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Abstract 14 

 15 

Species’ responses to environmental changes are highly idiosyncratic and context-16 

dependent. Although intrinsic traits (i.e. those that define species niches) may play a 17 

key role, little empirical evidence exists regarding their relationship to demographic 18 

responses. We used data for 66 butterfly species representing five ecological and two 19 

life-history traits to study the effect these factors have on population growth rates and 20 

variations in populations. Using a novel methodological approach, we provide here 21 

improved estimates of population change. Our results reveal declines in 70% and 22 

increases in 23% of the studied species, clear evidence of more serious population 23 

declines in Catalan butterflies than those that have previously been reported. Declines 24 

were associated with species' degree of habitat specialisation and the number of 25 
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generations. For all species, fluctuations were greater within than between years and, 26 

on average, the latter was 1.5 times greater. Our results indicated that habitat 27 

specialists and multivoltine species are more likely to suffer severe annual 28 

fluctuations in population abundance; and that multivoltine species and extreme larval 29 

specialists had the most marked fluctuations within seasons. We also found higher 30 

resilience to environmental changes in generalist species, which is concordant with 31 

biotic homogenisation in disturbed communities. However, amongst the declining 32 

species there were also many generalists, which indicates a potential general 33 

reduction in this group that goes beyond faunal homogenisation. Given butterflies are 34 

biodiversity indicators, these patterns are a possible reflection of an overall 35 

impoverishment in biodiversity. 36 

 37 
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1. Introduction 42 

 43 

Understanding the pressures affecting species population dynamics is a central issue 44 

in ecology and management, especially when the aim is to safeguard biodiversity 45 

(Sutherland et al. 2013). Pressures provoked by global change have accelerated the 46 

decline of many species (Vitousek 1997, Chapin et al. 2000, Vitousek et al. 2008), 47 

with some facing or undergoing extinction (Butchart et al. 2010, Pimm et al. 2014). In 48 

particular, climate change and habitat transformation (i.e. habitat loss and 49 

fragmentation) are among the main pressures exerted by global change that species 50 

are having to confront (Thomas et al. 2004a, Visconti et al. 2015).  51 

Several studies have suggested that certain intrinsic ecological (i.e. those that define 52 

species ecological niches) and life-history traits predispose a species to respond 53 

distinctly to specific environmental pressures (Krauss et al. 2010, Murray et al. 2011, 54 

González-Suárez and Revilla 2013). For instance, species with better dispersal ability 55 

can shift their ranges faster than those with less capacity to disperse. This is an 56 

advantage in areas in which climate change is provoking asynchronies between the 57 

species niche and the environment (e.g. Croxall et al. 2002, Butchart et al. 2010, Chen 58 

et al. 2011). Species whose traits enable them to cope well with current pressures are 59 

expected to persist while the others might face declines and, eventually, local 60 

extinction. It is therefore not surprising that an increasing number of studies have 61 

evaluated the relationship between species traits and their responses to environmental 62 

pressures.  63 

Previous studies have quantified these responses as changes in species richness and 64 

distributions for a wide range of taxa (e.g. Thuiller et al. 2008, Stefanescu et al. 65 

2011a, Eskildsen et al. 2015), or have evaluated extinction probabilities or 66 
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vulnerability (e.g. González-Suárez and Revilla 2013; Fernández-Chacón et al. 2014). 67 

However, few empirical studies have actually addressed demographic trends 68 

(Dapporto and Dennis 2013, Curtis et al. 2015), in part because of the difficulty in 69 

gathering high-quality data at relevant spatial and temporal scales. The recent upsurge 70 

in citizen-science projects has provided a useful way of obtaining the data needed for 71 

this kind of analysis (Schmeller et al. 2009, Devictor et al. 2010). 72 

In this paper we examine the relationship between ecological and life-history traits, 73 

and demographic trends in a set of butterfly species. To do so, we used empirical 74 

count data gathered by a volunteer-based project, the Catalan Butterfly Monitoring 75 

Scheme, over 20 years in the Mediterranean region of north-eastern Spain. Butterflies 76 

are good indicators of biodiversity (Thomas 2005) and respond quickly to climate 77 

change and habitat transformation (Stefanescu et al. 2003, Thomas et al. 2004b, 78 

Krauss et al. 2010), thereby minimising – in comparison, for example, to plants and 79 

birds – the demographic time lag inherent in extinction debts (Krauss et al. 2010, 80 

Devictor et al. 2012, but see Sang et al. 2010). Therefore, butterfly demographic 81 

patterns in relation to species intrinsic traits can contribute to a better understanding 82 

of how a wide range of organisms (e.g. insects and other short-lived organisms) 83 

respond under such pressures. 84 

To gather species demographic patterns we estimated (i) their population growth rate, 85 

i.e. the direction of the population trend (positive, stable or negative) and its strength, 86 

and (ii) the population variation, i.e. the dispersion of temporal changes in population 87 

numbers due to intrinsic (density-dependence processes) and external (cyclic or 88 

stochastic) factors. 89 

We hypothesised that habitat specialisation will decrease population growth rate but 90 

increase population variability (hypothesis 1), an idea that is based on previous 91 
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studies suggesting the existence of a relationship between this trait and population 92 

trends in butterflies (e.g. Stefanescu et al. 2011a; see Dapporto and Dennis 2013 for a 93 

comprehensive discussion). Nevertheless, other traits besides habitat specialisation 94 

could also influence demographic trends as the species respond to global change. For 95 

instance, dispersal ability in fragmented landscapes is directly related to colonisation 96 

and the persistence of butterfly populations (Fernández-Chacón et al. 2014). 97 

Therefore, we predicted that better dispersal ability will increase growth rate and 98 

reduce population variability (hypothesis 2). Furthermore, during a period of climate 99 

warming, we would expect thermophilous species to have more positive population 100 

trends and less population variability than those adapted to colder climates (as seen in 101 

birds; e.g. Stephens et al. 2016) (hypothesis 3). In addition, traits influencing 102 

butterflies’ responses to increasing temperatures may also be important for explaining 103 

population trends (e.g. Diamond et al. 2011). A series of studies have suggested that 104 

an increase in the number of generations per reproductive season (i.e. the production 105 

of extra generations) occurs under climate warming, although its effect on populations 106 

remains unclear (e.g. Altermatt 2010, Van Dyck et al. 2015). Intuitively, a positive 107 

effect is expected since a larger proportion of adults will develop and reproduce 108 

during the season and so we hypothesised that there will be a higher growth rate in 109 

multivoltine than in univoltine species (hypothesis 4). Finally, we also predicted more 110 

positive trends and less variation in species overwintering in mature (pupa and adult) 111 

than in immature stages (egg and larva; hypothesis 5) given previous findings that 112 

suggest that species overwintering in the egg stage or as unfed neonate larva are 113 

currently undergoing the most serious declines (Breed et al. 2012). 114 

 115 

2. Material and Methods 116 
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 117 

2.1. Study area and data collection 118 

 119 

The study area was the Mediterranean region of Catalonia, Menorca (north-east 120 

Spain) and Andorra. This area is a biodiversity hotspot in which butterfly species are 121 

threatened by climate warming (e.g. increasing aridity; Stefanescu et al. 2011a) and 122 

habitat transformation (e.g. the abandonment of traditional land use and increasing 123 

urbanisation; Herrando et al. 2015).  124 

Data were obtained from monitoring surveys carried out in 1994–2014 as part of the 125 

Catalan Butterfly Monitoring Scheme (CBMS; see: www.cbms.org) and the Andorran 126 

Butterfly Monitoring Scheme (BMSAnd; see www.iea.ad/bmsand). Both schemes 127 

consist of a network of sites in which visual counts of adult butterflies along transects 128 

are undertaken by volunteers every week between March and September (i.e. the 129 

whole flight period of most species). Transects are fixed routes of about 2 km in 130 

length and 5 m in width, which are divided into shorter sections corresponding to 131 

homogeneous habitat types (average section length: 186 m, median: 162 m, range: 132 

20–871 m). The transects used in our study (n = 116) are located at 0–1650 m a.s.l. 133 

and cover a comprehensive range of environmental conditions (Fig. A.1). Although 134 

the number of surveyed transects varied between years, an important fraction 135 

remained stable throughout the whole recording period (for further details, visit 136 

www.catalanbms.org). Nevertheless, our modeling approach allowed us to assess 137 

species abundance at sites in years in which surveys were not performed via updating 138 

with the Markov Chain Monte Carlo (see next section). 139 

 140 

2.2. Species selection and modeling approach 141 



 7 

 142 

A total 183 species were sampled, of which we selected 82 species representative of a 143 

diverse range of ecological and life-history traits (Table A.1) and regularly recorded 144 

across all years and sites.  145 

 146 

To test our hypotheses, we applied an open-population binomial mixture Bayesian 147 

hierarchical model (Kéry et al. 2009). This model estimates abundance over time 148 

using count data from open populations corrected by the imperfect detection inherent 149 

to observational error (see full model description in Appendix B and R code in 150 

Appendix C). In previous studies (e.g. Stefanescu et al. 2011b; Herrando et al. 2015), 151 

population trends were calculated via the widely used TRIM software (Pannekoek and 152 

Strien 2005). Nevertheless, this methodological approach does not take into account 153 

the detection probability that observational counts are subject to or its variation over 154 

time. This could mask real abundances and temporal trends in populations and their 155 

drivers (Kéry 2004, Kéry and Plattner 2007, Kéry et al. 2009). 156 

For each species, abundance was set as time and section specific, and its estimation 157 

was extended to include the relationship with the population growth rate (rsp) and the 158 

seven major habitat types in the area (meadows, forests, arable crops, woody crops, 159 

gardens, ruderal vegetation, and non-suitable habitat). Habitat types were not 160 

significantly correlated and were expressed as a percentage of habitat per section 161 

(Table A.2). The detection probability – with which species abundance was corrected 162 

– was set as time-specific.  163 

 164 

The time step was set as intervals of two weeks to account for seasonality in both the 165 

abundance and the detection probability, and to include a closure period for the 166 



 8 

repeated counts used to analyse detectability. Two-week intervals have been 167 

postulated as an acceptable closure period for butterfly species richness (Kéry and 168 

Plattner 2007). Although slight changes in butterfly abundance may occur at this 169 

resolution level, we consider that they are small enough to ensure that our model 170 

remains valid. 171 

 172 

2.3. Temporal population variability of species abundance 173 

 174 

Population variability was assessed using the coefficient of variation (i.e. the 175 

dispersion around the mean), a relative measure of variation that is independent of the 176 

population size and so can be used to compare species. We used two temporal 177 

windows: seasonal (i.e. within years; CVW) to include the seasonality (excluding the 178 

seasonality related to non-surveyed months: October-February), and inter-annual 179 

variation (i.e. between years; CVB). Seasonal variation was defined as the ratio of the 180 

standard deviation to the mean of the time series of abundance within each year, 181 

which gave a total of 20 values per species (one for each of the 20 years recorded). To 182 

obtain the inter-annual variation without including the seasonal variation in the 183 

calculation, we calculated the standard deviation and mean abundance per year and 184 

defined CVB as their ratio, which generated a single value for each species. 185 

 186 

2.4. Species ecological and life-history traits 187 

 188 

For each species, we used a total of seven intrinsic traits divided into five ecological 189 

(i-v) and two life-history (vi-vii) traits: (i) adult habitat specialisation measured using 190 

the Species Specialisation Index (SSI), quantified as the coefficient of the variations 191 
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in the average density in the available habitat, as defined by Julliard et al. (2006);  (ii) 192 

larval trophic specialisation, ranging from 1 (extreme specialists) to 3 (extreme 193 

generalists), following Stefanescu et al. (2011a) and Fernández-Chacón et al. (2014); 194 

(iii) the degree of preference for forests versus open areas, as evaluated by Herrando 195 

et al. (2015); (iv) average forewing length (measured in mm), which has been shown 196 

to act as a satisfactory proxy for dispersal ability in butterflies (Kuussaari et al. 2014; 197 

but see Sekar 2012); for this measurement, data were extracted from García-Barros et 198 

al. (2013) with sexes pooled given their close correlation (Fig. A.2); (v) the Species 199 

Temperature Index (STI), as defined in Schweiger et al. (2014); (vi) voltinism, 200 

categorised as uni-, bi- or multivoltine (≥ 3 generations/year), according to Stefanescu 201 

et al. (2011a) and Fernández-Chacón et al. (2014); and (vii) overwintering stage, 202 

either immature (i.e. egg or larva) or mature (i.e. pupa or adult), with a third category 203 

for migratory species (i.e. not overwintering in the region), as per García-Barros et al. 204 

(2013). 205 

 206 

2.5. Statistical analyses 207 

 208 

The effects of the seven species traits on the growth rate estimates were tested using 209 

linear regressions (i.e. the growth rate fitted to a Gaussian distribution).  210 

Both seasonal and inter-annual population variability were analysed in terms of the 211 

described traits using a Generalised Linear Mixed Model (GLMM) and a Generalised 212 

Linear Model (GLM), respectively. These two models were fitted to a Gamma 213 

distribution given that the coefficients of variation were positive, continuous, skewed 214 

and of increasing variance; species identity was set as a random effect.  215 
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For each analysis, a global model was first defined containing all the above 216 

mentioned covariates and potential interactions. Model selection was carried out by 217 

discarding terms sequentially. In the case of the linear regression analysis model, 218 

selection was based on the adjusted r-squared to take into account the number of 219 

observations and of model parameters. Model selection for the generalised models 220 

was based on AICc selecting those models differing from ΔAICc< 2. Model 221 

averaging and estimates weighting for the most likely models were obtained via R 222 

package MuMIn (Bartoń 2014). Analyses were performed in R using package lme4 223 

(Bates et al. 2014). 224 

 225 

Temporal changes in the detection probability were tested in relation to species 226 

voltinism. We used a Generalised Additive Mixed Model (GAMM), with two-week 227 

intervals throughout the year (1–15) set as the non-lineal term and species as a 228 

random effect, to account for the inherent specific variability. The detection 229 

probability was fitted to a Gamma distribution with an inverse link. Analyses were 230 

performed in R using package gamm4 (Wood 2014).  231 

 232 

3. Results 233 

 234 

Sixteen of the 82 regularly recorded species failed to converge in our modeling 235 

approach (Table A.3). The remaining 66 species were all present in more than 10 236 

transects, which conferred inferential strength on the analysis (e.g. Oliver et al. 2010). 237 

Annual population growth rates ranged between -0.11 and 0.04 (raverage = -0.02); 15 238 

species (22.7%) had a significantly positive rate, five (7.6%) were stable and 46 239 

(69.7%) had a negative rate. Significance was based on the exclusion of zero values in 240 
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the Bayesian Credible Interval values at 95% (Appendix D). When testing for 241 

significance using a conventional Poisson regression, only one species (Euphydryas 242 

aurinia) was considered as stable (r = 0.00035, z = 0.92, p = 0.36; Appendix D).  243 

 244 

3.1. Population growth rate and species traits 245 

 246 

The best models for the estimated population growth rates included habitat 247 

specialisation, the degree of preference for forests versus open areas, wing length and 248 

voltinism (Table A.4). 249 

Population growth rates decreased with the increase in habitat specialisation, thereby 250 

indicating lower population growth rate in habitat specialists (p = 0.021, Table 1a, 251 

Fig. 1b). Nevertheless, several generalist species did also show declines (e.g. 71% of 252 

those species with SSI <1.5, for range, median and average values of 0.62–2.18, 1.23 253 

and 1.24, respectively). Multivoltine species had a steeper negative rate than both uni- 254 

and bivoltine species (Table 1a, Fig. 1b). Results also suggested steeper negative rates 255 

in forest species; however, this effect was not significant. The effect of wing length – 256 

similarly not significant – was nearly negligible despite being included in the best 257 

models (Table 1a).  258 

 259 

3.2. Temporal variation of abundance and species traits 260 

 261 

Seasonal variation was greater than inter-annual variation in species abundance  262 

(range = 0.004–1.54 and 0.05–0.72, respectively), although the mean value of the 263 

inter-annual variation was 1.5 times higher (average = 0.14 and 0.22 for seasonal and 264 

inter-annual variation, respectively; Fig. A.3). 265 
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Although 38% of the seasonal variation was species-specific, voltinism was the main 266 

factor involved, as variation increased from uni- to multivoltine species (all p 267 

<0.0001; Table 1b, Fig. 2a). Seasonal variation was lesser in larval trophic generalists 268 

(i.e. larval specialisation 3, p = 0.006) and species overwintering in an immature stage 269 

(p = 0.003; Table 1b, Fig. A4). Habitat specialisation and the degree of preference for 270 

forests versus open areas were also included in the best models but without any 271 

significant relationship (Tables 1b and A.5a).  272 

Voltinism and habitat specialisation were the main factors defining inter-annual 273 

variation, both leading to increased values (p < 0.04; Table 1c, Fig. 2b). The degree of 274 

preference for forests versus open areas was included in the best models (Table A.5b), 275 

increasing the inter-annual variation non-significantly (Table 1c). No other traits were 276 

included in the best models (Table A.5). 277 

 278 

3.3. Temporal changes in detection probability 279 

 280 

The detection probability increased linearly over the years (Estimate = -0.006) for all 281 

uni-, bi- and multivoltine species. Although there were no differences between these 282 

species (pinteractions> 0.11), the detection probability was constantly lower for 283 

univoltine species (Q1 = 0.01; Estimate = 1.12, p <0.001; Fig. 1a).  284 

 285 

4. Discussion 286 

 287 

This study reveals negative trends in 70% of the studied species, indicating a severe 288 

decline among Mediterranean butterflies. Population trends are partly predicted by the 289 
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ecological and life-history traits of the species. In particular habitat specialisation and 290 

voltinism have the highest influence, whilst other traits have a marginal or null effect.  291 

 292 

4.1. Population trends and species traits 293 

 294 

Population growth rates decreased with increasing habitat specialisation. This finding 295 

agrees with the steeper declines detected in populations of butterfly specialists 296 

(compared to habitat generalists) in the same region (Stefanescu et al. 2011b; Carnicer 297 

et al. 2013) and in other European countries (van Swaay et al. 2006, Eskildsen et al. 298 

2015, Curtis et al. 2015). Habitat generalists have a wider range of available resources 299 

that can fulfil their needs, which give them an advantage in environments that are 300 

being transformed. Under a context of global change, this may in turn lead to a biotic 301 

homogenisation of natural communities, i.e. the substitution of many specialists by a 302 

few generalist species, a process that is one of the main drivers of declines in 303 

biodiversity worldwide (McKinney and Lockwood, 1999). This effect has been noted 304 

to occur in the butterfly fauna in several European countries (e.g. Ekroos et al. 2010, 305 

Ockinger et al. 2010). 306 

Despite the negative relationship between habitat specialisation and population rates, 307 

many generalist species were also found to be in decline. This situation is comparable 308 

to some extent to other areas affected by severe anthropic pressure (Leon-Cortes et al. 309 

1999, 2000, Van Dyck et al. 2009). Further investigation is needed to evaluate 310 

whether or not these general negative trends can be explained by the interaction of 311 

environmental pressures such as climate change and habitat transformation, and by 312 

ecological traits. For example, Stefanescu et al. (2011a) suggested that habitat 313 

generalist species are most affected by the increase of aridity and landscape 314 
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intensification in lowlands, while specialists are more affected by land abandonment 315 

and climate warming in mountain areas. 316 

In contrast to our intuitive expectation, uni- and bivoltine species registered similar 317 

trends, while multivoltine species had significantly steeper declines. For example, in 318 

Germany multivoltine species dominate butterfly communities when land use 319 

intensification is severe (Börschig et al. 2013). However, multivoltine species may be 320 

the most negatively affected by climate change in the Mediterranean when their last 321 

summer generations have to confront the most rigorous conditions and extreme 322 

drought events. To a degree, this situation is comparable with the recent decline of the 323 

generalist multivoltine butterfly Lasiommata megera in central Europe, where the 324 

addition of an extra generation represents a developmental trap resulting in high larval 325 

mortality (Van Dyck et al. 2015). Likewise, multivoltinism could expose a species to 326 

detrimental events several times in the same season and thus lead to a severe decline, 327 

a scenario that could become more relevant given longer and more frequent extreme 328 

climatic events, as predicted by Giorgi and Lionello (2008) for the Mediterranean 329 

region. 330 

Strikingly, the degree of preference for forests versus open areas was not significant 331 

for either population growth rate or variation, which may indicate that we failed to 332 

capture this effect properly for the set of studied species. In a recent study this 333 

preference was found to be advantageous both for butterflies and birds, as woodland 334 

species had more positive population trends (Herrando et al. 2015). Nevertheless, in 335 

this study trends were evaluated in a subset of transects covered by natural vegetation 336 

affected by land abandonment (n = 74) rather than in all available transects, as was 337 

the case in our study (n = 116). The addition of other types of habitat transformations 338 
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such as increasing urbanisation probably diluted the positive trend of forests in natural 339 

areas at a regional scale. 340 

Wing length, which we considered as a proxy for dispersal, had nearly no effect in our 341 

models. However, some authors have questioned its relationship with dispersal ability 342 

(see Sekar 2012). In addition, the fact that the Species Temperature Index did not 343 

predict population trends may initially be surprising given the prediction of general 344 

declines in cold-adapted species and the opposite trends in warm-adapted species in 345 

the current context of climate warming (e.g. Devictor et al. 2012). However, our 346 

results confirm some previous analyses at site level that show that population trends 347 

are in fact independent of the thermal niche of the species (Stefanescu et al. 2011b). 348 

Indeed, our findings suggest that interactions with other climatic and non-climatic 349 

factors may be more important for explaining population trends (Oliver et al. 2015, 350 

Settele and Wiemers 2015). 351 

 352 

4.2.Temporal population variation and species traits 353 

 354 

Although seasonal variation was greater than inter-annual variation, average values 355 

showed the opposite pattern. Both measures were positively affected by voltinism, 356 

that is, population variation at differing time scales was higher in multivoltine species, 357 

which suggests that there was a higher risk of strong fluctuations.  358 

To a lesser degree, seasonal variation was affected by extreme larval trophic 359 

generalism and the overwintering stage. The lower variability in larval trophic 360 

generalism supports the hypothesis of specialisation traits relating to higher sensitivity 361 

to environmental changes. Likewise, fewer seasonal variations were found in species 362 

overwintering in immature stages (egg or pupa), which could indicate a major 363 
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buffering capacity in immature stages against extreme climatic events, a result that 364 

contrasts with the findings of Breed et al. (2012). Indeed, species overwintering in 365 

mature stages will emerge earlier in the spring, thereby exposing themselves to 366 

extreme climatic events at the beginning of the season that could provoke fluctuations 367 

in populations. 368 

In addition to voltinism, inter-annual variation was also affected by habitat 369 

specialisation, with habitat specialists showing consistently greater variation than 370 

habitat generalists. This interesting finding – that we interpret to be a reflection of the 371 

greater sensitivity of habitat specialists to environmental perturbations – highlights 372 

how difficult it is for these species to adapt to the ongoing environmental 373 

transformations (in both climate and landscape) in the region. This agrees with the 374 

differences in the relative impact of environmental perturbations on specialist and 375 

generalist species richness (Stefanescu et al. 2011a). 376 

 377 

4.3. Modeling approach: open-population Binomial Hierarchical Bayesian  378 

 379 

The percentage of declining species obtained with our approach was almost two times 380 

higher than previously obtained with TRIM for the region (Fig. A.5; Stefanescu et al. 381 

2011b; Carnicer et al. 2013). 382 

Different estimates of abundance between models are to be expected whenever trends 383 

in detection probability occurred, as our model accounted for the error in the 384 

observational process while TRIM does not. In the later model type, abundances are 385 

likely to be underestimated when the detection probability is low. The increasing 386 

probability of detection over time in our data (Fig. 1A) means that population trends 387 

will be underestimated when the population trend is negative because there will be 388 



 17 

fewer differences between the (under)estimates of abundances during the first years of 389 

surveys and the estimates during the latter years. However, they will be overestimated 390 

when the population trend is positive since there will be greater differences between 391 

the (under)estimates of abundances during the first years of surveys and the estimates 392 

during the latter years. In our case, the detection probability increased over time, 393 

probably due to the lower amount of experience of the volunteers at the start of the 394 

project. Thus, our estimations gained in accuracy by adding the detection probability. 395 

The benefit of accounting for the detection probability has been demonstrated by Dail 396 

and Madsen (2011) and Pellet et al. (2012). 397 

The differences in the results obtained using our approach and TRIM could also be 398 

explained by the different parameterisation of the time scale of the models (every two 399 

weeks versus annual) and the model structure (lineal versus non-lineal). Therefore, 400 

although we recommend the use of models that take into account the detection 401 

probability to reduce uncertainty caused by observational error, we are unable to 402 

endorse any particular approach until further comparisons between these two 403 

methodologies using equal parameterisations have been conducted. 404 

 405 

5. Conclusions  406 

 407 

Our results indicate a very serious general decline of the butterfly fauna in the western 408 

Mediterranean, affecting 70% of the studied species. Although this decline also 409 

covers many generalist species, overall the highest vulnerability in terms of 410 

population trends was found for specialist and multivoltine species. Taken together 411 

with previous work, our analysis suggests that global change – including land 412 

abandonment and intensification and climate change – is behind the observed 413 
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negative trends (Stefanescu et al. 2003, 2011a,b; Herrando et al. 2015). Moreover, 414 

changes in land cover and more extreme climatic events are expected to exacerbate 415 

these serious declines in the future. Furthermore, given that butterflies are also 416 

regarded as good indicators for other terrestrial insects (Thomas 2005; but see 417 

Musters et al. 2013), the observed patterns may also be indicative of global biological 418 

impoverishment. Under this scenario, local habitat management (i.e. conservation 419 

aimed at increasing habitat availability and connectivity) focused on the requirements 420 

of declining species might help mitigate these negative trends (Curtis et al. 2015) or 421 

even potentially revert population declines (e.g. Dapporto and Dennis 2013).  422 

Finally, this study also highlights the potential of models that take into account 423 

detection probability and provides empirical evidence for their robustness and 424 

usefulness with volunteer-based projects and monitoring programs. Therefore, we 425 

recommend their use if temporal or spatial variation in the observational error is 426 

suspected to occur.  427 
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Fig 1. Observed (dots) and model derived predictions (lines) for (a) the detection 643 

probability in relation to years; (b) population growth rates (r) in relation to the 644 

Species Specialisation Index (SSI) for univoltine (black), bivoltine (yellow) and 645 

multivoltine species (blue). In both figures, nunivoltine = 30, nbivoltine = 11 and nmultivoltine 646 

= 25. Parameters were estimated using weighted estimates of the best models. 647 

Continuous lines relate to the estimated fit that sets all the other covariates as constant 648 

at their median value; dashed lines denote the 95% confidence intervals. 649 

 650 

Fig 2. (a) Violin plots for the seasonal coefficient of variation in the abundance of the 651 

butterfly species (CVW) in relation to their voltinism, grey shapes show the density 652 

distribution of the y-axis covariate, grey circles stand for the median, black bars for 653 

the quartiles Q1 and Q3; (b) observed data (dots) and model-derived predictions 654 

(lines) for the inter-annual variation (CVB) in relation to the Species Specialisation 655 

Index (SSI) for univoltine (black squares), bivoltine (yellow circles) and multivoltine 656 

species (blue triangles). In both figures, nunivoltine = 30, nbivoltine = 11 and nmultivoltine = 657 

25. Parameters were estimated using weighted estimates of the best models. 658 

Continuous lines relate to the transformed estimated fit setting all the other covariates 659 

as constant at their median value; dashed lines denote the 95% confidence intervals.  660 

  661 
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Table 1. Weighted parameter estimates of the effect sizes and the associated standard 662 

errors of the species traits retained in the best models for (a) population growth rates, 663 

(b) the seasonal (CVW) and (c) inter-annual (CVB) coefficients of variation in the 664 

abundance of the butterfly species. Models for CV were fitted to a Gamma 665 

distribution with an inverse link (i.e. estimates are produced with an inverted sign); 666 

estimates are expressed within this distribution. Significant p values are marked in 667 

italics.  668 

 669 

Parameter Estimate Std. Error t or z value p value 

(H0 = Estimate = 0) 

(a)     

Intercept: vol-univoltine 8e-4 9e-4 0.837 0.403 

vol-bivoltine 1e-4 6e-4 0.170 0.865 

vol-multivoltine -0.001 4e-4 2.163 0.031 

SSI -0.001 6e-4 2.304 0.021 

of-e -0.007 0.012 0.558 0.577 

wl 4e-4 1e-5 0.274 0.784 

(b)     

(Intercept): ls-1, ow-

immature, vol-univoltine 

6.003 0.457 13.127 <2e-16 

vol-bivoltine -1.585 0.399 -3.970 7e-5 

vol-multivoltine -1.769 0.325 -5.444 1e-7 

SSI -0.200 0.388 0.515 0.607 

ls-2 0.554 0.325 1.702 0.088 

ls-3 1.099 0.403 2.724 0.006 
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of-e 12.025 8.475 1.419 0.156 

ow-mature  -0.957 0.326 2.934 0.003 

ow-migratory 0.113 0.683 0.165 0.869 

random effect Variance Std.Dev. Residual Std.Dev. 

Species 0.380 0.617 0.436 0.660 

(c)     

Intercept: vol-univoltine 8.686 1.169 7.285 <2e-16 

vol-bivoltine -1.764 0.842 2.057 0.039 

vol-multivoltine -2.423 0.715 3.325 8e-4 

SSI -2.231 0.722 3.031 0.002 

of-e -16.843 17.755 0.939 0.348 

 670 
SSI: Species Specialisation Index; ls: larval trophic specialisation; of-e: open-forest 671 
estimate; wl: wing length; STI: Species Temperature Index; vol: voltinism; ow: 672 
overwintering stage 673 
 674 
 675 
 676 
 677 
 678 


