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Abstract  1 

Hypovitaminosis D is widespread throughout the world. The cutaneous production of vitamin 2 

D through sunlight can be limited by several factors (e.g. skin pigmentation, sunscreen usage 3 

and, increasingly, indoor lifestyle). Thus, diet has become an important strategy to increase 4 

vitamin D intake and status. However, there are a limited number of foods (e.g. eggs, oily fish 5 

and wild mushroom) naturally enriched with vitamin D, and concentrations can vary 6 

significantly between and within species. Therefore, the need for vitamin D fortified foods 7 

(including via direct fortification and biofortification) to support adequacy of vitamin D status 8 

[blood 25-hydroxivitamin D (25(OH) D)] is a corollary of several limitations to synthesise 9 

vitamin D from sunlight. Ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) can be 10 

found in some mushrooms and animal-derived foods, respectively. Evidence has shown 11 

vitamin D3 is more effective than vitamin D2 at raising 25(OH) D blood concentrations. The 12 

vitamin D metabolite, 25(OH) D3, is present in animal-derived foods (e.g. meat, eggs and fish), 13 

and several intervention trials have shown 25(OH) D3 to be more effective at raising blood 14 

25(OH) D concentrations than vitamin D3. In addition, 25(OH) D3 supplements may prove to 15 

be preferable to vitamin D3 for patients with certain clinical conditions. However, there is 16 

limited evidence on the effect of 25(OH) D3 fortified foods on human vitamin D status and 17 

health. Therefore, long-term randomised controlled trials to evaluate the effect of 25(OH) D3 18 

fortified foods on vitamin D status are needed for both the general population and patients with 19 

certain conditions.  20 
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Introduction  24 

Vitamin D is a lipid soluble vitamin that acts as a hormone (Nair & Maseeh 2012), which 25 

generally refers to ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) (Tripkovic et 26 

al. 2012). Vitamin D2 and vitamin D3 are produced by fungi and the skin of vertebrates, 27 

respectively (Wacker & Holick 2013). The role of vitamin D in musculoskeletal health is well 28 

established (Wolff et al. 2008). Recently, vitamin D deficiency has been suggested to be 29 

associated with several non-musculoskeletal health outcomes, such as cardiovascular disease, 30 

certain cancers and type 2 diabetes, although mechanisms are not clear (Wang et al. 2017). 31 

Vitamin D status is assessed by measuring the blood concentration of circulating 25-32 

hydroxyvitamin D (25(OH) D) (Holick 2009). Widespread hypovitaminosis D is now 33 

acknowledged (Hilger et al. 2014), although there is some dispute about the thresholds for 34 

vitamin D deficiency and insufficiency (Spiro & Buttriss 2014). In the UK, vitamin D 35 

deficiency is defined as 25(OH) D <25 nmol/L (SACN 2016). The UK National Diet and 36 

Nutritional Survey (NDNS) reported that in 2008-2012 24% men and 21.7% of women (aged 37 

19-64 years) had vitamin D deficiency (Bates et al. 2014). With seasonal variation, the 38 

prevalence of hypovitaminosis D in the UK was alarmingly high during winter and spring. A 39 

cross-sectional study conducted in the UK by Hypponen and Power (2007) reported that during 40 

the winter and spring months 25(OH) D concentrations were <25 nmol/L, <40 nmol/L and <75 41 

nmol/L in 15.5%, 46.6% and 87.1% of participants, respectively. There are several additional 42 

contributors to hypovitaminosis D, such as skin pigmentation, sunscreen usage, and an 43 

increasingly indoor lifestyle, all of which reduce the cutaneous production of vitamin D (Holick 44 

2004). Furthermore, vitamin D supplement can also contributes to vitamin D intake, however, 45 

uptake of supplements tends to be low (Hennessy et al. 2017; Datta et al. 2016 ). As a result, 46 

dietary intake of vitamin D has become more important than before (O'Mahony et al. 2011) 47 

and in recognition of this, in 2016, the UK Scientific Advisory Committee on Nutrition 48 
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(SACN) recommended the national population dietary of 10 µg vitamin D daily for everyone 49 

aged 4 years and older (SACN 2016). As there are a limited number of foods naturally enriched 50 

with vitamin D (such as egg yolk, oily fish and wild mushroom) (Schmid & Walther 2013), 51 

other strategies to improve vitamin D dietary intake are essential. 52 

 53 

Vitamin D forms, metabolites and absorption 54 

The two forms of vitamin D, D2 and D3, have similar chemical structures apart from vitamin 55 

D2 having an additional methyl group and double bond (Hollis 1984). Humans and animals 56 

usually synthesise vitamin D3 in the skin by converting 7-dehydrocholesterol in the epidermis 57 

to pre-vitamin D3 in response to exposure to ultraviolet B radiation (UVB). Pre-vitamin D3 then 58 

undergoes a temperature-dependent isomerisation to produce vitamin D3 over approximately 3 59 

days (Holick & Chen 2008). Vitamin D2 and D3, obtained from the diet, are absorbed with 60 

long-chain triglycerides in the small intestine and then incorporated into chylomicrons and 61 

transported via lymph to the circulation (Guo et al. 2018b). 62 

After entering the blood circulation, vitamin D2 and D3 follow the same pathways to 63 

synthesise the biologically active form of 1, 25(OH)2 D. There are two hydroxylation reactions: 64 

the first reaction occurs in the liver where vitamin D2 and vitamin D3 are hydroxylated to 65 

25(OH) D2 and 25(OH) D3 by the vitamin D-25-hydroxylase; the second occurs in the kidney 66 

where 25(OH) D2 and 25(OH) D3 are converted to 1α,25(OH)2 D2 and 1α,25(OH)2 D3, 67 

respectively, by the 25-hydroxyvitamin D-1α-hydroxylase (DeLuca 1974).  68 

 69 

Food sources and content of vitamin D 70 

Vitamin D2 and D3 can be found in fungi (e.g. mushrooms) and animal-derived foods (e.g. eggs, 71 

oily fish), respectively (McCance & Widdowson 2015). In addition, there are significant 72 

quantities of the 25(OH) D metabolite in animal-derived foods (Ovesen et al. 2003). Previous 73 
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studies (Guo et al. 2017b; Lu et al. 2007; Phillips et al. 2011) have showed that the vitamin D 74 

concentrations of these foods can vary significantly between and within species (O'Mahony et 75 

al. 2011). For example, Phillips et al. (2011) collected and analysed the vitamin D2 76 

concentrations in 10 types of mushrooms from retail suppliers in the US, and reported that they 77 

were low (0.1-0.3 µg/100 g) in Agaricus bisporus (White Button, Crimini, Portabella) and 78 

Enoki, moderate in Shiitake and Oyster (0.4-0.7 µg/100 g), and high in Morel, Chanterelle, 79 

Maitake (5.2-28.1 µg/100 g). Furthermore, the vitamin D content of foods may relate to 80 

different production systems and the time of the year. For example, our study (Guo et al. 2017b) 81 

investigated eggs from three different production systems (organic, free range and indoor) over 82 

5 months and showed a higher vitamin D3 content in free range eggs (57.2 ± 3.1 µg/ kg) and 83 

organic eggs (57.2 ± 3.2 µg/ kg) compared with indoor eggs (40.2 ± 3.1 µg/ kg) (P <0.001). A 84 

seasonal effect on the vitamin D content of eggs has also been reported by others (Mattila et 85 

al. 2011a). The study of Lu et al. (2007) evaluated the vitamin D content of salmon, and found 86 

that farmed salmon had only ~ 25% of the vitamin D content of wild salmon and cooking may 87 

also cause detrimental loss of vitamin D. The study of Jakobsen & Knuthsen et al. (2014) 88 

investigated the loss/ retention of vitamin D during different cooking methods (frying, baking 89 

and boiling) in eggs and margarine. The results showed there was 39-45% retention of vitamin 90 

D content in eggs and margarine during baking in an oven for 40 minutes, while frying resulted 91 

in vitamin D retention of 82-84%. The author concluded that the loss/ retention of vitamin D 92 

during typical household cooking should be taken into account when calculating the dietary 93 

intake of vitamin D.  94 

In general, there are two approaches to fortify foods with vitamin D: 1) ‘direct fortification’ 95 

by adding vitamin D into foods and 2) ‘biofortification’ of food by fortifying animal’s diet with 96 

vitamin D (Cashman & Kiely 2016). For countries such as the UK where vitamin D 97 

fortification of foods is not mandatory (Kiely & Black 2012), populations have to rely on 98 
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dietary sources (including supplements) to maintain an adequate vitamin D status when there 99 

are limited sunlight. In the UK, the mean daily vitamin D dietary intake (excluding 100 

supplements) was 2.9 and 2.5 µg/day for men and women, respectively (NDNS 2008/2009-101 

2011/2012; Bates et al. 2014)), which is far less than the current UK  dietary reference nutrient 102 

intake (RNI) for vitamin D of 10 µg/day (SACN 2016). Therefore, approaches to increase 103 

vitamin D dietary intake have become necessary and urgent.  104 

 105 

Comparative effectiveness of different forms of vitamin D at raising blood 25(OH) D 106 

concentrations 107 

Vitamin D2 and vitamin D3 108 

Blood 25(OH) D [the summation of 25(OH) D2 and 25(OH) D3] concentration is widely used 109 

as a biomarker of vitamin D status (SACN 2016). Early studies reported conflicting results on 110 

the relative effectiveness of dietary vitamin D3 compared with vitamin D2 for increasing 111 

serum/plasma 25(OH) D concentrations (Tripkovic et al. 2017). Tripkovic et al. (2012) 112 

conducted a systematic review and meta-analysis comparing the effects of dietary vitamin D2 113 

and vitamin D3 on serum 25(OH) D concentrations in humans. Data were included from seven 114 

randomised controlled trials (RCTs) and the results showed that vitamin D3 intake led to a 115 

greater absolute change in serum/plasma 25(OH) D levels from baseline than vitamin D2, with 116 

a weighted mean difference of 15.23 (95% CI: 6.12, 24.34; Z=3.28; I2=81%; P=0.001). 117 

Recently, a review by Wilson et al. (2017) summarised the evidence to date on the relative 118 

effectiveness of vitamin D3 and vitamin D2 at raising 25(OH) D concentrations and concluded 119 

that most RCTs showed that vitamin D3 is more effective. 120 

 121 

Vitamin D3 and 25(OH) D3 122 
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Of the few studies performed, most have found that the vitamin D metabolite 25(OH) D3 given 123 

orally increases vitamin D status more efficiently than oral vitamin D3, although no consensus 124 

has been established for the relative potency of 25(OH) D3 and vitamin D3 (Jakobsen 2007). 125 

Our recent review (Guo et al. 2018b) summarised the available evidence (Cashman et al. 2012; 126 

Catalano et al. 2015; Jetter et al. 2014; Navarro-Valverde et al. 2016) comparing 25(OH) D3 127 

with vitamin D3 on serum or plasma 25(OH) D3 concentrations, and concluded that the relative 128 

effectiveness of 25(OH) D3 to vitamin D3 ranged from 3.13 to 7.14. These variable results 129 

probably reflect differences in study designs and/or characteristics of the investigated subjects. 130 

In addition, evidence from available RCTs (Guo et al. 2018b) indicates that 25(OH) D3 fortified 131 

dairy drink resulted in plasma 25(OH) D reach its peak significantly earlier than with vitamin 132 

D3 fortified dairy drink. Thus, supplementation with 25(OH) D3 might increase vitamin D status 133 

more efficiently and effectively than vitamin D2 and vitamin D3. Moreover, since the use of 134 

25(OH) D3 avoids the need for the liver to convert vitamin D3 to 25(OH) D3 it may be of 135 

particular value to patients with impaired liver function. 136 

 137 

Food fortification with vitamin D 138 

Direct fortification 139 

In the US and Canada, several common foods, such as milk, orange juices, breakfast cereals, 140 

yogurts and cheeses are fortified with vitamin D (Holick et al. 2011). In Europe, vitamin D 141 

mandatory and voluntary fortification policies and practice vary from country to country (Spiro 142 

& Buttriss 2014). A meta-analysis was performed by Black et al. (2012), which included 143 

sixteen RCTs to evaluate the efficacy of vitamin D food fortification for improving vitamin D 144 

status. The results showed a mean intake of vitamin D of 11 µg/day from fortified foods (range 145 

3-25 µg/day) increased serum/plasma 25(OH) D by 19.4 nmol/L (95% CI: 13.9-24.9), which 146 

corresponded to a 1.2 nmol/L (95% CI: 0.72, 1.68) increase in serum/plasma 25(OH) D for 147 
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each 1 µg ingested. Thus, vitamin D direct fortification could be an effective strategy to 148 

increase vitamin D status in the general UK population.  149 

In the US and Canada, much of the vitamin D intake is from fortified foods (Fulgoni et al. 150 

2011; Langlois et al. 2010). The major fortified foods contributing to vitamin D intake in these 151 

countries are fluid milk, ready-to-eat cereals and margarine (Calvo et al. 2004; Feldman et al. 152 

2011). The study by Langlois et al. (2010) estimated vitamin D status among 5306 individuals 153 

aged 6- 79 years in the 2007- 2009 Canadian Health Measures Survey and showed that the 154 

mean 25(OH) D concentration was 67.7 nmol/L, and that 4% and 10% of the population had 155 

vitamin D deficiency (<27.5 nmol/L) and inadequacy (<37.5 nmol/L), respectively. In addition, 156 

subjects who consumed vitamin D fortified milk had higher 25(OH) D concentrations than 157 

non-consumers. In addition, voluntary fortification of foods with vitamin D has occurred in 158 

Finland since 2003 (Pilz et al. 2018), and the data from the Finnish Health 2011 Survey showed 159 

that  mean serum 25(OH) D increased from 47.6 nmol/L in year 2000 to 65.4 nmol/L in 2011 160 

(Jaaskelainen et al. 2017). However, a recent review (Calvo & Whiting 2013) questioned the 161 

adequacy of vitamin D fortified foods in the US and Canada to meet the needs of all race, 162 

gender and age groups. Furthermore, a review by Kiely et al. (2012) pointed out well-designed 163 

sustainable fortification strategies are needed to take account for diversity in food consumption 164 

patterns. In the UK, the food fortification policy was effective in preventing rickets in the 165 

1950s; however, the mandatory vitamin D fortification policy was banned when over-166 

fortification of some milk products led to cases of hypercalcaemia in young children (British 167 

Pediatric Association 1956). More research is needed to explore the safety of vitamin D 168 

fortification, including the range of products and doses of vitamin D added in each.   169 

 170 

Biofortification  171 



 

9 
 

Biofortification of vitamin D is an alternative strategy to increase vitamin D intakes in countries 172 

and regions where policies and practices limit use of ‘direct fortification’.  173 

Our previous review provides an overview of recent vitamin D biofortification studies (Guo 174 

et al. 2018b), and found that the amount of vitamin D3 and 25(OH) D3 in eggs, fish and milk 175 

increases in response to vitamin D3 supplementation of the diets of hens, fish and cows. 176 

However, evidence relating to 25(OH) D3 supplementation of animals’ diets is very limited, 177 

with the only available data for hens (Guo et al. 2018b). Interestingly, egg enrichment studies 178 

(Duffy et al. 2017; Mattila et al. 2011b) showed that supplementing hens’ diets with 25(OH) 179 

D3 results in an increase in the 25(OH) D3 concentration, but not vitamin D3, of the egg yolk. 180 

Thus, foods biofortified or fortified with either vitamin D3 or 25(OH) D3 are likely to have a 181 

variable effect on human vitamin D status (Mattila et al. 2011b).  182 

Our recent milk biofortication study (Guo et al. 2018a) used a total of 60 dairy cows 183 

randomised to vitamin D3 or 25(OH) D3 dietary supplementing treatments, within the maximum 184 

permitted European Union (EU) vitamin D3 concentration (2 mg/day vitamin D3) for feed. The 185 

results showed that supplementing dairy cows’ feed with 25(OH) D3 significantly increased 186 

circulating plasma concentrations of 25(OH) D3 in the cows. However, there was also no 187 

significant effect of the treatment on milk 25(OH) D3 concentrations (P=0.193), the mean 188 

25(OH) D3 concentrations for non-fortified and 25(OH) D3 dietary treatments were 869 and 189 

1001 ng/kg, respectively. In addition, the vitamin D concentration (100-3,300 ng/kg) of the 190 

biofortified milk was negligible and far less than the current UK vitamin D recommended 191 

intake of 10 µg/day (SACN 2016). In the future, more studies are needed to explore which 192 

forms and doses of vitamin D added to animal diets, within the bounds of EU regulation (EC 193 

2017; EFSA 2012), including those of fish, may have the greatest impact on human dietary 194 

quality. 195 

 196 
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Evidence from human intervention studies with 25(OH) D3 fortified foods 197 

Evidence of the effect of 25(OH) D3 fortified food on increasing vitamin D status is limited. 198 

We were the first to compare the effects of  dairy drinks fortified with either 20 µg 25(OH) D3 199 

or 20 µg vitamin D3 on changes in human 24-hour vitamin D status (Guo et al. 2017a). The 200 

results showed plasma 25(OH) D3 was significantly higher after the 25(OH) D3 fortified dairy 201 

drink compared with the vitamin D3 fortified  dairy drink and control (non-fortified dairy drink), 202 

which was reflected in the 1.5-fold and 1.8-fold greater incremental area under the curve of 203 

plasma 25(OH) D3 for the 0-8 hour response, respectively. However, we did not investigate the 204 

long-term effects of consuming the 25(OH) D3 and vitamin D3 fortified dairy drinks. 205 

Hayes et al. (2016) conducted an 8-week RCT to compare the effects of consuming vitamin 206 

D3 or 25(OH) D3 biofortified eggs (7 per week for 8 weeks), obtained from feeding hens with 207 

the maximum concentration of vitamin D3 or 25(OH) D3 lawfully allowed in their diets, with a 208 

control treatment (≤ 2 commercial eggs/week), on winter serum 25(OH) D concentrations in 209 

healthy adults. At the 8 week follow-up in winter the vitamin D status of the subjects who 210 

consumed the vitamin D3 or 25(OH) D3 biofortified eggs was maintained [50.4 nmol/L 211 

(SD=21.4) and 49.2 nmol/L (SD=16.5) for vitamin D3 and 25(OH) D3 group, respectively], 212 

while the control group’s vitamin D status significantly decreased over winter (-6.4 ± 6.7 213 

nmol/L). In contrast with our study (Guo et al. 2017a), there was no significant difference 214 

between vitamin D3 and 25(OH) D3 biofortified egg consumption on the participants’ serum 215 

25(OH) D concentrations. The reason is unknown, but maybe because baseline vitamin D status 216 

(mean 46.2 nmol/L) was much higher than our study (mean 31.7 nmol/L), and vitamin D dose 217 

(3.5-4.5 µg/egg) for fortified eggs (Hayes et al. 2016) was only 20% of ours (20 µg/day) (Guo 218 

et al. 2017a)..  219 

 220 

25(OH) D3 supplementation and human health 221 
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As an alternative strategy to increase vitamin D status, it is possible that supplementation with 222 

25(OH) D3 may benefit human health more than with vitamin D3, although the evidence is 223 

limited. A study of Bischoff-Ferrari et al. (2012) provided 20 µg/day of 25(OH) D3 or vitamin 224 

D3 to 20 healthy postmenopausal women over 4 months [mean baseline serum 25(OH) D 225 

concentration was 42 nmol/L]. The results showed 25(OH) D3 supplementation resulted in a 226 

more immediate and sustained increase of serum 25(OH) D concentrations than vitamin D3 227 

supplementation. The mean 25(OH) D concentration increased to 221 nmol/L and 99 nmol/L 228 

for 25(OH) D3 and vitamin D3 supplementation, respectively. In addition, 25(OH) D3 229 

supplementation was found, on average, to result in a 2.8-fold increased odds of maintained or 230 

improved lower extremity function (OR=2.79, 95% CI: 1.18-6.58), and a 5.7 mmHg decrease 231 

in systolic blood pressure compared with vitamin D3 (P=0.0002). In another study, Jean et al. 232 

(2008) provided 10-30 µg/day 25(OH) D3 to haemodialysis patients for 6 months, and the 233 

results showed vitamin D status increased from 30 nmol/L to 126 nmol/L, and 25(OH) D3 234 

supplementation corrected their excess bone turnover. 235 

A review by Brandi & Minisola (2013) summarised the available evidence in this area and 236 

concluded that for populations that have specific conditions (such as long-lasting vitamin D 237 

osteomalacia, liver failure, latrogenic inhibition of liver 25-hydroxylases, inactivating 238 

mutations of genes encoding liver 25-hydroxylasese, kidney failure with elevated PTH, 239 

nephrosis, transplanted patients, male hypogonadism), supplementation with 25(OH) D3 may 240 

prove to be preferable to vitamin D3. The reasons might be because 25(OH) D3 avoids the need 241 

for hepatic metabolism of vitamin D3 to 25(OH) D3, which results in 25(OH) D3 more quickly 242 

entering the blood circulation (Holick 1995; Ross et al. 2011).  243 

Currently, vitamin D2 and vitamin D3 are legally permitted to be added to foods, but addition 244 

of 25(OH) D3 is not (EC No 1925/2006). Future studies should focus on better defining the 245 
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long-term effects of 25(OH) D3 fortified foods on vitamin D status and human health, compared 246 

to vitamin D3 and vitamin D2. 247 

 248 

Conclusions and future directions 249 

Vitamin D deficiency and insufficiency have become global problems, especially where 250 

sunlight is limited by latitude, cultural reasons or lifestyle (Hilger et al. 2014). The UK 251 

government advisory committee, SACN, recommends an intake of 10 µg/day of vitamin D for 252 

the UK general population (SACN 2016). However, it is a great challenge to meet this 253 

recommendation from solely natural dietary sources and uptake of supplements tends to be 254 

low. Two potential strategies to increase vitamin D content of food are direct fortification and 255 

biofortification via animal diet supplementation. However, evidence from RCTs is limited on 256 

the effect of vitamin D fortified foods on human vitamin D status and human health. The 257 

available evidence suggests that the vitamin D metabolite, 25(OH) D3,  might be more efficient 258 

than vitamin D2 and D3 at raising serum or plasma 25(OH) D3 concentrations in both general 259 

healthy subjects and clinical patients. In addition, 25(OH) D3 may have an advantage of 260 

improving the health of certain clinical patients, although the evidence for this is limited. 261 

Therefore, 25(OH) D3 fortified foods (including direct fortification and biofortication) should 262 

be further explored in the future, and additional RCTs should be conducted to investigate the 263 

effect of 25(OH) D3 fortified foods on vitamin D status and human health in both healthy 264 

subjects and clinical patients. 265 
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