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ABSTRACT 

Microcystis spp., which occur as colonies of different sizes under natural conditions, have 

expanded in temperate and tropical freshwater ecosystems and caused seriously 

environmental and ecological problems. In the current study, a Bayesian network (BN) 

framework was developed to access the probability of microcystins (MCs) risk in large 

shallow eutrophic lakes in China, namely, Taihu Lake, Chaohu Lake, and Dianchi Lake. 

By means of a knowledge-supported way, physicochemical 

factors, Microcystis morphospecies, and MCs were integrated into different network 

structures. The sensitive analysis illustrated that Microcystis aeruginosa biomass was 

overall the best predictor of MCs risk, and its high biomass relied on the combined 

condition that water temperature exceeded 24 °C and total phosphorus was above 

0.2 mg/L. Simulated scenarios suggested that the probability of hazardous MCs 

(≥1.0 μg/L) was higher under interactive effect of temperature increase and nutrients 

(nitrogen and phosphorus) imbalance than that of warming alone. Likewise, data-driven 

model development using a naïve Bayes classifier and equal frequency discretization 

resulted in a substantial technical performance (CCI = 0.83, K = 0.60), but the 

performance significantly decreased when model excluded species-specific biomasses 

from input variables (CCI = 0.76, K = 0.40). The BN framework provided a useful 

screening tool to evaluate cyanotoxin in three studied lakes in China, and it can also be 

used in other lakes suffering from cyanobacterial blooms dominated by Microcystis. 

 

Keywords: Bayesian networks; cyanobacterial blooms; Microcystis morphospecies; 

extracellular microcystin; temperature warming; nutrients reduction  
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1. Introduction 

Microcystis is one of the most ubiquitous and notorious bloom-forming freshwater 

cyanobacterium and exhibits high phenotypic plasticity. Formation of colonies under 

natural conditions provides Microcystis a range of unique and highly adaptable 

eco-physiological traits, which enables them to dominate in eutrophic ecosystems 

associated with global warming (Carey et al., 2012; Harke et al., 2016; Zhang et al., 

2006). In the current cyanobacteria taxonomic system, about 30 morphospecies of the 

genus of Microcystis have been recognised according to a variety of colonial 

morphologies, including irregular, sponge-like, spherical and elongated, and some show a 

visible margin (Komárek and Anagnostidis, 1999; Xiao et al., 2017). Six observed 

morphospecies, M. aeruginosa (Kützing) Kützing, M. viridis (A. Brown) 

Lemmermann, M. flos-aquae (Wittrock) Kirchner, M. ichthyoblabe Kützing, M. 

novacekii (Komárek) Compère, and M. wesenbergii (Komárek) Komárek, are regarded as 

the main species and dominate successively in water blooms (Xu et al., 2008). The 

triggering factors and mechanisms of colony-forming process in Microcystis populations 

have been the subject of past studies; however, the knowledge of succession pattern 

among different morphospecies in natural lakes remains unclear (Xiao et al., 2018; Zhu et 

al., 2016). 

What is more, some species of Microcystis are potentially toxic and can produce highly 

stable and hepatotoxic polypeptides known as microcystins (MCs). The prevalence of 

toxic Microcystis blooms is emerging as one of the most important water quality and 

health issues in the world (Taranu et al., 2017). MCs can cause public health implications 

via a number of different exposure routes. Exposure to MC-LR (the most toxic 

microcystin variant) at sublethal doses have been reported to cause continual 

apoptotic cell death in the liver (Dong et al., 2016). MCs can remain in water 

environments due to their relative stability and half-life of days to weeks and enter food 

web by biotransformation and bioaccumulation, resulting in economic, social and 

ecological costs widely (Jones et al., 1995; Peng et al., 2010). The World Health 

Organization (WHO) proposed a widely used set of recommended action levels for risks 

associated with MCs exposure, which includes a safety limit of 1 μg/L MC-LR 

in drinking water and a chronic tolerable daily intake (TDI) of 0.04 μg kg
−1

 body mass 

per day for human consumption (WHO, 1998). One approach for managing and reducing 

the risk of toxic Microcystis blooms is to identify environmental conditions under which 

high MCs concentrations are likely to occur (Yuan et al., 2014; Yuan and Pollard, 2017), 

but appropriate data to estimate widely applicable relationships are limited (Lürling et al., 

2017). 

The morphotypes and genotypes of Microcystis have been proven to be well-suited in 

indicating the dynamics of MC production (Le Ai Nguyen et al., 2012; Sabart et al., 

2010; Srivastava et al., 2012; Wang et al., 2013). Considering the difference in 

environmental conditions (Joung et al., 2011; Rinta-Kanto et al., 2009), predictions by 

empirical models are complicated and likely site-specific. It is difficult to be generalised 

across relative large areas (Francy et al., 2016; Recknagel et al., 2017). Therefore, there is 

still a need of methodological approaches that can efficiently handle large and 

heterogeneous data, infer cause-and-effect relationships, and capture linear, non-linear, 

combinatorial, stochastic relationships among variables (Feki-Sahnoun et al., 2017). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/freshwater
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cyanobacteria
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phenotypic-plasticity
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/global-warming
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0045
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0100
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0345
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0345
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morphospecies
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0135
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0310
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0320
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0315
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0350
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0350
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/polypeptides
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystins
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0270
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-death
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0065
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/food-webs
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/food-webs
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bioconversion
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bioaccumulation
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0120
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0225
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/drinking-water
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0295
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0340
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0335
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0165
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0165
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/genotype
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0160
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0245
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0245
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0260
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0290
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0125
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0240
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0080
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0230
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0075
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Bayesian network (BN) represents a useful framework, because it can integrate multiple 

sources of information to estimate model parameter values and account for result 

uncertainty. As a result, BN can avoid reliance on a single deterministic outcome that 

does not reflect the inherent ecosystem variability (Arhonditsis et al., 2007). Other major 

benefits of the BN model include the capability to incorporate expert knowledge, 

automated learning of relationship structures, and the use of conditional probabilities 

(CPs) from databases with missing values (Landuyt et al., 2013). 

These advantages have resulted in many applications of the BN model in managing 

eutrophic ecosystem. For instance, Borsuk et al. (2004) described BN-integrating models 

of the various processes involved in eutrophication in the Neuse River Estuary, North 

Carolina. The results of BN models gave decision makers a realistic appraisal of the 

chances of achieving desired outcomes under alternative nutrient reduction 

strategies. Hamilton et al. (2007) built a BN to determine the cyanobacterial bloom 

development in Deception Bay, Queensland, Australia. The most influential factors 

for Lyngbya majuscula bloom occurrence were identified to be water temperature, 

nutrient, and light availability. Rigosi et al. (2015) developed BN to determine the 

probability of cyanobacterial blooms with a broad range of temperature and nutrient 

inputs. The results suggested that the interactions between nutrients and temperature 

determined the high hazardous blooms. To the best of our knowledge, the BN model has 

not been applied in the domain of cyanotoxin prediction. 

This paper aims to demonstrate the feasibility of the BN in predicting the risk of 

toxic Microcystis and MCs. Firstly, we compared succession pattern 

among Microcystispopulations in different studied lakes, and identified the best variables 

for predicting total Microcystis biomass, toxic Microcystis biomass and MCs 

concentrations. Secondly, three knowledge-supported BN models were built to assess 

MCs risk under different scenarios. Finally, we compared the model performance of a 

purely data-driven BN including species-specific biomass with other common 

classification algorithms. 

2. Materials and methods 

2.1. Study site and data  

In this study, we collected monthly data from three large shallow lakes between 

October 2008 and October 2010. All studied lakes have experienced 

severe eutrophication and increased occurrences of cyanobacterial blooms in the past few 

decades. Although it is a little out of date, cyanobacterial blooms in these lakes still 

reoccur and persist in recent years. Therefore, the data between 2008 and 2010 are valid 

for the model development. The number of sampling transects were 23 in Taihu Lake, 11 

in Chaohu Lake, and 15 in Dianchi Lake (Fig. S1). Table 1 summarized the limnological 

characteristics of each lake. 

Non-diazotrophic Microcystis was the most common bloom-forming genus and showed 

seasonal variability. In Taihu Lake and Chaohu Lake, the biomass of Microcystis grew 

rapidly and dominated cyanobacterial communities from late April, and then its biomass 

decreased gradually from November onwards. By contrast, Microcystis blooms in 

Dianchi Lake can persist for up to 10 months and cover the majority of the lake’s surface 

(Wu et al., 2016). Microcystis biomass was not uniformly distributed across the sampling 

https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0015
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0155
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0035
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/eutrophication
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/estuaries
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0095
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/lyngbya-majuscula
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0235
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biomass
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/eutrophication
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0005
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biomass
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0305
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sites. For example, the distribution of Microcystis biomass showed a decreasing trend 

from the western to the eastern region of Chaohu Lake, and declining from the northern 

to the southern region of Dianchi Lake. The northwestern sampling sites in Taihu Lake 

contributed a higher proportion of the total Microcystis biomass relative to other sampling 

sites. 

During each transect, water samples were collected monthly at 0.5 m depth of surface 

layer. A litre of water was collected using a polymethyl methacrylate sampler and 

preserved with an acid Lugol’s iodine solution (1% final concentration) to identify 

the phytoplanktonassemblages. Fresh samples were collected with a phytoplankton net 

(64 μm mesh size) from surface water (0 m to 0.5 m) and placed in 50 mL plastic bottles 

for identification of Microcystis morphospecies. A litre of water sample was brought back 

to the laboratory and filtered through GF/C glass microfiber filters (1.2 μm, Whatman) 

for nutrients and Chl-αanalysis. Compared with relatively large data volume (n = 1090) of 

physical-chemical parameters and Microcystis morphospecies, MCs in water column 

were sampled across a total of 17 sampling transects. An additional litre of water sample 

was stored in glass bottles and frozen at −20 °C until MCs analysis. 

Water quality parameters of each site, namely, water temperature (WT), electrical 

conductivity (EC), dissolved oxygen (DO), and pH were measured at 0.5 m depth of 

surface water with Multisensor Sonde (YSI 556MPS, USA). Transparency was measured 

with a 10 cm-diameter black-and-white Secchi disk (SD). Shade index (SI) was 

calculated as the ratio of lake depth to transparency. Nutrients were analysed for total 

nitrogen (TN), total phosphorus (TP), dissolved inorganic nitrogen (DIN; ammonium 

(N H4+) + nitrate (N O3-) + nitrite (N O2-)), and dissolved inorganic phosphorus (DIP). 

TP and TN concentrations were measured by colorimetry after digestion with K2S2O8 + 

NaOH (Ebina et al., 1983). DIP was determined using the molybdenum blue method. 

N H4+ was determined using the indophenol blue method. N O3- and N O2- were 

measured with the cadmium reduction method (APHA, 1995). 

The Microcystis morphospecies were classified according to the morphological 

descriptions given by Komárek and Komárková (2002). Cell density was estimated by 

picking each Microcystis morphotype colonies from fresh samples, fixing each with 

0.1 mL of the Lugol’s iodine solution and shaking it at 120 rpm until the colonies became 

unicellular to estimate cell density. Cells counting was repeated three times in a 

haemocytometer at 400× power. The average number of cells in each type of colony was 

used to calculate the relative abundance of each type of Microcystis colony, which was 

further multiplied to the number of colonies present to estimate the abundance of each 

morphospecies. Microcystis biomass (BM) was calculated on the basis of abundance 

(Biomass = algal density (1 g/cm
3
) × size × abundance). More details are available in Hu 

et al. (2016) and Zhu et al. (2016). Species-specific biomasses regarding six commonly 

morphological subspecies included Microcystis aeruginosa (BMA), Microcystis 

wesenbergii (BMW), Microcystis novacekii (BMN), Microcystis ichthyoblabe (BMI), 

Microcystis flos-aquae (BMF), and Microcystis viridis (BMV). 

Water samples (100 mL) were filtered through GF/C filters to remove plankton cells. The 

filtrates were measured by 96 wells filled with MCs for enzyme-linked immunosorbent 

assays (ELISA) (Wu et al., 2014). The samples were analysed in triplicate and compared 

with a 0.1 μg/L to 2.0 μg/L calibration curve of MC-LR standard (provided by the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/samplers
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phytoplankton
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morphospecies
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/secchi-disk
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nitrate
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nitrite
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/colorimetry
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0070
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cadmium
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0010
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0140
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0105
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0105
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0350
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis-aeruginosa
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/plankton
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/enzyme-linked-immunosorbent-assay
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/enzyme-linked-immunosorbent-assay
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0300
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Institute of Hydrobiology, Chinese Academy of Sciences) performed on each plate. 

Enzyme reactions were initiated by adding a substrate solution (0.1 M sodium 

acetate buffer with pH of 5.0) that contained 100 μg/mL of TMBZ and 0.005% (v/v) 

H2O2 and stopped with 1 M H2SO4. Absorbance at 450 nm was measured with a 

microtiter plate reader. 

2.2. Bayesian network 

The stepwise of the development of Bayesian network in this study was summarized 

in Fig. 1. The BN is probabilistic graphical model for a set of variables, which is defined 

in terms of two structural components, namely, directed acyclic graph (DAG) and 

conditional probabilitytables (CPTs) (Carvajal et al., 2015). The probability distribution 

of a node X is determined by the realised states of its preceding or parent nodes by using 

CPs P{X|parents[X]}. The joint probability distribution of all variables can be calculated 

to account for the independencies encoded by the network structure (Eq. [1]). 

 (1) 

where P(X1, X2,…, Xn) is the joint probability distribution of the variables (X1, X2,…, Xn). 

Variable Xi corresponds to a random variable represented by the node i in (1,…, n), 

and parents(Xi) indicates a set of random variables associated with the parents of nodes i. 

2.2.1. Knowledge-supported and data-driven BN development 

Three network structures of knowledge-supported BN, which contained a two-layer 

structure and different variables, were constructed to integrate field data with empirical 

knowledge for managing hazardous Microcystis bloom. Variable discretisation and DAG 

construction were conducted following two stepwise approaches. Firstly, linear regression 

models with forward selection were used to explore the relationships amongst MCs, 

species-specific Microcystisbiomass and environmental factors. Akaike information 

criterion (AIC) was selected as the coefficient of determination to identify the best model 

(Akaike, 1974). The discretization of continuous variables is a key step in the 

implementation of the BN model. Secondly, variable discretisation was performed on the 

basis of literatures and data distribution. MCs concentrations and the biomass of 

species-specific Microcystis can be discretised into three classes (low, moderate, and high) 

according to an alert level framework (ALF) for cyanobacteria in drinking 

water (Izydorczyk et al., 2009). WT was separated into three parts in accordance with 

distinct thresholds by Rigosi et al. (2015). By contrast, nutrients discretisation largely 

relied on their lower and upper quartile values (Table S1). 

Alternatively, to develop a purely data-driven BN model, an exhaustive series of 

development settings were tested, including three type of network structure (naïve Bayes 

(NB), tree-augmented naïve (TAN), and augmented Bayesian naïve with hill-climbing 

algorithms (BAN)), two type of discretization (equal width and equal frequency), and 

four discrete classes per variable (2–5 intervals). The principle of selecting variables 

depended on both the results of linear regressions and the low-cost availability in online 

monitoring. Models were developed based on each unique combination of settings. To 

select an optimal setting, the developed models were compared on the basis of predictive 

performance (Correctly Classified Instances, CCI). One hundred iterations were run, as 

exceeding iterations did not affect average model performance (Fig. 2). This model 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sodium-acetate
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sodium-acetate
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0005
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0050
https://www.sciencedirect.com/science/article/pii/S1568988319300113#sec0005
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0005
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cyanobacteria
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/drinking-water
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/drinking-water
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0110
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0235
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0010
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development process led to 2400 iterations, which were performed with the integration of 

three existing R packages ('bnlearn', 'infotheo', and 'caret') (Boets et al., 2015). 

2.2.2. Model evaluation and scenario analysis 

A sensitivity analysis was performed on the endpoint node to determine 

which Microcystismorphospecies most affected the assigned MCs concentrations (Marcot 

et al., 2006). The result of the sensitivity analysis generated percentages that were 

compared amongst nodes of the same network. This study assessed the effect of assigning 

a probability of 100% to a particular state of an input node by using the ‘enter finding’ 

Netica™ function while the distributions of the other input variables remained constant. 

The probabilities of Microcystisand toxic M. aeruginosa were evaluated under different 

combinations of WT, TP, and DIN concentrations. Scenarios, which included a trend of 

higher WT combined with TN decrease, were simulated to evaluate the risk of MCs 

concentrations. Changes in the probability of MCs hazard (low, moderate, and high) were 

calculated for all scenarios. 

On the basis of a discretized dataset, our research randomised and partitioned the dataset 

into 10 equally sized sets. Twenty repetitions were performed by using a training set 

(9/10 of the data) and a testing set (1/10 of the data). The training set was used to learn 

the BN model. Two performance metrics, namely, Cohen’s Kappa (K) and CCI were 

adopted. The mean and standard deviations of CCI and K were calculated to evaluate the 

behavior of different BN models. In general, a model with a CCI of at least 0.70 and K 

higher than 0.4 is considered as a good model (Gabriels et al., 2007). In addition, seven 

common classification algorithms, namely, KNN (K-Nearest Neighbor), ID3 (Iterative 

Dichotomiser 3), LR (logistic regression), C4.5, SVM (Support Vector Machine), RF 

(random forest), and MLP (Multi-layer Perceptron), were applied and compared for the 

same discretized data. Models were designed and evaluated using the Waikato 

Environment for Knowledge Analysis (WEKA) data mining software v.3.6.13 (Hall et al., 

2009). Duncan’s test was performed in R package (agricolae) to test significant 

differences among predictive models. 

3. Results 

3.1. Relationship among environmental factors, species-specific biomasses and MCs 

Linear regression models were used to determine the best variables for predicting 

species-specific biomasses and MCs. MCs concentrations across the lakes were explained 

by a combination of abiotic factors including SI, TN, and WT (Table 2, models 1–3). 

Despite the differences in regression coefficients, regression models for 

total Microcystis biomass (BM) were obviously similar with those for M. 

aeruginosa biomass (BMA). We found water temperature was one of the most explanatory 

variables in predicting Microcystis biomass. TP and DIN were the next important 

explanatory variables after temperature. The light conditions, indicated by the shade 

index, also played a significant role (Table 2, models 4–7). In comparison, the biomass 

of Microcystis aeruginosa was associated with TP, WT, DIN, and TN (Table 2, models 8–

11). 

The succession pattern among Microcystis populations in Taihu Lake and Chaohu Lake 

were similar (Fig. 3). M. ichthyoblabe and M. flos-aquae dominated in the early stages of 

bloom; subsequently, M. aeruginosa and M. wesenbergii began to co-dominate in 

https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0030
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0175
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0175
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0085
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0090
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0090
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biomass
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0010
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0010
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis-aeruginosa
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0010
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0015
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summer and autumn, while M. viridis was often found in October and November. In 

Dianchi Lake, M. viridis and M. wesenbergii dominated the total Microcytis biomass, 

followed by M. aeruginosa, in comparable proportions from February to July. Sensitivity 

analysis was conducted with a four-node network including one additional parent node. 

Different Microcystis morphospecies that potentially affect the risk of MCs were 

connected one-at-a-time, and sensitivity results defined as percentage hazard were shown 

in Table 3. The results showed that M. aeruginosa biomass was the single most 

explanatory variable for evaluating the risk of MCs. As regards other morphospecies, 

their correlations with MCs relied on environmental conditions. For instance, the BN 

model including M. viridis showed that WT became the most important variable (network 

E in Table 3). Sensitivities of MCs hazard to the biomass of different morphospecies in 

the network were listed in the order of their importance: BMA, BMV, BMW, BMI, BMF, and 

BMN. 

3.2. Predicting MC risk via knowledge-supported and data-driven BN models 

Three knowledge-based BN were adopted. Firstly, a network of six nodes was adopted to 

analyse the relationships between total Microcystis biomass (BM) with WT, TP, DIN, DIP 

and SI (Fig. 4a). The arrows in the network did not show the cause-effect relationships 

but diagnostic relationships, which provided a substantial prediction of 

BM (CCI = 0.81 ± 0.04, K = 0.29 ± 0.04) (Table 4). Secondly, a network of five nodes was 

used to explore the relationships between toxic M. aeruginosa biomass (BMA) with TP, 

WT, DIN, and TN (Fig. 4b). The current BN provided a stable and credible prediction of 

BMA, because relatively few input variables reduced the amount of CPs (170) that had to 

be learned by filed observations. The predictive performance was good with a mean CCI 

of 0.94 ± 0.02 and mean K of 0.55 ± 0.05. Thirdly, a simplified network including four 

nodes, namely, MC hazard, WT, TN and SI, was employed (Fig. 4c). Although the 

predictive performance of MCs was relatively low (CCI = 0.62 ± 0.16, K = 0.14 ± 0.05), 

this BN model was easy to interpret and yielded important ecological insight between 

environmental variables and MCs. 

A data-driven BN with 12 variables was developed to provide accurate prediction for 

MCs risk (Fig. 5). The optimal model development settings, defined via model 

development simulations, were equal width discretization and naïve Bayes classifiers (Fig. 

2). To reduce model complexity, discretization in two states was chosen as one of the 

optimal settings. The arrows in the network represented diagnostic relations among 

different input variables instead of causal ones. This BN model reduced the amount of 

conditional probabilities (CPs = 27), thereby leading to a substantial prediction of MCs 

(CCI = 0.83 ± 0.08, K = 0.60 ± 0.19). With the same discretized data, some comparative 

models including SVM and RF could also achieve the similar prediction accuracies even 

without parameters optimization (Table 5). When the biomasses of M. aeruginosa and M. 

viridis were included into the BN model, the predictive performance was obviously 

improved with the increase of CCI from 0.76 to 0.83. The importance of all input 

indicators in different lakes were sorted by sensitive analysis (Fig. 6). The results 

indicated that sensitivities of MCs hazard to the different input variables were listed in 

the order of their importance: BMA, WT, BMV, SI, N H4+, pH, DO, TP, BM, N O3-, and 

TN. The risk of MCs in response to input variables in Dianchi Lake was clearly different 

from the other two lakes. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morphospecies
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0015
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0015
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0020
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0020
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0020
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0020
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0025
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0010
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0010
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0025
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0030
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3.3. The BN model as a decision support tool to manage toxic Microcystis 

Knowledge-supported BN allowed quantification of the probability of low, moderate, and 

high Microcystis biomass in given particular conditions of WT, TP, and DIN (Table 6). 

The high probability of total Microcystis biomass and M. aeruginosa biomass increased 

with increasing WT and TP concentrations by scenarios analysis. When combining WT 

and TP, probabilities varied, demonstrating an interaction rather than an addictive effect 

of these two factors. At low WT, the probability of high hazardous BM was low even at 

high TP concentrations. At intermediate and high WT, there was evidence of dependency 

on TP for high hazardous BM and BMA. Moreover, when WT exceeded 24 °C and TP was 

above 0.2 mg/L, DIN concentration was the possible important explanatory variable. The 

highest hazardous BMA was more likely to occur at lower DIN (< 0.4 mg/L). 

To evaluate the effects of climate warming and TN decline, knowledge-supported BNs 

with endpoint of M. aeruginosa and MCs were employed (Fig. 4b and c). The decrease in 

TN from initial state to a state of low concentration (TN < 2.0 mg/L) slightly increased 

the probability of high MCs (≥1.0 μg/L) by 3%, but this change attenuated the probability 

of high BMA by 1.1% (Table 7). Increasing WT from initial state to a warming state 

(WT ≥ 24 °C) largely increased the probability of high BMA and MCs by 14.9% and 

12.8%, respectively. By contrast, when combining WT increase and TN reduction, the 

probability of high hazardous BMA and MCs dramatically increased by 19.8% and 23.9%, 

respectively. 

4. Discussion 

Non-diazotrophic Microcystis populations in bloom season were composed of toxic and 

non-toxic strains. It is well recognized that quantitative PCR (qPCR) for MCs synthesis 

genes (mcyA-mcyJ) can well reflect the amount of MC-producing populations (Kardinaal 

et al., 2007; Singh et al., 2015). A small number of Microcystis strains, however, had been 

shown to contain the biosynthesis genes but lack detectable MCs (Mikalsen et al., 

2003; Tillett et al., 2001). In addition, the time-consuming and skill-intensive 

characteristics of qPCR method made it difficult to be applied in on-site monitoring for 

water quality. Microcystismorphospecies, by contrast, were relatively easy to be identified 

and counted by microscopewith ImageTool software (i.e., Olympus 

DP-Soft, https://www.olympus-ims.com/), because of distinct phenotypes features for 

different Microcystis morphospecies. For instance, toxic M. aeruginosa generally grows 

irregularly in shape, elongated or lobed containing distinct holes, relatively firm. 

Non-toxic M. wesenbergii is irregular, spheroidal to lobate or elongate with a visible 

margin that is filled with mucilage (Komárek and Komárková, 2002). 

Owing to the diversity of MC genes within toxic Microcystis populations, it is still 

unclear to which extend morphological characteristics are linked to the ability to produce 

MCs (Kurmayer et al., 2002; Via-Ordorika et al., 2004). In this study, although 

succession patterns of Microcystis populations in three studied lakes were different, the 

microscopical analysis of different morphospecies was considered indicative for MCs 

production. Sensitivity analysis with a four-node BN showed that M. aeruginosa was the 

most important morphotypes in determining the high MCs. The results echoed the 

previous experiments in Taihu Lake by Otten and Paerl (2011), which suggested that 

caution should be exercised when the M. aeruginosa morphotype is present. M. 

https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0030
https://www.sciencedirect.com/science/article/pii/S1568988319300113#fig0020
https://www.sciencedirect.com/science/article/pii/S1568988319300113#tbl0035
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/real-time-polymerase-chain-reaction
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0130
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0130
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0250
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biosynthesis
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0180
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0180
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0275
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morphospecies
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microscopes
https://www.olympus-ims.com/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/mucilage
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0140
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0150
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0280
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0195
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viridis was the next important biotic indicators, but MCs production of this genus was 

dependent on environmental conditions (Ozawa et al., 2005; Song et al., 1998). M. 

wesenbergii so far has never been found to produce microcystin, while its correlation 

with MCs might be attributed to the coexistence with M. aeruginosa. The 

morphospecies M. flos-aquae and M. ichthyoblabe were generally considered capable of 

MCs production, but both appeared to be responsible for a small portion of the toxic 

potential. In agreement with results from laboratory cultures (Hu et al., 2016), strains 

of M. viridis from Dianchi Lake produced large amounts of MCs, whereas strains of M. 

flos-aquae from Taihu Lake produced trace amounts of MCs or no toxin. 

Climate warming has been considered the key factor responsible for promoting 

cyanobacterial bloom (Kosten et al., 2012; O’neil et al., 2012; Paerl and Paul, 2012). 

More recent studies also suggested that warming temperature could prompt the growth of 

some Microcystis strains, potentially changing the distribution of cyanotoxin (Bui et al., 

2018; Mantzouki et al., 2018). In shallow well-mixed lake, climate warming increases 

nutrients concentrations by enhancing mineralization and 

anoxia-mediated sediment phosphorus release to sustain the nutrients 

requirement of cyanobacteria (Jensen and Andersen, 1992). Long-term trends of nutrients 

provided evidence that the gradually decline TN:TP over the last decade in some 

eutrophic lakes, i.e., Taihu Lake and Dianchi Lake (Xu et al., 2017; Yan et al., 2016). 

Therefore, the level of nutrient interaction necessary to counteract the effects of warming 

and how nutrients interact with temperature should be thoroughly understood to better 

manage the risk of cyanotoxins. The results of BNs corroborated previous finding in 

experimental manipulations that higher temperature coupled with elevated phosphorus 

concentrations promote growth rates of toxic Microcystis cell (Davis et al., 2009). 

Interestingly, when water temperature exceeded 24 °C and total phosphorus was above 

0.2 mg/L, evidence from BNs showed a coincidental correspondence between low DIN 

concentrations (< 0.4 mg/L) and high biomass of toxic M. aeruginosa. High DIN 

concentrations (> 1.5 mg/L), by contrast, corresponded to high biomass of 

total Microcystisand considerable biomass of M. aeruginosa. Even though it was difficult 

to distinguish between cause and effect, prior work has shown a remarkable agreement 

that nitrogen concentration and more specifically the availability of different nitrogen 

forms may influence the overall toxicity of blooms (Donald et al., 2011). 

Nutrient addition bioassays in Taihu Lake indicated that the lake shifts from 

phosphorus-limitation in winter-spring to nitrogen-limitation in cyanobacteria-dominated 

summer and fall months (Paerl et al., 2011). During summer months, regenerated 

nitrogen (N) was the dominant source of combined N available to phytoplankton (Paerl et 

al., 2015). Meanwhile, Microcystis appear to out-compete diazotrophic 

competitors, Dolichospermum and Aphanizomenon, for dwindling N sources (Blomqvist 

et al., 1994), including ammonium generated from decomposing organic matter (N 

regeneration). Our results indicated that ammonium, rather than nitrate, was the most 

important N forms in predicting MCs, buttressing previous finding by Monchamp et al. 

(2014). Beversdorf et al. (2013) proposed that a new N production was a limiting factor 

to support the growth of the potentially toxic Microcystis. Thus, in the summer, the low 

concentrations of DIN may be associated with high biomass of M. 

aeruginosa. Furthermore, simulated scenarios of TN decrease also predicted a lot 

increase in MC concentrations, but toxic M. aeruginosa biomass tended to be constant. 

https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0200
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0255
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystins
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0105
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0145
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0190
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0210
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0040
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0040
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0170
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sediments
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nutrient-requirements
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nutrient-requirements
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cyanobacteria
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0115
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0325
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0330
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0055
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biomass
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0060
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bioassays
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0215
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phytoplankton
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0220
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0220
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/aphanizomenon
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0025
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0025
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nitrate
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This result lent support to field observations in Taihu that decreasing trend of TN does not 

coincide with distinctive changes in cyanobacterial toxicity (Hu et al., 2016). More 

seriously, we predicted that MC risk was much higher under the synergistic effect 

between higher temperature and nutrients (TN and TP) imbalance, as the predicted 

further warming of at least 1.8 °C until the end of this century (Wagner and Adrian, 

2009). 

The concentrations of MCs in water column are a function of the biomass of toxigenic 

species and the amount of toxin per unit cell. While MC cell quotas are not only 

determined by the presence of the synthesizing genes, but also by environmental factors 

that influence MC synthesis or fate (Pacheco et al., 2016). Therefore, prediction of the 

variations in MCs should require a knowledge of environmental conditions under which 

certain Microcystisspecies are more likely to produce toxins. Here, we explored a 

framework of BN for predicting the likelihood of high MCs concentrations. The 

predictive performance was substantial based on twelve biotic and abiotic variables. 

However, if the proposed model will be adopted in the real-time warning system, a 

temporal discrepancy from strain growth to toxin release should be deliberated. The 

inputs and outputs in predictive model should not be synchronized variables, because 

most MCs are usually released into water after the lysisof toxic Microcystis cell (Dong et 

al., 2016). This problem, however, is unlikely to be possible solved under the current 

framework of BN. Other technology such as dynamic Bayesian network would be more 

suitable and worth further study. 

Real-world ecosystems will differ in many aspects, including temperature range, nutrients 

concentrations, cyanobacterial communities, and succession pattern. As expected, 

management and prediction strategies for cyanotoxins were largely dependent on 

lake-specific environmental gradients (Taranu et al., 2012). Hence, the repetition of this 

model development process in other lakes suffering from Microcystis blooms may be 

preferable to the indiscriminate use of models. The efficacy of different management 

options can be tested via the built BN. Same as many studies, this study has limitations 

and several open issues should be considered. Firstly, there was no strictly independence 

assumption on input variables of naive Bayes classifier, because this methods was 

prepared to investigate the possible of applying date-driven BN. Secondly, are there some 

other low-cost factors can be used to achieve MCs prediction? In future, continuously 

meteorological and hydrologic factors will be added to improve the predictive 

performance of BN. Lastly, although data in this study were collected during the period 

of 2008–2010, they are still valid to construct and test BNs models in these three lakes 

where no marked change of phytoplankton and nutrients happened in the last decade. The 

future studies including more recent data will certainly further improve our understanding 

and modelling of MCs risk in China and other countries. 

5. Conclusions 

This study highlighted the importance of succession pattern 

of Microcystis morphospecies in MCs risk assessment, and provided a reference for the 

prediction of cyanotoxin. The proposed BNs provided an objective, systematic and 

applicable way of estimating potentially toxic ‘hot spots’ of unacceptable MCs levels in 

three studied lakes. The framework of BN herein allowed us to identify the importance of 

explanatory variables, and to test the efficacy of different management options via 

https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0105
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0285
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0285
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0205
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/lysis
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0065
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0065
https://www.sciencedirect.com/science/article/pii/S1568988319300113#bib0265
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis
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scenario analysis. We suggested that future nutrients reduction should consider toxic 

versus non-toxic cyanobacterial populations dynamics and the potential impacts from 

climate warming. 
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Fig. 1. Flowchart of the BN development for assessing MCs risk by data-driven and 

knowledge-supported ways. 
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Fig. 2. The effect of parameter selection on predictive performance of date-driven BBN 

models. Three types of network structure were tested including naïve Bayes (NB), 

tree-augmented naïve (TAN), augmented Bayesian naïve with hill-climbing algorithms 

(BAN). 
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Fig. 3. Seasonal variations in the proportion of various Microcystis species based on 

colonial morphology. The data are average values at multiple sites in each lake. 
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Fig. 4. Bayesian network structure for assessing toxic cyanobacteria hazard class 

represented as (a) total biomass of Microcystis, BM, (b) Microcystis aeruginosa biomass, 

BMA, and (c) microcystins concentration, MCs. All continuous variables are discretized 

into three states, and the black horizontal bars along each node indicate the probability (%) 

of being in a particular state. In panel c, the arrow indicates that network structure added 

alternatively with different taxon-specific Microcystis biomasses (M. aeruginosa, M. 

viridis, M. wesenbergii, M. ichthyoblabe, M. flos-aquae, M. novacekii). 
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Fig. 5. BN created from data-driven model development. Apart from specific variable 

‘Lake’, which refers to the three sampled lakes, all continuous variables are discretized 

into two states, and the network structure corresponds to that of a Naïve Bayes classifier. 

The black horizontal bars within each node indicate the probability (%) of being in a 

particular state. 

  



22 

 

 

Fig. 6. Sensitivities of MCs hazard to different biotic and abiotic factors in three studied 

lakes, adopting the data-driven BN.
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Table 1. Summary of the average of limnological variables and the results of their 

correlations with microcystin concentrations in three studied lakes during the period 

2008–2010. 

 
Taihu Lake Chaohu Lake Dianchi Lake 

Latitude 30°56′˜31°34′N 30°25′˜31°43′N 24°29′˜25°28′N 

Longitude 119°53′˜120°34′E 117°17′˜117°52′E 102°29′˜103°01′E 

Altitude (m) 3 170 1886 

Mean depth (m) 1.9 3.1 4.7 

Surface area (km
2
) 2338 780 306 

Water residence time (year) 1 0.5 3.5 

pH 8.4 ± 0.6 8.4 ± 0.4 9.2 ± 0.7 (+**) 

DO (mg/L) 8.9 ± 2.4 (–**) 8.7 ± 2.6 8.0 ± 3.5 

SD (cm) 30 ± 16 (+*) 30 ± 13 (–**) 20 ± 10 

Wind speed (m/s) 3.1 ± 1.8 2.9 ± 1.7 (–*) 3.4 ± 1.9 (–*) 

Chl α (μg/L) 44.7 ± 73.2 (+**) 60.5 ± 117.8 157.2 ± 203.3 (+**) 

TN (mg/L) 3.56 ± 2.68 (+**) 2.64 ± 1.51 3.51 ± 2.19 

DIN (mg/L) 1.46 ± 0.69 1.04 ± 0.62 (–*) 0.68 ± 0.71 (–**) 

TP (mg/L) 0.16 ± 0.09 0.18 ± 0.23 0.21 ± 0.20 

DIP (mg/L) 0.02 ± 0.01 0.03 ± 0.02 0.04 ± 0.05 

Cyanobacteria biomass 

(mg/L) 
17.8 ± 34.4 (+**) 34.8 ± 83.7 (+**) 54.6 ± 52.8 (+*) 

Microcystis biomass (mg/L) 16.7 ± 33.7 (+**) 22.4 ± 80.3 (+**) 41.8 ± 36.8 (+**) 

Dolichospermum biomass 

(mg/L) 
0.9 ± 2.4 (+*) 10.6 ± 18.3 3.7 ± 10.2 

Aphanizomenon biomass 

(mg/L) 
0.1 ± 0.2 1.4 ± 3.3 8.6 ± 30.5 

Dissolved microcystin (μg/L) 0.97 ± 0.64 1.02 ± 0.75 0.48 ± 0.24 

Note: Signs within brackets behind each variable indicate this variable either promotes (+) 

or reduces (–) the MCs concentration in lake-specific dataset.* Correlation with MCs is 

significant at P <  0.05. ** Correlation with MCs is significant at P <  0.01. 
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Table 2. Linear regression models explaining the toxicity of cyanobacterial blooms. The 

model results come from a forward stepwise selection procedure, and 

explain microcystin concentrations (MCs), total Microcystis biomass (BM) 

and Microcystis aeruginosa biomass (BMA) by several selected variables, including water 

temperature (WT), total nitrogen (TN), total phosphorus (TP), dissolved inorganic 

nitrogen (DIN), dissolved inorganic phosphorus (DIP), and shade index (SI). All 

regression models were significant (P <  0.0001). 

No. 
Dependent 

variable 
Linear model r

2
adj AIC F df 

1 

Log MCs 

–0.29LogSI*** 0.08 126 19 201 

2 –0.31LogSI***+ 0.25 Log TN** 0.12 119 14 200 

3 –0.31LogSI***+ 0.23 Log TN** + 0.19 Log WT* 0.14 115 12 199 

4 

Log BM 

–0.47***+ 1.04 LogWT*** 0.19 2098 249 1088 

5 0.38***+ 1.05LogWT***+ 1.06 LogTP*** 0.36 1835 308 1087 

6 0.36***+ 1.01LogWT***+ 1.07 LogTP***–0.43Log DIN*** 0.42 1732 263 1086 

7 
–0.53***+0.98LogWT***+0.82LogTP***–

0.33LogDIN***+0.45LogSI***–0.11LogDIP** 
0.46 1654 156 1083 

8 Log BMA 0.46***+0.35LogTP*** 0.09 508 108 1088 

9 
 

0.18***+0.35LogTP***+0.24LogWT*** 0.14 450 88 1087 

10 
 

0.18***+0.35LogTP***+0.24LogWT***–0.06LogDIN** 0.14 445 68 1086 

11 
 

0.12*+0.33LogTP***+0.23LogWT***–0.07LogDIN**+0.11LogTN** 0.15 439 48 1085 

Note: AIC, Akaike Information Criterion; df, degree of freedom.The significance of the 

regression coefficients is indicated by.*** P <  0.001. ** 0.001< P < 0.01. * 0.01 < P < 0.05. 
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Table 3. Sensitivities of MCs hazard to different species-specific biomass, adopting the 

four-node networks. 

 
MCs hazard sensitivities 

Network WT TN SI BMA BMW BMF BMI BMV BMN 

A 1.80 1.52 4.49 7.73 
     

B 2.66 1.09 1.02 
 

1.25 
    

C 3.42 2.19 2.53 
  

0.59 
   

D 2.72 1.87 4.96 
   

1.05 
  

E 3.50 1.74 0.58 
    

2.60 
 

F 3.92 0.67 1.07 
     

0.48 
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Table 4. Comparison of model performance and complexity, respectively based on 

Cohen's Kappa (K) and correctly classified instances (CCI), number of directed acyclic 

(Arcs), and conditional probabilities (CPs). 

Network CCI K Arcs CPs 

BN-BM 0.81 (σ = 0.04) 0.29 (σ = 0.04) 5 496 

BN-BMA 0.94 (σ = 0.02) 0.55 (σ = 0.05) 4 170 

BN-MCs 0.62 (σ = 0.16) 0.14 (σ = 0.05) 3 60 

Note: See Fig. 4 for network definitions. BN-BM, BN-BMA, and BN-MCs refer to 

Bayesian network in Fig. 4a–c, respectively. 
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Table 5. Comparison of eight models performance in prediction of MCs with the same 

discretized data, based on correctly classified instances (CCI), Cohen's Kappa (K), root 

mean square error (RMSE), and relative absolute error (RAE). 

Model CCI K RMSE RAE 

BNa 0.759 (σ = 0.094) 0.403 (σ = 0.235) 0.394 (σ = 0.066) 0.681 (σ = 0.131) 

BN 0.832 (σ = 0.079) 0.598 (σ = 0.188) 0.356 (σ = 0.080) 0.530 (σ = 0.143) 

NNb 0.786 (σ = 0.085) 0.489 (σ = 0.200) 0.409 (σ = 0.090) 0.515 (σ = 0.180) 

2-NN d 0.796 (σ = 0.084) 0.526 (σ = 0.189) 0.378 (σ = 0.073) 0.567 (σ = 0.139) 

3-NNe 0.812 (σ = 0.078) 0.539 (σ = 0.192) 0.369 (σ = 0.066) 0.583 (σ = 0.123) 

ID3 0.770 (σ = 0.090) 0.499 (σ = 0.186) 0.450 (σ = 0.098) 0.547 (σ = 0.214) 

LR 0.827 (σ = 0.079) 0.576 (σ = 0.193) 0.360 (σ = 0.058) 0.659 (σ = 0.128) 

SVM 0.820 (σ = 0.078) 0.552 (σ = 0.195) 0.413 (σ = 0.096) 0.440 (σ = 0.191) 

MLP 0.795 (σ = 0.082) 0.496 (σ = 0.199) 0.406 (σ = 0.086) 0.509 (σ = 0.167) 

C4.5 0.810 (σ = 0.079) 0.545 (σ = 0.188) 0.374 (σ = 0.068) 0.624 (σ = 0.120) 

RF 0.816 (σ = 0.082) 0.549 (σ = 0.195) 0.360 (σ = 0.062) 0.611 (σ = 0.118) 

Note: 
a
 BN excludes Microcystis aeruginosa and M. viridis as input variables. 

b˜d
 k-Nearest Neighbor, parameter of k sets 1, 2, and 3 respectively. 
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Table 6. Probability table for total Microcystis biomass, Microcystis aeruginosa biomass 

hazard classes in response to different combinations of water temperature (WT), total 

phosphorus (TP) and dissolved inorganic nitrogen (DIN). 

Conditions 
Probability of Microcystis class 

(%) 

Probability of toxic Microcystis class 

(%) 

WT TP DIN Low Moderate High Low Moderate High 

<20 
  

52.1 33.5 14.4 73.8 13.4 12.8 

20-24 
  

25.8 33.1 41.1 56.6 20.3 23.1 

≥24 
  

18.2 43.7 38.2 36.7 29.8 33.6 

 
<0.10 

 
51.3 34.2 14.5 74.1 16.6 9.31 

 
0.10-0.20 

 
42.3 36.6 21.1 68.7 14.5 16.9 

 
≥0.20 

 
29.8 32.5 37.7 49.7 23.1 27.2 

<20 <0.10 
 

68.7 25.6 5.71 83.8 11.2 5.06 

<20 0.10-0.20 
 

52.3 33.9 13.8 78.6 8.68 12.8 

<20 ≥0.20 
 

42.4 37.5 20.1 60.7 21.7 17.6 

20-24 <0.10 
 

31.3 42.8 25.9 64.6 22.4 13.0 

20-24 0.10-0.20 
 

33.9 36.1 30.0 64.0 19.6 16.4 

20-24 ≥0.20 
 

11.8 23.5 64.7 40.7 20.1 39.2 

≥24 <0.10 
 

21.7 51.7 26.6 55.0 26.1 18.8 

≥24 0.10-0.20 
 

18.6 49.4 32.1 37.9 27.3 34.8 

≥24 ≥0.20 
 

15.6 31.4 53.0 24.0 35.5 40.4 

≥24 ≥0.20 <0.4 33.3 33.3 33.3 16.0 16.0 67.9 

≥24 ≥0.20 0.4-1.5 10.7 33.5 55.8 35.3 37.6 27.2 

≥24 ≥0.20 ≥1.5 8.44 22.5 69.0 0 53.1 46.9 

 

  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biomass
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/microcystis-aeruginosa
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Table 7. Probability of M. aeruginosa biomass and microcystin hazard classes for (1) 

initial conditions ; (2) simulated WT warming (WT ≥ 24 ℃); (3) simulated TN decrease 

(TN < 2.0 mg/L); (4) simulated both WT warming and TN decrease. 

Hazard Class 
1)Initial 

conditions 

2) WT 

warming 

3) TN 

decrease 

4) WT warming and 

TN decrease 

Toxic Microcystisclass 

(%) 

Low 63.6 36.7 60.8 30.6 

Mediate 17.7 29.8 21.6 30.9 

High 18.7 33.6 17.6 38.5 

Microcystin class (%) 

Low 29.1 13.7 32.1 17.9 

Mediate 43.3 45.9 37.3 30.6 

High 27.6 40.4 30.6 51.5 

Note: Initial conditions refer to Bayesian networks in Fig. 4b and c. 
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