
Assessment of the representation of West 
African storm lifecycles in convection‐
permitting simulations 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Crook, J., Klein, C., Folwell, S., Taylor, C. M., Parker, D. J., 
Stratton, R. and Stein, T. ORCID: https://orcid.org/0000-0002-
9215-5397 (2019) Assessment of the representation of West 
African storm lifecycles in convection permitting simulations. ‐
Earth and Space Science, 6 (5). pp. 818-835. ISSN 2333-5084
doi: https://doi.org/10.1029/2018EA000491 Available at 
https://centaur.reading.ac.uk/83215/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1029/2018EA000491 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Assessment of the Representation of West African Storm
Lifecycles in Convection‐Permitting Simulations
Julia Crook1 , Cornelia Klein2 , Sonja Folwell2 , Christopher M. Taylor2 ,
Douglas J. Parker1 , Rachel Stratton3 , and Thorwald Stein4

1School of Earth and Environment, University of Leeds, Leeds, UK, 2Centre for Ecology and Hydrology, Wallingford, UK,
3Met Office, Exeter, UK, 4University of Reading, Reading, UK

Abstract Convection‐permitting models perform better at representing the diurnal cycle and the
intermittency of convective rainfall over land than parameterized‐convection models. However, most of
the previous model assessments have been from an Eulerian point of view, while key impacts of the rainfall
depend on a storm‐relative perspective of the system lifecycle. Here a storm‐tracking algorithm is used to
generate storm‐centered Lagrangian lifecycle statistics of precipitation over West Africa from regional
climatemodel simulations and observations. Two versions of theMet Office UnifiedModel with andwithout
convection parameterization at 4‐, 12‐, and 25‐km resolution were analyzed. In both of the
parameterized‐convection simulations, storm lifetimes are too short compared to observations, and storms
have no preferred propagation direction; the diurnal cycle of initiations and dissipations and the spatial
distribution of storms are also inaccurate. The storms in the convection‐permitting simulations have more
realistic diurnal cycles and lifetimes but are not as large as the largest observed storms. The
convection‐permitting model storms propagate in the correct direction, although not as fast as observed
storms, and they have a much improved spatial distribution. The rainfall rate of convection‐permitting
storms is likely too intense compared to observations. The improved representation of the statistics of
organized convective lifecycles shows that convection‐permitting models provide better simulation of a
number of aspects of high‐impact weather, which are critical to climate impacts in this important geographic
region, providing the high rainfall rates can be taken into account.

1. Introduction

Several operational forecast centers have been running their forecast models at high resolution, allowing
explicit convection, for a number of years (e.g., Baldauf et al., 2011; Lean et al., 2008). More recently, such
models have also been used to make projections of future changes in precipitation with climate change
(Ban et al., 2015; Kendon et al., 2017). Low‐resolution numerical weather prediction and climate models
cannot resolve deep convection explicitly, and their representation of convective precipitation is poor in
terms of the diurnal cycle and intermittent nature of rainfall; higher‐resolutionconvection‐permitting mod-
els tend to represent such precipitationmore accurately (Clark et al., 2016; Prein et al., 2015;Weusthoff et al.,
2010). Although regional climate models may give a better representation of rainfall than global climate
models due to higher resolution and therefore detail of surface type and orography, they still tend to have
too much persistent light rain and underestimate the number of dry days and high‐intensity events
(Kendon et al., 2012), unless a high enough resolution can be achieved to allow the convection parameter-
ization to be switched off. It has been shown that in West Africa the representation of convection (i.e.,con-
vection‐permitting versus parameterized convection) has a more profound impact on the outgoing longwave
radiation (Pearson et al., 2014) and rainfall (Marsham et al., 2013) than the improved resolution.
Convection‐permitting models also improve the coupling of the rainfall with other parts of the Earth system,
notably land surface heterogeneity (Klein et al., 2017; Maurer et al., 2017; Taylor et al., 2013), and as a con-
sequence can bring improvements when used to drive impacts models, such as crop prediction models
(Garcia‐Carreras et al., 2015).

Almost all of the assessments of convection‐permitting models have been from an Eulerian point of view.
Assessment of a model's ability to represent convective precipitation is performed by comparing
observations and models in a specific storm case study or by various longer‐term statistics such as diurnal
cycle, daily, monthly, seasonal means, dry spell, and wet spell statistics. However, convective processes
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are highly stochastic and in many circumstances it is unreasonable to expect a model to predict rain in
exactly the right place at the right time, in which case higher‐resolution models may not score well in tradi-
tional direct point to point comparisons. For these reasons, alternative evaluation methods have been devel-
oped, such as a wavelet approach, fraction skill scores, or comparing characteristics of rainfall objects (Clark
et al., 2016, and references therein; Weusthoff et al., 2010).

Although Eulerian evaluation of model rainfall may be technically relatively straightforward, the effect of
rainfall in terms of high‐impact weather and the feedbacks with other components of the Earth system also
depend on the storm lifecycle, in which case a Lagrangian approach (following each storm) is needed. For
example, the feedback of convective rainfall with the land surface, while still imperfectly understood, is
likely to be different depending on whether a storm is locally initiated or highly organized and propagating
into the domain from elsewhere (Hartley et al., 2016). Feedback of storms on the larger‐scale circulation also
depends on the storm lifecycle through the role of cold pool outflows (Birch et al., 2014, 2013; Garcia‐
Carreras et al., 2013; Marsham et al., 2013). Numerous studies have produced storm‐centered statistics
(i.e., from a Lagrangian point of view) for observed storms, for example, using IR imagery over West
Africa (Mathon & Laurent, 2001) and over the Americas (Machado et al., 1998), and using combined IR
and rainfall radar imagery over Africa and the tropical Atlantic (Futyan & Del Genio, 2007), and over the
Sahel (Goyens et al., 2011). Cloud cluster statistics (nontracked) have been produced from microwave satel-
lite imagery over the tropics (Mohr et al., 1999) and sub‐SaharanAfrica (Mohr, 2004). Recently, Yang et al.
(2017) compared lifetime, event mean precipitation and size distributions of storms tracked using brightness
temperature in both a convection‐permitting model and in satellite observations over the United States dur-
ing two summer periods. Reinares Martínez and Chaboureau (2018) compared brightness temperature‐
tracked storm properties in a convection‐permitting simulation and a parameterized‐convection simulation
with observations over a 6‐day period in June over Northern Africa. There are only a limited number of other
cases where storm‐centered statistics have been used in model‐observation comparisons (Caine et al., 2013;
Clark et al., 2014; Machado & Chaboureau, 2015; McBeath et al., 2014; Stein et al., 2014, 2015), and these
tend to be for a short period and use local radar data.

West Africa is one part of the world where the organization of storms is particularly critical to their dynamic
feedbacks and their socioeconomic impact (Parker & Diop‐Kane,2017). In the central Sahel, around 90% of
the summer rainfall comes from organized, propagatingmesoscale convective systems (MCSs), often defined
as convective cloud clusters larger than 5,000 km2, while in other parts of the region, isolated and shorter‐
lived systems provide a greater contribution (Mathon et al., 2002; Mohr et al., 1999). In this study,
storm‐centered statistics of MCSs over West Africa for the summer months were generated for
convection‐permitting model simulations, parameterized‐convectionmodel simulations, and satellite obser-
vations. MCS contributions to rainfall, spatial distribution of different MCS types, storm diurnal cycles,
storm development and size, intensity, and propagation speed and direction distributions were compared.
In the past, observational studies tracking MCSs used IR satellite products because these were available at
a high enough temporal frequency and quality unlike rainfall satellite products, and because cold cloud is
usually associated with heavy precipitation. The geostationary nature of IR products makes for robust track-
ing but does not indicate the position and area of the heavy rainfall or how that moves and develops. With
the availability of high temporal resolution quality rainfall products, rainfall tracking becomes a possibility.
It is rainfall that has the greater impact on human society; therefore, this paper concentrates on rainfall‐
tracked storm statistics. The statistics for cold‐cloud‐tracked storms (presented in the supporting informa-
tion) were also calculated to compare with previous observational studies and because some future analyses
of the simulation data will use the cold‐cloud tracking. In many cases the statistics of the two types of track-
ing show similar results. Two recent versions of the UKMet Office Unified Model were assessed. This model
is widely used in both weather forecasting and climate prediction and is being used by a large community
of people for climate impact studies, for example, Future Climate For Africa (Stratton et al., 2018),
PRIMAVERA (https://www.primavera‐h2020.eu/about/), Climate Science for Service Partnership‐China
(https://www.metoffice.gov.uk/research/collaboration/cssp‐china), and Climate Science for Service
Partnership‐Brazil (https://www.metoffice.gov.uk/research/collaboration/newton/cssp‐brazil) projects.
The results of this study provide insight on the deficiencies in how the model represents the lifecycle of
MCSs and should aid both future model development and the confidence with which we can use model rain-
fall to drive impacts models for hydrological and agricultural applications. Importantly, many of the
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differences in Eulerian statistics of precipitation between convection‐
permitting and parameterized‐convection configurations are generic
across models (Prein et al., 2015). Therefore, conclusions from this study
are likely to be applicable to other models. Section 2 describes the models
and observations used, section 3 describes the storm tracking algorithm
applied, and section 4 presents the results. A summary of the findings
and the key conclusions are presented in section 5.

2. Models and Observations

A storm‐tracking algorithm (section 3) was employed to identify and track
storms based on rainfall outputs from model simulations and satellite
rainfall observations. Tracking was also performed on top of atmosphere
outgoing longwave radiation (OLR) outputs from model simulations
and satellite infrared brightness temperatures (TB). This section describes
the two different UK Met Office models and their simulations and the

satellite data sets used. Note that high temporal resolution data (<= hourly) are required to perform storm
tracking of MCS so that a storm does not move too much between time steps and therefore the clusters in
consecutive images that are part of the same storm overlap sufficiently for the tracking algorithm to recog-
nize such clusters to be the same storm. Ideally, all data should be on the same horizontal grid and at the
same temporal resolution for the best comparison so that differences can be attributed to the model's ability
to represent convection rather than differences in spatial or temporal resolution used for tracking. Different
spatial and temporal resolution will clearly give different rainfall intensity distributions. Where possible,
data were regridded to a consistent horizontal grid. The simulation and satellite data used for tracking are
summarized in Table 1.

2.1. Models

Within the Vegetation Effects on Rainfall in West Africa (VERA) project, simulations using the UK Met
Office atmosphere‐only UnifiedModel (UM v8.2) were run for a single season (April through July 2014) over
the West Africa domain (approximately 20°W–20°E,0°N–25°N) at 4‐ and 12‐km resolutions. The model uses
a semi‐implicit, semi‐Lagrangian numerical nonhydrostatic, deep atmosphere dynamics scheme (Davies
et al., 2005) and includes a comprehensive set of parameterizations describing the land surface (JULES;
Best et al., 2011; Clark et al., 2011), boundary layer (Lock et al., 2000), convection (Gregory & Rowntree,
1990) with closure based on the convective available potential energy, and cloud microphysics (Wilson &
Ballard, 1999). The model has 70 model levels, which equates to an 80 km top for 12‐km resolution and
40 km top for 4‐km resolution. The soil properties were set to sandy soil type over the whole domain and
the bare soil emissivity set to 0.9, closely matching observations in this region (Ogawa & Schmugge, 2004;
Vogel et al., 2011; Zhou et al., 2011). The vegetation fractions were set to current vegetation based on the
European Space Agency CCI land cover data set v1.4 for the 2008–2012 epoch (Poulter et al., 2015). Sea sur-
face temperatures and boundary conditions were prescribed from ERA‐Interim data (Dee et al., 2011) every
6 hr. The initial soil moisture climatology was determined by running the land surface model JULES offline,
forced with the WATCH Forcing Data‐ERA‐Interim data (Weedon et al., 2014) for 1979–2014 and with the
current vegetation fractions, and producing a climatology from the 2000–2014 output. Simulations were per-
formed at 12‐km resolution using the parameterized convection scheme (hereafter referred to as V_P12);
another 12‐km simulation (hereafter referred to as V_CP12) and a 4‐km simulation (hereafter referred to
as V_CP4) were run with the parameterization scheme switched on but severely restricting its effect by
adjusting the relaxation time, and subgrid 3‐D Smagorinsky‐typemixing employed, allowing explicit convec-
tion. The only difference between V_CP12 and V_P12 is therefore the convection parameterization. In these
simulations, tracking was performed on instantaneous rain rate and OLR, output at 15‐min intervals.
Statistics were produced for June and July having first regridded the 4‐km data to the V_CP12 grid before
storm tracking was performed. Although these simulations are for only one season, all simulation data used
for tracking were at the same temporal and spatial resolution, making the statistics easier to compare.

Within the Future Climate For Africa Improving Model Processes for African cLimAte project, simulations
using the UM Met Office regional model (v10.3) were run for 10 current climate years over the whole of

Table 1
Summary of Data Used for Storm Tracking

Time
period

Horizontal
grid

Temporal resolution

Rainfall OLR/TB

CMORPH JJ 2014 V_CP12 30 min N/A
JJA 4 years I_CP4 12 km

SEVIRI JJ 2014 V_CP12 N/A 30 min
V_CP4 JJ 2014 V_CP12 15 min 15 min

instantaneous instantaneous
V_CP12 JJ 2014 V_CP12 15 min 15 min

instantaneous instantaneous
V_P12 JJ 2014 V_CP12 15 min 15 min

instantaneous instantaneous
I_CP4 JJA 4 years I_CP4 12 km 15‐min mean hourly mean
I_P25 JJA 4 years I_P25 hourly mean hourly mean
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Africa at 4.5‐ and 25‐km resolutions. The simulations are described in detail in Stratton et al. (2018). At the
time of analysis 5 years of current data were available. The ~4.5‐km convection‐permitting simulation is
hereafter referred to as I_CP4. The ~25‐km regional model is hereafter referred to as I_P25. Soil properties
were set to sandy soil type across the domain for I_CP4, but by mistake the I_P25 simulation was left with
the standard UM soil‐type configuration. This affects a number of soil properties. Maps of these properties
for the standard UM soil and for sandy soil are shown in supporting information Figure S1. Vegetation frac-
tions were very similar to that used for VERA simulations. The I_CP4 simulations output 15‐min mean rain
rate and hourly mean OLR; the I_P25 simulations output hourly mean rain rate and OLR. I_CP4 data were
regridded to an ~12‐km grid before storm tracking was performed, but for I_P25 the tracking was performed
on the ~25‐km grid. Statistics for four different years (June, July, and August) between 1997 and 2004 were
produced, providing a better climatology than the single season for the VERA simulations. However, when
comparing statistics of storms, the different spatial and temporal resolutions of the data used for tracking
must be taken into account and differences between convection‐permitting and parameterized‐convection
simulations may not be just due to the convection parameterization.

2.2. Observations

For comparison with simulated rainfall the bias‐corrected CMORPH 8‐km30‐min data set (Xie et al., 2017)
was used. This product combines low‐orbiting satellite passive microwave observations with geostationary
satellite infrared observations to track precipitation features and fill in the gaps when the microwave obser-
vations are not available (Joyce et al., 2004). If a precipitation feature is visible in one passive microwave sen-
sor scan but not in the next available passivemicrowave sensor scan, the geostationary data cannot be used to
interpolate the precipitation associated with that feature beyond the last time the feature was seen in the pas-
sive microwave sensor scan. This means storm lifetimes may be found to be lower than they truly are. This
will affect the timing of initiations and dissipations to some extent and the timing of when maximum size
and intensity are reached. The raw CMORPH data are also bias corrected through probability density func-
tion matching against the Climate Prediction Center (CPC) daily gauge analysis over land. Due to the lack of
long‐term ground station data over Africa, it is difficult to assess the accuracy of CMORPH in this region.
However, Berthou et al. (2019) show that although CMORPH has generally slightly lower 3‐hourly rain rates
on a 0.25° grid than the commonly used TRMM 3B42RT product in this region during the monsoon season,
and is particularly low over the Guinea Highlands, CMORPH rain rate distributions compare well with
AMMA‐CATCH rain gauge 3‐hourly data sets in Mali, Niger, and Benin. Four years of data for June, July,
and August between 2002 and 2006 were regridded to the I_CP4 12‐km grid before tracking was performed.
June and July 2014 data were regridded to the V_CP12 grid before storm tracking was performed.

The Tropical Rainfall Measuring Mission (TRMM) radar product 2A25 (NASA, https://pmm.nasa.gov/) for
June and July 2004–2014 was used to compare rainfall cluster statistics but cannot be used for tracking.
TRMM has two to four overpasses a day over West Africa at ~5‐km resolution, providing more accurate
(no gap filling), albeit infrequent 247‐km‐wide snapshots of varying north‐south extent. Although the cor-
rection algorithms employed have been improved in the most recent version of this product, it is likely that
rain rates >10 mm/hr are still underestimated (Kirtsetter et al., 2013).

The Meteosat Second Generation (10.8‐μm channel) SEVIRI brightness temperature (TB; Schmetz et al.,
2002) at 30‐min time resolution and 5‐km spatial resolution was used to compare with the storm tracking
from modeled OLR. To convert modeled OLR to a brightness temperature for comparison with SEVIRI,
the Stefan Boltzmann equation was used:

OLR ¼ σTB
4 (1)

SEVIRI data for June and July 2014 were regridded to the V_CP12 grid before storm tracking was performed.
The advantage of using SEVIRI data is that it is ideal for tracking because it is subhourly geostationary data.

3. Storm Tracking

A storm‐tracking algorithm (Stein et al., 2014) was employed to identify storms based on rainfall or OLR/TB,
which are tracked in time using an area overlap criterion. At each time step, clusters are identified as con-
tiguous grid cells meeting a certain threshold. For rainfall a threshold of >1 mm/hr was used; for
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modeled OLR a threshold of <167 W/m2, equivalent to a SEVIRI TB of
<233 K (−40 °C) using equation (1), was used. These are commonly
adopted thresholds for identifying storms in West Africa (Goyens et al.,
2011; Taylor et al., 2013). Here the term cluster is defined as contiguous
grid cells that meet the threshold at a particular time step, whereas a
storm is defined as clusters that propagate over a number of time steps
and therefore have a lifecycle from initiation to dissipation. A cluster
may be a single grid cell. Between consecutive images, clusters may propa-
gate. A velocity field calculated by cross correlation of images at time ti
and ti‐1 is used to advect the clusters at time ti‐1 before areal overlap with
the clusters at time ti is determined. A cluster at time ti is deemed to be the
same storm as a cluster at time ti‐1 if the fractional overlap of the clusters is
greater than 0.6. When a cluster at time ti does not overlap with any pre-
existing clusters, it is considered to be a newly initiated storm. When a
cluster (named as storm X) at time ti‐1 does not overlap with any clusters
at time ti, storm X ceases to exist and is said to have dissipated. If more
than one cluster at time ti overlaps sufficiently with one cluster (named
as storm X) at time ti‐1, the cluster with the largest overlap keeps the storm
ID X, while the other clusters are said to have split off from storm X form-
ing new storms (split initiations). When a cluster at time ti overlaps suffi-
ciently with more than one cluster at time ti‐1, the storms identified by
these clusters at time ti‐1 are defined as mergers. The cluster at time ti

takes the storm ID of the cluster at time ti‐1 with the largest overlap. At each time step the storm‐tracking
algorithm saves for each storm the area of the cluster, the minimum, mean, and maximum rain rate or
OLR/TB over the cluster, the center point of the cluster and the location of the box outlining the cluster.

Hereafter, an MCS is defined as a storm that reaches a size of at least 1,000 km2 for rainfall and at least
5,000 km2 for OLR/TB at some point in its lifetime. These are commonly adopted size definitions (Goyens
et al., 2011; Taylor et al., 2013). Rainfall clusters are generally smaller than cold cloud clusters, and under
a cold cloud cluster there is likely to be more than one rainfall cluster. Therefore, the size definitions for
MCS are different for rainfall and cold cloud. The statistics presented are for MCSs over the land within
the region 16.5 W–17.5°E, 4.0°N–20.0°N. Figure 1 shows the domain used and example storm tracks from
tracking of rainfall from the V_CP12 simulation. The equivalent plot for tracking of OLR is in supporting
information Figure S2. Using the given thresholds for rainfall tracking, about 80% of the rainfall MCSs for
both CMORPH and V_CP12 had associated cold cloud and therefore this definition of a rainfall MCS is lar-
gely consistent with that of a cold cloud MCS.

4. Results
4.1. Number of Storms/Clusters

In this section, the model simulations are assessed for how well they produce the correct number of storms,
proportion of MCSs, and the contribution of MCS rainfall to the total rainfall.

Although the percentage of CMORPH storms that reach MCS size at some point during their life cycle is
22%, MCS‐sized CMORPH clusters make up 40% of all cluster occurrences due to MCSs living longer than
small storms (Table 2) and contribute more than 90% to total rainfall, underlining the importance of
MCSs in this region. It has previously been shown that MCSs account for ~90% of the rainfall in the central
Sahel (Mathon et al., 2002) and ~78% in sub‐SaharanAfrica (Mohr et al., 1999). The V_P12 simulation has
the worst performance with almost 30 times more storms than CMORPH. Due to a large number of small
storms, V_P12 exhibits a lower percentage of MCS‐sized storms and clusters, although the total number of
MCSs exceeds that of all other simulations and observations. The I_P25 simulation is the only simulation
at 25 km, a resolution at which only two contiguous grid cells is required to meet the MCS criterion
(12‐km data require seven). Therefore, small storms cannot be resolved and the percentage of MCS storms
is much greater than for any other simulation. Convection‐permitting simulations (V_CP4, V_CP12, and
I_CP4) overestimate the number of storms but show a proportion of MCS‐sized clusters and storms

Figure 1. A snapshot of thresholded rainfall rate from the V_CP12 simula-
tion with the tracks of MCS storms existing at that time. Magenta triangles
show the initiation points, magenta lines show the tracks for times before
and after this snapshot, and blue shading shows the thresholded rainfall
rate. The black box outlines the area in which MCS were analyzed over land
for the statistics.
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considerably closer to CMORPH than V_P12. Interestingly, both these measures are best captured by
V_CP12 in spite of the low resolution, which allows only a coarse representation of convective circulation.
The total number of storms is dependent on the resolution of the data (e.g., comparing tracking at 4 km
with tracking after regridding to 12 km) but the number of MCSs is very similar. Therefore, this study
concentrates on statistics of MCS.

The contribution to total rainfall accumulation from MCS is similar to CMORPH in percentage terms for
V_CP4 and V_CP12, although the seasonal mean total accumulations for these simulations are considerably
higher (1.8 and 2.2 × higher) than for CMORPH. The V_P12 simulation has a relatively low percentage MCS
contribution (54%) to rainfall, although the seasonal mean total accumulation is slightly higher (1.26 ×) than
CMORPH. The I_CP4 simulation also has a notably lower contribution to total rainfall from MCSs than
observations and other convection‐permitting simulations, although it has a higher (1.4 ×) seasonal mean
total accumulation than CMORPH.

4.2. Diurnal Cycle and Lifetime

The time of day at which rainfall peaks does not affect daily means but does affect the feedbacks on the
energy balance and water cycle (Birch et al., 2014; Marsham et al., 2013). In this section the simulations
are assessed for their ability to initiate and dissipate storms at the correct time of day. The difference between
dissipation time and initiation time gives the lifetime of a storm. Note that stormsmay initiate by splitting off
another storm or by being spontaneously generated and may dissipate by merging into another storm or by
spontaneously disappearing. In line with many previous studies (e.g., Marsham et al., 2013), parameterized‐
convection simulations (V_P12 and I_P25) exhibit a different rainfall‐tracked storm diurnal cycle for MCSs
over land to convection‐permitting simulations (V_CP4, V_CP12, and I_CP4) and observations, with initia-
tions and dissipations happening earlier in the day (Figures 2a and 2b). CMORPH initiations occur over a
much broader time period than simulated initiations but peak at 16:00. V_CP4 and V_CP12 initiations also
peak at 16:00, whereas V_P12 initiations peak at 14:00. The I_CP4 initiations peak at 15:00; this peak is at the
same time as I_P25 initiations, but the curve is mostly shifted later in the day for I_CP4 by about 1 hr com-
pared to I_P25.

An important failing of many models with parametrized convection is the inability to maintain nocturnal
deep convection over land. In Figure 2a it can be seen that V_P12 has too few storm initiations overnight
relative to CMORPH, while all the other simulations, including the convection‐permitting simulations
and I_P25, have frequencies of initiation much closer to CMORPH. Given the number of differences
between I_P25 and V_P12, including completely different dynamics, it is difficult to explain what causes
I_P25 to behave better.

The differences in dissipation times (Figure 2b) between parameterized‐convection and convection‐
permitting simulations are greater than the differences in initiation times. I_CP4 dissipations peak at
18:00, V_CP4 and CMORPH dissipations peak at 20:00, and V_CP12 dissipations peak at 22:00; the
parameterized‐convection simulations (V_P12 and I_P25) peak much earlier at 15:00–16:00, consistent with
many of the storms initiated during the day being very short‐lived. In V_P12 and I_P25 there are many fewer

Table 2
Numbers and Percentages of Storms and Clusters Over Land Based On Rainfall

Storm statistics Cluster statistics
Seasonal

mean rainfall
accumulation

(mm)

Number
of storms
per month

Number of storms that
reach MCS size
per month (%)

Percentage
of clusters >
MCS size(%)

Percentage of
accumulated rainfall

from clusters > MCS size(%)

CMORPH 12,715 2,858 (22%) 40 96 167 (JJ)
323 (JJA)

V_CP4 39,966 5,430 (14%) 27 91 297
V_CP12 15,455 3,652 (24%) 46 97 368
V_P12 366,277 35,649 (10%) 10 54 210
I_CP4 46,680 6,539 (14%) 20 70 442
I_P25 13,065 10,789 (83%) 85 99 376
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dissipations in the evening and overnight compared to CMORPH and
other simulations, showing that convection does not persist into the night
for parameterized‐convection models but does for convection‐permitting
models. The stochastic perturbations added in the boundary layer in
I_CP4 enhance the triggering of convection (Stratton et al., 2018) and will
affect the timing of initiations. This may be the reason I_CP4
initiations/dissipations occur earlier than V_CP4 and V_CP12
initiations/dissipations.

The resolution of diagnostics may influence the initiation and dissipation
distributions of Figure 2. The tracking of I_P25 precipitation was at 25 km
and hourly resolution, whereas other simulations were tracked at 12‐km
and 15‐min resolution. At a lower spatial resolution, where mean rainfall
rates over a grid box are often smaller, one might expect that a storm
would not be detected so soon after true initiation and would no longer
be detectable sooner than true dissipation time; that is, measured initia-
tion time would be later and measured dissipation time would be earlier
than at higher resolution. It is less clear what the impact of lower time
resolution would be. However, a comparison of initiation times, dissipa-
tion times, and lifetimes from tracking of hourly means compared to
15 min means showed little difference in I_CP4 (not shown).

MCSs in parameterized‐convection simulations (V_P12 and I_P25) have
shorter lifetimes (Figure 2c) than those in convection‐permitting simula-
tions (V_CP4, V_CP12, and I_CP4) and observations. In V_P12 and
I_P25 the number of storms drops off very rapidly for lifetimes >2 hr
and it is very rare (<~0.2%) for a storm to live more than 10 hr. In
V_CP4, V_CP12, I_CP4, and CMORPH a significant number of storms
(>2%) can live for 10 hr. Lifetimes can occasionally reach 20 hr for
I_CP4 and CMORPH, 25 hr for V_CP4, and ~40 hr for V_CP12.

The diurnal cycle of storms as measured by OLR/TB also shows initiations
and dissipations happening earlier in the day for parameterized‐
convection simulations than convection‐permitting simulations, (sup-
porting information Figures S3a and S3b). The diurnal cycle of initiations
and dissipations for SEVIRI (peaking at 16:00 and 21:00, respectively) is
very similar to that found by Mathon and Laurent (2001) from an 8‐year
climatology of TB over the Sahel. Lifetimes measured with SEVIRI and
CMORPH are similar, likely due to the fact that the CMORPH product
uses SEVIRI data to fill in the gaps in time and space when the microwave
data are not available, although SEVIRI displays a slight peak at 2–3 hr
and has a higher percentage of storms with lifetimes in excess of 10 hr sug-
gesting the cold cloud of an MCS may outlive its rainfall. They are also
very similar to the Sahelian lifetime distributions measured by Mathon
and Laurent (2001), although they found around 0.01% of storms had life-
times of about 60 hr from an 8‐year climatology of TB. Yang et al. (2017)
also found that storms in their convection‐permitting model had slightly
longer lifetimes than in observations over the United States. Reinarez
Martínez and Chaboureau (2018) also found improvements in the diurnal
cycle of brightness‐temperature‐tracked storms over West Africa in their
convection‐permitting simulation compared to their parametrized‐
convection simulation despite their short analysis period.

In summary, convection‐permitting simulations show an improvement in
diurnal cycles compared to parameterized‐convection simulations with
initiation and dissipations happening later in the day in convection‐

Figure 2. Diurnal cycle of (a) initiations and (b) dissipations to the nearest
hour of the day (UTC) for MCS over land. (c) Lifetime distributions,
binned in hourly bins for MCS over land. Points marked with an x show
values that could not be drawn with a continuous line because adjacent bins
have values that fall below 0.01%.
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permitting simulations. Parameterized‐convection lifetimes are too short compared to observations and
convection‐permitting simulations have improved lifetimes, but the V_CP12 simulation lifetimes were up
to ~15 hr too long.

4.3. Development of MCSs

In this section, simulations are assessed for how MCS storms develop over their lifetime compared to
observed MCSs. Figure 3a shows the time since initiation when spontaneously initiated MCSs first reach
MCS size. Note that one might expect that split‐initiated storms would be largest near the beginning of their
life and then decay unlike spontaneously initiated storms, so those are not included here. For CMORPH the
peak in this time occurs at 1 hr but 5% of the MCSs take at least 3 hr. For convection‐permitting simulations
(V_CP4, V_CP12, and I_CP4) storms take longer to reach MCS size than CMORPH (peaking at 1–2 hr and
with ~5% taking 4 hr). For V_P12 the behavior is more similar to CMORPH, although times are slightly
shorter. I_P25 storms reachMCS size more quickly than CMORPH. This is partly due to the lower resolution
of I_P25 where only two grid cells are needed to reach MCS size.

The peak in the time at which spontaneously initiated MCS storms become smaller than MCS size occurs at
1 hr for CMORPH but a significant number (>5%) take 7–8 hr; Figure 3b). This time is slightly longer for
convection‐permitting simulations (V_CP4, V_CP12, and I_CP4), where percentages of storms peak at 3–
4 hr and decay at a similar rate to CMORPH. The percentage of storms decays rapidly for V_P12 and
I_P25 after 1 hr.

Figure 3c shows the time since initiation to reach maximum area for spontaneously initiated MCSs. The
maximum area is reached very quickly for V_P12 and I_P25 (peak within 1 hr and decaying to 5% by 2–
3 hr). For CMORPH the peak is also at 1 hr but about 5% of the MCSs take 6 hr to reach maximum size.

Figure 3. Distributions of time since initiation when (a) spontaneously initiated storms reached MCS size, (b) sponta-
neously initiated storms were no longer of MCS size, (c) spontaneously initiated storms reached maximum size, and (d)
spontaneously initiated storms reached maximum cluster‐mean intensity.
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For convection‐permitting simulations (V_CP4, V_CP12, and I_CP4), the peak is at 2–4 hr with ~5% taking
up to about 8 hr. I_CP4 most closely matches CMORPH.

The time since initiation when the maximum intensity (maximum of cluster‐mean rain rate over lifetime) is
reached for spontaneously initiated MCS storms (Figure 3d) peaks in the first hour in V_P12, peaks imme-
diately in I_P25, and drops off rapidly within the first 3 hr for both V_P12 and I_P25. For CMORPH the peak
is also in the first hour but a significant number of storms (~4%) take 6 hr. For V_CP4 and V_CP12 the peak
is at 2 hr with a significant number (>2%) taking 8 hr. I_CP4 peaks in the first hour but has a narrower band
of maximum intensity times than CMORPH.

Differences between all simulations and CMORPH are partly due to the different time resolution of the
tracking. When tracked at 15 min, I_CP4 has no storms that initiate at MCS or maximum size or maximum
intensity, whereas when tracked hourly, between 20%–30% of storms initiate at MCS or maximum size and
maximum intensity and the histograms are shifted to the left by about an hour (not shown). All the MCS size
development histograms for hourly tracking of I_CP4 are much closer to those for CMORPH than I_CP4
tracked at 15 min. V_P12 is also tracked at 15‐min resolution yet does have around 40% of storms initiating
at MCS or maximum size and maximum intensity showing that storms in parameterized‐convection simula-
tions do develop more quickly than in convection‐permitting simulations. It is possible that some storms in
CMORPH are not seen when they first exist due to microwave scans not being available at that time (see
section 2.2). It is also possible that because intensities in CMORPH are generally a bit lower than in
convection‐permitting simulations, when a storm first initiates, its intensity is below the threshold and so
is not seen in the tracking algorithmmaking development times shorter. However, storm development time
distributions for storms tracked using OLR/TB (supporting information Figure S4) are very similar for
SEVIRI and CMORPH and there are similar differences between simulations and observations. The time
to reach minimum TB for SEVIRI is shorter than the time to reach maximum rain rate for CMORPH; this
is most clearly seen in the tail of the distributions.

In summary, due to the different time resolution of the simulations and observations, it is difficult to reach
firm conclusions about which simulations better represent observedMCS development times in terms of size
and intensity, although it is likely that storms in parameterized‐convection simulations develop too quickly
and the tails of the distributions are too short. MCSs develop in terms of size and intensity more slowly in
convection‐permitting simulations than in parameterized‐convection simulations.

4.4. Size

In this section simulations are assessed for how well they represent the distribution of storm sizes. Both the
mean storm equivalent radius and the cluster area distributions for MCS storms (Figures 4a and 4c) show
that CMORPH has storms that become considerably larger than all simulations except for I_P25. The max-
imum storm area distributions (Figure 4b) present similar behavior, although V_CP12 performs better, sug-
gesting that V_CP12 storms may reach large sizes but do not stay very large for as long as observed storms.
The peak in the mean radius for CMORPH occurs at ~20 km, is slightly less (~13–16 km) for V_CP4,
V_CP12, V_P12, and I_CP4, but with the V_P12 curve shifted the most to smaller radii. Due to the lower
resolution of I_P25, the smallest clusters are not seen and therefore the distribution is shifted to larger sizes.
Under synoptic control the parameterized convection can cause precipitation in lots of grid cells indepen-
dently so that, although the storms are not organized as they are in convection‐permitting simulations, con-
tiguous areas of precipitating grid cells can still be large. Area distributions based on clusters (Figures 4c and
4d) also includes data from the TRMM radar, which is in good agreement with CMORPH. One would not
necessarily expect the TRMM radar to show such big storms as CMORPH because the radar has a swath
width of 247 km and for some storms the full E‐W width may not be seen. However, as shown in Figure 4
a, the CMORPHmean equivalent radius is usually below 100 km. Figure 4d suggests that a larger percentage
of the rainfall comes from very large storms in both CMORPH and TRMM radar than all simulations except
I_P25. When tracking with OLR/TB, size distributions are more similar between simulations and observa-
tions (supporting information Figure S5), although V_P12 still has the smallest peak mean effective radius
and storm clusters can reach much larger areas for observations than in any simulation except I_P25.
Yang et al. (2017) also found that their convection‐permitting model underestimated storm areas compared
to observations over the United States and Reinarez Martínez and Chaboureau (2018) also found improve-
ments in the size of brightness‐temperature‐tracked storms over West Africa in their convection‐permitting
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simulations compared to their parametrized‐convection simulation. The peak in mean equivalent radius for
SEVIRI was found to be ~35 km with 0.01% of storms having a mean equivalent radius of ~110 km. This is a
little smaller than that found from the 8‐year climatology of Sahelian TB of Mathon and Laurent (2001) who
found a peak at ~40 km and 0.01% of storms at 300 km. In this study, 90% of SEVIRI clusters have an equiva-
lent radius less than 126 km and 90% of CMORPH clusters have an equivalent radius less than ~69 km. This
is larger than the <40‐km equivalent radius found for 90% of sub‐Saharan MCS cloud clusters determined
from a single season of 85‐GHz ice scattering data (Mohr et al., 1999).

In summary, with the exception of I_P25, simulated storms are too small compared to observations, and the
largest simulated storms contribute too little to rainfall. The V_CP4 and V_CP12 simulations show some
improvement in size distributions over the V_P12 simulation.

4.5. Intensity

In this section simulations are assessed for how well they represent the distribution of storm rainfall inten-
sities. The distributions of the maximum of the cluster‐mean rain rate reached during the lifetime of MCS
storms is shown in Figure 5a. V_CP4 and V_CP12 show very similar distributions with a broad peak from
5 to 18 mm/hr. The distribution for CMORPH is much narrower and more similar to that for
parameterized‐convection simulations (V_P12 and I_P25), peaking around 5 mm/hr. Maximum intensity
in I_CP4 peaks around 5 mm/hr, but the distribution has a very long tail reaching to 140 mm/hr; this occurs
despite the inclusion of conservation of moisture, which has reduced very high precipitation rates in I_CP4
(see Stratton et al., 2018). Parameterized‐convection simulations (V_P12 and I_P25) also more closely match
CMORPH in the cluster distribution of mean intensities in terms of cluster number and contribution to total
rainfall (Figures 5b and 5c), with V_CP4, V_CP12, and I_CP4 having too high mean intensities. Figures 5b

Figure 4. (a) Mean equivalent storm radius distributions binned every 2 km, (b) maximum storm area distributions binned every 1,000 km2, and area distributions
binned every 1,000 km2 for (c) number of clusters and (d) contribution to total rainfall. Points marked with an x show values that could not be drawn with a
continuous line because adjacent bins have values that fall below 0.01%.
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and 5c also include data from the TRMM radar. The TRMM radar data
have slightly higher intensities than CMORPH (peak shifting from
4 mm/hr for CMORPH to 6–7 mm/hr for TRMM), suggesting that
CMORPH may underestimate intensity, but the TRMM intensity is still
not as high as that in convection‐permitting simulations. It should be
noted that the I_P25 simulation used hourly mean precipitation, which
one would expect to have lower values than 15‐min mean or
instantaneous values.

In summary, the convection‐permitting simulations are producing rain
events that are too intense and parameterized‐convection simulations
better match the rain rate intensity distributions. Although convection‐
permitting simulations better represent cloud top temperature distribu-
tions compared to parameterized‐convection simulations (see supporting
information Figure S6), their coldest cloud shields are not quite cold
enough (~5 K too warm).

4.6. Propagation

In this section simulations are assessed for how well they represent the
propagation of storms, in terms of speed and direction. Convective
cloud clusters have previously been found to propagate westward over
the Sahel at 8–12 m/s (Mathon & Laurent, 2001). Mean propagation
speed was determined from distance traveled over the whole life of
the storm divided by its lifetime. The distance traveled was determined
from the center of the storm at the end of life and start of life. The peak
in mean propagation speed for MCSs in convection‐permitting simula-
tions (V_CP4, V_CP12, and I_CP4) is about 4 m/s, whereas in
CMORPH it is about 8 m/s (Figure 6a). Propagation speeds in
parameterized‐convection simulations (V_P12 and I_P25) are more
scattered, because storms are often not really propagating but appear
for one time step and are replaced by a new storm at a neighboring
location, which the algorithm interprets as an effective propagation. A
large percentage of storms in I_P25 have zero speed. MCSs tend to pro-
pagate in a westward direction in CMORPH, V_CP4, V_CP12, and
I_CP4, whereas for V_P12 and I_P25 there is no preferred direction
of propagation (Figure 6b). For storms tracked using SEVIRI TB the
peak propagation speed (7–8 m/s) was found to be at the lower end
of that found by Mathon & Laurent, (2001) for Sahelian storms (see
supporting information Figure S7). Convection‐permitting simulations
were found to match SEVIRI well in terms of propagation of cold cloud
features unlike parameterized‐convection simulations. Reinarez
Martínez and Chaboureau (2018) also found improvements in the
propagation of brightness‐temperature‐tracked storms over West
Africa in their convection‐permitting simulations compared to their
parametrized‐convection simulation.

In summary, convection‐permitting simulations propagate their cold
cloud features at a similar rate and direction to observations, consistent
with the model generating organized convective dynamics with some
resemblance to reality. However, the convection‐permitting simulations
propagate their precipitation features about half the speed of observed
precipitation features. In contrast, propagation is very poorly handled in
the parameterized‐convection simulations, which do not propagate their
precipitation features in a westward preferred direction, since their con-
vective activity is not coherently organized.

Figure 5. (a) Maximum storm intensity distributions for MCS over land,
binned every 2 mm/hr, and intensity distributions binned every 2 mm/hr
for (b) number of clusters and (c) contribution to total rainfall. Points
marked with an x show values that could not be drawn with a continuous
line because adjacent bins have values that fall below 0.01%.
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4.7. Spatial Distribution of Different MCS Types

Different MCS types (e.g., fast or slow moving; short or long lived) have
different climatological distributions across West Africa according to the
prevailing thermodynamic conditions and wind profiles. Their distribu-
tions are important to the climatological patterns of rainfall across the
continent and to the response of the rainfall to synoptic controls, for
instance, propagation of storms downstream of preferred initiation zones
such as mountains can be critical to water resources of those
downstream regions.

Studies using tracking of Meteosat infrared brightness temperatures in
West Africa have found that long‐lived (>24 hr) MCSs tend to initiate
farther north than shorter‐lived MCSs and the fastest‐moving MCSs tend
to initiate in the central Sahel around 12°N (Mathon & Laurent, 2001).
Bennartz and Schroeder (2011) showed that although most MCSs initiate
south of the climatological African Easterly Jet (AEJ), there is a south to
north gradient in lifetime and speed with the longest‐living and fastest‐
moving MCSs tending to initiate close to or even north of the AEJ.
Lafore et al. (2017) examined the locations of MCSs classified into four dif-
ferent types—short‐lived slow storms (C1), long‐lived slow storms (C2),
short‐lived fast storms (C3), and long‐lived fast storms (C4) and also found
that these C4 MCS tend to occur further inland than other types. In this
study, the locations of different types of storms were assessed using these
same C1 to C4 classifications. Short‐lived storms are defined here as hav-
ing a lifetime of <9 hr to distinguish between those storms that do/do not
persist through the night, and slow storms are defined here as having a
propagation speed of <8 m/s. Note that this speed threshold is lower than
that in Lafore et al. (2017) (10 m/s) because propagation speeds deter-
mined in this study are somewhat lower than previously found (see sec-
tion 4f). Spatial distribution maps for the four JJA seasons for
CMORPH, I_CP4, and I_P25 are shown in Figures 7 (track density defined
as the count of all events in each grid box normalized by the number of
months analyzed and the time step used in tracking) and 8 (rainfall con-
tribution by type defined as the rainfall accumulation from the MCS type
divided by the total rainfall accumulation for all MCS types in a grid box).
Spatial distribution maps for June–July 2014 for CMORPH, V_CP4,
V_CP12, and V_P12 are in supporting information Figures S8 and S9.

The position of the AEJ shown by crosses in these figures was determined from the meridional maximum
in the 650‐hPa easterly wind (simulated in the given model or taken from ERA‐Interim for the
observed storms).

Considering the distribution of storms across classes, C1 storms are the most frequent type (~60%), and C4
storms are the least frequent type (3%) for CMORPH as has been previously found in observations (Lafore
et al., 2017). This is also true for all simulations (~70% C1, up to 1% C4) except V_P12, which has 38% C1
storms and 61% C3. The propagation speeds in V_P12 can be quite large even though this model does not
generate clearly organized convective objects but has contiguous areas of independently precipitating grid
cells (see section 4 g). C3 is the second most frequent type (~32%) for CMORPH and for V_CP4, I_CP4,
and I_P25; However, V_CP12 has more C2 storms. This is because V_CP12 has storm lifetimes that tend
to be longer than CMORPH and other simulations and propagation speeds that are slower than
CMORPH. Parameterized‐convection simulations (V_P12 and I_P25) have more C3 storms (61% and 29%,
respectively) compared to convection‐permitting simulations (9%–19%) because lifetimes of storms in
V_P12 and I_P25 are lower.

The spatial distributions of the track densities of different MCS types are now assessed (see Figures 7 and S8).
In CMORPH, spatial distributions tend to be slightly further north in Figure 7 than in Figure S8 because

Figure 6. (a) Mean propagation speed distributions binned every 1 m/s and
(b) mean propagation direction distributions binned in 10° angles for MCS
over land.
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August is also included and the AEJ is also slightly further north. The long‐lived storms (C2 and C4) have
higher track densities than the short‐lived storms (C1 and C3) in CMORPH because of their longer
lifetime but also because they have larger mean areas (Table 3). This is also true of convection‐permitting
simulations but not so for the parameterized‐convection simulations, which have a much greater
proportion of short‐lived storms despite their long‐lived storms having considerably larger areas than
their short‐lived storms.

In CMORPH, C1 storms occur mostly around the coast, in the ocean south of 10°N and west of 10°W, and
over high land such as the Cameroon Mountains (10°E, 6°N); C2 storms occur even more predominantly
around the coast, in the ocean south of 10°N and west of 10°W, and the Cameroon Mountains; C3 storms
have lower track densities in the ocean and around the coast, and higher track densities over high land
and close to the AEJ; C4 storms have track densities clearly shifted inland closer to the AEJ. The track den-
sities for convection‐permitting simulations, particularly I_CP4, match these spatial distributions better
than those of parameterized‐convection simulations. In particular, north of the AEJ the parameterized‐
convection simulations tend to be dominated by C3 storms (due to their short storm lifetimes), while the
observations are dominated by C4 storms and convection‐permitting simulations by C1, C2, and C4 storms.
The convection‐permitting simulations have more C1 and C2 storms north of the AEJ due to their storm

Figure 7. Maps showing MCS storm track densities over all four years for (a to d) CMORPH, (e to h) I_CP4, and (i to l) I_P25 for the different types of MCS storms
(from left to right C1, C2, C3, and C4). Orography is shown as a gray contour at the 500‐m level. The position of the AEJ is shown as black crosses. All plots regridded
to ~50‐km grid.
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propagation speeds being too slow compared to CMORPH. Arguably,
I_CP4 has the best representation of the observed dominance of C4
storms north of the AEJ. Overall, the spatial distributions for
parameterized‐convection simulations do not vary substantially from
MCS type to type, relative to the observations and convection‐
permitting simulations.

The spatial distributions of contribution to precipitation accumulations of
different MCS types are now assessed (see Figures 8 and S9). In CMORPH,
the spatial distributions are similar to the track density distributions, with
the C2 storms contributing largely to coastal precipitation and C4 storms
contributing largely to inland precipitation close to and north of the AEJ:
most of the CMORPH precipitation comes from long‐lived systems. All of
the convection‐permitting simulations have a good representation of
these C2 and C4 contributions and spatial distributions. However, they
also tend to have too much rain from C1 (short‐lived and slow‐moving)
storms. There is low skill in capturing the spatial patterns of the observed
precipitation contributions in parameterized‐convection simulations.

Figure 8. Maps showing contributions to rainfall accumulation over all 4 years for (a to d) CMORPH, (e to h) I_CP4, and (i to l) I_P25 from the different types of
MCS storms (from left to right C1, C2, C3, and C4). Orography is shown as a gray contour at the 500‐m level. The position of the AEJ is shown as black crosses. All
plots regridded to ~50‐km grid.

Table 3
Mean Areas and Rain Rates of Different Types of MCS

C1 C2 C3 C4

Mean area (km2) or relative
mean area to C1 type

CMORPH 2,452 ×4.9 ×1.2 ×7.9
V_CP4 1,537 ×2.3 ×1.2 ×3.9
V_CP12 1,780 ×2.3 ×1.1 ×3.5
V_P12 1,390 ×9.3 ×1.3 ×70.9
I_CP4 1,366 ×2.7 ×1.3 ×5.1
I_P25 2,431 ×8.0 ×2.3 ×15.4

Mean rain rate (mm/hr) or
relative mean rain rate
to C1 type

CMORPH 2.04 ×1.4 ×1.0 ×1.6
V_CP4 6.61 ×1.1 ×0.9 ×1.4
V_CP12 6.51 ×1.3 ×0.7 ×1.4
V_P12 2.92 ×0.9 ×1.1 ×0.8
I_CP4 10.26 ×1.1 ×0.7 ×0.9
I_P25 1.89 ×1.6 ×1.1 ×2.1
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Although C4 storms are the least frequent in number, they contribute almost 50% of the MCS precipitation
in CMORPH (consistent with the high cloud coverage of long‐lived systems in Mathon and Laurent, 2001).
One would expect a long‐lived storm to contribute more to the precipitation than a short‐lived storm simply
because it is raining for longer, but the mean storm area of long‐lived storms is also considerably larger than
that of short‐lived storms (Table 3). This difference in mean area and lifetime explains a large part of the dif-
ferent precipitation contributions in CMORPH and all simulations. Long‐lived storms also have slightly
higher mean rainfall intensities than short‐lived storms for CMORPH and all simulations except for
V_P12 where the reverse is true.

In summary, parameterized‐convection simulations have more uniform spatial distributions of all the eval-
uated storm types compared to CMORPH and convection‐permitting simulations; that is, the type of MCS is
less dependent on location for parameterized‐convection simulations. C4 storms in CMORPH and
convection‐permitting simulations occur more inland and closer to the AEJ than other types of storm.
The AEJ in parameterized‐convection simulations is in a similar location to that in the convection‐
permitting simulations, suggesting that the AEJ (and associated thermodynamic patterns; Parker et al.,
2005) is having less impact on lifetime or speed of storms in parameterized‐convection simulations than
in the convection‐permitting simulations or in reality. C4 storms in CMORPH and all simulations are the
least frequent type but have the largest mean area. That, combined with longer lifetimes than the C1 and
C3 storms, means that they can contribute considerably to total rainfall over the whole region, although this
contribution is greater in CMORPH than in simulations. The prevalence of the long‐lived C2 and C4 storms
in observations and in the convection‐permitting simulations is a key factor in the impact of the rainfall, for
instance, in the distributions of rainfall downstream of preferred triggering regions, or in the accumulation
of rainfall at one geographical location.

5. Discussion and Conclusions

A storm‐tracking algorithm described in section 3 was used to generate storm‐centered statistics based on
rainfall and OLR/brightness temperature data from convection‐permitting simulations, parameterized‐
convection simulations, and observations. These statistics were compared between the different simulations
and observations. Where possible, these statistics have also been compared to previously determined statis-
tics and found to agree well.

The numbers, percentages of MCSs, and contributions to rainfall from MCSs are generally more realistic in
convection‐permitting simulations than parameterized‐convection simulations. The spatial distribution of
different classifications of MCSs is also more realistic in convection‐permitting simulations than
parameterized‐convection simulations.

The diurnal cycle of MCS initiations and dissipations is improved in convection‐permitting simulations for
rainfall. The improvement in the timing of initiations is small between I_P25 and I_CP4 (UM10.3 model)
compared to that between V_P12 and V_CP12 (older UM8.2 model), because initiations happen later in
I_P25 compared to V_P12 and earlier in I_CP4 compared to V_CP4. This is likely due to the added stochastic
perturbations in the boundary layer in UM10.3 and the different spatial resolution of the I_P25 simulation.
Storm lifetimes are improved in convection‐permitting simulations with parameterized‐convection simula-
tions having too short lifetimes compared to observations.

In terms of size and intensity, MCSs develop more slowly in convection‐permitting simulations than in
parameterized‐convection simulations. Parameterized‐convection simulations develop too quickly com-
pared to observations.

With the exception of I_P25, simulated storms are too small compared to observations and the largest simu-
lated storms contribute too little to rainfall. The V_CP4 and V_CP12 simulations show some improvement in
size distributions over the V_P12 simulation.

The rain rate of storms is not improved in convection‐permitting simulations. In fact, convection‐permitting
simulations have too high intensity, and this has not improved much in the UM10.3 model (I_CP4) com-
pared to the older UM8.2 model (V_CP4/12), and the parameterized‐convection simulations match better
with CMORPH. Although the JJA seasonal mean precipitation in I_CP4 looks closer to GPCP observations
than that in I_P25 (Stratton et al., 2018), the seasonal mean rainfall accumulations over the land area were
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found to be greater for the convection‐permitting simulations than parameterized‐convection simulations
and for all simulations compared to CMORPH. For I_CP4 and I_P25 the spatial biases for June through
August were very similar to those found by Berthou et al. (2019) for July through September showing a large
overestimate of rainfall in the Guinea Highlands. The V_CP4, V_CP12, and V_P12 simulations also showed
this same bias but with positive bias over more of the land area for V_CP4 and V_CP12 (not shown). All
simulations still have a positive bias even if low land areas only are compared showing the bias is not just
restricted to the Guinea Highlands. It is likely that both CMORPH and TRMM radar underestimate the high-
est rain rates and this modeled storm intensity bias would not be as bad as these results suggest if compar-
isons against rain gauge data could be used. This high rain rate is likely due to underresolved updraughts and
insufficient turbulent mixing at 4‐km resolution (Kendon et al., 2012). Modeled OLR distributions compared
to SEVIRI brightness temperature distributions are considerably improved in convection‐permitting simula-
tions, although the models do not achieve the coldest cloud shields.

Different subgrid turbulence schemes (Machado & Chaboureau, 2015; Pearson et al., 2014) have been shown
to affect the size of cold cloud clusters and rainfall clusters, not only in terms of whether 1‐D or 3‐D schemes
are used but also the mixing length used. Although the convection‐permitting simulations in this study use
the better 3‐D scheme, the mixing length has not been optimized to produce storms of the correct size and
intensity. The ability to accurately simulate MCS has also been shown to be dependent on the cloud micro-
physical parameterization (VanWeverberg et al., 2013). Microphysics schemes that allow buildup of ice aloft
lead to larger or more numerous MCSs with larger anvils. I_CP4 uses the same cloud microphysics scheme
as I_P25, yet I_CP4 and I_P25 have very different storm sizes. I_CP4 also has 3‐D Smagorinsky subgrid tur-
bulence and convection switched off leading to more intense and smaller storms. The older VERA simula-
tions have a simpler microphysics scheme, but the size distributions of cold cloud are not discernibly
different for V_CP4 and I_CP4, although I_CP4 rainfall‐tracked storms are generally smaller than V_CP4.

Storms in parameterized‐convection simulations do not propagate coherently. Many have zero speed
although some storms have speeds of up to 30 m/s or more, and they show no preferred direction of propa-
gation. This feature is essentially because many instances of propagation in the parametrized storms are
actually cases where storms are very short lived and are initiated and decay close to each other with little
dynamical coupling. It is almost impossible for the tracking algorithm to distinguish between truly coherent,
propagating storms and those which are in proximity, but uncoupled dynamically. However, the lack of pre-
ferred propagation direction (Figure 6b) indicates that the parametrized storms are most commonly lacking
a dynamical control.

Storms in convection‐permitting simulations do propagate in a westward direction like observed storms but
do not propagate fast enough (4 m/s compared to 8 m/s) when tracking is performed with rainfall. However,
when storms are tracked using OLR in convection‐permitting simulations, the propagation speed matches
closely to observations. This shows that in convection‐permitting simulations, convective activity is more
coherently organized and therefore, even at 12‐km resolution it is preferable to disable the
convection parameterization.

Overall, convection‐permitting simulations show improvements over parameterized‐convection simulations
of several metrics of storms based on precipitation tracking (improvements were less for OLR tracking).
These metrics tend to be those which are particularly important in studies of the impacts of tropical rainfall,
including the lifetimes or storms and their speeds and spatial distributions relative to the topography.
However, convection‐permitting simulations tend to propagate their rain features too slowly and rain too
intensely over too small an area, and caution must still be employed when applying these models even
though they are preferable to running with the convection parameterization enabled. Further analysis of
the simulations in this study is being carried out to better understand the thermodynamic and dynamic dri-
vers of the development of these modeled storms.
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