
First in situ observations of gaseous ‐
volcanic plume electrification 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open access 

Nicoll, K. ORCID: https://orcid.org/0000-0001-5580-6325, 
Airey, M. ORCID: https://orcid.org/0000-0002-9784-0043, 
Cimarelli, C., Bennett, A., Harrison, G. ORCID: 
https://orcid.org/0000-0003-0693-347X, Gaudin, D., Aplin, K., 
Koh, K. L., Knuever, M. and Marlton, G. (2019) First in situ ‐
observations of gaseous volcanic plume electrification. 
Geophysical Research Letters, 46 (6). pp. 3532-3539. ISSN 
0094-8276 doi: https://doi.org/10.1029/2019GL082211 
Available at https://centaur.reading.ac.uk/82977/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1029/2019GL082211 
To link to this article DOI: http://dx.doi.org/10.1029/2019GL082211 

Publisher: Wiley 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



First In Situ Observations of Gaseous Volcanic
Plume Electrification
Keri Nicoll1,2 , Martin Airey1 , Corrado Cimarelli3 , Alec Bennett2,4, Giles Harrison1,
Damien Gaudin3, Karen Aplin5 , Kuang Liang Koh6 , Marco Knuever3,
and Graeme Marlton1

1Department of Meteorology, University of Reading, Reading, UK, 2Department of Electronic and Electrical Engineering,
University of Bath, Bath, UK, 3Department of Earth Sciences, LudwigMaximilians University, Munich, Germany, 4Bristol
Industrial and Research Associates Ltd (Biral), Portishead, UK, 5Department of Aerospace Engineering, University of
Bristol, Bristol, UK, 6School of Biological Sciences, University of Bristol, Bristol, UK

Abstract Volcanic plumes become electrically charged, often producing spectacular displays of
lightning. Previous research has focused on understanding volcanic lightning, primarily the large electric
fields produced by charging of ash particles. Here we report on the previously overlooked phenomenon of
volcanic plume electrification in the absence of detectable ash. We present the first in situ vertical profile
measurements of charge, thermodynamic, and microphysical properties inside predominantly gaseous
plumes directly above an erupting volcano. Our measurements demonstrate that substantial charge (at least
±8,000 pC/m3) is present in gaseous volcanic clouds without detectable ash. We suggest that plume charging
may be enhanced by the emission of radon gas from the volcano, which causes ionization. This presents a
hitherto unrecognized, but likely to be common, mechanism for charge generation in volcanic plumes,
which is expected to modulate plume characteristics and lifetime. This process is currently neglected in
recognized mechanisms of volcanic plume electrification.

1. Introduction

Volcanic plumes become charged through a variety of mechanisms including fractoemission, triboelectrifi-
cation, and hydrometeor‐ash particle interactions (Aplin et al., 2016; Mather & Harrison, 2006).
Fractoemission typically occurs close to the vent, where explosive activity causes fragmentation of magma
(James et al., 2000), leading to the emission of photons, electrons, positive ions, and charged particulates
(Lane et al., 2011). Triboelectrification is a type of contact electrification caused by charge transfer at the sur-
faces of particles (Houghton et al., 2013; Lacks & Levandovsky, 2007; Méndez‐Harper & Dufek, 2016). Ice‐
ash particle interactions have been considered analogous to the ice‐graupel interactions generating charge
in thunderstorms (Arason et al., 2011; Williams & McNutt, 2005).

Understanding of the charging mechanisms above comes from laboratory experiments (Cimarelli et al.,
2014; Méndez‐Harper et al., 2018) detection of volcanic lightning from (1) lightning mapping arrays
(Behnke et al., 2013), (2) global lightning detection networks (Bennett et al., 2010), or (3) high‐speed ima-
ging techniques (Aizawa et al., 2016; Cimarelli et al., 2016) and measurements of plume charge overhead
from ground based electric field mills (James et al., 1998). The only direct measurements of volcanic
plume charge have been made by collecting fallout ash particles (Gilbert et al., 1991; Miura et al.,
2002) in a Faraday pail situated a few kilometers away from the eruptive vent. In situ plume charge mea-
surements have, so far, been lacking due to the intrinsic difficulties of working in proximity to
active volcanoes.

Renewed interest in understanding the behavior of charged aerosol clouds (including volcanic plumes and
dust clouds) has arisen due to realization that existing long‐range particle transport models do not accurately
predict the transport of large particles (Ryder et al., 2013; van der Does et al., 2018; Weinzierl et al., 2017).
Charging modifies the fall speeds of small particles in the atmospheric electric field, changes aggregation
rates, and enhances the washout of particles by rainfall (Harrison & Carslaw, 2003). Charge may also act
to prolong the transport of particles in substantial electric fields (Ulanowski et al., 2007). Despite all of the
aforementioned potential effects of charge on the behavior of aerosols, the lack of in situ charge measure-
ments in volcanic plumes means that the magnitude of particle charging is unquantified, and therefore,
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the importance of such mechanisms, for example, long‐range transport and particle fallout, is as yet
unknown.

A major challenge in understanding the electrification of volcanic plumes is the separation of different
charging mechanisms, due to the multiple ash processes simultaneously in action. The plumes studied
here present the opportunity to study simplified volcanic plumes of gaseous vapor and liquid droplets
in the absence of observable ash. Previous remotely sensed (using surface‐based potential gradient [PG]
measurements) gaseous plumes were observed to be charged only when substantial ash concentrations
were present (Miura et al., 2002). The generally repeatable behavior of the PG perturbations as the var-
ious components of the volcanic plume pass overhead has led investigators to suggest that the gaseous
component adopts a net positive charge, and the ash particles a net negative charge (e.g., Hatekayama
& Uchikawa, 1952), with separation suggested to result from gravitational settling. The opposite charging
of gas and ash particles is thought to originate from fractoemission, which occurs due to magma fragmen-
tation, with lab experiments supporting the concept of positively charged gas and negatively charged ash
particles (James et al., 2000). The only previous estimate of the charge in the gaseous region of such
plumes is reported by Miura et al. (2002), who assumed a point charge geometry and derived 0.2 C from
their surface PG measurements, which were made 2–5 km from the crater, when the plume was at an
altitude of ~2 km above the sensor.

Here we used newly developed disposable sensors, which can be safely deployed to measure charge directly
within a volcanic plume. These represent the first vertical profile measurements of thermodynamic, electri-
cal, and microphysical properties inside a volcanic plume close to its source and provide new information
about the magnitude, polarity, and vertical distribution of charge within prevalently gaseous volcanic
clouds. Such measurements are relevant to refine our understanding of the electrical structure of volcanic
plumes. Further, by focusing only on the gaseous component of volcanic plumes, we demonstrate that vol-
canic plumes do not require solid ash particles to become electrified, thereby providing evidence for an addi-
tional and hitherto unrecognized charging mechanism, which does not involve ash.

2. Stromboli Campaign

A measurement campaign at Stromboli, Italy (38.794°N, 15.211°E, 924 m above sea level [asl]) was con-
ducted from 28 September to 4 October 2017. Normal Strombolian activity is characterized by frequent
(about 10 per hour), intermittent, mild explosions (0.01–100 m3 of tephra) generating weak plumes of a
few tens to few hundred meters vertical extent. Passive degassing from the active crater terrace
(~600 m asl) represents about 80% of the total SO2 gas emissions (Tamburello et al., 2012) and substan-
tially contributes to the composition of the persistent plume above Stromboli. During the campaign,
the observed persistent plume was primarily gaseous and of small vertical and horizontal extents (posi-
tively buoyant up to 2 km above the craters). The persistent plume was mainly fed by passive degassing,
punctuated by frequent small explosions (13 per hour on average) occasionally producing dense ash emis-
sions. Instrument stations were deployed near the summit, overlooking the crater terrace and at a dis-
tance of ~300 m from the active vents (see Figure S1 in the supporting information) together with an
Infratec Variocam thermal infrared camera recording the explosive activity at 60 fps from the summit
of the volcano. Sensors deployed included an electrotatic detector developed by Biral ltd, UK. The detector
(hereafter BTD (Bennett, 2018)) records displacement current induced on a 0.1‐m radius spherical elec-
trode on a 1.5‐m mast. Measured current results from temporal fluctuations in the atmospheric electric
field and is sampled at 100 Hz with a sensitivity of approximately 10 pA. In situ plume measurements
were also obtained by VOLCLAB sensor packages designed at the University of Reading, deployed around
the volcano's summit, as well as flown on free weather balloons fitted with standard meteorological radio-
sondes. The instrument packages consisted of a backscatter sensor (Harrison & Nicoll, 2014) for optical
detection of aerosols, miniaturized SO2 (Alphasense SO2‐B4), and a charge sensor (Harrison et al.,
2017). The radiosonde charge sensor responds to the displacement current induced on a small spherical
electrode by changes in the electric field experienced during its ascent (e.g., Nicoll & Harrison, 2009), pro-
viding an average space charge density every ~5 m. No measurable electrostatic discharges were detected
by the BTD in any of the plumes during the campaign.
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3. Vertical Profiles Through Volcanic Plumes
3.1. Near Vent Profile

A Vaisala RS92 radiosonde instrumented with the VOLCLAB sensor package was released from the summit
directly through the persistent plume at 11:40:00 UT on 30th September 2017 (see Figure S1b for location of
flight 1). At the time of launch the visibility over the launch site was reduced, mostly due to wind directing
passive degassing from the vents toward the launch site. A ballistic‐dominated explosion with vertically fly-
ing ejecta reaching a maximum height of 100 m occurred from 11:35:35 to 11:36:00 UT from the N2 crater,
ending 4 min before the launch time (see Figure S2 and associated text for thermal infrared analysis of the
explosion). This explosion is not believed to have influenced the large‐scale structure of the main plume
sampled by the balloon as sufficient time had elapsed for the material injected into the local environment
from that event to have settled or been dynamically removed from the measurement area. Moreover, ther-
mal infrared imaging shows a very small thermal anomaly, which confirms that the buoyant plume was
mainly gaseous (Figure S2), a conclusion supported by our ground‐based sensors which detected no ash
when engulfed by the plume. Ash was therefore considered to be negligible as a source of additional charge
during our measurements. Figure 1 shows vertical profiles from the instrumented balloon in the elevated
plume. The thermodynamic parameters are shown in Figure 1a, droplet properties (including those con-
densed from gases in the volcanic plume to create, e.g., H2O and H2SO4) measured by the optical sensor
in (b), and charge and SO2 measurements in (c).

Figure 1 demonstrates the presence of two distinct layers detected by the optical backscatter sensor (between
1.2–1.5 km and 1.7–2.0 km asl). The optical properties of the upper layer are characteristic of a meteorologi-
cal cloud layer (with relative humidity [RH] >100% signifying saturation). Indeed, a broken layer of
Stratocumulus (Sc) cloud was observed to form over Stromboli in the few hours before launch (see photo-
graphs in Figure S3), which formed only over the land, suggesting an orographic and potentially volcanic
influence. From Figure 1a the temperature profile in the upper layer is very different to that within a normal
Sc cloud, which typically cools with height through the layer, with a temperature inversion at cloud top. The
region inside this cloud stays warm initially, with a sharp cooling toward cloud top. This suggests the
entrainment of warm, buoyant (and very likely turbulent) air from the volcanic plume beneath. Figure S4
shows the ambient temperature and RH profile from the ERA5 reanalysis data set (for ~68 km east of
Stromboli at 12 UT) compared with the balloon measurements over Stromboli. This demonstrates substan-
tial differences between the two, with no cloud layer in ERA5, suggesting (assuming no model error) a sig-
nificant influence of Stromboli on the thermodynamic properties of the atmosphere in the vicinity of the
island, up to an altitude of ~2.5 km. Evidence for cloud formation directly over Stromboli is also provided
in Figure S3, which shows contemporary satellite cloud measurements. A localized cloud is present over
Stromboli but not in the surrounding region.

Figure 1. Vertical profiles through the volcanic plume at Stromboli at 11:40 UT on 30 September 2017 measured by a Vaisala RS92 radiosonde and the VOLCLAB
sensor package (flight 1). (a) Temperature (±0 .5°C) and relative humidity (±5%), (b) droplet concentration (±100/cm3) and diameter (±2 μm) measured by the
optical backscatter sensor (errors quoted are two standard errors calibrated against the CAPS sensor; Baumgardner et al., 2001), (c) Space charge density (median
error ± 500 pC/m3) and SO2 concentration (±3 ppm).
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Conversely, the thermodynamic properties of the lower layer in Figure 1 display peculiar structure com-
pared with a typical water cloud (e.g., in temperature transitions and gradients and RH<90%, indicating that
the air is not saturated). The optical sensor indicates the presence of primarily small droplets <5 μm dia-
meter, with fewer droplets than in the cloud layer above (200/cm3 compared with 450/cm3). Figure 1c also
demonstrates a peak in SO2 within this layer suggesting that it is volcanically generated, consisting of a mix-
ture of common volcanic gaseous vapor (including water vapor, CO2, SO2, andHCl; Allard et al., 2008), some
of which will condense to form small droplets (including H2SO4), producing the backscatter signal observed.

Within the upper cloud layer, the space charge profile demonstrates appreciable charge up to ±8,000 pC/m3

(causing saturation of the charge sensor, so this is likely to be an underestimate), with well‐defined layers of
positive charge at cloud base and negative charge at cloud top. This is at least 80 times larger than the charge
typically observed in normal stratiform water clouds (up to ±100 pC/m3; Nicoll & Harrison, 2016), with the
polarity at cloud top and bottom also reversed. The charge is strongly confined within the region of optical
backscatter, suggesting that the charge is associated with the cloud droplets. Some charge separation is
observed in this layer via differential gravitational settling as evidenced by the larger, positively charged dro-
plets at the base underlying the smaller, negatively charged droplets at the layer top. In the lower cloud layer,
the structure of the charge profile is complex, again with significant charge up to ±8,000 pC/m3. The charge
beneath this layer is highly variable in polarity, suggesting effective mixing within the gaseous plume (hin-
dering any observable charge separation), which is expected given the close proximity (~300 m) to the
active vents.

3.2. Profile Far From Vent

A second flight through the plume was made at 11:55 UT on 04/10/17, from halfway down the ridge on
Stromboli's southern flank, ~400 m from the main craters (see Figure S1b for location of flight 2).
Conditions at the summit were blustery (mean wind speed 7 m/s), and the primarily gaseous volcanic plume
was generally swirling below the summit and occasionally up over the top of the ridge. The instrumented
balloon was launched as the gaseous plume approached and was underinflated causing it to descend initially
through the plume (from launch height of 800 m down to 350 m) and ascend in the clear air away from the
volcano. Vertical profiles from flight 2 are shown in Figure 2, where there is evidence of the plume from
800 m down to 650 m (the UHF radiosonde signal, which requires line of sight, was lost intermittently dur-
ing the descent). From Figure 2a, the temperature inside the plume is cooler than the ambient air, and the
RH is considerably higher than ambient, but not fully saturated (maximum RH 87%) suggesting water vapor
and gaseous constituents similar to the lower layer in flight 1 (SO2 measurements were not available for
flight 2). From Figure 2c a distinct layer of space charge was encountered as the balloon descended into
the plume, up to ±600 pC/m3 (the charge sensor saturation limit, itself more sensitive than the device used
in flight 1). Both polarities of charge are present, with no obvious layering in the plume region where the

Figure 2. Vertical profiles through the volcanic plume at Stromboli at 11:55:15 UT on 4 October 2017 (flight 2) measured by a Vaisala RS92 radiosonde and the
VOLCLAB sensor package. (a) temperature (±0.5°C), (b) relative humidity (±5%), (c) space charge density (the cyan “+” and light gray “×” denote errors in
descent and ascent space charge data, respectively). The initial descent through the plume is shown in blue, and ascent in clear air in gray. For references to color in
this figure, please see the online version of the article.
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data were obtained. Comparing this with the ascent profile in clear air, there is very little charge at the same
height, supporting the conclusion that the space charge layer coincided with the volcanic plume.

A secondmeasurement of space charge within the volcanic plume during flight 2 wasmade by the BTD. This
was located ~50 m from the launch site and made alongside the SO2 sensor from the VOLCLAB package.
Figure 3 shows a time series of the voltage measured by the primary antenna from the BTD, for 5min around
the time of launch, alongside the SO2 concentration at the same location. Several periods of enhanced varia-
bility in the BTD current (around 11:52:15 UT and 11:54:30 UT) coincide with enhanced SO2 concentration
when the charged plume surrounded the sensor. The large spike in BTD current at 11:55:15 UT is associated
with the balloon launch.

We estimate the space charge density (i.e., the net charge) inside the plume measured by the BTD between
11:52 and 11:53 UT to be ±400 pC/m3 (see supporting information Text S5 and Figure S5 for details). This is
within a factor of 2 of the ±600 pC/m3 found from the balloon sensor. The charge measurements by different
methods therefore show consistency. Smaller charges observed on flight 2 compared with flight 1 may be
due to more substantial mixing of the plume due to high wind speeds, increased distance from the vents,
or reduced volcanic activity.

4. Discussion
4.1. Source of Plume Charging

These results, derived from independent measurement techniques, demonstrate for the first time that even
weak volcanic plumes, produced by passive degassing and with negligible ash concentration, are neverthe-
less electrically charged. Fractoemission is the only known mechanism capable of producing substantial
amounts of charge in a gaseous volcanic plume such as at Stromboli (e.g., Hatekayama and Ushikawa
1952, Lane and Gilbert 1992, James et al., 2000). The absence of detectable ash in the plumes observed at
Stromboli suggests that the source of the observed charge was, however, not fractoemission, as the magni-
tude of the charge is expected to be proportional to both intensity and duration of ash generation and

Figure 3. Time series around launch of flight 2 of (a) voltage measured by the primary antenna of the Biral BTD electrostatic sensor (±120 μV) and (b) SO2 con-
centration (±3 ppm) measured by the VOLCLAB sensor package. Balloon launch time was at 11:55:15 and shown by the gray vertical dotted line.
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ejection (James et al., 2000). We do not believe triboelectrification of ash particles plays a significant role
here due to the lack of ash.

Previous research has demonstrated that the gaseous constituents of volcanic plumes can readily become
charged by exposure to ionization sources (e.g., Ammann et al., 1993). It therefore follows that ash is not
required in order to produce charge in a volcanic plume if a source of ionization is present. Volcanic plumes
are typically a complicated mixture of high levels of acidic gases such as SO2 and hydrogen halides accom-
panying the more abundant water vapor and CO2. The high temperature of the volcanic environment is
likely to lead to many complex interactions between gaseous molecules and liquid particles, which may
result in ion generation. In this context chemical reactions and the ion species produced at magmatic tem-
peratures remain largely unexplored and so too the effect of those on gas charging. To address this open
question, many further gaseous plume measurements are required comprising simultaneous particle mea-
surements, analysis of chemical species, and in situ ion and bulk space charge measurements.
Condensation and sublimation of the gaseous vapor will give rise to liquid droplets, which are known to
transfer charge during droplet‐droplet collisions (e.g., Khain et al., 2004). Collisions between the substantial
number of liquid droplets within the observed plume are highly likely to transfer charge between them-
selves. The presence of charge up to ±7,000 pC/m3 in the lowest region (<1 .2km) of the plume in
Figure 1c in a region of no optically detectable droplets suggests, however, that droplet‐droplet charging is
not the dominant charging mechanism and that the charge exists primarily in the form of small ions, at least
in this region.

An additional source of ionization within the observed plume could be radioactive decay of radon gas,
which is emitted from the active vents and advected upward with the other gaseous constituents of the
plume. Radon is emitted through the soil at Stromboli, with surveys reporting the largest radon concentra-
tions at the summit, near active fractures (Cigolini et al., 2005; Cigolini et al., 2009). Atmospheric radon
ionizes air through a well‐understood decay chain, with most ionization from alpha and gammas from
radon progeny. The volumetric ionization rate q is proportional to the radon concentration, for example,
Omori et al. (2007) report q = 4 · cm−3 · s−1 for an atmospheric radon concentration of 10 Bq/m3.
Cigolini et al. (2013) show that typical radon concentrations near the summit of Stromboli are
2 × 104 Bq/m3, increasing to 1.25 × 106 Bq/m3 during eruptions. In terms of the associated ion production
rate q, this corresponds to q = 8,000 · cm−3 · s−1 to 2 × 105 · cm−3 · s−1. This is 2 to 4 orders of magnitude
larger than typical near‐surface values of q ~ 5–10 · cm−3 · s−1 (Harrison & Tammet, 2008). In a convec-
tively unstable environment such as a volcanic plume, the radon is well mixed (Beck, 1974), giving a steady
radon concentration (and ionization rate) with height up to at least 1,000 m. Converting the ionization rates
to space charge production rates, neglecting losses, gives 1,000 pC · m−3 · s−1 (for q = 8,000 · cm−3 · s−1),
increasing to 32,000 pC · m−3 · s−1 (for q = 2 × 105 · cm−3 · s−1), neither of which is inconsistent with the
lower peak estimate of ±8,000 pC/m3 measured in the lowest 400 m of flight 1. While the mechanism for
the source of the charge observed in the Strombolian plume cannot be known for certain without further
detailed measurements, the known existence of radon at Stromboli and the order of magnitude agreement
between the ion calculations and charge observations suggest that radon is a likely candidate.

4.2. Implications of Plume Charging

Understanding the processes contributing to volcanic lightning has been the focus of most studies of electro-
static phenomena at volcanoes; however, quantifying the effect of charge on ash and particle transport pro-
cesses is an overlooked, although increasingly important problem (e.g., van der Does et al., 2018). Charging
of droplets and particles can affect the fall speed of particles, changes aggregation rates, and enhances wash-
out of particles, all of which are potentially important in accurately modeling the long‐range transport of vol-
canic plumes. Particle transport models do not currently include the effects of charge, primarily due to a lack
of understanding of the charging mechanisms involved as well as a lack of in situ charge measurements with
which to develop theories and validate models.

This paper demonstrates that even the smallest and most benign volcanic plumes can be electrically charged
and suggests a hitherto unrecognized source of charge generation in volcanic plumes in the form of radon
emission. The likely contribution of radon, with a half‐life (radon‐222) of 3.8 days means that sources of
charge may well remain within plumes as they are transported. This may explain previous observations of
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charge in plumes distant from their source (Harrison et al, 2010). The ions continually produced by radio-
active decay will attach to droplets and particles within the plume, potentially modifying their behavior from
that of neutral droplets. Charge is known to affect cloud microphysics through modulating the collision effi-
ciency of colliding droplets and aerosol particles, and affecting the condensation and evaporation of droplets
(e.g., Harrison et al., 2015). Since water vapor dominates over other gaseous constituents in a volcanic plume
(Allard et al., 2008), the effects of charge on water droplets will dominate over charge effects on droplets of
different chemical composition, at least in the short temporal and spatial range. Geochemical reactions in
volcanic plumes are complex processes involving the condensation and sublimation of gaseous vapors to
form micron to submicron droplets and particles. The sulfur and chlorine‐rich magma of Stromboli gener-
ates abundant acid gas and metals, which dominate over ash content in buoyant plumes drifted by the wind
(Allard et al., 2000). Charge is known to stabilize droplet growth and enable droplet formation at lower
critical supersaturations (Harrison et al., 2015); hence, highly charged gaseous volcanic plumes may form
droplets more rapidly, or the droplets may persist for longer. Development of a new generation of particle
transport models, which incorporate charge effects (including volcanic radon as a source of ionization as
suggested here), will therefore lead to more accurate modeling of volcanic plume dispersion.

5. Conclusions

These first in situ measurements of charge inside gaseous plumes above an erupting volcano indicate that
volcanic plumes can be substantially charged even if ash is not detected. Charge associated with gas emission
adds an important component to the total charge budget of volcanic plumes that has been so far overlooked
and needs to be taken into account in future work. The implications of gaseous plume charge include effects
on the microphysics regulating the life of ash particles in volcanic plumes (aggregation, segregation and
sedimentation) and the overall chemical reactivity of the plume (gas scavenging and longevity of chemical
compounds), which are of paramount importance for the environmental impact of volcanic emission.
This should be addressed in order to accurately model long‐range volcanic plume dispersion, due to the over-
all societal importance of such events.

References
Aizawa, K., Cimarelli, C., Alatorre Ibargüengoitia, M. A., Yokoo, A., Dingwell, D. B., & Iguchi, M. (2016). Physical properties of volcanic

lightning at Sakurajima volcano, Japan: Constraints from magnetotelluric and video observations. Earth and Planetary Science Letters,
444, 45–55. https://doi.org/10.1016/j.epsl.2016.03.024

Allard, P., Aiuppa, A., Burton, M., Caltabiano, T., Federico, C., Salerno, G., & La Spina, A. (2008). Crater gas emissions and the magma
feeding system of Stromboli volcano. In S. Calvari, et al. (Eds.), The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption,
Geophys. Monogr. Ser. (Vol. 182, pp. 65–80). Washington, DC: American Geophysical Union.

Allard, P., Aiuppa, A., Loyer, H., Carrot, F., Gaudry, A., Pinte, G., et al. (2000). Acid gas and metal emission rates during long‐lived basalt
degassing at Stromboli volcano. Geophysical Research Letters, 27(8), 1207–1210. https://doi.org/10.1029/1999GL008413

Ammann, M., Hauert, R., Burtscher, H., & Siegmann, H. C. (1993). Photoelectric charging of ultrafine volcanic aerosols: Detection of
Cu (I) as a tracer of chlorides in magmatic gases. Journal of Geophysical Research, 98(B1), 551–556. https://doi.org/10.1029/
92JB01870

Aplin, K. L., Bennett, A. J., Harrison, R. G., & Houghton, I. M. P. (2016). Electrostatics and in situ sampling of volcanic plumes. In
S. Mackie, C. Cashman, H. Ricketts, A. Rust, & M. Watson (Eds.), Volcanic ash: Hazard observation and monitoring (pp. 99-113).
Amsterdam: Elsevier. ISBN: 978–0–08‐100405‐0.

Arason, P., Bennett, A. J., & Burgin, L. E. (2011). Charge mechanism of volcanic lightning revealed during the 2010 eruption of
Eyjafjallajökull. Journal of Geophysical Research, 116, B00C03. https://doi.org/10.1029/2011JB008651

Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., & Newton, R. (2001). The cloud, aerosol and precipitation spectrometer: A new
instrument for cloud investigations. Atmospheric Research, 59, 251–264.

Beck, H. L. (1974). Gamma radiation from radon daughters in the atmosphere. Journal of Geophysical Research, 79(15), 2215–2221. https://
doi.org/10.1029/JC079i015p02215

Behnke, S. A., Thomas, R. J., McNutt, S. R., Schneider, D. J., Krehbiel, P. R., Rison, W., & Edens, H. E. (2013). Observations of volcanic
lightning during the 2009 eruption of Redoubt Volcano. Journal of Volcanology and Geothermal Research, 259, 214–234. https://doi.org/
10.1016/j.jvolgeores.2011.12.010

Bennett, A. J. (2018). Warning of imminent lightning using single‐site meteorological observations. Weather, 73(6), 187–193.
Bennett, A. J., Odams, P., Edwards, D., & Arason, Þ. (2010). Monitoring of lightning from the April–May 2010 Eyjafjallajökull volcanic

eruption using a very low frequency lightning location network. Environmental Research Letters, 5(4), 044013. https://doi.org/10.1088/
1748‐9326/5/4/044013

Cigolini, C., Gervino, G., Bonetti, R., Conte, F., Laiolo, M., Coppola, D., & Manzoni, A. (2005). Tracking precursors and degassing by radon
monitoring during major eruptions at Stromboli Volcano (Aeolian Islands, Italy). Geophysical Research Letters, 32, L12308. https://doi.
org/10.1029/2005GL022606

Cigolini, C., Laiolo, M., Ulivieri, G., Coppola, D., & Ripepe, M. (2013). Radon mapping, automatic measurements and extremely high
222Rn emissions during the 2002–2007 eruptive scenarios at Stromboli volcano. Journal of Volcanology and Geothermal Research, 264,
49–65. https://doi.org/10.1016/j.jvolgeores.2013.07.011

10.1029/2019GL082211Geophysical Research Letters

NICOLL ET AL. 7

Acknowledgments
The field campaign was supported by
the National Geographic Expeditions
funds to C. C. K. N. acknowledges
NERC support through Independent
Research Fellowships (NE/L011514/1
and NE/L011514/2), and NERC grants
NE/P003362/1 (VOLCLAB). The
project underpinning this application
received funding from the European
Union's Horizon 2020 research and
innovation program under the Marie
Skłodowska‐Curie grant agreement
VOLTAIC 705619 to D. G. and C. C.
Gavin Dingley, Paul Williams, and
Martin Fullekrug all supported this
work. ERA5 thermodynamic data were
generated using Copernicus
Atmosphere Monitoring Service
information 2018. The satellite image in
Figure S3 was obtained from Sat24.
com/EUMETSAT/Met Office.
Radiosonde and surface data from the
VOLCLAB sensors are available from
the University of Reading Research
Data Archive at https://doi.org/
10.17864/1947.154.

https://doi.org/10.1016/j.epsl.2016.03.024
https://doi.org/10.1029/1999GL008413
https://doi.org/10.1029/92JB01870
https://doi.org/10.1029/92JB01870
https://doi.org/info:x-wiley/isbn/9780081004050
https://doi.org/10.1029/2011JB008651
https://doi.org/10.1029/JC079i015p02215
https://doi.org/10.1029/JC079i015p02215
https://doi.org/10.1016/j.jvolgeores.2011.12.010
https://doi.org/10.1016/j.jvolgeores.2011.12.010
https://doi.org/10.1088/1748-9326/5/4/044013
https://doi.org/10.1088/1748-9326/5/4/044013
https://doi.org/10.1029/2005GL022606
https://doi.org/10.1029/2005GL022606
https://doi.org/10.1016/j.jvolgeores.2013.07.011
https://doi.org/10.17864/1947.154
https://doi.org/10.17864/1947.154


Cigolini, C., Poggi, P., Ripepe, M., Laiolo, M., Ciamberlini, C., Delle Donne, D., et al. (2009). Radon surveys and real‐time monitoring at
Stromboli volcano: Influence of soil temperature, atmospheric pressure and tidal forces on 222Rn degassing. Journal of Volcanology and
Geothermal Research, 184(3–4), 381–388. https://doi.org/10.1016/j.jvolgeores.2009.04.019

Cimarelli, C., Alatorre‐Ibargüengoitia, M., Kueppers, U., Scheu, B., & Dingwell, D. (2014). Experimental generation of volcanic lightning.
Geology, 42(1), 79–82. https://doi.org/10.1130/G34802.1

Cimarelli, C., Alatorre‐Ibargüengoitia, M. A., Aizawa, K., Yokoo, A., Díaz‐Marina, A., Iguchi, M., & Dingwell, D. B. (2016).
Multiparametric observation of volcanic lightning: Sakurajima Volcano, Japan. Geophysical Research Letters, 43, 4221–4228. https://doi.
org/10.1002/2015GL067445

Gilbert, J. S., Lane, S. J., Sparks, R. S. J., & Koyaguchi, T. (1991). Charge measurements on particle fallout from a volcanic plume. Nature,
349(6310), 598–600. https://doi.org/10.1038/349598a0

Harrison, R. G., & Carslaw, K. S. (2003). Ion‐aerosol‐cloud processes in the lower atmosphere. Reviews of Geophysics, 41(3), 1012. https://
doi.org/10.1029/2002RG000114

Harrison, R. G., Marlton, G. J., Nicoll, K. A., Airey, M. W., &Williams, P. D. (2017). Note: A self‐calibrating wide range electrometer for in‐
cloud measurements. Review of Scientific Instruments, 88(12), 126109. https://doi.org/10.1063/1.5011177

Harrison, R. G., & Nicoll, K. A. (2014). Note: Active optical detection of cloud from a balloon platform. Review of Scientific Instruments,
85(6), 066104. https://doi.org/10.1063/1.4882318

Harrison, R. G., Nicoll, K. A., & Ambaum, M. H. P. (2015). On the microphysical effects of observed cloud edge charging. Quarterly Journal
of the Royal Meteorological Society, 141(692), 2690–2699. https://doi.org/10.1002/qj.2554

Harrison, R. G., Nicoll, K. A., Ulanowski, Z., &Mather, T. A. (2010). Self‐charging of the Eyjafjallajökull volcanic ash plume. Environmental
Research Letters, 5(2), 024004.

Harrison, R. G., & Tammet, H. (2008). Ions in the terrestrial atmosphere and other solar system atmospheres. Space Science Reviews,
137(1–4), 107–118. https://doi.org/10.1007/s11214‐008‐9356‐x

Hatakeyama, H., & Uchikawa, K. (1952). On the disturbance of the atmospheric potential gradient caused by the eruption‐smoke of the
volcano Aso. Papers in Meteorology and Geophysics, 2, 85–89. https://doi.org/10.2467/mripapers1950.2.1_85

Houghton, I. M. P., Aplin, K. L., & Nicoll, K. A. (2013). Triboelectric charging of volcanic ash from the 2011 Grímsvötn eruption. Physical
Review Letters, 111(11), 118501. https://doi.org/10.1103/PhysRevLett.111.118501

James, M. R., Lane, S. J., & Gilbert, J. S. (1998). Volcanic plume monitoring using atmospheric potential gradients. Journal of the Geological
Society of London, 155(4), 587–590. https://doi.org/10.1144/gsjgs.155.4.0587

James, M. R., Lane, S. J., & Gilbert, J. S. (2000). Volcanic plume electrification—Experimental investigation of fracture charging
mechanism. Journal of Geophysical Research, 105(B7), 16,641–16,649. https://doi.org/10.1029/2000JB900068

Khain, A., Arkhipov, V., Pinsky, M., Feldman, Y., & Ryabov, Y. (2004). Rain enhancement and fog elimination by seeding with charged
droplets. Part I: Theory and numerical simulations. Journal of Applied Meteorology, 43(10), 1513–1529. https://doi.org/10.1175/
JAM2131.1

Lacks, D. J., & Levandovsky, A. (2007). Effect of particle size distribution on the polarity of triboelectric charging in granular insulator
systems. Journal of Electrostatics, 65(2), 107–112. https://doi.org/10.1016/j.elstat.2006.07.010

Lane, S. J., & Gilbert, J. S. (1992). Electric potential gradient changes during explosive activity at Sakurajima volcano, Japan. Bulletin of
Volcanology, 54(7), 590–594.

Lane, S. J., James, M. R., & Gilbert, J. S. (2011). Electrostatic phenomena in volcanic eruptions. In Journal of Physics: Conference Series
(Vol. 301, 012004 pp.). IOP Publishing. https://doi.org/10.1088/1742-6596/301/1/01200

Mather, T. A., & Harrison, R. G. (2006). Electrification of volcanic plumes. Surveys in Geophysics, 27(4), 387–432. https://doi.org/10.1007/
s10712‐006‐9007‐2

Méndez‐Harper, J., & Dufek, J. (2016). The effects of dynamics on the triboelectrification of volcanic ash. Journal of Geophysical Research:
Atmospheres, 121, 8209–8228. https://doi.org/10.1002/2015JD024275

Méndez‐Harper, J. S., Cimarelli, C., Dufek, J., Thomas, R., & Gaudin, D. (2018). Inferring compressible fluid dynamics from vent discharges
during volcanic eruptions. Geophysical Research Letters, 45, 7226–7235. https://doi.org/10.1029/2018GL078286

Miura, T., Koyaguchi, T., & Tanaka, Y. (2002). Measurements of electric charge distribution in volcanic plumes at Sakurajima Volcano,
Japan. Bulletin of Volcanology, 64(2), 75–93.

Nicoll, K. A., & Harrison, R. G. (2009). A lightweight balloon‐carried cloud charge sensor. Review of Scientific Instruments, 80(1), 014501.
https://doi.org/10.1063/1.3065090

Nicoll, K. A., & Harrison, R. G. (2016). Stratiform cloud electrification: Comparison of theory with multiple in‐cloud measurements.
Quarterly Journal of the Royal Meteorological Society, 142(700), 2679–2691. https://doi.org/10.1002/qj.2858

Omori, Y., Yasuoka, Y., Nagahama, H., Kawada, Y., Ishikawa, T., Tokonami, S., & Shinogi, M. (2007). Anomalous radon emanation linked
to preseismic electromagnetic phenomena. Natural Hazards and Earth System Sciences, 7(5), 629–635. https://doi.org/10.5194/nhess‐7‐
629‐2007

Ryder, C. L., Highwood, E. J., Lai, T. M., Sodemann, H., & Marsham, J. H. (2013). Impact of atmospheric transport on the evolution of
microphysical and optical properties of Saharan dust. Geophysical Research Letters, 40, 2433–2438. https://doi.org/10.1002/Grl.50482

Tamburello, G., Aiuppa, A., Kantzas, E. P., McGonigle, A. J. S., & Ripepe, M. (2012). Passive vs. active degassing modes at an open‐vent
volcano (Stromboli, Italy). Earth and Planetary Science Letters, 359, 106–116.

Ulanowski, Z., Bailey, J., Lucas, P. W., Hough, J. H., & Hirst, E. (2007). Alignment of atmospheric mineral dust due to electric field.
Atmospheric Chemistry and Physics, 7(24), 6161–6173. https://doi.org/10.5194/acp‐7‐6161‐2007

van der Does, M., Knippertz, P., Zschenderlein, P., Harrison, R. G., & Stuut, J. B. W. (2018). The mysterious long‐range transport of giant
mineral dust particles. Science Advances, 4(12), eaau2768. https://doi.org/10.1126/sciadv.aau2768

Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., et al. (2017). The Saharan Aerosol Long‐range
TRansport and Aerosol Cloud Interaction Experiment (SALTRACE): Overview and selected highlights. Bulletin of the American
Meteorological Society, 98(7), 1427–1451. https://doi.org/10.1175/BAMS‐D‐15‐00142.1

Williams, E. R., & McNutt, S. R. (2005). Total water contents in volcanic eruption clouds and implications for electrification and lightning.
In E. R. Williams & S. R. McNutt (Eds.), Recent progress in lightning physics (pp. 81–94). Kerala: Research Signpost.

10.1029/2019GL082211Geophysical Research Letters

NICOLL ET AL. 8

https://doi.org/10.1016/j.jvolgeores.2009.04.019
https://doi.org/10.1130/G34802.1
https://doi.org/10.1002/2015GL067445
https://doi.org/10.1002/2015GL067445
https://doi.org/10.1038/349598a0
https://doi.org/10.1029/2002RG000114
https://doi.org/10.1029/2002RG000114
https://doi.org/10.1063/1.5011177
https://doi.org/10.1063/1.4882318
https://doi.org/10.1002/qj.2554
https://doi.org/10.1007/s11214-008-9356-x
https://doi.org/10.2467/mripapers1950.2.1_85
https://doi.org/10.1103/PhysRevLett.111.118501
https://doi.org/10.1144/gsjgs.155.4.0587
https://doi.org/10.1029/2000JB900068
https://doi.org/10.1175/JAM2131.1
https://doi.org/10.1175/JAM2131.1
https://doi.org/10.1016/j.elstat.2006.07.010
https://doi.org/10.1088/1742-6596/301/1/01200
https://doi.org/10.1007/s10712-006-9007-2
https://doi.org/10.1007/s10712-006-9007-2
https://doi.org/10.1002/2015JD024275
https://doi.org/10.1029/2018GL078286
https://doi.org/10.1063/1.3065090
https://doi.org/10.1002/qj.2858
https://doi.org/10.5194/nhess-7-629-2007
https://doi.org/10.5194/nhess-7-629-2007
https://doi.org/10.1002/Grl.50482
https://doi.org/10.5194/acp-7-6161-2007
https://doi.org/10.1126/sciadv.aau2768
https://doi.org/10.1175/BAMS-D-15-00142.1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


