal component of the volume flux, Ui is expressed as a
linear function of π using the momentum equation:

U ′i = U ′′i − α∆tcpθ
`
fi∇Sπ

` (34)

where cpθ
`
fi∇Sπ

n+1 is an approximation of cpθi∇π · Sf and
is calculated from equation (60) in appendix A.2.1. U ′′i is the
explicitly calculated part of the volume flux:

U ′′i = Uni (35)

− (1− α)∆t
(
[ui · ∇ui + 2Ω× ui] · Sf + cpθfi∇Sπ

)n
− α∆t (ui · ∇ui + 2Ω× ui)

`−1 · Sf + ∆tg · Sf .

Equation (34) is multiplied by the linear interpolate of σiρi onto
faces and then the sum is taken over all fluids to get the total mass
flux:

F ` =
∑
i

(σiρi)
k
fU
′′
i − α∆tcpρθ

k
f∇Sπ

`. (36)

This will be substituted into the divergence term of the continuity
equation once we have described the linear representation of ρ as
a function of π which follows Weller and Shahrokhi (2014).

In order to derive a Helmholtz equation for π using the
continuity equation, the density is expressed as

ρ = Ψπ (37)

where Ψ is the compressibility from the equation of state:

Ψ = ρ
2κ−1
κ−1

(
Rθ

p0

) κ
κ−1

. (38)

Equations (36) and (37) are substituted into the continuity
equation and Gauss’s divergence theorem is used to calculate the
divergence term:

Ψ`−1π` −Ψnπn

∆t
+

1− α
V

∑
f∈c

Fn

α

V

∑
f∈c

{∑
i

(σiρi)
k
fU
′′
i − α∆tcp

(
ρθ
k
f

)
∇Sπ`

}
= 0 (39)

where V is the cell volume. There are no transfer terms in this
equation because they cancel when summed over fluids. This is a
Helmholtz equation that can be solved for π`. Back substitutions
are then made to calculate each U ′i using equation (34).

Applying Drag and Mass Transfer to the Momentum
Equation The transfer terms of equation (16) can be applied
after the solution of the Helmholtz equation because they do not
directly influence the pressure. They are applied implicitly, first-
order with operator splitting with a simultaneous solution for
two fluids, i and j. U ′i is the volume flux predicted by the back
substitution after the Helmholtz equation and U`i is the solution of

Ui after implicit application of the source terms:

U`i = U ′i −∆t

(
Tji + σj

CDρ
k

rcρki
|ui − uj |`−1

)
U`i

+ ∆t

(
Tji + σj

CDρ
k

rcρki
|ui − uj |`−1

)
U`j (40)

Using the same block implicit solution technique as was described
in section 3.2.3, U`i can be calculated using:

U`0 =
(1 + ∆t T01)U ′0 + ∆t T10U

′
1

1 + ∆t T10 + ∆t T01
(41)

U`1 =
U ′1 + ∆t T01U

`
0

1 + ∆T01
(42)

where Tij = Tij +
σki
ρkj

CDρ
k

rc
|uj − ui|`−1. As with the numerical

method for applying the mass transfer terms to the θi equations,
this technique ensures that the Ui remain bounded and the use of
the values of σiρi from before mass transfer in the calculation of
Tij gives momentum conservation on transfer.

3.2.6. Updates for Consistency

So far, each time-step, we have updated each σiρi using the
continuity equations, Ui using the momentum equations, θi
using the temperature equations and π using the Helmholz
equation which is a combination of the momentum and continuity
equations and the equation of state. This is overspecified so to
avoid inconsistencies growing (which leads to instability), π is
re-calculated from σiρi and θi at the end of every time-step
using just the equation of state (14). The resulting changes to π
need to be small otherwise the updated π would not solve the
Helmholtz equation and acoustic modes would grow. Therefore
ρi must be solved with the same spatial discretisation as π which,
for best energy conservation (given 2nd order numerics) is centred
linear differencing. This is why only σi, not σiρi is solved with a
bounded advection scheme as described in section 3.2.2.

3.2.7. Overview of the Solution Algorithm

Each item below is carried out for all cells before moving on to
the next item. This is crucial for the semi-implicit formulation.

1. We start by initialising all iterated variables at k = 0 and
` = 0 to the values at time level n.

2. For k = 1, 2:

(a) Solve for (σiρi)
k as described in section 3.2.2.

(b) Solve for θki as described in section 3.2.3.
(c) Update σki as described in section 3.2.4.
(d) For ` = 1, 2

i. Update each U ′′i using eqn (35) which consists
of all of the terms of the momentum equation
excluding the pressure gradient term and
excluding transfer terms.

ii. Calculate the compressibility, Ψ, from eqn (38).
iii. Construct and solve the Helmholtz eqn (39) for

π`.
iv. Back substitute, adding the pressure gradient

term to U ′′i to get U ′i using eqn (34).
v. Add the transfer terms to U ′i to get U`i using eqn

(41,42).
vi. Calculate u`i from U`i using appendix eqn (57).

3. For consistency, update Ψ and π at the end of each time-step
from the equation of state (section 3.2.6).
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4. Results

No test cases exist for numerical solutions of the conditionally
averaged Euler equations and so variations of the rising bubble
test case (Bryan and Fritsch 2002) for the non-hydrostatic,
compressible Euler equations are used. If the conditions in
each fluid are initially identical, then the solution should evolve
exactly like the single fluid equations with an additional advected
tracer for the fluid fraction. This is therefore used as a first
test of the numerical method. Tests are next formulated with
different initial conditions in each fluid in order to check that the
solution maintains stability, boundedness and some conservation
properties. Finally, tests are created with fluid one initially empty
and mass is transferred in. The solution should evolve exactly as
the single fluid case because the initial conditions in fluid one,
with no mass, should be irrelevant.

The dry, warm rising bubble test case of Bryan and Fritsch
(2002) consists of a two dimensional vertical slice of height
10 km and width 20 km initially at rest with a surface pressure of
1000 mb, an initially uniform potential temperature of 300 K. The
initial pressure is in discrete hydrostatic balance with this uniform
potential temperature. A warm perturbation:

θ′ = 2 cos2
πL

2
(43)

is added for L < 1 where L =

√(
x−xc
xr

)2
+
(
z−zc
zr

)2, xc =

10 km, zc = 2 km and xr = zr = 2 km. 100 m grid spacing is
used and for all simulations presented a time-step of 2 s is used.
Regardless of the initial conditions and transfers between fluids,
σ should remain bounded between zero and one and the potential
temperature should remain bounded between 300 K and 302 K.

4.1. Two Identical Fluids

First the warm rising bubble of Bryan and Fritsch (2002) is
simulated with the fluid divided into two with identical initial
conditions in each fluid. No transfers or exchanges between fluids
are used. Two different initial fluid fractions are used as shown
at the top of figure 1. These should not influence the evolution of
other variables. The two initial σ distributions are

symmetric: σ1 =

1 if
∣∣∣∣x−

(
0

2

)
km
∣∣∣∣ < 2 km

0 otherwise,

(44)

asymmetric: σ1 =

1 if
∣∣∣∣x−

(
2

5

)
km
∣∣∣∣ < 2 km

0 otherwise.

(45)

The distributions of σ1, θi and the velocity in each fluid after
1000 s are shown at the bottom of figure 1. θ and the velocity have
remained identical in each fluid and σ has been advected by the
flow without any undershoots or overshoots. The presence of the
σ field does not influence the evolution of the velocity or potential
temperature in each fluid, as expected.

The stability of the model is demonstrated by plotting the total
energy and the different types of energy in figure 2. The left
hand side shows normalised kinetic, potential, internal and total
energy changes for the model with a single fluid using van-Leer
advection. The various energies are defined as:

KE =
1

2

∑
i

σiρi|uci|2 (46)

PE = −g · x
∑
i

σiρi (47)

IE = cvπ
∑
i

σiρiθi (48)

E = KE + PE + IE (49)

and totals are calculated by integrating over space. The
normalisation and calculation of changes is calculated for energy
XE as:

X̃E =
XE−XE(t = 0)

E(t = 0)
. (50)

The dashed lines in figure 2 show negative values and the solid
lines show positive values. In the first part of the simulation,
the single fluid simulation shows internal and potential energy
oscillating in phase with each other, showing nearly conservative
transfers between internal and potential energy. Throughout the
simulation the kinetic energy increases as the rising bubble
accelerates while the total energy decreases monotonically due to
stable, dissipative nature of the model. Part of this dissipation is
due to the dissipative advection of velocity (linear-upwind) and
potential temperature (van-Leer). A simulation is also run using
centred, linear differencing for advection and the total energy
is shown in the right hand of figure 2. This simulation loses
energy more slowly and the energy loss is no longer monotonic.
The temperature field is noisy with spurious overshoots and
undershoots of temperature (not shown).

The accuracy of the energy conservation in figure 2 appears to
be good partly because the energy changes are divided by a large
number – the total initial energy, including unavailable energy.
The initial potential energy, which is mostly unavailable, is 31,444
Joules and the initial internal energy is 141,446 Joules, making
the total initial energy 172,891 Joules. A fairer accuracy estimate
might be to normalise with the available potential energy. This has
not been calculated. Instead we could compare with the energy of
the initial warm bubble. The warm bubble contains 24.5 Joules
of additional internal energy in comparison to the stably stratified
state. If we were to normalise the energy changes with this value
then they would be 7,057 times bigger, making a normalised
change of 10−6 close to a change of 0.01.

The total energy for the simulations with two identical fluids
with symmetric and asymmetric distributions of σ are shown
in figure 2. This confirms that the presence of more than one
identical fluid does not influence the energy conservation. In fact
the solutions with two identical fluids are identical to the solution
with one fluid to within machine precision.

4.2. Different Initial Conditions in each Fluid

Once each fluid has different properties, the behaviour of the
solutions changes and stable solutions may not exist. The total
solution is close to divergence free because compressibility is
small in this low Mach number regime. However with only one
pressure to control the divergence in two fluids, the divergence
in each fluid can be large. We will therefore initialise the model
to force different velocities and hence divergence in each fluid.
We do not have an analytic solution for this case but we seek
stable solutions and we test energy conservation since energy is
conserved in the continuous equations in the absence of transfers
between the fluids.

In order to simulate two fluids with different properties
occupying the same location, we set σ1 = 1

2 in a circle with warm
air only in fluid 1 and initially stationary flow in each fluid:

σ1 =


1
2 if

∣∣∣∣x−
(

0

2

)
km
∣∣∣∣ < 2 km

0 otherwise,

(51)

σ0 = 1− σ1 (52)

θ0 = 300 K (53)

θ1 = 300 K + θ′. (54)

We assume no mass flux and no drag between fluids. The initial
conditions for σ1 and θ1 are shown in figure 3 along with the
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Initial σ1 (shaded) and initial θi (contoured every 0.2 K)
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σ1 , θi and ui after 1000 s (results identical in each fluid)
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Figure 1. Initial fluid fraction, σ1 and θi (top) for simulations with identical properties in each fluid and properties after 1000 s (bottom). The vectors and contours for θi
and ui for each fluid are identical. The full domain extends between x = −104 m and x = 104 m.

solutions after 100, 200 and 290 s. θ0 remains identically 300 K
throughout the simulation, as expected.

The buoyancy perturbation in fluid one makes fluid one rise
which raises the pressure above the bubble and forces fluid zero
downwards. Consequently total divergence is controlled but the
divergence in each fluid grows and hence the velocities become
large. The advection scheme is only bounded for Courant numbers
less than 0.5. At 276 s, the mean Courant number becomes larger
than 0.5 and oscillations grow in σ1. The solution diverges at
t = 296 s. A stable simulation could be maintained for a little
longer by using a smaller time-step or by treating advection
implicitly but the PDEs that we are solving are unstable (Stewart
and Wendroff 1984) so numerics cannot be used to maintain
stability indefinitely.

4.2.1. Coupling the two fluids with drag or diffusion

We first add drag between the fluids but no mass transfer. The
drag takes the form described in section 2.1.1 with length scales
rmin = 1 m (a minimum is needed to avoid division by zero) and
rmax = 2000 m. A large value of rmax has been chosen so that
the drag is low where neither σi is vanishing which allows some
variation of velocity between fluids. The results at t = 1000 s are
shown in figure 4. θ0 remains identically 300 K throughout. The
drag has stabilised the solution and the two fluid velocities (in
black and red) are not identical.

Next the fluids are coupled by adding diffusion between the
fluids (but no drag) as described in section 2.1.2. This is similar
to convective entrainment and detrainment due to turbulence.
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1 fluid, van-Leer advetion Total energy for various simulations
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Figure 2. Normalised changes in kinetic, potential, internal and total energy for the rising bubble test case for the model with a single fluid and the normalised total energy
change for models with one fluid with different advection schemes and for a model with two identical fluids and no mass transfer. Solid lines show positive changes and
dashed lines show negative changes. The x-axis is on a square root scale to emphasise the changes that occur early in the simulations.

Initial conditions t = 100 s t = 200 s t = 290 s
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Figure 3. Zoomed in initial conditions and results of a simulation with a buoyant perturbation in fluid 1 and no mass transfer. σ1 is shaded, θ1 is contoured every 0.2 K,
u0 is shown by black vectors and u1 by red vectors. The full domain extends between x = −104 m and x = 104 m and between z = 0 and z = 104 m.

The results using a diffusion coefficient of Kσ = 200 m2s−1 are
shown in figure 4. The diffusion is treated explicitly and this
diffusion coefficient is well below the stability limit. Once mass is
transferred, the peaks in σ1 reduce in comparison to the simulation
with drag between the fluids. Temperature and momentum are
transferred with the mass so the temperature in fluid 1 no longer
remains 300 K and the temperature in fluid 0 reduces.

The total energy changes for all of the simulations with warm
air in a diffuse fluid 1 are shown in the bottom right of figure
4. The energy diverges for the unstable case with no transfers.
The other simulations are stabilised either by mass transfers or by
momentum transfer (drag). Both of these destroy kinetic energy
and so we expect to see the energy decrease monotonically for
the stabilised simulations. The simulation with the low diffusion
coefficient (Kσ = 200 m2s−1) stabilises the model after around
350 s but this looks unreliable as energy increases before this
point. A larger diffusion coefficient, (Kσ = 800 m2s−1) stabilises
the model more effectively. (The stability limit is Kσ∆t/∆x2 <
1
2 so for ∆t = 2s and ∆x = 100m the stability limit is Kσ =

2500 m2s−1.) The simulation is also stabilised by using drag
between the fluids. The low drag coefficient of CD = 1, rmin =

1 m and rmax = 2000 m leads to more rapid energy loss than any
of the other effective stabilisation methods. A high drag coefficient
(CD = 106) is also used to check the stability of the implicit
treatment of drag. It is not immediately obvious why the high drag
coefficient would lead to less energy loss when we usually think
of drag as removing kinetic energy. With high drag between the

fluids, kinetic energy is more evenly spread between the fluids and
lower velocities and lower shear could lead to less kinetic energy
dissipation by the dissipative advection.

4.3. Transfers Between Fluids to mimic convection
parameterisation

We seek to demonstrate that the numerical method is stable in
the presence of large transfers between fluids and we choose
transfer terms that lead to warm rising air in fluid one and
stable and descending air in fluid zero. We examine stability,
energy conservation and compare with the single fluid case. These
simulations start with no fluid one (all the mass initially in fluid
zero). Whenever mass is transferred into fluid one it takes its
properties with it so the solution should be identical to the single
fluid case and energy should be conserved. In order to maintain
stability, diffusion between fluids of Kσ = 100 m2s−1 and drag
with coefficient of CD = 1/2, rmin = 1 m and rmax = 2000 m
are used.

4.3.1. Transfers based on buoyancy perturbations

We test the numerical solution using the mass transfer terms
associated with buoyancy perturbations from eqns (21,22). To
test that warm air is transferred from fluid zero to fluid one,
we initialise the simulation with σ0 = 0 everywhere and the
warm perturbation in fluid zero only. The solutions for σ1, θ0,1
and u0,1 after 1000 s are shown in figure 5 using diffusivities
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With drag, CD = 1, rmin = 1 m, rmax = 2000 m Diffusion between fluids of Kσ = 200 m2s−1
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Figure 4. Results at t = 1000 s of simulations with stabilisation with a buoyant perturbation in fluid 1. σ1 is shaded, θ1 and θ2 are contoured every 0.2 K, u0 is shown
by black vectors and u1 by red vectors. Initially σ = 1

2 in a circle near the ground (as in fig 3). The time-series shows the normalised energy changes. Dashed lines show
negative changes. The x-axis is on a square root scale to emphasise the changes that occur early in the simulations.

Kθ = 106 m2s−1 (top left) and Kθ = 105 m2s−1 (bottom left).
Figure 5 confirms that θi and ui are similar in each fluid and
also similar to the solutions in figure 1. Using Kθ = 106 m2s−1,
warm fluid is completely transferred to fluid one whereas using
Kθ = 105 m2s−1, the transfer is partial.

The `2 errors shown in figure 5 show the root mean square
difference between the single fluid θ and the mean θ across
all partitions (

∑
i σiρiθi/

∑
i σiρi) normalised by the root mean

square single fluid θ. Fluid one is initialised with no mass and
without a warm bubble. The zero mass in fluid one means that
once mass is transferred to fluid one it should have identical
properties to fluid zero. This does not happen exactly; the RMS
errors are low but not zero. These RMS errors can be compared
with the RMS differences between the simulations initialised with
identical properties in both fluids and the single fluid in figure
1. These have RMS differences of 7.7× 10−14. Therefore the
simulation of a zero mass fluid with different initial conditions is

introducing numerical error although these errors are not obvious
when comparing the results of figure 5 with those in figure 1 by
eye.

The changes in energy for both solutions with mass transfer
based on buoyancy perturbations are shown in figure 6. The
energy loss is very similar to the single fluid case (figure 2).

4.3.2. Transfers based on horizontal divergence and vertical
velocity

The results of the simulation using mass transfer based on
horizontal divergence and vertical velocity from eqns (23,24) are
shown on the top right of figure 5. Again, since fluid one is initially
empty, its initial properties should not influence the final solution.
Instead, properties are transferred from fluid zero and the two
fluids evolve in the same way. The solutions are very similar
to the single fluid simulation, with normalised RMS differences
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Figure 5. Rising bubble solutions of σ1, θ0,1 and u0,1 after 1000 s with mass transfers based on Kθ∇2θ/θ and based on ∇h · u and u · g. All simulations use
Kσ = 100 m2s−1 and drag with coefficient of CD = 1/2, rmin = 1 m and rmax = 2000 m.

The `2 error norms are the normalised root mean square difference between the single fluid θ and the mean θ across all partitions
(
∑
i σiρiθi/

∑
i σiρi).

of 1.9× 10−7 which again is not big enough to visually see

differences between the results in figures 5 and 1. Using mass

transfer based on horizontal divergence leads to larger differences

from the single fluid case but more mass is transferred so this is not

a disadvantage of mass transfer based on horizontal divergence.

However transfer based on horizontal divergence leads to transfer

of the fluid that is behind the warm air and not the warm air

itself. The warm air actually expands horizontally and so is not

transferred. Using mass transfer based on horizontal divergence,

the drop in energy is again very similar to the single fluid case

(comparing figures 2 and 6).

4.3.3. Transfers based on buoyancy perturbations, horizontal
divergence and vertical velocity

Finally we use both types of mass transfer in the simulation
shown in the bottom right of figure 5. One might expect the
fluid transferred to be the sum of the fluids transferred based
on both processes separately but this is not the case because of
inconsistencies between the two transfer processes. For example,
∇2θ is positive behind the warm anomaly so fluid is transferred
back to fluid 1, despite the horizontal convergence and rising air.
It does not appear useful to use both types of transfer.

5. Summary, Conclusions and Further Work

A stable numerical method is presented for solving the
conditionally averaged equations of motion for representing
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Figure 6. Normalised energy changes for the rising bubble solutions with mass
transfer based on Kθ∇2θ/θ and based on ∇h · u and u · g. Dashed lines show
negative changes (all changes are negative). The x-axis is on a square root scale to
emphasise the changes that occur early in the simulations.

atmospheric convection with two fluids, one to represent stable,
environment air and the other to represent buoyant plumes. This
builds on traditional mass flux schemes by solving equations for
mass, temperature and momentum both inside and outside the
plumes and so net mass transfer by convection can be represented.
Our numerical method would also be suitable for the similar
extended EDMF scheme (Tan et al. 2018) and would allow net
mass transport by convection. Transfers of mass between the fluids
are proposed for two purposes:

1. The conditionally averaged equations with a single pressure
are ill-posed so transfer terms are formulated to represent
drag and mass transfer between fluids to ensure that the
different fluids do not diverge.

2. Transfer terms are proposed so that well resolved
convection is transferred to the buoyant fluid and stable or
sinking air is transferred to the stable fluid. These are based
on buoyancy anomalies (measured by the Laplacian of θ)
and based on horizontal divergence.

The transfer terms are applied explicitly to the individual partition
continuity equations (the transport equations for σiρi) and limited
to avoid negative mass in each fluid. These mass transfer terms
also appear in the temperature and momentum equations since
the transferred mass takes its other properties with it. In these
equations the transfer terms are treated implicitly as they can
be very large. The numerical treatment of these transfer terms
ensures boundedness and mass, momentum and internal energy
conservation on transfer.

A semi-implicit finite volume method is used to solve the
equations of motion in advective form which ensures boundedness
of the fluid fraction, σi, and removes time-step restrictions
based on the speed of sound. This aspect of the solution
entails substituting momentum equations of both (or all) fluids
into the continuity equation rather than just the mean flow
momentum equation as is done in semi-implicit weather forecast
models. Without this numerical treatment, net mass transport by
convection would trigger acoustic waves that are not handled by
the implicit part of the model which would lead to instability for
moderate time-steps.

The results presented in this paper use explicit Eulerian
advection schemes and have advective Courant number limits of
0.5. This Courant number restriction could be raised with the use
of semi-Lagrangian or implicit advection. This could be important
for large updrafts in plumes.

Results are presented of a well resolved rising warm bubble
simulated with the two fluid equations. Without transfer terms the

model is unstable since divergence in each fluid is not controlled.
The model is stabilised by adding either lateral entrainment as
diffusion of mass between the fluids or by adding drag between the
fluids. Transfer terms are also included to move the warm rising air
from the stable fluid to the buoyant fluid. The model loses energy
slowly due mainly to dissipative advection. The transfer terms are
implemented for stability and so that internal energy is conserved.

This paper has not answered the question of how much
stabilisation of the conditionally averaged equations is necessary,
just that two different techniques can stabilise a model of the
conditionally averaged equations. Numerical analysis to find the
minimum necessary stabilisation will be the subject of future
work.

The formulation of transfer terms in order to represent sub-grid
convection is also the subject of future work. These transfer terms
should depend on sub-grid variability of the primitive variables in
each fluid. For representing unresolved flow, parameterisations for
sub-filter-scale fluxes will also be essential.
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A. Spatial Discretisation

The spatial discretisation used to solve the multi-fluid Euler
equations is similar to Weller and Shahrokhi (2014) which was
used for single fluid equations. None of the spatial discretisation
described is specific for multi-fluid equations. The spatial
discretisation is general for arbitrarily structured meshes (for
example including hexagonal prisms, cut cells and refinement) but
the meshes used in this study are all fully structured.

A.1. Reconstruction of velocity fields at cell centres and faces
from face normals

The model uses a C-grid so normal components of the velocity
(volume fluxes) are stored at cell faces. Full velocity fields
are needed in the non-linear advection term, u · ∇u, of the
momentum equation (16). The volume flux across each face is:

Ui = ufi · Sf (55)

where uf is the velocity at the face and Sf is the face area vector.
The face velocity is interpolated from the cell centre velocity using

linear interpolation:

ufi = λuci + (1− λ)uNi (56)

where uci is the cell centre velocity of the cell that owns face f ,
uNi is the cell centre velocity of the cell on the other side of face
f and λ is the linear interpolation weight. The face area vector,
Sf is normal to the face, has the area of the face and points from
the owner cell to the neighbour cell. The cell centre velocity is
reconstructed from surrounding values of Ui using the standard
OpenFOAM fvc::reconstruct:

uci =

∑
f∈c

ŜfSTf

−1∑
f∈c

UiŜf (57)

where the hat denotes the unit vector and the notation f ∈ c
means all the faces, f of cell c. Note that

∑
f∈c ŜfSTf is a tensor

defined on each cell that depends only on the mesh and its inverse
multiplies the vector

∑
f∈c UiŜf for each cell.

This reconstruction is first-order accurate on arbitrary meshes
and second-order accurate on uniform structured meshes. It
simplifies to simple averaging of nearest neighbours on a uniform
structured mesh of hexahedra.

A.2. Non-Linear Advection

This section is again concerned with the discretisation of the
non-linear advection term, u · ∇u, of the momentum equation
(16). The non-linear advection described is not optimal but yields
satisfactory solutions using existing OpenFOAM operators to
implement a C-grid on an unstructured mesh.

The conditionally averaged Euler equations are solved in
advective form so that they are defined where σi = 0 and so that a
bounded advection scheme can be applied to σi. The finite volume
technique most naturally lends itself to solving equations in flux
form rather than advective form and so the non-linear advection
term of the momentum equation is calculated as:

ui · ∇ui = ∇ ·
(
uTi ui

)
− ui∇ · ui. (58)

This quantity is calculated at cell centres and then linearly
interpolated onto faces. Both terms use Gauss’s divergence
theorem:

ui · ∇ui ≈
1

V

∑
f∈c

uaiUi − uci
∑
f∈c

Ui

 (59)

where V is the cell volume and uai is the velocity interpolated
from cell centres to faces using the OpenFOAM (second-order)
linear upwind advection scheme. The prognostic variable is
Ui so the non-linear advection term from eqn (59) is linearly
interpolated onto faces and then the dot product is taken with Sf .
This advection is not bounded and requires more interpolations
and reconstructions than are usually used for C-grid advection
of velocity. It is used because it makes implementation of C-
grid advection straightforward in OpenFOAM. The linear-upwind
advection can be replaced by linear advection which gives better
energy conservation but the results are a bit noisy (not shown).

A.2.1. Pressure Gradient including the θi pre-factor

The pressure gradient term, cpθi∇π, of the momentum equation
(16) needs to be calculated on faces in the normal direction to
the face. Since we assume an orthogonal mesh this can simply be
calculated as the difference in pressure between the cells either
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side of the face:

cpθi∇π · Sf = cpθfi∇Sπ ≈ cpθfi
πc − πN

δ
|Sf | (60)

where θfi is θi linearly interpolated from cell centres to faces,
∇Sπ = ∇π · Sf , πc and πN are the values of Exner pressure in
the cells either side of face f and δ is the distance between the
cell centres. The interpolation of θ in this term means that the
discretisation uses Lorenz staggering in the vertical.

A.3. Transfer Terms in the Momentum Equation

The transfer terms on the right hand side of the momentum
equation (16) are calculated at cell centres and so need to be
linearly interpolated onto faces, and their dot products with Sf
are taken in order to calculate the rate of change of Ui. This is
not done using conservative interpolation so momentum could be
created or destroyed when mass is transferred.

A.4. Advection of σiρi

Here we consider the discretisation of the advection term of the
continuity equation (11). The mass transfer terms that appear in
the θ and momentum equations (16,15) involve division by σiρi
so for stability, σiρi should remain positive. Therefore σiρi should
be advected using a monotonic scheme. However for energy
conservation and for consistency between the continuity and
pressure equation (which uses the continuity equation, see section
3.2.5), ρi should be advected using centred differencing. The
advection term of eqn 11 is therefore discretised using Gauss’s
divergence theorem as:

∇ · (σiρiui) ≈
1

V

∑
f∈c

σiaρifUf (61)

where ρif = λρic + (1− λ)ρiN using the same interpolation
weights and notation as for eqn (56) and where σia is interpolated
from cell centre values of σi to faces using the monotonic
OpenFOAM van-Leer advection scheme:

σia = σiu + φ
(
σif − σiu

)
(62)

where σiu is the value of σi in the upwind cell, σif is the linearly
interpolated value and φ is the van-Leer limiter function:

φ =
r + |r|
1 + |r| , r = 2

(xd − xu) · ∇uσi
σid − σiu

− 1 (63)

where xu and xd are the locations of the upwind and downwind
cell centres, σid is the value of σi in the downwind cell and ∇uσi
is the gradient of σi calculated in the upwind cell using Gauss’s
divergence theorem. This discretisation is only monotonic when
ρi is sufficiently smooth in the direction of flow which is usually
achieved in low Mach number flows.

A.5. Advection of θi

Here we consider the advection term in the temperature equation
(15). For consistency with advection in the momentum equation
(eqn 59), θ advection is calculated in advective form using finite
volume operators (using Gauss’s theorem):

ui · ∇θi ≈
1

V

∑
f∈c

θaiUi − θi
∑
f∈c

Ui

 (64)

where θa is interpolated from cell centres to faces using the
OpenFOAM van-Leer advection scheme as for σi.
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