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Abstract

We examine whether CDS prices around the Credit Crisis can be explained with Merton’s model.

First we invert the model with market prices to reveal skewed volatility smiles over the whole

2005-2012 period. Then we calibrate the model to pre-Crisis data in two novel ways that allow

for skewness, one based on equity-index options (MEIV) and the other on the sensitivity of

CDS prices to equity volatility (MSKEW). In out-of-sample forecasts both calibrations match

the in-Crisis peak of prices, but the second is better at capturing the systematic component of

prices thereafter. Average CDS prices remain at twice their pre-Crisis level long after that event;

the MSKEW calibration demonstrates that this is due to extra idiosyncratic risks, which are

important for some firms but have negligible impact on others.
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1. Introduction

The aim of this paper is to examine whether Merton’s (1974) debt model, suitably calibrated for the

time-varying skewness of asset returns in the risk-neutral domain, can explain the behaviour of CDS

prices before and after the Credit Crisis. The dramatic market conditions after the Lehman default

of September 2008 provide a unique opportunity to examine the performance of the model, because

CDS prices and their causal variables (such as equity volatility) have a very wide range of values

over this period.

To set the context, Figure 1 plots mean and median CDS prices for our sample of 40 investment-grade

companies from the beginning of 2005 to the end of 2012. The vertical line in the middle of the plot

indicates the time of the Lehman default in September 2008. The mean price (continuous, upper

line) is quite stable at less than 50 basis points over 2005 to 2007 but then doubles temporarily to

100 basis points in March 2008 when Bear Stearns collapses. After the Lehman default in September

2008 there is a further doubling of the mean price to about 200 basis points, followed by a fall back

to a range of 80 to 110 basis points which is maintained through to the end of 2012. The median

price (dotted, lower line) is very close to the mean until the first signs of the Crisis appear in 2008,

after which the median is 20 to 100 basis points lower than the mean.

Some questions to be addressed in the paper are prompted by these plots. First, is the large increase

in CDS prices after the Lehman default justified, given the dynamics of CDS prices and key structural

model variables in the earlier period? Second, why do prices remain at least twice as high in 2010-

2012 as they were in 2005-2007? And third, why is the mean price much higher than the median

after the Crisis, when it was not higher before? Our use of the Merton model will help to answer

these questions.

The paper begins by showing that implied volatilities for the cross-section of CDSs display a well-

defined ‘smile’ when plotted against leverage. This is reminiscent of the skewed smile found for

put options on equity indices when using the Black/Scholes model (see, for example, Bollen and

Whaley, 2004). As in that case, the skewness of the smile suggests that downside risk is priced

into investment-grade CDSs: investors take into account the likelihood of catastrophic events, which

make these CDS contracts ‘expensive’. Before the Lehman default, all firms at a given leverage tend

to have the same implied asset volatility, indicating that most risk is considered to be common to all
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of them (i.e. is systematic). After the Lehman default, the smile remains clearly visible but it shifts

upwards and there is much more individual (i.e. idiosyncratic) variation across firms.

Having observed the empirical regularity of the volatility smile, we turn our attention to developing

a method for fitting Merton-style models that can incorporate this feature, i.e. a model that allows

for a fat tail in the risk-neutral distribution of firm value. Our focus is not so much on why the tail

is fat and CDS prices are so large, a feature known as the ‘credit spread puzzle’, but on modeling

how this puzzle changes over time.

The traditional approach to modelling of the CDS price (S) of a firm is to calibrate a Merton

(structural) model to a historic estimate of the firm’s asset volatility (σA), the latter being derived

from the firm’s equity volatility (σE). However, this traditional approach leads to CDS prices that

are close to zero under normal market conditions, because it fits a physical distribution which has

low skewness relative to the risk-neutral distribution.

Instead we use two different approaches to calibrate the model to the risk-neutral distribution and

then compare their performances with the traditional one. The first approach makes use of the

relationship between the volatility smiles of equity-index options and the volatility smiles of CDS

contracts. If the equity-index smile reflects the skewness of the distribution of the share price for

a representative firm, then such skewness should also appear in the distribution of the firm’s asset

value and generate a CDS smile. We project the equity smile to the CDS market, using pre-Crisis

data for the calibration, and make post-Crisis forecasts that change as the equity smile changes. We

denote this approach as the Merton Equity Implied Volatility (MEIV) calibration.

The second calibration is based on the sensitivity of CDS prices to equity volatility (∂S/∂σE), which

may be contrasted with the traditional approach of calibrating directly to equity volatility (σE).1

A time-varying equation for ∂S/∂σE is specified for the calibration in the pre-Crisis period. The

equation allows ∂S/∂σE to rise when either market volatility or individual-firm volatility rises, thus

generating time-series variation in CDS prices. We denote this approach as the Merton Skewed

(MSKEW) calibration.

Before the Lehman default (in-sample), both calibrations fit the data well, generating smiles that

1This new method of calibration is possible because ∂S/∂σE is monotonically related to the equity volatility of the
firm (as we show in Appendix A.3). The relationship between ∂S/∂σE and the credit spread from Merton’s model
has been noted in passing by Campbell and Taksler (2003) and by Gemmill and Keswani (2011), but we are the first
to employ it for explaining the time-series and cross-section features of CDS prices.
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are close to those observed empirically. Moreover, after the Lehman default (out-of-sample), both

calibrations forecast the peak of CDS prices at the end of November 2008. However from mid-

2009 onwards, when calmer conditions return, the two calibrations give rather different forecasts.

Although they generate volatility smiles with similar shapes, those of the MSKEW lie below those of

the MEIV. The MSKEW smiles follow a lower bound, capturing the systematic component of prices

but ignoring the increase in idiosyncratic risks that now raise CDS prices for some firms but not for

others.

The final part of the paper investigates the character of the idiosyncratic risks that cause market

prices to differ from MSKEW forecasts in the post-Crisis period. A multivariate analysis reveals that

liquidity, earnings uncertainty and rating all contribute to the higher average level of post-Crisis CDS

prices. The conclusion is that idiosyncratic risks, that were of relatively little importance before the

Crisis, become permanently more important (for the setting of CDS prices) after that event.

The main contributions of our paper are threefold: first, we demonstrate the existence of volatility

smiles in the cross-section of CDS prices; second, we show how Merton’s model can be calibrated in

two simple ways to take account of these smiles (which reflect the skewed risk-neutral distribution

of firm value); and third, the calibrated models reveal that CDS prices are not excessive during the

Crisis, but remain higher than expected thereafter because firm-specific factors now play a much

more important role that they did before.

The paper is written as follows. Section 2 outlines the data that we use. Section 3 introduces

the Merton model (1974) and explains the two calibrations. Section 4 discusses the forecasts made

with those calibrations and how they compare with market values. Section 5 draws together the

conclusions of the study.

2. Data Sample

We focus our study on U.S. dollar-denominated CDS contracts with five years to maturity, as they

are the most liquid. To ensure continuous availability of CDS data, we take the 125 firms that are

listed in the CDX North American Investment Grade Index (CDX.NA.IG) at the beginning of 2005,

but eliminate those firms that have dropped out from the Index in the subsequent years (until 2012).

We also eliminate all financial, insurance, and real-estate firms, due to the difficulty of interpreting
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their capital-structure variables. There remain forty firms in the sample. This is less than in studies

that use short periods with discontinuous series (such as Arora, Bohn and Zu, 2005; Bao, 2009; and

Bao and Pan, 2013), but similar to other studies that require continuous data (such as Christoffersen,

Ericsson, Jacobs and Jin, 2009, and Du, Elkamhi and Ericsson, 2018). CDS data on prices and quotes

are collected from Markit and checked against Bloomberg prices and quotes for the period January

2005 to December 2012. Firms with a large number of missing data are eliminated. The 1st and

99th percentiles of CDS quotes are winsorized in order to eliminate potential outliers.2

Although CDS prices are available on a daily basis, we use weekly averages so that the impact of

outliers and measurement errors is reduced (for example due to CDS bid-ask spreads). Our final

dataset contains prices and quotes for CDSs of 40 U.S. investment-grade firms over the 418 weeks

from 2 January 2005 to 30 December 2012, giving (after omissions) a total of 16476 observations. A

full list of the firms is given in Appendix B.

Table 1 gives information on the CDS prices and some of the variables that may influence them. The

table is separated into the pre-Crisis period, from 1st January 2005 up to the week of 7th September

2008, (to be used for calibration of the model), the Crisis period of weeks from 14th September 2008

to 31st December 2009, and the post-Crisis period of weeks from 1st January 2010 to the end of 2012.

The average CDS prices are 40 basis points in the first period, rise to 124 points during the Crisis

and only fall back to 93 basis points in the third period. Equity volatilities and the S&P volatility

move together: they start at annualized average values of 23% and 14% respectively in the first

period and rise to 40% and 38% in the Crisis period. Unlike the average CDS prices, the volatilities

then fall back to levels in the third period that are not far above those in the first period, i.e. 24%

and 19% respectively. Leverage at date of observation is quite low for the sampled firms, reflecting

their investment grade, starting at an average of 13%, then rising to 21% in the Crisis and finishing

at 18% in the third period. Note however that there is a wide range of leverage in each period, for

example from 2% to 47% across firms in the first period. The risk-free rate averages 3.7% in the first

period, but then falls close to zero during the Crisis and post-Crisis periods. The firms in the sample

are large, averaging about $20-30 billion across periods, but again there is quite a wide range: for

example, they vary from $3 billion to $177 billion in the first period.

Table 2 gives the ratings for firms, separated once again into Pre-Crisis, Crisis and Post-Crisis periods.

2Mayordomo, Pena and Schwartz (2014) caution that there are significant differences between CDS prices from different
sources, but we do not find large differences between Markit and Bloomberg prices for our sample of firms.
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The effect of the Crisis on ratings is rather modest, which is consistent with agencies that try to ‘rate

through the cycle’ in order to achieve stability in credit ratings. 65% of firms are rated between A

and BBB+ in the Pre-Crisis Period, 62% remain in that range during the Crisis, and 60% after the

Crisis. The firms are all of investment-grade when the sample starts, for which the minimum rating

is normally BBB-, but one firm falls to BB+ during the Pre-Crisis period, two firms are at that level

during the Crisis and these two remain at that level for most of the Post-Crisis period. At the top

end, there are firms of A+ or better in all periods.

3. The Merton Model and Implied Fat Tails

3.1. The Merton Model (1974)

Merton’s model is based on the idea that equity and debt are contingent claims on a firm’s assets.

As in Black and Scholes (1973), the claims are valued under the assumption that there are no

impediments to arbitrage. Let the firm’s assets (A) follow a lognormal diffusion process with growth

rate µ and volatility σA:

dAt = µAtdt+ σAAtdWt (1)

where W is a Brownian motion. The firm’s liabilities consist of a risky zero-coupon bond B (with

face value D and maturity T ) and equity E. The firm’s leverage L is defined here as the ratio between

the present value of the bond’s promised payment D and the total value of the assets A. Thus, we

have L = De−rT

A . Default can only occur at maturity T if AT < D.

Merton (1974) values the risky bond as a contingent claim written on the firm’s assets. The bond is

equivalent to a combination of a long position in a riskless bond and a short position in a European

put option written on the firm’s assets (with strike-price equal to the bond’s face value, D). When

volatility increases, the value of the put option increases and the bond price falls, increasing the

bond’s yield. The credit spread is the difference between the risky bond yield (y) and the risk-free

rate (r). As shown in Appendix A.1, Merton’s expression for the credit spread (S) can be written as

S = y − r = − 1

T
ln[N(d2) +

N(−d1)

L
] (2)

The variables in equation (2) that affect the spread are the asset volatility (σA), the leverage (L)

5



where d1 = −ln(L)

σA
√
T

+ σA
√
T

2

d2 = d1 − σA
√
T

and N(x) is the probability from a standard-normal distribution of x.

and the time to maturity of the debt (T ).3

The extra yield on a risky bond, the credit spread, is a payment to compensate for the probability of

default. Similarly, a riskless bond can be replicated by a long position on a risky bond plus a CDS

contract. The CDS contract is a put option on the firm’s assets and the CDS premium is equal to

the credit spread. If Merton’s model can be applied to credit spreads then it can also be applied to

CDS prices (as has been done by Huang and Zhou, 2008, for example).4

3.2. Evidence of Fat Tails

One of the main limitations of Merton’s standard model is the lognormality assumption, according to

which the risk-neutral distribution of the firm value has only a small left-hand tail. It follows that put

options written on the firm should also have small values, particularly when a firm has low leverage

and the put is deep-out-of-the-money. The result is that CDS prices computed with Merton’s model

for investment-grade firms are often close to zero and more sophisticated versions of this model do

not perform much better (e.g. Geske, 1979, Longstaff and Schwartz, 1995, Leland and Toft, 1996,

Collin-Dufresne and Goldstein, 2001). The literature defines this result as ‘the credit spread puzzle’

(see, amongst others, Eom, Helwege and Huang, 2004, and Huang and Huang, 2002, 2012 for tests

on bond credit spreads, Arora, Bohn, and Zhu, 2005, and Huang and Zhou, 2008, for tests on CDS

spreads, and Bao, 2009 and Bao and Pan, 2013, for tests on both bond and CDS spreads).

By contrast, there are many papers which suggest that the risk-neutral distribution of firm value is

not lognormal but has a fat left-hand tail. For example, Campbell and Taksler (2003) find that the

strength of the positive relationship between equity volatility and credit spreads is far greater than

can be explained by a simple implementation of the Merton model.5 Incorporating a fat tail into a

3There is no payout rate in the formula, because the debt is assumed to be a zero-coupon bond. In our formulation
later in this paper, a stationary leverage ratio is assumed which also makes the payout rate on the debt irrelevant.

4CDS prices have several advantages over yield spreads for empirical studies: first, CDS prices are not affected by
differential tax treatments; second, CDS contracts are likely to be more liquid than corporate bonds, which became
extremely illiquid during the Credit Crisis (Dick-Nielsen, Feldhütter and Lando, 2012); and third, CDS prices for
investment-grade firms are widely reported.

5Many empirical studies investigate the importance of equity volatility for credit spreads but they disagree on its
magnitude (see, amongst others, Avramov et al., 2007; Benkert, 2004; Gemmill and Keswani, 2011; Chen, Lesmond
and Wei, 2007; and Bharath and Shumway, 2008). Campbell and Taksler (2003) find a very large effect, probably
because they use very short-lived transactions prices, whereas others find much smaller effects. Doshi, Ericsson, Jacobs
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structural model might lead to better predictions of credit spreads, particularly for investment-grade

bonds at short maturities (Delianedis and Geske, 2001; Zhou, 2001; Leland, 2009).

Empirical evidence of a fat tail in the risk-neutral distribution can most easily be seen as a volatility

smile.6 If the Merton model is applied to CDS prices in cross section, the implied asset volatilities

when plotted against leverage display a strong smile. This is illustrated in Figure 2 with plots in

March of each year across the eight years of our sample. A logarithmic curve is fitted to each week’s

data. Note that the leverage here, and in the rest of this paper, is a value projected to CDS maturity,

as will be explained in section 3.3 below. Looking across the upper four plots, representing the pre-

Crisis sample, the smile is well-defined but with individual firms’ implied volatilities becoming a

little more scattered as we move from March 2005 to March 2008. A measure of the widening scatter

around the curve is the declining R2 value, starting at 0.91 in March 2005 and falling to 0.62 in

March 2008. Turning to the lower four plots (the post-Crisis period), the smile remains clear but

the scatter is now much larger than before. In particular in March 2009, which is a very unstable

period, the scatter is such that the R2 is only 0.21. Thereafter the scatter becomes narrower, with

R2 in the range of 0.50 to 0.71 for the three weeks in 2010, 2011 and 2012 plotted in the figure.

An interesting initial finding of this paper is therefore that the pattern of implied asset volatilities

from CDS contracts is very systematic in leverage, i.e. implied volatilities for firms with similar

leverage cluster together. This suggests that tail events are not perceived by investors as relating to

individual firms, but are triggered by the fear of a catastrophic default across all firms, as discussed

by Coval, Jurek and Stafford (2009).7 It follows that what is most important for the pricing of CDS

contracts of investment-grade firms is market-wide systematic risk, rather than the idiosyncratic risk

of any individual firm. To a first approximation, the same shape of risk-neutral distribution for firm

value may be applied to all investment-grade firms.8 Nevertheless, the increasing scatter after the

Lehman default in Figure 2 indicates that firm-specific risk becomes more important for prices as

and Turnbull (2013) relate default intensity to equity volatility, leverage, and the term-structure of interest rates; the
large contribution of equity volatility is again confirmed. Chen, Chidambaran, Imerman and Sopranzetti (2014) find
the default probability of Lehman Brothers through time, using similar variables in a structural model.

6If there were an equity price with a lognormal distribution, there would be no smile for equity options but there would
be a small smile for CDSs or bonds because of the effect of leverage on the distribution of the asset price. The smile
in CDS contracts has also very recently been noted independently by Kelly, Manzo and Palhares (2016).

7The existing theoretical literature supports this hypothesis. For example, Collin-Dufresne, Goldstein and Helwege
(2010) suggest that a credit contagion can result from the “updating of investors’ beliefs” on the likelihood of firms’
crashes. The contagion may depend on the characteristics of the credit event, the particular company and its industry
(see Jorion and Zhang, 2007).

8We have verified that this specific pattern is not only a CDS phenomenon by analyzing corporate bond yield spreads
for 238 U.S. investment-grade firms on 5 January 2000. (The data source is Bloomberg and we thank Aneel Keswani
for providing these data). We find exactly the same kind of implied volatility ‘smile’ to exist in bond spreads as in
CDS prices.
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the Crisis develops.

We can fit a curve to the volatility smile to make it continuous and then invert it to reveal the risk-

neutral distribution in a particular week. As an example, CDS prices from the week beginning 19th

March 2006 (already used for the smile in Figure 2) are used to generate the left tail of the risk-neutral

distribution which is plotted in Figure 3. We also plot the tail of a lognormal distribution with a

volatility of 17%. The fat tail of the distribution implied from the CDS data (continuous line) is in

clear contrast to the thin tail of the lognormal distribution (dashed line).9 Consistent with Figure

3, Doshi, Ericsson, Jacobs and Turnbull (2013) have estimated that over 2001 to 2010 the tail of the

risk-neutral (Q) distribution for CDS contracts is about four times as large as that of the physical (P)

distribution.10 This gap between Q and P asset distributions is hard for conventionally-estimated

models to explain.

3.3. Fat Tails and the Merton Model

The next step is to consider how a fat-tailed distribution can be incorporated into a Merton-style

model for CDS prices. One way would be to assume that the underlying process for the firm’s assets

has stochastic volatility and jumps. Such a process can be estimated from high-frequency data on

equity prices (e.g. Zhang, Zhou and Zhu, 2009)11 or with a GARCH model (e.g. Christoffersen,

Jacobs and Ornthanalai, 2013). Equity options and equity-index options can also be used for the

estimation. Hull, Nelken and White (2005) use two equity options to infer directly the Merton

spread. Cremers, Driessen, Maenhout and Weinbaum (2008) show how implied volatilities relate

to bond spreads, while Cremers, Driessen and Maenhout (2009) estimate jump parameters for firm

value and bond spreads using both individual and equity-index options. Carr and Wu (2009), Bao

(2009), Chen and Kou (2009), Cao, Yu and Zhong (2010), Wang, Zhou and Zhou (2013), Bai and

Wu (2016), Kelly, Manzo and Palhares (2016) and Du, Elkamhi and Ericsson (2019) all use equity

options (some in more formal ways than others) to estimate the Q distribution and generate credit

9Because of the limited range of leverage across the 40 firms, the analysis can only reveal the left-hand tail of the
implied distribution. A 17% volatility is used for the lognormal distribution as that is the volatility computed with
the method of Schaefer and Strebulaev (2008) in that week.

10Feldhütter and Schaefer (2018) argue that the long-run probability of default has been understated, which can explain
the apparent difference between the Q and P distributions. Their results may be contrasted with those in Huang and
Huang (2012), who attribute very little of the credit spread to the shorter-term probability of default.

11There is also a large parallel literature on the character of the asset-price process which could generate large out-of-
the-money put values on equity indices (see e.g. Broadie, Chernov and Johannes, 2009).
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spreads.12

We prefer to take two more simple approaches to calibrating the observed Q distribution. The first

of these (Merton Equity Implied Volatility, MEIV) is based on relating the Q distribution for CDS

contracts to the Q distribution for contemporaneous equity-index options, using volatility smiles for

that projection. It assumes that idiosyncratic factors do not affect the CDS prices of different firms,

consistent with the well-defined volatility smiles that we have already observed across firms before

the Lehman default. Our second approach to calibration (Merton Skewed, MSKEW) is to connect

the Q and P distributions by estimating the sensitivity of each firm’s CDS price (Q domain) to both

the volatility of its own equity and the volatility of the equity index (both P domain).

Instead of assuming that leverage declines over time, as is implicit in the conventional Merton model

because of the drift in the asset price at the risk-free rate, we follow Collin-Dufresne and Goldstein

(2001) in assuming throughout this paper that leverage is mean-reverting (i.e. there is a stationary

leverage ratio). The firm’s current leverage is assumed to revert back to 75% of its long-run value

after five years, with the latter measured here as the average leverage over 2005 to 2012. The 75%

adjustment after five years is based on the results in Flannery and Rangan (2006), which suggest that

the annual rate of reversion is somewhere between 51% per 5-years, with Fama/MacBeth estimation,

and 88% per 5-years, with panel estimation.

The MEIV and MSKEW calibrations will now be explained in more detail.

3.4. The MEIV Calibration

Implied volatilities for S&P500 index options (SPX) are obtained from OptionMetrics for each

Wednesday over the period January 2005 to December 2012. Taking two option maturities near

to 9 months with large numbers of exercise prices, a 9-month ‘constant maturity’ smile is generated

for each day by interpolation. We choose 9 months because it is a maturity around which there are

liquid and well-reported options with slightly longer and slightly shorter maturities. The relationship

between the 9-month equity smile of the index and the 5-year asset smile of the CDS contracts is

then estimated for the pre-Lehman period. This is done in two steps.

First, the equity smile is projected with a logarithmic function to the moneyness (leverage) of the

12Coval, Jurek, and Stafford (2009) and Collin-Dufresne, Goldstein, and Yang (2012) extend this insight to the pricing
of bundles of CDS contracts, i.e. to the pricing of CDO tranches.
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CDS contracts. Coval, Jurek and Stafford (2009) make projections in a rather similar way when

calibrating Merton’s model to CDS indices, although they are not very explicit, and Culp, Nozawa

and Veronesi (2018) examine bond spreads that would arise for firms that held assets replicating the

equity index.

Second, a proportional adjustment is estimated for shifting the projected equity smile down to the

CDS smile. The only parameter to be estimated is therefore the proportional shift (θ) to be applied

to the projected equity smile in order to replicate the CDS smile. We expect θ<1 for two reasons:

first, 5-year options have lower implied volatilities than 9-month options (Derman, Kani and Zhou,

1996); and second, asset volatilities are less than equity volatilities (Jones, Mason and Rosenfeld,

1984). A simple average for θ is found for the pre-Lehman period and then used for the out-of-sample

forecasts of the CDS volatility smile. We find the average θ to be 0.653, with a standard error of

0.0041. The small standard error indicates that the value of θ is very stable in the pre-Lehman

period.13 To summarise this methodology, for each week the 9-month SPX smile is used to project

the 5-year CDS smile, based on a logarithmic curve for the SPX smile and a proportional adjustment

factor of θ = 0.653.

As an example, Figure 4 plots for 19th March 2006 the observed CDS and S&P smiles, together with

the projected S&P smile and the MEIV smile (obtained from the S&P smile after the proportional

shift). The vertical axis is the implied volatility and the horizontal axis is moneyness (for index

options) and leverage (for CDS contracts).

The triangles on the right of the figure are the 9-month implied S&P-index volatilities for this day.

The continuous line at the top left is the logarithmic projection of the 9-month S&P smile. The

continuous line below that is the S&P projection adjusted by the θ=0.653 factor. This line may

be compared directly with the observed CDS implied volatilities, which are the cross-shaped points.

On this day, which is in-sample, the projected CDS smile is slightly below the observed values (the

crosses).

Figure 5 is a plot done similarly for 21st September 2008, which is the week after the Lehman default

and therefore an out-of-sample projection. The implied index volatilities on the right (triangles)

are higher on this day than before and those on the left for the CDS contracts (crosses) are more

13θ was also of a very similar magnitude in the post-Lehman sample, having a mean of 0.647 and a standard error of
0.0021. A t-test confirms that θ did not change between the two periods, even at the 15% level of significance.
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scattered than before around the projected MEIV smile, but the latter (lower left line) is still quite a

good approximation of the observed CDS smile. We turn now to our second approach to calibration.

3.5. The MSKEW Calibration

The conventional way to calibrate the Merton model is to assume that the asset value (A) can

be approximated by the book value of debt (D) plus the market value of equity (E). The asset

volatility, σA, can then be calculated from the equity volatility, σE , using Ito’s lemma (Jones, Mason

and Rosenfeld, 1984):14

σA = σE (1− L) (
1

∂E/∂A
) (3)

The MSKEW calibrates Merton’s model with the sensitivity of CDS prices to changes in asset

volatility (∂S/∂σA), rather than with asset volatility directly. In Appendix A.2 we show that the

following equation can be derived within Merton’s model, which relates ∂S/∂σA to asset volatility,

leverage and maturity.15

∂S

∂σA
=

N ′(d1)√
T [N(−d1) + LN(d2)]

(4)

where N ′(d1) = 1√
2π
e−0.5d21 .16

We cannot write an explicit equation relating the CDS price (S) to ∂S/∂σA, leverage (L) and maturity

(T ). Instead, given an estimate for ∂S/∂σA in a particular week, we iterate over different values of

σA until equation (4) is satisfied.17 We can then insert the computed asset volatility, σA∗ , into the

Merton equation (2) to give a model price for the CDS.

So far we have shown that it is possible to calibrate the Merton model with ∂S/∂σA instead of

14An alternative to using the book value of debt is to estimate simultaneously the asset volatility and the asset value,
using an iterative process, such as suggested by Vassalou and Xing (2004), Crosbie et al. (2003), and Bharath and
Shumway (2008). Convergence is sometimes a problem.

15Note that leverage is approximated here empirically as the ratio of the book value of debt to the sum of the book value
of debt plus the market value of equity; this may differ slightly from the present value of debt relative to assets used
in Merton’s equation (2) above. We thank the referee for making this clarification.

16Campbell and Taksler (2003) give a more complicated formulation of this equation. There is a typographic error in
their published version which relates to bracketed terms.

17There is a monotonic relationship between ∂S/∂σA and σA over plausible levels of leverage and volatility, as proved in
Appendix A.3. That suggests that we can calibrate the Merton model with ∂S/∂σA instead of calibrating it with σA.
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calibrating it with σA. However, we cannot observe ∂S/∂σA but only ∂S/∂σE , the sensitivity of the

CDS price to equity volatility. We therefore need to relate ∂σA to ∂σE . This is accomplished with

the leverage adjustment given above at equation (3), which can be re-written in changes (at a given

leverage)18 as

∂σA = ∂σE(1− L)(
1

∂E/∂A
) (3’)

For reasons of clarity, we now extend the notation to include domain and horizon. To calibrate

the model we want to measure the changes in the asset volatility in the Q domain at the five-year

horizon, ∂σA,Q,5, but we can only observe the changes in the equity volatility in the P domain at the

daily horizon, ∂σE,P,d. Equation (3’) is used for the equity-to-asset conversion, leaving domain and

horizon now to be considered.

With respect to domain, the question is how changes in equity volatility in the Q domain relate to

such changes in the P domain. We examine this empirically by comparing changes in the volatility

index VIX (which are in the Q domain, as they are implied from index options) with changes in

the volatility of the S&P500 Index (which are in the P domain). Using a long series of daily data

over 1990-2013, a regression between changes in the two indices has a slope which is not significantly

different from unity.19 It is therefore reasonable to assume that changes in Q and P volatilities are

the same, i.e.:

∂σE,Q,d = ∂σE,P,d. (5)

where the extra subscript d denotes a daily measurement.

With respect to horizon, we want to know the relationship between ∂σE,Q,d and ∂σE,Q,5. There

is considerable evidence from the literature on volatility surfaces (e.g. Derman, Kani and Zhou,

1996) that long-term options have implied volatilities that are much smaller than those on short-

term options. We compare the daily changes in short-term and long-term implied volatilities for

traded options on the 40 companies in our sample over 2005 to 2009. Option data are taken from

OptionMetrics. We find that the absolute changes in volatility for one-month options average 0.808%

and for options with at least one year to maturity average 0.396%, a ratio of 2.04. This result is

18Engle and Siriwardane (2014) discuss how the leverage adjustment is increased if the asset-price distribution has a fat
tail, which is consistent with our modification of the Merton model (using a local volatility which reflects the size of
the fat tail).

19Schaefer and Strebulaev (2008) find that Merton’s model generates plausible hedge ratios for corporate bonds. That
would require that changes in risk-neutral volatilities (Q domain) are of similar magnitude to changes in physical
volatilities (P domain), as we have confirmed here.
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similar to that reported by Bakshi, Cao and Chen (2000), who study long-term options on the

S&P500 Index (LEAPS). It is also very similar to the relationship between over-the-counter 1-month

and 5-year index options which we have calculated with proprietary data from an investment bank.20

Based on this information, we assume that

∂σE,Q,d = 2∂σE,Q,5 (6)

Combining equations (3’), (5) and (6), we obtain the following composite adjustment to be made

in order to estimate changes in 5-year asset volatilities in the Q domain, ∂σA,Q,5, from changes in

short-term equity volatilities in the P domain, ∂σE,P,d:

∂σA,Q,5 = 0.5(1− L)(
∂A

∂E
)∂σE,P,d (7)

Finally, we need to estimate the sensitivity of CDS premiums to equity volatility, ∂S
∂σE,P,d

, in order to

calibrate the model with data before the Lehman default. This is done with a panel regression. The

CDS premium (Sit) is related to the firm’s own equity volatility (σE,P,dit), the market-wide equity

volatility (σS&P,P,dt), the risk-free interest rate (Rt) and the firm’s leverage (Lit). To calculate

equity volatility and leverage we use equity data and quarterly balance sheet information obtained

respectively from the Center for Research in Security Prices (CRSP) database and the COMPUSTAT

database.

Sit = βσE,P,dit + δσS&P,P,dt × σE,P,dit + γRt + νLit + εit (8)

where subscript i denotes the firm and subscript t denotes the period at which the observation is

made.

Dropping the i and t subscripts, the sensitivity of the CDS price to equity volatility from (8) is:

∂S

∂σE,P,d
= β(

∂σE,P,d
∂σE,P,d

) + δ[(
∂σE,P,d
∂σE,P,d

)× σS&P,P,d + (
∂σS&P,P,d

∂σE,P,d
)× σE,P,d] (9)

20These monthly data relate to the UK stock index each month over 2002 to 2006. The estimated ratio is 2.18. The
maturity matching operated in the MSKEW calibration further differentiates our methodology from Zhang, Zhou, and
Zhu (2009) and Cremers, Driessen, and Maenhout (2008). We thank the referee for highlighting this point.

13



Over the in-sample period the S&P volatility is 0.619 times as large as the volatility of the aver-

age firm. Because firm volatility and S&P volatility cannot drift apart in the long run (i.e. are

cointegrated), expected changes in the two variables can be written as
∂σS&P,P,d

∂σE,P,d
= 0.619. The first

derivative in (9) can then be written more simply as:

∂S

∂σE,P,d
= β + δ(σS&P,P,d + 0.619 σE,P,d) (9’)

Combining equations (5), (6), and (9’) we obtain:

∂S

∂σE,Q,5
= 2 (

∂S

∂σE,P,d
)

= 2(β + δ σS&P,P,d + 0.691 δ σE,P,d)

(10)

The nice feature of equation (10), and of the specification of equation (8) from which it is derived, is

that the sensitivity of a firm’s CDS price to changes in its equity volatility ( ∂S
∂σE,Q,5

) is not constant,

but varies over time both with the volatility of the S&P index and with the firm’s own equity

volatility.21

The coefficients β and δ are estimated with the panel regression of equation (8), using the 193 weeks

of data prior to the Lehman default. Because the aim is to explain both time-series and cross-section

effects, we exclude a constant, any fixed effects and other control variables. As shown in Table 3, all

of the variables are significant at the 1% level (according to the t-statistics); the estimated value for

β is 0.791 and for δ is 0.058. The R-squared is 0.355.

As a check on this calibration we have also searched over the pre-Lehman period, with the MSKEW

specification and Merton’s model, for the β and δ coefficients that minimize mean-squared errors.

This procedure yields exactly the same coefficients for β and δ as found with the panel regression.

The next two Figures, 6 and 7, show the smiles from the calibrated MSKEW model for 19th March

2006 and 21st September 2008 (the same two dates as already illustrated for the MEIV calibration

in Figures 4 and 5). On the first, in-sample date, the fit to the observed CDS smile is remarkably

close and it remains so throughout the period before the Lehman default. On the second, just out-

21Note that we do not allow ∂S
∂σE,P,d

to depend on leverage, L. We make this judgement on specification from the

insights of the Merton model, as explained in Appendix C.
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of-sample date, the forecast smile is above the observed smile because equity volatilities have risen

but CDS prices have not yet done so.

4. Time-Series and Cross-Section Forecasts from the Calibrations

In this section of the paper we examine how well forecasts from the two calibrations of the Merton

model, made with parameters estimated from the pre-Crisis period, perform during and after the

Crisis.

4.1. Time-Series Performance

Figure 8 compares weekly-average market and model CDS prices across the 40 firms over the whole

2005-2012 period (both before and after the Lehman default). In the two months after the default of

September 2008, both MEIV and MSKEW forecasts track the huge run-up in prices quite well. In

fact they tend to overshoot, so we may conclude that market prices were not excessively high at the

peak of the Crisis. The tracking of the two calibrations remains good during 2009. Thereafter the

MEIV forecasts fluctuate rather widely around the average market level, while the MSKEW forecasts

are more stable but are below the market level most of the time.

Table 4 compares the implied asset volatilities, prices and forecast errors from the MEIV and MSKEW

calibrations more formally. It also gives information on the prices resulting from a traditional im-

plementation of the Merton model.22 The table is divided into pre-Crisis, in-Crisis and post-Crisis

periods.

We note that in each sub-period the (Q-measure) asset volatilities from the MEIV and MSKEW

calibrations in Table 4 are larger than the implied asset volatilities from the traditional model and

also larger than the observed P-measure equity volatilities given in Table 1. For a firm with no debt,

the P-measure asset volatility would also equal the P-measure equity volatility and so the latter can

be seen as an upper bound to that asset volatility.23

22In an earlier version of the paper, we implemented the Schaefer and Strebulaev (2008) adjustment to Merton’s tra-
ditional model, in which more leverage contributes to a higher asset volatility. While this adjustment is convincing,
it contributes only a very small increase to CDS prices in our sample, even for firms with the highest leverage. We
therefore do not report those results here.

23A full understanding of the pricing of CDS contracts would require a full understanding of the preferences that generate
the gap between the Q-measure and P-measure asset probabilities. In this paper – however – we do not seek to write
a preferences-based model for the pricing of CDSs, instead we study whether CDS pricing is consistent across periods
given those preferences.
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The first numeric column of Table 4 gives values for the 193 pre-Crisis weeks. As this was the period

used for initial calibration, it can tell us little about the performance of the different approaches

except that the traditional model can be rejected: it gives a mean price of 2 basis points and a

median of 0 basis points, whereas the market price has a mean of 40 basis points and a median of

32 basis points in this period. One of the reasons that it gives this low value for the price is that it

uses an average asset volatility of 20% when the implied value is 43% (as shown at the top left of

the table).

The most important results are in the second and third numeric columns, giving results for the 68 in-

Crisis weeks immediately following the Lehman default and the 157 post-Crisis weeks from January

2010 to December 2012. Both of these periods are out-of-sample. During the in-Crisis period, the

market price averages 124 basis points and the two calibrations give averages of 131 (MSKEW) and

113 (MEIV) basis points. The calibrated average prices are therefore close to the market average

over this period, as are the calibrated asset volatilities (both being 50%, versus 49% for the market),

but the median prices tell a slightly different story. While the market median price is 74 basis points,

the medians for the two calibrations are higher, being 120 (MSKEW) and 109 (MEIV) basis points.

For a typical (median) firm, the two calibrations therefore overshoot in terms of prices during the

in-Crisis period.

During the post-Crisis period (third numeric column of the table), the mean price in the market is

94 basis points and the MEIV mean price is the same but the MSKEW mean price is much lower,

at 52 basis points. That is a result to which Figure 8 has already drawn attention: the MSKEW

calibration leads to average post-Crisis forecasts over 2010-2012 that are below those of the MEIV

calibration, with the latter being close to the market average. If the medians are compared for the

post-Crisis period, the market average is 71 basis points, the MEIV value is rather higher at 92 basis

points and the MSKEW value is rather lower at 48 basis points.

So far in discussing the forecasts in Table 4 we have examined representative values, the means and

medians. At the bottom of the table the mean-squared pricing errors and the root mean-squared

pricing errors are given. Interestingly, there is little difference in mean-squared forecasting errors

between the two calibrations, either for the in-Crisis period or for the post-Crisis period. For example,

during the in-Crisis period the mean-squared error for the MSKEW calibration is 13530 basis points

and for the MEIV calibration is 14694 basis points. For the post-Crisis period the ranking is reversed,
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with a higher MSKEW value (5903 basis points) than MEIV value (5421 basis points). It follows

that, although the mean and median prices from the MSKEW calibration show more bias than those

from the MEIV calibration, the underpricing being -45% on average in the post-Crisis period (as

shown in the two-from-bottom segment of the table), the MSKEW prices are also more stable and

that leads to mean-squared errors that are similar for the two calibrations. At this stage we cannot

say that one calibration is better than the other. The reason for the contrast in mean (median) and

mean-squared error performance is addressed in the next sub-section.

4.2. Cross-Section Performance (Volatility Smiles)

Another way to examine the calibrations is to compare their cross-sections of forecast volatilities, i.e.

their volatility smiles. This is done in Figure 9 for three separate weeks in the post-Crisis period of

2010-2012. The forecast smiles for the two different calibrations have a similar shape, but the smile

for the MEIV is consistently above that for the MSKEW, as would be expected from the results on

prices in Table 4.

A closer examination of the smiles (curves) in Figure 9 shows that the MSKEW smile maps-out a

lower bound for the market volatilities (the diamond-shaped dots) in these weeks. And it also does

this for most other weeks in the post-Crisis period that we have examined (not shown here). There

is a good reason for the forecasts to trace such a bound. Before the Crisis, as can be seen for some

particular weeks by looking back to Figure 2, all firms lie closely along the market smile. Given

a particular leverage level, there is almost no variation across firms in implied volatility, so there

is almost no idiosyncratic risk that affects CDS prices. The average R-squared value for the fitted

smiles across the 193 pre-Crisis weeks is 0.80, i.e. only 20% of the variance is idiosyncratic. In the

Post-Crisis period from 2010 to 2012 (as also shown for some particular days in Figure 2), firms

show much more idiosyncratic risk: for the 157 post-Crisis weeks the fitted curves have an average

R-squared of 0.54, implying that 46% of the variance is now idiosyncratic. Idiosyncratic risk (apart

from own equity volatility) is not an input to our calibrations of Merton’s model and, if present, will

raise CDS prices and implied volatilities. It cannot lower them. Hence the tracking of a lower bound

to the smile by the MSKEW calibration, reflecting the absence of idiosyncratic risk for some firms

but its substantial presence for others, is entirely to be expected.

Another way of seeing this is by inverting the market-implied volatilities defined by a curve fitted

17



to the bound and then estimating the corresponding market-implied risk-neutral distributions (at

the bound) over different weeks. Figure 10 plots the implied tails of these estimated risk-neutral

distributions over the period 2006-2012, focusing on one week in each of the years 2006, 2008, 2010

and 2012. The fattest tail, not surprisingly, is in December 2008, revealing a higher systematic risk

priced in CDSs. By March 2010 the tail has become intermediate in size and by March 2012 the tail

has diminished to be almost exactly the same size as it had been six years earlier, in March 2006.

Taken together, the evidence from Figures 9 and 10 indicates that the MSKEW works well in the

post-Crisis period for firms which are near-to the lower bound, i.e. for those firms which have very

little firm-specific risk. After the Crisis something has changed: there is an increase in idiosyncratic

risk priced in some of these investment-grade CDS contracts, which is precisely what the MSKEW

forecasts suggest.

4.3. What are these extra Post-Crisis Idiosyncratic Risks?

Having concluded that idiosyncratic risks rise after the Crisis, we would like to know what the new

risks are. We hypothesise that liquidity, uncertainty about a firm’s performance and ratings may be

relevant and we use them in panel regressions to explain forecast errors. With respect to liquidity, we

use two measures. The first is firm size and we take its inverse to adjust for the long right-hand tail

of this variable. The second measure of liquidity is the bid/ask spreads on a firm’s CDS contracts.

Because the bid/ask rises directly with the CDS price, we take only that part of it which is orthogonal

to the CDS price. With respect to uncertainty about a firm’s performance, this is measured by the

range of forecasts of earnings per share for a firm, as suggested by Buraschi, Trojani and Vedolin

(2014). With respect to ratings, they are included because they may reflect information that is

relevant but does not yet affect a firm’s equity volatility. We use S&P ratings and scale them (as

before) from 1 for AAA to 16 for B-, so a higher score indicates a lower rating.

We use forecast errors from the MSKEW and MEIV calibrations as the dependent variables in panel

regressions and the results are shown in Table 5. For the MSKEW calibration the R2 is 0.44 and

for the MEIV it is 0.47. In both cases the only variable that is of low significance and has the

wrong sign is that for CDS bid/ask. The other three variables – firm size, uncertainty of earnings,

and ratings – all have positive coefficients and are significant (using heteroscedasticity-corrected

standard errors and covariances) at the 0.1% level. The estimated impacts of one-standard-deviation
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changes in variables are very similar across the two different calibrations: the contributions of firm

size, earnings uncertainty, and rating are 20, 23 and 19 basis points respectively for the MSKEW

calibration and 22, 29, and 21 basis points respectively for the MEIV calibration. Note, however,

that the constant in the regression is significantly negative for the MEIV errors (-74 basis points)

but it is not significantly different from zero for the MSKEW errors. This is another indication

that the higher average prices from MEIV forecasts may be rather misleading. To summarise, the

regressions confirm that both calibrations omit idiosyncratic factors (relating to liquidity, uncertainty

and ratings) that have a large positive impact on CDS prices in the post-Crisis period of 2010-2012.

Our results on the role of idiosyncratic risks may be compared with those in Coro, Dufour and

Varotto (2013). Using panel regressions, they conclude that liquidity risk rather than credit risk was

the dominant factor for CDS prices both before and during the Crisis. A similar conclusion on the

role of liquidity risk is reached by Meine, Supper and Weiss (2015). By contrast, we conclude that

(systematic) credit risk was the only important factor in the pre-Crisis period, but that liquidity and

other idiosyncratic factors mattered for some (but not all) firms in the post-Crisis period.

5. Conclusions

The aim of this paper was to examine whether Merton’s model could explain CDS prices in the

context of the Credit Crisis. Our first conclusion is that using the model allowed us to reveal

clear volatility smiles in CDS prices, when individual firms’ implied volatilities were plotted against

leverages. Before the Crisis these smiles were particularly well-defined, indicating that all firms of a

given leverage were treated by investors as being the same – there was almost no role for firm-specific

(idiosyncratic) risk at that time. After the Lehman default, the smiles were still easy to discern, but

their shapes changed more frequently from week to week. There was also considerable variation of

implied volatilities above and below the estimated curves, so idiosyncratic risks now affected CDS

prices much more than before.

In order to examine what was underlying the changing shapes of the smiles (and hence of the risk-

neutral distributions of firm value), we developed two different calibrations of Merton’s model. These

were estimated with pre-Crisis data and then used to make forecasts during and after the Crisis.

One of the calibrations (the MSKEW) was based on historic relationships between CDS smiles and

observed volatilities. The other calibration (the MEIV) was based on relating the shape of the CDS
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smile to the concurrent shape of the equity-index-option smile. The two calibrations were able to

forecast a large proportion of the cross-section variation of CDS prices and also much of their time-

series variation. By contrast, a traditional calibration of the model generated prices that were close

to zero, except in the period immediately after the Lehman default when equity volatility was at its

peak. Our second conclusion is therefore that Merton’s model can be useful for understanding what

determines CDS prices, but it needs to be calibrated to the skewed risk-neutral distribution rather

than to the observed equity volatility.

In the introduction to this paper, we posed three empirical questions. The first was whether the

increase in CDS prices soon after the Lehman default could be justified, to which the answer is “yes”.

The prices predicted for that time by both of our calibrations were even higher than those observed

in the market.

The second question was why average prices remained at least twice as high in 2010-2012, long after

the Crisis, as they had been prior to the Crisis in 2005-2007. The answer is that before the Crisis

there was almost no role for idiosyncratic risk in determining CDS prices, but afterwards such risk

became permanently important for about half of the firms in our sample. From analysing forecast

errors after the Crisis, we found that the newly important specific risks that affected CDS prices

were threefold: a firm’s liquidity, the uncertainty of its earnings and its current rating.

The third question was why the mean CDS price was much higher than the median after the Crisis,

when it was not higher before. The answer is that the median firm was not greatly affected by

idiosyncratic risk after the Crisis, but the mean was increased by the impact of that risk on a large

subset of firms. Such extra risk could only increase CDS prices for the relevant firms (and not

decrease them), because of the low level of idiosyncratic risk in the pre-Crisis period. The result was

a skewed distribution of CDS prices in cross-section, resulting in the mean exceeding the median.

The Merton model is simple and the calibrations in this paper, although novel, are also relatively

simple. More research on what determines the risk-neutral distribution of firm value (and hence of

volatility smiles) is important, because the values of both equity and debt depend on that single

distribution. The integration of asset pricing across equity and debt markets remains a potentially

rich field for further research.
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Figures and Tables

Figure 1: Mean and Median CDS Prices Over 2005 to 2012

The prices are plotted weekly for the sample of 40 firms. The data are from Markit. The vertical line indicates the week
of 14 September 2008, in which the Lehman default occurred.
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Figure 3: Left Tails of Asset-Price Distributions: Implied versus Lognormal on 19th March 2006

The plots are probability distributions relating to 40 firms in the week of 19th March 2006. The blue continuous line is
implied from the CDS prices of the firms. The green dashed line is based on the Merton model with an asset volatility of
17%. The methodology used for the implied distribution is to estimate an implied volatility for each firm with the Merton
model. A logarithmic curve is then fitted to the implied volatilities against leverage, as shown in Figure 2 above. The
Merton model is then inverted to give an exceeding probability at each different leverage level, from which the marginal
probability distribution can be calculated.
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Figure 4: MEIV Calibration to Equity-Index Smile for week of 19th March 2006

The plots are of implied volatilities against leverages for S&P index options and for CDS contracts of 40 investment-grade
firms for the week of 19th March 2006. The green triangles on the right are the implied volatilities for 9-month S&P
options. The continuous line at the top left is the logarithmic projection of the 9-month S&P smile. The blue crosses on
the left are the CDS-implied volatilities for individual firms. The red squares on the left are values for implied volatilities
generated with the MEIV model (that is, the S&P projection adjusted by the θ=0.653 factor).
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Figure 5: MEIV Calibration to Equity-Index Smile for week of 21st September 2008

The plots are of implied volatilities against leverages for S&P index options and for CDS contracts of 40 investment-grade
firms for the week of 21st September 2008. The green triangles on the right are the implied volatilities for 9-month S&P
options. The continuous line at the top left is the logarithmic projection of the 9-month S&P smile. The blue crosses on
the left are the CDS-implied volatilities for individual firms. The red squares on the left are values for implied volatilities
generated with the MEIV model (that is, the S&P projection adjusted by the θ=0.653 factor).
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Figure 6: Implied Market Volatilities and MSKEW Volatilities for week of 19th March 2006

The plots are of implied volatilities against leverages for CDS contracts across 40 investment-grade firms for the week of
19th March 2006. The blue-diamond dots are values for market-implied volatilities for individual firms. The red-square
dots are values generated by the MSKEW model and the line is a logarithmic fit to these observations.
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Figure 7: Implied Market Volatilities and MSKEW Volatilities for week of 21st September 2008

The plots are of implied volatilities against leverages for CDS contracts across 40 investment-grade firms for the week of
21st September 2008. The blue-diamond dots are values for market-implied volatilities for individual firms. The red-square
dots are values generated by the MSKEW model and the line is a logarithmic fit to these observations.
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Figure 8: Calibrated and Forecasted Average CDS Prices, weekly over 2005 to 2012

The figure compares average market prices for CDS contracts across the 40 firms in a week with averages from the MEIV
and MSKEW calibrations. The left-hand axis is basis points. The vertical line in the middle of the figure indicates the
date of the Lehman default. The calibrated prices are in-sample up to that date and out-of-sample thereafter.
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Figure 10: Implied Tails of Risk-Neutral Distributions over 2006-2012, Based on Firms at the
Volatility/Leverage Bound

Each line in this figure is an implied probability distribution for firm value on the date shown. The distribution is based on
implied volatilities along the lower volatility/leverage bound on that day. The methodology is the same as that described
in the rubric to Figure 3.
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Table 2: Ratings of the Firms over the weeks of the Sample Periods
The ratings are from S&P and relate to each firm in each week. There are 40 firms.

RATING PRE-LEHMAN - DEFAULT CRISIS PERIOD POST-CRISIS
(1 Jan 2005 - 13 Sep 2008) (14 Sep 2008 - 31 Dec 2009) (1 Jan 2010-31 Dec 2012)

number % number % number %

AA- 39 0.5% 0 0.0% 35 0.6%
A+ 290 3.8% 110 4.0% 122 2.0%
A 1552 20.2% 706 26.0% 1653 27.3%
A- 1692 22.0% 517 19.0% 891 14.7%

BBB+ 1754 22.8% 454 16.7% 1093 18.0%
BBB 1439 18.7% 435 16.0% 1318 21.7%
BBB- 864 11.2% 373 13.7% 741 12.2%
BB+ 64 0.8% 77 2.8% 157 2.6%
BB 0 0.0% 48 1.8% 52 0.9%
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Table 3: Panel Regression of CDS Prices on Equity Volatilities and Other Factors
The table gives the results from a panel regression of weekly cross-sections of 40 firms over the period 2nd January 2005 to
7th September 2008.
The dependent variable is the CDS price for a firm in a given week.
White standard errors and covariance are used to control for heteroscedasticity. The resulting t-values are given in brackets.
*,** and *** indicate significance at the 10%, 5% and 1% levels respectively.

Method OLS

Fixed effects no

Equity Volatility 0.791
(6.28)***

Equity Volatility × S&P Volatility 0.058
(9.66)***

Leverage 38.630
(7.07)***

Risk-free Rate -1.681
(-4.19)***

R2 0.355
Number of observations 7694
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Appendix A.

Merton’s Model and the Sensitivity of CDS Prices to Asset Volatility

A.1. Merton’s Model24

At time 0 (today) the firm has assets A0 and liabilities comprising bonds worth B0 and equity worth

E0. By definition the assets equal the liabilities in value,

A0 = B0 + E0 (A.1)

For simplicity, it is assumed that the firm has issued only one bond which pays no coupon. The bond

matures at time T and the promised payment at that time (i.e. the face value of the bond) is D.

The equity of the firm can then be considered to be a call option on the assets with maturity T and

exercise price D. The call option pays:

ET = max(AT −D, 0) (A.2)

The market value of the firm today, E0, depends on the distribution of the value of the assets until

maturity, which is assumed to be lognormal and free of any dividend payments. Following Black and

Scholes (1973) and Merton (1974) the value of the firm today is

E0 = A0N(d1)−De−rTN(d2) (A.3)

where N(.) is the cumulative function for the standard Normal distribution,

d1 =
ln(

A0e
rT

D )

σA
√
T

+ σA
√
T

2

and d2 = d1 − σA
√
T .

Now define leverage L as the present value of the promised debt payment (discounted at the risk-free

rate) relative to the value of the assets, i.e.

L =
De−rT

A0
(A.4)

24We follow closely Hull, Nelken and White (2005) in section A.1 of the Appendix A.
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Then the value of the equity can be re-written from Equation (A.3) as,

E0 = A0[N(d1)− LN(d2)] (A.5)

and, using the definition of leverage, we can re-write d1 more simply as:

d1 = −ln(L)

σA
√
T

+ σA
√
T

2 .

Because we know from Equation (A.1) that B0 = A0 − E0, we can re-write Equation (A.5) as an

expression for the value of the debt,

B0 = A0 −A0[N(d1)− LN(d2)] = A0[N(−d1) + LN(d2)] (A.6)

Now define y as the risky yield to maturity of the debt, such that

B0 = De−Ty (A.7)

Substituting (A.7) into Equation (A.6), dividing both sides of the equation by De−rT , and using the

definition of leverage (L) in (A.4), we can then write the yield to maturity as,

y = r − 1

T
ln[N(d2) +

N(−d1)

L
] (A.8)

and moving the risk-free rate, r, to the left-hand side we can write the credit spread as,

S = y − r = − 1

T
ln[N(d2) +

N(−d1)

L
] (A.9)

Equation (A.9) is Merton’s model for the credit spread. Note that the spread depends only on

maturity (T ), leverage (L) and asset volatility (σA).

A.2. Sensitivity of CDS Price to Changes in Asset Volatility

Now we want to see if the sensitivity of the spread to changes in asset volatility can be found with

the model, i.e. we require an expression from the model for ∂S
∂σA

.
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Taking the first derivative of S, defined as in Equation (A.9), with respect to σA we obtain:

∂S

∂σA
= − 1

T
×
∂N(d2)
∂σA

+ ∂N(−d1)
∂σA

1
L

[N(d2) + N(−d1)
L ]

= − 1

T
×
N ′(d2) ∂d2∂σA

+N ′(d1)∂(−d1)
∂σA

1
L

[N(d2) + N(−d1)
L ]

=
N ′(d1) ∂d1∂σA

− LN ′(d2) ∂d2∂σA

T [N(−d1) + LN(d2)]

(A.10)

where N ′(d1) = 1√
2π
e−

d21
2 and

N ′(d2) = 1√
2π
e−

d22
2

We can show that:

∂d2

∂σA
=
∂d1

∂σA
−
√
T (A.11)

and

N ′(d2) =
1

L
N ′(d1) (A.12)

Proof of Equation (A.11):

Given the definition of d1,

∂d1
∂σA

= lnL
σA2
√
T

+
√
T

2

Similarly,

∂d2
∂σA

= lnL
σA2
√
T
−
√
T

2

Therefore,

∂d2
∂σA

= ∂d1
∂σA
−
√
T

Proof of Equation (A.12):

We want to prove that

1
L = N ′(d2)

N ′(d1) = e−
d22
2

e−
d21
2

= e
d21−d

2
2

2

Equivalently, we want to show that

−lnL =
d21−d

2
2

2

Since d2 = d1 − σA
√
T , we can rewrite the right-hand side as

d21−d
2
2

2 = 1
2 (d1 + d2)(d1 − d2) = 1

2 (2d1 − σA
√
T )σA

√
T = (d1 − σA

√
T

2 )σA
√
T

Recall that d1 = −ln(L)

σA
√
T

+ σA
√
T

2 . Thus:

( −lnL
σA
√
T

+ σA
√
T

2 − σA
√
T

2 )σA
√
T = −lnL
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We can then substitute first (A.11) and then (A.12) into (A.10):

∂S

∂σA
=
N ′(d1) ∂d1∂σA

− LN ′(d2) ∂d2∂σA

T [N(−d1) + LN(d2)]

=
N ′(d1) ∂d1∂σA

− LN ′(d2) ∂d1∂σA
+ LN ′(d2)

√
T

T [N(−d1) + LN(d2)]

=
N ′(d1) ∂d1∂σA

−N ′(d1) ∂d1∂σA
+N ′(d1)

√
T

T [N(−d1) + LN(d2)]

=
N ′(d1)

√
T

T [N(−d1) + LN(d2)]

=
N ′(d1)√

T [N(−d1) + LN(d2)]

(A.13)

Equation (A.13) expresses the sensitivity of the spread to a change in asset volatility as a function

of the same variables that affect the spread in (A.9), namely asset volatility, time to maturity and

leverage. As an example, suppose T = 5, σA = 0.50, r = 0.05, L = 0.10. For a unit change in σA the

resulting change in spread from Equation (A.13) is 0.05922. For a 1% change in σA (from 0.50 to

0.51) the change in spread is therefore 0.0005922, or 5.92 basis points.25 Moreover, from Equation

(A.13) we can confirm that ∂S
∂σA

is always positive.

In the paper our approach is to use ∂S/∂σA as an input to Merton’s model, instead of using σA,

thus allowing for a long tail in the distribution of σA. We can do this because ∂S/∂σA and σA

are monotonically related. However, we do not have an analytic solution for the model when using

∂S/∂σA as an input. Instead we proceed by adjusting σA iteratively until the value of ∂S/∂σA from

Equation (A.13) matches that required for a firm on a particular date. The model then gives a value

for the CDS price based on the iteratively derived σA that matches ∂S/∂σA.

A.3. Monotonic Relationship of ∂S/∂σA with σA (and hence of ∂S/∂σE with σE)

We now demonstrate the positive monotonic relationship between ∂S/∂σA and σA, by showing that

the second derivative of S with respect to σA is always always positive for the range of data in our

sample. Because ∂σA and ∂σE are positively related via leverage, a positive monotonic relationship

between ∂S/∂σA and σA also implies a positive monotonic relationship between ∂S/∂σE and σE . In

fact, from Equation (3’) in sub-section 3.5 we know that:

25As a check on the equation, the spread at a volatility of 0.495 is 42.80 basis points and the spread at a volatility of
0.505 is 48.72 basis points, a change of 5.92 basis points.
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∂σA = (1− L) ( ∂A∂E ) ∂σE

which can be re-written as ∂σA = φ ∂σE

where φ = (1− L) ( ∂A∂E ) > 0 for firms which are not in default.

This implies: ∂S
∂σA

= 1
φ

∂S
∂σE
⇒ ∂2S

∂σA2 = 1
φ2

∂2S
∂σE2 ⇒ If ∂2S

∂σA2 > 0 then ∂2S
∂σE2 > 0 (and vice-versa).

Note that since S = y − r, then ∂S
∂σA

= ∂y
∂σA

and ∂2S
∂σA2 = ∂2y

∂σA2 .

To simplify a little our calculations we start by rewriting Equation (A.7): B0 = De−Ty.

Next, we note that the risky bond is equal in value to a risk-free bond with maturity T , less the

value of a European put on the assets (held by the shareholders) with an exercise price equal to the

face-value of the bond and exercise time T ,

B0 = De−Tr − P0 (A.14)

Using (A.7) and (A.14) we have: De−Ty = De−Tr − P0

Taking the first derivative of each side of the equation with respect to σA, we obtain: D ∂e−Ty

∂σA
= − ∂P0

∂σA

−DTe−Ty ∂y
∂σA

= − ∂P0

∂σA

DTe−Ty ∂y
∂σA

= ∂P0

∂σA

We re-write the first derivative of the spread S with respect to the asset volatility σA as:

∂S

∂σA
=

∂y

∂σA
= (

1

DTe−Ty
)
∂P0

∂σA
(A.15)

Next, the second derivative of S with respect to σA is equal to:

∂2S

∂σA2
=

∂2y

∂σA2
= (

1

DTe−Ty
)
∂2P0

∂σA2
+ (

1

DT
)TeTy

∂y

∂σA

∂P0

∂σA

= (
1

DTe−Ty
)
∂2P0

∂σA2
+ (

1

D
)eTy

∂P0

∂σA
(

1

DTe−Ty
)
∂P0

∂σA

= (
1

DTe−Ty
)
∂2P0

∂σA2
+ (

∂P0

∂σA
)
2

(
eTy

D
)

2

(
1

T
)

(A.16)

It can be shown that:

∂2P0

∂σA2
= (

∂P0

∂σA
)(
d1 × d2

σA
) (A.17)

Proof of Equation (A.17):
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First, using Equations (A.11) and (A.12), we demonstrate that:

∂P0

∂σA
= V ega = A0N

′(d1)
√
T = A0

√
T 1√

2π
e−

d21
2

We start by rewriting the put pricing equation:

P0 = De−TrN(−d2)−A0N(−d1)

Then we take the first derivative of P0 with respect to σA:

∂P0

∂σA
= V ega = De−TrN ′(d2)∂(−d2)

∂σA
−A0N

′(d1)∂(−d1)
∂σA

= A0N
′(d1) ∂d1∂σA

−De−TrN ′(d2) ∂d2∂σA

Recall (A.11): ∂d2
∂σA

= ∂d1
∂σA
−
√
T

and from (A.12): N ′(d2) = 1
LN
′(d1) V A0N

′(d1)−De−TrN ′(d2) = 0

Thus,

∂P0

∂σA
= V ega = A0N

′(d1) ∂d1∂σA
−De−TrN ′(d2) ∂d2∂σA

= A0N
′(d1) ∂d1∂σA

−De−TrN ′(d2)( ∂d1∂σA
−
√
T )

= [A0N
′(d1)−De−TrN ′(d2)]︸ ︷︷ ︸

=0

∂d1
∂σA

+De−TrN ′(d2)︸ ︷︷ ︸
=A0N ′(d1)

√
T

= A0N
′(d1)

√
T = A0

1√
2π
e−

d21
2

√
T

Q.E.D.

Next, we take the first derivative of V ega with respect to σA:

∂2P0

∂σA2 = ∂V ega
∂σA

= [A0
1√
2π
e−

d21
2

√
T ]︸ ︷︷ ︸

=
∂P0
∂σA

[−d1 × ∂d1
∂σA

] = ∂P0

∂σA
[−d1 × ∂d1

∂σA
]

Let us focus on the second multiplier in the equation above: −d1 × ∂d1
∂σA

.

Recalling that d1 = −lnL
σA
√
T

+ σA
√
T

2 and − ∂d1
∂σA

= −lnL
σA2
√
T
−
√
T

2 ,

−d1 × ∂d1
∂σA

can be rewritten as:

−d1 × ∂d1
∂σA

= d1 × (− ∂d1
∂σA
× σA

σA
) = 1

σA
(d1) (

−lnL
σA
√
T
− σA

√
T

2
)︸ ︷︷ ︸

=d2

= d1×d2
σA

Therefore: ∂2P0

∂σA2 = ( ∂P0

∂σA
)(d1×d2σA

)

Q.E.D.
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Using Equations (A.15) and (A.17), we can now re-write Equation (A.16) as:

∂2S

∂σA2
= (

1

DTe−Ty
)(
∂P0

∂σA
)(
d1 × d2

σA
) + (

1

De−Ty
)
2

(
1

T
)(
∂P0

∂σA
)(
∂P0

∂σA
)

= (
1

DTe−Ty
)(
∂P0

∂σA
)︸ ︷︷ ︸

= ∂S
∂σA

×[(
d1 × d2

σA
) + (

∂P0

∂σA
)(

1

De−Ty
)︸ ︷︷ ︸

=T ( ∂S
∂σA

)

]

= (
∂S

∂σA
)× [(

d1 × d2

σA
) + T (

∂S

∂σA
)]

(A.18)

In conclusion, since ∂S
∂σA

> 0 always, we demonstrate that ∂2S
∂σA2 > 0 if and only if:

(d1×d2σA
) + T ( ∂S

∂σA
) > 0.

We can restate this condition more simply as:

∂S
∂σA

> −(d1×d2TσA
)

We cannot observe ∂S
∂σA

; however, we know that: ∂S
∂σA

= 1
φ

∂S
∂σE

where φ = (1− L) ( ∂A∂E ).

We re-state the condition for monotonicity as:

∂S
∂σE

> −(1− L) ∂A∂E (d1×d2TσA
) = −(1− L) 1

N(d1) (d1×d2TσA
).

We verify that this condition is always satisfied for values of L and ∂S
∂σE

estimated for our sample of

data. Note that the condition depends also on the unobservable asset volatility σA, which we proxy

respectively with:

(i) The implied asset volatility obtained from Equation (3):

σA = σE(1− L) ∂A∂E = σE(1− L)( 1
N(d1) );

(ii) The implied asset volatility estimated from inverting the Merton model (1974) using the market

CDS premiums (σA
MKT );

(iii) The implied asset volatility estimated from our M-Skew model (σA
MSKEW ).

We check that the monotonicity condition is satisfied for each case (i), (iii), and (iii), and for each

firm over each week.

We cannot report the extensive results of the check for brevity (they remain available upon request);

however, we report some significant MIN and MAX statistics:

∂S
∂σE

−(1− L) 1
N(d1) (d1×d2TσA

)

(i) (ii) (iii)
MIN 3.149 -19,474 -3.124 -2.153
MAX 11.239 0.008 0.028 0.006
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The important result is that in all three cases: MIN{ ∂S∂σE } > MAX{−(1− L) 1
N(d1) (d1×d2TσA

)}.

This implies that:

∂S
∂σE

> −(1− L) 1
N(d1) (d1×d2TσA

) = − 1
φ (d1×d2TσA

) always.

Thus: φ ∂S
∂σE

= ∂S
∂σA

> −(d1×d2TσA
)⇒

(d1×d2σA
) + T ( ∂S

∂σA
) > 0⇒

∂2S
∂σA2 = ( ∂S

∂σA
)× [(d1×d2σA

) + T ( ∂S
∂σA

)]>0 always.

Q.E.D.
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Appendix B.

Firms in the Sample

Company Name Ticker Sector Industry

Alcoa Inc AA Basic Materials Aluminium
Anadarko Petroleum Corp APC Basic Materials Independent Oil & Gas

Arrow Electronics Inc ARW Services Electronics Wholesale
Boeing Co BA Industrial Goods Aerospace/Defence Products &Services

Burlington Northern Santa Fe LLC BNI Services Railroads
Campbell Soup Co CPB Consumer Goods Processed & Packaged Goods

Caterpillar Inc CAT Industrial Goods Farm & Construction Machinery
Computer Sciences Corp CSC Technology Information Technology Services

ConAgra Foods Inc CAG Consumer Goods Processed & Packaged Goods
ConocoPhillips COP Basic Materials Major Integrated Oil & Gas

Deere & Co DE Industrial Goods Farm & Construction Machinery
Devon Energy Corp DVN Basic Materials Independent Oil & Gas

Dominion Resources Inc/VA D Utilities Electric Utilities
Dow Chemical Co/The DOW Basic Materials Chemicals - Major Diversified

Duke Energy Corp DUK Utilities Electric Utilities
Eastman Chemical Co EMN Basic Materials Chemicals - Major Diversified

EI du Pont de Nemours & Co DD Basic Materials Chemicals - Major Diversified
General Mills Inc GIS Consumer Goods Processed & Packaged Goods
Goodrich Corp GR Industrial Goods Aerospace/Defence Products &Services
Halliburton Co HAL Basic Materials Oil & Gas Equipment & Services

Hewlett-Packard Co HPQ Technology Diversified Computer Systems
Honeywell International Inc HON Industrial Goods Aerospace/Defence Products &Services

IBM Corp IBM Technology Diversified Computer Systems
Kraft Foods Inc KFT Consumer Goods Food - Major Diversified
Kroger Co/The KR Services Grocery Stores

Lockheed Martin Corp LMT Industrial Goods Aerospace/Defence Products &Services
Ltd Brands Inc LTD Services Apparel Stores

Marriott International Inc/DE MAR Services Lodging and Restaurants
McDonald’s Corp MCD Services Lodging and Restaurants

Motorola Inc MOT Technology Diversified Communication Services
Newell Rubbermaid Inc NWL Consumer Goods Housewares & Accessories

Nordstrom Inc JWN Services Apparel Stores
Norfolk Southern Corp NSC Services Railroads

Northrop Grumman Corp NOC Industrial Goods Aerospace/Defence - Major Diversified
Omnicom Group Inc OMC Services Advertising Agencies
Progress Energy Inc PGN Utilities Electric Utilities

Raytheon Co RTN Industrial Goods Aerospace/Defence - Major Diversified
Safeway Inc SWY Services Grocery Stores

Valero Energy Corp VLO Basic Materials Oil & Gas Refining & Marketing
Walt Disney Co/The DIS Services Entertainment - Diversified
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Appendix C.

Leverage and the Panel Regression

When estimating the relationship between the CDS price and equity volatility, we do not allow ∂S
∂σE

to vary across different leverages. We make this judgement about the specification from the insights

of the Merton model.

Let us consider again (graphically) how in the Merton model the sensitivity of the CDS price to asset

volatility ∂S
∂σA

relates to asset volatility σA at different leverage levels. This is shown in Figure C.1

(for a 5-year CDS contract). We can clearly observe a larger ∂S
∂σA

at higher leverage levels.

Figure C.1: ∂S
∂σA

and σA at Different Leverage Levels

However, if we compute the sensitivity of the CDS price to equity volatility ( ∂S
∂σE

) against equity

volatility (σE) at different leverage levels, we obtain Figure C.2.

Figure C.2 shows that ∂S
∂σE

is rather similar for the three higher levels of leverage shown, i.e. from

20% upwards. The ∂S
∂σE

at 10% leverage is a little smaller than the others, especially for a middle

range of equity volatilities between 45% and 65%.
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Figure C.2: ∂S
∂σE

and σE at Different Leverage Levels

We have experimented with panel regressions which allow for different ∂S
∂σE

values at different leverage

levels, but with limited success. It proves very difficult to separate the effect of equity volatility from

that of leverage. We therefore choose a simple specification which assumes that leverage has an

impact on the CDS price, but has no impact on ∂S
∂σE

. The chosen specification is equivalent to fitting

a single line to the four plots in Figure C.2.

Finally, it should be emphasised that we are not ignoring leverage. Not only is it (of course) a

very important variable in the Merton model, but it also affects the ∂S
∂σA

value for a firm (which is

calculated by adjusting the estimated ∂S
∂σE

: see Equation (7) of this paper).26

26It should also be noted that the values of equity volatility considered in the above analysis with the model are in the
risk-neutral (Q) domain with a horizon of five years, σE,Q,5, whereas the panel regressions utilise equity volatility
observed in the physical (P) domain with a short-run horizon, σE,P,d. We are assuming that equity volatilities
measured in the two domains move together (see discussion in section 3.2).
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