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ABSTRACT 13 

There is a need for the development of effective baselines against which the water quality 14 

impacts of industry in general, and shale gas extraction specifically, can be assessed. The 15 

salinity, and hence the specific conductance, of fluids associated with shale gas extraction is 16 

typically many times higher that of river water. The contrast between these two water types 17 

means that testing for salinity (specific conductance) could provide an ideal sentinel for 18 

detecting environmental impact of shale gas extraction. Here, Bayesian generalised linear 19 

modelling was used to predict specific conductance across English surface waters. The 20 

modelling used existing, spot-sampled data from 2005 to 2015 from 123 sites to assess 21 
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whether this approach could predict variation for subsequent years or for a new site (data 22 

from 2002 to 2015). We show that the results were readily projected in to subsequent years 23 

for sites included in the initial analysis. The use of covariates (land-use, hydroclimatic and soil 24 

descriptors) did not prove useful in predicting specific conductance at further sites not 25 

previously included in the analysis. The extension of the approach to 6833 English river 26 

monitoring sites with 10 or more observations from more than one year over the period 2005 27 

to 2015 showed that it was possible to reproduce the seasonal variation in river water specific 28 

conductance. The approach taken here shows that it is possible to use low-frequency but 29 

widespread monitoring data to predict natural variation at monitoring sites to give a 30 

probabilistic assessment of whether or not a pollution incident has occurred and the seasonal 31 

variation, expressed as uncertainty bounds around the observations, at a specific site has 32 

been exceeded. 33 

 34 

Keywords: shale gas; Bayesian statistics; generalised linear modelling 35 

 36 

1. Introduction 37 

To assess and indeed demonstrate an impact of any activity, it is necessary to show, within a 38 

reasonable level of certainty, that the industry has changed an environmental state over and 39 

above either that which was true without the activity present or beyond some accepted 40 

minimum level of harm. The need for demonstrating impact or indeed the ability to confirm 41 

the absence of an impact means that a baseline, or pre-intervention control, needs to be 42 

established for comparison with subsequent observations. The United Kingdom has a nascent 43 

shale gas industry and, given experience from the United States shale gas industry, one 44 
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concern is the impact upon water quality of ground and surface water (eg. Kahrilas et al., 45 

2014; Vengosh et al., 2014). To reassure the public and ensure protection of the UK water 46 

resource it is important that techniques exist for the detection, identification and attribution 47 

of pollution for possible impacts of unconventional hydrocarbon resource development. A 48 

number of technologies are used for water quality monitoring and several have been 49 

proposed for rapid, even continuous monitoring to detect any the water quality impacts of 50 

shale gas developments (eg. CH4 – Teasdale et al., 2014; Radium – Lagace et al., 2018; Barium 51 

and Sulphate - Niu et al., 2018; Strontium isotopes – Kohl et al., 2014). However, here we 52 

propose a sentinel approach in which a single key parameter can be used as a rapid and early 53 

warning. However, to be an effective and robust sentinel of change the parameter monitored 54 

should have four properties. Firstly, any water quality parameter should be a lead, and not a 55 

lag, indicator of change, i.e. it should occur at the beginning of any impact to provide early 56 

warning and so that mitigation could be rapidly deployed. Second, the parameter must be 57 

sufficiently sensitive having a high contrast with the normal or background activity and so that 58 

any change cannot be mistaken for background or natural variation. Thirdly, the parameter 59 

should show a high specificity for the activity of concern and not normally be associated with 60 

or mistaken for, other activities; i.e. in this case it should be specific to a shale gas industry 61 

and not to other industries for example, conventional hydrocarbon extraction. Finally, the 62 

measurement technology should be cheap and readily deployable so that it can be used 63 

widely used and provide a large sample size. 64 

 By far the greatest difference between the waters arising from a shale gas well pad 65 

(those waters could be the fracking fluid, the flowback water or the produced water), and 66 

surface waters is salinity or its associated determinands, eg. total dissolved solids (TDS) or 67 

electrical conductivity (in this study, specific conductance which is the electrical conductivity 68 
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of water standardised to a fixed temperature). The salinity of flowback water and deep 69 

formation water, as determined by TDS is often greater than seawater let alone greater than 70 

the salinity of river waters. Rowan et al. (2011) reviewed the total dissolved solids (TDS) of 71 

shale gas flowback water from US shale gas formations and showed that the flowback fluids 72 

were between two thirds and 10 times the seawater TDS (log TDS of seawater < 4.6) and much 73 

larger still than freshwater TDS (log TDS of freshwater ~ 2.6). Equally, the salinity of fracking 74 

fluids is far higher than that of surface waters and so salinity can also be used as a parameter 75 

for detecting fracking fluids as well as flowback water in surface and groundwater. For 76 

example, the only shale gas well so far fracked in the UK was at Preese Hall in Lancashire 77 

(Environment Agency, 2011, as cited in Almond et al., 2014). In this case, the flowback fluid 78 

salinity was between 3 and 5 times higher that of seawater; in contract freshwater salinity is 79 

typically only 0.2% of seawater, i.e. only a 0.07% addition of such flowback water would cause 80 

a doubling of salinity in an English surface water. Yet rather than being expensive or requiring 81 

specialist equipment salinity, or specific conductance or TDS, are regularly and routinely 82 

measured in surface and ground waters and there are long term records of freshwater specific 83 

conductance measurements whereas there are no long term measurements across multiple 84 

sites of dissolved CH4 (eg. Teasdale et al., 2013). These properties mean that salinity, and its 85 

allied measures specific conductance and TDS, make an ideal sentinel of change for detecting 86 

water quality impacts of a developing shale gas industry as it readily measured; shows a high 87 

contrast against a background of freshwater environments; is highly specific for shale gas 88 

development; and its high specificity and contrast with background mean that it could be a 89 

lead indicator of any incident. Furthermore, high salinity water from hydrocarbon exploitation 90 

has been observed to be a major cause of toxicity in exposed organisms (He et al., 2017; 91 



5 
 

Blewett et al., 2017) and in the Canadian province of Alberta in 2015 there were 113 92 

documented incidents of spills of flowback and produced water (Alessi et al., 2016). 93 

However, although there are considerable numbers of measurements of specific 94 

conductance available, these measurements have not been collected for the purpose of 95 

creating a baseline against which impacts of a new industry can be judged. The Environment 96 

Agency have identified a range of statistical tools for use with monitoring data for specific 97 

sites and are currently trialling these at two sites in the north of England. However, there is 98 

no coherent and consistent means of handling existing data to make the assessment of any 99 

impact; a coherent method is needed for objectivity and transparency and therefore, this 100 

study proposes a new method to use existing specific conductance data to assess the impact 101 

of fracking on surface and groundwater quality based upon generalised linear modelling. This 102 

approach is entirely data driven and uses all the existing data without the need for the 103 

parameterisation required in physical models; it is flexible with respect to the distribution 104 

chosen to represent the specific conductance data; and can include existing factorial (eg. 105 

location) and covariate information (eg. river flow or land use). The model was developed 106 

within a Bayesian framework. The Bayesian framework means that the approach creates a 107 

structure whereby all information has some value, i.e. information from monitoring sites not 108 

in a catchment of interest help inform the distribution of data within the catchment of 109 

interest. Furthermore, new information can be directly added to update estimates; and all 110 

model outputs come with a probability which means that risk and uncertainty are considered 111 

at all stages. The approach creates a dynamic baseline for assessment of water quality effects 112 

of a shale gas industry.  Such a baseline is dynamic in both time and space, i.e., generating a 113 

time series of expected results that would be different for different catchments. Estimated 114 

and predicted baseline results are both specific to a given location and develop over time in 115 
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response to natural changes meaning that it will improve with ongoing monitoring at shale 116 

gas or other infrastructure sites. Therefore, the approach of this study was to construct a 117 

dynamic baseline for surface water specific conductance using Bayesian generalised linear 118 

modelling such the outputs of the model give a probability of an unusual event, i.e. a pollution 119 

incident. The approach used the extensive, low frequency (generally monthly) monitoring of 120 

specific conductance across English surface waters as this gave access to many years of data 121 

(data between 2002 and 2015 were used in this study) from many sites and rivers while 122 

including catchments where shale gas development is planned. 123 

 124 

2. Methodology 125 

2.1. Study sites 126 

The study initially used specific conductance data from the 123 Harmonised Monitoring 127 

Scheme sites across England (HMS - Bellamy and Wilkinson, 2001 – Fig. 1). HMS monitoring 128 

sites were selected for inclusion into the original monitoring programme if they were at the 129 

tidal limit of rivers with an average annual discharge greater than 2 m3s-1, or any tributaries 130 

with a mean annual discharge above 2 m3s-1 (Bellamy and Wilkinson, 2001). The specific 131 

conductance of natural waters increases with temperature. This study used data for specific 132 

conductance – specific conductance is the electrical conductivity of the water sample at a set 133 

temperature, in the case of this study 25 oC. Records of specific conductance for HMS sites 134 

can be paired with records of either instantaneous or average daily flow for these sites. For 135 

the purpose of this study records from 2002 to 2015 were considered. Although the main 136 

study period for this study was the decade 2003 – 2014 as records from 2002 were used to 137 

construct prior information for the statistical model and for 2015 there were incomplete flow 138 
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records available meaning that data for 2015 were used for testing and validating the models 139 

developed.  140 

 On the basis of the result from the HMS sites the study was extended to include all 141 

river sites in the England sampled between 2003 and 2015 where there were 10 or more 142 

samples with the measurements made in more than one year. The sampling constraints were 143 

included to ensure that interaction terms could be estimated and to limit the quantity of data 144 

to be analysed. Only measurements from routine river monitoring and not pollution incidents 145 

were considered. 146 

 147 

2.2. Bayesian generalised linear modelling 148 

The statistical modelling was based the Bayesian approach to generalised linear modelling. 149 

Each data point (specific conductance measurement - κ) is is assumed to be generated from a 150 

particular distribution in the exponential family of distributions, the mean, μ, of the distribution 151 

depends on the independent variables, X, through: 152 

 153 

𝐸𝐸(𝜅𝜅) = 𝜇𝜇 = 𝑔𝑔(𝑋𝑋𝑋𝑋) (i) 154 

 155 

where E(κ) is the expected value of κ – the specific conductance; Xβ is the linear predictor, a 156 

linear combination of unknown parameters β; and g is the link function. The link function is 157 

often defined by the choice of distribution and in this case a gamma distribution was chosen. 158 

A priori, a gamma distribution has a number of advantages over other distributions, firstly, it 159 

readily approximates normal, log normal, exponential and Weibull distributions. This 160 

flexibility means that no adjustment for values close to the limit of detection is required. 161 

https://en.wikipedia.org/wiki/Probability_distribution
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Second, the gamma distribution is only defined for positive numbers and so there is no 162 

possibility that physically impossible negative values would be predicted as would be case 163 

with a normal distribution. Evidence from high frequency sampling has supported the use of 164 

a gamma distribution (Worrall et al., 2015). However, to test the appropriateness of the use 165 

of a gamma distribution the analysis of the HMS data was repeated using Weibull, normal, 166 

log normal and exponential distributions. 167 

The form of the gamma distribution is defined as Γ(α,β) where α is commonly known 168 

as the shape factor and β is the rate factor, and: 169 

 170 

𝐸𝐸(𝑥𝑥) = 𝛼𝛼
𝛽𝛽

  (ii) 171 

 𝜎𝜎2 = 𝛼𝛼
𝛽𝛽2

  (iii) 172 

 173 

 Linear predictors included factors and covariates. The factors considered in this study 174 

were Site, Month and Year. The Site factor is the difference between all the monitoring sites 175 

from the HMS for which specific conductance data were available – this factor had 123 levels 176 

one for each site. The Year factor had 12 levels for each year from 2003 to 2014. The Month 177 

factor had 12 levels one for each calendar month. The two-way interactions between factors 178 

were included. 179 

 The Bayesian approach was achieved by Markov Chain Monte Carlo (MCMC) 180 

simulation to estimate the posterior distribution of the specific conductance using WinBUGS 181 

version 14 (Lunn et al., 2013). The length of the MCMC chain was 30000 cycles after a 10000 182 

burn in cycles with samples saved every 10 cycles and with 1 chain. Model fit was tested using 183 

a number of approaches. First, that the 95% credible interval for any factor does not include 184 
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zero, this is henceforward referred to as being significantly different from zero at a probability 185 

of 95%. Second, that inclusion of the factor, interaction, or covariate caused the total model 186 

deviance to decrease, and third, that the inclusion of an additional factor, interaction or 187 

covariate decreased the deviance information criterion (DIC). It is generally true that inclusion 188 

of factors, interactions or covariates will decrease the total deviance of a model as the 189 

inclusion means greater degrees of freedom for fitting and so the DIC accounts for the 190 

inclusion of more fitting parameters against the additional fit of the model. 191 

In the Bayesian analysis a weak uninformative Jeffrey prior distribution was used 192 

whereby the expected value was set as the mean of all specific conductance from the year 193 

2002 and the standard deviation was set as 100 times the coefficient of variation of the 194 

dataset, i.e. the prior was centred on the expected value of the data and was almost uniform 195 

in distribution. Given the size of the dataset and its spatial and temporal coverage it was 196 

deemed unnecessary or reasonable to develop a stronger prior distribution. 197 

 198 

2.3. Covariate information 199 

Covariate information was defined and developed as for Worrall et al. (2014). The CEH 200 

Wallingford digital terrain model (Morris and Flavin, 1994) was used to calculate the 201 

catchment area to each monitoring point. The CEH digital terrain model has a 50 m grid 202 

interval and a 0.1 m altitude interval. Secondly, the dominant soil-type of each 1 km2 grid 203 

square classified into one of three types (mineral, organo-mineral or organic soils) based upon 204 

the system of Hodgson (1997) using nationally-available data (Smith et al., 2007). In this 205 

classification system, peat soils are classed as organic soils. Thirdly, Land use for each 1 km2 206 

of England was classified into three land uses: arable, grass and urban from the June 207 

Agricultural Census for 2004 (Defra, 2005). The June Agricultural Census also records the 208 
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number of cattle and sheep in each 1 km2 and so as to provide a single measure for livestock, 209 

the equivalent sheep per hectare were calculated based on published nitrogen export values 210 

(Johnes et al., 1996) which gives a ratio of 3.1 sheep per cow. The soil and land-use 211 

characteristics for each 1 km2 were summed across the catchment to each of the monitoring 212 

points and the relative proportion of different soil and land-use properties was determined.  213 

For each of the HMS catchments for which specific conductance data were available, 214 

hydrological characteristics were available from the UK’s National River Flow Archive 215 

(www.ceh.ac.uk/data/nrfa/). The characteristics used were: the base flow index (BFI), the 216 

average actual evaporation (AET) and the average annual rainfall (SAAR). The average annual 217 

total river flow for each catchment was taken as the difference between average annual 218 

rainfall and the average actual evaporation for each catchment. 219 

The river flow at the time of sampling was available from the HMS records and was 220 

paired with the specific conductance data. Flow data, even instantaneous flow data, will be 221 

co-linear with catchment area, i.e. river flows are more likely to be larger for larger 222 

catchments and so as an alternative approach, flow records for each site were converted to 223 

the percentile flow for that site. 224 

All covariate information was tested for normality using the Anderson-Darling test 225 

(Anderson and Darling, 1952) and log-transformed if required. To understand the importance 226 

of covariates a simple sensitivity analysis was conducted whereby a 10% increase in the 227 

average value of each significant covariate was imposed and the change in the specific 228 

conductance noted. 229 

 230 

2.4. Model application 231 

http://www.ceh.ac.uk/
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The model was considered in two stages. Firstly, to predict the specific conductance at an 232 

HMS site, i.e. a monitoring site included in the analysis. In this case the model was developed 233 

including the Site factor but without those covariates that are specific to each site and 234 

therefore would be co-linear with the Site factor. Secondly, the model was applied to predict 235 

conductance at a non-HMS site whose monitoring records were available but because the 236 

monitoring site is not part of the HMS it was not included in the first stage analysis, ie. a site 237 

not included in the original Site factor. This second analysis, therefore could not include the 238 

Site factor and so this second analysis used Year and Month as factors but considered the 239 

entire range of covariates defined for the new site.  240 

 On the basis of the results of the above a subsequent analysis included all the English 241 

sites with 10 or more data over at least two years in the period 2003 to 2015. In this third 242 

analysis the Site, Year and Month factors were used and their two-way interactions also 243 

included. 244 

Given outputs and fit of the model were developed to consider the impact of shale 245 

gas developments and so for application and comparison sites were chosen within the one of 246 

the developing shale gas basins of the UK. Both chosen sites were selected to be the nearest 247 

available to the development sites in the Vale of Pickering (Fig. 1). The first site is an HMS 248 

monitoring site on the River Derwent at Loftsome Bridge and was included in the 123 sites in 249 

the Site factor of the initial analysis. The predicted specific conductance at this site was 250 

compared to observed conductance and then predicted for the year 2015, i.e. the 251 

subsequent. The second site of application was to a site not in the HMS monitoring network 252 

and therefore not included in the first analysis with the Site factor. The site chosen was on 253 

the Costa Beck (Fig. 1), chosen because it the monitoring site nearest to the proposed shale 254 

gas extraction site. 255 
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 The purpose of this study was to create a dynamic baseline against which any influx of 256 

highly saline waters from fracking operations could be detected, therefore, the real question 257 

is what volume of fracking fluid could this approach detect at a given probability. There has 258 

only been one fracking operation conducted in the UK at Preese Hall in Lancashire (Fig. 1) and 259 

the conductivity of flowback fluid from the Preese Hall well varied from 133730 and 150614 260 

µS/cm (Broderick et al., 2011). 261 

 No salinity or total dissolved solids (TDS) is reported within the available databases 262 

but standard relationships between salinity and specific conductance exist (Weyl, 1964)  263 

 264 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.000004𝜅𝜅2 + 0.53𝜅𝜅 − 201 (iv) 265 

 266 

Where Salinity is in mg/l. Equation (iv) was used to convert specific conductance to values, 267 

but it should be remembered that Equation (iv) was only defined for salinity > 1000 mg/l 268 

which is equivalent to a conductance of 2200 µS/cm. 269 

 270 

3. Results 271 

3.1. Model development 272 

Between 2003 and 2014 there were 14495 measurements of specific conductance at 123 sites 273 

across England which could be paired with flow records and matched with catchment 274 

characteristics. Preliminary examination of the data showed one site should be removed 275 

(River Weaver at Frodsham) as it regularly had specific conductance over 10000 µS/cm which 276 

was not seen at any other site – the high values could simply be due to the site being too close 277 

to the tidal limit. The distribution of all results shows a bimodal distribution with peaks at 200 278 
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µS/cm and at 550 µS/cm. Fitting single gamma distribution to all the data gives Γ(2.2, 282) 279 

which gives an expected value of specific conductance, E(κ) = 633.5 µS/cm, with the 95% 280 

interval being 95 to 1117 µS/cm and given a freshwater limit of 1000 mg/l salinity then 0.2% 281 

of conductivity measurements exceeded this limit. The fit of this single distribution represents 282 

a base case for the prediction of specific conductance at any one site against which it is 283 

possible to judge the benefit of more complex models. 284 

 The model using only known factors (Site, Month and Year) shows that all three factors 285 

were significant (where significance is as defined above that the 95% credible interval does 286 

not contain zero) and so to were the interactions of the three factors (Table 1). It should be 287 

noted that at this stage of modelling that the deviance for models fitted using normal, log 288 

normal, exponential and Weibull distributions each lead to tot total deviance > 200000, i.e. a 289 

gamma distribution provided the best-fit. The percentile flow, when included, was significant 290 

and showed that specific conductance decreased with increasing flow which is a dilution 291 

effect with new, more rainwater-like and lower conductivity water coming in with higher 292 

flows. The inclusion of the covariates decreased the credible interval and the deviance of the 293 

model, however, the DIC did not decrease suggesting that inclusion of this additional 294 

covariate may not be justified.  295 

Given the inclusion of all the factors and the percentile flow covariate it is now 296 

reasonable to calculate and plot the expected value of the specific conductance (κ) for each 297 

site (Fig. 2). The expected value so calculated allows for the differences in sampling times and 298 

conditions. The values do show regional differences with the lowest values in the north and 299 

the west of England and the highest values in the east and centre of the country. These 300 

regional differences may reflect underlying geology or climate differences. 301 
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 When catchment covariates were included the Site factor was removed. The best-fit 302 

model is detailed in Table 2 and shows that a range of catchment characteristics are not 303 

significant in the prediction of conductivity and these are: BFI, AET, and the area of organic 304 

soils. Amongst the significant terms by far the most important was the change in flow and as 305 

flow increases the specific conductance of river water decreases and the term in flow is very 306 

close to, but still significantly different from, -Q¼. However, it should be noted that flow is co-307 

linear with catchment area and rainfall, i.e. flow increases with both increased average rainfall 308 

and catchment area. River water specific conductance decreases with increasing catchment 309 

size and increasing average rainfall. The effect of flow and rainfall can be ascribed to dilution 310 

from rainfall, however, the impact of increasing catchment area is less straight forward as it 311 

might be expected that increased catchment size in the UK means that increased influence of 312 

groundwater rather than rainwater but this term may be co-linear with the river flow. The 313 

most important of the soil terms was the area of organo-mineral soils and while increasing 314 

the area of the mineral soils leads to decreased conductivity the presence of organo-mineral 315 

soils increases river water conductivity. As for land-use, the area of grassland decreased the 316 

conductivity, while increasing urban area increased conductivity; urban areas are sources of 317 

salt from roads and wastewater inputs can also increase salinity. The map in Fig. 2 cannot 318 

show the catchment area contributing to each site but the significant covariates could help 319 

explain the pattern of expected values observed in Fig. 2. Relatively low expected values of κ 320 

are observed in the north and west of England where rainfall is higher and river flows might 321 

also be expected to be higher. The pattern with respect to land use and soil type is more 322 

complex as mineral soils dominate to the east and south and so to do arable and urban land 323 

use, i.e. competing effects of soil and land use effects on the specific conductance. 324 
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 When no covariates were included, the Month factor did show a significant seasonal 325 

cycle although only three months are significantly different from zero – October, November 326 

and December - and all three led to lower specific conductance. When the covariates were 327 

included then four months were significantly different from zero; during April and July the 328 

specific conductance was significantly higher than the annual mean, while for November and 329 

December the specific conductance was significantly lower. The month factor appears to 330 

follow river flow rather than following road salt applications which would peak in the winter 331 

months. 332 

 The Year factor was significant but for most years there is no significant difference 333 

from zero and only 2007 and 2008 showing significantly lower values and 2014 showing 334 

significantly higher values. The difference between levels of the Year factor are clearly 335 

explained by including covariates which when included showed that 2004, 2005, 2007, 2008 336 

and 2012 all show significantly lower values and only 2013 showed significantly higher values. 337 

When Year was included as a covariate rather than a factor then there was a significant role 338 

for Year as a covariate with specific conductance increasing over the time period across all 339 

sites but only by 0.01 µS/cm/yr, i.e. although significantly different from zero the trend is very 340 

small compared to other changes due to the other covariates, factors, or interactions. 341 

 342 

3.2. Model Application 343 

First, the approach was applied to the River Derwent at Loftsome Bridge, a site included in 344 

the dataset for analysis. There were 151 observations of specific conductance at Loftsome 345 

Bridge between 2002 and 2014, and the best-fit gamma distribution across all years and 346 

months gives E(κ) = 544 µS/cm and 95% credible interval of 405 to 735 µS/cm. In comparison 347 

to the observations for 2014 at Loftsome Bridge (Fig. 3) shows that all but one observation is 348 
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within the credible interval suggesting that this one observation could be considered as an 349 

unusual observation. When prediction at the included site was performed, prediction for 350 

specific conductance (κ) at Loftsome Bridge for 2015, i.e. for a site included in the analysis 351 

but for a year beyond that included in the data, then the observed data was within the 352 

predicted credible interval (Fig. 4) – note that there were only 9 measurements of κ at 353 

Loftsome Bridge in 2015. Of course, as an alternative approach to assessing the performance 354 

of the modelling the predicted values of the expected value for Loftsome Bridge in 2014 355 

between difference models with their varying inclusion of factors, interactions and to 356 

compare to prediction of the model for specific conductance (Table 3). The comparison of 357 

models shows that it is the inclusion of all three factors with their two-way interactions that 358 

brings the results to include those observed, but the further inclusion of covariates does not 359 

improve the model prediction.  360 

Second, the model was applied to the site at Costa Beck, i.e. a site never included in 361 

the analysis. Over the period 2002 to 2015 there were 65 observations of specific 362 

conductance with an expected value of specific conductance, E(k) = 621 µS/cm and 95% 363 

credible interval of 568 to 684 µS/cm. The results show that the model overpredicts κ (Fig. 364 

5), of the 20 observations at Costa Beck measured 11 were within the range predicted but of 365 

the remaining 9 observations all were lower than predicted. So whereas the model approach 366 

works well for modelling and prediction at sites which are included in the original dataset any 367 

extension to other, not previously considered, sites was not as effective. Therefore, the study 368 

extended the application to all monitoring sites in England. 369 

 370 

3.3. Model of all English monitoring sites 371 
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In total there were 6833 river monitoring sites which met the criteria (Fig. 6) and plotting the 372 

calculated expected values (E(κ)) shows a tendency of increasing E(κ) from west to east across 373 

England and perhaps also from north to south, but the largest values of E(κ)) are not in the 374 

south east corner of England but in more central areas of England and especially rivers 375 

entering the Wash. This tendency across England perhaps follows gradients in climate from 376 

the wetter western and more mountainous areas of the west and north towards drier, 377 

lowland areas of eastern England. Furthermore, the tendency for higher E(κ)) to eastern 378 

England also seems to follow geology with more permeable and younger geology occurring 379 

in east compared to the west. The map in Fig. 6 also shows that other potential sources of 380 

high salinity water are not important. For example, it might expected that urban conurbations 381 

with their high density of major roads, which would be salted in winter, would represents 382 

“hot spots” of specific conductance, but the major English conurbations are not visually 383 

obvious in Fig. 6. Furthermore, areas of the UK with worked salt deposits (Cheshire, north-384 

west England) do not show up as “hot spots” of specific conductance in Fig. 6.  385 

 Application of the model from all English monitoring sites to the specific conductance 386 

data for Costa Beck shows that rather than a systematic overprediction the results now show 387 

only three observations were overpredicted but none were underpredicted (Fig. 7).  388 

 389 

3.4. Model sensitivity 390 

With respective to sensitivity then it is true for a volume of incoming high salinity water could 391 

be detected if: 392 

 393 

𝑄𝑄𝑓𝑓
𝑄𝑄𝑟𝑟

= (𝜅𝜅𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝜅𝜅𝑟𝑟)
�𝜅𝜅𝑓𝑓−𝜅𝜅𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚�

≈ (𝜅𝜅𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚−𝜅𝜅𝑟𝑟)
𝜅𝜅𝑓𝑓

 (iv) 394 
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 395 

Where: Qx = the discharge due to the river (r) or from fracking (f) – m3/day; κx = specific 396 

conductance for the river (r) and for the fluid from the fracking operation (f) – µS/cm; and 397 

𝜅𝜅𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚= the maximum specific conductance predicted for the river – µS/cm. Given that κf >>> 398 

𝜅𝜅𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 the denominator simplifies. For the Preese Hall well flowback fluid and the river 399 

discharge recorded at Loftsome Bridge in 2014 shows that in this case there was a 95% 400 

probability of being able to detect as little as 272 m3/day in February 2014 but this rose in 401 

wetter winter months to as high as 745 m3/day (Fig. 8). The volume of fracturing fluid used 402 

varies depending on the shale-play, the operator, well depth, the number of fracturing stages 403 

and the length of the wells (Nicot and Scanlon, 2012). The European Parliament summarised 404 

the US literature on the volume of water required per well and found the volume ranged from 405 

1500 to 45000 m3 (Clancy et al., 2018), whilst Jiang et al. (2014) note that the average 406 

Marcellus well consumes 20000 m3 (with a range from 6700 to 33000 m3) of freshwater per 407 

well over its lifetime. The single well drilled in the UK at Preese Hall (Lancashire) required 408 

8400 m3 of water. Taylor et al. (2013) when considering the scenarios for the development of 409 

a UK shale gas industry considered the development of a 10-well pad of 10 laterals which 410 

would require 136000 m3 of water per well. Initially it is likely that the water required will be 411 

trucked to the site rather than piped, thus requiring between 2856 and 7890 trucks over a 20 412 

year period with truck movements concentrated in to the first two years at between 3.9 – 413 

10.8 truck movements per day during phases of site development and production. Given the 414 

volume that a single truck can transport (30 m3) means that a site might need storage for 415 

approximately 600 m3 of water, i.e. two days worth of truck movements at maximum 416 

predicted number of trucks. Therefore, the alternative question to ask is how small a river 417 

would need to be monitored in order to give a defined chance of detecting a leak or spill? 418 
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Applying Equation (iv) to calculate Qr given the values of κr for Loftsome Bridge in 2014 and 419 

the range of values of κf observed for Preese Hall flowback fluid and a Qf of between 30 and 420 

600 m3/day means that for a 97.5% probability of detecting leaks with river flow of 0.6 and 1 421 

m3/s (Fig. 9). Given the catchment characteristics used as covariates in this study an average 422 

flow of 1 m3/s would be true in the UK for catchments of less than 9 km2. 423 

 The approach above assumes the water quality problem arises from an acute incident 424 

of spill or leakage to surface water and not a chronic seepage of contaminated fluids from 425 

depth to surface. Osborn et al. (2011) reported that contamination of shallow groundwater 426 

overlying the Marcellus shale resulted from poor well integrity in the shale gasfields, while 427 

Warner et al. (2014) reported no such contamination for shallow groundwater overlying the 428 

Fayetteville shale in Arkansas and Wilson et al. (2017) showed that contamination from the 429 

shale layers was extremely unlikely for the UK’s Bowland shale. 430 

 431 

4. Discussion 432 

This study has developed a consistent and coherent approach to the use of conductivity 433 

monitoring data. The Bayesian approach uses all available data to predict distributions at sites 434 

of interest. For determinands with defined environmental quality standards (eg. water 435 

framework directive – EC Directive, 2000) individual results are viewed relative to these 436 

standards while for other determinands (eg. specific conductance) even such comparisons 437 

may not occur as no legal standard exists. Furthermore, the review period for water quality 438 

monitoring is not always clear, under an operators permit the operator should review 439 

continuously, i.e. data reviewed each time new data is produced and the regulator informed 440 

if there is an issue. The regulator in the UK may be asked to report at anytime to the Secretary 441 
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of State at the highest government level, but how often this occurs is not clear. In the 442 

approach used here each datum can be viewed against a prediction that is based upon all 443 

available information and this can be viewed in a probabilistic framework, i.e. what is the 444 

probability that a new observation is exceptional and not what should be expected. In the 445 

case of used here measured specific conductance was judged against a predicted distribution 446 

as a means of testing whether an exceptional has or has not occurred. But equally we can use 447 

the predicted distribution to assess the probability that an environmental standard has been 448 

breached, for example in the case of specific conductance what would be the probability that 449 

the stream has a salinity > 1000 mg/l (κ >  2270 µS/cm).  450 

 In effect this approach has built up a method to improve assessment at any one site. 451 

At the simplest level one could examine the distribution of observed data at any site and 452 

compare the latest observation with that distribution. But that would not be a fair comparison 453 

because a local interannual variation might mean that comparing one observation with data 454 

from all years would be inappropriate, i.e. there is a interannual trend at site which values in 455 

the current year would tend to be lower than those in a previous year; thus a distribution for 456 

the given year would be better than comparing with data from all years. Equally there could 457 

be expected to be an intra-annual cycle in values and so even grouping observation by year 458 

would be misleading as some months would naturally be expected to have higher values than 459 

others. So including a measure of intra-annual cycle (eg. month) would improve the 460 

distribution for comparison. But of course it is unlikely that there will be sufficient 461 

observations to give such a reasonable distribution for any month for any year and any one 462 

site or indeed enough observations for any site and so it would be if information from other 463 

sites could be drawn open: this then is what this approach has achieved. By using all available 464 

information the approach here estimate a distribution of observations for every month, for 465 
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every year at each site. An analogous, non-Bayesian approach might be that of weighted 466 

regression analysis (Hirsch et al., 2010, 2015),  467 

The approach could improve with the use of further covariates. The study has considered 468 

a range of covariates but in most cases covariates were surrogates for site information (eg. 469 

catchment area or land use). Within the HMS dataset it was possible to include river flow but 470 

this was not possible at all sites simply because in this dataset there are only 677 sites which 471 

are co-located with river flow gauging stations. However, as data has been chosen from water 472 

quality monitoring sites there would be other water quality parameters measured at these 473 

sites which may provide additional, covariate information. Specific conductance could be 474 

expected to co-vary with some cations and anions but equally the compositions of hydraulic 475 

fracking fluid may lead to use of other water quality parameters with a reasonably high degree 476 

of specificity for pollution incidents from unconventional hydrocarbon operations. Further, 477 

the analysis could become multi-dimensional, i.e. a further determinand could be to the 478 

analysis. Johnson et al. (2015) have suggested that sources of brine in areas of unconventional 479 

hydrocarbon extraction could be distinguished bu use of Cl/Br ratio; Sr isotopes or the ratio 480 

(Ba + Sr)/Mg. Indeed, Wilson and Van Briesen (2013) used Cl/Br ratios to detect shale gas 481 

fluids in surface waters of the Mononghela river in Pennsylvania. However, all three of these 482 

fail the criteria outlined in this study for a good being a good sentinel if for no other reason 483 

than they are not regularly measured. 484 

The approach proposed here could be applied to the majority of data from water quality 485 

monitoring. Even in a focused network of monitoring sites such as may be used within the 486 

context of a developing shale gas industry there is no criteria for assessing whether pollution 487 

has or is occurring. For example, Krogulec and Sawicka (2015) discuss groundwater 488 

monitoring in Poland for the impacts of shale gas development but at no point suggest 489 
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numbers of monitoring points or frequency of sampling. Niu et al. (2018) proposed a change 490 

point analysis upon water quality time series in streams from areas of unconventional 491 

hydrocarbon exploitation. Loomer et al. (2018) used a higher frequency sampling of 492 

groundwater in area of Canada to determine the appropriate sampling frequency for 493 

monitoring unconventional hydrocarbon exploitation. Austen et al. (2017) suggest that 494 

unconventional hydrocarbon operations in the Fayetteville Shale had no impact on surface 495 

water quality on the basis of trends solely recorded after the unconventional hydrocarbon 496 

well pads had been installed and did not formally compare to any control. Down et al. (2015) 497 

have published a baseline geochemical assessment of the Triassic  basin of North Carolina, a 498 

prospective shale gas basin at the time of the study, however the study provides no 499 

suggestion as to how these results might be used to assess any impact of a  shale gas industry. 500 

Alternatively, Werner et al. (2013), Darrah et al. (2014) and Hildenbrand et al. (2015) have 501 

provide extensive water quality surveys of Arkansas’ Fayetteville shale; Marcellus shale and 502 

the Barnett shale of Texas respectively, but in each case the surveys were after shale gas had 503 

been exploited in the area for many years. However, Hildenbrand et al. (2016) did consider 504 

the change in groundwater quality with the development of unconventional hydrocarbon 505 

resources in the Permian Basin of Texas and the sampling started before shale gas had been 506 

extracted in the majority of the area.  507 

The approach developed and tested provides a number of clear advances over the current 508 

situation: 509 

i) This is a systematic transparent approach to analysing data and provides a probability, with 510 

uncertainty, as to the nature of any observed data. Thus in turn the probability that any 511 

pollution has, or has not, happened can be assessed. 512 
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ii) The approach makes use of all available information and so the approach gains value from 513 

the whole monitoring network, i.e. maximum information is gained from the current, past 514 

and ongoing monitoring. This approach, therefore, gives good value for the money 515 

invested in environmental monitoring. 516 

iii) All risk assessment is actual a probability statement and the tools here use Bayesian 517 

approaches so all results will be a probability and with an uncertainty.  518 

iv) The Bayesian framework means that the tool automatically updates and so contributes to 519 

the development of a dynamic baseline in time and space. 520 

v) The approach proposed can be used to assess information content and informational 521 

efficiency of the current monitoring network monitoring. 522 

 523 

In regions of especial interest or concern with respect to shale gas extraction it would be 524 

easy for industry or regulators to place a water quality sonde in a local waterway to produce 525 

quasi continuous records of water quality and especially conductivity. Indeed, conductivity is 526 

the most commonly measured water quality parameter on such sondes (Halliday et al., 2012). 527 

Unlike for spot sampling in-situ water quality sondes are subject to damage and vandalism 528 

and must be maintained and calibrated in-situ. Son et al. (2015, 2018) have proposed the use 529 

of in-situ water quality sondes down borehole in areas of active hydraulic fracturing in 530 

northern Colorado to monitor for pollution events. The problem of interpretation would be 531 

equally true for high frequency as for low frequency data obtained from spot sampling, i.e. a 532 

coherent framework for assessing the probability that a pollution event had or was happening 533 

would still be required and an expectation of what baseline conditions represent natural 534 

would still need to be constructed. The United States Environmental Protection Agency have 535 



24 
 

developed a system for working with real-time, quasi-continuous data for the detection of 536 

pollution events (CANARY - USEPA 2012b). Quasi-continuous data could be readily 537 

incorporated into the approach presented here and analysis with the network of existing data 538 

providing informative prior information within the Bayesian framework proposed. 539 

Furthermore, such quasi-continuous records have been viewed by many authors as perfect 540 

information and so in comparison to results from less frequent spot sampling it would be 541 

possible to judge the value of perfect information relative to low frequency sampling (Worrall 542 

et al.,2013). 543 

   544 

5. Conclusions 545 

The study has developed a Bayesian generalised linear modelling approach to understanding 546 

specific conductance in English river waters. We could model specific conductance at river 547 

sites down to the natural variation at the monthly time step. The model could predict at sites 548 

included in the analysis but did not work well within the currently available covariates to 549 

predict at unknown sites. The model was extended to 6883 sites across England and this 550 

enabled our approach to predict a monthly distribution at any of these sites. The approach 551 

can be used to assess whether an observation is unusual against a regulatory standard or by 552 

predicting a distribution at each point of time at a point of interest the regulator could set 553 

their own criteria more appropriate for the local activity being monitored. The model shows 554 

that most rivers could readily absorb leaks of fracking fluids due to low volume of daily use 555 

on a single well pad. We propose that this approach could provide a coherent and consistent 556 

approach to analyzing water quality data while enhanced use of all available data. 557 

 558 
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Fig. 1. Location of the Harmonised monitoring scheme (HMS) sampling sites used in this 708 

study including the chosen sites within The Vale of Pickering (River Derwent at Loftsome 709 

Bridge;  and Costa Beck) as well as the site at Preese Hall. 710 

 711 

Fig. 2. Maps of: a) the expected mean (E(κ)); b) the 97.5th percentile; and c) the 2.5th 712 

percentile of the specific conductance (κ). 713 

 714 

Fig. 3. The comparison of the predicted and observed specific conductance for Loftsome 715 

Bridge (River Derwent) in 2014. 716 

 717 

Fig. 4. The comparison of the predicted and observed specific conductance for Loftsome 718 

Bridge (River Derwent) in 2015. 719 

 720 

Fig. 5. The comparison of the predicted and observed specific conductance for Costa Beck 721 

based upon model from HMS data. 722 

 723 

Fig. 6. Maps of: a) All English stream and river water sites with sufficient data to be included 724 

in this study; and b) the expected mean (E(κ)). 725 

 726 

Fig. 7. The comparison of the predicted and observed specific conductance for Costa Beck 727 

using the model based upon data from all English monitoring sites. 728 

 729 

Fig. 8. The detectable volume of fracking discharge (a leak of any of the possible high salinity 730 

fluid from the well pad) predicted at Loftsome Bridge. 731 
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 732 

Fig. 9. The flow required to detect a typical volume stored within a single well pad.  733 



34 
 

Table 1. The details of model fit with increasing introduction of factors, their interactions and 734 
inclusion of Year and percentile flow (%flow) as covariates. 735 

Factors Interactions Covariates Deviance DIC 
Site Month Year  Year Log(%flow)   
Observed        
x      17772 17773 
x x     17690 17770 
x x  x   17590 17773 
x x x    17650 17470 
x x x x   17373 17630 
x x x x  x 17270 17530 
x x  x x x 17200 15500 

 736 

Table 2. The coefficient of those covariates found to be significant and the sensitivity of the 737 
prediction of specific conductance to a 10% increase in the average value. 738 

Covariate Mean 2.5% 97.5% Average Sensitivity (µS/cm) 
LogQ -0.23 -0.24 -0.22 4.46 m3/s -14.4 
Area -0.00016 -0.0002 -0.00011 146 km2 -0.95 
Aver. rainfall -0.0016 0.0018 -0.0014 1369 mm -8.7 
Mineral soil -0.00016 0.0022 0.00009 28.2 km2 -0.18 
Organo-mineral soils 0.0007 0.0046 0.00088 95.4 km2 2.95 
Arable 0.00029 0.00012 0.00047 10.4 km2 0.12 
Grass -0.0003 -0.00047 -0.00014 78.5 km2 -1.0 
Urban 0.026 0.0022 0.003 5.5 km2 0.6 
Constant 6.02 5.97 6.07   

 739 

 740 

Table 3. The application of the derived models to predict the distribution of specific 741 
conductance at Loftsome Bridge, River, Derwent, 2015. 742 

Factors Interactions Covariates Predicted 
Site Month Year  Year Log(%flow) Mean 2.5% 97.5% 
      633 95 1117 
x      543 526 568 
x x     546 523 571 
x x  x   545 474 629 
x x x    535 510 562 
x x x x   616 508 744 
x x x x  x 617 513 739 
x x x x x x 612 510 732 
Observed      606 571 643 

 743 

 744 
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