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Abstract 
 
Developments in the waste management of radioactive high-level liquid waste produced 

in the back-end of the nuclear fuel cycle will further develop the public approval of nuclear 

power as an alternative to the combustion of depleting supplies of fossil fuels. Even though 

the minor actinides contribute to ca. 0.1 % of spent nuclear fuel by mass, they significantly 

contribute to the relative radiotoxicity of the waste and constitute a thermal burden. In 

order to transmute the minor actinides into shorter-lived more stable isotopes, they must 

be isolated from the remaining waste, and especially separated from the very similar 

trivalent lanthanides. This thesis outlines the synthesis and extraction capability of N-donor 

extractants for the difficult separation of trivalent minor actinides [An(III)] from the 

chemically similar trivalent lanthanides [Ln(III)] in advanced nuclear fuel cycles. The use of 

solid-supported extractants including magnetic nanoparticles and macroscopic silica gel for 

their separation together with recovery of fission/corrosion products present in PUREX 

streams is also reported.   
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1.1 – Introduction: 

Actinides exist in small quantities in the geosphere both as a result of natural occurrence and 

due to human activities. Uranium (238U) is the heaviest atomic mass element generally found 

in nature, with neptunium (237Np) and plutonium (244Pu) only being found in trace amounts. 

Human activities, including the development of nuclear weapons, nuclear reactor incidents 

and particularly the generation of used nuclear fuel (commonly known as spent nuclear fuel, 

SNF) have contributed to the global accumulation of actinides.1–3  

The separation of actinides from SNF is strongly affected by the presence of a wide range of 

other elements, including transition metals and lanthanides, which compete for the binding 

sites in the ligands/compounds used during the extraction. The extraction process is further 

complicated by the concentration of other metal ions being generally orders of magnitude 

larger than those of the actinides. Different methods, including solvent extraction, pyro-

processing and ion-exchange have previously been used to achieve selective extraction of 

the minor actinides.4,5 Ion-exchange techniques are generally non-specific in their binding or 

separating ability, exploiting differences in the size of the complexes formed or the charge 

density of the ions in acidic/basic media.6 The most developed technique at industrial level, 

which will be focused on in this introductory chapter, is the use of solvent extraction, where 

ligating molecules are dissolved in an organic phase and used to extract a range of metals 

from an acidic aqueous phase.  

The development of solvent extraction techniques for SNF reprocessing has two especially 

important roles: the first being for the separation and recovery for re-use of uranium and 

plutonium (since > 90 % SNF is uranium), as estimates indicate that the world’s stocks of 

uranium will only last for a further 90 years.7 The second role will be to enable the separation 

of the minor actinides [neptunium (Np), americium (Am) and curium (Cm)], so that 

transmutation (inducing fission by high neutron fluxes) would become possible, generating 

shorter-lived, or stable isotopes, giving waste that will require storage on a time scale about 

one thousandth that of unprocessed SNF.2,8,9 

The separation of actinides from within a mix of lanthanides is not as straightforward as, for 

example, the separation of sodium (227 pm) and caesium (300 pm), which can be achieved 

based on size of cations, or strontium (+2) and yttrium (+3), where separation can be 

achieved based on charge.10 Trivalent lanthanides and actinides have very similar sized ions 
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and have similar charge densities, so selective extraction of actinides in the presence of 

lanthanides must be controlled by exploiting the small differences in their bonding and other 

properties. 

1.1.1 – Nuclear Power: 

 
Few authorities question that global warming has been brought about by burning fossil fuels 

and that to arrest the rate of climate change, it is necessary to develop effective, efficient 

and sustainable alternative sources of energy. This is coupled with increasing political 

pressure to reduce air pollution and generation of greenhouse gases as emphasised by the 

2016 Paris Agreement.11 

Nuclear power generation accounted for approximately 11 % of the world’s total electricity 

production during 2013 and was higher among OECD countries (Organisation for Economic 

Co-operation and Development), accounting for 18 % overall of these countries’ generation 

capacity in the same year, according to the International Atomic Energy Agency (IAEA).12  

In comparison with coal power plants, which supplied ~ 40 % of the world’s electricity in 

2015, the energy liberated from the fission of uranium is about two million times more than 

that obtained from burning an equal mass of coal.7,12  

Wind, solar, hydro-electricity and geothermal energy are all clean alternatives to burning 

coal, oil or gas, but suffer from the drawbacks of being relatively inefficient, expensive, 

inconsistent or geographically restricted. However, in 2015 the renewables energy sector 

posted a 15 % year-on-year increase in energy output reaching over 150 Gigawatt (GW) for 

the first time.13 

To keep pace with growing electricity demands worldwide, increasing nuclear power output 

remains a viable option as it maintains a low-carbon emission policy. Many countries are 

looking to expand their nuclear power generation and in 2015 there were 68 new reactors 

under construction.14 The IAEA has estimated that up to 700 GW could be generated by 2030. 

However, the strategy for a long-term solution for safe disposal of the waste is yet to be 

clearly established and both the current stockpiling above ground and eventual deep 

geological deposition of SNF cause great public concern.  
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1.1.2 – The Nuclear Fuel Cycle (NFC): 

 
During its operation, a typical 1000 MW light water reactor (LWR) produces 20-30 tons of 

SNF per annum.8 Therefore, the most important scientific and technological challenge that 

needs to be addressed for nuclear energy generation to become a viable means of low-

carbon energy generation in the long term, is to develop effective strategies to deal with the 

highly radiotoxic waste. Nearly all nuclear active nations are aiming to use a geological 

disposal facility (GDF) for the waste as its final destination, whether that be directly as SNF 

or after some degree of reprocessing.15  

The nuclear reactions that occur inside a nuclear reactor to generate electricity are 

essentially the same reactions that occur during the detonation of a nuclear weapon, but 

proceed at a much slower and more controlled rate. This leads to a slightly different yield of 

fission products due to the lower neutron energies involved. Uranium is mined from a variety 

of mineral deposits and is composed of three naturally occurring isotopes, 238U (99.2739 %), 
235U (0.7205 %) and 234U (0.0056 %) with the average abundance of uranium in the Earth’s 

crust being about 3 parts per million (ppm).16 After mining, the ore undergoes milling where 

the ore is crushed to particle sizes of < 20 mm, wet grounded and leached with sulfuric acid. 

Separation of the UO2 liquor and precipitation with ammonia gas gives a powder which is 

mostly U3O8, known as yellowcake.17 

The 235U is the fissile isotope needed for the production of energy in nuclear reactors and 

following purification to remove neutron absorbing poisons, enrichment of the fissile 235U 

isotope is required to increase the isotopic proportion to approximately 3-5 %, which is 

known as low-enriched uranium (LEU).7,18 The enriched uranium is fabricated into pellets and 

packed into fuel rods that are typically constructed using alloys of metals with low neutron 

absorption cross sections.19 

The stage from mining the ore to fuel fabrication is known as the ‘Front End’ of the nuclear 

fuel cycle whilst the production of energy and up to storage is known as the ‘Back End’. An 

overall summary of the nuclear fuel cycle is depicted in Fig 1.1.  
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Figure 1.1 – The nuclear fuel cycle (NFC)20 

To capture energy from uranium, the nuclei are bombarded with neutrons to induce a 

branched chain reaction. The neutrons ejected after bombardment are so-called ‘fast 

neutrons’, where further absorption is unlikely. Thus a moderator is employed, typically D2O 

or beryllium, which reduces the kinetic energy of the neutrons.7 Absorption by 235U repeats 

the chain reaction; whereas absorption by 238U produces 239U, which can undergo a-decay 

leading to the production of lighter nuclei (fission products, lanthanides) or undergo ß-decay 

leading to heavier minor actinides. A range of fission products can be produced from the 

decay of 239U, ranging from arsenic (As) to terbium (Tb) (atomic mass number 75 through to 

160). Only a small proportion of the nuclei produced constitute the heavier minor actinides, 

neptunium (Np), americium (Am) and curium (Cm).8,10  

1.2 – Spent Nuclear Fuel: 

Irradiated nuclear fuel rods inside a reactor have an approximate life-time of three to five 

years, after which the rods are removed and submerged in cooling ponds for up to 3 years. 

This allows the decay of short-lived and intensely radiotoxic elements such as 129I and 99Tc. 

For reprocessing, the fuel cladding is removed and the rods are then broken up by dissolving 

in concentrated (7 M) nitric acid to give an aqueous acidic waste stream.8,17  
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The SNF produced by a typical LWR consists mostly of uranium (of which only 0.7 % is 235U), 

short-lived fission products and lanthanides (> 98 % wt), which do not present significant 

long-term hazards.21 From the remainder, the main contributor to the long-term 

radiotoxicity of the SNF, is plutonium (~ 1 %), together with the minor actinides (Np, Am, Cm, 

~ 0.1 %).22 Fig 1.2 displays the typical composition of such spent nuclear fuel.23  

 
Figure 1.2 – Approximate composition of SNF from irradiated nuclear fuel rods.23 

 

The minor actinides are the cause of much of the long-term radiotoxicity of the spent fuel, 

even though they only account for about 0.1 % by mass of the waste.22 Fig 1.3 shows the 

various scenarios for the time taken for the spent fuel to decay back to the natural 

radioactivity level of uranium, depending upon the degree of reprocessing carried out. The 

removal of uranium, plutonium and minor actinides leads to a thousand-fold decrease 

(yellow line) in the storage time to something that is feasible from a technical and logistical 

sense. Furthermore, the heat output of such reprocessed waste is far lower, meaning that 

repositories can be smaller in volume. 
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Figure 1.3 – Relative radioactive decay of spent nuclear fuel as a function of degree of reprocessing.23  
 

An industrial procedure already applied to spent fuel in France, Russia and (currently) the 

UK, is the PUREX (Plutonium and URanium EXtraction) process (section 1.4.1), which 

removes plutonium and uranium, comprising ~ 95 % of the spent fuel (Table 1.1). As shown 

in Fig 1.3, this reduces the radiotoxicity of the spent fuel dramatically, decreasing the time 

to decay to that of naturally occurring uranium from 300,000 years to around 9000 years (Fig 

1.3, dark blue line). However, the remaining PUREX raffinate still contains the minor 

actinides, lanthanides and fission/corrosion products. Further reprocessing is proposed to 

involve the co-extraction of the minor actinides and lanthanides (TRUEX and DIAMEX, section 

1.4.2), before the extremely difficult selective extraction of the minor actinides from the 

remaining lanthanides is carried out (SANEX, section 1.4.4). Removal of all Pu, U and the 

minor actinides will further decrease the decay time to ca. 300 years (Fig 1.3, yellow line). 

This is a significant reduction compared to the lifetime of the initial spent fuel and enhances 

the potential for storage in a GDF.23 
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Table 1.1 – Approximate mass and t1/2 of U and Pu radioisotopes found in SNF per annum.24 

 

Radionuclide t1/2 (yrs) Approx. Mass in SNF (Kg) 
234U 2.47 x 105 3 
235U 7.10 x 108 215 
236U 2.39 x 107  114 
238U 4.51 x 109  25700 

Total   26032 
238Pu 86  6 
239Pu 2.44 x 104  144 
240Pu 6.58 x 103 59 
241Pu 13  28 
242Pu 3.79 x 105 10 
Total   247 

 

Table 1.2 – Approximate mass and t1/2 of Np, Am and Cm radioisotopes found in SNF per annum.24 

 

Radionuclide t1/2 (yrs) Approx. Mass in SNF (Kg) 
237Np 2.14 x 106  20 
Total   20 
242Am 141 0.01 
243Am 7950  2.48 
Total   3.81 
242Cm 163 (days) 0.133 
243Cm 32 0.002 
244Cm 18 0.911 
245Cm 9300  0.055 
246Cm 5500 0.006 
Total   1.11 

 

Table 1.2 shows the approximate mass and half-lives (t1/2) of neptunium, americium and 

curium radioisotopes present in SNF from a pressurised water reactor (PWR) per annum, 

which is very small compared to the isotopes shown in Table 1.1, but very significant as the 

minor actinides are intensely radiotoxic and also constitute a major thermal burden.8,25 

Fission and corrosion products make up the remainder of the elements present in SNF, where 

fission products result from decay chains of fissile material and the corrosion products are a 

result of the degradation of the fuel cladding and of the steel containment. Since the various 

corrosion and fission products are in a higher abundance in the SNF than actinides, it makes 
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the selective partitioning of the minor actinides into the organic phase during liquid-liquid 

extraction much more difficult.2,9,26  

1.3 – Actinide and Lanthanide Chemistry: 

1.3.1 – Actinides: 

The actinide elements consist of the elements with atomic numbers from 89 to 103 (Ac-Lr), 

and the name of the group is derived from the first member of the series, actinium. The 

actinides form the second series of the ‘f-block elements’ whereby f-electrons formally begin 

with filling the 5f orbital of the 2nd member thorium (Th) and ends with the 15th lawrencium 

(Lr), leading to a total of 14 f-electrons.26,27  

Of all the actinides, only thorium, protactinium and uranium are naturally occurring in any 

significant quantities, with the actinides that follow uranium and up to curium (Cm) being 

formed by the capture of neutrons by 238U inside nuclear reactors. The elements following 

curium are generally formed in higher neutron fluxes in specially designed and controlled 

reactors under laboratory conditions. Discovery of the actinides started in the 18th century 

where they were initially isolated from minerals and the series was only completed in the 

late 1960’s.10  

The natural abundance of actinide elements decreases in the series Th > U > Pa and thorium 

is much more abundant in the Earth’s crust than uranium; indeed thorium is even more 

abundant than lead (Pb).26 The average abundance of uranium across the Earth’s crust is 

between 2 and 4 ppm. The concentration of uranium in sea water is approximately 3 parts 

per billion (ppb), which although low, raises the possibility of harvesting in the future and is 

the focus of on-going research.28,29 All the actinides are unstable with respect to radioactive 

decay, but the long half-lives of 232Th (1.4 × 1010 yrs) and 235U (4.5 × 109 yrs), means they still 

exist naturally.10  

Due to the shifting and overlapping energies of the highly complex f-orbitals in actinides, 

some of the electrons are added to d-orbitals (e.g. in Th and No). The earlier actinides 

elements (Ac-Pu) show a greater covalency in their bonding with donor molecules compared 

with the lanthanide series, but their covalency decreases beyond americium due to the 

shifting of the energy levels of the orbitals involved with bonding.26  
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To extract the actinides effectively from a complex mixture of elements, an understanding 

of their unique and little-known chemistry is required. Among the earlier actinides, the 

promotion of electrons from 5f à 6d orbitals occurs much more readily than the 

corresponding 4f à 5d promotion that occurs in lanthanides.26 The electron promotion 

exhibited by the actinides leads to several accessible oxidation states in the earlier actinides, 

where plutonium can be found in four different oxidation states (III to VI). Orbital 

contraction, where the 5f orbitals are progressively contracted across the series, and so 

closer to the core nucleus, explains the restriction of variable oxidation states seen by the 

actinides that follow Pu; as it becomes progressively harder to remove electrons from the 

more contracted 5f orbitals. 

The preferred oxidation state of the series starts with +3 for actinium and increases up to +6 

for uranium before returning to +3 with americium. The most common oxidation state in 

aqueous media across the series is +3 except for a drop to +2 for nobelium. The most 

common oxidation states for each actinide together with other known oxidation states are 

displayed in Fig 1.4.26  

 

Figure 1.4 – Actinide elements oxidation states 

 

The actinides 5f orbitals have a larger extension into the 6d orbitals showing a greater 

propensity for valence-orbital mixing compared to the 4f into 5d orbitals in the lanthanides, 

and so the actinides are considered more likely to be involved in covalent bonding than the 

lanthanides.26  
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1.3.2 – Lanthanides: 

 
The lanthanide elements consist of the elements with atomic numbers ranging from 57 to 71 

(La-Lu), where the name of the group is again derived from the first member of the series, 

lanthanum (La). Moving across the series, electrons progressively fill the 4f orbital starting 

with the 2nd member, cerium (Ce), and ending with the 15th, lutetium (Lu). The lanthanide 

series together with scandium and yttrium make up a group of elements known as “rare 

earth elements’, a name derived from their discovery during the 18th and 19th century in 

Ytterby, Sweden, where the oxides from which they were obtained were considered to be 

rare minerals at the time.26,27 Although there are commercially minable deposits in the US 

and Australia, currently China accounts for greater than 94 % of all lanthanides produced.30  

The radioactive lanthanide, promethium, is only found in trace amounts as it has no long-

lived isotopes.  On the other hand, cerium has a global abundance of approximately 65 ppm, 

which is similar to that of copper and lead. There are 54 lanthanide minerals that are used 

commercially for extracting the lanthanides, but their extraction, concentration and 

separation from each other is highly complex.31  

Due to the higher energy barrier for the promotion of electrons from the 4f à 5d orbitals, a 

very limited range of oxidation states is observed across the lanthanide series with +3 being 

the usual oxidation state. The lanthanide elements are considered far less covalent in their 

bonding to form complexes compared to actinides because the 4f electrons are not as 

radially extended.26,32  

Following the neutron absorption by uranium in nuclear fuel, several lanthanide 

radioisotopes are produced as fission products, where most have half-lives of less than one 

day. Those with longer half lives include 144Ce, 147Pm, and 151Sm, all of which have half-lives 

significantly longer (285 days, 2.6 yrs and 90 yrs respectively). These lanthanides produced 

in SNF are at much higher concentrations than the actinides, but most of them decay into 

stable isotopes during the initial cooling period of the fuel rod after the end of its use.33  
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1.3.3 – Chemistry of the f-block elements: 

 
The chemistry among the f-block elements is extremely similar. The ‘lanthanide contraction’ 

causes a continuous decrease in atomic radius across the lanthanides due to the poor 

shielding by the 4f electrons. The same phenomenon is observed across the actinides. This is 

due to the increase in effective nuclear charge across both series having the effect on the 

core electrons of drawing them closer to the nucleus, resulting in a decrease in atomic radius 

across both series.27  

All f-block metals have the trivalent state (MIII) as the predominant cation, and the actinides 

can exhibit variable oxidation states, especially across the earlier (Pa – Am) elements. 

Variable coordination numbers are observed upon complexation with ligands, but they are 

usually high (> 6). There is a certain degree of flexibility with the arrangement of the ligands 

around the metals, as coordination is mainly based on steric factors.  

Complex bonding in the f-block elements is essentially ionic, but a key difference between 

lanthanides and actinides is that there is a slightly more covalent nature to the actinide 5f 

orbitals when complexing with ligands. Relativistic effects (a combination of relativity and 

quantum mechanics) play an important role in explaining this key difference between the 

two series. Since the actinide series have more protons (and therefore electrons), they 

express a greater orbital extension, and so the 5f electrons are further from the nucleus in 

actinides than compared to 4f orbitals of the lanthanides and hence are more available for 

covalent bonding. This effect also causes the actinides to exhibit a greater range of oxidation 

states. The smaller nuclear charge of the lanthanides means that the relativistic effects that 

influence actinide bonding are not as evident.32  

Overall, the extended spatial arrangement of the 5f orbitals of the actinides can lead to some 

degree of covalency when complexing with ligands and this is the key difference that is 

targeted by actinide-selective extractants during the separation of fission product 

lanthanides and minor actinides in SNF.8,26,34 
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1.4 – Extraction Processes: 

Scheme 1.1 summarizes a proposed European route for the reprocessing of SNF to produce 

a closed nuclear fuel cycle:  

 
Scheme 1.1 – Summary of a proposed reprocessing plan for spent nuclear fuel in a closed fuel cycle.8 

 

1.4.1 – PUREX Process: 

The PUREX (Plutonium and URanium EXtraction) process was developed in the USA as a 

result of nuclear weapon research in the Manhattan Project during World War 2 and is still 

currently employed by commercial reprocessing plants in France, Russia and the UK, 

although the UK has announced its intention to stop reprocessing in 2018.12 Japan has built 

a reprocessing plant at Rokkasho that was scheduled for operation in 2013 but it is still not 

operational.35 
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The process involves the separation of uranium and plutonium from the other transuranic 

elements and fission/corrosion products in the spent fuel using liquid-liquid extraction 

chemistry, where a concentrated solution (20-30 %) of tributyl phosphate (TBP, 1) in 

odourless kerosene (OK) is used as the organic phase extractant.  

 

Figure 1.5 – Structure of TBP (1) and CMPO (2) 

 

The irradiated fuel rods after cooling and dissolution in 7 M HNO3 produce a mixture of 

mostly UO2(NO3)2 and Pu(NO3)4 that can be extracted in the +6 and +4 state respectively from 

a 3 – 6 M HNO3 feed as [M(NO3)x(1)2] (M = UO2 or Pu and x = 2 or 4 respectively) into the 

organic phase. The nature of these complexes depends on the nitric acid concentration, but 

studies of the complexes by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray 

Absorption Near Edge Structure (XANES) analysis have confirmed that the bis-nitrate 

complexes are exchanged across the organic-aqueous interface.36  

The remaining fission and corrosion products, lanthanides and minor actinides only form 

weak complexes with (1) and so are retained in the aqueous phase, which can be used as the 

feed for TRUEX or DIAMEX processes (section 1.4.2). A drawback to the PUREX process is that 

some neptunium and technetium are also extracted with the uranium and plutonium and 

these need to be separated during the fabrication of uranium and plutonium oxides. 

However, almost all (> 99 %) of the fission products remain in the aqueous raffinate, which 

is then stored before undergoing a process of vitrification to high level waste (HLW).37 

The extracted U(VI) and Pu(IV) complexes can be treated with iron and hydrazine, which only 

reduces Pu(IV) to Pu(III) and leaves U(VI) unaffected. The separated Pu(III) can be treated 

with HNO3 to oxidise it back to Pu(IV) and subsequent heating with oxalic acid affords PuO2.  
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Similarly, the feed containing (1) now loaded with just uranium can be stripped to give an 

aqueous solution of UO2(NO3)2, which on heating and reduction, generates UO2 (Scheme 

1.2).23  

 
Scheme 1.2 – Summary of the PUREX process.38 

 

The recovered uranium and plutonium oxides can be combined and fabricated into pellets 

to form a mixed oxide (MOX) fuel in order to render the fuel proliferation resistant. Recycled 

fuel such as MOX can then be re-entered into the nuclear fuel cycle to generate more 

energy.34,39,40  

The remaining waste (PUREX raffinate) still contains the minor actinides and lanthanides. As 

the average ratio of lanthanides to actinides in the spent fuel is ca. 40:1, partitioning of the 

minor actinides from the lanthanides is essential before transmutation in a Generation IV 

reactor, as the lanthanides have higher neutron cross-capture radii. This means they would 

shield the actinides from the neutrons in the transmutation process, acting as ‘neutron 

poisons’. If it can be demonstrated on scale, this strategy, known as ‘partitioning and 

transmutation’ (P&T), is a highly promising solution to developing safer geological storage of 

SNF.8,22  
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1.4.2 – TRUEX and DIAMEX Processes: 

 
Following the removal of uranium and plutonium during the PUREX process, the resultant 

feedstock containing the minor actinides and lanthanides can be treated with a non-selective 

ligand, by which all the f-block elements are extracted together from the remaining fission 

products. Different procedures using different ligands are used either side of the Atlantic. In 

the United States, the TRUEX process (TRansUranic EXtraction) process was developed at the 

Argonne National Laboratory and typically employs bidentate hard O-donor ligands, such as 

carbamoylmethylphosphine oxides (CMPO), to extract the trivalent actinides and 

lanthanides by coordination to the carbonyl oxygen and phosphonyl oxygen atoms. The 

extraction ability and phase compatibility of different CMPO compounds varies greatly 

between the nature of the alkyl substituents on the core. Of all CMPO compounds 

investigated, [(N,N-diisobutylcarbamoyl)methyl](octyl)phenylphosphine oxide (2) showed 

the best combination of extraction properties when applied to a post-PUREX stream (Fig 

1.5).41  

CMPO (2) is now the principle extractant of trivalent lanthanides and actinides in the TRUEX 

process wherein a 0.2 M concentration of (2) is used in combination with 1.2 M of (1) in n-

dodecane and (1) is used to inhibit third phase formation and reduce radiolytic degradation 

of (2). This combination showed good selectivity for the lanthanides and minor actinides over 

the other fission and corrosion products present in the post-PUREX raffinate and works on 

HNO3 solutions of up to 6 M. However, few O-donor compounds have shown the ability to 

extract exclusively the minor actinides in order to separate them from the lanthanides as 

required for later transmutation.5,42,43  

In Europe, a different type of ligand is used for the exact same extraction process, comprised 

of non-selective bidentate malondiamide units (Scheme 1.3). The process was developed by 

the French CEA (Commissariat à l’Energie Atomique) and named the DIAMEX process 

(DIAMide EXtraction). These malondiamide units can be easily synthesised by reacting 

malonyl chloride (3) with different amines in the presence of base.34  

 
Scheme 1.3 – Synthesis of malondiamide units. 
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Current reference molecules for the DIAMEX process include N, N’-dimethyl-N,N’- 

dioctyl[(hexyloxy)ethyl]-malonamide (DMDOHEMA, 4) and N,N,N’,N’-

tetraoctyldigylcolamide (TODGA, 5). The latter has shown improved performance compared 

to other malonamide ligands in laboratory demonstration tests on genuine PUREX raffinate 

solutions, where a typical flow-sheet is shown in Scheme 1.4.44 Addition of oxalic acid 

prevents the transfer of some problematic fission/corrosion products, such as zirconium and 

molybdenum, into the organic phase. 

 

 
Scheme 1.4 – Flowsheet for a laboratory demonstration DIAMEX process 

 

Substitution of methyl groups a- to the carbonyl in (5) has led to improved TODGA 

homologues, Me-TODGA (6) and Me2-TODGA (7), which show improved stability towards the 

harsh conditions of the extraction processes (high acidity and radiolytic flux).45  

 

 
Figure 1.6 – Malonamide DMDOHEMA (4) and diglycolamides (5-7) 

 

The nature of the extracted species using malonamide (4) has been elucidated by crystal 

structure analysis of their lanthanide complexes. It was found that the lanthanide ion is 10-
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coordinate overall, bound to two bidentate malonamide units and three bidentate nitrate 

ions.46  

A key difference between the TRUEX and DIAMEX processes is that the latter process uses 

compounds that comply with the CHON principle. This relates to the fact that, for ligands to 

be used in the nuclear waste reprocessing industry, they must contain only the elements 

carbon, hydrogen, oxygen and nitrogen. This minimises the generation of corrosive materials 

when the ligands are incinerated to give a solid waste form to be stored.34  

 

1.4.3 – TALSPEAK Process: 

 
The USA does not currently reprocess any of its SNF from nuclear reactors and currently the 

TRUEX process is used to clean-up legacy waste from research. Since the late 1960s the 

TALSPEAK (Trivalent Actinide Lanthanide Separation by Phosphorous reagent Extraction 

from Aqueous Komplexes) has been in development for potential process scale 

partitioning.47  

The process uses an acidic organophosphorus reagent in the organic phase, a 

polyaminocarboxylic acid in the aqueous phase and a buffering agent to control pH. The 

TALSPEAK process differs from the typical solvent extraction processes to be discussed in this 

chapter, as the actinide elements are retained in the aqueous phase while the lanthanides 

are extracted. In the 1950s it was reported that the f-block elements could be extracted by 

di-(2-ethylhexyl)phosphoric acid (HDEHP, 8) from mineral acid solutions. HDHEP is a liquid 

cation exchanger that can also act as a complexing agent and was found to form 3:1 

complexes with the lanthanide/actinide metal centres, releasing protons into solution as it 

transferred the metal species into the organic phase. Distribution ratios of approximately 105 

for La(III) to Lu(III) have been reported and the values overlap significantly with the trivalent 

actinides.47 Some separation of individual members is possible with (8) alone, but it is not 

useful for any separation between the groups.  

It was reported that, by modifying the aqueous phase with the addition of moderate 

concentrations of carboxylic acids and lowering the concentration of polyaminocarboxylic 

acids, a better separation between the lanthanides and actinides could be achieved. 

Eventually the optimum carboxylic acid was chosen as lactic acid (9) and the hold-back 

reagent employed was DTPA (diethylenetriaminepenta-acetic acid, 10), which led to a 
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process that was first disclosed by Oak Ridge National Laboratory in 1968 by B. Weaver and 

F.A. Kappelmann.48,49  

 
Figure 1.7 – Structures of HDEHP (8), lactic acid (9) and DTPA (10) 

 

Lactic acid (9) was chosen as the most suitable carboxylic acid to be added to the aqueous 

phase due to the high solubility of its lanthanide salts and DTPA (10) was used as the hold-

back reagent due to the strong complexes it formed with the actinides. A complete group 

separation with (10) was demonstrated where the three amine nitrogen atoms coordinate 

to the actinide centre adopting a specific geometry.50  

Some advances have been made to improve the TALSPEAK process by varying the organic 

extractants and holdback reagents, especially in order to reduce the acidity of the 

organophosphorus reagent used.51 However, the drawbacks include the use of non-CHON 

reagents and continuous pH buffering of the phases for optimal extraction.  DTPA also 

undergoes radiolysis quite readily, rendering its use in an industrial scale separation 

technique problematic.  

 

1.4.4 – SANEX Process: 

 
In Europe, the approach adopted to separate the minor actinides from the lanthanides 

contained in a DIAMEX feed is known as the SANEX (Selective ActiNide EXtraction) process. 

The extraction reagent required for selective actinide binding must exhibit high stability 

under the harsh conditions of the SANEX process, be sufficiently soluble in the organic 

solvents used for extraction and show good extraction and stripping kinetics.50 The most 

successful ligands derived for potential use in the SANEX process contain several soft donor 

atoms (e.g. N or S), as these ligands have been found to exploit the slightly more covalent 

nature of the metal-ligand bonding upon complexation with actinide 5f orbitals. However, 
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the nature of this covalency is still quite poorly understood, and continues to be the subject 

of ongoing research.52–56  

Any compound chosen for use in the SANEX process must fulfil a series of demanding criteria, 

where the main points are summarised below:8,57,58 

o The ligand and the extracted metal complex must have good solubility in the organic 

phase to prevent precipitation occurring; 

o The selectivity for the actinides must be sufficiently high (5:1) so that extraction is 

achieved in the fewest number of steps; 

o Extracted complexes formed need not to be so strong that back-extraction (stripping) 

of the metal species from the complex and recycling is impossible;  

o  The ligand moiety itself needs to be resistant to radiolysis and acid hydrolysis; 

o  The ligand must be able to extract from highly acidic conditions, up to 4 M HNO3; 

o  The ligand must be cheap and easy to synthesize, in order to be produced 

economically on a large-scale. 

 

1.4.5 – 1c-SANEX, i-SANEX and GANEX Processes: 

 
Subsequently, other actinide extraction processes have been proposed including 1c-SANEX 

(1-cycle SANEX) and i-SANEX (innovative SANEX). Both processes were born after genuine 

demonstration tests of the SANEX process. The 1c-SANEX process developed by Wilden et al. 

involves applying a SANEX process directly to PUREX process conditions, to ultimately by-

pass the DIAMEX process and reduce the number of stages required to separate actinides 

from lanthanides. Due to the complex composition of the PUREX raffinate and high acidity, 

this process is very difficult to design and implement.59  

The i-SANEX process was developed and demonstrated by Geist et al. where TODGA (5-7) 

related compounds were used to co-extract all actinide(III) and lanthanide(III) ions into the 

organic phase (DIAMEX) before a hydrophilic actinide selective stripping agent would 

complex with the actinides exclusively providing a waste stream of pure actinide species. The 

extraction by hydrophilic actinide selective compounds is discussed in more detail in section 

1.7, but one of the drawbacks to this process is the use of sulfonated non-CHON ligands and 

so generation of further waste streams to be disposed of.60,61   
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The GANEX (Group ActiNide EXtraction) concept involves the co-extraction of all the trans-

uranic elements (Np, Pu, Am and Cm) by an actinide selective ligand from the dissolved spent 

fuel. This would take place directly on post-PUREX streams after the bulk removal of uranium. 

Advantages of this process include the fact that no direct stream of Pu is obtained, and that 

it would involve the shortest set of stages for any actinide extraction process.25,62  

 

1.4.6 – Extraction Methodology: 

 
During the solvent extraction/separation investigations discussed from here onwards in this 

thesis, the radioisotopes 152Eu and 241Am are used to represent the lanthanide and actinide 

series respectively, unless otherwise stated. To quantify the effectiveness of the ligand in 

extracting a metal during liquid-liquid extraction, the amount of the extracted metal present 

in the organic phase, with respect to the metal remaining in the aqueous phase is known as 

the Distribution Ratio D(M), where values of D(M) > 1 are a result of > 50 % extraction of metal 

into the organic phase. (M = metal) 

𝐷(#) =
[#]()*
[#]+,

  Equation 1.1 

When more than one species is present in solution, it is possible to measure the relative 

removal of one species compared to the other, M1 to M2. This is known as the Separation 

Factor, SF. The separation factor for two metal species is the ratio of their D values and gives 

a measure of the selectivity of the ligand for one metal species over another. The larger the 

separation factor value the more selective the ligand.  

𝑆𝐹(/0/1)
= 2/0

2/1
   Equation 1.2 

For solid phase extraction studies, the weight distribution ratios, Dw, are calculated (Equation 

1.3), where Ao
 is the activity of the uncontacted aqueous phase, As is the activity of the 

aqueous phase after contact, w is the weight of the solid phase extractant and V is the 

volume in contact with the sample.63 These values represent the ratio between the 

radioactivity (α- and γ- emissions) of each isotope in the standard solution and the 

supernatant. The separation factor is SFAm/Eu = DwAm / DwEu or SFAm/Cm = DwAm / DwCm.  

𝐷3 =
(4(546)

46
× 8
3

     Equation 1.3 
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1.5 – SANEX Process Ligands: 

1.5.1 – S-donor Ligands: 

Some of the earliest examples of actinide-selective compounds were the S-donor 

dithiophosphinic acids.64 These commercially available acids were tested for their extraction 

properties of Am(III) over Eu(III) and Zhu et al. showed that Cyanex 301, composed mainly of 

bis(2,4,4-trimethylpentyl)dithiophosphinic acid (11) (ca. 80 %) efficiently separated actinides 

with very high selectivities (up to SFAm/Eu > 4000).65 The impurities present in this 

commercially available reagent were believed to lower its effectiveness in the extraction of 

f-block metals. Indeed, once Cyanex 301 was fully purified, and combined with auxiliary N-

donor units such as 2,2’-bipyridine (12) and 1,10-phenanthroline (13), the selectivity was 

enhanced even further with reported separation factors of SFAm/Eu > 30,000 at pH ~ 3.7.64  

However, the shortcomings were that Cyanex 301, and other closely related 

organophosphinic acids could only extract from low concentration nitric acid streams (< 1 M) 

and were found to decompose upon exposure to high doses of g-radiation. Some attempts 

were made to address these problems by designing aromatic dithiophosphinic acids such as 

(14), but no extraction was observed unless they were combined with TBP (1). The aromatic 

groups of (14) enabled the compound to be more stable towards g-radiation, but complete 

oxidative degradation of the ligands occurred in highly acidic solutions (> 3 M).66  

 

 
 

Figure 1.8 – Cyanex acids (11, 14) and auxillary N-donor ligands (12, 13) 

 

1.5.2 – N-donor Ligands: 

 
Since good extraction of Am(III) and Eu(III) was achieved with hydrophobic malondiamides, 

where the oxygen atoms directed complexation, focus was turned to compounds that 

contained several softer N-donor atoms. Comprehensive reviews of heterocyclic ligands 
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containing soft nitrogen atoms exhibiting the ability to extract the minor actinides from the 

lanthanides in HNO3 streams have appeared.57,58,67  

One of the first heterocyclic N-donor ligands developed was 2,2’:6’,2’’-terpyridine (TERPY, 

15) that, in combination with 2-bromodecanoic acid (18) acts as a lipophilic synergist and 

selectively extracts actinides from weakly acidic solutions. (In this context, the term 

“synergist” refers to an agent that assists in the extraction of metal complexes into the 

organic phase by means of ion pairing with the complex cation [LnM]III to form a more 

hydrophobic complex).34  

 
 

Figure 1.9 – TERPY and TPTZ compounds; 2-bromodecanoic acid (18) 

 

Extraction studies revealed that the distribution ratios of the actinide metals greatly 

decreased upon increasing acidity and the solubility of (15) was relatively poor in the organic 

phase. Attempts at modifying TERPY with bulky alkyl groups (16) or a long carbon chain (17) 

to address solubility issues led to an increase in basicity and thus competition between 

protonation of the donor atoms and metal ligation. As well as competing with metal 

complexation, protonation of the ligand led to precipitation at the aqueous-organic 

interface.8,34  

Inclusion of another pyridine ring and replacement of the central pyridine unit with a less 

basic triazine ring led to the development of 2,4,6-tri-2-pyridyl-1,3,5-triazine (TPTZ, 19-21) 

ligands. Insertion of a triazine ring in TPTZs was rationalized to reduce the basicity of the 

ligand.34,57
 However, it was found that (19) was still protonated in highly acidic media and 

was quite insoluble in 3 M HNO3, rendering it inefficient for a SANEX process extraction.  
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During solvent extraction studies, TPTZ (19) performed slightly better than TERPY (15), when 

used in combination with (18) and hydrogenated tetrapropene (TPH) as the diluent. TPTZ 

(18) was one of the first N-donor ligands to show a SFAm/Eu of > 10. However, these ligands 

were still unable to extract from solutions more concentrated than 0.1 M HNO3. It was 

concluded that protonation of N-donor ligands such as (15) and (19) was competing with 

metal ion coordination and thus impeding the extraction in solutions of > 0.1 M HNO3.57,58,68  

A more weakly basic ligand was envisaged to promote complexation with the actinide metals 

rather than protonation under acidic conditions. This led to the development of benzoxazole 

containing ligands (22); the synthesis of these ligands is shown in Scheme 1.5 starting from 

2,6-pyridine dicarboxylic acid (23). 

 
 

Scheme 1.5 – Synthesis of benzoxazole (22) containing ligands. 

 

A feature of this type of ligand can be seen in the synthesis, which proceeded in 

polyphosphoric acid (PPA) at around 200 oC; thus exhibiting the stability of the benzoxazole 

system towards strongly acidic conditions.69 The most promising benzoxazole ligand to be 

studied was 2,6-bis(benzoxazol-2-yl)-4-dodecyloxypyridine (BODO, 22). In combination with 

(18) as the synergist, SFAm/Eu » 35-80 were observed and for the first time the SF values 

increased upon increasing acidity (up to 0.1 M HNO3). However, again there was no 

significant extraction as the concentration of HNO3 was increased beyond 0.1 M.  

 

1.5.3 – BTP Ligands: 

 
It was subsequently found that ligands containing the 1,2,4-triazine moiety could extract 

both Am(III) and Eu(III) from highly concentrated mixtures of HNO3 (1-4 M), without the need 

for additional phase transfer agents or synergists. In 1999 it was reported that alkyl 

substituted 2,6-bis(1,2,4-triazin-3-yl)pyridine (BTP, 24-27) ligands were able to extract Am(III) 

from Eu(III) with a very high separation factor of SFAm/Eu > 100.9,70  
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Triazine units in N-donor ligands such as (24-27) were found to exhibit the a-effect, wherein 

if atoms with non-bonding pairs of electrons are adjacent to each other (i.e. nitrogen atoms 

in this case), there is a decreased affinity of the nitrogens towards protonation due to the 

inductive effect of the adjacent heteroatom; with a commensurate increased affinity for 

‘soft’ cations. The overlap of the adjacent non-coordinating nitrogen lone pair of the triazine 

ring with the coordinating lone pair leads to a greater covalent contribution to bonding and 

a greater orbital overlap with the more diffuse 5f orbitals of the actinides compared with the 

4f orbitals of the lanthanides.34,71  

The first synthesis of tridentate BTP (24-27) ligands was reported in 1971 and the generalized 

synthesis is shown below in Scheme 1.6.72 The BTP ligands were synthesized by reacting 

hydrazine with a pyridine bis-nitrile (28) at ambient temperature followed by a condensation 

reaction of the subsequent pyridine bis-aminohydrazide (29) with various a-diketones. 

Variation of the alkyl groups of the BTP family (24-27) allowed tuning of the solubility of the 

ligands and a range of BTP ligands was screened for their ability to separate Am(III) from 

Eu(III) with very promising results.57,58,68,73,74  

 
Scheme 1.6 – General synthesis of BTP ligands (24-27) 

 

Initial studies on BTP ligand (24) showed the ability to separate Am(III) from Eu(III) very 

efficiently, but more importantly, they performed the extraction without the need for a 

synergist (e.g. 18) and they extracted from solutions of much higher acidity than all previous 

N-donor ligands studied. This was a major break-through in the search for a ligand that 

exhibited potential properties suitable for industrial SANEX use. During developments to 

increase the solubility of the BTP ligand in industrially viable solvents, two promising BTPs 

emerged with tetra-iso-propyl- and tetra-propyl- side chains, (26) and (27) respectively.70  

The extraction of Am(III) (DAm) increased linearly as the concentration of BTP (26, 27) ligand 

increased, however extraction efficiency decreased upon increasing HNO3 concentration 

beyond 1 M. It was rationalized that, as the acid concentration increased, once again 
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protonation of the ligand was occurring. Nevertheless, a laboratory scale SANEX process was 

attempted on genuine PUREX raffinate, but during these tests it was shown that both tetra-

alkyl substituted BTPs suffered catastrophic radiolytic degradation leading to abandonment 

of the process.75  

At this stage, Harwood et al. argued that the side chains of BTPs (26, 27) contained benzylic 

hydrogen atoms that were susceptible to degradation by reacting with hydroxyl radicals 

generated by radiolysis of water.8,34 It was proposed to replace these side chains with 

solubilizing alkyl groups that contained no benzylic hydrogen atoms, and thus the reaction of 

pivalyl diketone (30) with bis-aminohydrazide (29) in an attempt to prepare tetra(t-butyl)-

BTP (31) was investigated (Scheme 1.7). Unfortunately, no reaction occurred and this was 

rationalized to be due to the fact that diketone (30) remained in the trans- conformation due 

to the high-energy barrier to adoption of the cis- conformation necessary for condensation 

to occur.76  

 
 

Scheme 1.7 – Attempted reaction of diketone (30) with bis-aminohydrazide (29) 

 

To address the conformational intractability of diketone (30), it was suggested to tie the tert-

butyl groups into a 6-membered ring, locking the diketone into its cis-conformer. Thus, 

CyMe4-diketone (32) was synthesised from ethyl isobutyrate (33) as depicted in Scheme 

1.8.8,77 In situ-preparation of LDA and reaction with (33) forms an enolate that attacks both 

sides of ethylene ditosylate to generate di-ester (34). Intramolecular acyloin condensation of 

(34) in the presence of sodium and chlorotrimethylsilane affords bis-silyl enol ether (35) that 

can then be oxidized with bromine to furnish the CyMe4 diketone (32). 
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Scheme 1.8 – Synthesis of CyMe4 (32) diketone 

 

A benzannelated diketone (BzCyMe4) was also synthesized in an attempt to enhance the 

solubility and stability of the ligand, and condensation with bis-aminohydrazide (29) afforded 

ligands (36) and (37) respectively, which are shown below in Fig 1.10. 

 

 
Figure 1.10 – Structure of BTP ligands (36, 37) 

 

Solvent extraction tests of CyMe4-BTP (36) surprisingly revealed much higher extraction 

efficiency (DAm ~ 500) and a far better separation factor (SFAm/Eu > 5000) than any related 

alkyl BTP ligands (24-27). Furthermore, due to (36) having no benzylic hydrogen atoms, the 

ligand demonstrated impressive stability towards acid hydrolysis, surviving boiling 3 M HNO3 

and ligand (37) also showed good stability towards doses of g-radiation up to 100 kGy.25  

Unfortunately, during further extraction studies on BTPs (26, 27, 36 and 37) it was revealed 

that the extent of binding between the ligand and the actinide was so high that back-

extraction (stripping) of the actinide from the organic phase could not be achieved. The BTP 

ligands are believed to associate with the actinide elements in a 3:1 ratio, as shown in a 

reported X-ray crystal structure of (36) with yttrium, shown below in Fig 1.11. In such a 

complex, the metal centre is 9-coordinate and is completely enclosed by three tridentate BTP 

ligands, with no other directly coordinating species, which provides an insight into the 

hydrophobic nature of the complex formed and its reluctance to allow the metal to be 

stripped.22,78  

EtO

O
LDA

Et2O, Δ
EtO

O
OEt

O

Na, Me3SiCl OSiMe3

OSiMe3

Br2

DCM

O

OPhMe, Δ

(33) (34) (35) (32)

TsO
OTs

N
N

N
N N

N

N
(36) R1 = H, R2 = 

(37) R1 = H, R2 =

R1

R2

R2

R2

R2



Chapter 1 - Introduction 

 39 

 
Figure 1.11 – X-ray crystallographic structure of [Y(36)3].[Y(NO3)5].NO3. Blue = nitrogen. Counter-ions 
and solvent molecules are omitted for clarity. See Ref. 73 for bond distances and details. 
 

1.6.4 – BTBP Ligands: 

 
Following the break-through and progress made with BTP N-donor ligands with good 

extraction affinity for Am(III) and separation over Eu(III), an additional nitrogen bearing ring 

was added to increase the number of coordinating nitrogen atoms to four and so the tetra-

dentate 6,6’-bis(1,2,4-triazin-3-yl)-2,2’bipyridine ligands (BTBPs, 38) were born. The reported 

synthesis of BTBP analogues (Scheme 1.9) started with the oxidation of 2,2’-bipyridine (12) 

with hydrogen peroxide in acetic acid to yield bis-N-oxide (39). A Reissert-Henze cyanation 

reaction with trimethylsilyl cyanide and benzoyl chloride afforded bis-nitrile (40), which was 

then reacted with hydrazine in ethanol to form bis-aminohydrazide (41). Reaction of (41) 

with a-diketones in THF and the presence of base generated the BTBP (38) class of ligand.76  



Chapter 1 - Introduction 

 40 

 
 

Scheme 1.9 – General synthesis of BTBP (38) ligands  

 

Increasing the number of coordinating N-donor atoms to four in BTBP and thus introducing 

a weaker ligand field, brought the possibility of creating a ligand that may form 1:1 or 1:2 as 

well as 1:3 complexes during extraction, thus leaving sufficient room for other coordinating 

stripping species. Initial extraction studies of alkylated-BTBPs (42-45) showed promising 

results with both high distribution ratios of Am(III) (DAm ~ 610-685) and high selectivity for 

Am(III) over Eu(III) (SFAm/Eu » 145-175) from 1 M HNO3 solutions. Subsequently, CyMe4-BTBP 

(46) was synthesised by reacting bis-aminohydrazide (41) with diketone (32) in triethylamine 

and 1,4-dioxane and its extraction properties were thoroughly investigated.22,58,76,78–81  

 

 
Figure 1.12 – Structure of BTBP analogues (42-49) 
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The studies showed that CyMe4-BTBP (46) could extract Am(III) preferentially to Eu(III) in 

HNO3 solutions of up to 3 M HNO3. The ligand remained remarkably resistant to hydrolysis 

and radiolysis and survived contact with 1 M HNO3 over 2 months. The complexes that were 

formed during extraction were not as strong as those seen with BTP’s and Am(III) could be 

successfully back-extracted using glycolic acid. Extremely high selectivities of (46) for both 

Am(III) and Cm(III) over the entire lanthanide series were also reported.78 However, although 

the separation factor of Am(III) from Eu(III) in 0.5 M HNO3 was reported to be SFAm/Eu » 140, 

the rate of extraction by (46) was much slower than that of the BTP (36) and so it was 

necessary to add DMDOHEMA (4) to the organic phase to improve the kinetics; an 

undesirable necessity. At this point, notwithstanding the previous experience with the tetra-

alkyl BTPs (26, 27), it was decided to deploy (46) in a laboratory scale extraction test using 

post-PUREX raffinate. The set-up used a 16-stage rig of centrifugal separators (9 for 

extraction, 3 for scrubbing and 4 for stripping) (Scheme 1.10) at the Institute for Trans-

Uranium Elements (ITU) in Karlsruhe, Germany in 2008 and produced extremely promising 

results. Ligand (46), together with DMDOHEMA (4) in 1-octanol demonstrated > 99.9 % 

recovery of both Am(III) and Cm(III) from a 2 M HNO3 DIAMEX solution feed. It was also 

discovered that a solution of (46) and TBP (1) in cyclohexanone (PUREX process conditions) 

selectively extracted Am, Pu, Np and U from a highly acidic feed (4 M HNO3), pointing to the 

possible development of a GANEX (Group ActiNide EXtraction) process, which could be 

applied to a post-PUREX feed to extract only the minor actinides, enabling a complete by-

pass of the DIAMEX process. Due to the great success during extraction testing, CyMe4-BTBP 

(46) is widely considered to be the European benchmark ligand for use in the SANEX 

process.76,82  

 
Scheme 1.10 – Process flow sheet of a hot test SANEX process involving ligand (46) and DMDOHEMA 
(4) in n-octanol. 
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X-ray crystal structures of BTBP ligand (46) with lanthanide metals have been obtained, 

where an example from Harwood et al., is shown in Fig 1.13.22,83 In this complex with the 

lanthanide Eu(III), two near orthogonal (46) ligands enclose the Eu(III) metal centre. In 

addition there is a single bi-dentate nitrate ion inside the inner coordination sphere and so 

the Eu(III) ion is 10-coordinate overall. Although the complex is hydrophobic, the metal 

centre is not completely enclosed compared with the 3:1 BTP complexes previously 

investigated (Fig 1.12). Complexes of (44-46) with Eu(III) in octanol have been studied using 

Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) and X-ray diffraction where both 1:2 

and 1:1 complexes of BTBP with Eu(III) have been isolated, both of which were 10-

coordinate.83  

 
Figure 1.13 – X-ray crystallographic structure of [Eu(46)2(NO3)].[Eu(NO3)5]. Blue = nitrogen and red = 
oxygen. Counter-ions and solvent molecules are omitted for clarity. See Ref. 22 or 83 for bond 
distances and details. 
 

1.6.5 – BTPhen Ligands: 

 
The rate of extraction by CyMe4-BTBP (46) alone was too slow for a laboratory scale SANEX 

test, necessitating the addition of the DMDOHEMA (4) to act as a phase transfer agent. 

Quantum mechanical calculations of the conformations of (46) revealed that the rotation 

around the central C-C bond of the bi-pyridyl unit showed a high energy barrier towards 

adopting the ligating conformation; whereas rotation around the C-C bond connecting the 
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pyridine and triazine units required much less energy.82 It was argued that the slow rate of 

extraction could be attributed to this energetically unfavourable rotation of (46) from the 

predominant trans-conformation to the sterically less favourable cis-conformation in order 

for metal ligation to occur (Fig 1.14).  

 
Figure 1.14 – Conformations of CyMe4-BTBP (46) 

 

To combat the slow kinetics of extraction by CyMe4-BTBP (46), the Harwood group, that had 

developed the BTBP ligand family, employed the cis-locked 1,10-phenanthroline unit as the 

starting building material instead of 2,2’-bipyridine (12), which led to the development of a 

new class of ligand, the bis-triazinyl-phenanthroline (BTPhen) family (Scheme 1.11). The 

synthesis started with commercially available neocuproine (50) that was oxidized to bis-

aldehyde (51) using stoichiometric amounts of selenium dioxide followed by a one-pot 

conversion of (51) into the bis-nitrile (52) via intermediate bis-oxime. Stirring nitrile (52) in 

hydrazine and ethanol at ambient temperature generated bis-aminohydrazide (53) and 

condensation with diketone (32) furnished CyMe4-BTPhen ligand (54).8,22,77  

 

 
 

Scheme 1.11 – Synthesis of CyMe4-BTPhen ligand (54) 
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In extraction studies, CyMe4-BTPhen (54) in 1-octanol separated Am(III) from Eu(III) 

remarkably efficiently (DAm > 1000 and DEu < 10) and was approximately 2 orders of 

magnitude more efficient than its CyMe4-BTBP (46) counterpart. Although separation factors 

were similar (SFAm/Eu » 200 – 400, from a range of 1 – 4 M HNO3) (Fig 1.15), BTPhen (54) has 

surfaced as one of the most promising ligands for use in an industrial SANEX process, as faster 

extraction rates (< 15 min) (Fig 1.16) were observed, compared to the slow rates of BTBP 

(46), which were > 60 minutes – and this was in the absence of any phase transfer reagent 

to aid the extraction.  

 

 
Figure 1.15 – Extraction of Am(III) from Eu(III) by (54) as a function of increasing nitric acid 
concentration. Ligand (0.01 M) in 1-octanol, contact time = 60 mins. Adapted and re-plotted from Ref 
77. 
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Figure 1.16 – Extraction of Am(III) from Eu(III) by (54) from 1 M HNO3 as a function of time 

 

BTPhen ligand (54) showed improved solubility compared to that of BTBP (46) and surface 

tension measurements of both ligands confirmed ligand (54) as the more surface active 

compound in most organic solvents.77 As the extraction and stripping reactions of actinides 

in liquid-liquid extraction techniques are occurring at or near to the interface, the greater 

surface activity of BTPhen (54) may, in part, explain its improved extraction properties.  

The rigidity of the 1,10-phenathroline unit in (54) can mean that complex formation is more 

kinetically and thermodynamically favourable than the BTBPs. Furthermore, the 

phenanthroline also possesses a dipole moment; whereas the trans-conformer of the 2,2-

bipyridine does not. Thus, coordination to water via hydrogen bonding is more likely, leading 

to improved activity at the organic/water interface; a hypothesis borne out by the greater 

surface activity measured for BTPhen (54) and the fact that (54) crystallized with a molecule 

of water in the binding pocket.77  

Quantum mechanical studies on both (46) and (54) have shown that the complexes formed 

have higher covalency in the N-Am bond over the N-Eu bond, where a greater electron 

density transfer from the N-donor atom of the ligand to the Am(III) over the Eu(III) ion was 

calculated. This in turn can lead to a larger electron density in the 6d orbital of Am(III) rather 

than the 5d orbital of Eu(III).84  

Metal complexes of (54) have been crystallized and studied and a Eu(III) complex is shown in 

Fig 1.17.77 Again, as with BTBP (46), the metal centre is 10-coordinate, enclosed by two 
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almost orthogonal tetra-dentate (54) ligands and one bidentate nitrate ion. This contrasts 

with the 1:3 complexes observed for the BTP ligand (36) and it is considered that this allows 

sufficient room for other displacement ions (water or nitrate) or stripping agents (e.g. glycolic 

acid) to displace the metal centre once extracted. As well as using X-ray structure 

determination of crystalline lanthanide complexes, both ligands (46) and (54) have been 

shown to form 2:1 lanthanide complexes as the predominant species in solution, studied 

using 1H NMR spectroscopic titrations.85 

 
Figure 1.17 – X-ray crystallographic structure of [Eu(54)2(NO3)].[Eu(NO3)5]. Blue = nitrogen and red = 
oxygen. Counter-ions and solvent molecules have been omitted for clarity. See Ref. 77 for bond 
distances and more details.  
 

However, Lewis et al. reported a 1:1 CyMe4-BTPhen (54) complex with the transition metal 

yttrium (although a transition metal, yttrium is more chemically similar to the lanthanides 

and is considered a ‘quasi rare earth element’), (Fig 1.18) where the metal centre was 

surrounded by three bidentate nitrate ions with one MeCN solvent molecule in the outer 

coordination sphere. The three nitrate ions coordinated directly to yttrium make this 

complex electronically neutral without any other counter-ions.82 A 1:1 charge neutral BTPhen 

complex with europium was also isolated by Whitehead et al. in 2017.86  
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Figure 1.18 – X-ray crystallographic structure of [Y(54)(NO3)3].MeCN; Blue = nitrogen and red = 
oxygen. Solvent molecules have been omitted for clarity. See Ref. 77 for bond distances and more 
details 
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1.6 – Hydrophilic Complexants: 

1.6.1 – Tetra-sulfonated Ligands: 

 
Alternative methods of the separation of trivalent actinides from trivalent lanthanides have 

surfaced (section 1.4.5), which have built on the TALSPEAK process developed in the US in 

the 1960s. The concept involves the non-selective co-extraction of both sets of elements 

using hydrophobic ligands into an organic phase followed by selective back-extraction 

(stripping) of the minor actinides into an aqueous phase using water-soluble hydrophilic 

ligands. It has more recently been shown that water soluble derivatives of BTP/BTBP/BTPhen 

ligands can selectively complex and extract the minor actinides Am(III) and Cm(III) over the 

corresponding trivalent lanthanides in HNO3, where a selection of water soluble hydrophilic 

ligands are shown below in Fig 1.19.60,87,88  

SO3-Ph-BTP (55) exhibited good solubility in water and aqueous HNO3 and back-extraction 

studies of (55) combined with TODGA (5) reported separation factors SFEu/Am » 250-1000.60,88 

However, as with alkyl-BTPs (24-27) the efficiency of extraction decreased as the 

concentration of nitric acid increased. 

 
 

Figure 1.19 – Structures of water soluble hydrophilic BTP/BTBP/BTPhen ligands 

 

Sulfonated BTBPs (56, 57) were synthesized and investigated in 2015 by Harwood and Lewis 

et al. and it was found that unsymmetrical BTBP (56) exhibited very poor separation of Am(III) 

over Eu(III) from HNO3 solutions. It was concluded that the number of sulfonate groups on 
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the ligand, and the position (C5/C6) was more important than the type of ligand used (e.g. 

BTP/BTBP/BTPhen). Tetra-sulfonated BTBP (57) showed good selectivity for Am(III) and a 

separation factor SFEu/Am » 707 ± 312 in 0.28 M HNO3 has been reported.87 Similar results 

were obtained for tetra-sulfonated BTPhen (59), with SFEu/Am » 934 ± 233 in 0.28 M HNO3. 

Both hydrophilic BTBP (56) and BTPhen (59) systems exhibited similar complexation ability 

as with their parent un-sulfonated compounds, in combination of TODGA (5) in the organic 

phase.87  

Since the use of sulfonated BTBP/BTPhen ligands would cause generation of secondary acidic 

waste upon incineration due to the sulfur content, Harwood et al. synthesized water soluble 

BTBP analogue (58) with tetra-sodium carboxylate groups.89 Extraction studies of ligand (58) 

produced poor selectivity for Am(III) (SFEu/Am » 19). Slightly higher separation factors were 

attained (SFEu/Am » 53-59) when the extraction was performed under alkaline conditions (1-

3 M NH4NO3) and no stripping of Am(III) from a loaded organic phase by (58) was achieved 

under neutral pH conditions. It was postulated that the mesomeric electron withdrawing 

nature of the carboxylate group in (58) caused lower selectivity for Am(III) when stripping 

from a loaded organic phase compared to sulfonated ligands (56, 57 and 59). 

 

1.6.2 – 1,2,3-Triazole containing Ligands: 

 
More recently in 2016 and 2017, Casnati et al. and Whitehead et al. have developed a series 

of CHON compliable water soluble hydrophilic triazole containing ligands (Fig 1.20).90,91 

Instead of containing 1,2,4-triazine units, the ligands contain 1,2,3-triazole rings and (60) and 

(61) were the first type of these compounds used to investigate Am(III)/Eu(III) separations.90–

92 Extraction experiments revealed that (60) could selectively strip Am(III) from 0.25 M HNO3 

with a separation factor of SFEu/Am » 144, compared to SFEu/Am » 7 as the blank with just 

TODGA (5). Ligand (61) boasted SFEu/Am » 100 and both ligands (60, 61) attained equilibrium 

after only 5 minutes. The extraction of Am(III)/Cm(III) and Pu(IV) separations was also 

investigated using ligands (60, 61) but no intra-actinide selectivity was observed.91  
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Figure 1.20 – Structure of triazol containing ligands 

 

BTPhen-containing triazoles (62, 63) synthesized by Whitehead and Edwards et al. were 

found to be sufficiently soluble in aqueous HNO3 solutions, with tetraol (63) being slightly 

more soluble (up to 0.01 M HNO3).90 Both ligands exhibited similar extraction behaviour to 

each other, and a clear back-extraction selectivity for Am(III) over Eu(III) from a TODGA (5) 

containing loaded organic phase. Separation factors SFEu/Am » 36 and 47 were attained for 

(62) and (63) respectively at 0.33 M HNO3. As with the previously tested BTP/BTBP/BTPhen 

related ligands, as the concentration of HNO3 increased, the extraction efficiency decreased 

due to protonation of the ligand resulting in a lower free ligand concentration.90 Even though 

the separation factors achieved with BTPhen triazoles (62, 63) are approximately half of 

those obtained for pyridine triazoles (60, 61), the latter extractions required up to 80 mmol 

L-1 for efficient extraction compared to just 10 mmol L-1 for BTPhen triazoles (62, 63).90 

The Am(III)/Cm(III) selectivity by BTPhen triazoles (62, 63) was also investigated where a 

separation factor SFCm/Am » 2.5 was reported, which is similar to previously reported 

Cm(III)/Am(III) separations using hydrophilic ligands such as those in Fig 1.19. However, this 

was the first time a fully CHON compliant, hydrophilic 1,10-phenanthroline ligand was used 

to achieve this difficult intra-actinide separation.90  
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1.7 – Functionalized BTPhen Ligands: 

1.7.1 – Solubility and solution phase studies of functionalized BTPhens: 

 
A range of different BTPhen analogues has previously been synthesised by reacting bis-

aminohydrazide (53) with both commercially available diketones and a range of diketones 

synthesized using different starting esters in the synthesis described in Scheme 1.8. Their 

solubility in diluents used in the nuclear industry has been investigated as well as their 

solution complexation behaviour. The variety of diketone families investigated involved 

aliphatic (64-69), benzil (70-73) and isatin (74-77) diketones where a selection is depicted 

below in Fig 1.21.93,94  

 
 

Figure 1.21 – BTPhen analogues: aliphatic (64-69), benzil (70-73) and isatin (74-77). 

 

The solvents in which the ligands were tested were 1-octanol (alcohol), dodecane (aliphatic) 

and cyclohexanone (cyclic ketone), which broadly represents the different solvent classes 

used in the nuclear industry. For the aliphatic BTPhens (64-69), increasing the length of the 

side chain increased the solubility of the ligand in both 1-octanol and cyclohexanone at the 

expense of acid and radiolytic stability. C4-BTPhen (67) showed optimal solubility in both 1-

octanol (18.8 mM) and cyclohexanone (29.0 mM).93 All the isatin BTPhens (74-77) showed 

low solubility (< 6 mM) in dodecane and slightly higher solubility in 1-octanol. Cyclohexanone 

resulted in the highest solubility of isatin BTPhen (77, 192 mM) bearing CF3 functional 

groups.94  
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The stoichiometry of the complexes formed by ligand (67) in solution has also been 

investigated by lanthanide NMR spectroscopic titrations. The lanthanides used were La(III) 

(ionic radius = 116 ppm)27 and Lu(III) (ionic radius = 98 pm)27 in order to give the greatest 

difference in the lanthanide(III) radii and thus examine the largest effect of the lanthanide 

contraction. After 0.5 equivalents of lanthanide salt were added, a 2:1 species was formed 

as indicated by 1H NMR analysis (Fig 1.22). Upon addition of excess lanthanide salt, formation 

of a new species, proposed to be the 1:1 complex was observed, but the majority of the 

BTPhen ligand remained as a 2:1 complex, even up to 1.5 equivalents of added lanthanide.93  

 

 

 

 

 

 

 

 

 

 

Figure 1.22 – Stacked 1H NMR spectra (7.7-9.4 ppm) of C4-BTPhen (67) (0.01 M) titrated with La(NO3)3 
in CD3CN (See ref. 93 for further details) 
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1.7.2 – Electronic Modulation at 5,6-positions of BTPhen: 

 
Following the remarkable extraction properties exhibited by CyMe4-BTPhen (54), a series of 

electronically modulated BTPhen ligands bearing substituents at the 5,6-position of the 

phenanthroline backbone was developed by Afsar and Harwood et al.95 2,9-dimethyl-1,10-

phenanthroline (neocuproine, 50) was functionalized with bromine atoms across the 5,6- 

double bond to give both the mono- and di-brominated neocuproine respectively (78 and 

79) (Scheme 1.12).96  

 
Scheme 1.12 – Functionalization of neocuproine with bromine atoms 

 

Compounds (78 and 79) were carried through the synthesis described in Scheme 1.11 and 

condensed with dodecane-6,7-dione (80) to form modulated C5-BTPhen ligands (81) and 

(82). Extraction of Am(III) from Eu(III) across a range of HNO3 concentrations was investigated 

and compared to the unmodulated C5-BTPhen ligand (69).95  

 

 
Figure 1.23 – Structure of dodecane-6,7-dione (80) and C5-BTPhen ligands (69, 81-82)  
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C5-BTPhen ligand (69) exhibited good selectivity with a reported separation factor of SFAm/Eu
 

» 180 at 4 M HNO3 in 1-octanol and there were no significant decreases in DAm or DEu values 

as the HNO3 concentration was increased from 0.001-4 M. Br-C5-BTPhen (81) boasted a 

similar extraction trend but an overall higher separation factor was observed (SFAm/Eu » 250 

at 4 M HNO3); the DAm values remained at » 100 (as with 69) but the DEu values were 

significantly lower across all HNO3 concentrations. Br2-C5-BTPhen ligand (82) reported a 

similar extraction for Am(III) (DAm ~ 100), but now the extraction for Eu(III) was approximately 

one order of magnitude lower than that of (69) with a reported separation factor of SFAm/Eu 

» 800 at 4 M HNO3. It has been postulated that the introduction of bromine atoms across the 

phenanthroline backbone causes inductive withdrawal of electron density from the rings, 

thus reducing the electron donating capacity of the coordinating nitrogens making the ligand 

less effective for complexing with lanthanides.95   

Following these interesting results, Harwood et al. carried Br-neocuproine (78) through the 

synthesis in Scheme 1.11 and condensed the resultant bis(aminohydrazide) with CyMe4-

diketone (32) to give Br-CyMe4-BTPhen (83). Suzuki coupling with 4-hydroxyphenyl boronic 

acid generated 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84), which presented a CyMe4-BTPhen 

ligand with an electron-donating substituent at the 5-position. The extraction capabilities of 

these two ligands (Fig 1.24) for Am(III), Cm(III) and Eu(III) were thoroughly investigated.97  

 

 

 

Figure 1.24 – Structure of Br-CyMe4-BTPhen (83) and 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) 

 

During the extraction studies of (83), it was found that DAm values increased with increasing 

nitric acid concentration. The D values for Eu(III), other trivalent lanthanides and Y(III) were 
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found to be approximately one order of magnitude lower than those obtained for parent 

CyMe4-BTPhen (54), and the resulting separation factor at 3 M HNO3 was SFAm/Eu » 680 

appeared to be far superior to that of (54). Br-CyMe4-BTPhen (83) reported values for D to 

be < 1 for all trivalent lanthanides across most HNO3 concentrations.97  

 
Figure 1.25 – Extraction of Am(III), Ln(III) and Y(III) by 5-Br-CyMe4-BTPhen (83) in 1-octanol as a 
function of nitric acid concentration. See ref. 97 for details. 

Investigation of the highly challenging Am/Cm separation by (83) (+ markers in Fig 1.25/1.26)  

showed an increase in D values as the nitric acid concentration increased, at the expense of 

selectivity. The highest reported separation factor for Am(III) over Cm(III) was SFAm/Cm ca. 7 

at 0.1 M HNO3, but use of this ligand in the nuclear industry would cause further waste 

streams as the compound is non-CHON.97 The effect of the electron donating phenol 

substituent on the exraction properties of CyMe4-BTPhen is shown below in Fig 1.26. Very 

high D values for Am(III) were obtained (DAm > 1000 at 3 M HNO3), indicating efficient 

extraction of Am(III). The D values obtained for Y(III) and all the trivalent lanthanides fell 

between those obtained for parent un-modulated CyMe4-BTPhen (54) and Br-CyMe4-BTPhen 

(83) leading to a separation factor of SFAm/Eu » 320 at 3 m HNO3. Extraction of Am(III) and 

Cm(III) (+ markers) increased as the nitric acid concentration increased and a maximum 

separation factor of SFAm/Cm » 5 was obtained, but this time, with a CHON compliant ligand.  
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Figure 1.26 – Extraction of Am(III), Ln(III) and Y(III) by 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) in 1-
octanol as a function of nitric acid concentration. See ref. 97 for details 
 

1.7.3 – Electronic Modulation at 4,7-positions of BTPhen:  

 
Whitehead and Edwards et al., developed a series of 4,7- functionalized BTPhens (85-87) in 

order to investigate the effect of a more direct electronic effect towards the two 

phenanthroline nitrogen atoms (Fig 1.27).98 The para-positioning of the substituents at the 

4,7- positions was postulated to lead to an enhanced effect on coordination of minor 

actinides in the presence of lanthanides. Cl- (85) and MeO- (86) substituents were 

investigated due to their strongly electronically modifying nature as well as phenyl- (87), 

which was rationalised to be an intermediate between the two as well as possibly enhancing 

solubility in the hydrocarbon solvents used in nuclear reprocessing.  
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Figure 1.27 – Structure of 4,7-modified BTPhens (54, 85-87) 

 

The 4,7-dichloro-2,9-dimethyl-1,10-phenanthroline unit was prepared using a protocol 

described by Ulven et al., and then modified by including an electron-donating MeO- 

substituent by in situ reaction with sodium methoxide.99 The di-phenyl substituents were 

prepared by a Pd-catalysed Suzuki-Miyaura cross coupling of the di-chloro intermediate with 

phenylboronic acid.98  

Extraction and kinetic studies on ligands (85-87) revealed that the phenyl system (87) 

attained equilibrium within 1 hour of contact, whilst ligand (86) took 2.5 hours. Cl 

functionalised ligand (85) still had not attained equilibrium even after 16 hours of contact 

time. This was the first report that the extraction kinetics of BTPhen ligands could possibly 

be due to electronic functionalization of the 1,10-phenanthroline core. The investigation of 

kinetics of (85-87) also revealed that modulation at the 4,7- positions had significant impact 

on the equilibrium distribution ratios obtained, with orders of magnitude difference 

observed for Cl-functionalized ligand (85) (DAm ~ 0.4) and OMe- ligand (86) (DAm ~ 1800), 

highlighting the very poor extraction ability of (85).98 

Extraction testing as a function of increasing nitric acid concentration on ligands (85-87) was 

also investigated to probe the effect of modulation at 4,7- positions further and revealed 

that the electron donating methoxy-substituent caused a continuous decrease in distribution 

ratios for all trivalent actinide/lanthanide species as the HNO3 concentration increased from 

0.1 to 3 M, with an average separation factor SFAm/Eu » 110. This was attributed to the 

increased basicity of ligand (86) and thus increased protonation as the concentration of HNO3 

increased, decreasing the free ligand concentration.  

However, ligand (85) demonstrated an increase in the D values as HNO3 concentration 

increased up to 3 M. Conversely, it was concluded that the 4,7-chloro substituents were 
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causing a decrease in the basicity of the 1,10-phenanthroline N-donor atoms and thus 

decreasing the competing protonation process. Ligand (85) exhibited very little change in 

selectivity compared to parent CyMe4-BTPhen (54) with a recorded separation factor SFAm/Eu 

» 110, cf. (54) SFAm/Eu » 120, in this study. 

Phenyl-functionalized ligand (87) was found to have rather limited solubility in the organic 

solvents for extraction and so analysis was performed at 4.5 mM (compared to 10 mM for 

(85, 86)). The extraction by (87) was found to have comparable distribution trends to parent 

ligand (54) with a slight increase for selectivity (SFAm/Eu » 150). Considering that it is CHON 

compliant, ligand (87) could be a promising development, with its faster extraction kinetics 

compared to parent BTPhen (54).98 

An X-ray crystallographic structure of ligand (85) by slow evaporation in a dichloromethane 

solution revealed a water molecule present in the cavity of the ligand, consistent with 

previously reported structures.77,98 The ligand however was found to be in the c-c 

conformation (triazine rings) compared to the usual t-t conformation observed with parent 

BTPhen (54). Additionally, a dichloromethane molecule in the cavity was seen to form non-

conventional hydrogen bonds to the triazine nitrogen atoms.62,98  
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1.8 – Immobilization onto Magnetic Nanoparticles (MNPs) 

The liquid-liquid extraction processes discussed in this chapter so far come with certain 

disadvantages, which include the requirement for substantial liquid storage of the generated 

secondary waste, the need for large volumes of organic solvent and degradation of the 

solvents over time which result in reduced performance and efficiency.100 Liquid-liquid 

extraction processes often require the use of phase modifiers to optimize extraction and 

third phase formation can be encountered.  

The use of magnetic separation technology in the nuclear industry (MACS process – 

Magnetically Assisted Chemical Separation) was reported in 1995 by researchers at Argonne 

National Laboratory.101 The use of this process was rationalized to reduce the complexity of 

the reprocessing of used fuel and help facilitate scaling because of its simplicity. Advantages 

include the ease of separation of the ligand-MNP moiety, since this only requires a small 

applied magnetic field, and recyclability of the MNPs.102 More recently, TODGA-coated MNPs 

(Fe3O4@TODGA) captured Am(III) and Pu(IV) from 3-4 M HNO3 very efficiently where HNO3 

induced pre-organisation of TODGA before nanoparticle coating was important for the 

sorption of Am(III) and Pu(IV).103 

As a proof of concept, Harwood et al. demonstrated that neocuproine (50) could be 

immobilized onto iodoalkyl-functionalized MNPs by nucleophilic substitution using a phenol 

linking group at the 5-position of neocuproine. Neocuproine (50) is known to coordinate 

Cu(II) ions, yet extraction studies of Cu(II) with this immobilized ligand system across a range 

of pH, wherein 2:1 complexation would be impossible, revealed up to 99 % extraction with 

kinetic studies indicating the extraction was effectively complete after just 5 minutes.104,105  

Following the development of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84), this ligand was 

subsequently investigated for its extraction compatibility for Am(III) when covalently bound 

to silica-coated magnetic nanoparticles (MNPs) (Fig 1.28).85,106 Due to the extreme acidic 

nature of the post-PUREX streams, un-protected iron-oxide cores cannot be used and so it 

was rationalized to coat the nanoparticles with silica to provide a chemically resistant layer 

and furnish a chemical anchor for subsequent functionalization, without effecting the 

magnetic properties.107 These functionalized MNPs would then be collected magnetically, 

instead of using centrifugation, with subsequent recycling of the MNP by stripping the 

radioactive metals, generating a smaller amount of secondary waste.  



Chapter 1 - Introduction 

 60 

 

 
Figure 1.28 – Structure of CyMe4-functionalized SiO2-coated MNPs (85) 

 

The extraction results of (85) for Am(III)/Eu(III) separations are shown in Fig 1.29.106 At low 

nitric acid concentration (0.001 M), high D values (D > 700) were obtained for both Am(III) 

and Eu(III) with no selectivity (SFAm/Eu » 1.7). However, as the nitric acid concentration 

increased, Am(III) extraction increased up to 0.1 M before falling, but D values for Eu(III) fell 

substantially to give SFAm/Eu » 65 at 1 M HNO3. Remarkably, at 4 M HNO3 the extraction of 

Am(III) was recorded as DAm ~ 55, but the affinity for Eu(III) was almost completely removed 

(DEu ~ 0.03), affording a separation factor of SFAm/Eu > 1300, which is far superior to the 

observed separation by parent CyMe4-BTPhen during liquid-liquid extraction experiments 

(SFAm/Eu » 400).77,106 
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Figure 1.29 – Extraction of Am(III) and Eu(III) by CyMe4-functionalized SiO2-coated MNPs (85) as a 
function of nitric acid concentration 
 

Separation of Am(III) over Cm(III) was also reported by MNPs (85), which afforded a 

separation factor of SFAm/Cm » 2.2 at 4 M HNO3, in agreement with previous results using this 

ligand when not bound to any support. It was proposed that the shortness of the linking 

chain attaching the ligand to the MNPs constrained the ligand to form 1:1 complexes when 

extracting the trivalent actinide metals. Investigations using lanthanide salts have shown the 

dominant species of BTPhen complexes in solution are 1:2, even at high equivalents of 

lanthanide.93 Studying the complex formation in solution using 1H NMR spectroscopy 

revealed the appearance of an additional species, which was predicted to be a 1:1 complex. 

Furthermore, a 1:1 10-coordinate crystal structure has been reported.82  

 

During extraction studies on free BTPhen ligand, the formation of a 10-coordinate 

electronically neutral 1:1 complex may be forming at or near the organic/aqueous interface 

during the extraction process, where the bidentate nitrate ions are then displaced by another 

ligand leading to a more stable 1:2 complex in the bulk of the organic solvent. When the 

ligand is bound to the surface of these MNPs, it is not possible to form 1:2 complexes on the 

surface of the solid due to sterics, and so it is likely the 1:1 complex remains the dominant 

species. 
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Chapter 2 – Results and Discussion 
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2.1 – Comparison of SiO2- and ZrO2-coated MNPs: 

This section led to the following publication: J. Westwood, A. Afsar, L. M. Harwood, M. J. 
Hudson, J. John, and P. Distler, Heterocycles, 2016, 93, 453-464.108 
 
Mono-dispersed magnetic nanoparticles (MNPs) with particle sizes of less than 40 nm, offer 

large surface areas coupled with high surface activity.109 Their magnetic properties enable 

them to be easily separated from the supernatant solution by means of an external magnet, 

making them highly useful for novel separation processes.110 However, since the iron oxide 

core of the MNPs is prone to chemical attack under the harsh acidic conditions of nuclear 

waste streams, a suitable protective coating is essential.111,112 An effective solution to this 

problem is to coat the iron oxide centre with zirconia (ZrO2) or silica (SiO2), both of which 

have been shown to provide a chemically resistant surface whilst retaining the ion-

exchange properties.113 Upon coating the MNPs, the free Zr-OH and Si-OH surface groups 

enable effective attachment of ligands through organic functional groups onto the surface 

of the coated MNPs. It has been discussed in section 1.8 that CyMe4-BTPhen-functionalized 

silica-coated MNPs (85) show remarkable separation of Am(III) from Eu(III) in a range (0.001 

– 4 M) of HNO3 solutions. In addition, a small but significant selectivity for Am(III) over 

Cm(III) has been observed at concentrations of 4 M HNO3.106  

The synthesis of CyMe4-BTPhen-functionalized zirconia-coated (ZrO2) maghemite (Fe2O3) 

magnetic nanoparticles (MNPs) (86) and their ability to extract Am(III) from Eu(III) and 

Am(III) from Cm(III) over a range of HNO3 concentrations (0.001 – 4 M) was investigated 

and their extraction behaviour was compared to a previously tested model based on silica-

coated (SiO2) CyMe4-BTPhen MNPs (85) (Fig 2.1).106  
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Figure 2.1 – Structures of CyMe4-BTPhen-functionalized SiO2- (85) and ZrO2- (86) MNPs  

2.1.1 – Synthesis and characterization of CyMe4-BTPhen ZrO2-MNPs (86): 

 
5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) was synthesized following previously reported 

protocols.77,106 Following mono-bromination of neocuproine (50) to give 5-bromo-

neocuproine (78), oxidation with stoichiometric amounts of selenium dioxide afford Br-bis-

aldehyde (87) in 82 % yield.96,106 A one-pot reaction of (87), firstly forming an intermediate 

oxime followed by in situ elimination afforded Br-bis-nitrile (88). Stirring bis-nitrile (88) in 

hydrazine hydrate and ethanol at ambient temperature gave Br-bis-aminohydrazide (89) 

that was condensed with CyMe4 diketone (32) to give 5-Br-CyMe4-BTPhen (83) (Scheme 

2.1). CyMe4 diketone (32) was prepared in three steps following previously reported 

procedures (Scheme 2.2).77,114 To enable immobilization onto the surface of ZrO2-coated 

MNPs, the final step involved a Suzuki-Miyaura cross-coupling reaction with 4-

hydroxyphenyl boronic acid to give 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84).115  
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Scheme 2.1 – Synthesis of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) 

 

 
Scheme 2.2 – Synthesis of CyMe4-diketone (32) 

 

The synthesis of iodoalkyl-functionalized ZrO2-coated nanoparticles (90) (Scheme 2.3) was 

carried out using previously reported procedures and effectively the same procedure used 

for the synthesis of SiO2-coated nanoparticles, except by differing the protective 

coating.105–107,116,117 The iron oxide (91) magnetic core was prepared using previously 

reported methods by the co-precipitation of a 2:1 ratio of FeCl3 and FeCl2 in aqueous NaOH 
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synthesis afforded nanoparticles that are smaller and were predicted to have a more 
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narrow size distribution.117 The coating of the zirconia surface onto the iron oxide core was 

achieved using a sol-gel method with Zr(IV) tert-butoxide in aqueous ammonia and then 

reaction of the surface OH groups in (92) with 3-(iodopropyl)trimethoxysilane afforded 

iodoalkyl-functionalized ZrO2-coated MNPs (90).111,112  

 

Scheme 2.3 – Synthesis of iodo-functionalized ZrO2 Fe2O3 MNPs (90) 

Immobilization onto the surface of the ZrO2-coated MNPs was achieved by nucleophilic 

substitution of iodine by the 4-hydroxyphenyl functionality of (84) by stirring ligand (84) in 

DMF with sodium hydride, as previously reported.85,106 Separation of the nanoparticles by 

an external neodymium magnet afforded CyMe4-BTPhen-functionalized ZrO2-MNPs (86) 

(Scheme 2.4). 

 

 
Scheme 2.4 – Immobilization of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) onto ZrO2 Fe2O3 MNPs 

(90) 
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Transmission electron microscopy (TEM) images of ZrO2-coated MNPs (86) revealed the 

thickness of the zirconia coating to be ca. 40-45 nm, as also seen with SiO2 coated 

MNPs.85,106 Zirconia has a wide-ranging iso-electric point of pH 4-11 with the result that, in 

the acidic media used for extraction testing, the particles are protonated and have a net 

positive charge. Repulsion between the positively charged particles presumably ensures 

that there is no aggregation, increasing their desired surface activity. The degree of 

immobilization of the 5(4-hydroxyphenyl)-CyMe4-BTPhen ligand (84) onto iodoalkyl-

functionalized ZrO2-MNPs (90) was followed by Fourier Transform infra-red spectroscopy 

(FT-IR) where disappearance of the C-I stretch at 688 cm-1 and the presence of C=C aromatic 

stretches at 1500-1600 cm-1 were indicative of covalent attachment, as previously 

observed with SiO2-MNPs (85).106 To draw comparisons between both MNPs, the FT-IR 

spectra of both CyMe4-BTPhen-functionalized ZrO2-MNPs (86) and CyMe4-BTPhen-

functionalized SiO2-MNPs (85) are shown in Fig 2.2. Both follow the same trend, but a clear 

difference is the more apparent broad OH absorption at 3400 cm-1 for ZrO2-MNPs (86), 

indicative that there could be some residual OH groups still present after covalent 

attachment of the ligand, indicating less efficient incorporation of the CyMe4-BTPhen 

ligand onto the MNPs surface of ZrO2-coated nanoparticles. 

 
Figure 2.2 – Comparison of the FT-IR spectra of CyMe4-BTPhen-functionalized ZrO2-MNPs (86) and 
CyMe4-BTPhen-functionalized SiO2-MNPs (85) 

50

55

60

65

70

75

80

85

90

95

100

4000 3500 3000 2500 2000 1500 1000

%
 T

ra
ns

m
itt

an
ce

Wavenumber, cm-1

Zirconia MNPs (86)

Silica MNPs (85)



Chapter 2 – Results and Discussion 

 68 

Elemental analysis was also used to evaluate surface incorporation of the ligand onto the 

MNPs surface. Percentage elemental composition of C, H, N and I for CyMe4-BTPhen-

functionalized ZrO2-MNPs (86) and the groups previous CyMe4-BTPhen-functionalized SiO2-

MNPs (85) are shown in Table 2.1. The results clearly indicate that there is a lower 

incorporation of the ligand onto the MNPs surface in the case for ZrO2 compared with that 

of SiO2. For instance, analysis of ZrO2-MNPs (86) indicates 1.80 % N compared to 3.43 % N 

for SiO2-MNPs (85).  

Table 2.1 – Results of elemental analysis for CyMe4-BTPhen-functionalized ZrO2-MNPs (86) and 
CyMe4-BTPhen-functionalized SiO2-coated MNPs (85) (*values obtained from ref. 106) 

 CyMe4-BTPhen-functionalized ZrO2-
MNPs (86) 

CyMe4-BTPhen-functionalized SiO2-
MNPs* (85) 

Experimental Theoretical Experimental Theoretical 

C (%) 17.16 22.79 23.20 22.79 

H (%) 3.37 2.14 3.48 2.14 

N (%) 1.80 4.94 3.43 4.94 

I (%) 7.69 0 8.28 0 

 

The organic content on ZrO2-MNPs (86) was further investigated using thermo-gravimetric 

analysis (TGA) (appendix A1). A similar trend to previously studied SiO2-MNPs (85) was 

observed; wherein, below 150 oC, the mass loss was quite small, presumably due to 

removal of absorbed water and a near linear mass loss was then observed between ca. 

250-650 oC, which is probably due to the decomposition of the organic content.  

2.1.2 – Extraction Studies of ZrO2-MNPs (86) : 

 
Extraction experiments of (86) were carried out at the Czech Technical University in Prague. 

The aqueous solutions for the solvent extraction experiments were prepared by spiking 

nitric acid solutions (0.001 – 4 M) with stock solutions of 241Am, 152Eu and 244Cm and then 

adding 600 μL of spiked aqueous solution to 18 mg of CyMe4-BTPhen-functionalized ZrO2-

MNPs (86). The mixture was sonicated for 10 min and shaken at 1800 rpm for 90 min. After 

centrifuging for 10 min, aliquots of the aqueous solutions (supernatant) were separated 
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and taken for measurements. The distribution ratios, D, were calculated as the ratio 

between the radioactivity (α- and g- emissions) of each isotope in the standard solution and 

the supernatants after removal of the MNPs. The separation factor is SFAm/Eu = DAm / DEu or 

SFAm/Cm = DAm / DCm. Extractions were studied at nitric acid concentrations of 0.001 M, 0.1 

M, 1 M and 4 M.  

The extraction results obtained for CyMe4-BTPhen-functionalized ZrO2-coated MNPs (86) 

showed good distribution ratios for both Am(III) (DAm ~ 142 ± 4) and Eu(III) (DEu ~ 9.7 ± 4.2) 

at 0.001 M HNO3 with a separation factor of SFAm/Eu » 14.7 ± 1.4 (Table 2.2). However, these 

values were much lower than those results obtained for the same ligand covalently bound 

in the same manner to SiO2-MNPs (DAm ~ 1168.8 ± 79.1 and DEu ~ 701.4 ± 32.4).106 

Increasing HNO3 concentration to 0.1 M showed a dramatic decrease in Am(III) extraction 

(DAm ~ 5.6 ± 1) and Eu(III) extraction (DEu ~ 0.8 ± 0.1) giving a separation factor of SFAm/Eu » 

7.4 ± 7.5 at 0.1 M HNO3. In the case for the SiO2-MNPs (85) however, an increase in the 

extraction of Am(III) at 0.1 M HNO3 was reported DAm ~ 1857 ± 153.5 whilst Eu(III) 

extraction decreased to DEu ~ 101.1 ± 2.3 giving a SFAm/Eu » 18.4 ± 1.6.106 A linear decrease 

in both Am(III) and Eu(III) extraction was observed for (86) upon increasing HNO3 

concentration to both 1 M and 4 M (Fig 2.3). Although DAm remained greater than DEu in 

both cases, the selectivity was all but lost at 4 M HNO3 solution with DAm ~ 0.8 ± 0.9 and 

DEu ~ 0.4 ± 0.9 resulting in SFAm/Eu » 1.8 ± 0.4. This is significantly lower than the results 

obtained for CyMe4-BTPhen-functionalized SiO2-coated MNPs (85) at 4 M HNO3 where a 

SFAm/Eu » 1700 ± 300 was obtained.106  

Table 2.2 – Extraction of Am(III) and Eu(III) by CyMe4-BTPhen-functionalized ZrO2-MNPs (86) as a 
function of nitric acid concentration. 

[HNO3] DAm DEu SFAm/Eu 

0.001 142 ± 4.0 9.7 ± 4.2 14.7 ± 1.4 

0.1 5.6 ± 1.0 0.8 ± 1.0 7.4 ± 7.5 

1 1.4 ± 0.9 0.7 ± 0.9 2.0 ± 1.7 

4 0.8 ± 0.9 0.4 ± 0.9 1.8 ± 0.4 
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Figure 2.3 – Extraction of Am(III) and Eu(III) by CyMe4-BTPhen-functionalized ZrO2-MNPs (86) as a 
function of nitric acid concentration. 

Distribution ratios for the actinides Am(III) and Cm(III) and the resulting separation factors 

at 0.001 – 4 M HNO3 by (86) were also examined (Table 2.3). The D values for both Am(III) 

and Cm(III) decreased upon increasing HNO3 concentration, with little or no selectivity 

observed at 4 M HNO3 with a SFAm/Cm » 0.7 ± 0.1. These values follow the same trend as for 

SiO2-MNPs (85), but much lower D and SF values across all concentrations were attained. 

SiO2-MNPs (85) produced a SFAm/Cm » 2.2 ± 0.4 at 4 M HNO3, a reasonable separation; 

whereas ZrO2-MNPs (86) across all concentrations showed a SFAm/Cm that barely rose above 

1 (Fig 2.4). 

Table 2.3 – Extraction of Am(III) and Cm(III) by CyMe4-BTPhen-functionalized ZrO2-MNPs (86) as a 
function of nitric acid concentration. 

[HNO3] DAm DCm SFAm/Cm 

0.001 185 ± 13 145 ± 10 1.3 ± 0.1 

0.1 12.7 ± 2.6 10.7 ± 2.6 1.2 ± 0.4 

1 4.3 ± 2.3 5.7 ± 2.4 0.8 ± 0.5 

4 3.0 ± 2.3 4.4 ± 2.3 0.7 ± 0.1 
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Figure 2.4 – Extraction of Am(III) and Cm(III) by CyMe4-BTPhen-functionalized ZrO2-MNPs (86) as a 
function of nitric acid concentration. 

In summary, the immobilization of a CyMe4-BTPhen ligand via a phenyl ether linker onto 

the surface of ZrO2- maghemite (Fe2O3) magnetic nanoparticles was carried out and 

investigated. These MNPs co-extracted both Am(III) and Eu(III) from solutions up to 4 M 

HNO3, with low selectivity (SFAm/Eu » 1.8 at 4 M) compared to that previously reported for 

SiO2-coated MNPs (85) (SFAm/Eu  > 1300).106 Extraction of both actinides Am(III) and Cm(III) 

was also noted, again without any significant selectivity. Based on FT-IR and elemental 

analysis data the surface of the ZrO2-MNPs incure a lower functionalization by the CyMe4-

BTPhen ligand than the SiO2-MNPs counterpart. In the range of acidity in which the 

extraction studies were performed, the residual surface hydroxyl groups of the zirconia are 

most likely protonated, giving rise to a positively charged surface which may result in 

repulsion of the M(III) cations, resulting in less efficient extraction. Both ZrO2- and SiO2-

coated MNPs equally provide an effective coating to the iron oxide core to enable chemical 

resistance to the harsh conditions in extraction processes but, since the SiO2-MNPs can 

undergo an apparent higher ligand loading, we can conclude that SiO2-MNPs will be 

favoured over ZrO2-MNPs for future investigations to provide an effective solid-based 

extraction for SANEX-type processes.  
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2.2 – Improved Synthetic Route for the Preparation of BTPhens and Extraction Studies 
of Tetra-(4-hydroxyphenyl)BTPhen: 

Parts of this section contributed to the following publication: A. Afsar, J. Cowell, P. Distler, 
L. M. Harwood, J. John and J. Westwood, Synlett, 2017, 28, 2795-2799.118 
 
2.2.1 – Selenium free Synthesis of BTPhens: 

 
Previous synthetic protocols for the development of functionalized BTPhen ligands have 

nearly all proceeded by benzylic oxidation of neocuproine (50) using stoichiometric 

amounts of selenium dioxide, a highly toxic reagent, which resulted in the production of 

large amounts of precipitated selenium metal.8,22,34,77 Previous extensive attempts to use 

sub-stoichiometric amounts of SeO2 failed to generate the bis-aldehyde product in any 

significant yield. The investigation of electronic effects of substituents (Cl, MeO- and Ph) at 

the 4,7- positions of the phenanthroline backbone in CyMe4-BTPhen ligands by Whitehead 

and Edwards et al., (section 1.7.3) led to the development of an alternative benzylic 

functionalization by adapting a protocol reported by Ulven in 2011.99 This proceeded by 

the per-chlorination of the two methyl groups of 4,7-dichloroneocuproine (95) using NCS 

(N-chlorosuccinimide) and a radical initiator dibenzoyl peroxide (Scheme 2.5). 

 

 
Reagents and conditions: (a) (i) 109 °C, 15 mins; (ii) o-phenylenediamine, 109 °C, 2 h; (iii) 25 °C, 16h, 65 %; (b) Ph2O, 260 

°C, 30 mins, 95 %; (c) POCl3, 90 °C, 3.5 h, 98 %; (d) (PhCOO)2, NCS, CHCl3, 62 °C, 16 h, 93 %; (e) (i) H2SO4, 95 °C, 1 h; (ii) 

MeOH, 65 °C, 2 h, 66 %; (f) NH4OH (29 %), NH4Cl, 25 °C, 72 h, 85 %; (g) (i) (COCl)2, DMF, 0 °C, 6 h; (ii) pyridine, 25 °C, 1 h, 

72 %;    

 

Scheme 2.5 – Synthesis of 4,7-dichloro-1,10-phenathroline-2,9-dicarbonitrile (99).98,99 
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This procedure was adapted and applied to neocuproine (50) to synthesize the key bis-

nitrile phenanthroline intermediate (52) without the need to use large amounts of toxic 

selenium dioxide (Scheme 2.6). Optimal reaction conditions for the benzylic 

functionalization involved using a slight excess of recrystallized NCS and 0.05 equivalents 

of m-CPBA (meta-chloroperbenzoic acid). The reaction did proceed with both benzoyl 

peroxide and AIBN as initiators, but in lower overall yield and both required longer reaction 

times. The role of m-CPBA is not fully understood, but the chlorination of the two methyl 

groups was complete after 18 hours at reflux in high yield (90 %). 1H NMR spectroscopic 

analysis confirmed complete disappearance of the methyl resonance of neocuproine (50) 

at 2.94 ppm.  

 

 
 

Scheme 2.6 – Synthesis of bis-aminohydrazide (53) via benzylic functionalization with NCS 
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amide units in (103) using the protocol reported by Larsen et al. and Whitehead and 

Edwards et al. involving oxalyl chloride and DMF, followed by pyridine produced (52) in 

poor yield.98,99 Instead dehydration was achieved by heating to reflux in neat phosphorous 

oxychloride, which generated the key bis-nitrile compound (52) in 75% yield. Previous 

reactions of bis-nitrile (52) with hydrazine hydrate were performed in ethanol and took a 

number of days to generate bis-aminohydrazide (53) in good yield.77,85,95 This was 

attributed to the poor solubility of nitrile-containing phenanthrolines. Subsequently, it was 

found that nitrile (52) was much more soluble in DMSO or DMF and that reaction with 

hydrazine in these solvents to form bis-aminohydrazide (53) occurred much more rapidly 

and in much higher yield ~ 97 %.  

Previous studies of BTPhen-functionalized ligands involved the immobilization onto solid 

supports using a 4-hydroxyphenyl linking group at the 5-position of the phenanthroline unit 

by substitution of the corresponding bromine at that position using a Suzuki-Miyaura cross-

coupling reaction.105,106 An alternative route for eventual immobilization was investigated 

by adding phenol linking groups directly to the 1,2,4-triazine units of BTPhen. This was 

achieved using 4,4’-dihydroxy benzil (104), which was reacted with bis-aminohydrazide 

(53) to afford the 4,4',4'',4'''-((1,10-phenanthroline-2,9-diyl)bis(1,2,4-triazine-3,5,6-

triyl))tetraphenol [henceforth referred to as tetra-(4-hydroxyphenol)-BTPhen] (105) ligand 

(Scheme 2.8). 4,4’-Dihydroxy benzil (104) was synthesized in one step from commercially 

available 4,4’-dimethoxybenzil (106) using previously reported procedures (Scheme 

2.7).119,120 

 

 
 

Scheme 2.7 – Synthetic routes to 4,4’-dihydroxy benzil (104) 
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Scheme 2.8 – Synthesis of tetra-(4-hydroxyphenyl)-BTPhen ligand (105) 

 
2.2.2 – Extraction Studies of tetra-(4-hydroxyphenyl)-BTPhen ligand (105): 

 
Novel tetra-(4-hydroxyphenyl) BTPhen ligand (105) was evaluated for its solvent-solvent 

extraction of Am(III) from Eu(III) and Am(III) from Cm(III) as a function of nitric acid 

concentration at the Czech Technical University in Prague. The aqueous solutions for the 

solvent extraction experiments were prepared by spiking nitric acid solutions (0.001 – 1 M) 

with stock solutions of 241Am, 152Eu and 244Cm and then adding 1000 μL of spiked aqueous 

solution to 10 mM (71 mg) of (105) in cyclohexanone. The mixture was sonicated for 10 

min and shaken at 1800 rpm for 90 min. After centrifuging for 10 min, aliquots of the 

aqueous solutions (supernatant) were separated and taken for alpha/gamma 

measurements. 

The extraction data in Table 2.4 and Fig 2.6 shows the extraction of Am(III) and Eu(III) by 

(105) as a function of increasing nitric acid concentration. At low HNO3 concentration 

(0.001 M) there was no selectivity at all between Am(III) and Eu(III) and relatively poor 

extraction as D < 1. Increasing the concentration to 0.1 M caused a decrease in the 

extraction of both Am(III) and Eu(III), but more greatly for Eu(III), which was diminished to 

~ 0.09, giving a slightly higher separation factor than at 0.001 M of SFAm/Eu » 3.3. At 0.5 M 

HNO3 there was an increase in the extraction of Am(III) to DAm ~ 1.4 and a further decrease 

in Eu(III) extraction, resulting in a higher separation factor of SFAm/Eu » 25.3. A similar 

extraction of both Am(III) and Eu(III) was observed at 1 M HNO3 giving a separation factor 

of SFAm/Eu » 26. It was not possible to evaluate this ligand at higher acid concentrations as 

cyclohexanone is miscible with higher HNO3 concentrations.  
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Table 2.4 – Extraction of Am(III) and Eu(III) by tetra(4-hydroxyphenyl)-BTPhen ligand (105) as a 
function of nitric acid concentration. 

[HNO3] DAm DEu SFAm/Eu 

0.001 0.48 ± 0.02 0.44 ± 0.02 1.1 ± 0.1 

0.1 0.29 ± 0.01 0.09 ± 0.01 3.3 ± 0.2 

0.5 1.4 ± 0.01 0.06 ± 0.01 25.3 ± 1.5 

1 1.7 ± 0.10 0.06 ± 0.01 26.0 ± 1.5 

 

 

Figure 2.6 – Extraction of Am(III) and Eu(III) by tetra(4-hydroxyphenyl)-BTPhen ligand (105) as a 
function of nitric acid concentration. 
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Table 2.5 – Extraction of Am(III) and Cm(III) by tetra(4-hydroxyphenyl)-BTPhen ligand (105) as a 
function of nitric acid concentration. 

[HNO3] DAm DCm SFAm/Cm 

0.001 0.36 ± 0.04 0.40 ± 0.07 0.9 ± 0.2 

0.1 0.26 ± 0.03 0.26 ± 0.02 1.0 ± 0.1 

0.5 1.4 ± 0.10 0.72 ± 0.05 2.0 ± 0.2 

1 1.6 ± 0.10 0.74 ± 0.05 2.1 ± 0.2 

 

 

Figure 2.7 – Extraction of Am(III) and Cm(III) by tetra(4-hydroxyphenyl) BTPhen ligand (105) as a 
function of nitric acid concentration. 

Overall, this tetra(4-hydroxyphenyl)-BTPhen (105) ligand shows generally poor extraction 

of Am(III) from Eu(III) across HNO3 concentrations up to 1 M. Even though the values of D 

remained < 2 during this investigation, the trend of increasing extraction of Am(III) as the 

HNO3 concentration increases is still shown, indicating that the extraction process is 

dependent on the concentration of nitrate ions in solution.  
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2.2.3 – Immobilization of tetra-(4-hydroxyphenyl)-BTPhen (105) onto SiO2-coated MNPs 
(107): 
 
The ability of previously studied CyMe4-BTPhen immobilized MNPs (e.g. 85 and 86) to 

extract minor actinides from lanthanides shows promise for the development of an 

efficient solid-liquid extraction technique for waste reprocessing. Previously, attachment 

of the organic ligand onto the surface of iodoalkyl-functionalized MNPs was achieved by 

using one 4-hydroxyphenyl linking group at the 5-position of the phenanthroline unit of the 

ligand.106,121 Following the synthesis of novel tetra-(4-hydroxyphenyl) BTPhen ligand (105) 

and thus a new mode of immobilization via the phenol linking groups attached to the 

triazine unit, we investigated the extraction ability of this ligand covalently bound to silica-

coated MNPs (107).  

The synthesis of SiO2-coated nanoparticles (107) (Scheme 2.9) was carried out using the 

groups previously reported procedure.106,117 Immobilization of ligand (105) onto the 

surface of SiO2-MNPs (107) was achieved by stirring ligand (105) in DMF with sodium 

hydride. Separation of the nanoparticles by an external neodymium magnet afforded 

BTPhen functionalized-MNPs (110) (Scheme 2.10).  

 

 
 

Scheme 2.9 – Synthesis of iodoalkyl-functionalized SiO2-coated Fe2O3 MNPs (107) 

 

Scheme 2.10 – Immobilization of tetra-(4-hydroxyphenyl) BTPhen (105) onto iodo-functionalized 
SiO2-coated MNPs (107) 
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Several characterisation techniques were employed to assess the degree of surface 

immobilization of tetra-(4-hydroxyphenyl)-BTPhen (105) onto the surface of SiO2-MNPs 

(107). Comparison of the FT-IR spectra of iodoalkyl-functionalized SiO2-coated MNPs (107) 

and BTPhen functionalized-MNPs (110) in Fig 2.7 showed strong absorption bands centred 

at 1050 cm-1 owing to the Si-O-Si stretching, which was apparent for both samples. 

Absorptions at 1500-1600 cm-1 for the C=C aromatic vibrations could only be seen for the 

BTPhen functionalized-MNPs (110), indicating incorporation of the ligand onto the MNP 

surface. Comparison of the thermogravimetric analysis (TGA) of both iodoalkyl-

functionalized SiO2-coated MNPs (107) and BTPhen functionalized-MNPs (110) revealed 

that the amount of tetra-phenol BTPhen ligand (105) bound onto the surface of the MNPs 

was approximately 31 % (appendix A2). 

 

 
Figure 2.7 – Comparison of the FT-IR spectra of iodoalkyl-functionalized SiO2-coated MNPs (107) 
and BTPhen functionalized-MNPs (110) 

The surface morphology and structural features of the BTPhen functionalized-MNPs (110) 

were also examined by transmission electron microscopy (TEM) and scanning electron 

microscopy (SEM) (Fig 2.8). The spherical core structure of the MNPs could be observed, 

together with the addition of a more disordered organic moiety layer.  

40

50

60

70

80

90

100

3000 2500 2000 1500 1000

%
 T

ra
ns

m
itt

an
ce

Wavelength, cm-1

BTPhen-functionalized SiO2-coated MNPs

Iodoalkyl-functionalized SiO2-coated MNPs



Chapter 2 – Results and Discussion 

 80 

 

 
 

Figure 2.8 – TEM (A) and SEM (B) analysis of BTPhen functionalized-MNPs (110) 

 

Furthermore, elemental analysis (Table 2.6) found a decrease in the iodine content from 

38.9 % in (107) to 1.4 % in (110) and the presence of ca. 0.9 % nitrogen confirming the 

modification of MNPs with the tetra-(4-hydroxyphenyl) BTPhen ligand (105). 

Table 2.6 – Results of elemental analysis for iodoalkyl-functionalized SiO2-coated MNPs (107) and 
BTPhen functionalized SiO2-coated MNPs (110) 

 
Iodoalkyl-functionalized SiO2-coated MNPs 

(107) 
BTPhen-functionalized SiO2-coated MNPs 

(110) 

C (%) 11.59 29.62 

H (%) 2.50 3.27 

N (%) - 0.93 

I (%) 38.92 1.39 
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2.2.4 – Extraction Studies of BTPhen functionalized SiO2-coated MNPs (110): 

 
The BTPhen functionalized SiO2-coated MNPs (110) were evaluated for their ability to 

extract Am(III) from Eu(III) and Am(III) from Cm(III) at the Czech Technical University in 

Prague. The aqueous solutions for the solid phase extraction experiments were prepared 

by spiking nitric acid solutions (0.001 – 4 M) with stock solutions of 241Am, 152Eu and 244Cm 

and then adding 1 mL of spiked aqueous solution to 22.7 mg of BTPhen-functionalized SiO2-

coated MNPs (110). The suspension was sonicated for 10 min and shaken at 1800 rpm for 

90 min. After centrifuging for 10 min, aliquots of the supernatant were separated and taken 

for alpha and gamma measurements.  

The results in Table 2.7 show the weight distribution ratios for Am(III) and Eu(III) (DwAm and 

DwEu) and the separation factors for Am(III) over Eu(III) (SFAm/Eu) for BTPhen-functionalized 

SiO2-coated MNPs (110) as a function of increasing nitric acid concentration (0.001–4 M). 

The MNPs (110) exhibited high extraction ability for both Am(III) and Eu(III) (Dw > 600) at 

0.001 M HNO3 solution with no selectivity (SFAm/Eu  » 0.73 ± 0.04) for Am(III) over Eu(III). At 

0.1 M HNO3, the Dw for Am(III) was larger than 450 and the Dw for Eu(III) decreased from ~ 

858 to ~15 indicating that an effective selective extraction can still be achieved in 0.1 M 

HNO3 solution (SFAm/Eu » 30). 

Table 2.7 – Extraction of Am(III) and Eu(III) by BTPhen functionalized SiO2-coated MNPs (110) as a 
function of nitric acid concentration. 

[HNO3] DwAm DwEu SFAm/Eu 

0.001 625 ± 30 858 ± 24 0.73 ± 0.04 

0.1 456 ± 19 15 ± 1 30 ± 2 

1 25 ± 1 < 3 > 8 

4 10 ± 1 < 3 > 3 
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Figure 2.9 – Extraction of Am(III) and Eu(III) by BTPhen functionalized SiO2-coated MNPs (110) as a 
function of nitric acid concentration. 

As the concentration of HNO3 increased up to 1 M, decreases in the Dw for both Am(III) and 

Eu(III) were observed (DwAm ~ 25 ± 1; and Dw observed for Eu(III) was under the detection 

limit, i.e., DwEu < 3.0) which resulted in a separation factor of SFAm/Eu > 8. At 4 M HNO3 a 

further decrease in the Dw value for Am(III) gave DwAm ~ 10 and the observed value for Eu(III) 

was again DwEu < 3.0) with a resulting separation factor of SFAm/Eu > 3.  

Weight distribution ratios for Am(III) and Cm(III), and the separation factors at different 

nitric acid concentrations were also examined (Table 2.8 and Fig 2.10). The Dw values for 

both Am(III) and Cm(III) decreased with increasing nitric acid concentration, in agreement 

with the above results for Am(III)/Eu(III), resulting in a small but significant SFAm/Cm » 3.0 ± 

0.5 at 0.1 M HNO3.  
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Table 2.8 – Extraction of Am(III) and Cm(III) by BTPhen functionalized SiO2-coated MNPs (110) as a 
function of nitric acid concentration. 

[HNO3] DwAm DwCm SFAm/Cm 

0.001 613 ± 92 512 ± 68 1.2 ± 0.2 

0.1 500 ± 61 163 ± 14 3.0 ± 0.5 

1 21 ± 3 10 ± 3 2.1 ± 0.6 

4 13 ± 3 7 ± 2 1.8 ± 0.4 

 

 

Figure 2.10 – Extraction of Am(III) and Cm(III) by BTPhen functionalized SiO2-coated MNPs (110) as 
a function of nitric acid concentration. 

Overall, these BTPhen functionalized MNPs (110) exhibited good selectivity for Am(III) over 

Eu(III) at 0.1 M HNO3 (with a separation factor of SFAm/Eu » 30) and showed a small but 

significant selectivity for Am(III) over Cm(III) with a nominal separation factor of around 3 

in 0.1 M HNO3. Furthermore, both Am(III) and Eu(III) could be co-extracted at low 

concentrations of HNO3 (0.001 M) if required. The uptake behaviour of Am(III) and Eu(III) 

by MNPs (110) at different molarities of HNO3 demonstrates that the extraction process is 

highly dependent on HNO3 concentration and these results represent a development 

towards the possible use of solid-phase materials for the important and challenging minor 

actinide–lanthanide separation.  
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2.2.5 – Immobilization of tetra-(4-hydroxyphenyl) BTPhen (105) on chloropropyl-
functionalised SiO2 gel (111): 
 
The following section contributed to the publication: A. Afsar, P. Distler, L. M. Harwood, J. 
John and J. Westwood, Chem. Commun., 2017, 53, 4010-4013.122 
 
Considering that the minor actinide content in post-PUREX raffinate is smaller than that of 

U and Pu in the spent fuel, immobilization of actinide-selective ligands onto solid supports 

could provide an alternative method for carrying out separation and pre-concentration of 

minor actinides from PUREX raffinates.123,124 Further benefits of a system based on a solid-

phase extractant include – no requirement for mixing or phase separation and possible use 

of pressure or vacuum to increase flow rate; or as recently discussed the use of simple 

magnetic separation.125 Tetra-(4-hydroxyphenyl) BTPhen (105) was subsequently 

immobilized onto commercially available macroscopic chloropropyl-functionalized silica 

gel (111). The reaction proceeded by stirring tetra-(4-hydroxyphenyl) BTPhen (105) in DMF 

with sodium hydride (Scheme 2.11). Chloropropyl-functionalized silica gel (111) was 

purchased from Sigma Aldrich (particle size 230-400 mesh and a pore size of 60 Å) and used 

as supplied. The extent of labelling was ~ 2.5 % loading and the matrix active group was ~ 

8 % functionalized.126 

 

Scheme 2.11 – Immobilization of tetra-(4-hydroxyphenyl) BTPhen (105) onto chloropropyl-
functionalized SiO2 gel (111) 

To assess the degree of functionalization of ligand (105) onto the surface of SiO2 gel (111), 

several techniques were employed. Comparison of the FT-IR spectra of both the 

chloropropyl-functionalized SiO2 gel (111) and BTPhen-functionalized SiO2 gel (112) (Fig 

2.11) showed the strong Si-O-Si stretching bond at 1050 cm-1 for both and small C=C 

aromatic vibrations between 1500-1600 cm-1 only for BTPhen-functionalized SiO2 gel (112). 
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Figure 2.11 – FR-IR spectra of chloropropyl-functionalized SiO2 gel (111) and BTPhen-functionalized 
SiO2 gel (112) 

Elemental analysis of both chloropropyl-functionalized SiO2 gel (111) and BTPhen-

functionalized SiO2 gel (112) show an increased C, H and N content for the BTPhen-

functionalized SiO2 gel (112) and a large decrease in the % of Cl, indicative of effective 

incorporation (Table 2.9). TGA analysis of (112) (appendix A3) revealed a usual pattern 

where, up to 150 oC the mass loss was quite small – presumably due to removal of absorbed 

water and, after that, there was a more-or-less linear mass loss from 250-700 oC, which is 

probably due to decomposition of the organic content. Comparison of the TGA analyses 

between (111) and (112) revealed the content of BTPhen ligand (105) in the BTPhen-

functionalized SiO2 gel (112) to be ca. 10 %.  
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Table 2.9 – Results of elemental analysis for chloropropyl-functionalized SiO2 gel (111) and BTPhen-
functionalized SiO2 gel (112) 

 
Chloropropyl-functionalized SiO2 Gel (111) BTPhen-functionalized SiO2 Gel (112) 

C (%) 5.05 8.10 

H (%) 1.22 1.28 

N (%) - 1.08 

Cl (%) 3.61 0.49 

 

Figure 2.12 – SEM images (E, F) and TEM images (G, H) of chloropropyl-functionalized SiO2 gel (111) 
(E, G) and BTPhen-functionalized SiO2 gel (112) (F, H) 
 
The surface morphology of chloropropyl-functionalized SiO2 gel (111 – E, G) and BTPhen-

functionalized SiO2 gel (112 – F, H) shown in Fig 2.12 were examined using SEM and TEM. 

Comparison of the SEM images of E and F indicates an increase in surface roughness as the 

ligand becomes incorporated onto the surface of the silica. The TEM micrograph of BTPhen-

functionalized SiO2 gel (112) (H) showed an increase in the average size of the silica gel 

particles compared to the un-functionalized silica gel in image G.  
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2.2.6 – Extraction Studies of BTPhen-functionalized SiO2 Gel (112): 

 
BTPhen functionalized SiO2 gel (112) was investigated for its ability to extract Am(III) from 

Eu(III) at the Czech Technical University in Prague. Aqueous solutions for the solid phase 

extraction experiments were prepared by spiking nitric acid solutions (0.001–4 M) with 

stock solutions of 241Am and 152Eu and then adding 1 mL of spiked aqueous solution to 17 

mg of BTPhen-functionalized SiO2 gel (112) (~ 10 mM). The suspension was sonicated for 

10 min and shaken at 1800 rpm for 90 min. After centrifuging for 10 min, aliquots of the 

supernatant were separated and taken for alpha and gamma measurements.  

Table 2.10 and Fig 2.13 shows the weight distribution ratios for Am(III) and Eu(III) (DwAm 

and DwEu) and the separation factors for Am(III) over Eu(III) (SFAm/Eu) for BTPhen-

functionalized SiO2 gel (112) as a function of nitric acid concentration (0.001–4 M). High 

distribution ratios of (Dw > 90) were observed for both Am(III) and Eu(III) at 0.001 M HNO3 

solution with very little selectivity (SFAm/Eu » 0.7 ± 0.04) for Am(III) over Eu(III).  

Table 2.10 – Extraction of Am(III) and Eu(III) by BTPhen functionalized SiO2 gel (112) as a function 
of nitric acid concentration. 

[HNO3] DwAm DwEu SFAm/Eu 

0.001 94 ± 3 136 ± 68 0.7 ± 0.04 

0.1 4883 ± 974 630 ± 14 7.7 ± 1.7 

1 250 ± 12 4.2 ± 0.4 60 ± 6 

4 28 ± 1 » 0.2 » 140 

 

Increasing the HNO3 concentration to 0.1 M led to a more significant increase in the Dw for 

Am(III) (DwAm ~ 4883 ± 974) compared to that for Eu(III) (DwEu ~ 640 ± 974), which resulted 

in an improved SFAm/Eu » 7.7 ± 1.7. At 1M HNO3, decreases in Dw for both Am(III) and Eu(III) 

were observed (DwAm ~ 250 ± 12, DwEu ~ 4.2 ± 0.4), but the reduction in DwEu was far greater, 

leading to an even higher separation factor (SFAm/Eu » 60 ± 6).  More interestingly at 4 M 

HNO3 a further decrease in the Dw value for Am(III) afforded DwAm ~ 28 ± 1, but in the case 

for Eu(III), extraction was almost completely removed, resulting in DwEu ~ 0.2, giving a 

resulting separation factor of SFAm/Eu » 140, meaning that only Am(III) was retained on the 
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BTPhen-functionalized SiO2 gel (112). The effect of increasing HNO3 concentration on the 

extraction of Am(III) and Eu(III) follows the same trend as reported for the previous system 

involving CyMe4-BTPhen functionalized SiO2-coated MNPs (85). During that study, it was 

proposed the shortness of the linking chain of the ligand to the MNPs constrained the 

BTPhen ligand to form 1:1 complexes with the M(III) cations, with 3 bidentate nitrate ions 

also ligating to the metal centre making the complex 10-coordinate and so electronically 

neutral.106 To verify that this was a ligand effect, extraction capabilities of chloropropyl-

functionalized SiO2 gel (111) were also investigated but no extraction was observed for 

Am(III) or Eu(III) over the full range of concentrations of HNO3. 

 

 
Figure 2.13 – Extraction of Am(III) and Eu(III) by BTPhen-functionalized SiO2 gel (112) as a function 
of nitric acid concentration. 
 
In summary, the BTPhen-functionalized SiO2 gel (112) extracts both minor actinides and 

lanthanides at low concentrations of HNO3 yet exhibits very high selectivity for minor 

actinides over lanthanides at 4 M HNO3 (SFAm/Eu » 140). 
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2.3 – Selenium Free Synthesis of CyMe4-BTPhen ligands and Immobilization onto SiO2 
gels 

The following section contributed to the publication: A. Afsar, P. Distler, L. M. Harwood, J. 
John, J. Cowell and J. Westwood, Chem. Commun., 2018, In press 
 
2.3.1 – Synthesis and characterization: 

After the development of improved synthetic routes to BTPhen containing ligands using 

selenium free methods, we applied this route to 5-bromo-1,10-phenanthroline (78) to 

develop Br-bis-nitrile (88) in higher overall yield (Scheme 2.12). Our previous route using 

stoichiometric amounts of selenium dioxide and a one-pot conversion of the corresponding 

di-aldehyde (87) to bis-nitrile (88) proceeded at ~ 34 % overall yield. The newly developed 

route, avoiding the use of toxic selenium dioxide, even though it resulted in more steps to 

synthesize target bis-nitrile (88), gave a higher overall yield of ~ 58 %. 

 
Scheme 2.12 – Improved synthetic protocol for Br-bis-nitrile (88). 

 

Conversion of the Br-bis-nitrile (88) to Br-bis-aminohydrazide (89) occurred efficiently in 

DMSO as the solvent, as seen previously with 1,10-phenanthroline nitrile (52). 

Condensation with commercially available 2,3-butanedione in THF and Et3N afforded ligand 

(116) in 71 % yield. Previously, the condensation of (89) with CyMe4-diketone (32) 

proceeded under similar conditions, taking up to 3 days to attain an efficient yield. It was 

found that the reaction occurred more efficiently by heating to reflux in acetic acid, with 

consumption of the diketone (32) complete after only 3 hours, affording ligand (83) in 80 

% yield.  
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Scheme 2.13 – Synthesis of Br-bis-aminohydrazide (89) and ligands (83 and 116) 

 

During the investigations with ZrO2-MNPs (86), Suzuki coupling of (83) with 4-

hydroxyphenyl boronic acid produced target 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) in 59 

% yield after applying the same conditions as previously reported to complete the 

transformation of neocuproine (50) to 4-(2,9-dimethyl-1,10-phenanthrolin-5-yl)phenol 

(117) as shown in Scheme 2.14.106,115 

 

 
 

Scheme 2.14 – Suzuki coupling conditions to produce (117) 

 

Repeating these conditions from batch to batch of Br-CyMe4-BTPhen (83) failed to generate 

clean 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) in any significant yield (> 5%) for further 

extraction investigations. Simultaneously, Suzuki coupling of any functional phenyl groups 

to Br-C1-BTPhen (116) failed to generate any 5-coupled-C1-BTPhen ligand for preliminary 

investigations. After extensive and, at times, frustrating optimization studies, applying a 

5:1:1 ratio of toluene:ethanol:water to the repeatedly triturated Br-CyMe4-BTPhen (83) 

afforded target 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) in 75 % yield. Condensation of the 

diketone (32) also occurred efficiently in neat AcOH (80 % yield), albeit only on small scale 

(500 mg). Immobilization of (84) onto chloropropyl-functionalized SiO2 gel (111) generated 

CyMe4-BTPhen functionalized SiO2 gel (118) (Scheme 2.15). 
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Scheme 2.15 – Immobilization of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) onto chloropropyl-
functionalized SiO2 gel (111) 
 

As with previous solid-supported ligands, a range of techniques was used to assess the 

content of ligand (84) bound to the surface of (111). Comparative FT-IR (Fig 2.14) showed 

the presence of absorption bands at 1500-1600 cm-1 assigned to the C=C aromatic vibration 

of (84), indicating the attachment of organic content. Elemental analysis (Table 2.11) 

showed an increase in the C, H and N content for CyMe4-BTPhen functionalized SiO2 gel 

(118) compared to chloropropyl-functionalized SiO2 gel (111), and reduction in Cl % to 0.10. 

TGA analysis (appendix A4) allowed the determination of the degree of surface 

modification through comparison of the relative mass loss in CyMe4-BTPhen functionalized 

SiO2 gel (118) compared to chloropropyl-functionalized SiO2 gel (111) and the extent of 

loading was determined to be ca. ~ 25 %.  

Table 2.11 – Results of elemental analysis for chloropropyl-functionalized SiO2 gel (111) and CyMe4-
BTPhen-functionalized SiO2 gel (118). 

 
 

Chloropropyl-functionalized SiO2 Gel (111)  CyMe4-BTPhen-functionalized SiO2 Gel (118) 

C (%) 5.05 11.60 

H (%) 1.22 2.01 

N (%) - 1.40 

Cl (%) 3.61 0.10 
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Figure 2.14 – FR-IR spectra of chloropropyl-functionalized SiO2 gel (111) and CyMe4-BTPhen-
functionalized SiO2 gel (118) 

2.3.2 – Extraction Studies of CyMe4-BTPhen-functionalized SiO2 gel (118): 

 
Solid phase extraction investigations of CyMe4-BTPhen-functionalized SiO2 gel (118) were 

carried out at the Czech Technical University in Prague. Previous solid-supported ligands 

included MNPs were believed to form 1:1 complexes when extracting the metals Am(III) 

and Eu(III) due to the shortness of the linking chain between the ligand and the solid 

support. To investigate whether the extraction is effected by anions surrounding these 1:1 

complexes and whether or not this plays an important role in the separation of Am(III) from 

Eu(III), the extraction experiments of (118) were conducted in both nitric and perchloric 

acid, where the latter contains no coordinating counter-ions.  

The aqueous solutions for the solid phase extraction experiments were prepared by spiking 

nitric acid (HNO3) and perchloric acid (HClO4) solutions (0.001 – 4 M) with stock solutions 

of 241Am and 152Eu and then adding 1 mL of spiked aqueous solution to accurately weighed 

(16.7 mg) of CyMe4-BTPhen-functionalized SiO2 gel (118). The suspensions were sonicated 

for 10 min and shaken at 1800 rpm for 90 min. After centrifuging for 10 min, aliquots of the 

supernatant were separated and taken for gamma measurements. 
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The extraction experiments were studied at HNO3 and HClO4 concentrations of 0.001 M, 

0.1 M, 1 M and particularly 4 M. The weight distribution ratios (DwAm and DwEu) and 

separation factors for Am(III) over Eu(III) (SFAm/Eu) for CyMe4-BTPhen-functionalized SiO2 

gel (118) as a function of increasing HNO3 concentration are shown in Table 2.12 and Fig 

2.15.  
High distribution ratios (Dw > 160) were observed for both Am(III) and Eu(III) at 0.001 M 

HNO3 solution with no significant selectivity (SFAm/Eu » 1.1 ± 0.1) for Am(III) over Eu(III). At 

0.1 M HNO3, there was a significant increase in Dw values for both Am(III) (DwAm ~ 11630 ± 

2033) and Eu(III) (DwEu ~ 5618 ± 720) resulting in a slightly higher separation of SFAm/Eu » 2.1 

± 0.4. Decreases in the Dw values for both Am(III) and Eu(III) were observed (DwAm ~ 3813 ± 

384, DwEu ~ 63.9 ± 2.3) at 1 M HNO3 solution, but a higher separation factor (SFAm/Eu » 60 ± 

6) resulted. Finally, at 4 M HNO3 a further decrease in the Dw value for Am (III) afforded 

DwAm ~ 354 ± 12; the Dw value observed for Eu(III) was reduced to < 2.3 and the resulting 

separation factor was an impressive SFAm/Eu » 154. 

 

Table 2.12 – Extraction of Am(III) and Eu(III) by CyMe4-BTPhen-functionalized SiO2 gel (118) as a 
function of nitric acid concentration. 
 

[HNO3] DwAm DwEu SFAm/Eu 

0.001 183 ± 6 165 ± 6 1.11 ± 0.05 

0.1 11630 ± 2033 5618 ± 720 2.1 ± 0.4 

1 3813 ± 384 64 ± 2 60 ± 6 

4 354 ± 12 < 2.3 » 154 
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Figure 2.15 – Extraction of Am(III) and Eu(III) by CyMe4-BTPhen-functionalized SiO2 gel (118) as a 
function of nitric acid concentration. Mass of sorbent: approximately 16 mg, phase volume: 1 mL, 
V/m ratio: ~ 60 mL/g. 
 

The observed decrease in Dw values for (118) with increasing [HNO3] concentration was 

previously seen with other solid-supported BTPhen ligands (CyMe4-BTPhen-functionalized 

SiO2-MNPs (85) and BTPhen-functionalized SiO2 gel (112)) and, once again, can probably be 

attributed to the increased degree of ligand protonation and thus decreased free ligand 

concentration. 

Table 2.13 and Fig 2.16 show weight distribution ratios for Am(III) and Eu(III) (DwAm and 
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the values of Dw, especially at higher acid concentrations. These results indicate that the 

bidentate properties of the nitrate ion probably play an important role in these Am(III) and 

Eu(III) separations. The separation factors SFAm/Eu are similar in nitric and perchloric acids 

except for the case of 4 mol/L concentration where the substitution of HNO3 with HClO4 

results in a dramatic drop of SFAm/Eu from > 154 down to » 1. 

 

Table 2.13 – Extraction of Am(III) and Eu(III) by CyMe4-BTPhen-functionalized SiO2 gel (118) as a 
function of perchloric acid concentration. 
 

[HClO4] DwAm DwEu SFAm/Eu 

0.001 221 ± 9 145 ± 5 1.5 ± 0.1 

0.1 6864 ± 1298 312 ± 14 22 ± 2.6 

1 285 ± 13 2.4 ± 0.9 119 ± 27 

4 < 2 < 2 » 1 

 

 

 
Figure 2.16 – Extraction of Am(III) and Eu(III) by CyMe4-BTPhen-functionalized SiO2 gel (118) as a 
function of perchloric acid concentration. Mass of sorbent: approximately 16 mg, phase volume: 1 
mL, V/m ratio: ~ 60 mL/g 
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Overall, the remarkable capacity of CyMe4-BTPhen-functionalized SiO2 gel (118), which 

achieves efficient extraction of both Am(III) and Eu(III) at low nitric acid concentration 

(0.001 M HNO3), yet exhibits high selectivity (SFAm/Eu » 154) for Am(III) over Eu(III) at 4 M 

HNO3 has been observed. This silica-based solid extractant is currently the most efficient 

immobilized minor actinide selective extractant, exceeding the previously discussed 

tetra(4-hydroxyphenyl)-BTPhen-functionalized SiO2 gel (112) (SFAm/Eu » 140). Since the 

extraction experiments were also carried out in HClO4 medium, we can conclude that the 

three bidentate nitrate ions surrounding the 1:1 complex of (118) giving rise to charge 

neutrality provide a vital role in the selective separation of minor actinides from 

lanthanides at high nitric acid concentrations. Although this interesting finding helps 

deduce the possible mode of complexation adopted by the ligand for extraction, further 

more detailed examination of (118) and related MNPs (85) are required to probe their 

different extraction properties. Both systems are identical from a chemical point of view, 

where CyMe4-BTPhen is grafted onto SiO2 via 4-hydroxyphenyl and a propyl linker, but their 

extraction behaviour is somewhat different.  
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2.4 – Synthesis and Screening of BTBP-functionalized SiO2 gel: 

The following section contributed to the publication: A. Afsar, P. Distler, L. M. Harwood, J. 
John and J. Westwood, Chem. Commun., 2017, 53, 4010-4013.122 
 
2.4.1 – Synthesis and Characterization: 

Following previously reported protocols, the synthesis of ligand (120) was proceeded via 

the double N-oxidation of 2,2’-bipyridine (12) using hydrogen peroxide in acetic acid.81,127 

A modified Reissert-Henze reaction of bis-N-oxide (39) using trimethylsilyl cyanide and 

benzoyl chloride afforded bis-nitrile (40) in 68 % yield. Conversion of the bis-nitrile (40) into 

bis(aminohydrazide) (41) was achieved by stirring in excess hydrazine hydrate in ethanol at 

ambient temperature.81,127 Condensation of bis(aminohydrazide) (41) with commerical 1,4-

dibromo-2,3-butanedione (119) in THF afforded the 6,6’-bis(5,6-bis(bromomethyl)-1,2,4-

triazin-3-yl)-2,2’-bipyridine (120) ligand in 82 % yield (Scheme 2.16). 

 

Scheme 2.16 – Synthesis of 6,6’-bis(5,6-bis(bromomethyl)-1,2,4-triazin-3-yl)-2,2’-bipyridine (120) 
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silica gel was approximately ~ 9 % functionalized by weight. The particle size of the original 

functionalized silica gel was 40-63 µm with 60 Å pore size.128  

 

Scheme 2.17 – Immobilization of BTBP ligand (120) onto aminopropyl-functionalized silica gel (121) 

Several characterization techniques were employed to assess the degree of immobilization 

of BTBP ligand (120) onto the aminopropyl-functionalized SiO2 gel (121) surface. The FT-IR 

spectra (Fig 2.17) showed the Si-O-Si stretching at 1100 cm-1 for both (121) and (122), but 

the presence of bands at 1500-1600 cm-1 in (122) owing to the C=C aromatic vibrations 

confirmed the incorporation of ligand (120) on to the SiO2 surface. Elemental analysis 

showed an increase in the content of C, H and N for the ligand functionalized silica gel (122) 

(Table 2.14). Since the results from elemental analysis showed some residual Br remaining 

on BTBP-functionalised SiO2 gel (122), the nature of the R groups on (122) was 

undetermined and could either be Br or Et3N+, from the use of triethylamine in the 

immobilization step. Thermogravimetric analysis (appendix A5) was used to determine the 

degree of surface modification of (120) onto the silica surface to be ca. 14 %. 

Table 2.14 – Results of elemental analysis for aminopropyl-functionalized SiO2 gel (121) and BTBP 
functionalized SiO2 gel (122) 
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Figure 2.17 – Comparison of the FT-IR spectra of aminopropyl-functionalized SiO2 gel (121) and 
BTBP functionalized SiO2 gel (122) 

 

Figure 2.18 – SEM images (A, B) and TEM images (C, D) of aminopropyl-functionalized silica gel (121 
– A, C) and BTBP functionalized SiO2 gel (122 – B, D) 
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The SEM images (A, B) in Fig 2.18 show the smooth surface of the aminopropyl-

functionalized silica gel (121) before surface modification and the increased surface 

roughness as a result of incorporation of the BTBP ligand onto the surface can be seen in 

image B. The TEM micrographs (C and D) show the increased size and coverage of the silica 

gel surface with the organic ligand (image D) compared to the unfunctionalized silica gel in 

image C.  

2.4.2 – Extraction Studies of BTBP-functionalized SiO2 Gel (122): 

 
BTBP functionalized silica gel (122) was investigated for its ability to extract Am(III) from 

Eu(III) at the Czech Technical University in Prague. The aqueous solutions for the solid phase 

extraction experiments were prepared by spiking nitric acid solutions (0.001–4 M) with 

stock solutions of 241Am and 152Eu and then adding 1 mL of spiked aqueous solution to 14 

mg of BTBP-functionalized SiO2 gel (122) (~ 10 mM). The suspension was sonicated for 10 

min and shaken at 1800 rpm for 90 min. After centrifuging for 10 min, aliquots of the 

supernatant were separated and taken for alpha and gamma measurements. 

Table 2.15 and Fig 2.19 show the weight distribution ratios for Am(III) and Eu(III) (DwAm and 

DwEu) and the separation factors for Am(III) over Eu(III) (SFAm/Eu) for BTBP-functionalized 

SiO2 gel (122) as a function of nitric acid concentration (0.001–4 M). The distribution values 

for both DwAm and DwEu remained < 1 for the majority of the extractions indicating poor 

extraction of both Am(III) and Eu(III). The separation factors were calculated as SFAm/Eu » 32 

± 17, 193 ± 171, 46 ± 45 and 8 ± 7 at 0.001, 0.1, 1 and 4 M HNO3, respectively. The low 

separation factor values indicate that BTBP ligand (120) immobilized on SiO2 gel did not 

significantly differentiate in the extraction of Am(III) or Eu(III) from HNO3 solutions, 

especially since Dw values remained < 1 in most cases, indicating poor extraction of both 

metals into the immobilized phase.  
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Table 2.15 – Extraction of Am(III) from Eu(III) by BTBP functionalized silica gel (122) as a function 
of nitric acid concentration. 

[HNO3] DwAm DwEu SFAm/Eu 

0.001 0.361 ± 0.015 0.011 ± 0.011 32 ± 17 

0.1 1.301 ± 0.028 0.007 ± 0.007 193 ± 171 

1 0.259 ± 0.014 0.006 ± 0.006 46 ± 45 

4 0.049 ± 0.012 0.007 ± 0.007 8 ± 7 

 

Extraction capabilities of aminopropyl-functionalized SiO2 gel (121) were also investigated 

as a comparison; however no extraction was observed for Am(III) or Eu(III), over the full 

range of concentrations of HNO3. Studies of the extraction of Am(III) and Cm(III) produced 

similar results to those shown in Fig 2.19, where Dw values remained < 1 across most HNO3 

concentrations and no selectivity for Am(III) over Cm(III) was observed using BTBP-

functionalized SiO2 gel (122).  

 
 

Figure 2.19 – Extraction of Am(III) and Eu(III) by BTBP functionalized silica gel (122) as a function 
of nitric acid concentration. 
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To investigate whether the BTBP-functionalized SiO2 gel (122) had any potential application 

in the removal of fission and corrosion products such as Ni(II), Pd(II), Ag(I) and Cd(II), 

extraction experiments were performed to extract metal ions from 2 % HNO3 solution (pH 

= 0.5) using a column technique. BTBP-functionalized SiO2 gel (122) (10 g, ~ 1.4 g BTBP (120) 

loading), packed into a glass column (diameter 3.8 cm, bed volume ~ 35 mL) was first  

washed with 2 % HNO3 solution (100 mL). Standard solutions at pH 0.5 containing a range 

of metals, each at 100 ppb concentration (100 mL) were then passed through the column 

at a rate of 10 mL min-1 and the filtrate was collected and analysed by ICP-MS. The uptake 

of various metal ions – Sc(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Mo(IV), Ag(I), Cd(II), 

Sb(V), Pb(II), Pd(II), Os(IV), Ir(III), Pt(IV), Au(III), Zr(IV), Nb(V), Hf(IV), Ta(V), W(VI) and Re(IV) 

at pH 0.5, by BTBP-functionalized SiO2 gel (122) showed > 80 % uptake efficiency in one-

cycle for all the metals except Sb(V) in Fig 2.20. 

 

Figure 2.20 – Percentage uptake of metal ions (100 ppb) from aqueous solution at pH 0.5 by BTBP-
functionalized SiO2 gel (122)  
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Importantly, near quantitative extraction of certain problematic corrosion and fission 

products [Ni(II), Pd(II), Ag(I) and Cd(II)] that are found in the nitric acid solutions of PUREX 

raffinates was observed. Significantly, the BTBP-functionalized SiO2 gel (122) did not show 

any affinity towards alkali metals or alkaline earth metals such as Na+ , K+, Mg2+ and Ca2+ or 

Al3+. 
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2.5 – Synthesis of Nitro-phenanthroline derivatives and Screening of (dppz)-BTPhen 
ligand: 

The following section led to the publication: J. Westwood, L. M. Harwood, A. Afsar, J. 
Cowell, P. Distler and J. John, Lett. Org. Chem., 2018, 15, 340-344. 
 
2.5.1 – Synthesis of Nitro-phenanthroline derivatives and (dppz)-BTPhen ligand (135): 

 
Following the successful immobilization of BTBP and BTPhen related ligands onto solid 

supported materials including MNPs and silica gel, an alternative route of immobilization 

was investigated as a way to by-pass the need for Suzuki coupling at the 5-position of 

bromine-bearing phenanthrolines. Introduction of a nitro- group (123) at that position was 

proposed, as not only would the nitro- group possibly provide a further insight into the 

interesting electronic effects towards the two coordinating nitrogen donor atoms in the 

phenanthroline unit during extraction, but the nitro- group could also be reduced using 

well reported protocols to an amine (124) and thus provide a more direct mode of 

immobilization onto, for example, chloropropyl functionalized silica gel (111) or related 

(125) solid materials (Scheme 2.18).129 

 
 

Scheme 2.18 – Nitro group reduction and possible immobilization routes 

 

Attempts at nitration at the 5-position of neocuproine (50) using previously reported 

procedures produced the 5-nitro-1,10-phenanthroline (123) in low yield (< 5 %).130–132 It 

was found that using a mixture of fuming sulfuric acid (20 % SO3) and conc. HNO3 increased 

the yield of desired product (123), but also led to the isolation of considerable amounts of 

a by-product that was revealed to be 5,6-dioxo-phenanthroline dicarboxylic acid (126) 

(Scheme 2.19). 
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Scheme 2.19 – Formation of 5-nitro-1,10-phenanthroline (123) and 5,6-dioxo-phenanthroline 
dicarboxylic acid (126) [longer reaction times lead to increased yields of (126)] 

Following the isolation of 5-nitro-1,10-phenanthroline (123), the improved selenium-free 

synthetic protocol developed for the preparation of BTPhen units was applied (Scheme 

2.20). Conversion of (123) into the bis-(trichloromethyl) (127) analogue occurred in 72 % 

yield and conversion to dimethyl 5-nitro-1,10-phenanthroline-2,9-dicarboylate (128) 

proceeded at 65 % isolated yield.130 Using our previous method of treating bis-ester (128) 

with concentrated ammonium hydroxide in the presence of ammonium chloride failed to 

generate bis-amide (130) at all. Therefore, alternative amide formation conversions were 

investigated and it was found that formation of bis-amide (130) could be achieved using 

amide coupling conditions.133 Thus, hydrolysis of the methyl-ester in (128) using HCl (1 M) 

generated bis-carboxylic acid derivative (129) required for amide coupling. Reaction of bis-

carboxylic acid (129) with EDCI.HCl (N-(3-dimethylaminopropyl)-Nʹ-ethylcarbodiimide 

hydrochloride), HOBt (1-hydroxybenzotriazole), ammonium chloride and 

diisopropylethylamine then produced the desired bis-amide (130) very efficiently in 91 % 

yield. 

 

Scheme 2.20 – Synthesis towards 5-nitro-1,10-phenanthroline-2,9-dicarbonitrile (131) 
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However, attempts to dehydrate the amide groups in (130) using oxalyl chloride, DMF and 

base, or phosphorous oxychloride failed to produce the desired novel 5-nitro-1,10-

phenanthroline-2,9-dicarbonitrile (131).  

Our attention then returned to the (unintentional) formation and isolation of 5,6-dioxo-

phenanthroline dicarboxylic acid (126). The 5,6 double bond across the phenanthroline unit 

in neocuproine (50) has previously been oxidised to the dione using potassium bromide in 

a mixture of concentrated HNO3 and H2SO4 acids.134 These same reaction conditions have 

also affected the complete oxidation of both methyl groups to carboxylates, as well as the 

5,6-double bond to the dione.135 Increasing the reaction time of the acidic reaction 

conditions in Scheme 2.19 led to increased yields of (126) up to 78 % and without the need 

for KBr. With the generation of product (126), possessing di-carboxylic acid groups required 

in the newly developed route for the preparation of BTPhens, we explored the addition of 

extra functionality by extending the aromatic system of the phenanthroline unit by 

condensation with aromatic di-amines. This new (dppz) (dipyridophenazine) moiety inside 

the BTPhen structure was incorporated as a possible future alternative to immobilization 

of related ligands onto solid supports. The extended aromatic system may also enhance 

the solubility of these ligands in solvents used in the nuclear reprocessing industry, 

especially un-symmetrical (dppz) units. Ortho-phenylenediamine units bearing 

amine/hydroxyl groups could be used to effect the immobilization onto solid supports 

rather than performing the Suzuki coupling on halogen bearing phenanthroline units 

(Scheme 2.21). 

 

Scheme 2.21 – Possible scope of (dppz) moieties 
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ligands involved conversion of di-acid units into methyl esters and subsequent amination 

using excess ammonium chloride and concentrated ammonium hydroxide. The formation 

of the (dppz)-bis-amide unit (133) in efficient yield was proving difficult again using this 

method and so an alternative, faster one-pot method of di-amide formation was envisaged.  

It was found that (dppz)-bis-acid (132) could undergo a one-pot reaction firstly with SOCl2 

to form the intermediate diacyl chloride, followed by the addition of concentrated 

ammonium hydroxide to form bis-amide (133) in 96 % overall yield. Previous synthetic 

routes towards BTPhen analogues involved the dehydration of bis-amides with either oxalyl 

chloride in DMF followed by base or heating to reflux in neat phosphorous oxychloride and 

then reaction of the subsequent bis-nitrile with hydrazine hydrate in either ethanol or 

DMSO.98,118 However, it proved difficult again to dehydrate bis-amide (133) and isolate the 

(dppz)-bis-nitrile compound using either of these methods. As an alternative, we 

developed an improved one-pot procedure for the isolation of bis-aminohydrazide (134) 

that firstly involved the dehydration of bis-amide (133) with TFAA and pyridine in DMF 

followed by the addition of hydrazine hydrate to form bis-aminohydrazide (134) in 90 % 

overall yield. These reaction conditions were also applied to our Br-bis-amide (115), which 

successfully generated Br-bis-aminohydrazide (89) in an efficient 82 % yield (Scheme 2.23). 

Condensation of (134) with 3,3,6,6-tetramethylcyclohexane-1,2-dione (CyMe4-diketone) 

(32) in acetic acid at reflux afforded the (dppz)-BTPhen ligand (135) in 75 % yield after 3 

hrs. 
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Scheme 2.22 – Synthesis of (dppz)-BTPhen ligand (135) 

 

 
 

Scheme 2.23 – One-pot synthesis of Br-bis-aminohydrazide (89) 
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2.5.2 – Extraction Studies of (dppz)-BTPhen (135): 

 
Solvent extraction experiments of (dppz)-BTPhen ligand (135) were carried out at the Czech 

Technical University in Prague. The aqueous solutions were prepared by spiking HNO3 

solutions (0.001-2 M) with 241Am and 152Eu radiotracers. Organic solutions of ligand (135) 

(5 mM) were prepared in cyclohexanone with gentle heating. Each organic phase (1 mL) 

was shaken separately with each of the aqueous phases (1 mL) for 90 mins at 22 oC (non-

thermostatted) using a Heidolph Multi Reax Shaker (1800 rpm). After phase separation by 

centrifugation, two parallel 200 μL aliquots of each phase were withdrawn for gamma 

measurement. For gamma measurements, the aliquots were pipetted into plastic ampules 

and their walls were washed with 1 mL of distilled water or cyclohexanone. Gamma activity 

measurements of  241Am and 152Eu were performed with a γ-ray spectrometer EG&G Ortec 

(USA) with a PGT (USA) HPGe detector. The γ-lines at 59.5 keV and 121.8 keV were 

examined for 241Am and 152Eu respectively. The errors given in the Table 2.16 and 2.17 are 

1σ errors based on counting statistics.  

 

The extraction data summarised in Table 2.16 and Fig 2.21 show the distribution ratios for 

Am(III) and Eu(III) (DAm and DEu) and the separation factors for Am(III) over Eu(III) (SFAm/Eu) 

as a function of nitric acid concentration (0.001-2 M). At low HNO3 concentration (0.001 M) 

the ligand extracted both Am(III) and Eu(III) with a low separation factor of SFAm/Eu » 1.9. 

Increasing the HNO3 concentration to 0.1 M caused a significant drop for both DAm and DEu 

to < 1, and the extraction of Eu(III) was diminished almost completely to DEu ~ 0.017. Upon 

further increase in nitric acid concentration to 0.5 M, the DAm values increased slightly; 

whereas the DEu values decreased. A similar SFAm/Eu value was observed at 1 M HNO3 due 

to both DAm and DEu values increasing, but now the americium was being extracted back 

into the organic phase again as DAm > 1.  
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Table 2.16 – Extraction of Am(III) from Eu(III) by (dppz)-BTPhen ligand (135) as a function of nitric 
acid concentration. 

[HNO3] DAm DEu SFAm/Eu 

0.001 16.4 ± 1.4 8.5 ± 0.4 1.9 ± 0.2 

0.1 0.58 ± 0.02 0.017 ± 0.002 34 ± 4.0 

0.5 0.77 ± 0.03 0.007 ± 0.002 110 ± 39 

1 

2 

2.04 ± 0.07 

9.40 ± 0.60 

0.018 ± 0.002 

0.042 ± 0.003 

113 ± 14 

225 ± 22 

 

At 2 M HNO3, the extraction of Am(III) increased to DAm ~ 9.4 ± 0.6 whilst DEu remained < 

0.05 giving a separation factor of SFAm/Eu » 225. The trend of increasing separation factor 

with increasing nitric acid concentration can be seen in Fig 2.21. There are similarities with 

the results obtained for this new (dppz)-ligand (135) compared to the extraction results 

previously reported for CyMe4-BTBP (46) and CyMe4-BTPhen (54), where increasing the 

HNO3 concentration caused an increase in the separation factor. For example, comparing 

BTPhen (54) to (135), higher SFAm/Eu values were obtained across some of the HNO3 

concentrations examined for (135). For instance, the extraction of Am(III) and Eu(III) by 5 

mM of CyMe4-BTPhen (54) at 1 M HNO3 reported a separation factor SFAm/Eu » 44, almost 

three times lower than that of (dppz)-ligand (135).74  
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Figure 2.21 – Extraction of Am(III) from Eu(III) by (dppz)-BTPhen (135) as a function of nitric acid 
concentration. 

The extraction of Am(III) from Eu(III) as a function of increasing perchloric acid 

concentration (0.001 – 2 M) was also investigated and is shown below in Table 2.17 and 

Fig 2.22. The change of acidic medium from nitric acid to perchloric acid was once again 

carried out to investigate the role of any coordinating nitrate ions in the extraction process. 

At low HClO4 concentration (0.001 M), the ligand extracted both Am(III) and Eu(III) in 

almost a 4:1 ratio (SFAm/Eu » 3.8). Increasing the HClO4 concentration to both 0.1 and 0.5 M, 

afforded increases in DAm values to ~ 40 and ~ 53 respectively. However, the values of DEu 

decreased to ~ 1.15 and ~ 0.4 respectively giving good separation factors of SFAm/Eu » 35 

and 119. Similar extraction results were obtained at 1 M HClO4, but at 2 M, the extraction 

of Am(III) was DAm ~ 139 and values for DEu remained < 1 giving a separation factor of SFAm/Eu 

» 167.  
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Table 2.17 – Extraction of Am(III) from Eu(III) by (dppz)-BTPhen (135) as a function of perchloric 
acid concentration. 

[HClO4] DAm DEu SFAm/Eu 

0.001 23.82 ± 2.1 6.29 ± 0.29 3.8 ± 0.4 

0.1 40.19 ± 6.2 1.15 ± 0.03 35 ± 6 

0.5 53.36 ± 11.3 0.41 ± 0.01 119 ± 27 

1 

2 

61.68 ± 15.3 

138.53 ± 59.5 

0.56 ± 0.02 

0.83 ± 0.03 

111 ± 28 

167 ± 72 

 

 
Figure 2.22 – Extraction of Am(III) from Eu(III) by (dppz)-BTPhen (135) as a function of perchloric 
acid concentration. 
 

Since these solvent extraction experiments were carried out on free (dppz)-BTPhen ligand 

(135), where the ligand was not constrained to the surface of any solid support, the 

extraction occurring at the organic:aqueous interface may ultimately involve forming 1:2 

complexes of metal:ligand and hence could explain the observation of no real difference in 

extraction results on changing from nitric to perchloric acid compared to the reduced 

efficiency of extraction when using related ligands bound to MNPs or SiO2 gels in perchloric 

acid. 
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3.1 – Conclusions 

The opening chapter of this thesis outlines a review into the development of ligands which 

can afford the separation of trivalent minor actinides from trivalent lanthanides under 

harsh process conditions of high HNO3 concentration (~ 4 M). The use of both hydrophobic 

and hydrophilic extracting agents are discussed and recent advances in the immobilization 

of N-donor ligands onto the surface of solid materials, notably, magnetic nanoparticles is 

covered.  

 
Following the synthesis and comparison of CyMe4-BTPhen functionalized ZrO2-coated 

MNPs (86) with our previously investigated model using SiO2-coated MNPs (85), it was 

concluded using FT-IR and elemental analysis that the surface of the zirconia coated 

nanoparticles was less functionalized with the CyMe4-BTPhen ligand. As a result, the ZrO2-

MNPs (86) co-extracted both Am(III) and Eu(III) from solutions up to 4 M HNO3, with low 

selectivity (SFAm/Eu » 1.8 at 4 M) compared to that of previously reported for SiO2-coated 

MNPs (85) (SFAm/Eu  > 1300).106 With residual OH groups present on the surface of the MNPs 

and subsequent protonation during the acidic media of the extraction studies, much lower 

D and SF values were obtained during the separation of Am(III) from Eu(III). This could be 

due to repulsion of the metals from the charged surface of the MNPs. Since both ZrO2- and 

SiO2- can effectively coat the MNPs to provide chemical resistance to the harsh conditions, 

it was concluded that SiO2 coatings would be preferred in future investigation due to its 

apparent higher ligand loading.  

 

Developments in the synthesis of BTPhen ligands using selenium free synthetic protocols 

proceeded by benzylic functionalization with NCS to afford bis-(trichloromethyl) units 

which could be readily converted to bis-carboxylic acid and bis-methyl-ester compounds. 

Using this improved synthetic route, tetra-(4-hydroxyphenyl)-BTPhen (105) was 

investigated for its extraction of Am(III) from Eu(III) as a ligands itself, covalently bound to 

silica-coated MNPs (110) and incorporated onto the surface of macroscopic silica gel (112). 

MNPs (110) exhibited good selectivity for Am(III) over Eu(III) at low nitric acid concentration 

and indicated that the extraction process is highly dependent on the [HNO3] concentration. 
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BTPhen functionalized SiO2 gel (112) also revealed efficient extraction of Am(III) from Eu(III) 

at low nitric acid concentration, but also repeated the trend of increasing separation factor 

(SFAm/Eu) as the nitric acid concentration increased up to 4 M, as previously reported in the 

remarkable extraction properties of CyMe4-functionlized SiO2-coated MNPs (85). 

 

Applying the selenium free synthetic protocol to functionalized phenanthroline units was 

also carried out, where the synthesis of Br-CyMe4-BTPhen (83) occurred in more efficient 

overall yield. After some extensive optimization studies, Suzuki coupling with 4-

hydroxyphenyl boronic acid in order to provide an anchor onto solid supports enabled the 

immobilization of CyMe4-BTPhen onto chloro functionalized silica gel. Our previous solid-

based model of SiO2-MNPs (85) was hypothesized that the ligands were forming 1:1 

complexes when extracting the metals Am(III) and Eu(III) due to the shortness of the linking 

chain between the ligand and the solid support. In order to probe the effect of anions 

surrounding these proposed 1:1 complexes for charge neutrality and whether they play an 

important role in the separation of Am(III) from Eu(III), the extraction experiments of 

CyMe4-BTPhen functionalized SiO2 gel (118) were conducted in both nitric and perchloric 

acid, where the latter contains no coordinating counter-ions. Interestingly, at 4 M HNO3 

acid, the system selectively extracted Am(III) from Eu(III) with a separation of SFAm/Eu » 154, 

whilst the same system in 4 M perchloric acid afforded SFAm/Eu » 1. This strongly indicates 

that the extraction process is highly dependent on the concentration of HNO3 and thus the 

coordination of three bidenate nitrate ions in the 1:1 ligand complex for charge neutrality.  

 

Following the development of solid based extractants using SiO2 gels, a BTBP analogue 

(120) was synthesized and efficiently immobilized onto amino-functionalized SiO2 gel. Even 

though the extraction of Am(III) from Eu(III) by this BTBP system proved inefficient, the use 

of a column technique revealed very efficient uptake (> 80 %) of certain problematic 

corrosion and fission products present in nuclear waste streams. As a proof of concept, this 

simple laboratory solid-based column technique could ultimately provide a route to pre-

concentrate the stream to contain only minor actinides and lanthanides before the 

extremely challenging selective extraction of actinides is conducted.  
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Since repeating the Suzuki coupling of bromine-bearing phenanthrolines proved 

challenging at times, synthetic approaches to nitro-phenanthrolines were investigated. 

Using a mixture of fuming sulfuric and concentrated nitric acids generated the desired 5-

nitro-1,10-phenanthroline unit (123) in reasonable yield and these harsh acidic conditions 

also led to the isolation of 5,6-dioxo-phenanthroline dicarboxylic acid (126). Applying the 

improved synthetic route towards the preparation of BTPhens failed to generate the target 

5-nitro-1,10-phenanthroline-2,9-dicarbonitrile (131), where isolation of the bis-amide unit 

(130) proved problematic and alternative procedures were applied.  

 

Isolation of (126) enabled us to explore the addition of aromatic functionality to the 

phenanthroline system by condensation with ortho-phenylenediamine. After employing 

two one-pot reactions, a novel (dppz)-bis-aminohydrazide scaffold (134) was isolated and 

subsequently condensed with CyMe4-diketone (32) to furnish (dppz)-BTPhen ligand (135). 

The ligand revealed preferential extraction of Am(III) over Eu(III) in both HNO3 and HClO4 

media where separation factors of SFAm/Eu » 225 and » 167 respectively were attained. 

Since these extraction investigations were carried out on free ligand, where it was not 

constrained to the surface of a solid support, the extracted complex may be forming 1:2 

metal:ligand complexes and thus explaining the minor effect upon changing acid media on 

these extraction results.  

3.2 – Future Work 

The use of ligands immobilized onto magnetic particles for use in the nuclear industry is 

subject to further, more detailed examination. The simplistic ease of magnetic separation 

needs to be thoroughly investigated within the steel containers and pipework used in the 

nuclear industry. The use of solid based extractants rather than solvent-solvent extraction 

may ultimately reduce the amount of used solvent waste to be incinerated, however the 

current use of ion-exchange resins in the nuclear industry requires substantial treatment 

prior to their disposal.  

 

Functionalizing silica gels with BTBP/BTPhen ligands led to some interesting and promising 

results with regard to the extraction and separation of Am(III) from Eu(III), but also the 
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recovery of some problematic fission and corrosion products present in post-PUREX 

streams. Currently the preferred option for the treatment of high-level radioactive waste 

in the UK is vitrification within a borosilicate matrix and long-term storage (1000s of years) 

of the glass waste in a GDF. Systems based on silica are advantageous in this respect as it 

may be possible to directly convert these silica containing materials into borosilicate-based 

waste ready for storage.137 

 

Further investigations using these functionalised silica systems would involve performing 

the extraction and recovery of fission/corrosion products from 4 M HNO3 streams, akin to 

the conditions of the PUREX stream. The results presented here were conducted using 2 % 

HNO3, which is » 0.3 M (pH = 0.5). More promising results have been reported by using 

hydrophilic masking agents which retain the fission products in the aqueous phase enabling 

extraction of minor actinides Am(III) and Cm(III).138 

 

The absorption of Am(III) by BTPhen-functionalized SiO2 gel (112) during the extraction 

experiments was efficient (high DwAm values) across all HNO3 concentrations studied, even 

at 4 M, and so further studies are required in order to investigate the eventual stripping of 

the metal from the solid sorbent. When using SiO2 gel as the sorbent, it may become 

important to have efficient removal of all fission/corrosion products from the acidic 

streams prior to passing through a column of SiO2 gel as it is reported to be known for 

absorption of numerous fission products, in particular zirconium, which may complicate 

the vitrification process and storage.139   

 

Repeated cycle tests would also need to be carried out as no one-stage solid extraction set 

up would result in complete removal of all Am(III) from the aqueous solution; therefore 

small amounts of radiotoxic long-lived isotopes of Am(III) will contaminate the aqueous 

waste, probably leading to larger volumes of secondary waste. As discussed in Chapter 1, 

a multistage counter-current solvent-solvent extraction by CyMe4-BTBP (46) revealed a > 

99.99 % recovery of Am(III) and Cm(III); the relatively large volume of secondary organic 

‘CHON’ waste produced in this process can, however, be completely incinerated.  
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The extraction investigations of CyMe4-BTPhen functionalized SiO2-gel (118) would require 

further studies in order to confirm the nature of the complex formed during the extraction. 

Though this may prove difficult when the extraction experiments are performed using 

radiotracer isotopes, but lanthanide X-ray crystal structures of 1:1 complexes forming on 

the surface of the silica gel would be conclusive. In situ- analytical techniques using FT-IR 

and Raman may also support the formation of the complex with three bidentate nitrate 

ions. 

 

It may also be important to consider the differing acid strengths of the two acids examined 

in this thesis for any further extraction testing. Nitric and perchloric acid differ by almost 9 

orders of magnitude on acid scale, and it may be due to differing protonation rates of the 

ligand in the acid media used that effects the extraction, and not the increasing 

concentration of nitrate ions. Further studies would also employ the use of other acids, for 

example HI, which has a similar acid strength to HClO4, but I- is more suited to coordination 

to metal ions compared to ClO4
-.  

 

Other solid support options may also be explored with regards to immobilization of 

BTBP/BTPhen related ligands. Recently, Suzuki coupling with 4-vinylphenyl boronic acid 

onto bromine bearing BTPhen ligands produced a ligand bearing a vinyl group which can 

be polymerized with, for example, styrene to produce a hydrophobic polymer loaded with 

an actinide selective ligand. The use of this material in the nuclear industry would require 

thorough investigation, from ligand loading to resistance to the harsh 4 M HNO3 conditions.  
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4.1 – General Procedures: 

All reagents were either supplied by Acros, Aldrich, Fisher or Fluorochem chemical 

suppliers, and were used as supplied unless otherwise stated. 

NMR spectra were recorded using either a Bruker AMX400 or an Avance DFX400 

instrument. Deuterated chloroform (CDCl3), deuterated DMSO (dimethyl sulfoxide-d6) and 

deuterium oxide (D2O) were used as solvents. Chemical shifts (d) are reported in parts per 

million (ppm) with the abbreviations s, d, t, q, quin, sext, dd, and br denoting singlet, 

doublet, triplet, quartet, quintet, sextet, double doublet and broad resonances 

respectively. Coupling constants (J) are quoted in Hertz (Hz). 

IR spectra were recorded on a Perkin Elmer RX1 FT-IR (ATR) instrument with peak 

intensities indicated by the abbreviations: w, weak; m, medium; s, strong; br, broad.  

All melting points were determined on a Stuart SMP10 melting point apparatus and are 

uncorrected.  

Mass spectra were recorded under conditions of electrospray ionisation (ESI) on a Thermo 

Scientific LTQ-Orbitrap XL with an Thermo Scientific Accela HPLC. Elemental analyses 

presented in this thesis were carried out by Medac Ltd., Chertsey Road, Chobham, Surrey, 

UK.  
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4.2 – Synthesis of Ligands: 

4.2.1 – Synthesis of 5-bromo-2,9-dimethyl-1,10-phenanthroline (78):96 

 

 

 

2,9-Dimethyl-1,10-phenanthroline (50) (15.0 g, 72.8 mmol) was dissolved in fuming sulfuric 

acid (75 mL, 20 % SO3) and bromine (2.25 mL, 43.6 mmol, 0.6 eq) was added slowly and the 

mixture was heated at 170 oC for 18 h. The flask was allowed to cool to room temperature, 

the solution was quenched with water (250 mL, CARE!) with external cooling and then the 

mixture was neutralized with 30 % NaOH solution to pH 6-7. The resulting mixture was 

extracted with chloroform (3 x 200 mL) and the combined organic extracts were dried over 

MgSO4. The extracts were filtered, the solvent removed in vacuo and the remaining solid 

was triturated with Et2O (100 mL) and dried in a vacuum oven (60 oC) to afford the title 

compound (78) as a pale yellow solid (14.1 g, 80 %) m.p. 175-178 oC. Lit. 174-176 oC.96 FT-

IR (ATR) νmax / cm-1 3385w, 3048w, 2916w, 2163w, 1603m, 1589m, 1546w, 1491w, 1435w, 

1400w, 546m, 545m.  

 

δH (400 MHz, CDCl3) 8.55 (d, J = 8.2 Hz, 1H, ArH), 8.06 (d, J = 8.2 Hz, 1H, ArH), 8.04 (s, 1H, 

ArH), 7.60 (d, J = 8.2 Hz, 1H, ArH), 7.51 (d, J = 8.2 Hz, 1H, ArH), 2.98 (s, 3H, CH3), 2.95 (s, 3H, 

CH3); δC (101 MHz, CDCl3) 159.6, 158.9, 145.2, 144.2, 136.2, 135.2, 128.7, 126.8, 126.5, 

124.9, 124.3, 118.5, 25.0 (CH3), 24.7 (CH3); (FTMS + p ESI) cald. C14H12N2Br [M+H]+: 

287.0106; observed 287.0140; C14H12N2
81Br [M+H]+: 289.0085; observed 289.0101; 

  

N N

(78)

Br
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4.2.2 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-dicarbaldehyde (87):106 

 

 

 

Selenium dioxide (11.54 g, 104 mmol, 2.1 eq) was dissolved in 1,4-dioxane (150 mL) and 

water (12 mL) and the mixture heated to reflux. To this, a solution of 5-bromo-2,9-

dimethyl-1,10-phenanthroline (78) (14.06 g, 49.5 mmol) in 1,4-dioxane (150 mL) was added 

dropwise over 30 minutes and then the solution was heated to reflux for 3 h. While still 

hot, the mixture was filtered to remove precipitated selenium metal and then the filtrate 

was left to cool to room temperature. The filtrate was concentrated in vacuo and the 

residual solid was triturated with Et2O (100 mL). The insoluble product was filtered and 

washed with Et2O (50 mL) and allowed to dry in a vacuum oven (60 oC) to afford the title 

compound (87) as a brown solid (12.43 g, 82 %) m.p. 207-210 oC. Lit. 206-208 oC.106 FT-IR 

(ATR) νmax / cm-1 3068w, 2856w, 2191w, 1973w, 1697s (C=O), 1598w, 1548w, 1351w, 

1237w.  

 

δH (400 MHz, DMSO) 10.32 (s, 1H, CHO), 10.22 (s, 1H, CHO), 8.90 (d, J = 8.5 Hz, 1H, ArH), 

8.75 (s, 1H, ArH), 8.70 (d, J = 8.3, 1H, ArH), 8.40 (d, J = 8.5 Hz, 1H, ArH), 8.30 (d, J = 8.3 Hz, 

1H, ArH); δC (101 MHz, DMSO) 193.7 (CHO),193.1 (CHO), 152.4, 145.5, 144.5, 138.1 137.7, 

134.5, 132.3, 131.7, 129.9, 122.4, 121.1, 120.7; (FTMS + p ESI) cald. C14H8N2O2Br [M+H]+: 

314.9763; observed 314.9964; C14H8N2O2
81Br [M+H]+: 316.9743; observed 316.9733; 

N N
O O

(87)

Br
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4.2.3 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-dicarbonitrile (88):106  

 

 

 

To a suspension of 5-bromo-1,10-phenanthroline-2,9-dicarbaldehyde (87) (12.34 g, 39.6 

mmol) in MeCN (350 mL) were added hydroxylamine hydrochloride (6.05 g, 87 mmol, 2.2 

eq) and triethylamine (36.6 mL, 261 mmol, 6.6 eq). The mixture was heated to reflux for 4 

h and then, after cooling the mixture to room temperature, p-toluenesulfonyl chloride 

(24.9 g, 130.5 mmol, 3.3 eq) and DBU (17.7 mL, 118.7 mmol, 3 eq) were added and the 

mixture was heated under reflux for 18 h. While still hot the mixture was filtered and the 

residual solid was washed with hot MeCN (25 mL). The filtrate was concentrated in vacuo 

to afford a brown semi-solid that was triturated with MeOH (100 mL) and then filtered and 

washed with MeOH (100 mL), followed by Et2O (100 mL) to afford the title compound (88) 

as a brown solid (4.59 g, 42 %) m.p. 151-154 oC. Lit. 152-154 oC.106 FT-IR (ATR) νmax / cm-1 

3082w, 2984w, 2238w (C≡N), 1616w, 1497w, 1366w.  

  

δH (400 MHz, DMSO) 8.81 (d, J = 8.4 Hz, 1H, ArH), 8.71 (d, J = 8.4 Hz, 1H, ArH), 8.68 (s, 1H, 

ArH), 8.48 (d, J = 8.4 Hz, 1H, ArH), 8.38 (d, J = 8.4 Hz, 1H, ArH); δC (101 MHz, DMSO) 145.5, 

144.9, 142.9, 137.8, 133.4, 133.1, 132.3, 130.4, 129.1, 126.8, 122.3, 117.4 (CN),117.0 (CN); 

(FTMS + p ESI) cald. C14H5N4Br [M+H]+: 308.9770; observed 308.9764; C14H5N4
81Br [M+H]+: 

310.9750; observed 310.9751 

  

N N
CNNC

(88)

Br
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4.2.4 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-bis-aminohydrazide (89):106 

 

 

 

To a suspension of 5-bromo-1,10-phenanthroline-2,9-dicarbonitrile (88) (4.59 g, 15.0 

mmol) in EtOH (150 mL) was added hydrazine hydrate (100 mL, 64 %) and the mixture was 

stirred at room temperature for 6 d. The mixture was then concentrated in vacuo to give a 

brown semi-solid that was triturated with MeOH (100 mL) and Et2O (100 mL). The solid 

residue was filtered off, washed with Et2O (50 mL) and dried in a vacuum oven (60 oC) to 

afford the title compound (89) as a brown solid (3.55 g, 65 %) m.p. > 300 oC. Lit. > 300oC.106 

FT-IR (ATR) νmax / cm-1 3450w (NH), 3339br (NH), 3188w (NH), 2922w, 2853w, 1634w, 

1601w, 1581m, 1544w, 1490w, 1448w, 1403w.  

 

δH (400 MHz, DMSO) 8.54 (d, J = 8.8 Hz, 1H, ArH), 8.42 (m, 2H, ArH), 8.37 (d, J = 8.6, 1H, 

ArH), 8.31 (d, J = 8.6 Hz, 1H, ArH), 6.14 (br s, 4H, NH2), 5.76 (s, 4H, NH2); δC (101 MHz, DMSO) 

151.9, 151.7, 144.2, 143.1, 143.0, 142.7, 135.3, 135.1, 129.2, 128.4, 126.7, 120.1, 119.7, 

119.1; (FTMS + p ESI) cald. C14H13N8Br [M+H]+: 379.0519; observed: 373.0524; C14H13N8
81Br 

[M+H]+: 375.0499; observed 375.0503; 

  

N N

NH2
N

H2N
N
NH2H2N

(89)

Br
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4.2.5 – Synthesis of diethyl-2,2,5,5-tetramethylhexanedioate (34):77,114  

 

 

 

Anhydrous diethyl ether (500 mL) was placed under nitrogen, diisopropylamine (41.0 mL, 

288 mmol, 1.1 eq) was added via syringe through a septum and the solution was cooled to 

–20 oC by means of a dry ice-acetone bath. n-Butyllithium (182.0 mL, 1.6 M in hexane, 261 

mmol, 1 eq) was added dropwise via syringe and the solution was maintained at –20 oC for 

1 h. Ethyl isobutyrate (35.0 mL, 261 mmol, 1 eq) was slowly added dropwise over 30 min 

and the solution was then allowed to warm to room temperature before stirring for an 

additional 1 h. Ethylene di(p-toluenesulfonate) (50.0 g, 135 mmol, 0.5 eq) was added in 

small additions and the mixture was heated under reflux for 18 h. The flask was allowed to 

cool to room temperature and the residual insoluble solid was filtered off and washed with 

ether (2 x 50 mL) and DCM (2 x 100 mL). The combined filtrates were washed with sat. aq. 

ammonium chloride (200 mL) and the aqueous layer was extracted with ether (100 mL). 

The combined organic extracts were washed with water (150 mL), dried over MgSO4, 

filtered and concentrated in vacuo to afford the crude product as a yellow oil (24.1 g). The 

crude product was purified by vacuum distillation using a 10 inch Vigreux column to afford 

the title compound (34) as a colourless oil (19.6 g, 62 %) b.p = 72-76 oC at 0.1 mm Hg; FT-

IR (ATR) νmax / cm-1 2963w, 2939w, 2879w, 1717s (C=O), 1678m. 

 

δH (400 MHz, CDCl3) 4.10 (q, J = 7.1 Hz, 4H), 1.45 (s, 4H), 1.26 (t, J = 7.1 Hz, 6H), 1.15 (s, 

12H); δC (101 MHz, CDCl3) 177.6 (C=O), 60.2, 41.8, 35.5, 25.0, 14.2;(FTMS + pESI) cald 

C14H26O4 [M+Na]+: 281.1723; observed: 281.1722; 

  

EtO

O
OEt

O

(34)
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4.2.6 – Synthesis of 1,2-bis(trimethylsilyloxy)-3,3,6,6-tetramethylcyclohex-1-ene (35):77,114 

 

 

 

Sodium metal (8.69 g, 378 mmol, 5 eq) was added to dry toluene (300 mL) and the mixture 

was heated to reflux until the sodium melted. Diethyl-2,2,5,5-tetramethylhexanedioate 

(34) (19.4 g, 75.6 mmol) was added, followed by chlorotrimethylsilane (47.5 mL, 378.1 

mmol, 5 eq) and the mixture was heated under reflux for 18 h. The mixture was then left 

to cool to room temperature and was filtered under nitrogen through a Schlenk tube. The 

solid residue was washed sequentially with toluene (100 mL) and THF (50 mL) and the 

filtrate was concentrated in vacuo to afford a pale yellow liquid (11.70 g). The crude 

product was purified by vacuum distillation to afford the title compound (35) as a colourless 

liquid (8.07 g, 35 %), b.p. 68-72 oC at 0.1 mm Hg.  The excess sodium metal from the reaction 

was quenched carefully with iPr-OH (100 mL); FT-IR (ATR) νmax / cm-1 2962w, 2933w, 2875w, 

2255w, 1656m, 1462m, 1377w. 

 

δH (400 MHz, CDCl3) 1.25 (s, 4H, CH2), 0.83 (s, 12H, CH3), 0.00 (s, 18H, Si(CH3)3); δC (101 

MHz, CDCl3) 137.3, 34.4, 34.1, 26.0, 0.00; (FTMS + pESI) cald C16H34O2Si2 [M+Na]+: 337.1990; 

observed: 337.1994;  

 

 

  

OSiMe3

OSiMe3

(35)
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4.2.7 – Synthesis of 3,3,6,6-tetramethylcyclohexane-1,2-dione (32):77,114 

 

1,2-Bis(trimethylsilyloxy)-3,3,6,6-tetramethylcyclohex-1-ene (35) (8.07 g, 25.66 mmol) was 

dissolved in DCM (200 mL) and bromine (1.50 mL, 28.23 mmol, 1.1 eq) was added dropwise 

over 5 minutes and the solution was stirred at room temperature for 2 h. The solution was 

then diluted with DCM (100 mL), washed with water (50 mL) and sat. aq. sodium thiosulfate 

(100 mL), dried over MgSO4, filtered and concentrated in vacuo to afford the title 

compound (32) as a pale yellow solid (4.30 g, 99 %) m. p. 113-115 oC;  FT-IR (ATR) νmax 

/ cm-1 2971w, 2937w, 2879w, 2255w, 1707s (C=O), 1460w, 1383w; 

  

δH (400 MHz, CDCl3) 1.81 (s, 4H, CH2), 1.09 (s, 12H, CH3); δC (101 MHz, CDCl3) 207.3 (C=O), 

48.6, 34.6, 22.9; (FTMS + pESI) cald C10H16O2Na [M+Na]+: 191.1043; observed: 191.1044; 

  

O

O

(32)
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4.2.8 – Synthesis of 5-bromo-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-
benzotriazin-3-yl)-1,10-phenanthroline (83):106 

 

 

 

To a suspension of 5-bromo-1,10-phenanthroline-2,9-bis-aminohydrazide (89) (1.0 g, 2.70 

mmol) in 1,4-dioxane (150 mL) were added 3,3,6,6-tetramethylcyclohexane-1,2-dione (32) 

(1.01 g, 5.94 mmol, 2.2 eq) and triethylamine (4 mL) and the suspension was heated under 

reflux for 3 d. The solution was allowed to cool to room temperature, filtered and washed 

with DCM (50 mL). The filtrate was concentrated in vacuo and triturated with ether (50 

mL). The solution was allowed to cool in the freezer for 30 mins and then filtered to afford 

the title compound (83) as a yellow solid. The process of triturating with ether and cooling 

in the freezer was repeated further to increase the yield of product (0.36 g, 21 %) m.p. 197-

200°C. Lit. 198-200 oC.106 FT-IR (ATR) vmax / cm-1 3531br, 3486br, 2959w, 2927w, 2865w, 

1644w, 1609m, 1510m, 1475w. 

 

δH (400 MHz, CDCl3) 8.95 (d, J = 8.6 Hz, 1H, ArH), 8.89 (d, J = 8.6 Hz, 1H, ArH), 8.87 (d, J = 

6.4 Hz, 1H, ArH), 8.39 (d, J = 8.4 Hz, 1H, ArH), 8.29 (s, 1H, ArH), 1.91 (s, 8H, CH2), 1.56 (s, 

12H, CH3), 1.54 (s, 12H, CH3); δC (101 MHz, CDCl3) 165.1, 165.0, 163.4, 163.3, 161.3, 161.1, 

154.7, 154.4, 146.9, 146.0, 137.3, 136.3, 130.6, 129.8, 128.9, 124.1, 124.0, 122.0, 37.5, 

36.7, 33.8, 33.6, 29.8, 29.3; (FTMS + pESI) cald C34H38N8Br [M+H]+: 637.2397; observed: 

637.2392; C34H38N8
81Br [M+H]+: 639.2377; observed: 639.2371; 

  

N N

(83)
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N

N
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N
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4.2.9 – Synthesis of 5-bromo-2,9-bis(5,6-dimethyl-1,2,4-triazin-3-yl)-1,10-phenanthroline 
(116):121 

 

 

To a suspension of 5-bromo-1,10-phenanthroline-2,9-bis-aminohydrazide (89) (0.50 g, 1.71 

mmol) in 1,4-dioxane (100 mL) were added 2,3-butandione (0.31 mL, 3.59 mmol, 2.1 eq) 

and triethylamine (10 mL). The mixture was heated under reflux for 3 d, then allowed to 

cool to room temperature. The filtrate was evaporated and the residual solid was triturated 

with ether (50 mL) and allowed to dry in air to afford the title compound (116) as a pale 

brown solid (0.48 g, 71 %) m.p. 218-221 oC. Lit. 216-218 oC.121 FT-IR (ATR) vmax / cm-1 3516w, 

3407w, 3174w, 2985w, 1626m, 1528w. 

 

δH (400 MHz, DMSO) 8.91 (d, J = 8.4 Hz, 1H, ArH), 8.87 (d, J = 8.4 Hz, 1H, ArH), 8.81 (d, J = 

8.4 Hz, 1H, ArH), 8.75 (d, J = 8.4 Hz, 1H, ArH), 8.71 (s, 1H, ArH), 2.76 (s, 6H, CH3), 2.71 (s, 6H, 

CH3); δC (101 MHz, DMSO) 161.1, 160.8, 160.1, 160.0, 157.7, 157.6, 153.6, 153.5, 146.1, 

145.1, 137.1, 136.8, 131.1, 129.6, 128.1, 123.8, 123.5, 120.9, 21.7 (CH3), 19.3 (CH3); (FTMS 

+ pESI) cald C22H18N8Br [M+H]+: 473.0832; observed: 473.0831; C22H18N8
81Br [M+H]+: 

475.0812; observed: 475.0801; 

 

  

N N

(116)
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N

N
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4.2.10 – Synthesis of 4-(2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo-1,2,4-triazin-
3-yl)-1,10-phenanthrolin-5-yl)phenol (84):106 
 

 

 

A suspension of 5-bromo-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-

benzotriazin-3-yl)-1,10-phenanthroline (83) (0.50 g, 0.78 mmol), 

tetrakis(triphenylphosphine)palladium(0) (0.03 g, 0.03 mmol, 0.03 eq), 4-

hydroxyphenylboronic acid (0.13 g, 0.87 mmol, 1.1 eq) and potassium carbonate (0.13 g, 

0.94 mmol, 1.2 eq) in degassed EtOH (75 mL) was heated to reflux for 18 h under nitrogen. 

The solution was allowed to cool to room temperature, filtered and the solid reside washed 

with EtOH (25 mL). The filtrate was concentrated in vacuo and the remaining residue was 

dissolved in DCM (100 mL) and washed with brine (100 mL). The aqueous layer was 

extracted with DCM (2 x 50 mL), the combined organic extracts dried over magnesium 

sulfate, filtered and concentrated in vacuo. The solid was triturated with ether (100 mL), 

filtered and washed with ether (100 mL) to afford the title compound (84) as a yellow solid 

(0.31 g, 59 %). m.p. 250-252 oC. Lit. 251-253 oC.106 FT-IR (ATR) νmax / cm-1 3399br, 2962br, 

2931w, 2865w, 1611w, 1587m, 1514w, 1471w, 1456m, 1389w, 1365w, 1344w, 1274w.  

 

δH (400 MHz, CDCl3) 8.88 (d, J = 8.4 Hz, 1H, ArH), 8.77 (d, J = 8.4 Hz, 1H, ArH), 8.42 (d, J = 

8.4 Hz, 1H, ArH), 8.34 (d, J = 8.3 Hz, 1H, ArH), 7.70 (s, 1H, ArH), 6.81 (d, J = 7.9 Hz, 2H, ArH), 

6.59 (d, J = 8.2 Hz, 2H, ArH), 1.92 (s, 8H, CH2), 1.61 (s, 12H, CH3), 1.57 (s, 12H, CH3); δC (101 

MHz, CDCl3) 165.3, 165.2, 163.6, 163.5, 161.3, 161.0, 157.7, 153.3, 153.2, 146.5, 145.3, 

140.2, 137.3, 136.3, 130.1, 129.5, 129.4, 128.2, 127.1, 123.7, 122.9, 115.6, 37.6, 36.7, 33.8, 

29.9, 29.3; (FTMS + pESI) cald C40H43N8O [M+H]+: 651.3554; observed: 651.3553;  

 

N N

(84)

N
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N
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4.2.11 – Synthesis of 4-(2,9-dimethyl-1,10-phenanthrolin-5-yl)phenol (117):105,115 

 

 

 

A suspension of 5-bromo-2,9-dimethyl-1,10-phenanthroline (78) (0.50 g, 1.74 mmol), 

tetrakis(triphenylphosphine)palladium(0) (0.06 g, 0.05 mmol, 0.03 eq), 4-

hydroxyphenylboronic acid (0.27 g, 1.92 mmol, 1.1 eq) and potassium carbonate (0.29 g, 

2.09 mmol, 1.2 eq) in degassed EtOH (80 mL) was heated to reflux for 18 h under nitrogen. 

The solution was then cooled to room temperature, filtered and the solid residue washed 

with EtOH (25 mL). The filtrate was evaporated and the solid was triturated with ether (25 

mL). The insoluble solid was filtered and washed with ether (25 mL) and chloroform (25 

mL) and allowed to dry in a vacuum oven (60 oC) to afford the title compound (117) as a 

pale yellow solid (0.51 g, 98 %) m.p. > 300 oC. Lit. > 300 oC.115 FT-IR (ATR) vmax / cm-1 3214br 

(OH), 1608m, 1591w, 1490w, 1373w, 1277w. 

 

δH (400 MHz, DMSO) 8.37 (d, J = 8.5 Hz, 1H, ArH), 8.29 (d, J = 8.2 Hz, 1H, ArH), 7.65 (s, 1H, 

ArH), 7.56 (dd, J = 8.4 Hz, 2.6 Hz, 2H, ArH), 7.11 (d, J = 8.4 Hz, 2H, ArH), 6.57 (d, J = 8.3 Hz, 

2H, ArH), 2.77 (s, 6H, CH3); δC (101 MHz, DMSO) 162.7, 157.6, 157.5, 145.1, 143.4, 138.0, 

136.1, 134.6, 131.6, 130.7, 126.3, 125.8, 124.9, 124.4, 123.4, 122.3, 116.7, 25.0 (CH3), 24.8 

(CH3); (FTMS + pESI) cald C20H17N2O [M+H]+: 301.1335; observed: 301.1337 

NN

(117)

HO



Chapter 4 – Experimental 

 132 

4.2.12 – Synthesis of 5-bromo-2,9-bis(trichloromethyl)-1,10-phenanthroline (113): 

 

 
 

5-Bromo-2,9,dimethyl-1,10-phenanthroline (78) (15.0 g, 52.2 mmol), N-chlorosuccinimide 

(48.90 g, 365.7 mmol, 7 eq) and m-CPBA (450 mg, 2.61 mmol, 0.05 eq) were dissolved in 

CHCl3 (120 mL) and heated to reflux for 3 d. The solution was allowed to cool to room 

temperature and the precipitated succinimide was filtered off and washed with CHCl3 (50 

mL). The filtrate was washed with 2M NaOH solution and extracted with CHCl3 (4 x 100 mL). 

The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo.  

The yellow semi-solid was then triturated with MeOH:petrol ether (40-60 oC), 50:50 (100 

mL) and the solid was collected by filtration and dried in a vacuum oven (40 oC) to afford 

the title compound (113) as a yellow solid (24.47 g, 96 %) m.p. 72-75 oC; FT-IR (ATR) νmax / 

cm-1 2928w, 1600w, 1586w, 1551w. 

 

δH (400 MHz, CDCl3) 8.86 (d, J = 8.8 Hz, 1H, ArH), 8.41 (d, J = 8.8 Hz, 1H, ArH), 8.38 (d, J = 

8.6 Hz, 1H, ArH), 8.34 (d, J = 8.6 Hz, 1H, ArH), 8.30 (s, 1H, ArH); δC (101 MHz, CDCl3) 157.3, 

157.0, 143.3, 142.1, 138.9, 138.8, 131.4, 129.7, 128.3, 121.3, 121.0, 120.7, 97.9 (CCl3), 97.4 

(CCl3); (FTMS + pESI) cald C14H6N2BrCl6 [M+H]+: 490.7840; observed: 490.7840; 

C14H6N2BrCl537Cl [M+H]+: 492.7811; observed: 492.7812; C14H6N2BrCl437Cl2 [M+H]+: 

494.7781; observed: 494.7784; C14H6N2BrCl337Cl3 [M+H]+: 496.7752; observed: 496.7755; 

C14H6N2BrCl237Cl4 [M+H]+: 498.7722; observed: 498.7725; 

 

  

N N
Cl3C CCl3
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Br



Chapter 4 – Experimental 

 133 

4.2.13 – Synthesis of dimethyl-5-bromo-1,10-phenanthroline-2,9-dicarboxylate (114): 

 

 
 

5-Bromo-2,9-bis(trichloromethyl)-1,10-phenanthroline (113) (4.48 g, 9.15 mmol) was 

dissolved in conc. H2SO4 (20 mL) and heated to reflux for 6 h. The solution was allowed to 

cool to room temperature and MeOH (15 mL) was slowly added and then the mixture was 

heated to reflux for 18 h. The solution was allowed to cool and the excess MeOH was 

removed in vacuo. The acidic residue was poured into ice-water (200 mL) and the 

precipitated solid was filtered, washed with water (2 x 100 mL) and Et2O (2 x 100 mL) and 

dried in a vacuum oven (60 oC) to afford the title compound (114) as a pale grey solid (2.41 

g, 70 %) m.p. 195-198 o C; FT-IR (ATR) νmax / cm-1 3061w, 2957w, 1716s (C=O), 1598m, 

1552w. 

  

δH (400 MHz, DMSO) 8.85 (d, J = 8.6 Hz, 1H, ArH), 8.71 – 8.69 (m, 2H, ArH), 8.51 (d, J = 8.6 

Hz, 1H, ArH), 8.42 (d, J = 8.6 Hz, 1H, ArH), 4.05 (s, 3H, CH3), 4.03 (s, 3H, CH3); δC (101 MHz, 

DMSO) 165.2 (C=O), 165.0 (C=O), 148.2, 148.0, 145.5, 144.4, 137.4, 137.4, 131.9, 130.6, 

129.3, 124.6, 124.3, 121.8, 52.9 (CH3), 52.8 (CH3); (FTMS + pESI) cald C16H11O4N2BrNa 

[M+Na]+: 396.9794, observed: 396.9794; C16H11O4N2
81BrNa [M+Na]+: 398.9774; observed: 

398.9772; 
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4.2.14 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-dicarboxamide (115): 

 

 

 

Dimethyl-5-bromo-1,10-phenanthroline-dicarboxylate (114) (4.50 g, 11.99 mmol) was 

suspended in a solution of ammonium chloride (2.56 g, 47.86 mmol, 4 eq) in aqueous 

ammonium hydroxide (100 mL, 35 %) and the mixture stirred at room temperature for 3 d. 

The mixture was poured into water (200 mL) and the precipitated solid was filtered off, 

washed with water (3 x 100 mL), Et2O (2 x 100 mL) and dried in a vacuum oven (60 oC) to 

afford the title compound (115) as a grey solid (3.71 g, 89 %) m.p. > 300 o C; FT-IR (ATR) νmax 

/ cm-1 3051w, 2955w, 1714s (C=O), 1597w, 1551w. 

 

δH (400 MHz, DMSO) 8.98 (s, 1H, NH2), 8.97 (s, 1H, NH2), 8.83 (d, J = 8.6 Hz, 1H, ArH), 8.67 

(d, J = 8.3 Hz, 1H, ArH), 8.65 (s, 1H, ArH), 8.57 (d, J = 8.6 Hz, 1H, ArH), 8.47 (d, J = 8.3 Hz, 1H, 

ArH), 7.97 (s, 1H, NH2), 7.91 (s, 1H, NH2); δC (101 MHz, DMSO) 165.9 (C=O), 165.6 (C=O), 

150.6, 150.5, 144.5, 143.4, 137.4, 131.3, 130.3, 129.1, 128.9, 122.2, 121.8, 121.2; (FTMS + 

pESI) cald C14H9O2N4BrNa [M+Na]+: 366.9801, observed: 366.9802; C14H9O2N4
81BrNa 

[M+Na]+: 368.9781; observed: 368.9781; 
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4.2.15 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-dicarbonitrile (88): 

 

 

 

5-Bromo-1,10-phenanthroline-2,9-dicarboxamide (115) (3.70 g, 10.7 mmol) was 

suspended in phosphorous oxychloride (15 mL, 160 mmol, 15 eq) and the mixture heated 

to reflux for 18 h. The solution was allowed to cool to room temperature and then slowly 

poured into ice-water (100 mL) with external cooling. The slurry was diluted with water 

(100 mL) and the precipitated solid was filtered off and washed with water (2 x 100 mL), 

Et2O (2 x 100 mL) and dried in a vacuum oven (60 oC) to afford the title compound (88) as 

a brown solid (3.07 g, 97 %) m.p. 152-154 oC. Lit. 151-153 oC.106 FT-IR (ATR) νmax / cm-1 = 

3082w, 2984w, 2238w (CN), 1616m, 1497w, 1366w. 

  

δH (400 MHz, DMSO) 8.92 (d, J = 8.5 Hz, 1H, ArH), 8.81 – 8.79 (m, 2H, ArH), 8.53 (d, J = 8.5 

Hz, 1H, ArH), 8.45 (d, J = 8.3 Hz, 1H, ArH); δC (101 MHz, DMSO) 151.9, 151.7, 144.2, 143.1, 

143.0, 142.7, 135.3, 135.0, 129.2, 128.4, 126.7, 120.1, 119.7 (CN), 119.0 (CN); (FTMS + pESI) 

cald C14H6N4Br [M+H]+: 308.9770; observed: 308.9773;  C14H6N4
81Br [M+H]+: 310.9750; 

observed: 310.9751; 

  

N N
CNNC
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4.2.16 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-bis(carbohydrazonamide) (89): 

 

 

 

5-Bromo-1,10-phenanthroline-2,9-dicarbonitrile (88) (1.07 g, 3.46 mmol) was dissolved in 

DMSO (10 mL), hydrazine hydrate (10 mL, 50-60 %) was added slowly over 5 minutes and 

then the mixture was stirred at room temperature for 18 h. The solution was then poured 

into water (200 mL) and the resulting precipitate was filtered off, washed with water (2 x 

100 mL) and Et2O (2 x 100 mL), then dried in a vacuum oven (60 oC) to afford the title 

compound (89) as a brown solid (0.78 g, 60 %) m.p. > 300 oC. Lit. > 300 oC.106 FT-IR (ATR) 

νmax / cm-1 3450br (NH), 3339br (NH), 3188w, 2922w, 2853w, 1634w, 1601m, 1581w, 

1544w. 

 

δH (400 MHz, DMSO) 8.54 (d, J = 8.8 Hz, 1H, ArH), 8.43 (s, 1H, ArH), 8.41 (d, J = 8.8 Hz, 1H, 

ArH), 8.37 (d, J = 8.6 Hz, 1H, ArH), 8.30 (d, J = 8.6 Hz, 1H, ArH), 6.13 (br s, 4H, NH2), 5.82 (s, 

4H, NH2); δC (101 MHz, DMSO) 151.9, 151.8, 144.2, 143.2, 142.9, 142.8, 135.3, 135.0, 129.2, 

128.4, 126.7, 120.0, 119.7, 119.1; (FTMS + pESI) cald C14H14N8Br [M+H]+: 373.0519; 

observed: 373.0524; C14H14N8
81Br [M+H]+: 375.0499; observed: 375.0503; 

N N

NH2
N

H2N
N
NH2H2N
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4.2.17 – Synthesis of 5-bromo-1,10-phenanthroline-2,9-bis(carbohydrazonamide) (89): 

 

 

 

5-Bromo-1,10-phenanthroline-2,9-dicarboxamide (115) (0.25 g, 0.67 mmol) was 

suspended in DMF (8 mL) and pyridine (0.45 mL, 5.36 mmol, 8 eq) and then trifluoroacetic 

acid (0.40 mL, 2.68 mmol, 4 eq) was added. The mixture was stirred at room temperature 

for 5 h, hydrazine hydrate (3 mL, 64 %) was added slowly and the mixture was stirred for a 

further 18 h at room temperature. Water (100 mL) was added and the precipitated brown 

solid was filtered off, washed with water (50 mL), Et2O (100 mL) and dried in a vacuum oven 

(60 oC) to afford the title compound (89) as a yellow solid (0.21 g, 82 %) m.p. > 300 oC. Lit. 

> 300 oC.106 FT-IR (ATR) νmax / cm-1 3450br (NH), 3339br (NH), 3188w, 2922w, 2853w, 

1634w, 1601m, 1581w, 1544w. 

 

δH (400 MHz, DMSO) 8.54 (d, J = 8.8 Hz, 1H, ArH), 8.43 (s, 1H, ArH), 8.41 (d, J = 8.8 Hz, 1H, 

ArH), 8.37 (d, J = 8.6 Hz, 1H, ArH), 8.30 (d, J = 8.6 Hz, 1H, ArH), 6.13 (br s, 4H, NH2), 5.82 (s, 

4H, NH2); δC (101 MHz, DMSO) 151.9, 151.8, 144.2, 143.2, 142.9, 142.8, 135.3, 135.0, 129.2, 

128.4, 126.7, 120.0, 119.7, 119.1; (FTMS + pESI) cald C14H14N8Br [M+H]+: 373.0519; 

observed: 373.0524; C14H14N8
81Br [M+H]+: 375.0499; observed: 375.0503; 

  

N N
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4.2.18 – Synthesis of 5-bromo-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-
benzotriazin-3-yl)-1,10-phenanthroline (83): 

 

 

 

To a suspension of 5-bromo-1,10-phenanthroline-2,9-bis-aminohydrazide (89) (0.5 g, 1.35 

mmol) in AcOH (50 mL) were added 3,3,6,6-tetramethylcyclohexane-1,2-dione (32) (0.51 

g, 2.97 mmol, 2.2 eq). The solution was heated under reflux for 3 hrs and then allowed to 

cool to room temperature and poured into water (100 mL). The resulting precipitate was 

collected by filtration and the crude powder was triurated with Et2O (100 mL) to afford the 

title compound (83) as a yellow solid (0.69 g, 80 %) m.p. 197-200°C; FT-IR (ATR) vmax / cm-1 

3531br, 3486br, 2959w, 2927w, 2865w, 1644w, 1609m, 1510m, 1475w. 

 

δH (400 MHz, CDCl3)  8.95 (d, J = 8.6 Hz, 1H, ArH), 8.89 (d, J = 8.6 Hz, 1H, ArH), 8.87 (d, J = 

6.4 Hz, 1H, ArH), 8.39 (d, J = 8.4 Hz, 1H, ArH), 8.29 (s, 1H, ArH), 1.91 (s, 8H, CH2), 1.56 (s, 

12H, CH3), 1.54 (s, 12H, CH3); δC (101 MHz, CDCl3) 165.1, 165.0, 163.4, 163.3, 161.3, 161.1, 

154.7, 154.4, 146.9, 146.0, 137.3, 136.3, 130.6, 129.8, 128.9, 124.1, 124.0, 122.0, 37.5, 

36.7, 33.8, 33.6, 29.8, 29.3; (FTMS + pESI) cald C34H38N8Br [M+H]+: 637.2397; observed: 

637.2392; C34H38N8
81Br [M+H]+: 639.2377; observed: 639.2371; 
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4.2.19 – Synthesis of 2,9-bis(trichloromethyl)-1,10-phenanthroline (100): 

 

 

 

2,9-Dimethyl-1,10-phenanthroline (50) (5.0 g, 24.0 mmol), N-chlorosuccinimide (22.40 g, 

168 mmol, 7 eq) and m-CPBA (0.207 g, 1.20 mmol, 0.05 eq) were dissolved in CHCl3 (100 

mL) and the mixture heated to reflux for 18 h. The solution was allowed to cool and the 

precipitated succinimide was filtered off and washed with CHCl3 (50 mL). The filtrate was 

washed with 2M NaOH (3 x 100 mL) and extracted with CHCl3 (2 x 100 mL). The organic 

extracts were collected and dried over MgSO4, filtered and concentrated in vacuo. The 

residue was then triturated with MeOH:petrol ether (40-60 oC), 50:50 (100 mL) and the 

solid was collected by filtration to give the title compound (100) as a pale yellow solid (9.07 

g, 90 %) m.p. 194-197 o C; FT-IR (ATR) νmax / cm-1 3008w, 1941w, 1810w, 1620w, 1580m, 

1491m, 1363m. 

 

δH (400 MHz, CDCl3) 8.44 (d, J = 8.6 Hz, 2H, ArH), 8.32 (d, J = 8.6 Hz, 2H, ArH), 7.96 (s, 2H, 

ArH); δC (101 MHz, CDCl3) 158.0, 143.3, 138.2, 129.2, 127.6, 120.5, 98.21 (C-Cl3); (FTMS + 

pESI) cald C14H6N2Cl6 [M+Na]+: 434.8554; observed: 434.8553; C14H6N2Cl537Cl [M+Na]+: 

436.8525; observed 436.8523; C14H6N2Cl437Cl2 [M+Na]+: 438.8495; observed 438.8492; 

C14H6N2Cl337Cl3 [M+Na]+: 440.8466; observed 440.8463; C14H6N2Cl237Cl4 [M+Na]+: 

442.8436; observed 442.8433; 
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4.2.20 – Synthesis of 1,10-phenanthroline-2,9-dicarboxylic acid (102): 

 

 
 

2,9-Bis(trichloromethyl)-1,10-phenanthroline (100) (4.25 g, 10.2 mmol) was dissolved in 

conc. H2SO4 (20 mL) and heated to 110 oC for 18 h. The solution was allowed to cool to 

room temperature and poured into ice-water (200 mL, CARE!). The precipitated solid was 

filtered and washed successively with water (2 x 100 mL) and Et2O (2 x 100 mL) and then 

dried in a vacuum oven (60 o C) to afford the title compound (102) as a tan solid (2.27 g, 82 

%) m.p. 234-236 oC; FT- IR (ATR) νmax / cm-1 3333br (OH), 3062br, 1701s, (C=O), 1621m, 

1601w, 1555w, 1447w, 1369w.  
 

δH (400 MHz, DMSO) 8.72 (d, J = 8.4 Hz, 2H, ArH), 8.41 (d, J = 8.4 Hz, 2H, ArH), 8.18 (s, 2H, 

ArH); δC (101 MHz, DMSO) 166.2 (C=O), 148.2, 144.6, 138.1, 130.4, 128.3, 123.4; (FTMS + 

pESI) cald C14H7N2O4 [M+H]+: 267.0411; observed: 267.0409; 
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OH HO
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4.2.21 – Synthesis of dimethyl 1,10-phenanthroline-2,9-dicarboxylate (101): 

 

 

 

2,9-Bis(trichloromethyl)-1,10-phenanthroline (100) (1.2 g, 4.6 mmol) was dissolved in conc. 

H2SO4 (10 mL) and heated to 110 oC for 4 h. The solution was allowed to cool to room 

temperature and MeOH (25 mL) was added slowly and then the mixture heated to reflux 

for 18 h. The solution was allowed to cool and the excess MeOH was removed in vacuo. 

The acidic residue was poured onto ice-water (200 mL) and the precipitated solid was 

filtered off, washed with H2O (2 x 100 mL), Et2O (2 x 100 mL) and dried in a vacuum oven 

(60 oC) to afford the title compound (101) as a tan solid (1.32 g, 97 %) m.p. 195-198 oC; FT-

IR (ATR) νmax / cm-1 3026w, 2954w, 1719s (C=O), 1638m, 1556w, 1439w. 

 

δH (400 MHz, DMSO) 8.71 (d, J = 8.3 Hz, 2H, ArH), 8.39 (d, J = 8.3 Hz, 2H, ArH), 8.20 (s, 2H, 

ArH), 4.03 (s, 6H, CH3); δC (101 MHz, DMSO) 165.5 (C=O), 147.6, 145.0, 138.0, 130.5, 128.5, 

123.6, 52.7 (CH3); (FTMS + pESI) cald C16H13O4N2 [M+H]+: 297.0870; observed: 297.0867; 

C16H12O4N2 [M+Na]+: 319.0689; observed: 319.0683;  
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4.2.22 – Synthesis of 1,10-phenanthroline-2,9-dicarboxamide (103): 

 

 

 

Dimethyl 1,10-phenanthroline-2,9-dicarboxylate (101) (5.01 g, 16.91 mmol) was 

suspended in a solution of ammonium chloride (2.0 g, 37.39 mmol, 2.2 eq) in aqueous 

ammonium hydroxide (100 mL, 35 %) and the mixture stirred at room temperature for 18 

h. The mixture was diluted with H2O (200 mL) and the precipitate was collected by filtration 

and washed with H2O (2 x 100 mL), Et2O (2 x 100 mL) and dried in a vacuum oven (60 oC) to 

afford the title compound (103) as a grey solid (3.55 g, 79 %) m.p. > 300 oC; FT-IR (ATR) νmax 

/ cm-1 3023br (NH), 2952w (NH), 1720s (C=O), 1619m, 1556w. 

 

δH (400 MHz, DMSO) 8.98 (s, 2H, NH2), 8.70 (d, J = 8.3 Hz, 2H, ArH), 8.46 (d, J = 8.3 Hz, 2H, 

ArH), 8.15 (s, 2H, ArH), 7.88 (s, 2H, NH2); δC (101 MHz, DMSO) 166.1 (C=O), 150.0, 143.9, 

138.0, 130.1, 127.9, 121.1; (FTMS + pESI) cald C14H10O2N4Na [M+Na]+: 289.0696; observed: 

289.0694;  
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O
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4.2.23 – Synthesis of 1,10-phenanthroline-2,9-dicarboxamide (103): 

 

 

 

1,10-Phenanthroline-2,9-dicarboxylic acid (102) (0.90 g, 3.36 mmol), 1-

hydroxybenzotriazole hydrate (0.91 g, 6.72 mmol, 2 eq), N-(3-Dimethylaminopropyl)-Nʹ-

ethylcarbodiimide hydrochloride (1.29 g, 6.72 mmol, 2 eq) and ammonium chloride (0.36 

g, 6.72 mmol, 2 eq) were dissolved in DMF (10 mL). N,N-Diisopropylethylamine (1.2 mL, 

6.72 mmol, 2 eq) was added and the mixture was stirred at room temperature for 18 h. 

The solution was diluted with H2O (100 mL) and the precipitated solid was filtered, washed 

with H2O (2 x 50 mL), Et2O (2 x 50 mL) and dried in a vacuum oven to give the title 

compound (103) as a grey solid (0.49 g, 55 %) m.p. > 300 oC; FT-IR (ATR) νmax / cm-1 3023br 

(NH), 2952w (NH), 1720s (C=O), 1619m, 1556w. 

 

δH (400 MHz, DMSO) 8.96 (s, 2H, NH2), 8.71 (d, J = 8.3 Hz, 2H, ArH), 8.46 (d, J = 8.3 Hz, 2H, 

ArH), 8.17 (s, 2H, ArH), 7.88 (s, 2H, NH2); δC (101 MHz, DMSO) 166.1 (C=O), 150.0, 143.9, 

138.0, 130.1, 127.9, 121.1; (FTMS + pESI) cald C14H10O2N4Na [M+Na]+: 289.0696; observed: 

289.0694;  
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4.2.24 – Synthesis of 1,10-phenanthroline-2,9-dicarbonitrile (52): 

 

 
 

1,10-Phenanthroline-2,9-dicarboxamide (103) (2.00 g, 8.84 mmol) was dissolved in 

phosphorous oxychloride (10 mL, 106.96 mmol, 12 eq) and the mixture heated to reflux for 

18 h. The solution was allowed to cool to room temperature and poured onto ice-water 

(100 mL) with external cooling. The slurry was diluted with water (100 mL) and the resultant 

precipitate was filtered off and washed with water (2 x 100 mL), Et2O (2 x 100 mL) and dried 

in a vacuum oven (60 oC) to afford the title compound (52) as a brown solid (1.52 g, 75 %) 

m.p. 280-283 oC; FT-IR (ATR) vmax / cm-1 3086w, 3063w, 2238w (CN), 1621m, 1500w, 1368w. 

 

δH (400 MHz, DMSO) 8.83 (d, J = 8.2 Hz, 2H, ArH), 8.41 (d, J = 8.2 Hz, 2H, ArH), 8.26 (s, 2H, 

ArH); δC (101 MHz, DMSO) 144.8, 138.6, 132.9, 130.5, 129.2, 127.5, 117.6 (CN); (FTMS + 

pESI) cald C14H6N4Na [M+Na]+: 253.0485; observed: 253.0483;  

  

NN
NC CN

(52)
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4.2.25 – Synthesis of 1,10-Phenanthroline-2,9-bis(carbohydrazonamide) (53): 

 

 

 

1,10-Phenanthroline-2,9-dicarbonitrile (52) (1.60 g, 6.95 mmol) was dissolved in DMSO (20 

mL), and hydrazine hydrate (20 mL, 50-60 %) was added slowly over 5 minutes. The 

resulting mixture was stirred for 18 h at room temperature, then was poured into H2O (250 

mL) and the resulting precipitate was isolated by filtration, washed with H2O (100 mL), Et2O 

(2 x 100 mL) and dried in a vacuum oven (60 oC) to give the title compound (53) as a pale 

brown solid (1.98 g, 97 %) m. p > 300 oC; FT-IR (ATR) vmax / cm-1 3326w (NH), 3174br (NH), 

3043w (NH), 1619m, 1497w, 1128w. 

 

δH (400 MHz, DMSO) 8.39 (d, J = 8.6 Hz, 2H, ArH), 8.29 (d, J = 8.6 Hz, 2H, ArH), 7.95 (s, 2H, 

ArH), 6.15 (s, 4H, NH2), 5.62 (s, 4H, NH2); δC (101 MHz, DMSO) 151.2, 143.6, 143.4, 136.1, 

128.2, 126.1, 119.0; (FTMS + pESI) cald C14H14N8Na [M+Na]+: 317.1234; observed: 

317.1233;  
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NH2 H2N
N
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4.2.26 – Synthesis of 4,4’-dihydroxy benzil (104): 

 

 
 

Method 1:120 

To 4,4’-dimethoxybenzil (1.50 g, 5.55 mmol) were added aqueous HBr (15 mL, 48 %) and 

AcOH (20 mL) and the mixture was heated to reflux for 18 h. The solution was allowed to 

cool to room temperature and poured into water (200 mL). The precipitated solid was 

filtered and washed with water (100 mL) and dried in a vacuum oven (60 oC) to afford the 

title compound as a pale grey solid (0.69 g, 50 %) m.p. 239-242 oC.  

Method 2:119 

4,4’-Dimethoxybenzil (2.0 g, 7.40 mmol) and pyridinium hydrochloride (5.13 g, 44.40 mmol, 

6 eq) were heated up to 200 oC until the solids melted. Heating was maintained for 2 h, 

then the solution was cooled to 80 oC and water (100 mL) was added. The precipitated solid 

was allowed to cool to room temperature, filtered off, washed with water (4 x 100 mL) and 

dried in a vacuum oven (60 oC) to afford the title compound as a pale tan solid (1.63 g, 91 

%) m.p. 239-242 oC.  

 

δH (400 MHz, DMSO) 10.84 (s, 2H, OH), 7.75 (d, J = 8.8 Hz, 4H, ArH), 6.93 (d, J = 8.8 Hz, 4H, 

ArH); δC (101 MHz, DMSO) 193.7 (C=O), 163.9, 132.2, 124.2, 116.1; (FTMS + pESI) cald 

C14H10O4Na [M+Na+]: 265.0471; observed: 265.0476; FT-IR (ATR) vmax / cm-1 3393br, 1632m, 

1590w, 1555m, 1510w, 1332w, 1290w, 1215w, 1165w;  

HO

O

O
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4.2.27 – Synthesis of 4,4',4'',4'''-((1,10-phenanthroline-2,9-diyl)bis(1,2,4-triazine-3,5,6-
triyl))tetraphenol (105): 

 

 

 

1,10-Phenanthroline-2,9-bis(carbohydrazonamide) (53) (0.60 g, 2.0 mmol) and 4,4’-

dihydroxy benzil (104) (1.10 g, 4.6 mmol, 2.3 eq) were suspended in a mixture of THF (100 

mL) and MeOH (100 mL). Triethylamine (50 mL, 356.2 mmol) was added and the mixture 

was heated to reflux for 3 d then allowed to cool to room temperature. The mixture was 

filtered and the solid residue was washed with DCM (25 mL). The filtrate was concentrated 

in vacuo, then triturated with MeOH (50 mL) and the solid was isolated by filtration, washed 

with MeOH (25 mL) and Et2O (50 mL) and then dried in air to afford the title compound 

(105) as a yellow solid (0.99 g, 69 %) m.p. 280-282 oC; FT-IR (ATR) νmax / cm-1 3206br, 1608m, 

1590w, 1483w, 1442w, 1377w, 1276w. 

 

δH (400 MHz, DMSO) 8.61 (d, J = 8.0 Hz, 2H, ArH), 8.58 (d, J = 8.0 Hz, 2H, ArH), 8.11 (s, 2H, 

ArH), 7.71 – 7.51 (m, 8H, ArH), 6.93 – 6.78 (m, 8H, ArH); δC (101 MHz, DMSO) 160.5, 159.6, 

159.0, 155.3, 154.6, 152.6, 145.5, 137.7, 131.6, 130.7, 129.5, 127.7, 126.1, 125.5, 122.9, 

115.4; (FTMS + pESI) cald C42H27N8O4 [M+H]+: 707.2150; observed: 707.2153;  
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4.2.28 – Synthesis of 2,2’-bipyridine-1,1’-dioxide (39):81,127  

 

 

 

2,2’-Bipyridine (12) (24.00 g, 153.78 mmol) was dissolved in acetic acid (150 mL) and 

hydrogen peroxide (60 mL, 30 %, 767.42 mmol, 5 eq) was added dropwise. The solution 

was stirred at 75oC for 8 h, allowed to cool to room temperature and then stirred overnight. 

The mixture was diluted with acetone (500 mL) and then concentrated in vacuo to reduce 

the volume until precipitation occurred. The slurry was then cooled in a freezer for 30 

minutes and then the precipitate was filtered and dried in air to afford the title compound 

(39) as a colourless solid (13.16 g, 46 %) m.p 268-270 oC (decomposed); FT-IR (ATR) νmax / 

cm-1 3037br, 1472w, 1425w, 1279w, 1251m, 1145w, 1117w, 1097w. 

 

δH (400 MHz, D2O) 8.41 – 8.43 (m, 2H, ArH), 7.78 – 7.81 (m, 2H, ArH), 7.69 – 7.23 (m, 4H, 

ArH); δC (100 MHz, D2O) 141.8, 139.6, 131.4, 128.8, 128.4; (FTMS + pESI) cald C10H9O2N2 

[M+H]+: 189.0654; observed 189.0659; C10H8O2N2Na [M+Na]+: 211.0473; observed: 

211.0478; 

 

N
O

N
O
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4.2.29 – Synthesis of 2,2’-bipyridine-6,6’-dicarbonitrile (40):81,127 

 

 

 

2,2’-Bipyridine-1,1’-dioxide (39) (5.15 g, 27.4 mmol) was dissolved in DCM (100 mL) and 

trimethylsilyl cyanide (10.5 mL, 83.61 mmol, 3.1 eq) was added. Benzoyl chloride (10 mL, 

86.90 mmol, 3.2 eq) was added dropwise, the solution was stirred at room temperature 

for 3 d and then heated to reflux for 24 h. The solution was left to cool to room temperature 

and 10 % aq. potassium carbonate solution (100 mL) was added and the heterogeneous 

mixture stirred vigorously for 10 minutes. The insoluble solid was filtered off and washed 

with water (100 mL) and Et2O (50 mL) to afford the title compound as a tan solid. The 

biphasic filtrate was separated and the aqueous phase was extracted with DCM (2 x 100 

mL). The combined organic phases were dried over MgSO4, filtered and concentrated in 

vacuo. The solid residue was triturated with MeOH (50 mL), filtered off and washed with 

Et2O (100 mL) to afford additional product. The combined solids were allowed to dry to 

afford the title compound (40) as a tan solid (3.86 g, 68 %) m.p 248-251 oC; FT-IR (ATR) νmax 

/ cm-1 3018br, 2236w (CN), 1784m, 1723m, 1575w, 1556w, 1433w, 1376w, 1218m. 

 

δH 400 MHz, CDCl3) 8.72 (dd, J = 8.0, J’ = 1.3 Hz, 2H, ArH), 8.02 (dd, J = 7.9, J’ = 7.8 Hz, 2H, 

ArH), 7.78 (dd, J = 7.6, J’ = 0.4 Hz, 2H, ArH); δC (100 MHz, CDCl3) 155.5, 138.4, 133.4, 129.1, 

124.7, 117.0; (FTMS + pESI) cald C12H7N4 [M+H]+: 207.0661; observed: 207.0655;  
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4.2.30 – Synthesis of 2,2’-bipyridine-6,6’-bis(carbohydrazonamide) (41):81 

 

 

 

2,2’-Bipyridine-6,6’-dicarbonitrile (40) (3.85 g, 18.67 mmol) was suspended in EtOH (100 

mL) and then hydrazine hydrate (60 mL, 64 %) was added. The reaction was left to stir for 

3 d and then the insoluble solid was filtered off, washed with water (400 mL) and Et2O (200 

mL), then left to dry in air to afford the title compound (41) as a pale-yellow solid (4.20 g, 

83 %) m.p > 300 oC. FT-IR (ATR) /cm-1 3448br, 3304br, 3195br, 1660m, 1619w, 1576w, 

1451m, 1389w, 1369w; 

 

δH (400 MHz, DMSO) 8.61 (dd, J = 7.7, J’ = 1.0 Hz, 2H, ArH), 7.97 (dd, J = 7.7, J’ = 1.0 Hz, 2H, 

ArH), 7.89 (t, J = 7.7 Hz, 2H, ArH), 5.95 (br s, 4H, NH2), 5.42 (br s, 4H, NH2); δC (100 MHz, 

DMSO) 153.2, 150.9, 114.0, 137.3, 120.2, 119.6; (FTMS + pESI) cald C12H15N8 [M+H]+: 

271.1412; observed 271.1414; cald C12H14N8Na [M+Na]+: 293.1230; observed: 293.1234; 

 

 

  

N N

NH2
N

H2N
N

H2N NH2
(41)



Chapter 4 – Experimental 

 151 

4.2.31 – Synthesis of 6,6'-bis(5,6-bis(bromomethyl)-1,2,4-triazin-3-yl)-2,2'-bipyridine (120): 

 

 

 

2,2’-Bipyridine-6,6’-dicarbohydrazonamide (41) (10.86 g, 40.20 mmol) was suspended in 

THF (500 mL) and 1,4-dibromobutane-2,3-dione (119) (22.01 g, 90.20 mmol, 2.2 eq) was 

added. The suspension was stirred at room temperature for 3 d. The insoluble solid was 

filtered off and washed successively with methanol (300 mL), acetone (300 mL) and diethyl 

ether (300 mL). The solid was allowed to dry in air to afford the title compound (120) as a 

yellow solid (22.59 g, 82 %) m.p. 202–204 oC (decomposed); FT-IR (ATR) νmax / cm-1 3087br, 

3037br, 3014w, 1576m, 1557w, 1517w, 1442m, 1425w, 1406w. 

δH (400 MHz, CDCl3) 8.93 (d, J = 7.8 Hz, 2H, ArH), 8.67 (d, J = 7.8 Hz, 2H, ArH), 8.13 (t, J = 

7.8, 2H, ArH), 5.03 (s, 4H, CH2), 4.82 (s, 4H, CH2); δC (100 MHz, CDCl3) 161.6, 156.1, 155.3, 

154.7, 150.4, 137.3, 124.0, 123.0, 27.0 (CH2), 25.7 (CH2); (FTMS + pESI) cald C20H15N8Br4 

[M+H]+: 682.8148; observed: 682.8124; C20H15N8Br2
81Br2 [M+H]+: 686.8107; observed: 

686.8080; C20H15N8
81Br4 [M+H]+: 690.8066; observed: 690.8040; 
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4.2.32 – Synthesis of 5-nitro-2,9-dimethyl-1,10-phenanthroline (123): 

 

 

 

2,9-Dimethyl-1,10-phenanthroline (50) (2.50 g, 12.0 mmol) was dissolved in fuming H2SO4 

(12 mL, 20 % SO3) and HNO3 (8 mL) was added slowly. The mixture was heated to 150 oC 

for 18 h, cooled to room temperature and then poured into ice-water (200 mL, CARE!) with 

external cooling. The precipitated solid was filtered off, washed with water (100 mL) and 

the pH of the filtrate was adjusted to 7 with 2 M NaOH. The filtrate was then extracted with 

CHCl3 (4 x 100 mL) and the organic extracts were collected, dried over MgSO4, filtered and 

concentrated in vacuo to afford the title compound (123) as a yellow solid (1.96 g, 64 %) 

m.p. 196-198 oC; FT-IR (ATR) νmax / cm-1 3464w, 1607w, 1514m, 1486m, 1341m, 1198w.  

 

δH (400 MHz, CDCl3) 8.93 (s, 1H, ArH), 8.78 (d, J = 8.8 Hz, 1H, ArH), 8.63 (d, J = 8.4 Hz, 1H, 

ArH), 7.84 – 7.79 (m, 2H, ArH), 2.86 (s, 3H, CH3), 2.85 (s, 3H, CH3); δC (101 MHz, CDCl3) 162.3, 

159.7, 146.0, 144.6, 142.9, 138.3, 131.8, 124.8, 124.6, 124.5, 123.5, 118.4, 25.3 (CH3), 24.8 

(CH3); (FTMS + pESI) cald C14H12O2N3 [M+H]+: 254.0924; observed: 254.0925; 
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4.2.33 – Synthesis of 5-nitro-2,9-bis(trichloromethyl)-1,10-phenanthroline (127): 

 

 
 

5-Nitro-2,9-dimethyl-1,10-phenanthroline (123) (2.75 g, 10.90 mmol), N-chlorosuccinimide 

(10.15 g, 76 mmol, 7 eq) and m-CPBA (177 mg, 0.54 mmol, 0.05 eq) were dissolved in CHCl3 

(80 mL) and heated to reflux for 18 h. The solution was allowed to cool to room 

temperature and the precipitated succinimide was filtered off and washed with CHCl3 (50 

mL). The filtrate was washed with 2M NaOH (2 x 100 mL) and extracted with CHCl3 (2 x 100 

mL). The combined organic extracts were dried over MgSO4, filtered and concentrated in 

vacuo.  The yellow semi-solid was then triturated with MeOH:petrol ether (40-60 oC), 50:50 

(100 mL) and the residue was collected by filtration and dried in a vacuum oven (60 oC) to 

afford the title compound (127) as a yellow solid (3.60 g, 72%) m.p. 226-228 oC; FT-IR (ATR) 

νmax / cm-1 1510w, 1330w, 820m, 779w, 743m. 

 

δH (400 MHz, CDCl3) 9.24 (d, J = 9.2 Hz, 1H, ArH), 8.85 (s, 1H, ArH), 8.64 (d, J = 8.8 Hz, 1H, 

ArH), 8.51 – 8.45 (m, 2H, ArH); δC (101 MHz, CDCl3) 160.9, 159.1, 145.1, 144.8, 143.8, 140.0, 

135.2, 126.2, 126.1, 121.9, 121.8, 121.6, 97.5 (C-Cl3), 97.4 (C-Cl3); (FTMS + pESI) cald 

C14H6O2N3Cl6 [M+H]+: 457.8586; observed: 457.8585; C14H6O2N3Cl537Cl [M+H]+: 459.8556; 

observed: 459.8555; C14H6O2N3Cl337Cl3 [M+H]+: 463.8497; observed: 463.8495; 

N

N

CCl3

CCl3

O2N
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4.2.34 – Synthesis of dimethyl 5-nitro-1,10-phenanthroline-2,9-dicarboxylate (128): 

 

 

 

5-Nitro-2,9-bis(trichloromethyl)-1,10-phenanthroline (127) (3.2 g, 6.96 mmol) was 

dissolved in conc. H2SO4 (20 mL) and heated to reflux for 5 h. The solution was allowed to 

cool to room temperature, MeOH (40 mL) was added slowly and the mixture was heated 

to reflux for a further 18 h. After cooling the solution, the excess MeOH was removed in 

vacuo and the acidic residue was poured into water (200 mL). The resulting precipitated 

solid was filtered off, washed with water (2 x 100 mL), Et2O (2 x 100 mL) and dried in a 

vacuum oven (60 oC) to afford the title compound (128) as a pale tan solid (1.54 g, 65 %) 

m.p. 259-261 oC; FT-IR (ATR) νmax / cm-1 2922w, 1701s, 1534w, 1443w, 1406w, 1240w, 

1165w.  

  

δH (400 MHz, DMSO) 9.22 (s, 1H, ArH), 9.10 (d, J = 8.8 Hz, 1H, ArH), 9.01 (d, J = 8.4 Hz, 1H, 

ArH), 8.57 – 8.52 (m, 2H, ArH), 4.06 (s, 6H, CH3); δC (101 MHz, DMSO) 165.0 (C=O), 164.8 

(C=O), 150.3, 148.3, 146.2, 145.1, 144.9, 140.7, 134.5, 127.8, 127.4, 124.6, 122.5, 53.1 

(CH3); (FTMS + p ESI) cald C16H12N3O6 [M+H+]: 342.0721; observed: 342.0725; C16H11N3O6Na 

[M+Na]+: 364.0540; observed: 364.0542;   
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4.2.35 – Synthesis of 5-nitro-1,10-phenanthroline-2,9-dicarboxylic acid (129): 

 

 

 

Dimethyl 5-nitro-1,10-phenanthroline-2,9-dicarboxylate (128) (0.5 g, 1.47 mmol) was 

dissolved in HCl (10 mL, 1 M) and the mixture heated to reflux for 18 h. The solution was 

allowed to cool to room temperature and diluted with water (100 mL). The precipitated 

solid was filtered and washed with water (50 mL) and Et2O (25 mL) to afford the title 

compound (129) as a yellow solid (0.45 g, 97 %) m.p. 220-222 oC; FT-IR (ATR) νmax / cm-1 

2925br, 1700s (C=O), 1545m, 1406w, 1236w, 1165w. 

  

δH (400 MHz, DMSO) 9.22 (s, 1H, ArH), 9.09 (d, J = 8.8 Hz, 1H, ArH), 9.00 (d, J = 8.0 Hz, ArH), 

8.57 – 8.51 (m, 2H, ArH); δC (101 MHz, DMSO) 165.9 (C=O), 165.7 (C=O), 151.2, 149.2, 146.1, 

144.9, 144.8, 140.6, 134.4, 127.7, 127.2, 124.5, 122.4; (FTMS + p ESI) cald C14H8N3O6 

[M+H]+: 314.0408; observed: 314.0409; C14H7N3O6Na [M+Na]+: 336.0227; observed: 

336.0227; 
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4.2.36 – Synthesis of 5-nitro-1,10-phenanthroline-2,9-dicarboxamide (130): 

 

 

 

5-Nitro-1,10-phenanthroline-2,9-dicarboxylic acid (129) (1.0 g, 3.19 mmol), 1-

hydroxybenzotriazole hydrate (0.86 g, 6.38 mmol, 2 eq), N-(3-dimethylaminopropyl)-Nʹ-

ethylcarbodiimide hydrochloride (1.22 g, 6.38 mmol, 2 eq) and ammonium chloride (0.34 

g, 6.38 mmol, 2 eq) were dissolved in DMF (10 mL). N,N-Diisopropylethylamine (1.11 mL, 

6.38 mmol, 2 eq) was added and the mixture was stirred at room temperature for 18 h. 

The solution was diluted with H2O (100 mL) and the precipitated solid was filtered, washed 

with H2O (2 x 50 mL), Et2O (2 x 50 mL) and then dried in a vacuum oven (60 oC) to afford 

the title compound (130) as a pale green solid (0.90 g, 91 %) m. p. > 300 oC; FT-IR (ATR) νmax 

/ cm-1 3077br, 1651s, 1530m, 1493w, 1455w, 1372w, 1337w, 1200w; 

 

δH (400 MHz, DMSO) 9.16 (s, 1H, ArH), 9.07 (d, 1H, J = 8.8 Hz, ArH), 9.02 (s, 1H, NH2), 8.99 

(s, 1H, NH2), 8.96 (d, 1H, J = 8.4 Hz, ArH), 8.60 – 8.55 (m, 2H), 8.00 (s, 1H, NH2), 7.96 (s, 1H, 

NH2); δC (101 MHz, DMSO) 165.5 (C=O), 165.4 (C=O), 152.8, 150.8, 145.4, 144.6, 144.2, 

140.4, 134.2, 127.4, 126.9, 122.4, 121.9; (FTMS + p ESI) cald C14H9N5O4Na [M+Na]+: 

334.0547; observed: 334.0549; 
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4.2.37 – Synthesis of 5,6-dioxo-5,6-dihydro-1,10-phenanthroline-2,9-dicarboxylic acid 

(126): 

 

 
 

2,9-Dimethyl-1,10-phenanthroline (50) (4.0 g, 19.2 mmol) was dissolved in fuming H2SO4 

(15 mL, 20 % SO3) and then HNO3 (20 mL) was slowly added. The mixture was heated to 

150 oC for 18 h, then cooled to room temperature and poured into ice-water (200 mL, 

CARE!) with external cooling. The precipitated solid was filtered and washed with H2O (100 

mL), Et2O (50 mL), and then dried in a vacuum oven (60 oC) to afford the title compound 

(126) as a bright yellow solid (4.49 g, 78 %) m.p. 178-180 oC; FT-IR (ATR) νmax / cm-1 3501br 

(OH), 3092w, 1937w, 1705s (C=O), 1568m, 1424w, 1383m, 1289w; 

  

δH (400 MHz, DMSO) 8.60 (d, J = 8.0 Hz, 2H, ArH), 8.27 (d, J = 8.0 Hz, 2H, ArH); δC (101 MHz, 

DMSO) 176.6 (C=O), 165.5 (HO-C=O), 151.9, 151.5, 137.1, 131.3, 125.7; (FTMS + pESI) cald 

C14H7N2O6 [M+H]+: 299.0299; observed: 299.0299; C14H6N2O6Na [M+Na]+: 321.0118; 

observed: 321.0116; 
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3.2.38 – Synthesis of dipyrido[3,2-a:2',3'-c]phenazine-3,6-dicarboxylic acid (132): 

 

 

 

5,6-Dioxo-5,6-dihydro-1,10-phenanthroline-2,9-dicarboxylic acid (126) (1.5 g, 5.03 mmol) 

and o-phenylenediamine (0.54 g, 5.03 mmol, 1 eq) were suspended in EtOH (60 mL) and 

AcOH (1 mL) and the mixture heated to reflux for 18 h. The solution was allowed to cool to 

room temperature, diluted with H2O (25 mL) and the precipitated solid was filtered, 

washed with H2O (100 mL), Et2O (50 mL) and then dried in a vacuum oven (60 oC) to afford 

the title compound (132) as a pale brown solid (0.91 g, 49 %) m.p 215-218 oC; FT-IR (ATR) 

νmax / cm-1 3411br (OH), 2909br, 1725s (C=O), 1678m, 1567w, 1481w. 

 

δH (400 MHz, DMSO) 9.70 (d, J = 8.4 Hz, 2H, ArH), 8.56 (d, J = 8.4 Hz, 2H, ArH), 8.45 – 8.42 

(m, 2H, ArH), 8.14 – 8.11 (m, 2H, ArH); δC (101 MHz, DMSO) Insufficiently soluble to obtain 

a meaningful spectrum. (FTMS + pESI) cald C20H11N4O4 [M+H]+: 371.0780; observed: 

371.0774; C20H10N4O4Na [M+Na]+: 393.0600; observed: 393.0594 
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4.2.39 – Synthesis of dipyrido[3,2-a:2',3'-c]phenazine-3,6-dicarboxamide (133): 

 

 

 

Dipyrido[3,2-a:2',3'-c]phenazine-3,6-dicarboxylic acid (132) (0.86 g, 2.32 mmol) was 

suspended in SOCl2 (5 mL) and the mixture heated to reflux for 4 h. The solution was 

allowed to cool and extracted with DCM (10 mL) and the organic extract concentrated in 

vacuo to give a pale brown solid. Aqueous ammonium hydroxide (10 mL, 35 %) was slowly 

added with external cooling and the mixture was stirred at room temperature for 18 h. 

Water (100 mL) was added and the solid residue was filtered, washed with water (100 mL), 

Et2O (50 mL) and dried in a vacuum oven (60 oC) to afford the title compound (133) as a 

pale brown solid (0.82 g, 96 %) m.p. > 300 oC (decomp); FT-IR (ATR) νmax / cm-1 3447br (NH), 

3172br (NH), 1693s (C=O), 1566m, 1481w, 1349w. 

 

δH (400 MHz, DMSO) 9.71 (d, J = 8.4 Hz, 2H, ArH), 8.99 (s, 2H, NH2), 8.57 (d, J = 8.4 Hz, 2H, 

ArH), 8.46 – 8.43 (m, 2H, ArH), 8.17 – 8.15 (m, 2H, ArH), 7.99 (s, 2H, NH2); δC (101 MHz, 

DMSO) Insufficiently soluble to obtain a meaningful spectrum. (FTMS + pESI) cald 

C20H13N6O2 [M+H]+: 369.1095; observed: 369.1097; C20H12N6O2Na [M+Na]+: 391.0914; 

observed 391.0915; 
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4.2.40 – Synthesis of (3Z,6Z)-dipyrido[3,2-a:2',3'-c]phenazine-3,6-bis(carbohydrazonamide) 
(134): 
 

 

 

Dipyrido[3,2-a:2',3'-c]phenazine-3,6-dicarboxamide (133) (0.50 g, 1.36 mmol) was 

suspended in DMF (8 mL) and pyridine (0.87 mL, 10.86 mmol, 8 eq), then trifluoroacetic 

acid (0.77 mL, 5.43 mmol, 4 eq) was added. The mixture was stirred at room temperature 

for 5 h, then hydrazine hydrate (3 mL, 64 %) was added slowly and the mixture was stirred 

for 18 h at room temperature. Water (100 mL) was added and the precipitated brown solid 

was filtered off, washed with water (50 mL), Et2O (100 mL) and dried in a vacuum oven (60 
oC) to afford the title compound (134) as a pale brown solid (0.49 g, 90 %) m.p. 295-300 oC 

(decomp); IR (ATR) νmax / cm-1 3448br (NH), 3185br (NH), 1694m, 1567m, 1480w, 1349w;  

 

δH (400 MHz, DMSO) 9.46 (d, J = 8.8 Hz, 2H, ArH), 8.47 (d, J = 8.4 Hz, 2H, ArH), 8.40 – 8.38 

(m, 2H, ArH), 8.07 – 8.04 (m, 2H, ArH), 6.38 (s, 4H, NH2), 6.18 (s, 4H, NH2); δC (101 MHz, 

DMSO) Insufficiently soluble to obtain a meaningful spectrum. (FTMS + pESI) cald C20H17N10 

[M+H]+: 397.1632; observed: 397.1632; C20H16N10Na [M+Na]+: 419.1452; observed 

419.1451; 

 

  

N

N

NH2
N

N

N
NH2

NH2

N
NH2

(134)



Chapter 4 – Experimental 

 161 

4.2.41 – Synthesis of 3,6-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e][1,2,4]triazin-
3-yl)dipyrido[3,2-a:2',3'-c]phenazine (135): 
 

 

 

(3Z,6Z)-Dipyrido[3,2-a:2',3'-c]phenazine-3,6-bis(carbohydrazonamide) (134) (0.28 g, 0.71 

mmol) and 3,3,6,6-tetramethylcyclohexane-1,2-dione (32) (0.25 g, 1.48 mmol, 2.1 eq) were 

dissolved in AcOH (25 mL) and heated to reflux for 3 h. The solution was cooled to room 

temperature and then poured into H2O (100 mL), filtered and washed with H2O (50 mL), 

Et2O (50 mL) and dried in a vacuum oven (60 oC) to afford the title compound (135) as a 

yellow powder (0.35 g, 75 %) m.p. 240-243 oC; FT-IR (ATR) νmax / cm-1 2963m, 2926m, 

2861m, 1621w, 1512w, 1456w, 1385w, 1340m, 1248m;  

 

δH (400 MHz, CDCl3) 9.76 (d, J = 8.4 Hz, 2H), 8.92 (d, J = 8.4 Hz, 2H), 8.33 – 8.31 (m, 2H), 7.93 

– 7.90 (m, 2H), 1.92 (s, 8H), 1.59 (s, 12H), 1.57 (s, 12H); δC (101 MHz, CDCl3) 159.1, 163.5, 

161.1, 155.9, 142.7, 140.9, 134.9, 131.1, 129.6, 128.8, 124.4, 37.6, 36.7, 33.8, 33.6, 29.9, 

29.3; (FTMS + pESI) cald C40H41N10 [M+H]+: 661.3510; observed 661.3522; C40H40N10Na 

[M+Na]+: 683.3330; observed 683.3333; 
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4.3 – Synthesis of Magnetic Nanoparticles (MNPs): 

4.3.1 – General Procedures: 

 
Following literature procedures, the complete precipitation of the core Fe2O3 was achieved 

under alkaline conditions whilst maintaining a molar ratio of Fe(II):Fe(III) of 1:2 under 

nitrogen. The resulting magnetic core was either coated with SiO2 or ZrO2 using Sol-gel 

method. Incorporation of the Zr-OH or Si-OH surface groups enabled reaction with (3-

iodopropyl)trimethoxysilane where the iodo-functional group allowed immobilization of 

the ligands by substation of iodine by the hydroxyphenyl substituent.105,117,121,123 

 

4.3.2 – Synthesis of iodoalkyl-functionalized ZrO2-Coated Fe2O3 MNPs (90):  

 

 

FeCl2.4H2O (0.80 g, 4 mmol) and FeCl3 (1.30 g, 8 mmol) was dissolved in degassed deionized 

water (50 mL) and were added dropwise into 2 M NaOH solution (200 mL) with vigorous 

stirring. After 1 h, the resulting Fe2O3 MNPs (91) were separated by putting the vessel on a 

neodymium magnet and decanting the supernatant. The MNPs (91) were washed with 

degassed deionized water (200 mL) and 0.01 M HCl (100 mL) to remove unreacted iron 

salts. Fe2O3 MNPs (91) were dispersed in a mixed solution of degassed EtOH (300 mL) and 

degassed deionized water (75 mL) by sonication for 10 min. Ammonium hydroxide (35 %, 

36 mL) and zirconium (IV) tert-butoxide (5.1 mL) were consecutively added to the reaction 

mixture and the reaction was allowed to proceed at room temperature for 2 h under 

continuous sonication. (3-Iodopropyl)trimethoxysilane (6 mL) was then added and the 

reaction was allowed to proceed for further 3 h. The resultant functionalized particles (90) 

were obtained by magnetic separation and thoroughly washed with degassed EtOH (4 x 

250 mL). Finally, the resultant MNPs (90) (2.30 g) were dried at 120 °C. 
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4.3.3 – Synthesis of iodoalkyl-functionalized SiO2-Coated Fe2O3 MNPs (107): 

 

 

 

FeCl2.4H2O (0.80 g, 4 mmol) and FeCl3 (1.30 g, 8 mmol) dissolved in degassed deionized 

water 40 mL were added dropwise into 2M NaOH solution (200 mL) with vigorous stirring. 

After 1 hour, the resulting Fe2O3 MNPs (109) were separated by putting the vessel on a 

neodymium magnet and decanting the supernatant. The MNPs (109) were washed with 

degassed deionized water (200 mL) and 0.01 M HCl (17 %, 100 mL) to remove unreacted 

iron salts. Fe2O3 MNPs (109) were then dispersed in a mixed solution of degassed EtOH (400 

mL) and degassed deionized water (100 mL) by sonication for 10 min. Ammonium 

hydroxide (35 %, 36 mL) and tetraethyl orthosilicate (3.6 mL, 16 mmol) were consecutively 

added to reaction mixture and the reaction was allowed to proceed at room temperature 

for 2 h under continuous sonication. (3-Iodopropyl)trimethoxysilane (6.2 mL, 32 mmol) was 

then added and the reaction was allowed to proceed for further 3 h. The resultant 

functionalized particles (107) were obtained by magnetic separation and thoroughly 

washed with degassed EtOH (200 mL). Finally, the resultant MNPs (107) (2.74 g) were dried 

at 120 °C.  
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4.4 – Immobilization of ligands onto MNPs: 

4.4.1 – Immobilization of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) onto ZrO2-MNPs (90): 
 

 
 
Sodium hydride (60% dispersion in mineral oil, 0.03 g, 0.9 mmol, 1.3 eq) was added to a 

solution of 5(4-hydroxyphenyl)-CyMe4-BTPhen (84) (0.46 g, 0.7 mmol) in DMF (100 mL) at 

120 °C and stirred for 30 min. Iodoalkyl-functionalized ZrO2-coated MNPs (90) (0.72 g) were 

slowly added and the reaction mixture was stirred at 120 °C overnight. CyMe4-BTPhen-

functionalized MNPs (86) were separated by an external magnet and were thoroughly 

washed with degassed EtOH (200 mL). Finally, the MNPs (86) (0.24 g) were allowed to dry 

at 120 °C. Found % C: 17.16, % H: 3.37, % N: 1.80, % I: 7.69. FT-IR (ATR) νmax / cm-1 3500br, 

3000 br, 1600w, 1550w, 1050s (Si-O-Si).   
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4.4.2 – Immobilization of tetra(4-hydroxyphenyl)BTPhen (105) on SiO2-coated MNPs (107): 

 

 

Sodium hydride (60 % dispersion in mineral oil, 0.25 g, 6.3 mmol, 1.1 eq) was added to a 

solution of tetra(4-hydroxyphenyl)BTPhen (105) (1.01 g, 1.4 mmol) in DMF (150 mL) at 120 

°C and stirred for 30 min. Iodoalkyl-functionalized SiO2-coated MNPs (107) (1.64 g) were 

slowly added and the reaction mixture was stirred at 120 °C for 18 hrs. BTPhen-

functionalized MNPs (110) were separated by an external neodymium magnet and were 

thoroughly washed with degassed ethanol (200 mL). Finally, the MNPs (110) (0.98 g) were 

allowed to dry at 120 °C. Found % C: 29.62, % H: 3.27, % N: 0.93, % I: 1.39. FT-IR (ATR) νmax 

/ cm-1 1600w, 1570w, 1550w, 1050s (Si-O-Si).   
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4.5 – Immobilization of Ligands onto Silica Gels: 

4.5.1 – General Procedures: 

 
Aminopropyl functionalized silica gel (121) was purchased directly from Sigma Aldrich and 

used as supplied. The extent of labelling was ~ 1 mmol/g NH2 loading and approximately ~ 

9 % functionalized by weight. Particle size of the silica gel is 40-63 µm and 60 (Angstrom) 

pore size. Chloropropyl functionalized silica gel (111) was purchased from Sigma Aldrich 

and used as supplied. The extent of labelling was ~ 2.5 % loading and the matrix active 

group was ~ 8 % functionalised. Particle size 230-400 mesh and a pore size of 60 Å.126,128  

 

4.5.2 – Immobilization of 6,6’-bis(5,6-bis(bromomethyl)-1,2,4-triazin-3-yl)-2,2’-bipyridine 
(120) onto aminopropyl-functionalized silica gel (121): 
 

 

Triethylamine (11 mL, 78.36 mmol, 6 eq) was added to a suspension of aminopropyl-

functionalized SiO2 gel (121) (25 g, ~ 1 mmol/g NH2 loading) in DMF (200 mL) at 120 °C and 

stirred for 30 min. 6,6'-bis(5,6-bis(bromomethyl)-1,2,4-triazin-3-yl)-2,2'-bipyridine (120) 

(8.95 g,  13.06 mmol) was slowly added and the reaction mixture was stirred at 120 °C 

overnight. BTBP-functionalized SiO2 gel (122) was collected by filtration and was thoroughly 

washed with water (300 mL) and ethanol (300 mL). Finally, the functionalized SiO2 gel (122) 

(28.24 g) was allowed to dry at 120 °C. 
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4.5.3 – Immobilization of tetra-(4-hydroxyphenyl)-BTPhen (105) on chloropropyl-
functionalized silica gel (112): 
 

 

Sodium hydride (60 % dispersion in mineral oil, 0.24 g, 6 mmol, 2 eq) was added to a 

solution of tetra(4-hydroxyphenyl)-BTPhen (105) (2.11 g, 3 mmol) in DMF (100 mL) at 120 

°C and stirred for 30 min. Chloropropyl-functionalized SiO2 gel (111) (4.04 g, ~ 2.5 mmol/g 

loading) was slowly added and the reaction mixture was stirred at 120 °C overnight. 

BTPhen-functionalized SiO2 gel (112) was collected by filtration and was thoroughly washed 

with water (100 mL) and ethanol (100 mL). Finally, (112) (3.95 g) was allowed to dry at 120 

°C. Found % C: 8.10, % H: 1.28, % N: 1.08, % Cl: 0.49. FT-IR (ATR) νmax / cm-1 1600w, 1050s 

(Si-O-Si), 700w.  
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4.5.4 – Immobilization of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) onto chloropropyl-
functionalized SiO2 gel (111) 

 

Sodium hydride (60 % dispersion in mineral oil, 0.03 g, 1.54 mmol, 2 eq) was added to a 

solution of 5-(4-hydroxyphenyl)-CyMe4-BTPhen (84) (0.50 g, 0.77 mmol) in DMF (25 mL) at 

120 °C and stirred for 30 min. Chloropropyl-functionalized SiO2 gel (111) (0.32 g, ~ 2.5 

mmol/g loading) was slowly added and the reaction mixture was stirred at 120 °C 

overnight. BTPhen-functionalized SiO2 gel (118) was collected by filtration and was 

thoroughly washed with water (50 mL) and ethanol (50 mL). Finally, the silica gel (118) (0.38 

g) was allowed to dry at 120 °C. Found % C: 11.60, % H: 2.01, % N: 1.40, % Cl: 0.10. FT-IR 

(ATR) νmax / cm-1 2100w, 2000w, 1600w, 1500s, 1050s (Si-O-Si), 700w. 
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4.6 – Extraction Experiment Details 

4.6.1 – General Procedures: 

 
Extraction experiments by the BTBP and BTPhen ligands discussed in the thesis were 

carried out at Czech Technical University in Prague by Dr Petr Distler. Activity 

measurements of 241Am, 152Eu and 244Cm were performed with a γ-ray spectrometer EG&G 

Ortec (USA) with a PGT (USA) HPGe detector and α-ray spectrometer Octete plus Ortec 

(Germany) with ion-implanted-silicon ultra α-detector (USA). The distribution ratios, D, 

were calculated as the ratio between the radioactivity (α- and γ-emissions) of each isotope 

in the standard solution and the supernatants. The γ-lines at 59.5 keV and 121.8 keV were 

examined for 241Am and 152Eu respectively. The errors given in the extraction data Tables 

are 1σ errors based on counting statistics. 

 

4.6.2 – Extraction Studies of CyMe4-BTPhen functionalized ZrO2-MNPs (86): 

 
The aqueous solutions for the solvent extraction experiments were prepared by spiking 

nitric acid solutions (0.745 mL) (0.001 – 4 M) with stock solutions of 5 μL of 241Am (≈ 400 

Bq/μL), 3 μL of 152Eu (≈ 1.000 Bq/μL), and 7 μL of 244Cm (≈ 300 Bq/μL) and then adding 600 

μL of spiked aqueous solution to 18 mg of (86). 150 μL of each labelled solution was taken 

as a standard (to allow mass balance calculations) for γ- measurements and 10 μL was taken 

as a standard for α- measurements. The suspension was sonicated for 10 min and shaken 

on a Heidolph Reax shaker at 1800 rpm for 90 min. After centrifuging for 10 min, aliquots 

of the aqueous solutions (supernatant) were separated and taken for alpha/gamma 

measurements after removal of the MNPs (86).  

4.6.3 – Extraction Studies of Tetra-(4-hydroxyphenyl)-BTPhen ligand (105): 

 
The aqueous solutions for the solvent extraction experiments were prepared by spiking 

nitric acid solutions (0.001 – 1 M) with stock solutions of 241Am, 152Eu and 244Cm and then 

adding 1000 μL of spiked aqueous solution to 10 mM of (105) in cyclohexanone. The 

mixture was sonicated for 10 min and shaken at 1800 rpm for 90 min. After centrifuging 
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for 10 min, aliquots of the aqueous solutions (supernatant) were separated and taken for 

alpha/gamma measurements. 

4.6.4 – Extraction Studies of BTPhen-functionalized SiO2-coated MNPs (110): 

 
The aqueous solutions for the solid phase extraction experiments were prepared by spiking 

nitric acid solutions (0.001 – 4 M) with stock solutions of 241Am, 152Eu and 244Cm and then 

adding 1 mL of spiked aqueous solution to 22.7 mg of BTPhen-functionalized SiO2-coated 

MNPs (110). The suspension was sonicated for 10 min and shaken at 1800 rpm for 90 min. 

After centrifuging for 10 min, aliquots of the supernatant were separated and taken for 

alpha/gamma measurements.  

 
4.6.5 – Extraction Studies of BTPhen-functionalized SiO2 Gel (112): 

 
Aqueous solutions for the solid phase extraction experiments were prepared by spiking 

nitric acid solutions (0.001–4 M) with stock solutions of 241Am and 152Eu radiotracers and 

then adding 1 mL of spiked aqueous solution to 17 mg of BTPhen-functionalized SiO2 gel 

(112) (~ 10 mM). The suspension was sonicated for 10 min and shaken at 1800 rpm for 90 

min. After centrifuging for 10 min, aliquots of the supernatant were separated and taken 

for alpha/gamma measurements.  

4.6.6 – Extraction Studies of CyMe4-BTPhen-functionalized SiO2 gel (118): 

 
The aqueous solutions for the solid phase extraction experiments were prepared by spiking 

nitric acid (HNO3) and perchloric acid (HClO4) solutions (0.001 – 4 M) with stock solutions 

of 241Am and 152Eu and then adding 1 mL of spiked aqueous solution to 16.7 mg of CyMe4-

BTPhen-functionalized SiO2 gel (118). The suspensions were sonicated for 10 min and 

shaken at 1800 rpm for 90 min. After centrifuging for 10 min, aliquots of the supernatant 

were separated and taken for alpha/gamma measurements. 
 

4.6.7 – Extraction Studies of BTBP-functionalized SiO2 Gel (122): 

 
The aqueous solutions for the solid phase extraction experiments were prepared by spiking 

nitric acid solutions (0.001–4 M) with stock solutions of 241Am and 152Eu radiotracers and 
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then adding 1 mL of spiked aqueous solution to 14 mg of BTBP-functionalized SiO2 gel (122) 

(~ 10 mM). The suspension was sonicated for 10 min and shaken at 1800 rpm for 90 min. 

After centrifuging for 10 min, aliquots of the supernatant were separated and taken for 

alpha/gamma measurements. 

4.6.8 – Extraction Studies of (dppz)-BTPhen ligand (135): 

 
The aqueous solutions were prepared by spiking HNO3 solutions (0.001-2 M) with 241Am 

and 152Eu radiotracers. Organic solutions of ligand (135) (5 mM) were prepared in 

cyclohexanone with gentle heating. The aqueous phases were pre-equilibrated with neat 

cyclohexanone by shaking them for 30 min at 1800 rpm and volume ratio of 4:1 (aq:org). 

The organic phases were pre-equilibrated with the respective aqueous phases by shaking 

them for 30 min at 1800 rpm and a volume ratio of 1:1. Of 1.2 mL of labelled aqueous 

phases, 200 μL standard was taken (to allow for mass balance calculations) prior to 

contacting the aqueous phase with the organic phase. Each organic phase (1 mL) was 

shaken separately with each of the aqueous phases (1 mL) for 90 min at 22 oC (non-

thermostatted) using a Heidolph Multi Reax Shaker (1800 rpm). After phase separation by 

centrifugation for 10 min, two parallel 200 μL aliquots of each phase were withdrawn for 

gamma measurement. For gamma measurements, the aliquots were pipetted into plastic 

ampules and their walls were washed with 1 mL of distilled water or cyclohexanone.  
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4.7 – ICP-MS Experiments 

ICP-MS analysis was run on a Thermo-Fisher iCAP Q ICP-MS with Rh as the internal 

standard. Standard solutions were prepared using a stock solution of 2 % HNO3 spiked with 

5 ppb Rh. Standards were made using various metal mixes purchased from Sigma-Aldrich 

as TraceCERT (Traceable Certified Reference Materials). Standards used to calibrate the 

ICP-MS were 10, 25, 50 and 100 ppb. A 3.8 cm diameter glass column was loaded with 10 

g of BTBP-functionalized SiO2 gel (122) and rinsed with 100 mL 2 % HNO3 blank solution. A 

solution of 100 mL of 100 ppb metal mix solution was eluted through the column at a rate 

of 10 mL per minute and fractions of 10 mL were collected and 2 mL aliquots were taken 

from each fraction for measurement using the ICP-MS. An average of three readings was 

taken. 
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Appendices 
 

 
 

Appendix A1 – TGA for ZrO2-MNPs (90) 
 

 
 

Appendix A1 – TGA for CyMe4-functionalized ZrO2-MNPs (86) 
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Appendix A2 – TGA for Iodo-functionalized SiO2 MNPs (107) 
 

 
 

Appendix A2 – TGA for BTPhen-functionalized SiO2-MNPs (110) 
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Appendix A3 – TGA for chloro-functionalized SiO2-gel (111) 
 

 
 

Appendix A3 – TGA for BTPhen-functionalized SiO2 gel (112) 
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Appendix A4 – TGA for chloro-functionalized SiO2-gel (111) 
 

 
 

Appendix A4 – TGA for CyMe4-functionalized SiO2 gel (118) 
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Appendix A5 – TGA for aminopropyl-functionalized SiO2 gel (121) 

 

 
 

Appendix A5 – TGA for BTBP-functionalized SiO2 gel (122) 
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