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Abstract	6	

Climate	science	seeks	to	make	statements	of	confidence	about	what	has	7	
happened,	and	what	will	happen	(conditional	on	scenario).	The	approach	is	8	
effective	for	the	global,	thermodynamic	aspects	of	climate	change,	but	is	9	
ineffective	when	it	comes	to	aspects	of	climate	change	related	to	atmospheric	10	
circulation,	which	are	highly	uncertain.	Yet	atmospheric	circulation	strongly	11	
mediates	climate	impacts	at	the	regional	scale.	In	this	way	the	confidence	12	
framework,	which	focuses	on	avoiding	Type	1	errors	(false	alarms),	raises	the	13	
prospect	of	committing	Type	2	errors	(missed	warnings).	This	has	ethical	14	
implications.		15	

At	the	regional	scale,	however,	where	information	on	climate	change	has	to	be	16	
combined	with	many	other	factors	affecting	vulnerability	and	exposure	—	17	
most	of	which	are	highly	uncertain	—	the	societally	relevant	question	is	not	18	
“What	will	happen?”	but	rather	“What	is	the	impact	of	particular	actions	19	
under	an	uncertain	regional	climate	change?”	This	re-framing	of	the	question	20	
can	cut	the	Gordian	Knot	of	regional	climate-change	information,	provided	21	
one	distinguishes	between	epistemic	and	aleatoric	uncertainties	—	22	
something	that	is	generally	not	done	in	climate	projections.	It	is	argued	that	23	
the	storyline	approach	to	climate	change	—	the	identification	of	physically	24	
self-consistent,	plausible	pathways	—	has	the	potential	to	accomplish	25	
precisely	this.	26	

Keywords:	Climate	change,	climate	ethics,	uncertainty,	atmospheric	27	
circulation,	climate	impacts	28	

Non-technical	summary:	29	

This	study	addresses	the	challenge	of	how	to	construct	useful	climate-change	30	
information	at	the	regional	scale	in	the	face	of	the	large	uncertainties	that	31	
exist,	whilst	retaining	the	relevant	information	concerning	climate	risk.	It	is	32	
argued	that	the	usual	methods	of	constructing	climate	information	are	not	as	33	
objective	or	value-free	as	they	might	seem	to	be.	An	alternative	‘storyline’	34	
approach,	which	emphasizes	plausibility	over	probability,	has	been	proposed	35	
as	a	way	to	provide	climate	information	relevant	to	decision-making.		It	is	36	
shown	that	the	two	approaches	can	be	cast	within	a	common	framework.	37	

 38	
 39	
 40	
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1.	Introduction	41	

Although	there	is	high	confidence	in	thermodynamic	aspects	of	climate	42	
change	(global	warming,	sea-level	rise,	atmospheric	moistening,	melting	of	43	
ice),	the	levels	of	confidence	concerning	dynamical	aspects	of	climate	change,	44	
such	as	the	location	and	strength	of	storm	tracks,	are	much	lower	[1].	None	of	45	
the	three	key	lines	of	evidence	used	in	climate-change	science	—	predicated	46	
by	accepted	theory,	detected	in	observations,	and	consistently	represented	in	47	
climate	models	—	apply	to	aspects	of	climate	change	that	are	closely	related	48	
to	large-scale	atmospheric	circulation.	This	includes,	notably,	mean	49	
precipitation	changes	over	many	of	the	most	populated	regions	on	Earth	50	
(Figure	1).	It	is	in	striking	contrast	to	thermodynamic	aspects	of	change,	at	51	
least	when	sufficiently	aggregated	[3],	where	all	three	lines	of	evidence	apply	52	
[2].		53	

Lack	of	agreed-upon	theoretical	predictions	is	related	to	the	fact	that	different	54	
drivers	of	change	can	act	in	opposite	directions,	so	the	result	is	often	a	small	55	
difference	of	large	terms	[4,5].	Lack	of	detection	in	observations	is	related	to	56	
the	small	signal-to-noise	ratio	of	forced	circulation	changes,	reflecting	the	fact	57	
that	climate	variability	is	primarily	a	dynamical	phenomenon	[6].	Lack	of	58	
model	agreement	is	related	to	both	these	issues,	and	to	the	fact	that	59	
circulation	changes	are	often	quite	sensitive	to	model	biases,	which	can	be	60	
substantial	[7-9].		61	

Furthermore,	thermodynamic	aspects	of	climate	can	be	described	by	62	
extensive	quantities	(e.g.	heat	content	or	ocean	volume),	which	can	be	readily	63	
aggregated,	and	strong	conclusions	can	be	drawn	from	thermodynamic	64	
principles	alone,	often	in	terms	of	global	budgets	[10].	In	contrast,	circulation	65	
aspects	of	climate	are	inherently	regional,	and	involve	dynamics	(Newton’s	66	
second	law)	as	well	as	thermodynamics.	Since	dynamics	is	also	inherently	67	
chaotic,	the	challenge	of	atmospheric	circulation	should	come	as	no	surprise.	68	

Ways	must	therefore	be	found	to	construct	useful	scientific	information	on	69	
the	regional	scale,	and	even	on	the	local	scale,	that	reflect	an	appropriate	level	70	
of	uncertainty	yet	retain	the	relevant	information	about	climate	risk.	It	has	71	
recently	been	argued	[11]	that	storylines	—	physically	self-consistent	72	
unfoldings	of	past	events,	or	of	plausible	future	events	or	pathways	—	73	
provide	a	potential	way	forward,	both	for	the	interpretation	of	the	observed	74	
record	and	for	the	description	of	plausible	futures.	However,	storylines	are	75	
inherently	subjective	and	thus	would	seem	to	be	at	odds	with	more	76	
probabilistic	approaches,	which	give	the	appearance	of	objectivity.	The	77	
purpose	of	this	paper	is	to	place	storylines	within	a	broader	epistemological	78	
framework.	79	

It	is	first	shown	(Section	2)	how	the	standard,	confidence-based	framework	80	
for	the	construction	of	climate	information	prioritizes	reliability	(the	81	
avoidance	of	Type	1	errors,	or	false	alarms)	over	informativeness	(the	82	

Storylines	and	regional	climate	change	
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avoidance	of	Type	2	errors,	or	missed	warnings),	and	thus	has	ethical	83	
implications.	It	follows	that	there	is	no	such	thing	as	value-free	climate	84	
science.	In	Section	3,	the	difference	between	epistemic	and	aleatoric	85	
(random)	uncertainty	is	shown	to	be	critical	to	the	treatment	of	climate	risk.	86	
Since	epistemic	uncertainty	is	deterministic	and	inherently	subjective,	it	87	
follows	that	there	is	no	objective	basis	for	a	probabilistic	approach,	and	no	88	
such	thing	as	objective	climate	information.	This	motivates	a	re-framing	of	the	89	
climate	risk	question	from	the	ostensibly	objective	prediction	space	into	the	90	
explicitly	subjective	decision	space	(Section	4).	Finally,	it	is	shown	in	Section	91	
5	how	such	a	re-framing	can	be	cast	within	the	mathematical	framework	of	a	92	
causal	network,	thereby	reconciling	storyline	and	probabilistic	approaches.		93	

2.	The	confidence	straightjacket	94	

The	most	authoritative	statements	on	physical	aspects	of	climate	change	95	
come	from	Working	Group	I	(WGI)	of	the	Intergovernmental	Panel	on	Climate	96	
Change	(IPCC).	In	the	Summary	for	Policymakers	of	the	last	(5th)	IPCC	WGI	97	
Assessment	Report	[2],	atmospheric	circulation	is	scarcely	mentioned,	and	all	98	
the	statements	of	confidence	are	based	on	thermodynamics.	This	remarkable	99	
fact	evidences	better	than	anything	else	the	lack	of	scientific	consensus	on	100	
dynamical	aspects	of	climate	change.	Moreover,	the	statements	of	confidence	101	
are	crafted	to	be	reliable,	generally	by	emphasizing	global	rather	than	102	
regional	aspects	of	change.	A	good	example	is	the	headline	statement	on	the	103	
water	cycle:	104	

“Changes	in	the	global	water	cycle	in	response	to	the	warming	over	the	105	
21st	century	will	not	be	uniform.	The	contrast	in	precipitation	between	106	
wet	and	dry	regions	and	between	wet	and	dry	seasons	will	increase,	107	
although	there	may	be	regional	exceptions.”	[2]	108	

This	statement	is	based	on	the	sound	physical	principle	that,	all	else	being	109	
equal,	a	moister	atmosphere	will	exhibit	an	accelerated	hydrological	cycle	110	
[10].	The	statement	achieves	its	reliability	in	the	tropics	by	including	oceanic	111	
regions	(see	Figure	1);	indeed	a	key	observation	supporting	the	statement	is	112	
the	increased	salinity	in	the	subtropical	upper	oceans	(due	to	increased	113	
evaporation).	However,	it	is	precipitation	over	land	that	matters	for	climate	114	
impacts,	and	there	have	been	many	studies	showing	that	the	“wet	get	wetter,	115	
dry	get	drier”	paradigm	does	not	hold	over	land	regions	[12-14],	as	is	116	
reflected	in	the	general	lack	of	stippling	over	these	regions	(apart	from	the	117	
high	northern	latitudes)	in	Figure	1.	The	statement	is	perfectly	reliable	as	an	118	
explanation	of	how	the	global	climate	system	works,	but	it	does	not	provide	119	
useful	information	at	the	regional	scale,	as	the	final	caveat	makes	clear.	In	this	120	
way,	reliability	is	achieved	at	the	price	of	informativeness.		121	

To	find	a	high-level	statement	on	dynamical	aspects	of	climate	change	in	the	122	
IPCC	WGI	5th	Assessment	Report,	one	must	look	one	level	down,	in	the	123	
Technical	Summary	[2].	The	statements	are	uniformly	characterized	by	low	124	
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levels	of	confidence	and	a	lack	of	informativeness	at	the	regional	scale.	An	125	
illustrative	example	is	the	statement	on	changes	in	Northern	Hemisphere	126	
(NH)	storm	tracks,	which	are	an	important	determinant	of	midlatitude	127	
weather:	128	

“Substantial	uncertainty	and	thus	low	confidence	remains	in	projecting	129	
changes	in	NH	storm	tracks,	especially	for	the	North	Atlantic	basin.”	[2]	130	

Furthermore,	IPCC	WGI	uses	a	likelihood	scale	in	which	the	term	“unlikely”	is	131	
used	to	describe	likelihoods	of	up	to	33%.	This	terminology	seems	rather	132	
perverse	from	a	lay	perspective;	in	most	areas	of	life,	one	would	pay	attention	133	
to	likelihoods	that	high,	especially	if	the	consequences	were	serious	—	as	they	134	
are	with	climate	change.	(Would	you	board	an	airplane	if	you	were	told	that	it	135	
had	a	33%	chance	of	crashing?)	Yet	in	the	WGI	report,	the	term	“unlikely”	is	136	
generally	used	to	dismiss	rather	than	to	highlight	a	possibility.	Consider	this	137	
example	from	the	Technical	Summary,	again	with	reference	to	the	North	138	
Atlantic	storm	track:		139	

“…it	is	unlikely	that	the	response	of	the	North	Atlantic	storm	track	is	140	
a	simple	poleward	shift”	[2]	141	

The	context	here	is	that,	despite	the	lack	of	an	agreed-upon	theoretical	142	
explanation,	the	concept	of	a	poleward	storm	track	shift	under	climate	change	143	
has	become	a	general	expectation	[5].	However,	projected	changes	in	the	144	
North	Atlantic	storm	track	do	not	conform	to	that	expectation	[15].	An	145	
equivalent	version	of	the	statement	would	be	“…it	is	likely	that	the	response	146	
of	the	North	Atlantic	storm	track	[to	climate	change]	is	not	a	simple	poleward	147	
shift”.	Because	in	the	present	state	of	knowledge	a	consensus	statement	could	148	
not	be	crafted	on	what	was	likely	to	happen,	the	authors	instead	chose	to	149	
emphasize	what	was	not	likely	to	happen.	Yet	there	are	several	possibilities	150	
for	what	might	happen,	each	with	their	own	implications	for	climate	risk,	151	
which	could	have	been	articulated	(e.g.	[16]).	However,	the	simultaneous	152	
consideration	of	contradictory	futures	is	not	naturally	expressed	through	153	
statements	of	confidence.	Thus,	reliability	is	again	achieved	at	the	price	of	154	
informativeness.	155	

These	examples	illustrate	the	fact	that	by	employing	a	confidence	framework,	156	
which	seeks	to	attribute	what	has	happened	and	to	predict	what	will	happen	157	
(for	a	given	climate	forcing	scenario),	climate	science	winds	up	in	something	158	
of	a	straightjacket	when	it	comes	to	aspects	of	regional	climate	change	that	159	
are	closely	related	to	large-scale	atmospheric	circulation,	such	as	drought	and	160	
storminess.		161	

It	is	notable	in	this	respect	that	IPCC	Working	Group	II,	which	deals	with	162	
impacts	and	adaptation,	defines	climate	change	as	any	observed	change,	not	163	
necessarily	one	that	has	been	attributed	to	anthropogenic	forcing	[17].	This	is	164	
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done	to	avoid	the	confidence	straightjacket,	but	it	creates	a	knowledge	gap	165	
between	the	WGI	and	WGII	science	domains	[18].		166	

There	is	always	a	trade-off	to	be	made	between	reliability	and	167	
informativeness	[19].	Yet	a	focus	on	reliability,	guarding	preferentially	168	
against	Type	1	errors	(false	positives,	i.e.	false	alarms),	increases	the	169	
likelihood	of	Type	2	errors	(false	negatives,	i.e.	missed	warnings).	It	follows	170	
that	much	as	though	climate	science	might	strive	to	be	value-free,	it	cannot	171	
be:	the	way	in	which	climate	information	is	constructed	has	ethical	172	
implications	[20].	Lloyd	and	Oreskes	[20]	raise	the	important	question	of	why	173	
in	climate	science	it	has	become	normative	that	scientific	rigour	is	associated	174	
with	a	focus	on	reliability.	They	point	out	that	the	decision	on	whether	to	175	
preferentially	guard	against	Type	1	or	Type	2	errors	is	not	a	scientific	one,	but	176	
one	of	values.	For	example,	in	deciding	whether	to	bring	a	new	drug	to	market,	177	
one	assesses	both	the	drug’s	efficacy	(guarding	against	Type	1	errors)	and	178	
whether	it	has	any	unwanted	side	effects	(guarding	against	Type	2	errors).		179	
Similarly,	in	deciding	whether	to	issue	an	evacuation	order	for	a	city	in	the	180	
face	of	a	forecasted	storm,	a	balance	of	concern	between	Type	1	and	Type	2	181	
errors	will	be	considered.	Thus,	there	is	nothing	unscientific	about	seeking	to	182	
guard	against	Type	2	errors.	183	

It	would	seem	entirely	appropriate	to	preferentially	guard	against	Type	1	184	
errors	when	making	high-level	definitive	statements	concerning	global	185	
climate	change	such	as	“Warming	of	the	climate	system	is	unequivocal”	[2].	186	
However,	the	framework	is	not	so	evidently	appropriate	when	it	comes	to	187	
regional	aspects	of	change	(see	also	[21]).	This	situation	seems	to	be	an	188	
example	of	Kuhn’s	[22,	p.37]	important	observation	that	“a	paradigm	can	…	189	
insulate	the	[scientific]	community	from	those	socially	important	problems	190	
that	…	cannot	be	stated	in	terms	of	the	conceptual	and	instrumental	tools	the	191	
paradigm	supplies”.	Thus,	it	is	imperative	to	find	alternative	paradigms.	192	

3.	Epistemic	vs	aleatoric	uncertainty	193	

Broadly,	uncertainty	in	climate	projections	arises	from	three	sources:	194	
uncertainty	in	future	climate	forcing,	in	the	climate	system	response	to	that	195	
forcing	(i.e.	the	change	in	climate),	and	in	the	actual	realization	of	climate	for	196	
a	particular	time	window,	which	is	subject	to	internal	variability.	The	nature	197	
of	these	uncertainties	is	very	different	(e.g.	[23]).	The	first	depends	primarily	198	
on	human	actions	and	is	called	the	scenario,	and	the	projections	are	normally	199	
made	conditional	on	the	scenario.	The	second	is	what	is	known	as	an	200	
epistemic	uncertainty;	there	is	only	one	truth,	but	we	do	not	know	what	it	is.	201	
The	third	is	what	is	known	as	an	aleatoric	uncertainty;	there	is	a	random	202	
element	to	what	will	occur,	whose	probability	is	known	to	some	extent.	Any	203	
discussion	of	climate	risk	must	address	the	central	fact	that	the	nature	of	the	204	
second	and	third	uncertainties	is	fundamentally	different.	This	is	especially	205	
important	for	circulation-related	aspects	of	climate	change	at	the	regional	206	
scale,	for	which	these	two	sources	of	uncertainty	tend	to	dominate	the	overall	207	
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uncertainty	(see	[24]	for	regional	precipitation	changes).	Yet	it	is	standard	208	
practice	in	climate	science	to	mingle	the	two	sources	of	uncertainty	together,	209	
e.g.	in	the	multi-model	ensembles	(with	one	realization	taken	from	each	210	
model)	that	are	in	such	widespread	use	[2].	In	such	ensembles	the	differences	211	
between	the	individual	model	projections	include	both	the	systematic	212	
differences	between	different	model	climates	(epistemic)	and	the	random	213	
differences	that	arise	from	the	limited	sampling	of	internal	variability	214	
(aleatoric),	which	poses	challenges	in	interpretation	[25].	215	

We	first	discuss	the	uncertainty	arising	from	internal	variability,	since	it	is	216	
conceptually	much	easier	to	deal	with.	Internal	variability	is	a	property	of	the	217	
physical	climate	system,	whose	random	character	arises	from	the	chaotic	218	
nature	of	atmospheric	and	oceanic	dynamics,	and	which	can	be	characterized	219	
from	observations.	Indeed,	the	definition	of	climate	includes	internal	220	
variability,	which	is	characterized	through	statistical	measures	such	as	221	
variances	and	co-variances	of	physical	fields,	as	well	as	higher-order	222	
moments	such	as	skewness	or	extremes,	and	includes	coherent	modes	of	223	
variability	such	as	the	El	Niño/Southern	Oscillation	phenomenon.	The	224	
uncertainty	from	internal	variability	is	fundamentally	irreducible	(leaving	225	
aside	the	possibility	of	finite-time	prediction	from	specified	initial	conditions),	226	
and	users	of	climate	information	need	to	understand	that	the	mantra	of	227	
“reducing	uncertainty”	is	inappropriate	in	this	case;	rather,	the	scientific	goal	228	
is	to	better	quantify	the	uncertainty.	The	magnitude	of	the	uncertainty	for	any	229	
particular	quantity	can	be	reduced	by	taking	coarser	spatial	and	temporal	230	
averages,	but	that	operation	changes	and	may	simultaneously	reduce	the	231	
value	of	the	information	provided.		232	

The	concept	of	internal	variability	is	not	without	ambiguity	since	climate	has	233	
various	sources	of	non-stationarity,	and	what	is	meant	by	internal	variability	234	
is	conditional	on	any	non-stationary	influence,	including	climate	change	itself.	235	
Furthermore,	knowledge	of	internal	variability	is	limited	by	the	finite	236	
observational	record,	and	there	is	uncertainty	in	how	internal	variability	will	237	
respond	to	global	warming.	Nevertheless,	in	most	cases,	the	main	uncertainty	238	
in	what	climate	conditions	will	be	experienced	at	a	particular	place	and	time	239	
arising	from	internal	variability	can	be	considered	to	be	aleatoric,	and	thus	240	
amenable	to	a	straightforward	(i.e.	frequentist)	probabilistic	interpretation.	241	
The	reliability	of	model	simulations	of	internal	variability	can	be	similarly	242	
assessed,	at	least	in	principle.	243	

The	uncertainty	in	the	climate	response	to	forcing	is	conceptually	very	244	
different.	It	is	not	a	property	of	the	physical	climate	system;	rather,	it	is	a	245	
property	of	a	state	of	knowledge,	or	degree	of	belief,	and	it	can	be	reduced	as	246	
knowledge	improves.	In	contrast	to	aleatoric	uncertainty,	which	is	objective,	247	
such	epistemic	uncertainty	is	subjective	[26].	Therefore,	treating	epistemic	248	
uncertainty	as	if	it	were	aleatoric,	with	a	focus	on	the	multi-model	mean	as	a	249	
best	estimate,	has	no	epistemological	justification.	This	has	been	recognized	250	
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for	some	time	[27,28,21],	but	the	practice	continues	to	be	normative	(e.g.	as	251	
in	Figure	1).	It	is	interesting	to	consider	why	this	is	so,	since	in	most	areas	of	252	
science	the	essential	distinction	between	systematic	and	random	sources	of	253	
uncertainty	is	well	recognized.	One	of	the	reasons	may	be	that	the	extent	of	254	
the	epistemic	uncertainty	is	not	particularly	well	known.	First,	climate	models	255	
are	imperfect	representations	of	reality	and	share	many	deficiencies,	thus	256	
may	exhibit	a	collective	bias	and	fail	to	explore	important	aspects	of	climate	257	
change.	Second,	even	within	the	world	represented	by	climate	models,	the	258	
forced	circulation	response	of	any	particular	model	is	obscured	by	internal	259	
variability.		260	

As	an	example	of	the	latter,	Deser	et	al.	[29]	estimate	that	for	NH	wintertime	261	
midlatitude	surface	pressure	(whose	spatial	gradient	provides	an	indicator	of	262	
circulation	changes),	ensemble	sizes	of	around	30	are	generally	needed	to	263	
determine	the	forced	decadal	changes	of	a	given	model	over	a	45-year	period.	264	
This	is	in	striking	contrast	to	surface	temperature	changes,	where	the	signal-265	
to-noise	ratio	of	the	forced	response	is	much	larger,	and	even	single	266	
simulations	can	be	informative.	One	might	be	tempted	to	think	that	if	such	a	267	
large	ensemble	size	is	needed	to	detect	the	signal,	then	the	signal	must	be	268	
small.	However,	Deser	et	al.	[29]	show	that	such	a	change	in	surface	pressure	269	
patterns	can	alter	the	risk	of	regional	drought	or	heavy	precipitation	by	a	270	
factor	of	two,	which	is	hardly	negligible.	Most	climate	model	simulations	are	271	
performed	with	much	smaller	ensemble	sizes,	although	there	is	a	growing	272	
interest	in	large	single-model	ensembles	in	order	to	better	characterize	the	273	
epistemic	uncertainty	within	current	models.	274	

Another	conceptual	challenge	in	dealing	with	the	epistemic	uncertainty	of	275	
climate	change	is	that	the	concept	of	“error”	is	not	well	defined.	Although	in	276	
principle	there	may	be	one	truth,	it	is	not	knowable:	there	will	never	be	277	
sufficient	observations	to	define	all	relevant	aspects	of	future	climate;	future	278	
climate	will	in	any	case	be	non-stationary;	and	model	projections	are	based	279	
on	climate	forcing	scenarios	that	will	not	be	the	ones	actually	realized.	Thus,	280	
there	has	been	interest	in	trying	to	understand	the	relationship	between	281	
model	errors	in	observable	aspects	of	climate	and	the	forced	response	282	
simulated	by	that	model	—	so-called	“emergent	constraints”	(e.g.	[30]).	Such	283	
an	approach	permits	a	Bayesian	probabilistic	interpretation	of	epistemic	284	
uncertainty	[31].	However,	there	is	a	danger	that	any	such	relationship	is	285	
merely	statistical	and	not	causal,	and	many	published	emergent	constraints	286	
have	been	subsequently	debunked	(see	[32-34]).	In	any	case,	subjective	287	
choices	are	required	in	the	application	of	any	such	constraints.	288	

That	an	aleatoric	interpretation	of	multi-model	ensembles	can	blur	the	289	
climate	information	contained	within	those	ensembles	is	not	difficult	to	290	
appreciate.	Circulation	aspects	of	climate	are	related	to	features	such	as	jet	291	
streams.	Over	Europe	during	wintertime,	some	models	show	an	increase	in	292	
jet	strength	under	climate	change	and	others	a	decrease	(see	Figure	4	of	[1]),	293	
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moreover	the	location	of	the	changes	varies	between	models.	Whilst	all	294	
models	predict	a	significant	jet	response	somewhere,	averaging	over	the	295	
models	will	lead	to	a	washed-out	response.	Thus	the	multi-model	mean	may	296	
not	only	be	unlikely,	but	even	implausible.	The	situation	is	analogous	to	the	297	
idealized	case	of	a	bi-modal	Probability	Density	Function,	whose	mean	may	298	
not	be	a	physically	realizable	state.		299	

A	related	issue	is	apparent	in	Figure	1.	Because	precipitation	increases	in	300	
some	regions	and	decreases	in	others,	the	multi-model	mean	change	301	
inevitably	passes	through	zero,	and	will	be	small	compared	to	internal	302	
variability	on	either	side	of	that	line.	However,	that	does	not	mean	that	the	303	
change	in	those	regions	can	be	expected	to	be	small	compared	to	internal	304	
variability;	it	just	reflects	uncertainty	in	the	sign	of	the	change.	When	there	305	
are	equally	plausible	futures	that	point	in	different	directions,	averaging	306	
those	futures	buries	relevant	information	and	underestimates	risk.		307	

The	essential	point	is	that	epistemic	uncertainties	are	deterministic,	which	308	
means	that	they	introduce	correlations;	unless	those	correlations	are	309	
accounted	for,	inferences	may	be	flawed.	For	example,	Madsen	et	al.	[35]	310	
show	that	the	spread	across	CMIP5	model	projections	in	temperature	and	311	
precipitation	changes	at	the	gridpoint	scale	is	significantly	exaggerated	when	312	
treating	the	gridpoints	independently,	as	compared	to	when	the	models	are	313	
ranked	by	the	global	mean	changes	(where	the	spread	comes	mainly	from	314	
climate	sensitivity).	This	illustrates	the	general	point	that	with	an	315	
inhomogeneous	distribution	of	estimators,	one	should	examine	the	316	
distribution	of	responses	to	a	perturbation	rather	than	the	overall	response	of	317	
the	distribution	to	the	perturbation.	318	

4.	Re-framing	the	question	319	

If	the	construction	of	regional	climate	information	inevitably	involves	ethical	320	
choices,	then	those	choices	should	be	made	by	the	users	of	the	climate	321	
information,	based	on	their	values.	If	the	uncertainties	in	the	climate	322	
information	involve	a	significant	epistemic	component,	then	subjectivity	is	323	
inevitable	and	the	epistemic	uncertainties	similarly	need	to	be	324	
understandable	and	assessable	by	the	users	of	the	climate	information,	within	325	
their	particular	context.	Both	imperatives	move	the	climate	risk	problem	326	
outside	the	domain	of	pure	climate	science.	Moreover,	the	recognition	that	327	
epistemic	uncertainties	are	deterministic	removes	the	impulse	to	provide	328	
probabilities,	which	can	give	the	illusion	of	objectivity	and	thereby	reduce	329	
transparency.	Instead,	epistemic	uncertainty	can	be	represented	through	a	330	
discrete	set	of	(multiple)	storylines	—	physically	self-consistent,	plausible	331	
pathways,	with	no	probability	attached	[11,36].		332	

Rather	than	asking	what	will	happen	(as	in	the	traditional,	scenario-driven	333	
approach),	which	we	may	not	be	able	to	answer	with	any	confidence,	334	
storylines	allow	us	to	ask	what	would	be	the	effect	of	particular	interventions	335	
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—	e.g.	different	climate	forcing	scenarios,	or	different	adaptation	measures	—	336	
across	a	range	of	plausible	futures.	The	latter	questions	are	in	any	case	the	337	
societally	relevant	ones.	This	re-framing	of	the	climate	risk	question	from	the	338	
prediction	space	to	the	decision	space	avoids	the	confidence	straightjacket.	339	
Storylines	have	much	in	common	with	scenario	planning	and	other	methods	340	
of	robust	decision-making	under	uncertainty	[37,38].	What	is	novel	is	their	341	
application	to	physical	climate	science,	where,	perhaps	because	the	system	342	
obeys	known	physical	laws,	the	operative	paradigm	up	to	now	has	been	343	
probabilistic,	which	gives	the	impression	of	objectivity.	344	

The	different	uncertainties	that	are	relevant	to	climate	risk,	and	the	different	345	
human	decision	points,	can	be	broadly	represented	as	follows.	There	is	346	
uncertainty	in	the	future	climate	forcing,	which	is	mainly	anthropogenic	in	347	
origin,	and	represents	the	mitigation	options.	This	combines	with	the	348	
epistemic	uncertainty	in	climate	sensitivity	to	determine	the	global-mean	349	
warming	level.	Whilst	there	is	some	aleatoric	uncertainty	in	the	global-mean	350	
warming,	it	is	small	compared	with	the	forced	response	on	decadal	or	longer	351	
timescales.	A	given	global-mean	warming	level	will	be	associated	with	distinct	352	
patterns	of	regional	warming	(e.g.	land	warms	more	than	ocean,	the	Arctic	353	
warms	more	than	lower	latitudes	during	the	winter	season),	including	354	
changes	in	lapse	rate	[39].	These	regional	warming	patterns	are	largely	355	
explainable	from	thermodynamic	principles	and	thus	are	fairly	well	356	
understood,	though	have	substantial	quantitative	epistemic	uncertainty	357	
(including	the	possibility	of	tipping	points).	A	given	global-mean	warming	358	
level	will	also	be	associated	with	particular	dynamical	conditions	in	any	359	
specific	region	(including	the	circulation	effects	of	coupled	atmosphere-ocean	360	
variability),	which	have	a	very	large	aleatoric	component	but	whose	forced	361	
changes	are	also	highly	uncertain.	The	regional	warming	patterns	and	362	
dynamical	conditions	together	produce	hazards	such	as	weather	or	climate	363	
extremes,	which	then	combine	with	the	non-climatic	anthropogenic	factors	of	364	
vulnerability	and	exposure	to	create	climate	impacts.	365	

This	representation	of	the	climate	risk	problem	provides	a	natural	framework	366	
for	storyline	approaches.	For	example,	from	the	perspective	of	the	Paris	367	
Agreement,	one	may	ask	the	question	of	what	the	climate	impacts	would	be	at	368	
different	levels	of	global-mean	warming,	and	what	different	mitigation	369	
pathways	would	lead	to	those	warming	levels	[40].	The	epistemic	uncertainty	370	
in	climate	sensitivity	now	no	longer	affects	the	estimation	of	climate	impacts,	371	
but	is	instead	relevant	to	the	carbon	budget	allowed	by	the	given	level	of	372	
warming.	The	epistemic	uncertainty	in	future	dynamical	conditions	(for	a	373	
given	level	of	global-mean	warming)	can	then	be	managed	via	storylines,	the	374	
simplest	of	which	is	that	the	changes	in	hazard	are	dominated	by	the	375	
thermodynamic	effects	arising	from	the	regional	temperature	changes,	with	376	
the	forced	changes	in	dynamical	conditions	assumed	to	be	negligible.	Given	377	
the	large	uncertainties	in	the	forced	dynamical	changes,	this	can	be	378	
considered	a	reasonable	null	hypothesis	for	climate	change	[41,42],	and	it	is	379	
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far	from	uninformative.	It	is	in	fact	the	basis	for	all	of	the	predicted	changes	in	380	
extremes	shown	in	Table	SPM.1	of	the	IPCC	AR5	[2].	It	also	underlies	the	381	
“surrogate	climate	change”	(also	known	as	“pseudo-global	warming”)	382	
methodology	[43,39]	which	is	widely	used	in	regional	climate	change	383	
simulations,	and	the	circulation-analogue	methodology	[44]	which	is	widely	384	
used	in	extreme-event	attribution.	However,	specific	storylines	of	forced	385	
circulation	change	can	also	be	considered	[42,16].	386	

Reframing	the	climate	risk	question	in	this	way	increases	the	signal-to-noise	387	
ratio	of	the	climate	information	by	explicitly	accounting	for	the	correlated	388	
nature	of	epistemic	uncertainty.	An	example	is	provided	by	Figure	2.	The	389	
Mediterranean	region	receives	most	of	its	precipitation	during	the	winter	390	
season,	so	the	predicted	wintertime	drying	of	the	region,	which	is	a	robust	391	
feature	of	climate	model	projections	(see	Figure	1),	has	important	392	
consequences.	The	extent	of	the	drying	will	depend	on	the	global-warming	393	
level,	and	it	is	relevant	to	ask,	for	instance,	what	would	be	the	difference	394	
between	1.5C	and	2.0C	of	global	warming.	However	the	extent	of	the	drying	395	
will	also	depend	on	the	pattern	of	circulation	change	in	the	region	—	an	396	
epistemic	uncertainty	—	which	can	be	characterized	by	physically	coherent	397	
storylines	[16].	Considering	just	the	range	between	the	low-impact	and	high-398	
impact	storylines	shown	in	Figure	2,	the	difference	in	drying	between	1.5C	399	
and	2.0C	of	global-mean	warming	under	the	standard	probabilistic	framing	is	400	
the	difference	between	0.09	[0.04	to	0.15]	and	0.12	[0.05	to	0.20]	mm/day	401	
(left	panel),	which	would	be	considered	indeterminate	within	the	stated	402	
uncertainties.	The	storyline	framing	of	the	difference	is,	in	contrast,	a	403	
deterministic	0.04	vs	0.05	for	the	low-impact	circulation	storyline,	0.09	vs	404	
0.12	for	the	median	storyline,	and	0.15	vs	0.20	for	the	high-impact	storyline	405	
(right	panel).	This	is	a	more	informative	way	of	representing	the	uncertainty,	406	
because	it	quantifies	different	plausible	outcomes.	For	reference,	0.08	407	
mm/day	corresponds	to	a	change	that	is	statistically	detectable,	and	0.19	to	408	
one	standard	deviation	of	the	interannual	variability	—	quite	a	large	change,	409	
likely	requiring	significant	adaptation	measures.	The	distinction	between	the	410	
two	approaches	is	analogous	to	that	between	accuracy	and	precision;	411	
sometimes,	the	latter	is	all	that	is	needed	for	decision-making.	412	

Storylines	are	ideal	vehicles	for	quantifying	the	impacts	of	climate	change	and	413	
adaptation	measures.	They	provide	a	way	of	dealing	with	singular	historical	414	
events,	which	within	the	probabilistic	framework	are	merely	accidents	within	415	
a	phase	space	of	unrealized	possibilities,	yet	often	provide	benchmarks	for	416	
resilience;	and	with	the	local	context,	where	the	human	element	becomes	part	417	
of	the	analysis	rather	than	a	confounding	factor.	For	example,	rather	than	418	
seeking	to	determine	the	recurrence	likelihood	of	a	particularly	damaging	419	
storm	(an	inherently	fuzzy	question	since	every	storm	is	unique),	one	can	ask	420	
how	much	worse	the	flooding	would	be	in	a	warmer,	moister	climate	[41],	or	421	
under	a	particular	urban	development	scenario.	Such	conditioning	of	the	422	
question	enormously	reduces	the	dimension	of	the	problem	and	thereby	423	
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allows	the	use	of	much	more	realistic	modelling	tools,	which	users	of	climate	424	
information	can	relate	to.	In	this	way,	the	storyline	approach	addresses	the	425	
needed	re-framing	of	the	climate	risk	problem	whilst	representing	the	426	
epistemic	uncertainties	in	a	traceable	manner.		427	

That	there	is	relevant	information	concerning	climate	risk	contained	even	in	428	
single	historical	events	is	illustrated	by	Figure	3,	which	shows	a	small	region	429	
in	central	France	during	one	day	in	August	2000	and	another	day	in	August	430	
2003	during	the	severe	heat	wave	that	affected	Europe	that	summer	[45].	431	
From	a	statistical	perspective,	it	may	seem	meaningless	to	compare	two	432	
single	days	because	they	will	each	be	strongly	influenced	by	synoptic	433	
variability.	However,	the	images	show	that	the	crops	and	grasses	in	the	434	
agricultural	plots	died	out	during	the	2003	heat	wave,	and	the	surface	435	
temperature	difference	between	the	two	days	over	those	parts	of	the	scene	436	
was	20	C,	vs	only	11	C	in	the	forested	region.	Since	a	difference	of	9	C	over	a	437	
distance	of	several	hundred	metres	cannot	be	explained	by	synoptic	438	
variability	(which	has	much	larger	correlation	scales),	this	clearly	shows	the	439	
impact	of	land	cover	on	the	climate	risk	from	heat	waves.	(Moreover,	the	440	
average	temperature	difference	in	the	agricultural	plots	rises	to	24	C	if	the	441	
hedgerows	are	excluded,	and	the	temperature	difference	in	fields	that	were	442	
bare	in	both	2000	and	2003	is	11	C.)	Whilst	it	may	not	be	possible	to	predict	443	
the	future	statistics	of	heat	waves	in	this	region,	it	is	possible	to	make	444	
informative	statements	about	how	those	heat	waves	would	be	affected	by	445	
land	cover	and	thus	inform	adaptation	strategies.	446	

The	tension	between	global	and	local	descriptions	(in	time	or	space)	is	not	447	
unique	to	climate	science,	of	course.	It	arises	in	any	scientific	context	where	448	
statistical	power	is	achieved	by	aggregation	over	an	inhomogeneous	449	
population,	and	thus	blurs	information.	There	is	a	growing	move	in	many	450	
fields	towards	analysis	methods	that	aim	to	consider	information	in	context	451	
rather	than	in	aggregate,	especially	when	that	information	is	sparse	(e.g.	452	
safety	in	health	care:	[46]).	Storyline	approaches	to	climate	risk	can	be	seen	453	
as	part	of	that	movement.		454	

5.	Causal	networks	455	

In	the	above,	storylines	have	been	presented	in	contrast	to	probabilistic	456	
representations	of	uncertainty.	However,	if	storylines	are	to	provide	an	457	
alternative	scientific	paradigm	for	the	construction	of	regional	climate	change	458	
information,	they	must	be	somehow	reconcilable	with	the	conventional,	459	
probabilistic	approach,	in	order	to	effectively	bridge	between	climate	science	460	
and	climate	impacts,	and	from	the	global	to	the	local	scale.			461	

The	narrative	description	of	the	regional	climate	risk	problem	in	the	previous	462	
section	is	represented	graphically	in	Figure	4.	Figure	4	is	a	directed	acyclic	463	
graph,	which	means	that	the	climate	risk	problem	can	be	represented	464	
mathematically	as	a	causal	network	[47,48].	This	observation	provides	the	465	
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key	to	reconciling	storyline	and	probabilistic	approaches.	Following	[48],	a	466	
joint	probability	of	n	variables	P(x1,…,	xn)	can	be	expressed	as	the	product	of	467	
conditional	probabilities	P(xj	|	paj),	where	paj	are	the	‘parent’	factors	468	
influencing	xj,	according	to	469	

𝑃 𝑥!,… , 𝑥! = 𝑃 𝑥! 𝑝𝑎! .! 		 	 	 	 	 	 (1)	 	470	

The	representation	(1)	factorizes	the	uncertainty,	which	is	extremely	useful	471	
when	the	different	uncertainties	have	rather	different	characteristics,	as	in	472	
the	climate	risk	problem.	A	storyline	xi	=	xi’	for	a	particular	i	can	be	defined	by	473	
imposing	that	particular	condition	within	(1),	represented	symbolically	by	𝑥!!,	474	
which	leads	to	[48,	pp.	72-73]	475	

𝑃 𝑥!,… , 𝑥!|𝑥!! =
 𝑃 𝑥! 𝑝𝑎! = ! !!,…,!!

! !!
! !"!

    𝑖𝑓 𝑥! = 𝑥!!!!!

0                                                       𝑖𝑓 𝑥! ≠ 𝑥!!
	 .	 (2)	476	

The	expression	(2)	is	thus	a	truncated	factorization	of	the	expression	(1)	for	477	
the	unconditional	probability,	representing	a	blend	of	probabilistic	and	478	
deterministic	factors.	Multivariate	storylines	can	be	treated	by	repeated	479	
application	of	this	procedure.	In	this	way,	storylines	can	be	cast	within	the	480	
context	of	a	probabilistic	framework.		481	

We	illustrate	this	for	the	system	represented	in	Figure	4.	The	traditional	482	
scenario-driven	prediction	problem	aims	to	estimate	the	joint	probability	of	483	
the	climate	state	conditional	only	on	the	climate	forcing	F:	484	

𝑃 𝐻,𝐷,𝑅,𝐺, 𝑆  𝐹)	.	 	 	 	 	 	 	 	 (3)	485	

According	to	the	causal	linkages	represented	in	Figure	4,	this	factorizes	to		486	

𝑃 𝐻  𝐷,𝑅) 𝑃 𝐷  𝐺) 𝑃 𝑅  𝐺) 𝑃 𝐺 𝑆,𝐹) 𝑃(𝑆)	.	 	 	 	 (4)	487	

Within	this	perspective,	it	is	necessary	to	have	knowledge	of	the	climate	488	
sensitivity	S.	However,	from	the	perspective	of	the	Paris	Agreement,	one	can	489	
define	a	storyline	consisting	of	a	particular	global	warming	level,	say	G	=	G1,	490	
which	specifies	G	deterministically.	This	condition	blocks	the	influence	of	S,	491	
leaving	the	truncated	factorization	492	

𝑃 𝐻  𝐷,𝑅) 𝑃 𝐷  𝐺 = 𝐺!) 𝑃 𝑅  𝐺 = 𝐺!) 		 	 	 	 	 (5)	493	

where	now	the	hazard	H	depends	only	on	the	dynamical	conditions	D	and	the	494	
regional	warming	R.	Note	that	(5)	does	not	imply	that	D	and	R	are	495	
independent;	they	share	a	common	dependence	through	G,	hence	storylines	496	
of	R	may	be	correlated	with	storylines	of	D.	This	is	precisely	the	basis	of	the	497	
approach	of	[16].	498	

Interestingly,	imposing	a	global-mean	warming	target	builds	in	a	relationship	499	
between	the	climate	sensitivity	S	and	the	climate	forcing	F.	This	is	in	contrast	500	
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to	the	traditional	scenario-driven	formulation	of	climate	risk,	where	these	501	
quantities	are	treated	as	independent.	[In	(3),	S,	as	a	property	of	the	climate	502	
system,	would	be	assumed	independent	of	F.]	Such	a	relationship	expresses	503	
the	policy-relevant	information	that	society	will	need	to	act	more	aggressively	504	
on	controlling	emissions	if	climate	sensitivity	turns	out	to	be	high,	but	may	505	
allow	itself	more	time	if	climate	sensitivity	turns	out	to	be	low.	506	

If	R	is	taken	to	be	a	deterministic	function	of	G,	i.e.	the	uncertainty	in	R	is	507	
considered	to	be	mainly	epistemic,	then	(5)	simplifies	to	508	

𝑃 𝐻  𝐷,𝑅 = 𝑅!) 𝑃 𝐷  𝐺 = 𝐺!) 	,	 	 	 	 	 	 (6)	509	

where	R1	=	R	(G1).	The	first	term	in	(6)	represents	the	thermodynamic	effects	510	
of	a	particular	regional	warming	R1	on	H,	given	knowledge	of	D,	whilst	the	511	
second	term	represents	the	dynamical	effects	of	climate	change.	As	already	512	
discussed,	the	epistemic	uncertainty	in	the	latter	can	be	very	high,	but	is	513	
representable	through	storylines.	The	simplest	storyline	is	that	dynamics	514	
remains	unchanged,	in	which	case	the	conditionality	in	the	second	term	drops	515	
out	and	we	are	left	with		516	

𝑃 𝐻  𝐷,𝑅 = 𝑅!) 𝑃(𝐷) 	,	 	 	 	 	 	 	 (7)	517	

where	P(D)	can	be	based,	for	example,	on	observations.	This	is	exactly	the	518	
formulation	of	the	“surrogate	climate	change”	methodology	mentioned	earlier,	519	
which	is	widely	used	in	regional	climate	change	simulations.	However,	one	520	
can	certainly	also	specify	different	dynamical	storylines	to	represent	521	
plausible	changes	in	dynamics.	Since	(6)	essentially	describes	the	regional	522	
climate	modelling	paradigm,	it	may	provide	a	useful	framework	for	the	523	
construction	of	regional	climate-change	information	and	the	design	of	524	
ensembles	of	simulations	using	regional	climate	models,	including	the	525	
representation	of	particularly	extreme	forms	of	internal	variability.	526	

Without	this	factorization	of	the	probabilities,	the	regional	climate	risk	527	
problem	for	a	given	global	warming	level	is	representable	instead	in	the	form	528	

𝑃 𝐻,𝐷,𝑅  𝐺)	,	 	 	 	 	 	 	 	 (8)	529	

which	lends	itself	to	a	probabilistic	interpretation	of	the	dynamical	aspects	of	530	
climate	change.	This	hides	the	implicit	assumptions	concerning	the	epistemic	531	
uncertainties	that	are	made	explicit	in	the	representation	(6).	Moreover,	the	532	
comparatively	unconditional	nature	of	(8)	requires	the	use	of	global	models,	533	
whereas	(6)	permits	the	use	of	regional	models,	which	can	provide	a	more	534	
physically	realistic	representation	of	regional	climate	risk	[49-51].	535	

By	casting	storylines	within	the	context	of	a	probabilistic	framework,	it	536	
becomes	clear	that	there	is	nothing	to	prevent	assigning	probabilities	to	537	
storylines,	if	the	scientific	basis	exists	to	do	that.	At	the	very	least,	physically	538	
implausible	behaviours	could	be	excluded	[50].	As	epistemic	uncertainties	are	539	
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reduced,	this	knowledge	can	be	immediately	incorporated	into	a	revised	risk	540	
analysis.	Thus,	storylines	provide	a	very	flexible,	transparent	representation	541	
of	epistemic	uncertainty.	542	

Not	only	do	causal	networks	reconcile	storyline	and	probabilistic	approaches	543	
to	climate	risk,	they	are	also	ideally	suited	for	moving	the	risk	question	into	544	
the	decision	space.	That	is	because	the	calculus	of	causal	networks	explicitly	545	
allows	the	consideration	of	counter-factual	outcomes	[48],	and	decision-546	
making	is	precisely	the	consideration	of	counter-factual	outcomes.	Within	this	547	
context,	storylines	correspond	to	what	Halpern	and	Pearl	[52]	define	as	548	
explanations:	“a	fact	that	is	not	known	for	certain	but,	if	found	to	be	true,	549	
would	constitute	an	actual	cause	of	the	fact	to	be	explained,	regardless	of	the	550	
agent's	initial	uncertainty”.	551	

More	generally,	causal	networks	are	a	way	of	combining	expert	knowledge	552	
with	probability	[47].	The	factorization	(1)	allows	for	the	ready	incorporation	553	
of	knowledge	within	a	local	semantics,	and	yields	results	that	are	554	
comprehensible	to	humans	[53].	In	the	published	Discussion	of	Lauritzen	and	555	
Spiegelhalter	[47,	p.	210]	J.	Pearl	invokes	the	following	statement	(attributed	556	
to	G.	Halter):	“Probability	is	not	really	about	numbers;	it	is	about	the	structure	557	
of	reasoning.”	Making	the	subjective	assumptions	explicit	leads	to	558	
transparency	in	the	subsequent	analysis	[54]	and	provides	an	audit	trail	for	559	
decision-makers	[55].	This	is	important	since,	as	Beven	[55]	puts	it,	“Decision	560	
and	policy	makers	are	…	far	more	interested	in	evidence	than	uncertainty.”		561	

The	challenge	for	regional	climate-change	science	then	becomes	that	of	562	
constructing	suitable	causal	networks.	Causal	networks	are	necessarily	a	563	
simplification,	because	they	entail	the	reduction	of	continuous	fields	to	a	564	
finite-dimensional	system.	However,	they	very	much	correspond	to	how	565	
climate	scientists	reason.	For	example,	the	El	Niño	variability	in	tropical	sea-566	
surface	temperatures	drives	a	Rossby-wave	teleconnection	pathway	which	567	
affects	circulation	and	weather	regimes	in	the	mid-latitudes,	and	all	these	568	
elements	can	be	represented	to	a	reasonable	extent	with	physical	climate	569	
indices.	Thus,	atmospheric	dynamics	already	provides	the	building	blocks	for	570	
the	construction	of	causal	networks	relevant	to	regional	climate	risk.	(In	571	
practice,	the	“Dynamical	conditions”	node	in	Figure	4	could	be	expanded	into	572	
a	sub-network.)	Comprehensive	climate	simulation	models	are	still	needed	to	573	
explore	uncertainty	space,	but	causal	networks	can	provide	the	diagnostic	574	
framework	within	which	to	extract	the	relevant	climate	information	from	575	
those	simulations,	and	combine	it	with	other	sources	of	information	in	a	576	
format	that	is	suitable	for	decision-making.		577	

The	causal	network	depicted	in	Figure	4	incorporates	two	emergent	aspects	578	
of	climate	change.	Both	aspects	are	simplifications,	but	they	are	extremely	579	
powerful	and	are	widely	used	in	the	interpretation	of	climate	information.	580	
The	first	is	what	is	known	as	“pattern	scaling”	[56,57]:	namely	that	regional	581	
climate	change	is	a	function	of	global-mean	warming.	In	practice,	the	patterns	582	
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of	regional	warming	are	time-dependent	[58]	so	are	different	for	transient	583	
and	equilibrated	warming	levels,	and	short-lived	climate	forcers	such	as	584	
aerosol	can	have	distinct	regional	effects	[59].	Such	additional	degrees	of	585	
freedom,	as	well	as	global	tipping	points,	could	be	incorporated	by	making	the	586	
node	G	suitably	multivariate.	The	second	emergent	aspect	is	the	distinction	587	
between	thermodynamic	and	dynamical	aspects	of	regional	climate	change,	588	
which	has	already	been	discussed.	Whilst	the	distinction	is	not	precise	and	589	
has	its	limitations,	it	is	useful	(e.g.	[60]);	it	has	even	been	used	for	the	last	two	590	
Dutch	Climate	Change	Scenarios	[61].	As	with	the	other	simplifications	591	
implicit	in	Figure	4,	e.g.	the	lack	of	any	arrows	pointing	back	from	the	right	to	592	
the	left,	the	validity	of	all	these	simplifications	can	be	assessed	a	posteriori.	593	

Note	that	linearity	is	not	assumed	in	causal	networks.	However,	if	certain	594	
relationships	can	be	shown	to	be	linear	to	a	suitable	level	of	approximation	595	
for	the	problem	at	hand,	then	the	analysis	is	enormously	simplified.	This	is	596	
generally	necessary	for	any	observational	analysis,	because	of	the	limited	597	
sample	size	[62].	598	

6.	Discussion	599	

This	paper	has	argued	that	the	storyline	approach	to	regional	climate-change	600	
information	avoids	the	straightjacket	that	hampers	the	standard	confidence-601	
based	approach,	by	allowing	a	reframing	of	the	climate	risk	question	from	the	602	
prediction	space	into	the	decision	space.	Whilst	in	principle	such	a	reframing	603	
is	possible	from	probabilistic	estimates	of	risk,	the	challenge	for	regional	604	
climate-change	information	is	that	the	level	of	epistemic	uncertainty	is	605	
sufficiently	high	that	subjective	choices	must	inevitably	be	made,	and	the	606	
range	of	users	sufficiently	inhomogeneous	that	there	is	no	consensus	on	607	
values.	Under	such	conditions,	probabilistic	‘rational-choice’	approaches	to	608	
decision-making	are	ineffective	[63,64]	and	the	decision	framework	needs	to	609	
be	one	where	the	subjective	and	ethical	choices	are	both	flexible	and	610	
transparent	[65].	Since	epistemic	uncertainty	is	inherently	deterministic	and	611	
subjective,	there	is	no	imperative	to	represent	it	probabilistically	[23],	and	612	
probabilistic	representations	can	give	a	false	impression	of	objectivity.		613	

The	reframing	of	the	risk	question	from	the	prediction	space	to	the	decision	614	
space	may	seem	uncomfortable	from	a	physical	science	perspective,	but	is	in	615	
fact	quite	orthodox	from	the	perspective	of	statistical	inference.	Despite	the	616	
widespread	use	of	p-values	as	an	ostensibly	objective	measure	of	statistical	617	
significance,	the	inference	derived	from	data	concerning	a	particular	618	
hypothesis	is	far	from	a	straightforward	matter	and	involves	many	619	
assumptions	[66].	In	the	Neyman-Pearson	framework,	the	inference	problem	620	
is	regularized	by	placing	it	in	a	decision	context	between	two	alternative	621	
hypotheses,	which	takes	into	account	the	possibility	of	both	Type	1	and	Type	622	
2	errors	[67].	In	the	Bayesian	framework,	the	strength	of	evidence	between	623	
these	alternative	hypotheses	(H1	and	H2)	provided	by	the	data	D	is	given	by	624	
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	,	 	 	 	 	 	 	 (9)	625	

which	follows	directly	from	Bayes’	theorem.	The	Bayes	factor	626	
P(D|H2)/P(D|H1)	is	independent	of	the	prior	likelihoods	P(H2)	and	P(H1),	so	627	
can	be	considered	objective,	but	it	does	not	represent	any	sort	of	absolute	628	
knowledge	—	only	an	increment	in	knowledge,	relative	to	the	prior	beliefs.		629	

Moving	the	climate	risk	problem	out	of	the	domain	of	pure	climate	science	630	
requires	humility	on	the	part	of	climate	scientists.	To	quote	Funtowicz	and	631	
Ravetz	[63]	—	who	used	sea-level	rise	as	an	example	—	“the	traditional	632	
domination	of	‘hard	facts’	over	‘soft	values’	[is]	inverted… traditional	633	
scientific	inputs…	become	‘soft’	in	the	context	of	the	‘hard’	value	634	
commitments	that	will	determine	the	success	of	policies	for	mitigating	the	635	
effects	of	[climate	change]”.	Indeed,	it	has	been	argued	that	humility	is	one	of	636	
the	four	core	elements	—	the	others	being	integrity,	transparency,	and	637	
collaboration	—	that	should	be	intrinsic	to	the	production	of	regional	climate	638	
information	[68].	In	this	way,	the	goal	is	not	so	much	to	be	authoritative,	639	
which	has	something	of	a	gatekeeper	connotation,	but	to	be	trustworthy	[69].	640	
This	involves	a	loss	of	control,	because	one’s	trustworthiness	is	a	judgement	641	
made	by	others.		642	

This	perspective	also	involves	an	acknowledgement	that	climate-relevant	643	
decisions,	especially	at	the	local	scale,	are	not	usually	made	on	the	basis	of	644	
climate	change	alone	but	involve	many	other	changing	factors,	most	of	which	645	
are	highly	uncertain.	If	climate	impacts	I	are	a	product	of	hazard	H,	646	
vulnerability	V	and	exposure	E,	then,	conceptually,	the	anthropogenic	changes	647	
in	I	can	be	represented	as	648	

𝛿𝐼 = 𝛿(𝐻𝑉𝐸) = 𝐻𝑉𝛿𝐸 + 𝐻𝐸𝛿𝑉 + 𝑉𝐸𝛿𝐻	.	 	 	 	 	 (10)	649	

It	may	well	be	that	the	largest	terms	on	the	right-hand	side	of	(10)	are	the	650	
first	two,	where	it	is	the	combination	of	climate	and	weather	variability	with	651	
changing	vulnerability	and	exposure	that	is	the	main	determinant	of	climate	652	
risk	[70].	In	this	case	the	decision	framework	is	not	so	much	that	of	dealing	653	
with	climate	change	as	it	is	that	of	bringing	climate	information	into	decisions	654	
that	need	to	be	made	in	any	case.	There	are	calls	for	this	sort	of	complex-655	
systems	thinking	in	other	areas	of	science,	such	as	public	health	[71]:	“Instead	656	
of	asking	whether	an	intervention	works	to	fix	a	problem,	researchers	should	657	
aim	to	identify	if	and	how	it	contributes	to	reshaping	a	system	in	favourable	658	
ways.” 659	

To	return	to	Kuhn	[22],	the	construction	of	regional	climate-change	660	
information	is	not	most	usefully	viewed	as	a	search	for	an	objective	truth,	but	661	
rather	as	a	search	for	more	complete	descriptions	of	the	realities	that	people	662	
have	experienced	and	may	experience	in	the	future,	and	how	those	depend	on	663	
contingent	factors	that	are	under	human	control.	Kuhn’s	version	of	the	664	
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Bayesian	perspective	described	above,	and	the	cutting	of	the	Gordian	Knot	it	665	
enables,	is	as	follows	[22,	p.	170]:	“If	we	can	learn	to	substitute	evolution-666	
from-what-we-know	for	evolution-toward-what-we-wish-to-know,	a	number	667	
of	vexing	problems	may	vanish	in	the	process.”	In	such	an	enterprise,	physical	668	
knowledge	of	the	climate	system	provides	the	foundation	for	the	construction	669	
of	regional	climate	information.		670	
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																							 	889	

Figure	1.	Projected	changes	in	precipitation	(in	%)	over	the	21st	century	890	
under	a	high	climate	forcing	scenario	(RCP8.5).	Stippling	indicates	where	the	891	
multi-model	mean	change	is	large	compared	with	natural	internal	variability	892	
in	20-year	means	(greater	than	two	standard	deviations)	and	where	at	least	893	
90%	of	models	agree	on	the	sign	of	change.	Hatching	indicates	where	the	894	
multi-model	mean	change	is	small	compared	with	internal	variability	(less	895	
than	one	standard	deviation),	but	this	does	not	mean	that	individual	model	896	
changes	are	small.	From	the	Summary	for	Policymakers	of	[2].	897	

	898	

Figure	2.	Projected	average	wintertime	precipitation	change	(in	mm/day)	899	
over	the	Mediterranean	basin	plotted	as	a	function	of	global	warming	level	(in	900	
C)	and	a	‘storyline	index’	that	represents	the	uncertainty	in	the	pattern	of	901	
circulation	change	in	the	region.	The	high	impact	storyline	corresponds	to	the	902	
combination	of	strong	tropical	upper	tropospheric	amplification	of	surface	903	
warming	and	a	strengthening	of	the	stratospheric	polar	vortex,	and	the	low	904	
impact	storyline	to	weak	tropical	upper	tropospheric	amplification	of	surface	905	
warming	and	a	weakening	of	the	polar	vortex.	The	light	blue	dashed	line	906	
represents	a	magnitude	of	change	that	is	statistically	detectable,	and	the	dark	907	
blue	dashed	line	to	one	standard	deviation	of	the	interannual	variability.	In	908	
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the	left	panel,	the	standard	representation	of	the	difference	between	global	909	
warming	levels	of	1.5	C	and	2.0	C	is	shown,	taking	the	low	and	high	impact	910	
storylines	as	spanning	a	range	of	uncertainty.	In	the	right	panel,	differences	911	
are	shown	conditioned	on	different	storylines.	Adapted	from	[16].	912	

	913	

Figure	3.	Surface	conditions	derived	from	infrared	remote	sensing	for	a	small	914	
region	in	central	France,	for	1	August	2000	(left	panels)	and	10	August	2003	915	
(right	panels).	The	top	panels	show	the	normalized	difference	vegetation	916	
index	(NDVI),	with	the	red	colours	indicative	of	vegetation.	The	lower	panels	917	
show	the	radiometric	temperature,	with	the	colour	scale	at	the	bottom.	The	918	
distance	scale	is	shown	in	the	lower-right	panel,	and	the	values	given	in	the	919	
right	panels	indicate	the	average	differences	in	those	parts	of	the	scene	920	
between	the	left	and	right	panels.	Adapted	from	[45].	921	

	922	

Figure	4.	A	causal	network	describing	regional	climate	risk.	The	arrows	923	
indicate	the	directions	of	causal	influence.	See	text	for	details.	924	
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