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A Product Expansion for Toeplitz Operators on the

Fock Space
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Abstract

We study the asymptotic expansion of the product of two Toeplitz operators on the Fock

space. In comparison to earlier results we require significantly less derivatives and get the

expansion to arbitrary order. This, in particular, improves a result of Borthwick related to

Toeplitz quantization. In addition, we derive an intertwining identity between the Berezin star

product and the sharp product.
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1 Introduction

It is a long standing open question in the theory of Toeplitz operators to determine when the
product of two Toeplitz operators is again a Toeplitz operator. For the Hardy space this was
famously solved by Brown and Halmos [12], basically saying that this only happens in trivial cases.
On Bergman and Fock spaces the situation is different. For the Bergman space over the unit disc
some examples are given in [1] for instance. For the Fock space there are plenty of examples. For
polynomials p and q in z and z̄ on the n-particle Fock space it is well-known and easy to check that
the following expansion holds:

TpTq =
∑

α∈Nn
0

(−1)|α|

α!
T(∂αp)(∂̄αq), (1.1)

where we used the standard multi-index notations |α| = α1 + . . . + αn and ∂α = ∂|α|

∂z
α1
1 ···∂zαn

n

(likewise for ∂̄α). Note that for polynomials the above sum is finite and the right-hand side is
again a Toeplitz operator. In fact, this expansion plays an important role in Rieffel’s deformation
quantization [20]. Indeed, if we set qj = Re(zj) =

zj+z̄j
2 and pj = Im(zj) =

zj−z̄j
2i , Equation (1.1)

yields [Tpj
, Tpk

] = [Tqj , Tqk ] = 0 and [Tpj
, Tqk ] =

i
2δjk, where [·, ·] denotes the commutator of two

operators and δj,k is the Kronecker delta. That is, the operators Tp1 , . . . , Tpn
, Tq1 , . . . , Tqn satisfy

the canonical commutation relations (up to an irrelevant constant). Moreover, to first order in the
expansion, we have

[Tf , Tg] = Ti{f,g} + . . . ,
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where {f, g} denotes the Poisson bracket of f and g. This can be seen as an instance of the
general principle “replace commutators by Poisson brackets” in quantization. In this sense Toeplitz
operators serve as a realization of Rieffel’s deformation quantization. It is therefore an interesting
question for which symbols (other than polynomials) the expansion (1.1) holds. To make this a
little bit more precise, let us give some definitions first before we proceed with known results on
the matter.

Let {µt}t>0 denote the family of Gaussian probability measures given by

dµt(z) =
1

(πt)n
e−

|z|2

t dv(z),

where dv denotes the standard Lebesgue volume form on Cn. The Fock space H2
t is then defined

as

H2
t :=

{

f : Cn → C : f is entire and
∫

Cn

|f |2 dµt < ∞
}

.

An orthonormal basis of H2
t is given by the monomials e

(t)
α (z) := zα

√
α!t|α|

(α ∈ Nn
0 ). As H2

t is a

closed subspace of L2
t :=

{

f : Cn → C :
∫

Cn |f |2 dµt < ∞
}

, there exists an orthogonal projection

P (t) : L2
t → H2

t . More explicitly, we have

[P (t)f ](z) =

∫

Cn

f(w)e
〈z,w〉

t dµt.

For bounded functions f , called symbols, we consider the corresponding Toeplitz operator T
(t)
f :=

P (t)Mf : H
2
t → H2

t , where Mf denotes the operator of multiplication by f . If we factor in the
deformation (or weight) parameter t, the expansion (1.1) reads as

T
(t)
f T (t)

g =
∑

α∈Nn
0

(−t)|α|

α!
T

(t)

(∂αf)(∂̄αg)
. (1.2)

Comparing with the canonical commutation relations, we see that t can be interpreted as the reduced
Planck constant ~. For general symbols f and g this sum may not converge in any meaningful way.
To make sense of it, we will look at it as an asymptotic expansion, that is, for fixed k ∈ N we ask
whether

lim
t→0

1

tk

∥

∥

∥

∥

∥

∥

T
(t)
f T (t)

g −
∑

|α|≤k

(−t)|α|

α!
T

(t)

(∂αf)(∂̄αg)

∥

∥

∥

∥

∥

∥

= 0. (1.3)

For k = 0 and k = 1 there are several results: Coburn [13] showed that (1.3) holds if f and g

are the sum of trigonometric polynomials and (2n+ 6)-times continuously differentiable functions
with compact support. This was extented by Borthwick [10] to symbols that have 4n+ 6 bounded
derivatives but possibly unbounded support. For k = 0 it was shown in [4] that (1.3) even holds
for bounded uniformly continuous functions. Moreover, a counterexample was given to show that

lim
t→0

∥

∥

∥
T

(t)
f T (t)

g − T
(t)
fg

∥

∥

∥
= 0 (1.4)

(i.e. (1.3) for k = 0) does not hold for general f and g. Recently these results were extended
further in [5] as follows. (1.4) holds for arbitrary uniformly continuous functions f and g even if the
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corresponding Toeplitz operators are unbounded (the semi-commutator in (1.4) is automatically
bounded). Moreover, one may choose one of the two functions f or g to be an arbitrary, possi-
bly discontinuous, bounded function. The uniform continuity may also be replaced by bounded
VMO and this algebra is the largest C∗-algebra with this property (see [5] for definitions and the
precise statement). To round things up, an example of two bounded continuous functions with
high oscillation was given, where (1.4) is violated. This suggests that high oscillation somewhat
prohibits (1.3). However, this would need some more elaboration. It is worth mentioning that
Toeplitz quantization has also been studied on different domains like the unit ball, pseudoconvex
domains or compact symplectic manifolds and similar results have been obtained under varying
differentiability assumptions [2, 6, 8, 9, 11, 14, 16, 17, 18, 19].

Bauer [3, Theorem 16] showed that the series (1.2) converges to a bounded Toeplitz operator in
case f and g are in the range of the heat transform. The heat transform (often also called Berezin
transform [8]) f (t) of a function f ∈ L∞(Cn) is defined as

f (t) : Cn → C, f (t)(z) :=
1

(tπ)n

∫

Cn

f(w)e−
1
t
|w−z|2 dw =

1

πn

∫

Cn

f(
√
tw + z)e−|w|2 dw.

Even though this formula of Bauer is an impressive result, all the above results for k ≥ 1 are a
little bit unsatisfactory as there is always the need of a ridiculous amount of derivatives, where
the expression (1.3) only needs k derivatives to make sense syntactically. For instance, in case
n = 1 Borthwick [10] needs 10 bounded derivatives, where the formula itself only involves one
single derivative. This is exactly the motivation for this paper. We give a quick and elementary
proof that at most 2k bounded uniformly continuous derivatives are needed for (1.3). The set of
functions which are 2k-times continuously differentiable and for which all partial derivatives up to
order 2k are bounded and uniformly continuous will be denoted by C2k

buc(C
n). For k = 0, these are

just the bounded uniformly continuous functions.

Theorem 1. Let k ≥ 0 and f, g ∈ C2k
buc(C

n). Then the following product expansion holds:

T
(t)
f T (t)

g =
∑

α∈N
n
0

|α|≤k

(−t)|α|

α!
T

(t)

(∂αf)(∂̄αg)
+ o(tk)

in the operator norm sense as t → 0.

As the Poisson bracket in complex coordinates is given by {f, g} = i
n
∑

j=1

∂jf ∂̄jg − ∂̄jf∂jg, this

implies the following corollary, which directly improves the result of Borthwick [10, Theorem 4.5]:

Corollary 2. Let f, g ∈ C2
buc(C

n). Then

∥

∥

∥
[T

(t)
f , T (t)

g ]− itT
(t)
{f,g}

∥

∥

∥
= o(t)

as t → 0.

An example in [5] shows that at least in the case k = 0 some control of the oscillation is needed.
However, it is not clear whether uniform continuity or even more than k derivatives are necessary
for Theorem 1 if k ≥ 1.
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We also derive the following interesting identity. It can be understood as an intertwining between
the sharp product and the Berezin star product f ∗B g :=

∑

α∈Nn
0

t|α|

α! (∂̄
αf)(∂αg) by the heat transform

(see [15, Section 4]).

Theorem 3. Let k ≥ 0 and f, g ∈ C2k
buc(C

n). Then the following identity holds:

∑

α∈N
n
0

|α|≤k

(−t)|α|

α!

(

(∂αf)(∂̄αg)
)(t)

=
∑

α∈N
n
0

|α|≤k

t|α|

α!
(∂̄αf (t))(∂αg(t)) + o(tk)

uniformly on Cn as t → 0.

The outline of this paper is as follows. In Section 2 and 3 we give a proof of Theorem 1 and
Theorem 3, respectively. In Section 4 we list some open problems which are related to this paper.

2 Proof of Theorem 1

The proof of Theorem 1 only relies on Bauer’s result and an ordinary Taylor expansion in complex
coordinates. Let us define the following family of sharp products of C∞-functions.

Definition 4. Let t > 0. For f, g ∈ C∞(Cn) we define the formal power series

f♯tg :=
∑

α∈Nn
0

(−t)|α|

α!
(∂αf)(∂̄αg). (2.1)

Note that this is only a formal series and no convergence is guaranteed. However, by the
mentioned result of Bauer [3, Theorem 16], for functions in the range of the heat transform the
series converges and we have:

Proposition 5. ([3, 4, Theorem 1])
Let f, g ∈ L∞(Cn). Then the power series [f (t)♯tg

(t)](z) converges for all z ∈ Cn to

[f (t)♯tg
(t)](z) =

1

π2n

∫

Cn

∫

Cn

f(
√
tv + z)g(

√
tw + z)e−v̄w−|v|2−|w|2 dv dw.

Moreover, f (t)♯tg
(t) is bounded and T

(t)

f(t)T
(t)

g(t) = T
(t)

f(t)♯tg(t) .

For the proof of Theorem 1 we need two lemmas to expand f (t), g(t) and f (t)♯tg
(t) in terms of

f , g and their derivatives.

Lemma 6. Let k ≥ 1 and f ∈ C2k
buc(C

n). Then we have the following expansion:

f (t)(z) =
∑

α∈N
n
0

|α|≤k

t|α|

α!
∂α∂̄αf(z) + o(tk) (2.2)

uniformly for all z ∈ Cn as t → 0.
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This expansion is sort of “obvious” if we think of f (·) as the solution of the heat equation

∂tf
(·) = ∆f (·) :=

n
∑

k=1

∂k∂̄kf
(·)

with initial condition f (0) = f , i.e. f (t) = et∆f . Nevertheless, we provide a proof for completeness:

Proof. Taylor expanding f(
√
tw + z) around z yields

f(
√
tw + z) =

∑

|α|+|β|≤2k

1

α!β!
∂α∂̄βf(z)wαw̄βt

|α|+|β|
2 +

∑

|α|+|β|=2k

hα,β(
√
tw + z)wαw̄βtk (2.3)

with hα,β(
√
tw + z) → 0 as t → 0. Here, the remainders hα,β(

√
tw + z) in Lagrange form are

hα,β(
√
tw + z) =

1

α!β!
∂α∂̄β

(

f(z + ξ
√
tw) − f(z)

)

for some ξ ∈ (0, 1). As all derivatives of f are assumed to be bounded and uniformly continuous,
the remainders are bounded and the convergence hα,β(

√
tw+z) → 0 is uniform in z. The expansion

for f (t) now follows by a direct calculation:

f (t)(z) =
1

πn

∫

Cn

f(
√
tw + z)e−|w|2 dw

=
∑

|α|+|β|≤2k

1

α!β!
∂α∂̄βf(z)t

|α|+|β|
2

1

πn

∫

Cn

wαw̄βe−|w|2 dw + o(tk)

=
∑

|α|+|β|≤2k

1

α!β!
∂α∂̄βf(z)t

|α|+|β|
2 β!δα,β + o(tk)

=
∑

|α|≤k

t|α|

α!
∂α∂̄αf(z) + o(tk),

where we used dominated convergence for the remainder and the fact that
{

eα(w) =
wα

α! : α ∈ N
n
0

}

forms an orthonormal basis of H2
1 .

Lemma 7. Let k ≥ 0 and f, g ∈ C2k
buc(C

n). Then we have the following expansion:

[f (t)♯tg
(t)](z) =

∑

|µ|+|ν|+|λ|≤k

(−1)|λ|
t|µ|+|ν|+|λ|

µ!ν!λ!

(

∂µ+λ∂̄µf(z)
) (

∂ν ∂̄ν+λg(z)
)

+ o(tk)

uniformly for all z ∈ Cn as t → 0.

Note that even though plugging (2.2) directly into (2.1) formally yields the right result, it does
not sufficiently take the error term into account. We therefore Taylor expand the integral form of
the expression (Proposition 5) again.
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Proof. Using the Taylor expansion (2.3) for f and g and the same arguments as in Lemma 6, we
get

[f (t)♯tg
(t)](z) =

1

π2n

∫

Cn

∫

Cn

f(
√
tv + z)g(

√
tw + z)e−v̄w−|v|2−|w|2 dv dw

=
1

π2n

∑

|α|+|β|+|γ|+|ε|≤2k

1

α!β!γ!ε!

(

∂α∂̄βf(z)
) (

∂γ ∂̄εg(z)
)

t
|α|+|β|+|γ|+|ε|

2

·
∫

Cn

∫

Cn

vαv̄βwγw̄εe−v̄w−|v|2−|w|2 dv dw + o(tk).

Using polar coordinates and contour integration, the double integral is equal to

n
∏

j=1

(−1)

∫ ∞

0

∫ ∞

0

∫

|wj |=1

∫

|vj |=1

r
αj+βj+1
j s

γj+εj+1
j v

αj−βj−1
j w

γj−εj−1
j e

−rjsj
wj
vj

−r2j−s2j dvj dwj drj dsj .

By Cauchy’s integral formula, this is 0 if αj < βj or γj > εj for any j ∈ {1, . . . , n} and equal to

n
∏

j=1

2πi(−1)αj−βj+1

(αj − βj)!

∫ ∞

0

∫ ∞

0

∫

|wj |=1

r
2αj+1
j s

αj−βj+γj+εj+1
j w

αj−βj+γj−εj−1
j e−r2j−s2j dwj drj dsj

=

n
∏

j=1

4π2(−1)αj−βj

(αj − βj)!
δαj−βj ,εj−γj

∫ ∞

0

∫ ∞

0

r
2αj+1
j s

αj−βj+γj+εj+1
j e−r2j−s2j drj dsj

=

n
∏

j=1

4π2(−1)αj−βj

(αj − βj)!
δαj−βj ,εj−γj

∫ ∞

0

∫ ∞

0

r
2αj+1
j s

2εj+1
j e−r2j−s2j drj dsj

=
n
∏

j=1

π2(−1)αj−βjαj !εj !

(αj − βj)!
δαj−βj,εj−γj

= π2n(−1)|α|−|β| α!ε!

(α− β)!
δα−β,ε−γ

otherwise. Choosing µ = β, ν = γ and λ = α− β = ε− γ, we get

[f (t)♯tg
(t)](z) =

∑

|µ|+|ν|+|λ|≤k

(−1)|λ|
t|µ|+|ν|+|λ|

µ!ν!λ!

(

∂µ+λ∂̄µf(z)
) (

∂ν ∂̄ν+λg(z)
)

+ o(tk)

as asserted.

Remark 8. In fact, Proposition 5 is also valid for polynomials (see [3, Lemma 14]). Therefore,
instead of computing the double integral by brute force, we could observe that it is equal to
π2n[(zαz̄β)(1)♯1(z

γ z̄ε)(1)](0). Then, using the exact formula for the heat transform of a polyno-
mial (i.e. an exact version of Lemma 6) and the definition of ♯1 (Definition 4), yields

[(zαz̄β)(1)♯(1)(z
γ z̄ε)(1)](0) =

∑

λ∈Nn
0

∑

µ∈Nn
0

∑

ν∈Nn
0

(−1)|λ|

λ!µ!ν!
(∂λ∂µ∂̄µzαz̄β)(∂ν ∂̄λ∂̄νzγ z̄ε)

∣

∣

∣

∣

z=0
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=
∑

λ∈Nn
0

∑

µ∈Nn
0

∑

ν∈Nn
0

(−1)|λ|

λ!µ!ν!
α!β!γ!ε!δα,µ+λδβ,µδγ,νδε,ν+λ

= (−1)|α|−|β| α!ε!

(α− β)!
δα−β,ε−γ

directly.
Now we are able to prove Theorem 1 by strong induction over k. The case k = 0 is the following

result of Bauer and Coburn:

Proposition 9. ([4, Theorem A])
If f, g : Cn → C are bounded and uniformly continuous, then

lim
t→0

∥

∥

∥
T

(t)
f T (t)

g − T
(t)
fg

∥

∥

∥
= 0.

Now the rest is just bookkeeping.

Proof of Theorem 1. We will prove

T
(t)
f T (t)

g =
∑

|α|≤l

(−t)|α|

α!
T

(t)

(∂αf)(∂̄αg)
+ o(tl) (2.4)

for all f, g ∈ C2l
buc(C

n) by strong induction. For l = 0 we have Proposition 9. So assume that (2.4)
holds for l ∈ {0, . . . , k − 1}. We will compare the expansions of T (t)

f(t)T
(t)

g(t) and T
(t)

f(t)♯tg(t) . Using the
induction hypothesis and Lemma 6, we get

T
(t)

f(t)T
(t)

g(t) =
∑

|α|+|β|≤k

t|α|+|β|

α!β!
T

(t)

∂α∂̄αf
T

(t)

∂β ∂̄βg
+ o(tk)

=
∑

|α|+|β|=k

tk

α!β!
T

(t)

∂α∂̄αf
T

(t)

∂β ∂̄βg
+

∑

|α|+|β|=k−1

tk−1

α!β!
T

(t)

∂α∂̄αf
T

(t)

∂β ∂̄βg
+ . . .

+
∑

|α|+|β|=1

t

α!β!
T

(t)

∂α∂̄αf
T

(t)

∂β∂̄βg
+ T

(t)
f T (t)

g + o(tk)

=
∑

|α|+|β|=k

tk

α!β!
T

(t)

(∂α∂̄αf)(∂β ∂̄βg)
+

∑

|α|+|β|=k−1

tk−1

α!β!

∑

|γ|≤1

(−t)|γ|

γ!
T

(t)

(∂α+γ ∂̄αf)(∂β ∂̄β+γg)
+ . . .

+
∑

|α|+|β|=1

t

α!β!

∑

|γ|≤k−1

(−t)|γ|

γ!
T

(t)

(∂α+γ ∂̄αf)(∂β ∂̄β+γg)
+ T

(t)
f T (t)

g + o(tk)

=
∑

|α|+|β|+|γ|≤k
|α|+|β|6=0

(−1)|γ|
t|α|+|β|+|γ|

α!β!γ!
T

(t)

(∂α+γ ∂̄αf)(∂β ∂̄β+γg)
+ T

(t)
f T (t)

g + o(tk).

Hence, using Proposition 5 and comparing with Lemma 7, we get

T
(t)
f T (t)

g =
∑

|γ|≤k

(−1)|γ|
t|γ|

γ!
T

(t)

(∂γf)(∂̄γg)
+ o(tk)

and we are done.
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3 Proof of Theorem 3

Recall that we want to prove

∑

|α|≤k

(−t)|α|

α!

(

(∂αf)(∂̄αg)
)(t)

=
∑

|α|≤k

t|α|

α!
(∂̄αf (t))(∂αg(t)) + o(tk)

as t → 0. We will need the following combinatorial identity.

Lemma 10. Let q ≥ p ≥ 0 and l ≥ 0. Then

p
∑

m=0

(−1)m
(q −m+ l)!

m!(p−m)!(q −m)!
=

{

0 if l < p,
l!(l+q−p)!
q!p!(l−p)! if l ≥ p.

Proof. Consider the equality

p
∑

m=0

p!

m!(p−m)!
(−1)mxq−m+l = (x− 1)pxq−p+l,

differentiate it l times and evaluate at x = 1.

Proof of Theorem 3. Taylor expanding the left-hand side and using the same arguments as in
Lemma 6 yields

∑

|α|≤k

(−t)|α|

α!

(

(∂αf)(∂̄αg)
)(t)

=
∑

|α|≤k

(−t)|α|

α!

1

πn

∫

Cn

(∂αf)(
√
tw + z)(∂̄αg)(

√
tw + z)e−|w|2 dw

=
1

πn

∑

|α|≤k

(−t)|α|

α!

∑

|β|+|γ|+|ε|+|ζ|≤2(k−|α|)

t
|β|+|γ|+|ε|+|ζ|

2

β!γ!ε!ζ!
(∂α+β ∂̄γf)(z)

· (∂ε∂̄α+ζg)(z)

∫

Cn

wβ+εw̄γ+ζe−|w|2 dw + o(tk)

=
∑

2|α|+|β|+|γ|+|ε|+|ζ|≤2k

(−1)|α|
t
2|α|+|β|+|γ|+|ε|+|ζ|

2

α!β!γ!ε!ζ!
(3.1)

· (∂α+β ∂̄γf)(z)(∂ε∂̄α+ζg)(z)(γ + ζ)!δβ+ε,γ+ζ + o(tk).

Fix j ∈ {1, . . . , n} and p, q ∈ N with q ≥ p. Then Lemma 10 implies (with αj = m, γj = l)

∑

αj+βj=p

∑

αj+ζj=q

(−1)αj (γj + ζj)!

αj !βj !γj !εj!ζj !
δβj+εj ,γj+ζj =

p
∑

m=0

(−1)m(γj + q −m)!

m!(p−m)!γj !εj !(q −m)!
δp−m+εj ,γj+q−m

=

{

0 if γj < p
(γj+q−p)!

q!p!(γj−p)!εj !
δp+εj ,γj+q if γj ≥ p

=

{

0 if γj < p
1

q!p!(γj−p)!δp+εj ,γj+q if γj ≥ p.
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As the expression on the left-hand side is symmetric with respect to βj ↔ ζj , γj ↔ εj , p ↔ q, we
also obtain

∑

αj+βj=p

∑

αj+ζj=q

(−1)αj (γj + ζj)!

αj !βj !γj !εj!ζj !
δβj+εj ,γj+ζj =

{

0 if εj < q
1

p!q!(εj−q)!δq+γj ,εj+p if εj ≥ q

for q ≤ p, which is actually exactly the same as above due to the Kronecker delta. Now the idea
is to group the terms in (3.1) with fixed p and q. In particular, the terms with αj + βj > γj or
αj + ζj > εj for some j ∈ {1, . . . , n} can be removed as they sum to 0. We therefore set ρ := α+ β,
σ := α+ ζ, µ := γ − α− β and ν := ε− α− ζ. This yields

∑

|α|≤k

(−t)|α|

α!

(

(∂αf)(∂̄αg)
)(t)

=
∑

2|ρ|+2|σ|+|µ|+|ν|≤2k

t
2|ρ|+2|σ|+|µ|+|ν|

2

ρ!σ!µ!
(∂ρ∂̄ρ+µf)(z)(∂ν+σ∂̄σg)(z)δµ,ν

+ o(tk)

=
∑

|ρ|+|σ|+|µ|≤k

t|ρ|+|σ|+|µ|

ρ!σ!µ!
(∂ρ∂̄ρ+µf)(z)(∂µ+σ∂̄σg)(z) + o(tk)

=
∑

|ρ|+|σ|+|µ|≤k

t|µ|

µ!
∂̄µ

(

t|ρ|

ρ!
∂ρ∂̄ρf

)

(z)∂µ

(

t|σ|

σ!
∂σ∂̄σg

)

(z) + o(tk)

=
∑

|µ|≤k

t|µ|

µ!
(∂̄µf (t))(∂µg(t)) + o(tk)

by Lemma 6.

4 Open problems

Here we summarize some related problems that we were not able to solve here and probably go
beyond the methods of this paper. They will be considered in future research.

(1) Find the least number of derivatives needed for the product expansion. [5] suggests
that the regularity assumptions in Theorem 1 and Corollary 2 are not quite optimal. However, it
is not so clear whether 2k derivatives are actually needed. For the case k = 0 not even continuity is
needed, but the oscillation needs to be constrained (see [5]). We conjecture that something similar
happens for k ≥ 1. However, this requires a more sophisticated approach than presented here
because even though all the higher derivatives magically disappear in the end, they are needed to
bound the error term.

(2) Find an example of two functions with only one bounded derivative where the
statement of Corollary 2 is wrong. As we expect that only one derivative (without regularity
assumptions on the partial derivatives) is not enough, a counterexample needs to be found.

(3) Show that Theorem 3 still holds with less than 2k derivatives or find a counterex-
ample. As this identity is on a purely functional level, this might be easier than (1) or (2).
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(4) Prove a similar result for the Bergman space. A similar result is probably also true for
the Bergman space on the unit ball. However, a different approach is needed because an analogue of
Proposition 5 does not exist and in general it appears to be less likely for a product of two Toeplitz
operators to be a Toeplitz operator again.
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