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ABSTRACT 30 

The current rapid loss of biodiversity globally calls for improved tools to predict 31 

conservation status. Conservation status varies among taxa and is influenced by intrinsic 32 

species’ traits and extrinsic factors. Among these predictors, the most consistently 33 

recognized and widely available is geographic range area. However, ranges of equal 34 

area can have diverse spatial configurations that reflect variation in threatening 35 

processes and species’ characteristics (e.g., dispersal ability), and can affect local and 36 

regional population dynamics. The aim of this study is to assess if and how the spatial 37 

configuration of a species’ range relates to its conservation status. We obtained range 38 

maps and two descriptors of conservation status: extinction risk and population trend, 39 

from the IUCN for 11,052 species of amphibians, non-marine birds, and terrestrial 40 

mammals distributed across the World. We characterized spatial configuration using 41 

descriptors of shape and fragmentation (fragment number and size heterogeneity) and 42 

used regression analysis to evaluate their role in explaining current extinction risk and 43 

population trend. The most important predictor of conservation status was range area, 44 

but our analyses also identified shape and fragmentation as valuable predictors. We 45 

detected complex relationships, revealed by multiple interaction terms, e.g. more 46 

circular shapes were negatively correlated with population trend, and heterogeneity was 47 

positively correlated with extinction risk for small range areas but negatively for bigger 48 

ranges. Considering descriptors of spatial configuration beyond size improves our 49 

understanding of conservation status among vertebrates. The metrics we propose are 50 

relatively easy to define (although values can be sensitive to data quality), and unlike 51 

other correlates of status, like species’ traits, are readily available for many species (all 52 

of those with range maps). We argue that considering spatial configuration predictors is 53 
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a straightforward way to improve our capacity to predict conservation status and thus, 54 

can be useful to promote more effective conservation. 55 

 56 

Keywords: conservation, extinction, fragmentation, range, vertebrates  57 
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INTRODUCTION 58 

Anthropogenic activities are causing the loss of many populations and species leading 59 

to an important reduction in natural, economic and social capital (CBD 2010). Estimates 60 

suggest that current rates of extinction are 3-4 orders of magnitude higher than natural 61 

rates (Barnosky et al. 2011). Approximately 20% of extant vertebrate species are 62 

classified as Threatened by the International Union for the Conservation of Nature 63 

(IUCN, Hoffmann et al. 2010), and future scenarios predict further extinctions and 64 

increased risk (Hurtt et al. 2011, 2010, Pereira et al. 2010). As a result, there is growing 65 

concern regarding how to achieve a significant reduction in future biodiversity loss 66 

(CBD 2010, Sala et al. 2000). Predicting which species are at risk is key to achieve that 67 

goal and develop more effective conservation management actions (Cardillo and 68 

Meijaard 2012, Safi and Pettorelli 2010). 69 

The best estimates of extinction risk and population trend are based on 70 

Population Viability Analysis (PVA, Beissinger and McCullough 2002). However, 71 

PVA generally require long-term and detailed data (Wenger et al. 2017). Thus, 72 

estimates of PVA are available for relatively few species and regions. To overcome this 73 

limitation, many studies have searched for correlates of conservation status, including 74 

morphological, ecological, life history and behavioral species’ traits (Cardillo et al. 75 

2008, Davidson et al. 2009, Fritz et al. 2009, González-Suárez et al. 2013, González-76 

Suárez and Revilla 2013, Purvis et al. 2000). Among these correlates, the best/more 77 

common statistical predictor of status for different taxa, is range area which is a 78 

measure of the spatial extent of the geographical space a species occupies (Keith et al. 79 

2018). Everything else being equal, larger range areas can host more individuals, and 80 

thus, are associated with lower risk of extinction (Cardillo et al. 2008, Cardillo et al. 81 

2005, Gaston 1994, Gaston and Fuller 2009, Orzechowski et al. 2015, Runge et al. 82 
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2015). Species in larger range areas are also at lower risk compared with those small 83 

ranges because stochastic threats are less likely to impact the entirety of a large area 84 

(Bland et al. 2016, IUCN 2017a). 85 

There are several aspects that determine the risk of extinction of a species. The 86 

IUCN (IUCN 2012) considers the following criteria to assess the risk of extinction of a 87 

given species: the number of individuals, the generation length, the population trend, 88 

and the range size and its spatial aggregation (IUCN 2012, Joppa et al. 2016, Keith et al. 89 

2018, Murray et al. 2017). While a useful measure of conservation status, a species 90 

range size can be difficult to measure (Gaston 1991, 2003, Gaston and Fuller 2009). 91 

Gaston (1991) proposed two metrics: (1) the extent of a species occurrence (EOO) 92 

defined as the area contained within the shortest continuous imaginary boundary which 93 

can be drawn to encompass all the known, inferred or projected sites of present 94 

occurrence of a taxon, excluding cases of vagrancy; and (2) the area of occupancy 95 

(AOO) defined as the area of the EOO occupied by a taxon (IUCN 2012, 2017a). Both 96 

AOO and EOO can be used as criteria to assess extinction risk under criterion B of the 97 

IUCN Red List. In addition, the degree of fragmentation including number of locations 98 

(the distribution of how the individuals are aggregated in subpopulations with more or 99 

less population size and more or less isolated subpopulations), and the number of 100 

locations can be used under criteria B and D (Collen et al. 2016, IUCN 2012, 2017b). 101 

At the local/population scale, other spatial configuration aspects have been 102 

shown to influence extinction risk and population trends (Bascompte and Solé 1998, 103 

Crooks et al. 2017, David Tilman and Kareiva 1997, Hanski 1999, Levins 1969, 104 

MacArthur and Wilson 1967, Pfeifer et al. 2017). Landscapes are heterogeneous spaces 105 

with varying degrees of habitat suitability (Forman 1995, Forman and Godron 1986). 106 

Habitat suitability also varies within occupied fragments between the border, where is 107 
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usually lower, and the core areas, where tends to be higher (Bascompte and Solé 1995). 108 

Therefore, for a given area the shape of the fragment is important. Fragments with a 109 

greater ratio of border to core tend to have lower habitat suitability and thus, less 110 

carrying capacity, than more compact or circular fragments. The viability of spatially 111 

structured populations is also influenced by the degree of fragmentation, i.e., the size 112 

and number of fragments, of the available habitat (Gyllenberg and Hanski 1992, Hanski 113 

and Gyllenberg 1997, Hanski and Gyllenberg 1993). Heterogeneity in fragment size 114 

may also influence vulnerability. When heterogeneity is large, with one fragment much 115 

larger than the rest, vulnerability is mostly determined by the probability of extinction 116 

of this largest fragment, and larger fragments are less likely to become extinct (Hanski 117 

et al. 1996). However, if threatening impacts concentrate on that larger patch the risk 118 

could be greater with high heterogeneity than if similarly sized fragments (exposed to 119 

different risks) existed. 120 

Complete species’ ranges also show diverse spatial configurations, e.g. multiple 121 

fragments of varying sizes, located at different distances, and with diverse shapes that 122 

differ in their border to area ratios (Brown 1995, Channell and Lomolino 2000a, b, 123 

Gaston 1990, Gaston 1994, Gaston 2003, Gaston 2008, 2009, Lawton 1993). Some of 124 

this variation reflects differences in geographic conditions and species’ traits (dispersal 125 

abilities or habitat specialization). Additionally, variation in spatial configuration can 126 

reflect effects of human impacts, such as changes in land use or climate change, which 127 

can cause local extinctions leading to area loss, changes in shape and fragmentation, and 128 

altered patterns of dispersal and colonization (Albrecht et al. 2017, Turvey et al. 2015). 129 

Arguably, ignoring variation in the spatial configuration of species’ ranges could lead to 130 

over- or under-estimation of conservation status and thus, less effective use of 131 

conservation resources. Previous studies have assessed the effects of different spatial 132 
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metrics on conservation status (Cardillo et al. 2008, Joppa et al. 2016, Keith et al. 2018, 133 

Murray et al. 2017), but we lack a comprehensive evaluation covering different taxa and 134 

testing multiple descriptors.  135 

Here, we evaluate if conservation status, based on assessments of extinction risk 136 

and global population trend, correlates with several spatial descriptors of species’ ranges 137 

related to size, shape and fragmentation (defined by fragment number and size 138 

heterogeneity) for three groups of vertebrates: amphibians, non-marine birds, and 139 

terrestrial mammals. Our analyses excluded species for which extinction risk 140 

assessments were based on spatial criteria to avoid circularity, as well as species from 141 

marine systems as information on their range is sparse compared to those in terrestrial 142 

areas (Johnston et al. 2015). Although potentially important, we did not consider 143 

fragment isolation because it is largely driven by species’ dispersal abilities which are 144 

not well-described and are distinct within the studied taxonomic groups (so 145 

generalizations would be inaccurate). Based on metapopulation theory we predict that, 146 

for a given area, conservation status will be worst in ranges with more fragments, higher 147 

border to area ratios (irregular shapes), and with more homogeneous (equally sized) 148 

fragments (Fig. 1). We also expect these effects of spatial configuration to be 149 

particularly relevant for species with small ranges because they presumably have 150 

smaller population sizes which are more susceptible to extinction (Hanski 1999).  151 

 152 

METHODS 153 

Data  154 

Species maps were downloaded from the International Union for Conservation of 155 

Nature (IUCN 2015) for all available species of amphibians, non-marine birds, and 156 

terrestrial mammals. Reptile and fish data are only available for particular clades 157 
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(assessments are ongoing) and thus, these vertebrate groups were not considered for this 158 

general study. IUCN spatial maps are not perfect representations of each species 159 

distribution but are the best possible map assessors can make considering the available 160 

information (IUCN 2018). These maps are depicted as polygons, and each polygon has 161 

information about several attributes including presence, origin, and seasonality (IUCN 162 

2018). Ideally, polygons for these maps should be drawn by assessors using occurrence 163 

data, but the methods and the quality and quantity of the occurrence data can vary 164 

across assessment. Using occurrence data a species EOO can be directly calculated 165 

linking locations by a minimum convex polygon, and AOO can be estimated by the 166 

overlap of species occurrences with a grid with a standard cell size (Lee et al 2019). 167 

However, the IUCN provides only the polygons defined by the assessor, not the 168 

occurrence data. Given this limitation we estimated range size here using the approach 169 

taken by most previous studies (Cardillo et al. 2008, Purvis et al. 2000): adding the area 170 

of polygons classified as native or reintroduced in origin, with extant or probably extant 171 

presence, and seasonality values of resident, breeding season, or non-breeding season 172 

for birds, and all seasonality values for amphibians and mammals (IUCN 2018; Table 173 

A1). This estimate approximates AOO in many cases, but could be larger (approaching 174 

EOO) for species in which species maps were defined with poor quality data or making 175 

broad assumptions about occupancy. We projected the selected polygons using the 176 

Winkel tripel projection, which aims to minimize the three kinds of distortions: area, 177 

direction and distance and with the Cylindrical equal area projection which maintain the 178 

area.  179 

From each of the projected maps we used ArcMap 9.3 (ESRI 2008) to measure 180 

geometries and R 3.1.2 (R Development Core Team 2017) to process the information, 181 

we calculated four variables: range size (Area), fragment shape (Circularity), number of 182 
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fragments (N_frag), and fragment size heterogeneity (Heterogeneity; definitions in Fig. 183 

1). To minimize the error in our variables due to distortions from projections, we used 184 

Cylindrical equal area to calculate Area, N_frag and Heterogeneity, and Winkel tripel to 185 

calculate Circularity. To better evaluate the role of fragmentation we limited our 186 

analyses to ranges with >1 distinct fragments (the minimum required to estimate 187 

Heterogeneity; Table A1). We tested the correlation among variables for each class and 188 

type analysis using Spearman correlation (Tables A2 and A3). In addition, because we 189 

expected spatial descriptors could be affected by Area (e.g., heterogeneity may be more 190 

likely in widely distributed species) we also explored how Circularity, N_frag and 191 

Heterogeneity vary with Area with correlation plots (Fig. A1) and fitting generalized 192 

linear mixed models for each variable (Table A4) with Area as the predictor and 193 

including taxonomic information (order, family, and genus) as random factors to control 194 

for evolutionary non-independence of the observations following González-Suárez and 195 

Revilla (2013), using the function lmer from the “lme4” package (Bolker 2018) in R.  196 

To define conservation status we used two different metrics from the IUCN 197 

(IUCN 2015). First, we considered extinction risk as described by the Red List Status, 198 

an ordinal variable with levels (from low to high risk): Least Concern, Near Threatened, 199 

Vulnerable, Endangered and Critically Endangered. Because we used species with 200 

current ranges only, no species in our data were classified as Extinct in the Wild or 201 

Extinct. Second, we considered population trend using the Population Trend categories, 202 

which are an indication of recent change in total abundance of the species, with 203 

categories: Increasing, Stable, Decreasing, or unknown. In our analyses population 204 

trend categories were considered as ordinal levels (decreasing, stable, and increasing). 205 

Species with Data Deficient Status or Unknown Population Trend were not included in 206 

our analyses. 207 
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 208 

Analyses 209 

To avoid circularity in our analyses of extinction risk (based on Red List Status) caused 210 

by using predictors that had been used to define the response, we excluded species 211 

classified as threatened based on criteria B and/or D (small geographic range or area of 212 

occupancy and possibly fragmented and few locations, respectively; Table A1). We 213 

defined generalized linear mixed regression multinomial models that aimed to predict 214 

conservation status (modelled as Red List Status ordinal categories or Population Trend 215 

ordinal categories) as a function of Area, Circularity, N_frag, and Heterogeneity. 216 

Because our objective was to assess if additional descriptors of spatial configuration 217 

may affect the conservation status, we look if these descriptors resulted in improved 218 

models, using as our null model a regression including Area as the single predictor. 219 

Increasingly complex models that incorporated the other variables describing shape 220 

and/or fragmentation (Table 1) were compared to this null model using an information 221 

theoretic approach based on AICc (Burnham and Anderson 2002). Because we 222 

hypothesized that spatial configuration may have different effects depending on the 223 

range size, and because we found correlations between Area and the other variables 224 

(Table A4), we also defined models including interaction terms between Area and shape 225 

(Circularity) and/or fragmentation (N_frag and Heterogeneity). Inferences were based 226 

on the best supported model, defined as the one with the lowest AICc. If there were 227 

several supported models (models within two AICc units of the best model) these were 228 

considered and discussed. Because models included interaction terms we could not use 229 

model averaging techniques (Burnham and Anderson 2002). We fitted separate models 230 

for each taxonomic class because of their distinct characteristics in dispersal and life-231 

history.  232 
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Extinction risk models were fitted as multivariate GLMM with cumulative logits 233 

for ordered multinomial data and random intercepts using the function clmm from the 234 

“ordinal” package (Christensen 2015) in R. Models included taxonomic information 235 

(order, family, and genus) as random factors to control for evolutionary non-236 

independence of the observations following González-Suárez and Revilla (2013). To 237 

illustrate results we plotted predicted marginal probabilities for both Red List Status and 238 

Population Trend exploring the observed range of Heterogeneity values in combination 239 

with two possible values for Area, N_frag and Circularity based on percentiles of the 240 

observed data (Supplementary material Appendix 1, Table A5 for values). We also 241 

tested the predictability of the models (Mac Nally et al. 2017) using Nagelkerke pseudo 242 

R2 calculated with the nagelkerke function from the “rcompanion” package in R 243 

(Mangiafico 2017). We report conditional R2 (representing both fixed and random 244 

effects), marginal R2 (fixed effects only), and the change in R2 compared to our null 245 

(Area only) model. 246 

 247 

RESULTS 248 

The final database for extinction risk analysis (based on Red List status) included data 249 

for 11,052 species (55% of the recognized diversity of the three taxonomic classes 250 

considered) representing 1,482 amphibians, 7,147 birds, and 2,423 mammals (23%, 251 

69% and 46% of each group’s diversity respectively. For a summary by Red List Status 252 

category see Table A6). The database available to predict Population Trend included 253 

10,495 species (47% of the recognized diversity) representing 1,676 amphibians, 6,979 254 

birds, and 1,840 mammals (26%, 67% and 35% of each group’s diversity respectively. 255 

For a summary by trend category see Table A7). Initial descriptive analyses of these 256 

data showed that species with higher risk of extinction and decreasing population trend 257 
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generally had smaller ranges, with more circular shapes and possibly fewer, more 258 

evenly-sized fragments (Figs. A2 and A3). We found Area was associated with all other 259 

descriptors of spatial configuration (Table A4, Fig. A1) with smaller range sizes 260 

associated with higher values of Circularity, lower values of Heterogeneity, and fewer 261 

fragments (N_frag). 262 

 263 

Spatial Configuration and Extinction Risk 264 

Models that included descriptors of shape and/or fragmentation were identified as 265 

improvements over the null (Area only models) based on AICc and R2 for all taxonomic 266 

groups, although the particular descriptors included in the best model varied among 267 

groups (Figs. 1 and 2, Tables 1 and 2). For all three analyzed groups an increase in the 268 

range area (Area) was associated with a decrease in extinction risk, and distinctly-sized 269 

fragments (Heterogeneity) were associated with lower extinction risk in larger ranges, 270 

but higher risk for small ranges (Figs. 1 and 2, Table 2). For birds and amphibians both 271 

shape and fragmentation were revealed as important, but with different associations. In 272 

amphibians, more circular shapes and fewer fragments were positively correlated with 273 

risk of extinction; for birds, more circular shapes, particularly for larger ranges, were 274 

also associated with slightly higher risk, and when many fragments existed distinctly-275 

sized fragments generally reduced risk (Figs. 1 and 2, Table 2).  276 

For mammals there were two additional supported models (falling within a range 277 

of 2AICc, Table 1; Fig. A4, and Table A8). In both, model Mammals (1) and model 278 

Mammals (2), having more fragments was associated with lower risk of extinction, 279 

especially for small areas. In model Mammals (2) in addition Heterogeneity was 280 

associated with higher extinction risk especially for species with many fragments. 281 

 282 
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Spatial Configuration and Population trend 283 

Analyses of population trend also supported the importance of additional spatial 284 

configuration descriptors (Tables 1 and 2). The best models for birds and mammals 285 

were largely consistent with extinction risk analyses; although for amphibians the best 286 

model was simpler. For the three analyzed taxonomic groups, an increase in the range 287 

area (Area) was associated with a decline in population trend. In contrast to results 288 

based on extinction risk, effects were generally more noticeable for larger ranges. For 289 

example, for the three taxonomic groups more regular shapes (Circularity) were 290 

associated with increasing population trends especially those species with bigger range 291 

areas. For birds and mammals, greater Heterogeneity, in more fragmented areas with 292 

more irregular shapes, was associated with increasing population trend (Figs. 1 and 2, 293 

Table 2). For amphibians, we had a second supported model (falling within a range of 294 

2AICc, Table 1; Fig. A5, and Table A8) that suggests lower values of distinctly-sized 295 

fragments (Heterogeneity), fewer fragments and more regular shapes were associated 296 

with decreasing population trend. 297 

 298 

DISCUSSION 299 

The spatial configuration of terrestrial vertebrate ranges varies by orders of magnitude 300 

in total area of occupancy and in the number, size and shape of their fragments. This 301 

heterogeneity is caused by natural and anthropogenic processes that define range 302 

boundaries and that vary in space and time (Gaston 2003, Lucas et al. 2016). This 303 

complexity is often considered when studying local extinction processes (Pfeifer et al. 304 

2017), and it is acknowledged in the global assessments of the IUCN (IUCN 2012, 305 

2015). However, it has been largely overlooked in comparative studies of species’ 306 

extinction risk (Arbetman et al. 2017, Cardillo et al. 2008). As previously reported, the 307 
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best descriptor of conservation status is the area of the range, likely due to its direct 308 

association with total population size: all else been equal, larger ranges should have 309 

lower risks (Bielby et al. 2008, Davidson et al. 2009, Giam et al. 2011, Harris and Pimm 310 

2008, Joppa et al. 2016, Keith et al. 2018). In addition, the better conservation status of 311 

large range areas could be associated to a buffer effect against stochastic impacts. It is 312 

less probable that a big range would be entirely affected by a stochastic impact, while a 313 

catastrophe could affect a whole small range (Bland et al. 2016, Murray et al. 2017). 314 

 The area of the range is also associated with some species traits which may 315 

explain some of the observed patterns. Species with broad ecological niches can occupy 316 

and maintain populations in a greater number of habitats and use a wider range of food 317 

resources which can reduce the impact of habitat loss and community changes 318 

(González-Suárez et al. 2013). Dispersal ability of the species is also determinant, with 319 

bigger areas associated with high dispersal and for extension high dispersal with a better 320 

conservation status (McCauley et al. 2014). Therefore, the observed reduced risk in 321 

wider ranges may reflect the benefits of habitat and diet generalism and dispersal 322 

capacity, in addition to the more direct effects of population size and reduced stochastic 323 

risk discussed above.  324 

 Beyond the known role of area, here we show that other descriptors of the spatial 325 

configuration of species’ ranges, namely shape, number of fragments, and heterogeneity 326 

in fragment size, can improve our understanding of the conservation status of the 327 

species. We discuss below the different mechanisms that may be behind these 328 

relationships. 329 

 330 

Range shape and conservation status 331 
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Metapopulation and island biogeography theory predict that higher border to core ratios 332 

should increase extinction risk at the population level, because individuals living near 333 

the edge due to edge effects are likely to have lower expected fitness (Brown 1984, 334 

Brown et al. 1995, Gaston 1990, Hanski 1999, Murray et al. 2017). However, at the 335 

much larger spatial scale of ranges, we found the opposite, a higher extinction risk in 336 

amphibians, birds and mammals (the latter only for Population Trend) with ranges with 337 

more circular shapes, particularly in larger ranges. It is possible that for global range 338 

maps, current circular shapes actually reflect past large scale human impacts rather than 339 

edge-effect risks. Through the process of range contraction, local extinctions change the 340 

spatial configuration of ranges, resulting in more context-specific spatial configurations, 341 

determined by the interaction between the distribution of impacts, species abundance 342 

and the stage of range contraction (Channell and Lomolino 2000a, b, Lucas et al. 2016). 343 

Border areas are more prone to be extirpated (Brown 1995, Channell and Lomolino 344 

2000a, b, Lawton 1993, Lucas et al. 2016) and thus, initially irregularly shaped ranges, 345 

may increase their circularity as border areas become extirpated (Mehlman 1997, Smale 346 

and Wernberg 2013). Indeed, as we would expect if this was true, we found that smaller 347 

ranges tended to have more circular shapes. Therefore, there may be a link between the 348 

mechanistic prediction of metapopulation theory and our results but only through an 349 

increase in local extinction in areas with more edge areas, which is not directly 350 

detectable at the whole range scale. Fully testing this hypothesis would require long-351 

term data reflecting temporal variation in distribution ranges, which currently are 352 

available only for a few species. 353 

 354 

A role for range fragmentation: number of fragments and size heterogeneity  355 
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A priori, and based on the predictions of population ecology and metapopulation theory, 356 

we expected a higher extinction risk for species with more fragmented ranges and with a 357 

more homogeneous distribution of fragments size (Gaston 1994, Gaston and Fuller 358 

2009, Hanski 1998, MacArthur and Wilson 1967, Tormod Vaaland Burkey 1997). We 359 

found an association between the number of fragments and conservation status for all 360 

taxonomic classes, especially when describing Population Trends, but with an effect 361 

contrary to our expectations. Species with better conservation status had more 362 

fragmented ranges, with a more marked effect for those with small ranges. Range 363 

fragmentation is common among species suffering contraction (Hooftman et al. 2016, 364 

Riordan et al. 2016, Turvey et al. 2015). However, the process of range contraction also 365 

leads to the extirpation of small fragments so that the total number of fragments may not 366 

actually increase but be stable or even decrease. For example, Rodriguez and Delibes 367 

(2002) showed that the Iberian lynx Lynx pardinus range suffered an important 368 

contraction in which the largest fragments were fragmented, but also the smallest 369 

fragments were lost such that at the end, the total number of populations/fragments 370 

barely changed. At the other extreme, species with lower extinction risk, often more 371 

abundant, are likely to have higher dispersal rates which allow to colonize new areas 372 

leading to an overall more fragmented ranges (McCauley et al. 2014, Wiegand et al. 373 

2005). Dispersal also favors that species escape from habitat destruction and/or tracking 374 

climate so these species are expected to be less affected by impacts and would be 375 

associated with species with lower extinction risk (Sunday et al. 2015).  376 

 Moreover, there are situations in which extinction risk may not increase with the 377 

number of fragments. If the primarily causes of extinction are environmental stochastic 378 

processes, even large populations are vulnerable to extinction, e.g. in the spread of 379 

invasive species there is a positive spatial autocorrelation (Veran et al. 2016), thus 380 
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multiple fragments (subject to independent environmental processes), could act as a 381 

buffer against perturbations (Gilarranz et al. 2017), reducing the overall risk (Quinn and 382 

Hastings 1987). This buffer effect mechanism could be explaining why for amphibians, 383 

a class where the risk of extinction in many species is associated to a contagious disease 384 

(Hoffmann et al. 2010, O’Hanlon et al. 2018, Stuart et al. 2004), more fragmented 385 

ranges are associated with less risk of extinction. 386 

 Populations with a fragmented range but with most area located in a single 387 

fragment (continent-island system) would have a substantially lower extinction 388 

probability when compared with populations with a more homogeneous distribution of 389 

fragment areas (Hanski et al. 1996, Thomas and Kunin 1999, Wiegand et al. 2005). If 390 

the population is divided into multiple fragments the heterogeneity of the network can 391 

reduce risk favoring rescue effects (Gilarranz and Bascompte 2012, Hanski et al. 1996). 392 

If we consider that connectivity of a fragment is positively correlated with its size, a 393 

range with high heterogeneity in its area would have a high heterogeneity in its 394 

connectivity and less risk of extinction. How the range area was distributed among the 395 

existing fragments was also a relevant descriptor of conservation status with an effect 396 

that often depended on the total area of the range. As expected, for big range sizes, high 397 

heterogeneity was generally associated with lower extinction risk, as the overall species 398 

extinction risk is directly linked to the risk of the largest fragment, and because large 399 

continuous fragments suffer less edge effects (Murray et al. 2017). As the size of the 400 

largest fragment is the main limiting factor, species with small ranges cannot show a 401 

large effect of the heterogeneity of fragment size. Indeed, heterogeneity and number of 402 

fragments increased with range area. In birds, the effect was most noticeable in species 403 

with ranges with many fragments for which the potential for higher heterogeneity is 404 

greater. On the other hand, increased extinction risk in ranges with more 405 



19 

 

homogeneously-sized fragments may be a consequence of the dynamics of range 406 

contraction and expansion. Range contraction may lead to range collapse and a high 407 

fragmentation at the end of the process (Riordan et al. 2016, Rodríguez and Delibes 408 

1992, 2002, 2003). During contraction, fragments may split into smaller fragments, thus 409 

reducing maximum fragment size. However, minimum fragment size is constrained by 410 

the minimum size that can support a population in the short term. Therefore, the final 411 

stages of range contraction may lead to more homogeneously-sized areas (Rodríguez 412 

and Delibes 2003).   413 

 414 

Future directions 415 

We found clear patterns of association between extinction risk and the spatial 416 

configuration of species’ ranges. These effects can be interpreted as emergent properties 417 

of population dynamics at smaller spatial scales. In principle, they can be used to 418 

complement the role of range size in categorizing risk of extinction. Current data 419 

availability, quality and practice call for some caution in doing so (Hurlbert and Jetz 420 

2007, Maréchaux et al. 2017). The spatial configuration of ranges is very sensitive to 421 

the method employed to define it. A range delineated by experts, using minimum 422 

convex polygon or a kernel method on the same dataset would look very different 423 

(Joppa et al. 2016). The large biases in sampling effort across the globe, with large areas 424 

with few data available also precludes obtaining good quality ranges (González-Suárez 425 

et al. 2012). We need more systematically and transparently built ranges that can offer 426 

better information over time, including patterns of range expansion and contraction. 427 

Current efforts compiling information at large scales and in big numbers, often with the 428 

aid of citizen science, could help in improving the quality of the ranges. Improved 429 

ranges would allow future work considering how species’ traits, distinct threatening 430 
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processes, and local environmental conditions may affect range dynamics and extinction 431 

risk. To advance from correlations between spatial pattern of ranges and risk of 432 

extinction/population trend to mechanisms, we need long-term data reflecting temporal 433 

variation in distribution ranges with different levels and combination of impacts. 434 

Looking to the past biodiversity responses to climate and human impacts will 435 

importantly help to fill this gap (Fordham et al. 2016, Nogués-Bravo et al. 2018). 436 

 437 

Conclusions 438 

Most species ranges are spatially complex, often formed by multiple fragments with 439 

diverse shapes which change over time (Gaston 2003, Wilson et al. 2004). We show 440 

that using different spatial measures describing this complexity improves our 441 

understanding of extinction risk, which can in turn help policy makers and managers to 442 

prioritize actions (Cardillo and Meijaard 2012, Mace et al. 2008). Our study does not 443 

aim at improving extinction risk assessments, just determine and quantify new factors 444 

that may affect the conservation of species. While the area of occupancy (Area) 445 

contributed most to explain variation in the data, including additional descriptors 446 

improved model fit and suggested hypotheses regarding the spatial consequences of 447 

range expansion and contraction. In population biology it is widely accepted that spatial 448 

complexity affects extinction probability. To our knowledge, this is the first time these 449 

relationships have been quantified at biogeographical scales on a large set of species. 450 

Our selected variables have a clear ecological basis, are simple to calculate, and can be 451 

used at different scales and taxonomic groups. These descriptors are defined from the 452 

same ranges maps used to estimate area, thus, do not require additional datasets. 453 

Admittedly, there are limitations associated to range map quality and uncertainty, but 454 

these also affect area estimates (Hurlbert and Jetz 2007, Maréchaux et al. 2017). Under 455 
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the current biodiversity crisis we believe these caveats should not stop us from 456 

considering these new factors to predict what species are more prone to extinction risk 457 

allowing more effective conservation policies. 458 

 459 

 460 
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TABLES 671 

Table 1. Results of the GLMM analyses aimed to predict extinction risk as a function of 672 

several descriptors of range spatial configuration. We report ΔAICc (difference in AICc 673 

with the best model. Lower values of ΔAICc represent stronger support) and sample 674 

sizes for each model. Models in bold are the best supported within each category, with 675 

the best overall model in bold and underlined. Het = Heterogeneity.  676 

Model  ΔAICc (AICc) 

 
Red List Status Population Trend 

 
Amphi

bians  

(n=1,4

82) 

Bird

s 

(n=7,

147) 

Mam

mals 

(n=2,

423) 

Amphi

bians  

(n= 

1,676) 

Bird

s 

(n=6,

979) 

Mam

mals 

(n=1,

840) 

 
      

Size       

Area (Null model) 30.13 55.50 12.81 34.13 101.1

3 

15.80 

Size and Shape (Circularity)       

Area+Circularity 15.17 54.42 13.55 15.07 92.41 7.09 

Area*Circularity 10.37 25.32 15.22 1.69 33.61 4.19 

Size and Fragmentation       

Area+N_frag 26.48 57.33 14.35 24.42 103.1

2 

15.58 

Area*N_frag 27.94 58.57 15.27 26.44 94.98 15.74 

Area+Het 31.69 45.32 10.84 35.65 68.83 14.73 

Area*Het 18.51 25.90 0.21 34.71 61.87 10.87 
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Area*Het+ Area*N_frag 11.91 28.39 0.00 21.54 57.00 6.43 

Area*Het+ Area*N_frag+ 

Het*N_frag 

13.14 20.55 1.44 22.69 50.55 5.84 

Size, Fragmentation and Shape       

Area* 

Circularity+Area*Het+Area*N_

frag 

0.00 ─ ─ 0.00 ─ 0.00 

Area*Circularity+Area*Het+A

rea*N_frag+N_frag*Het 

─ 0.00 ─ ─ 0.00 ─ 

  677 
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Table 2. T-values (coefficient/SE) and Nagelkerke pseudo R2 of the best overall 678 

GLMM models predicting extinction risk as a function of several descriptors of range 679 

spatial configuration. Models selection results are shown in table 1. We modeled the 680 

probability of increase in Red List Status (higher risk) and Population Trend (more 681 

declining trend). A dash (-) indicates variables not included in the best models. Het = 682 

Heterogeneity. Sample sizes (n) indicate the number of species included in each model. 683 

Conditional R2 represents the overall (fixed and random effects) fit of the models, 684 

marginal R2 represents fixed effects, and improvement in R2 is the change in R2 from 685 

the Area only null model. 686 

Variables T-values (coefficient/SE) Red 

List Status 

T-values (coefficient/SE) 

Population Trend 

 Amphibia

ns 

(n= 1,482) 

Birds 

(n=7,14

7) 

Mamma

ls 

(n=2,423

) 

Amphibia

ns 

(n= 1,676) 

Birds 

(n=6,97

9) 

Mamma

ls 

(n=1,840

) 

Area -0.43 -6.745 -3.44 -7.39 -5.84 -2.36 

Circularity 0.28 -4.21 - -2.16 -6.08 -1.17 

Heterogenei

ty 

2.49 2.24 3.09 - 0.08 0.80 

N_frag -1.45 0.30 - - 1.06 -2.23 

Area* 

Circularity 

0.66 4.69 - 3.94 6.91 1.86 

Area* 

N_frag 

0.93 1.65 - - 0.94 2.00 
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Area* 

Heterogenei

ty 

-2.91 -1.67 -3.54 - 0.16 -1.31 

N_frag* 

Heterogenei

ty 

- -2.93 - - -3.22 - 

Conditional 

R2 

0.34 0.30 0.41 0.38 0.18 0.34 

Marginal R2 0.18 0.21 0.35 0.17 0.05 0.18 

Improveme

nt in R2 

0.04 0.02 0.01 0.04 0.02 0.02 

 687 
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FIGURE LEGENDS 

 

Figure 1. Hypotheses and description of the studied spatial configuration variables with 

illustrative examples of values, predicted association with increased vulnerability to 
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extinction based on metapopulation and island biogeography theory, and their 

definition. *Note that threats acting on borders can increase circularity (a). Main results 

(not including all interactions) for the analysis of spatial configuration and extinction 

risk, based on the best models for each class showed in Tables 1 and 2 (b). Main results 

(not including all interactions) for the analysis of spatial configuration and population 

trend, based on the best models for each class showed in Tables 1 and 2 (c). For a more 

detailed description and understanding of the interaction effects between different 

variables consult Figs. 2 and 3. 
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Figure 2. Predicted marginal probabilities for each Red List Status (Table A6), with 

dark green for Least Concern (LC), light green for Near Threatened (NT), yellow for 

Vulnerable (VU), orange for Endangered (EN) and red for Critically Endangered 

species (CR), based on the best models for each class (Tables 1 and 2). In some plots, 

the probably associated to some threat categories was low or zero, partly reflecting the 

relatively small number of species in these categories (see lower right panel). To show 
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interaction effects we explored predictions for the observed the range of Heterogeneity 

values with two possible values for N_frag and Circularity based on percentiles of the 

observed data (table A5 for values).  

 

Figure 3. Predicted marginal probabilities for each category of Population Trend (Table 

A7), with dark green for Increasing, light green for Stable, and red for Decreasing 

trends, based on the best models with descriptors of spatial configuration for each class 

(coefficients in table 2). Note that in some plots the predicted probably of Increasing 
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trend was very small or zero, partly reflecting the small number of species in that 

category. To show interaction effects we explored predictions for the observed the range 

of Heterogeneity values with two possible values for N_frag and Circularity based on 

percentiles of the observed data (table A5 for values). 
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Supplementary material 

Appendix 1. 

 

Table A1. Number of species after each filter by class and percentage from the described number of species (in brackets). Described in the IUCN 

database refers to the number of species that include the IUCN database as species; IUCN spatial database refers to the number of species which 

are included in the spatial database of the IUCN (Include Extinct species); Systems refers to the number of species selected after select species 

living only in terrestrial systems for Birds, for Mammals we directly selected the spatial information which include only terrestrial species as 

defined by the IUCN. Categorized refers to the species categorized in the IUCN red list. Excluded (Excl.) by B&D criteria and unknown 

Population trend refers to the number of listed species in the IUCN Red List excluding species categorized by B&D criteria and excluding 

species categorized by unknown population trend. Multifragment refers to the number of species after select only species with a minimum of two 

fragment in its distribution. 

 

  Described Spatial data Systems Categories Excl. by B&D criteria; unknown 

Pop. Trend 

Multifragment 

      
Extinction risk; Population 

trend 

Amphibians 6,414 6,277 (97.86) - 4,744 (73.96) 3,014 (46.99); 3764 (58.68) 1,482 (23.11); 1,676 (26.13) 

Birds 10,425 10,424 (99.99) 9,400 (90.17) 9,347 (89.66) 7,529 (72.22); 8669 (83.16) 7,147 (68.56); 6,979 (66.94) 

Mammals  5,408 5,269 (97.43) - 4,499 (83.19) 3,823 (70.69); 2975 (55.01) 2,423 (44.80); 1,840 (34.02) 
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Table A2. Spearman correlation between the variables used in the analysis of extinction 

risk. Area and shape (Circularity) and/or fragmentation (N_frag and Heterogeneity). 

  Area Circularity N_frag Heterogeneity 

Amphibians 

Area  1.00 -0.46 0.23 0.46 

Circularity  1.00 -0.24 -0.35 

N_frag    1.00 -0.28 

Heterogeneity    1.00 

Birds 

Area  1.00 -0.20 0.50 0.27 

Circularity  1.00 -0.31 -0.19 

N_frag    1.00 -0.14 

Heterogeneity    1.00 

Mammals 

Area  1.00 -0.39 0.27 0.30 

Circularity  1.00 -0.27 -0.24 

N_frag    1.00 -0.36 

Heterogeneity    1.00 

 

 

Table A3. Spearman correlation between the variables used in the analysis with 

Population Trend. Area and shape (Circularity) and/or fragmentation (N_frag and 

Heterogeneity). 

  Area Circularity N_frag Heterogeneity 

Amphibians 

Area  1.00 -0.63 0.34 0.52 

Circularity  1.00 -0.25 -0.50 

N_frag    1.00 -0.22 

Heterogeneity    1.00 

Birds 

Area  1.00 -0.23 0.51 0.28 

Circularity  1.00 -0.32 -0.20 

N_frag    1.00 -0.13 

Heterogeneity    1.00 

Mammals 

Area  1.00 -0.52 0.34 0.34 

Circularity  1.00 -0.30 -0.30 

N_frag    1.00 -0.32 

Heterogeneity    1.00 
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Table A4. Results of the univariable LMM analyses aimed to predict each variable (Circularity, N_frag and Heterogeneity) as a function of Area 

to test if there was a significative correlation. Models, in the same way as we included in the analysis of extinction risk/population trend, include 

taxonomic information (order, family, and genus) as random factors to control for evolutionary non-independence of the observations following 

González-Suárez and Revilla (2013). We report T-values (coefficient/SE).  

Variable T-values (coefficient/SE) Red List Status T-values (coefficient/SE) Population Trend 

 Amphibians 

(n= 1,482) 

Birds 

(n=7,147) 

Mammals 

(n=2,423) 

Amphibians 

(n= 1,676) 

Birds 

(n=6,979) 

Mammals 

(n=1,840) 

Circularity -22.07* -26.85* -22.66* -31.46* -30.85* -28.75* 

Heterogeneity 17.29* 21.55* 15.54* 19.59* 21.9* 14.74* 

N_frag 10.43* 48.87* 14.23* 14.87* 47.32* 16.86* 

* p < 0.05 
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Table A5. Values of Area (in km2), number of fragments (N_frag) and shape (Circularity) used to define predicted values for main text figures 2, 

3, and supplementary figures A4 and A5. 

Descriptor Size/quantity (percentile) Amphibians Birds Mammals 

  Red List Pop Trend Red List Pop Trend Red List Pop Trend 

Area Small (10) 3,224 391 20,447 7,903 10,613 1,047* 

 Large (80) 723,374 1,146,874 4,143,878 3,970,727 3,654,382 3,187,561 

N_frag Few (20) 2 - 4 4 - 2 

 Many (80) 8 - 160 150 - 16 

Circularity Irregular (10) 0.255 - 0.264 0.265 - 0.261 

 Regular (90) 0.821 - 0.635 0.653 - 0.782 

* percentile 5 
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Table A6. Number of species used in the regression analysis by Red list category. 

Class Red List Status 

 LC NT VU EN CR 

Amphibians 1,211 192 13 10 56 

Birds 6,069 649 276 99 54 

Mammals  1,916 194 159 99 55 

 

 

Table A7. Number of species used in the regression analysis by Population Trend 

category. 

Class Population trend 

 Decreasing Stable Increasing 

Amphibians 931 726 19 

Birds 3,195 3,312 472 

Mammals  961 830 49 
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Table A8. T-values (coefficient/SE) of the best alternative overall GLMM models 

predicting conservation status as a function of several descriptors of distribution spatial 

configuration. Models selection results are shown in table 1. We modeled the 

probability of increase in Red List Status (higher risk) and Population Trend (more 

declining trend). A dash (-) indicates variables not included in the best models. Het = 

Heterogeneity. Sample sizes (n) indicate the number of species included in each model.  

Variables T-values (coefficient/SE) Red 

List Status 

T-values 

(coefficient/SE) 

Population Trend 

 Mammals 

(n=2,423) 

Amphibians 

(n= 1,676) 

 Mammals (1) Mammals (2)  

Area -2.90 -2.39 -2.98 

Circularity - - -1.78 

Heterogeneity 2.64 2.67 -0.17 

N_frag -1.10 -1.23 -2.31 

Area* Circularity - - 3.01 

Area* N_frag 0.76 0.54 1.79 

Area* Heterogeneity -3.31 -3.36 -0.19 

N_frag* Heterogeneity - 0.76 - 
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 1 

Figure A1. Correlation among the variable Area  and the other variables used in the 2 

analysis (Circularity, N_frag, Ratio) for the data used in the analysis of spatial 3 

configuration and extinction risk (a) and the data used in the analysis of spatial 4 

configuration and population trend (b). 5 

 6 
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 7 

Figure A2. Frequency distributions for the variables Area, Circularity, N_frag and 8 

Heterogeneity for multi-fragment ranges of amphibians, panels a, b, c, d respectively, 9 

mammals, panels e, f, g, h respectively, and birds, panels i, j, k, l respectively. Non-10 

threatened species (Least Concern and Near Threatened Status) are in light grey (1,403 11 

species of amphibians, 6,718 species of birds and 2,110 species of mammals which 12 

were included in our regression analyses), threatened (Vulnerable, Threatened and 13 

Critically Endangered) species classified based on criterion B and D (608 species of 14 

amphibians, 382 species of birds and 291 species of mammals which were not included 15 

in our regression analyses) are in medium grey, and all other threatened species (79 16 
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species of amphibians, 429 species of birds and 313 species of mammals which were 17 

included in our regression analyses, table S2) are in dark grey. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 
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 28 

Figure A3. Frequency distributions for the variables Area, Circularity, N_frag and 29 

Heterogeneity for multi-fragment ranges of amphibians, panels a, b, c, d respectively, 30 

mammals, panels e, f, g, h respectively, and birds, panels i, j, k, l respectively. Species 31 

within increasing Population Trend are in light grey (19 species of amphibians, 472 32 

species of birds and 49 species of mammals; generally few species and thus, sometimes 33 

not clearly visible), stable Population Trend are in medium grey (726 species of 34 

amphibians, 3,312 species of birds and 830 species of mammals), and decreasing 35 

Population Trend are in dark grey (931 species of amphibians, 3195 species of birds and 36 

961 species of mammals which were included in our regression analyses, table S3). 37 

 38 



49 

 

 39 

Figure A4. Predicted marginal probabilities for each Red List Status (Table S2), with 40 

dark green for Least Concern (LC), light green for Near Threatened (NT), yellow for 41 

Vulnerable (VU), orange for Endangered (EN) and red for Critically Endangered 42 

species (CR), based on the two best alternative models, Mammals (1) and Mammals (2), 43 

for mammal class (Tables 1 and A6). In some plots, the probably associated to some 44 

threat categories was low or zero, partly reflecting the relatively small number of 45 

species in these categories (see lower right panel). To show interaction effects we 46 

explored predictions for the observed the range of Heterogeneity values with two 47 

possible values for N_frag and Circularity based on percentiles of the observed data 48 

(see table S1 for values).  49 

 50 
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 51 

Figure A5. Predicted marginal probabilities for each category of Population Trend 52 

(Table S3), with dark green for Increasing, light green for Stable, and red for 53 

Decreasing trends, based on the best alternative model, for amphibian class (Tables 1 54 

and A6). Note that in some plots the predicted probably of Increasing trend was very 55 

small or zero, partly reflecting the small number of species in that category. To show 56 

interaction effects we explored predictions for the observed the range of Heterogeneity 57 

values with two possible values for N_frag and Circularity based on percentiles of the 58 

observed data (see table S1 for values). 59 
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