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Abstract: Isotopic records from speleothems are an important source of information about past 

climates and, given the increase in the number of isotope-enabled climate models, are likely to become 

an important tool for climate model evaluation. SISAL (Speleothem Isotopes Synthesis and Analysis) 

have created a global database of isotopic records from speleothems in order to facilitate regional 

analyses and data-model comparison. The papers in this Special Issue showcase the use of the 

database for regional analyses. In this paper, we discuss some of the important issues underpinning 

the use of speleothems and how the existence of this database assists palaeoclimate research. We also 

highlight some of the lessons learned in the creation of the SISAL database and outline potential 

research going forward. 
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1. Speleothems as Recorders of Past Climates 

Speleothems are secondary cave deposits that form when water percolates through carbonate 

bedrock. Atmospheric CO2 and CO2 generated by root respiration and the decomposition of organic 

matter is dissolved by rainwater as it percolates through the soil, which produces carbonic acid that 

rapidly dissociates to produce weakly acidic water. In karst areas, this acidic water dissolves carbonate 

as it percolates through the bedrock until water becomes supersaturated with Ca2+ and HCO3−. 

Additional CO2 contributions from microbial and root respiration occur in the vadose zone [1]. When 

the percolating waters emerge in a cave, CO2 degassing from the drip water to the cave atmosphere 

induces CaCO3 precipitation and forms stalagmites and stalactites [2]. CaCO3 precipitation can be as 

either calcite or aragonite. 

Speleothems are a rich archive of terrestrial palaeoclimate information. Although many different 

measurements can be made on speleothems, the most common types for palaeoclimate reconstructions 

are the stable isotopes of oxygen and carbon (δ18O, δ13C). Speleothem carbonate δ18O values are often 

more positive than would be expected from the temperature-dependent isotope fractionation during 

deposition. Changes in speleothem δ18O are primarily driven by changes in precipitation amount, 

temperature, or precipitation source linked to atmospheric circulation changes [3–5]. However, these 

records can also be affected by changes in drip water residence time in the overlying karst, the cave 

temperature, and ventilation dynamics or kinetic fractionation during carbonate deposition, all of 

which are linked indirectly to changes in climate. Changes in δ13C are generally interpreted to reflect 

the changing abundance of C3 and C4 plants above the cave and, hence, to provide an indirect signal of 

precipitation changes [6]. However, kinetic fractionation effects between the stalactite and the 

stalagmite due to evaporation or degassing of the groundwater within the aquifer can over-ride the C3 

versus C4 signal [7]. Additionally, the δ13C of C3 plants is inversely related to the drawdown of CO2 

during photosynthesis, which increases with environmental aridity [8]. Thus, changes in δ13C can be 

produced without requiring large shifts in vegetation type and, given that the availability of water for 

plant growth is not simply a function of precipitation inputs, could reflect complex climatic changes. 
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Furthermore, organic matter decomposition and mineral dissolution in the soil as well as at the soil-

rock interface can also affect the δ13C signal [9].  

Despite potential uncertainties in the interpretation of the isotopic records, speleothems have been 

used to infer shifts of the Intertropical Convergence Zone [10], glacial-interglacial transitions, and 

millennial-scale variability of tropical atmospheric circulation in response to Dansgaard-Oeschger 

cycles [11,12] as well as the timing of climate-related migrations across the Saharan-Arabian region and 

how these enabled the migration of humans out of Africa [13]. 

2. The Rationale Behind the SISAL Database 

The extensive distribution of karst landscapes (see papers in this Special Issue for regional maps 

with carbonate lithologies and speleothem coverage) means that speleothems are studied worldwide. 

There has been a marked increase in speleothem-based publications over the last few decades (Figure 

1), which was facilitated by the development of spectrometers that can deliver high-precision U-Th 

dates and improved techniques for high-resolution sampling. However, analysis of spatio-temporal 

patterns of isotopic changes, which is necessary to facilitate reconstructions of large-scale changes in 

atmospheric circulation, is not possible unless the > 700 published speleothem records are documented 

in a standardised way with adequate metadata in a database. There have been attempts to compile 

speleothem data globally from publicly available data in the last few years, particularly in the model 

evaluation context [14,15]. However, repositories such as the NOAA/World Data Center 

Paleoclimatology Program (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data) have an 

uneven and incomplete representation of the published data. In particular, the NOAA/WDCPP archive 

contains only 196 speleothem records (Figure 1) and the key data and metadata needed to assess 

uncertainties are often missing, which prevents quality control or screening of the records.  

SISAL (Speleothem Isotopes Synthesis and Analysis, 

http://pastglobalchanges.org/ini/wg/sisal/intro, last access 26 September, 2018), which is an 

international working group under the auspices of the Past Global Changes (PAGES) project, is seeking 

to redress this situation by creating a systematic global synthesis of speleothem data. The first version 

of the SISAL database [16,17] includes 381 speleothem isotope records either from public repositories 

or provided by the original investigators. This database includes an exhaustive set of key metadata 

such as information on the age-models, the geology of the cave site or speleothem mineralogy, to 

facilitate quality control and to ensure the reusability of the data. 

 

Figure 1: Evolution of speleothem palaeoclimate research. Data from top to bottom: “Web of 

Knowledge” are the publications that resulted from querying the keywords “speleothem” and “isotope” 

in http://www.webofknowledge.com on 10 June, 2018 (may include publications only using the 

records). Speleothem records identified by SISAL working group members. Records in the SISAL 

database [16,17]. Speleothem records lodged in the NOAA repository as of 5 October, 2108 

(https://www.ncdc.noaa.gov/data-access/paleoclimatology-data). Compilations have been excluded. 
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The SISAL database, as showcased in this Special Issue, is an important tool for exploring past 

climate changes. We also envision that it will be used for evaluating state-of-the-art climate models, 

especially those that explicitly simulate water and carbon isotopes as a tool for characterizing and 

diagnosing the atmospheric hydrological cycle [18–20]. These models are evaluated against modern 

observations of the isotopic composition of rainwater [21,22], but modern data only document late 20th 

century climates. Speleothem records can provide a test of model performance over a wider temporal 

range, including intervals when the climate change was as large and/or as fast as that projected for the 

21st century [23]. Lastly, by contributing to improved geographical coverage of palaeodata, SISAL will 

improve the reliability of data-assimilation techniques used in both model evaluation and climate 

reconstruction [24–26]. This Special Issue provides eight examples of the use of the SISAL database for 

regional syntheses and palaeoclimate interpretation. In showcasing the usefulness of the speleothem 

data, this Special Issue provides a motivation for the planned expansion of the SISAL database to 

include all of the 767 records that we have identified (Figure 1). 

3. What is SISAL Bringing to the Table? 

Current practices of data reporting vary extensively among publications and the reported data are 

usually incomplete. In addition, many of the pioneers in speleothem research are now retiring, which 

makes it more difficult to access their unpublished data (or published data not logged in public 

repositories). Both of these situations present an important “data rescue” challenge and, in some cases, 

resulted in published speleothem records not being included in the SISAL database. For example, old 

and unpublished records account for 54% of the speleothem records that we have identified from 

Australia, including important sites such as Little Trimmer cave [27,28], Victoria cave [29,30], 

Frankcombe cave [31,32], and Royal cave [33,34]. By providing a template for what data is required and 

working with individual scientists, SISAL is engaging in this data rescue. 

The absence of community-agreed data-reporting standards prevents improvements to the 

original study and hinders data re-usability in the context of wider studies even though there have been 

attempts to outline guidelines and protocols for documenting speleothem records [35]. The template 

provided by the NOAA/WDCPP is the one predominantly used by the community to make data 

publicly available. However, beyond geographical location and the dating and isotope measurements, 

the metadata required is limited. The depth associated with each isotope sample, which is needed to 

construct age-depth models with alternative or new methodologies, is often unreported. As Fairchild 

and Baker [1] said, “collected speleothem records are scientifically a non-renewable resource” and this 

makes it vital to preserve as much information as possible through appropriate documentation and 

archiving so that future research can build on these non-renewable resources. The community-

endorsed metadata in SISAL is a step towards providing guidelines on what information needs to be 

made available for scrutiny, verifiability, re-use, and re-purposing of speleothem data since it is 

increasingly required by funding agencies in support of open science in line with the FAIR (Findable, 

Accessible, Interoperable, Reusable) principles for scientific management and stewardship [36]. The 

template used to upload speleothem records to the first version of the SISAL database can be found in 

the Supplementary Material. 

The analyses of the SISAL database in this Special Issue allowed us to identify spatial and temporal 

gaps in the coverage of speleothem records. This has permitted us to identify regions in which more 

work would be beneficial. For example, enormous scope for further work has been identified in 

southern Africa to assess the robustness of δ18O signals between 11–6 ka BP ([37], this issue). 

Additionally, a ~20,000 year period centered around 100 ka BP that lacks speleothem records has been 

identified in the Eastern European/Turkey region ([38], this issue). Comparing the distribution of 

speleothem records with global or regional maps of carbonate lithologies (e.g. WOKAM, [39]) helps 

identify gaps in spatial coverage due to limited research or difficulties of access rather than the absence 

of karst. Kaushal et al. ([40], this issue) use such a comparison to advocate for an improved spatial 

coverage to allow a detailed examination of the regional teleconnection patterns associated with the 

Indian Summer Monsoon. Along similar lines, Zhang et al. ([41], this issue) argue that, despite the 
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existence of well-developed karst in NW China and in the Tibetan plateau, the low number of 

speleothem records from these regions is due to difficulties of access. Identification of biases in 

temporal coverage, facilitated by having a global database, has led to the identification by Lechleitner 

et al. ([42], this issue) and Burstyn et al. ([43], this issue) of a positive bias in the abundance of 

speleothem records from Europe and the Middle East after the Last Glacial Maximum (LGM). This is 

likely a combined result of less natural attrition (which makes it more suitable for geochemical analyses 

because it is less chemically altered/weathered), as well as a research focus on the recent past to facilitate 

calibration with instrumental data or to investigate human migrations.  

A significant advantage of a global database of speleothem data is the potential for documenting 

regional and/or large-scale changes through time either by presence/absence of records (e.g. [37], this 

issue) or by their isotopic values (e.g. [44], this issue). For example, although there is an uneven spatio-

temporal coverage of speleothem records in North Central America ([45], this issue), the observed more 

negative and variable δ18O at high latitudes during the LGM is consistent with studies that suggest a 

more variable temperature during this period at higher latitudes [46]. 

Past changes in precipitation amount and/or local vegetation types would affect evapotranspiration 

rates that, in turn, modulate the δ18O signal. These processes cannot always be inferred solely from 

speleothem stable isotope records and complementary data needs to be integrated from other climate 

archives, such as pollen records from lakes, peat, or ocean sediments. The availability of a database 

where all palaeo-records are consistently formatted enables such comparisons and ultimately 

contributes to a better understanding of the processes controlling the isotopic signals registered in 

speleothems. 

4. Enabling Quality Control Assessment of the Records 

Comprehensive databases allow analyses to be based on a large number of records and, thus, avoid 

biases that might arise by selecting sites from particular or atypical localities. It has been shown, for 

example, that the reconstruction of a global cooling trend during the Holocene [47], which caused 

controversy becauseclimate models are unable to reproduce such a trend, [48] was largely a result of 

geographically biased site selection favoring marine records from the North Atlantic and is not seen in 

terrestrial records [49]. Nevertheless, there are situations in which it is important to screen records to 

assess their suitability to answer specific research questions.  

For example, low-resolution records or records with comparatively poor dating are clearly 

inadequate to examine the duration of short-lived events such as the Little Ice Age (LIA), but could be 

adequate for documenting the large changes from glacial to interglacial states. For this reason, Oster et 

al. ([45], this issue) only included records with at least decadal resolution for their assessment of 

speleothem δ18O variability in North and Central America for the last 2,000 years. The metadata fields 

in the SISAL database are designed to enable the screening of records prior to any cross-comparison on 

a regional or global scale.  

The precision and accuracy of the ages obtained with U/Th dating methods depend on the 

analysed samples and the technique used. Low concentrations of U and Th require larger samples, 

usually implying that material of varying ages is mixed, which results in larger age uncertainties. This 

is particularly relevant for slowly growing speleothems, where U- and Th-concentrations may 

significantly vary across depositional layers. Another source of uncertainty is the correction of detrital 
230Th. 232Th is used as an index of the initial amount of 230Th but, as the relationship between both is 

normally estimated, an uncertainty is transferred to the U-series ages. This is the case especially for 

‘dirty’ samples with high 232Th concentration and low Uranium. These sources of uncertainties may be 

behind the age reversals found by Oster et al. ([45]; this issue) when analysing the precision of the age 

models constructed for the North Central America region. 

The ability to analyse multiple records of screened raw speleothem isotopes from the same region 

permits the identification of records that are anomalous within their regional climatic context likely 

because the speleothem did not grow under equilibrium conditions. Such anomalous records need to 

be removed from reconstructions of regional isotope patterns and/or trends through time. Screening 
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records according to their mineralogy is also important when comparing δ18O values across records 

because the isotope fractionation between water (or the aqueous carbonate species) and CaCO3 is larger 

for aragonite than for calcite. There have been several estimates of this aragonite-calcite fractionation 

offset for δ18O, varying from 0.3‰to 0.8‰ [50–52]. This inconsistency between estimates, given that the 

amplitude of the isotopic excursions linked to some global-scale climate events such as the Younger 

Dryas (YD) and the LIA is typically only ~0.5 and 2‰, means it is crucial that the speleothem records 

can be screened for mineralogy. Such screening has been applied by Lechleitner et al. ([42], this issue) 

when comparing the SISAL records with the Global Network of Isotopes in Precipitation (GNIP/IAEA) 

and by Kaushal et al. ([40], this issue), who highlight two examples (Valmiki Cave and Munagamanu 

Cave) in which this screening is required to derive robust regional patterns. 

Changes associated with the infiltration of rainwater and water-soil-rock interactions such as 

degassing and prior calcite precipitation in the cave environment can also cause changes in δ13C, δ18O, 

and trace element to Ca ratios [53–55]. These processes also modify speleothem growth rates by means 

of changes in the saturation state of the drip water [56]. Thus, another way to assess the suitability of 

individual speleothem records is by comparing the stable isotopes with other geochemical variables 

sampled along the same transect. Although the first version of the SISAL database only contains δ18O 

and δ13C measurements, it does indicate whether other types of measurements have been made on a 

specific speleothem to facilitate such comparisons. Kaushal et al. ([40], this issue), for example, used 

this information to retrieve cave monitoring data and data from measurements of bacterially derived 

branched Glycerol dialkyl glycerol tetraethers (GDGTs) for Mawmluh cave to help assess the quality 

of the record and to identify climate events. 

5. Important Aspects to Consider When Interpreting Speleothem Records 

A major advantage of speleothems is that they can be dated very precisely by U-series 

disequilibrium methods [57–59], which allows dating back to ca 500-600 ka. This is an advantage over 

other archives such as sediment cores, where the chronology is based on 14C-dating (and, therefore, 

only extends to about 50 ka) or on the calibration of individual events such as tephra layers occurring 

in different records via “wiggle matching” [60]. However, one of the main challenges encountered 

when analysing the SISAL data has been to incorporate temporal uncertainties into our calculations. 

Unfortunately, age uncertainties are frequently unreported or omitted in the original publications. This 

prevented an assessment of the 8.2 ka event in Western Europe where uncertainties were available only 

for two records ([42], this issue). Inclusion of age-uncertainty information is particularly worthwhile 

for older records so that they can be updated using currently standard age-depth model approaches. 

In addition, robust age uncertainties consistent with what is actually attainable from U/Th dates (i.e. 

1%, 2-sigma) are not always reported. This issue is highlighted in Lechleitner et al. ([42], this issue), 

who found that, in many cases, the U-Th age uncertainties are larger than the uncertainties from the 

constructed isotope chronology, which indicates that these are often underestimated at least in the 

Western European records.  

Infiltration of meteoric water from the surface to the cave can occur slowly by seepage and diffuse 

flow, or more rapidly by conduit flow. Depending on the preferred pathway, the mean drip discharge 

may vary and, as a result, drip sites within the same cave gallery may exhibit large variability [61]. 

Consequently, replication of speleothem records can be difficult. One example of this, pointed out by 

Kaushal et al. ([40], this issue), is the three records from Mawmluh Cave that have very different δ18O 

values for the 4.2 ka interval. The cross-comparison of records facilitated by the SISAL database allows 

non-replicating records to be identified so that inferred changes can be treated with caution. 

Speleothem deposition is often continuous and high-resolution micro milling or laser ablation 

sampling techniques [62,63] allow measurements to be made at annual or even seasonal resolution. 

Such high-resolution measurements have been used to infer the speed of climate transitions. Chinese 

stalagmite records, for example, suggest that the Asian monsoon transition into the YD lasted 380 years 

[64], while the shift out of it took less than 38 years [65]. However, highly resolved samples do not 

necessarily record annual or seasonal climate conditions above the cave [66]. For this to happen, there 
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needs to be a strong climate signal at the surface, such as a seasonal monsoon, that is rapidly transferred 

to the speleothem. This can occur through direct interactions between surface and cave environments, 

such as seasonal cave ventilation affecting cave air pCO2 levels, or indirectly through water transfer of 

the surface signal to the speleothem e.g. via rapid conduit flow. In addition, the location of the 

speleothem is important. If it is too deep beneath the surface, mixing of waters within the karst can 

modify the surface signal and shift it in time [67], but if it is too shallow, speleothem growth may be 

inhibited because of the saturation state of the drip water. Since these conditions are rarely fulfilled, 

many annually resolved records in reality provide a signal that is mixed over considerably longer 

periods. Comparisons with local meteorological records [68] or cave monitoring programs [6,69] 

provide insights into the dynamics of a specific cave environment helpful in determining the likelihood 

that a speleothem record provides annually-resolved climate information [70]. However, while there 

are a growing number of such monitoring programmes, they are not ubiquitous, and it is, therefore, 

important to recognise the potential temporal distinction between registration and climate signaling. 

For stalagmites to be straightforward archives of past rainfall δ18O, their isotopic composition must 

show a predictable relationship with infiltrated rainfall δ18O [71] despite the low-pass filter that is 

effectively applied to the speleothem series as a result of the water residence time in the subsurface. 

This is often referred to as “isotopic equilibrium,” which assumes a constant and predictable change in 

oxygen fractionation between water and carbonate with temperature. However, the complex controls 

and variability of drip water composition, even under constant climatic conditions [1], make it difficult 

to estimate the relationship between carbonate and water δ18O and cave palaeo-temperatures. In 

addition, the relationship between the measured δ18O or δ13C and the surface climate variable on which 

it primarily depends can be complex and can be modified before capture by the stalagmite [4,72,73]. 

Speleothem records, therefore, reflect a complex interplay between hydro-climate, temperature, 

circulation, and cave influences. The use of speleothem records for climate model evaluation will 

require the development of novel techniques and approaches for data-model comparisons. 

6. Recommendations and Conclusions 

Drawing from the experience with SISAL, we have identified several issues that, if taken on board 

by the community, would help improve the quality and re-usability of future speleothem studies (Table 

1) as well as enable more robust science across research disciplines. 

Table 1. Summary of opportunities for improvement identified during the construction and consequent 

analyses of the SISAL database. 

Need/Issue What Would This Enable Us to Do? 

Age Control 

Better chronologies (with more radiometric dates well 

distributed across speleothem length to reduce an 

increased uncertainty in between dates). For example, if 

age-depth model is linear, the errors are not properly 

propagated in between U/Th ages — this occurs in c. 40% 

of the speleothem records in SISAL. 

Avoid small biases in the age control of a time-series 

adversely affecting estimates of the timing and 

duration of short events such as YD, the 4.2 ka event, 

or the LIA. 

Age-depth model uncertainties not always made 

available or used in comparisons with climate data or 

records from other archives. 

Incorporate uncertainties in our climate 

reconstructions and/or calibrations with instrumental 

data in a sound manner. 

Mineralogy 

Speleothem’s mineralogy is not always purposely 

reported – if mixed mineralogy, the percentages of 

aragonite versus calcite are not always given. Isotope 

correction from aragonite to calcite is not 

straightforward. 

Examination of small isotope excursions linked to 

some events requires a robust isotopic record. 

A thorough assessment of the mineralogy would 

enable accurate comparisons of δ18O across records. 

Interpretation 
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Assumption that speleothem laminae that have been 

postulated to form annually can be interpreted as an 

annual climate signal. 

Laminae-based speleothem records may not 

correspond to annual climate signal due to the water 

transit time between surface of the cave and the drip 

site. This needs to be taken into account when using 

speleothem data. 

The accuracy of the final chronology depends on the 

density of U/Th dates and the approach followed to 

construct the age-depth model. 

Interpretation of δ18O time series strongly depends on 

their temporal resolution and the accuracy of the age-

depth model/chronology. 

Transparency and Reusability of Data (Metadata) 

Depths and widths of measurements are usually not 

reported. 

If they were, we would be able to reuse the data and 

re-calculate age-depth models with approaches that 

may not have been able at the time of the original 

publication. 

Lamina counts are very difficult to get hold of. If this information was made available, we would get 

a direct record of laminae thickness that could be 

used to complement that of δ18O. 

Most laminae counts have no uncertainties associated to 

them, even though this dating method is susceptible to 

missing or false bands. 

The uncertainties of high-resolution palaeoclimate 

records are important for studies of annual-to-

interannual dynamics of climate systems. 

The definition of “BP” should be clearly stated. Some 

authors refer to the year when the U/Th chemistry 

column was done, while some others refer to 1950 CE. 

Avoid adding extra errors when using already 

available data. Most important for young records 

where a ~50-year difference may make a big 

difference in their interpretation when the record is 

used by researchers other than the original authors. 

As the regional papers in this Special Issue demonstrate, SISAL has made a major contribution to 

our ability to use speleothem records. Nevertheless, all the studies show that there are opportunities to 

improve the spatial and temporal coverage of speleothems records and, thus, the SISAL database. The 

inclusion of these missing sites as well as the creation of new stalagmite-based records in areas where 

these are lacking would strengthen our ability to draw strong conclusions about past climate changes 

as well as facilitate more robust comparisons with climate model simulations. There is a commitment 

from the SISAL working group to continue expanding the speleothem database in order to improve its 

coverage and to include other types of data from speleothems. 

The SISAL initiative has shown there is a need for the adoption of common reporting practices, 

including metadata standards, to facilitate speleothem data being open, scrutinisable, accessible, 

reusable, and for quality control. The community-endorsed template used to upload speleothem 

records to the first version of the SISAL database (Supplementary Material) provides a model for this. 

Supplementary Materials: The Excel workbook used for data entry to the SISAL database is available online at 

www.mdpi.com/xxx/s1. 
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