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Abstract. Commercially available Doppler lidars have now
been proven to be efficient tools for studying winds and tur-
bulence in the planetary boundary layer. However, in many
cases low signal-to-noise ratio is still a limiting factor for
utilising measurements by these devices. Here, we present
a novel post-processing algorithm for Halo Stream Line
Doppler lidars, which enables an improvement in sensitiv-
ity of a factor of 5 or more. This algorithm is based on im-
proving the accuracy of the instrumental noise floor and it
enables longer integration times or averaging of high tem-
poral resolution data to be used to obtain signals down to
− 32 dB. While this algorithm does not affect the measured
radial velocity, it improves the accuracy of radial velocity
uncertainty estimates and consequently the accuracy of re-
trieved turbulent properties. Field measurements using three
different Halo Doppler lidars deployed in Finland, Greece
and South Africa demonstrate how the new post-processing
algorithm increases data availability for turbulent retrievals
in the planetary boundary layer, improves detection of high-
altitude cirrus clouds and enables the observation of elevated
aerosol layers.

1 Introduction

Turbulent mixing in the planetary boundary layer (PBL) is
one of the most important processes for air quality, weather
and climate (e.g. Garratt, 1994; Baklanov et al., 2011; Ryan,
2016). Mixing layer height (MLH), i.e. the height of the layer

that is connected with the surface on timescales of less than
1 h, is a central parameter describing PBL turbulence (e.g.
Seibert et al., 2000). Continuous measurement of MLH with
good temporal resolution is not trivial, though. For instance,
aerosol backscatter profiles have been commonly used to es-
timate MLH (Seibert et al., 2000; Pal et al., 2013). The ben-
efit is that aerosol backscatter profiles can be obtained rou-
tinely with high temporal resolution (e.g. Emeis et al., 2008),
but as this method is not a direct measure of turbulent mix-
ing, it is prone to erroneous interpretation, especially dur-
ing morning and evening transition periods of the convective
PBL (Schween et al., 2014).

Development of fibre-optic Doppler lidar systems during
the last 5 to 10 years has enabled direct, long-term obser-
vation of MLH with temporal resolutions of typically a few
minutes or better (e.g. Tucker et al., 2009; O’Connor et al.,
2010; Pearson et al., 2010; Schween et al., 2014; Vakkari et
al., 2015; Smalikho and Banakhm 2017; Bonin et al., 2017,
2018). Long-range Doppler lidar systems typically have a
blind range with a minimum usable distance of 50–100 m;
hence scanning Doppler lidar is the only realistic option for
covering the full range of MLH from close to ground level up
to a few kilometres with good temporal resolution (Vakkari
et al., 2015).

In addition to MLH, fibre-optic Doppler lidar systems have
also enabled long-term monitoring of horizontal wind pro-
files within the PBL (Hirsikko et al., 2014; Päschke et al.,
2015; Newsom et al., 2017; Marke et al., 2018). Together
with vertical profiles of higher moments of the velocity distri-

Published by Copernicus Publications on behalf of the European Geosciences Union.



840 V. Vakkari et al.: A novel post-processing algorithm for Halo Doppler lidars

bution (Lothon et al., 2009), e.g vertical wind speed variance
and skewness, as well as turbulent kinetic energy dissipation
rate, Doppler lidar measurements enable the diagnosis of the
sources of turbulence within the PBL (Hogan et al., 2009;
Harvey et al., 2013; Tuononen et al., 2017; Manninen et al.,
2018).

Velocity measurements using fibre-optic Doppler lidar
systems operating at 1.5 µm wavelength depend on light scat-
tering from aerosol particles and cloud droplets as these are
small enough to behave as tracers of atmospheric motion.
In very clean atmospheric environments, the lack of scatter-
ing particles becomes a limiting factor for utilising these sys-
tems (e.g. Manninen et al., 2016). Development of new, more
powerful yet eye-safe Doppler lidar systems has helped to
overcome this limitation to a large degree (e.g. Bonin et al.,
2018); yet decreasing the instrumental noise level through
post-processing of the data allows the utilisation of weaker
signals and can lead to major improvements in data coverage
(Manninen et al., 2016). The post-processing algorithm by
Manninen et al. (2016) has the added benefit of improving
the accuracy of the signal-to-noise ratio (SNR), which leads
to more accurate uncertainty estimates of the measured radial
velocity (Rye and Hardesty, 1993; Pearson et al., 2009). This
is especially important for the retrieval of turbulent properties
under weak signal conditions, as uncertainty in instrumental
noise level propagates into turbulent properties and wind re-
trievals (O’Connor et al., 2010; Vakkari et al., 2015; Newsom
et al., 2017). Naturally, post-processing methods can be ap-
plied to historical data sets as well.

Here we present an improved post-processing algorithm
for Halo Photonics Stream Line Doppler lidars, which are
currently widely used for PBL research (O’Connor et al.,
2010; Pearson et al., 2010; Harvey et al., 2013; Hirsikko et
al., 2014; Schween et al., 2014; Päschke et al., 2015; Vakkari
et al., 2015; Banakh and Smalikho, 2016; Tuononen et al.,
2017; Bonin et al., 2018). Building on the work by Manni-
nen et al. (2016), we show that, by changing the way instru-
mental noise level is determined during periodic background
checks, the sensitivity can be improved by as much as a fac-
tor of 5; by averaging high time resolution data, signals with
an SNR as low as −32 dB can be utilised. Case studies from
different environments in Finland, Greece and South Africa
are presented to demonstrate how the new post-processing
algorithm increases data availability for turbulent retrievals
in the PBL, improves detection of high-altitude cirrus clouds
and enables observation of elevated aerosol layers 2 to 4 km
above ground level.

Next, in Sect. 2 we introduce the Halo Photonics Stream
Line, Stream Line Pro and Stream Line XR lidars used in this
study. Section 3 describes the improved SNR post-processing
algorithm, and in Sect. 4 the three case studies are presented,
followed by concluding remarks.

Table 1. Specifications for Halo Doppler lidars utilised in this study.

Lidar number and version 46, Stream Line
53, Stream Line Pro
146, Stream Line XR

Wavelength 1.5 µm
Pulse repetition rate 15 kHz (46 and 53) or

10 kHz (146)
Nyquist velocity 20 m s−1

Sampling frequency 50 MHz
Velocity resolution 0.038 m s−1

Points per range gate 10
Range resolution 30 m
Maximum range 9600 m (46 and 53) or

12 000 m (146)
Pulse duration 0.2 µs
Lens diameter 8 cm
Lens divergence 33 µrad
Telescope monostatic optic-fibre coupled

2 Instrumentation and measurements

In this study we utilise data from three different versions
of Halo Photonics scanning Doppler lidars (Pearson et al.,
2009): lidar 46 is a Stream Line system, lidar 53 is a Stream
Line Pro system and lidar 146 is a Stream Line XR sys-
tem. All Halo Photonics Stream Line versions are 1.5 µm
pulsed Doppler lidars with a heterodyne detector that can
switch between co- and cross-polar channels (Pearson et al.,
2009). The Stream Line and the more powerful Stream Line
XR lidars are capable of full hemispheric scanning, and the
scanning patterns are user-configurable. The Stream Line
Pro version is designed for harsher environmental conditions
with no exterior moving parts, which limits the scanning to
within a cone of 20◦ from the vertical. In this study, however,
we only utilise vertically pointing measurements in co-polar
mode, and thus there is no practical difference between the
limited and fully scanning versions.

The minimum range for all instruments is 90 m, and stan-
dard operating specifications for the different versions are
given in Table 1. The telescope focus of the Stream Line and
Stream Line Pro lidars is user-configurable between 300 m
and infinity, whereas the Stream Line XR focus cannot be
changed. Integration time per ray is user-adjustable and can
be optimised between high sensitivity (long integration time)
and high temporal resolution (short integration time) depend-
ing on the environmental conditions and research questions.
In the measurements utilised in this study, 7 s integration time
is used for lidars 46 and 53, while lidar 146 is operated with
10 s integration time.

In measurement mode the Halo Doppler lidars provide
three parameters along the beam direction: radial Doppler
velocity (vr), SNR and attenuated backscatter (β), which is
calculated from SNR taking into account the telescope focus.
As part of post-processing, we calculate the measurement
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uncertainty in vr (σvr) from SNR according to O’Connor
et al. (2010). As discussed earlier, in calculating turbulent
parameters from Doppler lidar observations, accurate σvr is
needed to differentiate turbulence from instrumental noise
(e.g. O’Connor et al., 2010; Vakkari et al., 2015; Newsom
et al., 2017).

We present case studies of Halo Doppler lidar measure-
ments at three different locations with three different instru-
ments. Lidar 53 was deployed at Finokalia, Crete, Greece
(35.34◦ N, 25.67◦ E), on 8 July 2014. Lidar 46 was de-
ployed at Welgegund, South Africa (26.57◦ S, 26.94◦ E), on
6 September 2016 and lidar 146 was deployed at Helsinki,
Finland (60.20◦ N, 24.96◦ E), on 1 and 6 May 2018.

Additionally, we utilise collocated Raman lidar measure-
ments at Finokalia. These measurements were carried out
using the OCEANET PollyXT multiwavelength Raman and
polarization lidar system of the Leibniz Institute for Tropo-
spheric Research (TROPOS). A detailed description of the
instrument and its measurements is provided in Engelmann et
al. (2016) and Baars et al. (2016), respectively. In brief, Pol-
lyXT operates using a Nd:YAG laser that emits light pulses
at 1064 nm with a repetition frequency of 20 Hz. The radi-
ation frequency is doubled and tripled, resulting in the si-
multaneous emission of 355, 532 and 1064 nm in the atmo-
sphere. The receiver features 12 channels that enable mea-
surements of elastically (three channels) and Raman scat-
tered light (387 and 607 channels for aerosols, 407 for water
vapour) as well as depolarisation state of the incoming light
(355 and 532 nm) and near-range measurements (two elastic
and two aerosol Raman channels). In this study, the mea-
surements at 1064 nm are used. The lidar measurements at
Finokalia were collected during the 2014 CHARacterization
of Aerosol mixtures of Dust and Marine origin experiment
(CHARADMExp) on the northern coast of Crete, Greece.

3 Improved background check handling algorithm

3.1 Signal-to-noise ratio in Halo Doppler lidars

Halo Doppler lidars measure the noise level during periodic
background checks, typically once an hour, in which the
scanner is set to point to an internal (limited scan) or ex-
ternal target mounted on the instrument itself (hemispheric
scan) so that no atmospheric signal is recorded. The raw sig-
nal from the amplifier during the background check (Pbkg)
is saved as a profile in ASCII files (“Background_ddmmyy-
HHMMSS.txt”) with the range resolution configured for
the normal measurement mode. For most Stream Line and
Stream Line Pro firmware versions, Pbkg is written on one
line with a fixed precision of six decimals but a varying field
width for each range gate. In Stream Line XR firmware, the
Pbkg value at each range gate is written on its own line.

In most Stream Line and Stream Line Pro instruments,
the profile Pbkg(z) is flat (constant with range) or presents

Figure 1. (a) Pbkg measured by lidar 46 on 6 September 2016 at
23:00 UTC and Pbkg measured by lidar 146 on 1 May 2018 at
10:00 UTC. Pfit is also indicated for both systems. (b) 2-D his-
togram of mean Pbkg vs. T for lidar 46. (c) 2-D histogram of mean
Pbkg vs. T for lidar 146.

a small linear increase with increasing distance z from the
lidar (Fig. 1a); Pbkg(z) following a second-order polynomial
can also occur (Manninen et al., 2016). For Stream Line XR
instruments, Pbkg(z) can vary between a linear and an inverse
exponential shape (Fig. 1a), for which the inverse exponen-
tial Pbkg(z) can be represented as

Pbkg(z)=
b1

exp(b2 · zb3)
, (1)

where b1, b2 and b3 are scalars and can be determined from
a least-squares fit.

In Stream Line and Stream Line Pro lidars, the magnitude
of Pbkg increases non-linearly with instrument internal tem-
perature (T ) (Fig. 1b). For Stream Line XR lidars, which
use a different amplifier, the mean Pbkg does not depend
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on T ; however, the amplifier alternates randomly between
a high mode (Pbkg ≈ 3.6×108 for lidar 146) and a low mode
(Pbkg ≈ 3.2× 108 for lidar 146) as seen in Fig. 1c. Further-
more, it appears that the inverse exponential Pbkg shape only
occurs in the low mode, but not all low-mode Pbkg profiles
follow Eq. (1).

The Halo Doppler lidar firmware accounts for changes in
Pbkg level by calculating SNR as

SNR0 =
A0 ·P0(z)

Abkg ·Pbkg(z)
− 1, (2)

where P0(z) is the raw signal from the amplifier during each
measurement, Pbkg(z) has been obtained during the previous
background check and scalar scaling factors A0 and Abkg are
determined online for each P0 andPbkg profile. Here, we de-
note the unprocessed SNR output by the instrument as SNR0.
Note that A0 and Abkg are not saved by the firmware, which
means that the high and low mode in Stream Line XR lidars
cannot be identified in the SNR0 time series.

Equation (2) is straightforward to determine online as
there are no assumptions about the shape of Pbkg, and it gives
a reasonably good first estimate of SNR. However, Eq. (2)
is vulnerable to inaccuracy in determining A0 and Abkg as
well as to any deviation from the actual noise level during
measurement of Pbkg. An offset in A0 inflicts a constant off-
set in SNR0 in a single profile, while an offset in Abkg does
the same for all profiles between two background checks (cf.
Manninen et al., 2016). The magnitude of typical offsets in
A0 and Abkg varies from instrument to instrument; in some
cases they can have a major effect on data coverage (Manni-
nen et al., 2016).

In all Halo Doppler lidars Pbkg contains a small but vary-
ing offset from the actual noise level at each range gate be-
cause of the finite duration of the background check. These
offsets appear as a small constant offset in SNR0 at each
range gate between two background checks. To minimise the
effect of offset in Pbkg, the integration time of background
check measurement was originally designed to be 6 times as
long as the integration time in measurement mode. The dura-
tion of the background check is user-configurable; however,
for long integration times of up to 6 min considered in this
paper such long background checks are not a viable option.
In the next section we present an improved algorithm to cor-
rect SNR0 for inaccuracies in A0, Abkg and Pbkg.

3.2 Improved SNR post-processing algorithm

Whether Pbkg(z) is linear or follows some other functional
form is readily determined by fitting expected functions to it
(cf. Manninen et al., 2016). For Stream Line and Stream Line
Pro lidars we consider a second-order polynomial to repre-
sent Pbkg(z) better than a linear fit if it has at least 10 % lower
root-mean-squared (rms) error than the linear fit to Pbkg(z).
For Stream Line XR we consider Eq. (1) to represent Pbkg(z)

better if it has at least 5 % lower rms error than the linear fit

to Pbkg(z). Furthermore, knowing the typical noise level of a
certain instrument, a rms threshold can be applied to discard
bad fits and to flag periods of increased uncertainty.

Denoting the selected fit to Pbkg(z) as Pfit(z), the residual
is

Pbkg,res (z)= Pbkg (z)−Pfit(z). (3)

Averaging Pbkg,res(z) over a large number of Pbkg(z) pro-
files reveals a persistent structure in the residual (Fig. 2a).
This part of Pbkg,res(z) originates in the amplifier response
to the transmitted pulse, denoted here as Pamp(z), and it is
the main reason for using the gate-by-gate defined Pbkg(z)

profile in SNR calculation by the manufacturer. However,
Pamp(z) stays reasonably constant over time and can be ob-
tained from a long enough data set of Pbkg(z). Here, we used
a discrete wavelet transform with a Symmlet order 8 wavelet
as a low-pass filter to de-noise the averaged Pbkg,res(z). As
shown in Fig. 2a, Pamp(z) is instrument-specific and needs to
be determined individually for each device.

In Stream Line and Stream Line Pro lidars, T has a small
effect on Pamp(z) as seen in Fig. 2b. However, this can be
addressed based on a suitably long T data set and Pbkg,res(z)

by determining Pamp(z) as a function of the internal temper-
ature. In practice, at least 300 Pbkg(z) profiles are required
to obtain a reliable estimate of Pamp(z). Consequently, for an
11-month measurement campaign at Welgegund, we could
determine Pamp as a function of T at 1 ◦C resolution from
25 to 31 ◦C (Fig. 2b). For T < 23 ◦C or T > 35 ◦C we could
only determine aggregate Pamp profiles, but then these tem-
perature ranges comprise only 9 % of the measurements in
this data set. For optimal data quality, additional temperature
stabilisation could be applied to ensure that Pamp is always
in the well-characterised temperature range.

In Stream Line XR lidars, Pamp does not depend on T ;
however, Pamp has to be determined separately for the high
and low mode of Pbkg (see Fig. 1c). For lidar 146, we define
Pbkg high mode as mean Pbkg > 3.4×108 and Pbkg low mode
as mean Pbkg < 3.4× 108, respectively. As seen in Fig. 2c,
Pamp for these two modes differs substantially.

We consider the sum of Pfit(z) and Pamp(z) as the best es-
timate for the actual instrumental noise level during a back-
ground check:

Pnoise (z)= Pfit (z)+Pamp(z). (4)

Using Eq. (2), we can move from a Pbkg-based SNR (i.e.
SNR0) to a Pnoise-based, corrected SNR (denoted here as
SNR1) simply as

SNR1(z)= (SNR0 (z)+ 1) ·
Pbkg(z)

Pnoise(z)
− 1. (5)

Next, we utilise the Manninen et al. (2016) algorithm to iden-
tify any possible bias in the A0 to Abkg ratio. In short, Man-
ninen et al. (2016) cloud and aerosol screening is applied
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Figure 2. (a) Lidar 46 Pbkg,res averaged from 20 August 2016 to
14 June 2017 (7193 background checks). Lidar 53 Pbkg,res averaged
from 1 January 2014 to 30 November 2015 (16 802 background
checks). Pamp is plotted for both systems. (b) First 100 range gates
of lidar 46 Pamp calculated for different ranges of T . (c) Lidar 146
Pbkg,res averaged from 12 January to 31 May 2018. Pbkg,res is aver-
aged separately for high Pbkg mode (1375 background checks) and
for low Pbkg mode (1623 background checks). Pamp is plotted for
both modes.

first to time series of SNR1. Note that typically cloud and
aerosol signal is easier to discern in SNR1 than in SNR0, and
thus cloud screening is applied after Eq. (5). Then, first- and
second-order polynomial fits are calculated for each cloud-
screened profile of SNR1(z), and a rms threshold is used to
select the appropriate fit, similar to determining Pfit(z). De-
noting the selected fit to cloud- and aerosol-free measure-
ments as SNRfit(z) we obtain

SNR2(z)=
SNR1 (z)+ 1
SNRfit (z)+ 1

− 1, (6)

which is our final corrected SNR.
Note that to correct only for the bias in the A0 to Abkg

ratio, a scalar denominator in Eq. (6) would be sufficient.
However, using the fitted profile SNRfit(z) as the denomina-
tor accounts for possible changes in the slope of Pnoise since
the last background check.

3.2.1 Implications for Stream Line XR lidars

The calculation of SNR2 with Eq. (6) relies on the fitting
to cloud- and aerosol-free measurements. For Stream Line
and Stream Line Pro lidars, which do not exhibit the inverse
exponential Pbkg shape, SNRfit(z) will capture the shape
of the actual noise level in nearly all cases. However, for
Stream Line XR lidars the randomly occurring inverse ex-
ponential Pbkg(z) shape (Fig. 1a) is almost always masked
by aerosol and/or cloud signal during measurement. Thus, it
is not possible to correct for changes in shape of Pnoise(z)

with SNRfit(z) during post-processing. However, the magni-
tude of uncertainty in Pnoise(z) can be estimated from the av-
erage depth of the inverse exponential dip in Pbkg(z) during
background checks (see Fig. 3a).

Now asA0 is not saved, it is not possible to tell whether the
amplifier was operating in high or low mode during measure-
ment. Consequently, the difference in Pamp for the amplifier
high and low modes also adds to the uncertainty in SNR for
Stream Line XR systems, but, compared to the effect of the
inverse exponential shape of Pbkg(z), the effect of Pamp is ap-
proximately 10 times smaller. However, any possible bias in
the A0 to Abkg ratio can be corrected, and this is readily done
by applying a linear fit to SNR1(z) at range gates 100–400
(for which SNR is not affected by inverse exponential Pbkg)
and using this as SNRfit(z) in Eq. (6).

In practice, there are two options for SNR post-processing
for Stream Line XR lidars. The first option is to accept the
fitted Eq. (1) for Pfit(z)when it describes Pbkg(z) better. With
this approach SNR2 may overestimate the actual SNR if the
shape of Pnoise changes from Eq. (1) to being linear after the
background check. Correspondingly, a change from a linear
Pnoise to the inverse exponential shape during measurement
results in SNR2 underestimating the actual SNR.

The second option for Stream Line XR SNR post-
processing is to calculate a linear fit to Pbkg(z) based on
range gates 100–400 and to always use this for Pfit(z). In
this case, we only use high-mode Pamp(z) in calculating the
noise level (Eq. 4) and denote it as P ′noise(z). Consequently
SNR′2 is the lower limit of the actual SNR, which can be
useful if an SNR threshold is used to determine the usable
signal for further analysis. For lidar 146 background checks
from 12 January to 31 May 2018, the underestimation was
on average 0.5 % of SNR+1 at the first usable range gate
and decreased rapidly with increasing range (Fig. 3a). In the
worst case, the underestimation at the first usable range gate
was 3 % of SNR+1.

www.atmos-meas-tech.net/12/839/2019/ Atmos. Meas. Tech., 12, 839–852, 2019
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Figure 3. (a) 2-D histogram of the ratio of Pnoise(z) (best estimate) to P ′noise(z) (linear fit only) for lidar 146 background checks. The mean
of the ratio is also indicated. (b) σvr as a function of SNR for lidar 146.

Uncertainty in SNR leads to uncertainty in σvr, as σvr is
mostly a function of SNR (Pearson et al., 2009). However,
σvr decreases rapidly with increasing SNR (Fig. 3b). There-
fore, even the worst-case underestimation in SNR only has a
limited effect on σvr if SNR is even moderately high (> 0.03,
−15.2 dB). On the other hand, for observations > 2000 m
away from the lidar, where signals are typically low, the un-
certainty in SNR is also low (Fig. 3a). In the end, uncertainty
in SNR and its effects in β and σvr need to be evaluated indi-
vidually for each profile in Stream Line XR lidars.

4 Case studies

4.1 Welgegund 6 September 2016

On 6 September 2016 lidar 46 was operating at Welgegund,
South Africa, and a time series of SNR in vertically point-
ing measurement mode for this day is presented in Fig. 4. In
this case, SNR0 is very close to 0 when there are no clouds
or aerosol present (Fig. 4a), indicating that the online cal-
culation of A0 and Abkg is quite successful. However, the
presence of small but varying offsets in Pbkg(z) is apparent
in Fig. 4a as horizontal stripes in SNR0 time series between
the background checks conducted on the hour.

In the SNR1 time series (Fig. 4b) the horizontal stripes
have been removed by applying the smooth Pnoise-based
background using Eq. (5). At the same time, the elevated
aerosol layer at 2000–4000 m above ground level (a.g.l.) be-
comes easily discernible. Small biases in theA0 to Abkg ratio

become visible as vertical stripes, for instance between 05:00
and 06:00 UTC in Fig. 4b, which are then corrected for in the
time series of SNR2 (Fig. 4c).

Comparing the standard deviation of SNR (σSNR) for
cloud- and aerosol-free range gates shows a clear improve-
ment in the noise level with the new post-processing al-
gorithm (Fig. 4d). The main advantage of the new post-
processing algorithm is that it enables averaging SNR; for
SNR0 any offsets in Pbkg(z) become the limiting factor. This
is clearly seen in Fig. 4d, which shows σSNR for SNR2 de-
creases with increasing integration time per profile following
the σ/

√
N rule closely as expected, but increasing integra-

tion time has little effect on σSNR for SNR0.
Figure 5 demonstrates how the lower noise floor with the

new post-processing algorithm allows vertical wind speed
variance (σ 2

w) up to 2000 m a.g.l. (i.e. up to the top of the
mixed layer) to be determined on this day. Furthermore, by
averaging the originally 7 s data to 168 s integration time per
profile and applying the new post-processing algorithm, the
SNR threshold at the 3σ level (see Fig. 4d) can be decreased
from 0.0032 (−25 dB) for SNR0 to 0.00065 (−32 dB) for
SNR2. Consequently, β can be retrieved for the elevated
aerosol layer at 2000–4000 m a.g.l. (Fig. 5c, d). Note that the
offsets in Pbkg(z) result in horizontal stripes in the 168 s in-
tegration time β calculated from SNR0 in Fig. 5c.

A lower noise floor also enables wind retrievals with a
lower SNR threshold, which increases the data availabil-
ity. The effect on data availability depends on atmospheric
conditions, though. In this case for instance (Welgegund,
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V. Vakkari et al.: A novel post-processing algorithm for Halo Doppler lidars 845

Figure 4. Data from lidar 46 at Welgegund on 6 September 2016. (a) Time series of the SNR0 profile in vertically pointing mode. (b) Time
series of the SNR1 profile in vertically pointing mode. (c) Time series of the SNR2 profile in vertically pointing mode. (d) σSNR as a function
of integration time per profile for SNR0 and SNR2 for range gates at 4800–9000 m a.g.l. Also σ/

√
N , where σ is σSNR at an integration time

of 7 s (original integration time per profile) and N is the number of averaged profiles, is included in (d).

6 September 2016), a 75◦ elevation angle velocity azimuth
display (VAD) scan was utilised for horizontal wind retrieval
every 15 min. With the new post-processing algorithm, the
SNR threshold for wind retrieval could be decreased from
0.0045 to 0.0032. This decrease in the SNR threshold en-
abled the wind retrieval for 2–13 range gates more from each
VAD scan; on average, winds could be determined from 7.5
additional range gates per VAD scan. That is, vertical cov-
erage of wind retrievals increased on average by 200 m with
the new post-processing.

Wind retrievals at lower SNR will have higher uncer-
tainty due to higher instrumental noise in radial velocity
measurement; yet enhanced SNR will enable more accurate

determination of the instrumental uncertainty in wind re-
trievals. However, as a major fraction of the uncertainty in
retrieved winds arises in atmospheric turbulence (Newsom et
al., 2017), the more accurate SNR will only have a limited
effect on the overall uncertainty in the wind retrieval. There-
fore, the uncertainty in each wind retrieval should be eval-
uated, e.g. with the methodology of Newsom et al. (2017),
before the wind retrievals are disseminated.

4.2 Helsinki 1 and 6 May 2018

Measurements using lidar 146 at Helsinki, Finland, on
6 May 2018 (Fig. 6) present all the issues with a Stream Line
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Figure 5. Data from lidar 46 at Welgegund on 6 September 2016. (a) Time series of the σ 2
w profile, for which a threshold of 0.0031 (2σ ) has

been applied to SNR0. (b) Time series of the σ 2
w profile, for which a threshold of 0.0021 (2σ ) has been applied to SNR2. In (a) and (b) the

instrumental noise contribution to σ 2
w has been subtracted. (c) Time series of β obtained with 168s integration time from SNR0; β has been

filtered with a threshold of 0.0032 (3σ ) applied to SNR0. (d) Time series of β obtained with 168 s integration time from SNR2; β has been
filtered with a threshold of 0.00065 (3σ ) applied to SNR2. Mixing layer height (MLH) determined from panels (b) and (d) is also indicated.

XR lidar at its worst. In Fig. 6a, SNR0 is negative, e.g. from
01:00 to 05:00, 06:00 to 10:00 and 12:00 to 13:00 UTC be-
cause of an erroneous Abkg coefficient. On the other hand,
the individual profiles with unrealistically high SNR0 around
11:00, 14:00 to 15:00 and 20:00 to 21:00 UTC indicate er-
rors in the A0 coefficient. Additionally, horizontal stripes in
SNR0 time series similar to lidar 46 (Fig. 4a) indicate off-
sets in Pbkg(z). The reason for poor determination of A0 and
Abkg for lidar 146 seems to be that Pbkg(z) is frequently non-
linear, unlike for lidar 46, for example.

The new post-processing algorithm corrects the errors
in A0 and Abkg as well as the stripes due to offsets in
Pbkg(z) as seen in Fig. 6c. However, Fig. 6c shows that
Pbkg(z) changing between the inverse exponential and lin-
ear shape causes over- and underestimation of SNR2 in the
lowest 1500 m a.g.l. For instance, positive SNR2 in the low-
est 1000 m at 12:00 to 13:00 UTC and negative SNR2 in the
lowest 1000 m at 14:00 to 15:00 UTC are due to noise level
shape changes between background check and measurement
modes. During these periods, the lidar signal is fully atten-
uated by a cloud within the lowest 200 m, and consequently
SNR2 in the 200–1000 m range should be zero. In Fig. 6d,
SNR′2 is only calculated using a linear fit to Pbkg(z) as dis-
cussed in Sect. 3.2.1. This removes the overestimate of SNR
at 12:00–13:00 UTC, but cannot correct the underestimates.

Measurements with lidar 146 on 1 May 2018 at Helsinki
present much less noisy SNR0 than on 6 May 2018, as seen in

Fig. 7a. On this day there are cirrus clouds present at 8000–
12 000 m a.g.l., but the stripes due to offsets in Pbkg(z) make
it difficult to distinguish the clouds from noise in SNR0.
Applying the new post-processing algorithm and increasing
integration time from 10 to 60 s for this day enables the
SNR threshold at the 3σ level to be lowered from 0.0035
(−24.5 dB) for SNR0 to 0.0012 (−29 dB) for SNR2. This re-
sults in a significant increase in data coverage for the cirrus
clouds, as shown in Fig. 7c and d.

4.3 Finokalia 8 July 2014

Time series of SNR in vertically pointing mode with lidar 53
on 8 July 2014 at Finokalia, Greece, are presented in Fig. 8.
On this day, SNR0 is close to 0 for 4000–9600 m a.g.l. el-
evation (Fig. 8a), indicating that the online calculation of
A0 and Abkg is quite successful. Only at 00:00–01:00 and
20:00–21:00 UTC is SNR0 negative, indicating a small offset
in Abkg. However, horizontal stripes in the SNR0 time series
between the background checks are apparent in Fig. 8a, indi-
cating the presence of small but varying offsets in Pbkg(z).

After SNR post-processing (Fig. 8b), elevated aerosol lay-
ers at 1000–4000 m a.g.l. are clearly visible on this day.
These aerosol layers were also observed with a co-located
multiwavelength Raman lidar, Polly XT (Baars et al., 2016;
Engelman et al., 2016). A comparison of lidar 53 and the
Raman lidar measurements at 1064 nm wavelength is pre-
sented in Fig. 9. Considering the wavelength difference, the
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Figure 6. Data from lidar 146 at Helsinki on 6 May 2018. (a) Time series of the SNR0 profile in vertically pointing mode. (b) Time series of
the SNR1 profile in vertically pointing mode. (c) Time series of the SNR2 profile in vertically pointing mode. (d) Time series of the SNR′2
(always based on a linear fit to Pbkg(z)) profile in vertically pointing mode.

agreement between the two systems is reasonably good. Fur-
ther averaging of SNR2, in this case up to 350 s integration
time, allows the determination of β for the elevated aerosol
layers. With this long integration time we can reach a 3σ
SNR threshold of 0.00059 (−32 dB) for SNR2. For SNR0,
offsets in Pbkg(z) are the limiting factor in determining the
SNR threshold, and at the 3σ level only 0.0044 (−24 dB)
can be achieved.

5 Conclusions

In this paper we have presented an improved SNR post-
processing algorithm for Halo Doppler lidars. For Stream

Line and Stream Line Pro lidars, this method enables accu-
rate SNR and β retrievals from the first usable gate onwards.
For Stream Line XR lidars, we identified a previously un-
known source of uncertainty in the near-range (< 1500 m)
SNR due to variations in the noise floor of these systems. We
present a method to estimate the magnitude of this source of
uncertainty, although it cannot be completely eliminated.

We have shown that defining the noise floor on a point-
by-point basis during periodic background checks results in
a small, variable offset in SNR at each range gate. This off-
set is due to finite duration of the background check and be-
comes the limiting factor in retrieving weaker signals with
Halo Doppler lidars, or with any system based on such a
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Figure 7. Data from lidar 146 at Helsinki on 1 May 2018. (a) Time series of the SNR0 profile in vertically pointing mode. (b) Time series of
the SNR2 profile in vertically pointing mode. (c) Time series of β obtained with 60 s integration time from SNR0; β has been filtered with
a threshold of 0.0035 (3σ ) applied to SNR0. (d) Time series of β obtained with 60 s integration time from SNR2; β has been filtered with a
threshold of 0.0012 (3σ ) applied to SNR2.

Figure 8. Data from lidar 53 at Finokalia on 8 July 2014. (a) Time series of the SNR0 profile in vertically pointing mode. (b) Time series of
the SNR2 profile in vertically pointing mode. (c) Time series of β obtained with 350 s integration time from SNR0; β has been filtered with
a threshold of 0.0044 (3σ ) applied to SNR0. (d) Time series of β obtained with 350 s integration time from SNR2; β has been filtered with a
threshold of 0.00059 (3σ ) applied to SNR2.
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Figure 9. (a) Vertical profiles of SNR from PollyXT at 1064 nm wavelength and SNR2 from lidar 53 at Finokalia on 8 July 2014. Both
profiles are obtained at 21:00 UTC; the integration time of the lidar 53 profile is 350 s, and the integration time of the PollyXT profile is
360 s. (b) Time series of PollyXT SNR at 1064 nm wavelength with 360 s integration time at Finokalia on 8 July 2014. (c) Time series of
PollyXT attenuated backscatter at 1064 nm wavelength with 360 s integration time at Finokalia on 8 July 2014.

point-by-point-defined noise floor. The improved SNR post-
processing algorithm removes this source of error by intro-
ducing a more accurate, continuous noise floor. Independent
of the noise floor, online scaling of raw signal from the am-
plifier by the firmware fails occasionally. This source of er-
ror in SNR was targeted by Manninen et al. (2016), and
their algorithm is adapted here as part of the improved SNR
post-processing algorithm (Eq. 6). Correcting for these two
sources of error in SNR enables data to be retrieved at much
lower SNR than before. By increasing integration time per
profile to a few minutes, SNR down to 6× 10−5 (−32 dB)
can be utilised.

Our analysis shows that even if the technical specifications
of two Doppler lidar systems are identical, their instrumental
noise characteristics can be quite different (Fig. 2). There-
fore, the lidar operator should inspect each system individ-
ually to ensure the highest data quality. Note that this algo-
rithm or similar processing is needed to define the instrumen-
tal noise level even if raw spectra are utilised instead of the
processed data. The algorithm presented here can be applied
in semi-operational use as long as at least 300 background
checks (acquired in 2 weeks of measurements with typical
configuration) are available for characterising the amplifier
response to the transmitted pulse. A MATLAB implementa-
tion of this algorithm is available through GitHub (Manni-
nen, 2019).

We have demonstrated that the improved SNR post-
processing can help to retrieve turbulent properties up to
the top of the mixed layer under low aerosol load. With en-
hanced SNR, the instrumental noise contribution to radial ve-
locity variance can be estimated with better accuracy, which
will improve the quality of turbulent parameter retrievals.
The reduced noise floor enables horizontal wind retrievals
with a lower SNR threshold and increases data availabil-
ity, depending on atmospheric conditions. Furthermore, we
have demonstrated that a combination of reduced noise floor
and increased integration time allows detection of elevated
aerosol layers with Stream Line and Stream Line Pro lidars.
Even for the more powerful Stream Line XR lidars, the new
SNR post-processing can increase data availability, e.g. in
the case of high-altitude cirrus clouds. In conclusion, the
improved SNR post-processing introduced in this paper en-
hances the capabilities of Halo Doppler lidars in studying at-
mospheric turbulence in weak signal conditions and opens up
new possibilities for studying elevated aerosol layers, such as
volcanic ash, Aeolian dust or biomass burning smoke.

Data availability. Doppler lidar data are available upon request to
the corresponding author. Raman lidar data are available upon re-
quest to polly@tropos.de.
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Appendix A

Figure A1. Histograms of SNR0 and SNR2 in a cloud- and aerosol-free regime for the four case studies considered in Sect. 4. For each
case, mean [standard deviation] and median [25th, 75th percentile] of SNR0 and SNR2 are included. (a) Welgegund on 6 September 2016,
00:00–24:00 UTC, 4800–9000 m a.g.l. (b) Kumpula on 1 May 2018, 02:00–24:00 UTC, 6000–12 000 m a.g.l. (c) Kumpula on 6 May 2018,
00:00–12:00 UTC, 4000–7000 m a.g.l. (d) Finokalia on 8 July 2014, 00:00–24:00 UTC, 5000–96 000 m a.g.l.
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