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Abstract 19 

Soil fertility is vital for agricultural productivity, yet poor soils and erosion remain a management 20 

challenge in many parts of sub-Saharan Africa. One challenge is that soil scientists and farmers often 21 

evaluate soil fertility using different knowledge systems and the implications have not been clearly 22 

reconciled within the literature. In particular, whether farmers are observing similar aspects of structure 23 

and function as classified in soil science. If so, what can we learn about how soil fertility is evaluated and 24 

communicated in terms of developing a hybrid approach that improves communication of ideas between 25 

different stakeholders. This paper addresses this challenge by examining the similarities and differences 26 

between farmers’ qualitative evaluation and soil science quantitative analysis for soil fertility classification, 27 

and how location of soils influence farmers’ evaluation of soil fertility. Empirical fieldwork was carried out 28 

in two villages in Kitui County, Kenya with 60 farmers using semi-structured interviews and focus group 29 

discussion. Based on farmer perception, 116 soil samples of the best and worst soil fertility taken and 30 

analysed for physiochemical factors. Farmers had a consistent classification system and primarily relied on 31 

texture and colour as indicators for good soil fertility and texture alone for poor soils.  32 

Soils with fine texture under the local semi-arid climate were associated with higher pH, TOC and WHC 33 

and fertile black and red soils were associated with pH, TOC, WHC and AP based on differences in bed 34 

rock. Poor soil fertility was associated with sandy soils and soils with no colour in their local name. Spatial 35 

location is an important consideration in farmers’ evaluations, reflecting awareness of local diversity in soil 36 

and historical social or environmental factors. Local historical narratives reveal the importance in changes 37 

to humus, consistent with technical knowledge about the role of soil organic matter for soil fertility. The 38 

paper provides better understanding of farmers’ soil classification, evaluation processes and perspectives 39 

that help to inform scientists working with alternative frameworks for assessment and, in doing so, 40 

supports the development of local tailor-made soil assessment systems.  41 

 42 

Keywords: Ethnopedology, Soil fertility, Farmers’ knowledge, Kenya  43 
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1. Introduction 44 

 45 

Soil is the basis of life for both human food security and the building of the natural environment. Soil 46 

fertility information is essential to improve soil productivity and identify suitable land management. While 47 

soil scientists have developed chemical, physical and biological methods to measure soil fertility (Jones, 48 

1982), evaluation is not limited to scientific measures, but is also qualitatively understood by farmers 49 

(Roland, Rubens and Azupogo, 2018). Criticism of the limited effectiveness of implementing top-down 50 

technology and scientific transfer of information through extension services has led to increasing attention 51 

on the value and integration of local knowledge held by farmers (Barrios and Trejo, 2003; Berazneva et al., 52 

2018; Guzman et al., 2018; Richelle et al., 2018). Fundamental presupposition of Eurocentric science are 53 

“nature is knowable” and Eurocentric scientists try to understand “the structure and function of the whole 54 

in terms of the structure and function of its parts”(Irzik 1998: 168). Indigenous knowledge is an empirical 55 

knowledge within local people accumulated with experiences, society-nature relationships, community 56 

practices and institutions, and by passing toward generations (Brokensha et al., 1980).  57 

Farmers observe and evaluate their local soil experience for making everyday land management decisions 58 

(Rushemuka et al., 2014; Bado and Bationo, 2018). Integrating local knowledge helps match extension 59 

workers efforts with local needs, and may achieve improved adoption of co-produced technology (Ingram 60 

et al., 2018). Rocheleau (1988 cited in Walker et al. 1995) also point out that effective external 61 

interventions are best achieved 'once we know what they already know, and what else might be most useful 62 

to add to their store of knowledge and tools' (p236 in Walker et al. 1995). Farmers’ evaluation of soil 63 

fertility is extensively reported as ‘local’ or ‘farmers soil knowledge’ in many ethnopedological studies 64 

(Barrera-Bassols and Zinck, 2003) and illustrates that farmers may understand aspects of function and 65 

scientific characteristics for their local soils but use different associations or framings to communicate and 66 

plan their land management. 67 

  68 

Therefore, mutual understanding between farmers and scientists is not easy due to the ways that local 69 

knowledge systems contrast with scientific knowledge systems (Agrawal, 1995). Barrios et al. (2006) 70 

noted that while both systems share core concepts, such as the role of water for crop growth, each 71 

knowledge system has gaps and these are complemented by each other (Figure 1). They also argued that 72 

seeking a balance between scientific precision and local relevance expands shared knowledge to generate a 73 

new, hybrid knowledge system. Black (2000; p125-126) argued that “while many traditional problems may 74 

be solved with new methods, new problems, particularly environmental problems, may be best dealt with 75 

through a combination of new and traditional extension.”  76 

 77 

The starting point of soil fertility evaluation by farmers and soil scientists are same: the performance of 78 

crop growth (Vilenskii, 1957; Murage et al., 2000). In addition, farmers also explain the characteristics of 79 

fertile or non-fertile soils, mainly by visual and morphological features, such as texture and colour which 80 

was used as universal criteria of soil fertility (Mairura et al. 2007 in Central Kenya; Kamidohzono et al. 81 
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2002 in West Sumatra). Even from the same starting point, the direction of interests is different. Soil 82 

scientists measure soil as a natural resource using quantitative analysis, while farmers evaluate soils as part 83 

of their daily experience in the field (Ingram, Fry and Mathieu, 2010). Farmers have more ‘know-how’ or 84 

‘practical knowledge’ about soil, and scientists have more scientific knowledge or ‘know-why’ about soil 85 

(Ingram, 2008). These differences can be categorized into three main parts: perception of other 86 

environmental information; spatial scale; and timescale.  87 

 88 

The first difference is the extent to which additional environmental information is used to evaluate soil 89 

fertility. Farmers’ evaluation of their soil is holistic (Barrera-Bassols and Zinck, 2003), where they see the 90 

soil resulting from a suite of interacting, complex environmental factors. For example, farmers often 91 

change their ranking of soil fertility based on seasonal rainfall (Osbahr and Allan, 2003). Moreover, from a 92 

geographical perspective, farmers perceive soil as the base for the environment, and thus local soil 93 

classifications incorporate land cover types (such as vegetation) (Duvall, 2008). By contrast, soil science 94 

reflects the reductionist approach used by natural science, which focuses on understanding “the structure 95 

and function of the whole in terms of the structure and function of its parts” (Irzik 1998: 168). Scientists 96 

often examine just one or two factors in isolation, for example in terms of their impact on crop 97 

performance. One scientific definition of soil fertility is “a soil that is fertile enough to provide adequate 98 

roots depth, nutrients, oxygen, water and a suitable temperature and no toxicities” (Wild 2003; 51). To 99 

explain the various factors, soil scientists focus on individual parameters and measure soil fertility 100 

predominantly by chemical and additional biological analysis or physical measurement in a laboratory and 101 

via direct measurement of environmental values (Landon 1984). 102 

 103 

Second, farmers’ evaluation focuses on a smaller scale, related to farm, field and within-field plots, 104 

reflecting subtle understandings of soil diversity. Many studies have shown that local soil classification is 105 

more detailed than international soil classification (Barrera-Bassols and Zinck, 2003; Osbahr and Allan, 106 

2003). It may be argued that farmers are able to evaluate soils in suitable ways for their farm management 107 

and soil scientists are able to generalize sample data to explain underlying patterns across landscapes and 108 

make maps. Of course, detailed local knowledge has the limitation of site specificity (Cook, Adams and 109 

Corner, 1998) and scientific soil classification or mapping can provide insights at regional, national and 110 

global scales. While the main reason for soil classification or mapping is use for planning of soil 111 

conservation and soil management improvement to lead to better plant growth, original baseline data for 112 

the classification of soils were generated by soil survey, topographic and geological mapping which relates 113 

to pedology and a focus on soil formation (Brady & Weil 1996). Originally, soil maps were designed to 114 

deliver information for managing landscapes and to create a common language of soils, with underlying 115 

general principles that explain complexity. Generalizations were necessary at landscape scale (Ashman and 116 

Puri, 2008) and thus the scale for farmer and science knowledge systems deviates.   117 

 118 

The third difference is the timescale considered during evaluation. Farmers remember the history of their 119 
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soils and how local knowledge has been shaped over a decades, including the influence of past 120 

management or specific events (that lead to improved soil or soil erosion for example) (Scott and Walter, 121 

1993). By contrast, the timescale which soil scientists focus on differs; from the establishment of soil 122 

science, the pedological viewpoint is that soils form naturally over thousands of years (Yaalon and 123 

Berkowicz, 1997; Brady and Weil, 2016) but soil surveys for assessment focus on the immediate or current 124 

condition of the soil (often based on one-time sampling) (Landon, 1984). 125 

 126 

The implications of these differences have not been clearly reconciled within the literature. In particular, 127 

whether farmers are observing similar aspects of structure and function as classified in soil science, and if 128 

so, what can we learn about how soil fertility is evaluated and communicated in terms of a hybrid approach. 129 

To address this challenge, this paper will: examine the similarities and differences between farmers’ 130 

qualitative evaluation and soil science quantitative analysis for soil fertility classification; explore how the 131 

location of soils (e.g. villages and distance from home) influence farmers’ evaluation of soil fertility. 132 

Location of soils includes the effect of social and environmental different and historical background of 133 

settlement. By examining these different approaches through a case study from Kenya, the paper will be 134 

able to highlight the potential value of improved awareness about local narratives of soil fertility, which 135 

reflect holistic knowledge systems and livelihood experience, and have implications for developing an 136 

integrated soil management approach.  137 

 138 

 139 

2. Approach and Method 140 

 141 

The role of the case study approach 142 

The research approach adopted was to use an illustrative case study that enables capture of detailed local 143 

level understanding and to incorporate people (Yin, 2013), which may not be possible in a large scale soil 144 

study (Wilbanks and Kates, 1999). Kenya was selected because it is illustrative of a sub-Saharan 145 

developing country where agriculture dominates the national economy (Wambugu, Karugia and 146 

Oluoch-Kosura, 2011) with more than 70% of the population relying on small scale farming (Republic of 147 

Kenya, 2014).  148 

 149 

Within Kenya, the research focused on Kitui County, located about 170 km east of Nairobi (Figure 2). The 150 

first rationale for selecting this county is the identification of contrasting soil types as recorded on the soil 151 

map for the region, resulting from the metamorphic bedrock and variation of slope (Mine & Geological 152 

Department Kenya colony North-West Quadrant, 1954; Sombroek, Braun and Pouw, 1980). The area has a 153 

semi-arid climate, with temperature between 14℃ to 34℃, and two rainy seasons: ‘long’ from March to 154 

May and ‘short’ from October to December approximately (County Government of Kitui, 2014). The exact 155 

period and amount of rain is erratic and unpredictable from year to year, with annual rainfall between 156 

250mm and 1050mm (County Government of Kitui, 2013). The major ethno-cultural group is the 157 
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Kamba, and KiKamba is spoken by most people in Kitui County (KICABA Cultural Center, 2013). 158 

The Kamba have practiced livestock rearing, hunting and farming for centuries, introducing rhizome 159 

and pulse cultivation from the 17th Century (Ikeno 1989). The population living and farming on 160 

marginal lands have increased since the 20th Century when many Kamba moved from neighbouring 161 

Machakos to move from poor soils with high rates of degradation (Ikeno, 1989; Karanja et al., 2017). 162 

Today, 87% of residents earn their livelihoods from agriculture using an average 2ha farm, with 163 

additional income from salary, casual local labouring and migrant work (County Government of Kitui, 164 

2013). Both mixed and monoculture rainfed farming is practiced with maize, legumes, green grams, 165 

cowpea and pigeon pea as the main crops. Small numbers of livestock are owned and the manure is 166 

used to fertilise the fields, although the amount is limited. The use of chemical fertilizer is low due to 167 

the cost (Ralph et al., 2006; County Government of Kitui, 2013). The second rationale for selection 168 

was the deep cultural rural farming knowledge and that a traditional land use system is practised, 169 

similar to other parts of Kenya. This land use system includes three types of enterprise areas: 170 

out-fields (away field), in-fields (home garden) and a home site (kitchen gardens) (Woomer et al., 171 

1998).      172 

 173 

Within Kitui County, two villages were selected using purposive sampling (Tongco, 2007) to evaluate the 174 

effect of the difference of location for soil knowledge. Four criteria were used: (a) location in the same soil 175 

type based on the national soil map and in same Agro-Ecological Zone (AEZ); (b) a majority of villagers 176 

as smallscale farmers; (c) no active NGO activity or agricultural extension projects; (d) different distances 177 

from Kitui town centre and different frequency of communication with extension workers (one higher than 178 

the other). Soil types indicate soil general properties so they are assumed to affect farmers’ perception of 179 

soils and fertility, and AEZ represents the climate condition of the area. Therefore, it was important to take 180 

data from the same high-level soil type and AEZ to reduce excessive variation of natural factors and focus 181 

on variation from social and management factors. The distance from town centre can affect the level of 182 

extension service, and therefore, access to scientific knowledge (Anderson, 2006). A national soil map, 183 

AEZ map (Sombroek, Braun and Pouw, 1980), and road map (WFP, 2007) of Kenya were processed on 184 

ArcGIS to identify the potential area and then shown on Google Earth. The national soil map (Sombroek, 185 

Braun and Pouw, 1980) identifies the study area as Um19; ‘well drained, moderately deep to deep, dark 186 

reddish brown to dark yellowish brown, friable to firm, sandy clay to clay; in many place with top soils of 187 

loamy sand to sandy loam (ferralo-chromic/ orthic/ ferric ACRISOLS; with LUVISOLS and 188 

FERRALSOLS)’ (p25). Acrisols and Luvisols are determined by the existence of Argic horizon 189 

(accumulation of clay) and classified by CEC (less than 24 cmolc kg-1 is for Acrisols and more than 24 190 

cmolc kg-1 is for Luvisols) and base saturation (less than 50% for both) (IUSS Working Group WRB, 2015). 191 

Ferralsols are determined by a red colour and low activity clay minerals (IUSS Working Group WRB, 192 

2015). The national soil map does not describe a finer level of soil differentiation. The bedrock is marked 193 

as area Xg on the Geological map for Kitui (Mine & Geological Department Kenya colony North-West 194 

Quadrant, 1954) and described as ‘Microcline-oligoclase-biotite-hornblende migminte with biotite 195 
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anplibolite schlieren granitic sheet and vien reticulation’. 196 

 197 

Visits to villages to triangulate the soil data was conducted and, with support from Agricultural Extension, 198 

Village1 (Kavuti) and Village2 (Kitambasyee) were selected to represent locations with similar 199 

environmental conditions but different social conditions (Figure 3). GPS data showed elevation was similar 200 

(1180m in Village1 and 1000m in Village2) and field slope were similar with flat to moderately steep (0 to 201 

25%) (Soil Survey Division Staff, 2017). Village1 was located near Kitui town (4.5 km) with historically 202 

frequent communication from Agricultural Extension officials - the village was located near the chief’s 203 

office and where public meetings are held, a Ministry of Agriculture official lived in the village, and some 204 

farmers had relatives or friends who engaged with volunteer extension activities. Village2 was located 205 

20km from the town, although due to limited transport it can take more than two hours to walk), and there 206 

was limited communication with Agricultural Extension officials.  207 

  208 

Data collection: Farmer knowledge 209 

Data was collected between January and October 2017. To understand the relationship between farmers’ 210 

knowledge of soil fertility and soil physicochemical parameters, a mixed method approach was used 211 

(Robson, 2011). Information about farmers’ evaluation of soil fertility was collected using individual 212 

interviews and a semi-structured guide to collect both qualitative and quantitative data (Robson, 2011).The 213 

questionnaire for interview was constructed with the questions to collect the data about the indicators of 214 

soil fertility, the location and scale of the best and the worst soil in farmers’ fields. Although farmers are 215 

managers of different farms and recognize small difference even in the same field, this research focused on 216 

soils that farmers evaluated as the best or worst fertility location to avoid over-complexity. Approximately 217 

50% of the total number of households in each village was randomly sampled and the person who decides 218 

management of their fields (usually the household head or wife) was selected as interviewees purposively 219 

inside each household. The total number of sampled farmers was 60 (30 in each village). Focus group 220 

discussions supplemented understanding of the historical narratives. Purposive sampling (Tongco, 2007) 221 

for participants was used as elder farmers (four farmers per a village, range of age is between 53 and 83 222 

years old, who know historical change of soil and agriculture) were able to discuss the historical context. 223 

The questions for group discussion included previous soil condition and farmers' lifestyle, and social and 224 

environmental change affected on the change of soil fertility. A trained local translator was used for 225 

discussion between English and KiKamba, although some farmers spoke English. All data was recorded 226 

with permission. 227 

 228 

Soil sampling and laboratory analysis  229 

Soil samples were collected in August 2017 from the best and the worst fertile place in fields, as identified 230 

by each farmer. The sampling occurred just after harvest and the last short rains in fields that had not yet 231 

been prepared for next growing season. This was considered good timing for evaluating baseline soil 232 

nutrient status with minimal impact from additional inputs. Surface (10cm) soil samples were taken from 233 
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10 points within each field and bulked to make single composite samples of 500g. The total number of soil 234 

samples was 116, 59 from the best fertile locations and 57 from the worst fertile places. This was because 235 

four farmers had just one farm and one of them evaluated their field as not fertile only while another 236 

evaluated their fields as fertile only.  237 

 238 

A sub-sample was sieved to 0.5mm for available phosphorus analysis. The remaining soils were sieved to 239 

2mm for further analysis, stored to air dry at ambient temperature for use in other physical and chemical 240 

analysis. Nitrate-Nitrogen was measured within one week after sampling by extraction in 2.0M potassium 241 

chloride (KCl).  242 

 243 

For soil physical measurements, colour of soils (wet and dry) was determined using a Munsell colour chart 244 

and texture using the ball and ribbon method (Thien, 1979). Water Holding Capacity (WHC) was measured 245 

by simplified method from soil laboratory in University of Reading. This process requires approximately 246 

50 g of air-dry soil to be placed into a plastic container and then into a dish of water for 6 hours to allow 247 

saturation. Afterwards, containers were removed and covered to prevent evaporation, suspended on a retort 248 

stand to allow drainage and dried overnight. Approximately half of the wet soil from each container was 249 

removed and pre-weighed in an aluminium dish. Then a) the mass of the dish and b) the mass of the wet 250 

soil and dish were recorded and dishes put in an oven at 105 °C for 24 hours. Dishes were placed in a 251 

desiccator to cool and then weighed with mass recorded. The water holding capacity could be calculated 252 

as: WHC (%) = (mass of drained soil - mass of oven dried soil)/ mass of oven dried soil x 100.  253 

 254 

For the chemical parameters, pH in H2O (1:2.5) was measured using a glass electrode pH meter (Carter 255 

and Gregorich. 2008) and electronical conductivity (EC1:1) was measured using a conductivity meter 256 

(Richards, 1954). The Total Organic Carbon (TOC) was determined by the Walkley-Black method 257 

(Walkley 1947), Kjedhal Method (Okalebo et al. 1993) was used for Total-Nitrogen (T-N), and 258 

Nitrate-Nitrogen (N-N) was extracted with 2.0 M KCL and measured by 0.01 N H2SO4 using an 259 

Auto-Titrator (Keeney and Nelson, 1982). Available Phosphorus (P) was measured by Mehlich 1 (Mehlich, 260 

1953; Nelson, Mehlich and Winters, 1953), Exchangeable Potassium (K) and Sodium (Na) were extracted 261 

by ammonium acetate and measured using an atomic absorption spectrophotometer and Cation Exchange 262 

Capacity (CEC) was assessed with ammonium acetate after exchangeable cation extraction using the 263 

semi-micro distillation method (Lavkulich, 1981).  264 

 265 

All data collection in Kenya was done under a research permit from National Commission for Science, 266 

Technology & Innovation (NACOSTI). All data from interview and focus group were received under 267 

University Ethical approval. Consent from partisans were taken before starting the data collection.   268 

 269 

Data analysis 270 

Qualitative interview data was treated first to coding (Coffey and Atkinson, 1996) to understand frequency 271 
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of soil names, soil characteristics, location and scale of the best and worst soil in farmers’ fields. 272 

Additionally, simple descriptive statistics were used. Narratives from the interviews and focus groups were 273 

organised to reveal insight to these identified patterns. Results from the soil physicochemical analysis were 274 

compared to farmers’ evaluations to understand patterns and relationships and between the villages. 275 

Statistical analysis of quantitative data was performed using Minitab 17. Pearson chi-squared test was used 276 

to assess differences between 1) villages and farmer-selected location of the best and worst fertility soil, 2) 277 

farmers’ soil fertility evaluation and local soil name, 3) villages and soil texture and 4) villages and locally 278 

determined soil colour classifications. A General Linear Model (GLM) was used to explore difference 279 

between the physicochemical data and farmers’ evaluations of soil fertility. A multiple comparison 280 

approach was used to compare relationships between soil physiochemical data and soil texture/locally 281 

determined colour classifications. The results of TOC, TN, NN, AP, K, Na, CEC and EC took the Log of 282 

the data first and then fitted the GLM to the logged data to consider normality of residuals. 283 

 284 

3. Results 285 

 286 

Results from local soil knowledge analysis are presented first, including characteristics used by farmers to 287 

evaluate the best and the worst soil fertility, use of scale and location and farmers’ terminology. Soil 288 

physicochemical parameters are then introduced and compared with farmers’ evaluations of best and worst 289 

fertility to identify similarities and/or differences.   290 

 291 

Farmer knowledge: Key soil properties used in farmers’ evaluation of soil fertility 292 

The characteristics of soils of the best and worst fertile places were described by farmer in response to an 293 

open question (Figure 4). Texture was the primary soil property used by farmers to evaluate both best and 294 

worst fertility. Colour was used to identify best fertility. There were other properties used by farmers, but 295 

these were less commonly used across the whole group. In total, 13 soil properties were identified as 296 

indicators for both best and worst soil fertility: texture, colour, workability, plant performance, water, 297 

stoniness, weed, feeling, fertilizer, location, root and sub-soil. Temperature was used only as an indicator 298 

for worst soil fertility.  299 

 300 

When describing best soil fertility (n=59, Figure 4-a), farmers relied on fine soil texture (80%) and a black 301 

or red colour (55%) to describe the soil. Of the farmers, 27% recognized a difference in soil workability 302 

(e.g. the need for only moderate wetness to plough easily whereas with very wet conditions soils can be 303 

difficult), 22% referred to good plant performance and linked this to water availability (12%, “Even in dry 304 

season, I felt moisture when I dig the place” V2-6). Other facts mentioned included no stones (13%), a 305 

‘good feeling’ for soils (8%), more ‘fine’ weeds (5%, “It is easy to pull weeds out by hand” V1-5), past use 306 

of fertilizer (5%, “I added a lot of manure in the place in the past, so now here is fertile” V1-4), location 307 

near house where there are often more inputs (5%), longer roots of plants (2%), and an observed different 308 

type of sub-soil (2%). When classifying the worst soil fertility (n=57, Figure4-b), texture was again the 309 
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main factor (80%) but considered as course texture. A light soil colour (20%) was the second factor but 310 

reflect a smaller response in comparison to texture. Other indicators mentioned included difficult 311 

‘workability’ of the soil (20%, “The soil is too hard when it is dry so I need rain for plough.” V1-16) less 312 

water availability (18%, “The soil is dry faster due to drain faster” V1-29) and poor crop performance 313 

(15%), more stones (13%), no fertilizer use (12%), many weeds (5%), far from the house (3%), a different 314 

type of sub-soils (3%, “When dig the soil deeper, I found the red soil with shiny particles” V2-6), hotness 315 

(3%, “When I dig the soil in dry season for preparation, the sandy soil is too hot” V2-15), small roots (2%) 316 

and a ‘bad feeling’ (2%).  317 

 318 

Farmer knowledge: Role of farm scale and location    319 

The scale of evaluation of soil fertility was very detailed within each farm. Farmers clearly understood 320 

differences in soil fertility. Out of the 60 interviewees, 88% were able to designate portions of their farm as 321 

the best or worst soil fertile place (“The portion near tree is better than other because of supply of leaves.” 322 

V1-26, “My home field is located on slope so the bottom of slope is more fertile than up due to washed soil 323 

from up accumulate there.” V2-13, “There is a portion of natural black soil in the centre of my field and 324 

there is more fertile.” V2-22) while 12% evaluated their whole farm as having the same soil fertility (“The 325 

soil is same because my current field is quite small after dividing other for my children.” V1-24).  326 

 327 

Of the total sample, 46% selected the area around their house and inside the home-field as the primary 328 

location for best soil fertility. This kitchen garden or Mũthĩo (in Kikamba phonetic transcription, Whiteley 329 

& Muli 1962)is where livestock is often confined so manure and composts accumulate (Woomer et al., 330 

1998). The next best soil fertility area identified by the total sample was near to a river (20%). When 331 

comparing between the two villages, there are differences in response. Village1 reported that areas within 332 

their kitchen gardens were better (67%) than their away-fields (20%). In Village2, farmers evaluated their 333 

away-fields to have better soil fertility than kitchen gardens (24%) (the difference between villages is 334 

significant, Pearson chi-squared test P=0.006**). The influence of the river was important to soil fertility 335 

in Village2 (38%). There were also differences in the number of fields managed by farmers between the 336 

villages; Householders with more than two fields being managed was 33% in Village1 and 77% in Village2. 337 

This difference affected their selection of the best soil fertility locations on their farm overall with farmers 338 

in Village2 had more opportunity to use the good soils near the river. 339 

 340 

Farmer knowledge: Local terminology for soil fertility evaluation 341 

Farmers considered the fertility of soils through the healthiness of the crops grown. This connection was 342 

reflected in the articulation of soil fertility, with healthy (fertile) and non-healthy (unfertile) terminology 343 

used. Farmers perceived a connection between the healthiness of soils, plants and people (e.g. between 344 

good soils and production, food security and nutrition), and articulated this relationship using visual terms 345 

or outcomes (e.g. ‘an overweight person would have fertile soil and more to eat’). In KiKamba, soil is 346 

called Mũthanga and the word for fertile is Mũnou so good fertility soil is described as Mũthanga Mũnou. 347 
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The word Mũmosu is used to describe a lack of fertility, and therefore poor soil fertility is Mũthanga 348 

Mũmosu. Interestingly, Mũnou and Mũmosu were also terms used for expressing human healthiness. A 349 

human being is called Mũndũ in KiKamba, with Mũndũ Mũnou used to refer to an overweight person, and 350 

often used to convey being healthy or having contentment. In contrast, Mũndũ Mũmosu is used to refer to 351 

an unhealthy thinness or something lacking in the human body. Technical or science-based crop 352 

performance indicators were not used by farmers as the first terminology to describe soil fertility (Figure 353 

4) as farmers considered it necessary to reflect initially on the characteristics of Mũthanga Mũnou (or 354 

Mũmosu) and the collective healthiness of the soil and the crops.  355 

 356 

Table 1 presents farmers’ soil classification terms and how these relate to their designations of best and 357 

worst soil fertility on their farms. Farmers relied on 11 classifications, eight locally-defined terms and three 358 

defined in the English language. The eight locally-defined terms were divided into three groups: feature of 359 

soil; fertility classification; and formation type. There were five categories based on physical soil 360 

properties, including texture and colour, sandy soil (locally known as Nthangathĩ), black soil (Mwiũ ), red 361 

soil (Mũtune ), stony soil (Kĩvuthĩ ) and black-clay soil found near rivers (Ĩlimba). Most answers were 362 

organised into these physical soil categories (91%) and KiKamba terminology was used for the majority of 363 

soil classification labels by farmers in Kitui. Although there were some synonyms and a few instances of 364 

mixes of category, it was still possible to consistently identify a dominant soil type with farmers. For 365 

example, in the category of Mũtune (red soil), there were two synonyms Kĩtune and Ũtune and a mix with 366 

Ĩlimba i.e. red soil with some black clay). Terminology for soil fertility can also be referred to as good 367 

(Mũnou) or bad (Yalata). There was just one category that reflected soil formation characteristics, which 368 

was a type of sedimentary soil called Kĩvumbu (other meaning of Kĩvumbu is clay soil found in termite 369 

mounds, personal communication with a local scientist). In addition to these local terms, three English 370 

terms were used to describe loam, clay and white soil.  371 

 372 

There was a clear relationship between the terminology in farmers’ soil classification and their evaluation 373 

of soil fertility (Table 1). Of the total, Mũnou (1 in 1), Kĩvumbu (1 in 1), Ĩlimba (12 in 12), Mwiũ (23 in 24), 374 

and Mũtune (13 in 19) were categories used to evaluate fertile soil. In contrast, course soil texture 375 

Nthangathĩ (29 in 34), Kĩvuthĩ (16 in 16) and Yalata (4 in 4) were used to evaluate poor fertility soils. The 376 

difference of local soil classification on farmers’ fertility evaluation is significant (Pearson chi-squared test 377 

P=0.000***, with local soils including more than 10 soil samples used in the test), indicating that farmers 378 

were consistent in their use of local soil terminology and association of these terms with best and worst 379 

soils. In addition, there was a difference in occurrence of locally perceived soil types between the two 380 

study villages. Mwiũ and Mũtune (11 and 11 in 30) were dominant in Village1 and Mwiũ and Ĩlimba (12 381 

and 11 in 29) were dominant in Village2 to describe good soil fertility. Nthangathĩ was dominant as the 382 

worst soil fertility in both villages, although Kĩvuthĩ was additionally recognized in Village2 as a worst soil 383 

fertility location. Notably, English terminology was only used in Village1.  384 

 385 
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Comparing local soil names with technical evaluations of texture, colour and physicochemical properties 386 

Texture associated with each local soil classification was compared to scientific analysis of soil samples. 387 

The results of texture analysis made by a hand test were aggregated into three categories: clayey refers to 388 

clay dominated (>35% clay), including clay, sandy clay and clay loam; loamy describes moderately sandy, 389 

including sandy clay loam and sandy loam; and sandy, which is sand dominated (>75% sand), including 390 

loamy sand and sand. Clayey to loamy texture soil types were mainly classified from the best soil fertility 391 

locations, while course texture (sandy or stony) soils were classified from the worst soil fertility locations. 392 

Kivuchi and Yalata were classified as clayey to loamy texture using a hand test and those with significant 393 

stone content removed by sieving were classified as stony or course texture soils.  394 

 395 

Soil samples were compared to a Munsell colour chart and named using the guide at 396 

https://logiteasy.com/free-tools/munsell-calculator.php. Soil colour was not significantly different across 397 

the soil classification by the chart. In total 11 soil colours were recognized but these were dominated by 398 

just three colour names (dark brown, dark yellowish brown and brown). Ĩlimba (6 in 12), Mwiũ (14 in 24), 399 

Nthangathĩ (16 in 34) and Kĩvuthĩ (7 in 16) were classified in dark brown, while Mũtune related to brown. 400 

The limited difference between soil colour name and local soil classification can be attributed to the 401 

naming system of the Munsell colour chart. The colour range to categorise dark brown, dark yellowish 402 

brown, brown and strong brown is wider than for other colours. 403 

 404 

Table 1. Local soil classifications, with associated soil fertility and texture terminology (Source: Individual 405 

Interviews N=116 sites, 30 farmers) 406 

Local soil name 
Meaning in 

English 

No of 

samples 

Fertility evaluation Texture 

Best Worst Clayey Loamy Sandy 

Mũnou Good soil 1 1 0 1 0 0 

Kĩvumbu Sedimentary 

soil 
1 1 0 1 0 0 

Ĩlimba (Ĩlivĩ) Black clay soil 

near river 
12 12 0 6 6 0 

Mwiũ (+Mũtune, 

+Nthangathĩ) 
Black Soil 24 23 1 4 18 2 

Mũtune (Kĩtune, Ũtune, 

+Ĩlimba, + Nthangathĩ) 
Red Soil 19 13 6 13 5 1 

Loam soil - 2 2 0 1 1 0 

Clay loam soil - 1 1 0 1 0 0 

No name - 1 1 0 1 0 0 

Nthangathĩ (+Mwiũ, 

+Mũtune) 
Sandy Soil 34 5 29 4 12 18 

https://logiteasy.com/free-tools/munsell-calculator.php
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Kĩvuthĩ (Kĩthathai, 

Ũthathai, +Mũtune, 

+Nthangathĩ) 

Stony Soil 16 0 16 8 5 3 

Yalata (Mwalata, Mwalata 

Mwiũ) 
Bad Soil 4 0 4 2 2 0 

White soil - 1 0 1 0 0 1 

Total  116 59 57 42 49 25 

 407 

 408 
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Table 2. Soil colour by local soil classification organised by the Munsell colour chart (wet conditions)  409 

 410 

 Local Soil Name 

Munsell Colour  

Total 

black 
very dark 

brown 

very dark 

grayish 

brown 

dark 

grayish 

brown 

Dark 

brown 

dark 

yellowish 

brown 

brown 
strong 

brown 

very 

pale 

brown 

reddish 

brown 

yellowish 

red 

10YR1.7/1 

7.5YR2/2, 

2/3, 

10YR2/3 

10YR3/2 10YR4/2 

7.5YR3/3, 

3/4, 

10YR3/3 

10YR3/4, 

4/4, 4/6 

7.5YR4/3, 

4/4, 5/4, 

10YR 4/3, 

5/3 

7.5YR4/6, 

5/6, 6/6 
10YR7/4 5YR4/4 5YR5/6 

Mũnou  
       

1 
   

1 

Kĩvumbu 
      

1 
    

1 

Ĩlimba (Ĩlivĩ) 1 3 2 
 

6 
      

12 

Mwiũ (+Mũtune +Nthangathĩ) 
 

1 
 

1 14 2 5 1 
   

24 

Mũtune (Kĩtune, Ũtune, +Ĩlimba, 

+ Nthangathĩ)     
3 2 11 2 

 
1 

 
19 

No name 
      

1 
    

1 

Clay loam soil 
    

1 
      

1 

Loam soil 
    

2 
      

2 

Nthangathĩ (+Mwiũ +Mũtune) 
    

16 13 5 
    

34 

Kĩvuthĩ (Kĩthathai, Ũthathai, 

+Mũtune +Nthangathĩ)     
7 2 4 2 

  
1 16 

Yalata (Mwalata, Mwalata Mwiũ)  
    

2 1 1 
    

4 

White soil 
        

1 
  

1 
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Total 1 4 2 1 51 20 28 6 1 1 1 116 

 411 
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Table 3. Physicochemical parameters of each local soil classification 412 

 413 

Results of the physicochemical analysis were also different between local soil types, which were classified 414 

into the best and worst soil fertility locations. When the physicochemical analysis was compared with 415 

critical levels for maize production (NAAIAP 2014), average values of pH, AP and K for all samples were 416 

higher and Mũnou and Kĩvumbu show higher TN. However, for other soils TOC and TN are deficient. This 417 

critical level indicates general deficiency of organic matter and sufficient mineral supply by bedrocks, 418 

which are locally categorized as metamorphic rocks (Mine & Geological Department Kenya Colony 1954). 419 

Therefore, it can be implied low organic matter in the soil.  420 

 421 

Local soil name pH 
TOC  

g kg-1 

TN  

g 

kg-1 

NN  

mg 

kg-1 

AP  

mg 

kg-1 

K  

cmol 

kg-1 

Na  

cmol 

kg-1 

CEC  

cmol 

kg-1 

EC  

ds/m 

WHC 

% 

Best Fertility 

Mũnou 6.7 21.0 2.1 12.5 56 0.92 0.20 7.9 0.04 61.2 

Kĩvumbu 7.4 10.1 3.4 19.3 114 0.42 0.23 14.1 0.05 55.7 

Ĩlimba (Ĩlivĩ) 6.4 10.5 1.2 12.2 87 1.39 0.37 11.1 0.12 48.2 

Mwiũ (+Mũtune, +Nthangathĩ) 6.7 10.6 1.1 11.6 109 1.16 0.43 10.3 0.09 42.0 

Mũtune (Kĩtune, Ũtune, +Ĩlimba, 

+Nthangagi) 
6.6 11.9 1.2 11.7 71 1.09 0.33 10.1 0.07 47.8 

Loam soil 6.6 12.4 1.0 10.1 86 1.29 0.27 11.3 0.05 49.3 

Clay loam soil 6.2 18.0 1.4 10.7 46 0.80 0.32 7.4 0.11 50.8 

No name 6.5 19.5 2.5 17.7 21 0.76 0.19 10.8 0.05 57.5 

Worst fertility 

Nthangathĩ (+Mwiũ +Mũtune) 6.1 10.0 1.0 11.3 49 0.92 0.32 9.4 0.07 35.5 

Kĩvuthĩ (Kĩthathai, Ũthathai, 

+Mũtune, +Nthangathĩ) 
6.1 9.2 1.2 11.9 65 1.39 0.38 10.7 0.06 42.8 

Yalata (Mwalata, Mwalata Mwiũ) 6.2 10.8 1.1 11.3 84 1.49 0.30 9.5 0.10 44.6 

White soil 6.1 6.6 0.5 9.5 18 0.64 0.26 10.6 0.12 45.4 

Summary information 

Average (Best Fertility) 6.6 11.5 1.2 11.9 87.4 1.2 0.4 10.4 0.09 45.3 

Average (Worst Fertility) 6.1 9.7 1.1 11.6 58.0 1.1 0.3 9.8 0.07 39.7 

Average (All Samples) 6.4 10.6 1.2 11.7 73 1.1 0.4 10.1 0.08 42.5 

Critical level ≧5.5 ≧27 ≧2 n.d ≧30 ≧0.24 n.d n.d n.d n.d 
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The physicochemical analysis data was also statistically compared with the best and worst fertility soils. 422 

Using GLM analysis, soils from the best soil fertility locations were shown to have significantly higher 423 

average values than the worst soil fertility locations for pH (6.6 at the best/6.1 at the worst, P=0.000***), 424 

TOC (11. 5 and 9.7g kg-1, P=0.003**), AP (87.4 and 58.0mg kg-1, P=0.000***), K (1.2 and 1.1cmol kg-1, 425 

P=0.032*) and WFC (45.3 and 39.6%, P=0.000***). However, while TN (1.2 and 1.1g kg-1, P=0.088), NN 426 

(11.9 and 11.6mg kg-1, P=0.396), Na (0.4 and 0.3cmol kg-1, P=0.225), CEC (10.4 and 9.8cmol kg-1, 427 

P=0.198) and EC (0.09 and 0.07ds/m, P=0.088) in the best fertility soils showed higher values than the 428 

worst fertility soils these results are not significantly different. The factors from location were additionally 429 

included in the GLM analysis. The difference of villages was found to be significant for pH, TOC, AP, K, 430 

Na, CEC, EC and WHC. The difference of field location (home- or away-field) particularly affected the 431 

value of WHC, with away-fields having higher WHC than home-fields.  432 

 433 

Relationships between farmer’ evaluation of soil fertility and soil physicochemical parameters  434 

Further analysis was carried out to examine the relationship between farmers’ local knowledge and 435 

technical knowledge obtained through the above physicochemical analysis with respect to the two key soil 436 

properties farmers use to assess fertility: texture and colour (Figure 4).   437 

 438 

The difference in soil texture can be shown to be reflected in the values found in the physicochemical 439 

analysis (Table 4-a). First, frequency of appearance of the three texture classes used for best and worst 440 

fertility places is significantly different. For example, for the whole sample, the best fertility soil has a finer 441 

texture than the worst fertility soil (P=0.002**). The village location further affected the soil texture, with 442 

significantly more clayey soils in Village1 than Village2 (P=0.015*). This reflects the red clay soil 443 

(Mũtune) sampled in Village1. Additional exploration of the relationship between texture and 444 

physicochemical properties identified as significantly different between best and worst fertility soil and the 445 

location was performed (Table 4-b). The GLM models included soil fertility evaluation and location as 446 

factors and it was found that there is significant difference between all properties identified and the texture 447 

categories. Multiple comparisons on the 95% confidence interval show significant difference in pH, TOC 448 

and WFC among clayey, loamy and sandy texture. The respective values were higher for finer texture soils. 449 

The average values of AP, K and EC are higher for clayey, loamy and sandy respectively but the difference 450 

is not significant.  451 

 452 

Table 4. Relationships between soil texture and (a) soil fertility evaluation or village location (Pearson 453 

chi-squared test) and (b) soil texture and the results of physicochemical analysis (multiple comparison) (N=116) 454 

(a) 

Soil texture 

P value Clayey 

(N=42) 

Loamy 

(N=49) 

Sandy 

(N=25) 

Soil best 24 30 5 0.002** 
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fertility 

evaluation 
worst 18 19 20 

Village 

location 

1 28 22 8 
0.015* 

2 14 27 17 

 455 

(b) 
Soil texture P 

value Clayey Loamy Sandy 

pH 6.48a 6.43a 6.03b 

P<0.05 

TOC g kg-1 1.21a 0.99b 0.97b 

AP mg kg-1 76.0a 76.1a 64.20a 

K cmol kg-1 1.23a 1.09a 1.03a 

EC ds/m 0.09a 0.08a 0.07a 

WHC gH2O gdry soil-1 50.6a 39.4b 35.0c 

*P <0.05, **P <0.01 456 

 457 

Although Table 2 does not show a clear difference for colour with local soil classifications, farmers rely on 458 

colour as an indicator for their evaluation of soil fertility. Therefore, further correlation between colours 459 

from farmers’ classification and the physicochemical data was performed (Table 5). From the 116 soil 460 

samples, 105 which could be categorized into the five major local soil types were selected and ordered into 461 

three categories: Blackish (n=36) including Ĩlimba and Mwiũ, Reddish (n=19) including Mũtune and No 462 

colour mentioned (n=50) including Nthangathĩ and Kĩvuthĩ. There was a significant difference of 463 

appearance for each colour soils in soil fertility evaluation (P=0.000***) and between villages (P=0.017*) 464 

using a chi-squared test (Table 5-a). Blackish and Reddish soils were mainly classified as best soil fertility 465 

locations and no colour soils were found in the worst soil fertile areas. There was more Blackish soil and 466 

less Reddish soil in Village2 than Village1. This reflects the sample of Mũtune from Village1 and Ĩlimba 467 

from Village2. Multiple comparisons on the 95% confidence interval show a significant difference for pH, 468 

TOC, AP, EC and WHC among the Blackish, Reddish and No Colour soils. The average value of K is 469 

higher for Blackish, Reddish and No Colour respectively but the difference is not significant. The pH, TOC 470 

and WHC can be associated with changes in both colour and texture; AP and EC were associated with 471 

local colour only.  472 

 473 

Table 5. Relationship between local soil colour and (a) soil fertility evaluation or village (Pearson chi-squared 474 

test) (b) and results of the physicochemical analysis (multiple comparison) (N=105) 475 

(a) 

Colour of major local soil types 

P value Blackish  

(N=36) 

Reddish  

(N=19) 

No Colour  

(N=50) 

Soil best 35 13 5 0.000 
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fertility 

evaluation 
worst 1 6 45 

Village 
1 12 14 23 

0.017* 
2 24 5 27 

 476 

(b) 

Colour of major local soil types 
P 

value 
Blackish  

(N=36) 

Reddish  

(N=19) 

No Colour  

(N=50) 

pH 6.57a 6.62a 6.10b 

P<0.05 

TOC g kg-1 1.05ab 1.19a 0.97b 

AP mg kg-1 101a 71ab 54b 

K cmol kg-1 1.24a 1.09a 1.07a 

EC ds/m 1 0.10a 0.07ab 0.07b 

WHC % gH2O gdry soil-1 47.8a 44.1a 37.8b 

*P <0.05, **P <0.01 477 

 478 

Soil evaluation and historical narratives 479 

Farmers’ narratives about their evaluation of soil fertility, classification and connection with social change 480 

were collected through focus group discussion with elder people and storytelling during individual 481 

interviews. In particular, farmers in both villages noted a change in local soil conditions compared with 482 

historical recollections were soils had become degraded, soil fertility had decreased and cultivation was 483 

more challenging: “For the past generation of farmers, there was a lot of humus, fertile soil…if working 484 

this humus, it reached until the knee. The soil was covered by humus so we couldn’t see the soil type” 485 

(Village1); “All the soils were black (Mwiũ) so you didn’t need to recognize ‘soil type’ in the past. The 486 

head of the family always decides the best place by checking if the soil is loose, if it can be dug by hand 487 

and if there is a lot of humus… but nowadays after two or three seasons in cultivation, the soil fertility is a 488 

problem and the crops do not grow well. When you then dig the soil, it will make a noise [from the stones] 489 

…and this means is not a good field. In the past, the family could shift to other places as the land belonged 490 

to no one that time” (Village2). However, the introduction of regulation in land ownership impacted 491 

traditional land use systems and ultimate the quality of the soil as “after the surveyors came, they 492 

introduced new government rules and people were settled in the same place” (Village1 and 2) limiting 493 

farmers’ ability to practice extensive agriculture or even long-term fallow rotation.  494 

 495 

With limited capacity for many farmers to practice intensive farming and maintain soil fertility, there are 496 

challenges for current soil fertility: “The rain washes away the humus and top soils...after humus rich 497 

surface soil loss, other soils (Mũtune, Nthangathĩ, Kĩvuthĩ ) now appear” (Village1 and 2); “The 498 

population in the village has increased and people here often cut the trees to make charcoal to sell, so the 499 

forest is reduced” (Village1); “the soil colour was originally black but now it is a bit pale and this means 500 
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the soil has become old. My crop production has been reduced” (Village2). Individual storytelling revealed 501 

that some farmers actively were attempting to practice low-cost improvement techniques through organic 502 

manures, soil and water conservation or mulching: “when I moved to the place and built the new house, 503 

the soil was poor… but I collected leaves and humus from the forest and spread it over the field and it has 504 

made the soils more fertile” (Village1).  505 

  506 

4. Discussion 507 

 508 

Having revealed the similarities between the characteristics used by farmers to evaluate best and worst soil 509 

fertility and the physicochemical analysis, this section reflects on why farmers understand the soil in the 510 

way they do. In particular, the reasons why farmers relied on texture and colour as their main indicators of 511 

soil fertility are explored. The factors that shape farmers’ understanding include holistic information of 512 

farming experiences, historical social and environmental narratives, a detailed knowledge of the landscape 513 

and spatial scale.  514 

 515 

Both local soil classification and evaluation of soil fertility in Kitui was dominated by soil texture and 516 

colour. The two is also main indicators in other local soil taxonomy (Barrera-Bassols and Zinck, 2003; 517 

Osbahr and Allan, 2003) and fertility evaluation (Murage et al., 2000; Mairura et al., 2007), and global soil 518 

classification(IUSS Working Group WRB, 2015). Kitui farmers used other fertility indicators including 519 

crop performance, roots growth, management effects, and workability which were observed and evaluated 520 

in their daily experience, through family and community knowledge, and from awareness of local field 521 

information (Ingram et al., 2018). The appearance of macro-fauna or indicator plant species which mention 522 

in other studies (Murage et al., 2000; Mairura et al., 2007) were not answered from interviewees 523 

voluntarily in this study. It would be due to rare to see organisms on fields and less attention for weeds 524 

species than other indicators in the study area.    525 

 526 

This simple approach to soil classification and evaluation may reflect the relatively short history of 527 

agriculture in this area. According to farmers’ narratives of agricultural development in the region, soil 528 

knowledge and management has been shaped by social change. Traditionally farmers have evaluated the 529 

soil humus and texture to decide on the best locations for shifting cultivation since the 17th Century. These 530 

two indicators were also reported as common in indigenous soil classification in other areas 531 

(Barrera-Bassols and Zinck, 2003). However, these evaluations may not have been relied upon as much in 532 

the past because there was plentiful fertile land before 19th century. Increased settlement and the 533 

implementation of a land ownership system in the 1970’s (Ikeno, 1989) restricted local farmers’ traditional 534 

systems, with losses in the humus rich surface soil and soil erosion of some sub-soils. It is this reworked 535 

soil that is captured in the current local soil classification, but which may have been used for less than half 536 

a century. While nearby Machakos, another Kamba settlement, suffered degradation of its agricultural land 537 

up to the 1930s, a landownership system and introduction of terraces led to conservation improvements 538 
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(Karanja et al 2017, Tiffen et al. 1994). The story of agricultural extension in Kitui is however later than 539 

Machakos and there have been no large-scale land conservation project as within Machakos (Karanja et al 540 

2017, Ikeno 1989, personal communication with Extension Officers in Kitui). Investment in terracing of 541 

fields has been ad hoc in Kitui and many have been damaged by high intensity rain. The growing 542 

population has placed pressure on forest resources, reduced farm sizes through traditional subdivision of 543 

land holdings for each generation, increased local food demand and required a more intensive farming 544 

approach (Ikeno, 1989). The narratives and soil knowledge reported by farmers in the study primarily 545 

reflects their experience after this period of social change.  546 

 547 

Nevertheless, farmers construct a detailed local knowledge of their soils within their own farm, capturing 548 

small scale variation and a sense of connection with the history of their soil. Their local soil classifications 549 

focus on this small spatial scale, which is relevant to day-to-day farming decisions. This scalar dimension 550 

has been observed in other studies, in Niger (Osbahr and Allan, 2003) and in Rwanda (Rushemuka et al., 551 

2014). Location and connectedness with the landscape also shapes local soil evaluations. Land near to the 552 

family homestead or the river were seen as having the most fertile soil due to the availability of nutrients 553 

and water. The homestead benefits from organic waste, livestock and waste water (Woomer et al., 1998) 554 

while the river supplies water and nutrients from deposited sediments. The type of sediments is decided by 555 

topography, with sand in the middle of the river while relatively flat sections allow clay with nutrients to 556 

accumulate (Brady and Weil, 2016). These areas are locally seen as demonstrating improved soils without 557 

labour input and classified as the best soil. Farmers are often more likely to focus further agricultural input 558 

in the most productive areas of their farm (Murage et al., 2000).  559 

 560 

There were differences in how farmers recognised soils between the two study villages. For example, 561 

while farmers in Village1 classified some soils on their farm in English, this was not the case in Village2. 562 

This reflected the availability of agricultural information in the school and access to an agricultural 563 

extension worker in Village1. There was difficulty in communication between extension workers and 564 

farmers in Village2 which was in a comparatively more remote area (Anderson, 2006). The positive effects 565 

of extension services in adding soil science-based knowledge to farmers is well known (Muyanga and 566 

Jayne, 2006). Extension staffs had informed farmers that “Sandy loam soil was the best for cultivation of 567 

maize” (personal communication with Extension Officers in Kitui), although a local term which meant 568 

“loam” did not exist in this area and farmers explained a loam texture as mixture of clay and sand. Another 569 

difference between the two villages was the selection of the location determined as the best or worst soil 570 

fertility. This can be attributed to a difference in availability of land. As illustrated by the number of 571 

farmers who have more than two fields (Village2 is higher), land is more difficult to acquire, buy or rent in 572 

Village1 because of a higher population density in the area since it is nearer to the town (The County 573 

Government of Kitui, 2014). Moreover, the elevation of Village1 is similar but bit higher than Village2 and 574 

the availability of black clay soil near river which made by alluviums is less than Village2. Farmers in 575 

Village1 have limited opportunity to use away-fields and consider differences in soil fertility on their 576 
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owned fields as an effect resulting from better inputs and management than natural variation in soil type. 577 

As mentioned above, application of organic matter from house change the soil colour darker and increase 578 

black soils in local classification. While both intensification and natural diversity can lead to differences in 579 

texture and colour, the core concepts used by farmers for their evaluation of soil in both locations was the 580 

same. Given national interest in supporting intensification of these soils, understanding the underlying 581 

epistemological framings for management decisions by farmers are vital (Bozzola, Smale and Falco, 2016; 582 

Verkaart et al., 2017).  583 

   584 

Furthermore, there was consistency in aspects of the core concepts (figure 1) used to evaluate soil fertility 585 

by scientists using soil science methods and farmers local knowledge in Kitui. The results of the 586 

physicochemical analysis from locations identified by farmers as the best soil fertility areas were 587 

significantly better than those identified as the worst, and in particular this reflected a focus on organic 588 

matter content, pH, AP, K and WFC. This finding supports the argument by Murage et al. (2000) and 589 

Mairura et al. (2007) that Kenyan farmers’ soil evaluation is highly consistent with soil science evaluations. 590 

Texture is the basis by which to understand soil structure and it is related to aeration, space for plant roots 591 

and moisture, which directly affect crop performance (Brady and Weil, 2016). Thus soil texture can 592 

indicate the potential level of nutrient and water holding capacity of a soil (Brady and Weil, 2016), which 593 

was identified to be significantly different in pH, TOC and WHC (Table 4) between the soils with different 594 

texture. coarse soils were determined by farmers to be problematic and often identified as the worst soil 595 

fertility location on their farm. This reflected their understanding of soil process, such as rapid drainage of 596 

water through the coarse soil particles, a problem in a region that experiences erratic rains and frequent 597 

drought spells because it leads to crop loss. Even if these are low-cost water conservation techniques, they 598 

can be labour intensive (Oguge and Oremo, 2018). The coarse particles are due to components from the 599 

metamorphic bedrock (Bishop, Woolley and Hamilton, 1999), especially silicate minerals such as 600 

microcline and oligoclase (Mine & Geological Department Kenya colony North-West Quadrant, 1954) 601 

which create sand. These sandy soils are considered problematic for farming locally and are called Yalata 602 

in KiKamba. Other studies have described coarse textured soils to be perceived as problematic by farmers 603 

(e.g. the Tanah Tahinagan soils in Indonesia) (Kamidohzono et al. 2002).  604 

 605 

The colour of a soil is however often considered the most remarkable visual feature and can indicate a 606 

range of soil properties and processes. For example, there is a known correlation between a dark coloured 607 

soil and the amount of organic matter (Brady and Weil, 2016). In this study, significant differences were 608 

shown to be between local coloured soils and ‘no colour’ soils for pH, TOC, AP, EC and WHC. However, 609 

there was no significant difference between blackish and reddish soil. This reflects generally low organic 610 

matter content in the soils around Kitui, a problem which has been exacerbated by surface soil loss. 611 

Therefore, the relationship between darker soil and organic matter content is not clearly shown in this 612 

study. The colour of the soil can be explained by the clay types in this area. The source of the black colour 613 

clay described as Mwiũ or Ĩlimba was alluvial deposits, while the red clay of Mũtune came from the local 614 
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iron-rich metamorphic rock (personal communication, Professor in Soil Formation, University of Nairobi). 615 

It can be concluded that farmers first evaluate their soils by texture, and second, they classify by the colour. 616 

Although soil colour in local classification is not clearly divided in Munsell colour chart but the space for 617 

further research of local colour epistemology is remaining as precise recognition of animal coat-colour 618 

among the Bodi in Ethiopia (Fukui, 1996). 619 

 620 

Summarizing the achievements of this study as adapted in Figure 1 (Barrios et al., 2006), Kitui farmers 621 

and soil science shares the use of soil texture and colour for soil fertility evaluation as core concepts. The 622 

information from farmers’ observation and evaluation of field managements and history of social and 623 

environmental changes is lacking in soil science. On the other hand, the relationships between soil 624 

properties and soil process is less well understood by farmers, and the importance of organic matter is not 625 

mentioned by farmers at all, although it is dominant topic for water retention by soil scientists (Yageta et 626 

al., no date; Brady and Weil, 2016). Water availability is a particularly challenging factor for agricultural 627 

production in Kitui and most farmers rely on rainfed supply, exposing them to the risk of drought (Ikeno, 628 

1989). Instead of holistic (ref), Kitui farmers currently use qualitative indicators more readily than 629 

quantitative measures. Using soil colour and texture as an entry point and sharing of information about soil 630 

processes (or “know-why”) about water and nutrient retention together with farmers empirical knowledge 631 

could help to provide a genuine two-way form of communication and social learning (Leeuwis and Aarts, 632 

2011; Lie and Servaes, 2015). The creation of local tailor-made soil assessment systems using hybrid 633 

knowledge can integrate precise spatial information from farmers and the mechanisms of soil function 634 

from soil science, which would then provide the potential to support effective precision agriculture system 635 

(Osbahr and Allan, 2003) and increase sustainability and adaptability of soil management technology.  636 

 637 

 638 

The results presented in this paper demonstrate that there is a epistemological question of the difference of 639 

soil colour and texture classification between farmers and soil science. Further work to explore the 640 

relationship around this in different locations, the differences among farmers, and to develop a deeper 641 

understanding of local understanding of the relationship between indicators and key soil processes in these 642 

different context would be useful. Although this study adopted a case study approach and results include 643 

site-specific data, the methods captured the main dimensions about farmers’ perception of soil fertility and 644 

the similarity and dissonances with soil science knowledge – this illustrates how the impacts of location 645 

and historical narratives as social context shape soil knowledge beyond just a collection of local soil 646 

taxonomy (Niemeijer and Mazzucato, 2003).  647 

 648 

 649 

5. Conclusion 650 

 651 

Farmers in Kitui used a soil classification system based on local knowledge and evaluation processes of 652 
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structure and function to assess soil fertility. The factors that shape farmers’ understanding include holistic 653 

information of farming experiences with observation and evaluation, historical social and environmental 654 

narratives, a detailed knowledge of the landscape and spatial scale. Local historical narratives reveal the 655 

importance in changes to humus, consistent with technical knowledge about the role of soil organic matter 656 

for soil fertility. The main indicators used in evaluation of good soil fertility are texture and colour, while 657 

texture alone is used for poor soil fertility. This paper provides better understanding of farmer soil 658 

classification that help to inform scientists working with alternative frameworks, sharing the importance of 659 

soil colour and texture with farmers, providing the information of “know-why” and learn the importance of 660 

location from farmers. The two-way communication could create the hybrid knowledge which become a 661 

base for the development of integrated soil management approaches. Further research could investigate if 662 

systems of local soil colour classification and the role of local historical narratives is different in other 663 

contexts, as well as differences of understanding among farmers and the relationship between indicators 664 

and key soil processes. This paper has presented a straightforward approach for comparing qualitative and 665 

quantitative knowledge and the method could be used by extension workers in other locations. 666 

 667 
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