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Is Radiative Forcing Cointegrated with Temperature?1

A Further Examination Using a Structural Time Series2

Approach3

March 20194

Abstract5

Purpose6

This paper re-examines the long-run relationship between radiative forcing (including7

emissions of carbon dioxide, sulphur oxides, methane and solar radiation) and temper-8

atures from a structural time series modelling perspective. We assess whether forcing9

measures are cointegrated with global temperatures using the structural time series10

approach.11

Design/methodology/approach12

A Bayesian approach is used to obtain estimates that represent the uncertainty regarding13

this relationship. Our estimated structural time series model enables alternative model14

specifications to be consistently compared by evaluating model performance.15

Findings16

Our results confirm that cointegration between radiative forcing and temperatures are17

consistent with the data. However, our results find less support for cointegration between18

forcing and temperature data than found previously.19

Research limitations/implications20

Given considerable debate within the literature relating to the ‘best’ way to statistically21

model this relationship and explain results arising as well as model performance, there is22

uncertainty regarding our understanding of this relationship and resulting policy design23

and implementation. There is a need for further modelling and use of more data.24

Practical implications25

There is divergence of views as to how best to statistically capture, explain and model26

this relationship. Researchers should avoid being too strident in their claims about model27

performance and better appreciate the role of uncertainty.28

Originality/value29

The results of this study make a contribution to the literature by employing a theoret-30

ically motivated framework in which a number of plausible alternatives are considered31

in detail, as opposed to simply employing a standard cointegration framework.32

Key Words: Radiative forcing, cointegration, structural time series.33

34
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1. Introduction35

There is an emerging consensus that statistical evidence supports the relationship36

between radiative forcing measures (e.g. carbon dioxide, sulphur oxides, methane, solar37

radiation) and temperatures. In this paper we follow the established definition of radia-38

tive forcing or forcing following, for exmaple, Kaufmann et al. (2010: 398) who define39

this as “the forcing ... due to carbon dioxide, methane, CFC11 [chlorofluoro-carbons],40

CFC12, nitrous oxide, sulfur emissions, and solar activity”. The particular statistical41

framework used by Mills (2009), Kaufmann and Stern (2002) and Kaufmann et al.42

(2006) is that of cointegration. Cointegration between two variables implies that the43

variables have stochastic trends, but a linear combination between the variables exists44

that has no stochastic trend. Equivalently, the existence of cointegration between two45

variables implies that they share a common stochastic trend. Where one of the variables46

is weakly exogenous, this variable may be causally responsible for the trend in the47

other. Thus, the implication that radiative forcing is cointegrated with temperature48

provides evidence consistent with some scientific models that imply forcing measures49

play a possible positive causal role in relation to warming trends.50

While the earlier work of Stern and Kaufmann (2000) employed structural time series51

models, more recent research has employed conventional tests for cointegration, within52

an autoregressive framework. Our aim is to re-examine whether forcing measures are53

cointegrated with global temperatures using the structural time series approach. We do54

not dispute the methodological rigour or specific findings of the studies above. On the55

contrary, the previous finding of cointegration between temperatures and global warming56

are easily replicated. However, there continues to be considerable interest in examining57

the statistical properties of causal relationships between global temperatures and human58

activity. For example, there is an ongoing debate as to whether global temperatures are59

stationary or best represented by some other more complex process. Recent econometric60

evidence on this is provide by Lai and Yoon (2018). There have also been studies that61

suggest that the length of dataset in this context matters. For example, McMillana62

and Wohar (2013) report a weak relationship between temperature and CO2 and no63

statistically significant evidence of a trend when employing a much longer time series64

of data. At the same time there are studies, for example, Stern and Kaufmann (2014),65

that do report causal relationships between certain types of forcing (e.g. natural and66

anthropogenic) and temperature change. Stern and Kaufmann (2014) arrive at these67

conclusions by employing Granger causality tests as opposed to developing a time series68

model of the relationship between the variables of interest. They argue that time series69
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models are dependent on assumptions regarding the time series properties of the data70

and as is well documented in the literature there is far from a consensus of opinion on71

this issue. This in part stems from the fact that it is hard (impossible) to know the72

underlying data generating process which then makes model selection difficult. This73

has, however, not stopped further developments in this context. For example, an74

alternative approach to examining this issue is presented by Gallegati (2018) who use75

wavelet analysis. This approach identifies that different data series can have different76

time scales that is only partially resolved when employing cointegration analysis because77

of how the methods deals with non-stationarity arising from stochastic trends. In ad-78

dition, although our study is conducted at global level there are links with research79

conducted at the country and regional levels. For example, time series data and meth-80

ods have been employed in empirical studies of the Environmental Kuznets Curve (EKC)81

by Cialani (2007) for Italy and Mohapatra and Giri (2009) for India. There is good rea-82

son to think that such studies consider the type of advanced econometric methodology83

employed in the current paper.84

Another example of an econometric development applied to this topic is Chevillon85

(2017) who employs a procedure that offers a robust test for the rank of cointegration86

within a VAR that may have misspecified local linear trends. Using this approach it87

is reported that temperature and greenhouse gases appear to be cointegrated. This88

paper also provides an overview of the proceeding literature that once again illustrates89

the ongoing debate regarding the extent to which statistical models can truly reveal the90

relationships of interest.91

However, we believe it is worth investigating how robust previous findings are to92

alternative model specifications. These lead us to our main research question which is93

investigating the presence or otherwise of a stable long run relationship between radia-94

tive forcing and global temperature by employing classical and Bayesian methods, and95

explicitly considering alternative model specifications, both cointegrated and non-coin-96

tegrated, which is a departure from the prior literature and makes a contribution to the97

literature. We do this in three ways.98

First, we conduct cointegration tests introduced by Shin (1994) which adopt coin-99

tegration as the null hypothesis rather than the alternative hypothesis as is the case100

on other empirical work carried our so far. Tests that adopt a the presence of a unit101

root or no-cointegration as the null hypothesis have commonly been found to obtain102

different findings to tests that have a null hypothesis of stationarity or cointegration103

respectively (see Maddala and Kim, 1998 Chap 4). Therefore, we believe it would be104

useful to investigate whether Shin’s (1994) approach supports previous findings concern-105

ing cointegration.106
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Second, by explicitly estimating a structural time series model, alternative model107

specifications (i.e. cointegrated and non-cointegrated) can be consistently compared by108

evaluating model performance. Structural time series models are particularly useful for109

this purpose as they can nest both cointegrated and non-cointegrated models as special110

cases.111

Third, we estimate structural time series models using Classical and Bayesian meth-112

ods. This dual approach to estimating the structural time series model is revealing.113

Whereas the Classical approach to estimation will be based on only one mode of the114

likelihood, the Bayesian approach to inference can reflect multiple high density points.115

As we will explain, there is strong evidence that the posterior density has a number of116

high density points. This requires us to place important qualifications on the results we117

report.118

Overall, the results of our study make a contribution to the literature by employing a119

theoretically motivated framework in which a number of plausible alternatives are con-120

sidered in detail, as opposed to simply employing a standard cointegration framework.121

Our research fits in well within the context of research such as Romero-Avila (2008) who122

examines convergence within carbon dioxide emissions for 23 countries between 1960-123

2002, Lee and Chang (2009) who investigate stochastic convergence of per capita carbon124

dioxide emissions and multiple structural breaks for OECD countries, as well as Ajmi125

et al. (2013) who study relationships between energy consumption and income for G7126

countries using nonlinear causality tests. Marrero (2008) considers global greenhouse gas127

emissions within his study of emissions, growth and energy usage mix for Europe. Anger128

(2008) generalises this type of analysis by considering the economic impact of emissions129

trading schemes and likely impact on emissions. Our research approach helps provide an130

important backdrop to studies in related areas such as decomposition of carbon dioxide131

emissions (Sun, 1999) and studies of non-CO2 greenhouse gas emissions (e.g. Shukla132

et al, 2006). Our research also links with studies outlining policies aimed at reducing133

CO2 emissions such as Gerlagh and Zwaan (2006), Lu et al. (2013) who consider CO2134

emission efficiency in OECD countries, as well as in developing countries facing issues135

such as poverty alleviation and growth promotion (Van Heerden et al, 2006). Sam et al.136

(2009) study the effectiveness of voluntary emissions programmes in the US. Our paper137

extends work such as that on emission in the US and evidence on convergence patterns138

for pollutants using unit root tests (see List, 1999).139

Our paper proceeds by outlining the statistical models we employ in Section 2. Sec-140

tion 3 describes our approach to model estimation. In Section 4 we briefly discuss the141

data and present our empirical results. Section 5 provides a discussion of our results and142

their implications. Finally, in Section 6 we offer conclusions.143
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2. Econometric Models144

As our preceding discussion suggests, there is considerable and ongoing debate with145

regard to choice of econometric models and use of an appropriate empirical strategy146

in order to study our main relationships of interest (e.g. Chevillon (2017), Lai and147

Yoon (2018), Stern and Kaufmann (2014), Gallegati (2018) and McMillana and Wohar148

(2013)). Based on our consideration of the empirical literature we believe that our re-149

sults make a contribution to the literature due to our use of a theoretically motivated150

framework in which a number of plausible alternatives are considered in detail, as op-151

posed to simply employing a basic cointegration framework, as outlined in detail below.152

As a result, we mainly limit our discussion to the structural time series approach. We153

also employ a standard vector autoregressive (VAR) approach, where cointegration is154

treated as the alternative hypothesis so as to ensure that, should our results radically155

differ from previous findings, this would be due to the modelling approach adopted and156

not driven by slight differences in the data employed in the analysis. For details on the157

VAR approach readers are referred to Johansen (1995).158

The model introduced in Shin (1994) is of the structural time series form:159

yt = µt + βt + xtα + et (1)

µt = µt−1 + vt

where yt is temperature at time t, xt is a m×1 vector of covariates (in this case radiative160

forcing) and et and vt are stationary innovations that can be serially correlated. The161

model in equation (1) above contains a time trend (t), but this can be removed from162

the regression if there is no deterministic trend in the data generating process. If yt and163

xt are integrated of order 1 (see Johansen, 1995, p35), cointegration between yt and xt164

implies the variance of vt is zero.165

The tests outlined in Shin (1994) do not require explicit estimation of the variance166

components within equation (1). A test for cointegration can be constructed by obtain-167

ing estimates of the long run variance of et (ie, ωe) and then constructing the following168

test statistic169

C = T−2
T∑
t=1

S2
t /ωe (2)

where St is the estimate of the partial sum process St=
∑t
i=1 ei. The distribution of this170

test statistic has been tabulated in Shin (1994), but it can be simulated using Monte171

Carlo methods.172

The model in equation (1) can be generalised to allow for autoregressive components173
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with a local linear trend intercept as follows:174

yt = µt +
p∑
i=1

γiyt−i + x′tα + et (3)

µt = µt−1 + βt + vt

βt = βt−1 + wt

where yt and x′t are as defined above. Because the autoregressive components are as-175

sumed to ”soak up” any serial correlation, et, vt and wt are assumed to be independent176

normal innovations.1 The intercept in this model µt is able to evolve in a stochastic177

manner if either vt or wt have non-zero variances. The trend in the intercept at time t178

is βt. Cointegration between yt and xt requires that both are non-stationary and that179

∣∣∣∣∣
p∑
i=1

γi

∣∣∣∣∣ < 1 and V ar (vt) = V ar (wt) = 0. (4)

The unknowns within model (1) are of two types:180

i) the ‘latents’ Γ = ({µt} , {βt} , {γi} , α) (along with the errors that can be con-181

structed given knowledge of these quantities); and182

ii) the ‘hyper parameters’ Ψ = (σ2
e , σ

2
v , σ

2
w) .183

Additionally, there are initial conditions (priors) for the latents Γ0 which are the184

prior mean and covariance for the value of the latents at t = 0.185

3. Model Estimation186

3.1. Classical Estimation187

The test introduced by Shin (1994) only requires a standard ordinary least squares188

regression to estimate the null (cointegrated) model. Alternatively, an estimator that189

allows for serial correlation in the error and exogeneity can be employed, such as the Fully190

Modified (FM) estimator outlined in Phillips and Hansen (1991). The FM estimator is191

employed here, since it may yield less biased and more efficient estimates, and it also192

requires the component ωe to be estimated. Therefore, the test statistic described in193

Section 2 only needs the additional construction of the partial sum component.194

Classical estimation of the general model described by equation (3) can proceed in195

a number of ways. Harvey (1989) outlines Classical approaches in detail. For example,196

the ‘time domain’ approach outlined in Harvey (1989) employs the Kalman Filter, that197

enables the likelihood to be calculated using the prediction error decomposition. Using198

1We also initially incorporated errors of a moving average nature, but found no significant correlation
of this form, having allowed for lagged dependents in our covariates.
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this approach, the likelihood is expressed as a function of the hyper parameters and the199

priors for the latent components only.2 This likelihood is denoted here as L ({yt} ,Γ0,Ψ).200

Classical estimation usually proceeds by finding the estimated value of Ψ̂ that max-201

imises the likelihood. Subject to regularity conditions, inference about the parameters202

Ψ can then be performed using likelihood ratio, Wald or Lagrange Multiplier tests. Like-203

lihood ratio and Wald tests have distributions that are non-standard (see Harvey, 1989,204

p.234). The estimates of the latents (along with their (co)variances) can be obtained205

(at Ψ̂) by the Kalman Smoother.206

3.2. Bayesian Estimation207

Bayesian inference uses the posterior distribution of the parameters. Unlike the208

Classical approach all the parameters are treated as random variables. The likelihood is209

therefore viewed as the density of the data conditional on these parameters. For example,210

the likelihood above, can be denoted as a marginalised likelihood f ({yt} |Ψ; Γ0) . Con-211

sequently, using the Bayes theorem implies that the prior distribution for Ψ is f (Ψ) .212

It then follows that the posterior distribution is f (Ψ| {yt} ; Γ0) ∝ f ({yt} |Ψ; Γ0) f (Ψ) .213

Providing this posterior can be mapped, Bayesians will report the mean and variance214

of the posterior distribution as point estimates.215

Bayesian estimation with ‘flat’ priors, delivers a posterior density that is, over a216

certain range, approximately proportional to the likelihood. Therefore, Bayesian infer-217

ence can often give results that are similar to those derived using maximum likelihood.218

However, in some situations, Bayesian and Classical estimates may diverge. For exam-219

ple, if there are two distinct local maximums for the likelihood, then there may be two220

distinct parameterisations of the model that equally well represent the sample informa-221

tion. Unlike Classical procedures, Bayesian inference is not based on the behaviour of222

the likelihood function locally around a single point where it has been maximised. From223

a Bayesian perspective, the values of the parameters at the maximum of the likelihood,224

and the curvature of the likelihood at that point, do not fully reflect the sample infor-225

mation. Should the likelihood be multimodel all high density points are reflected in the226

final estimates (the mean and variance of the posterior distribution). Just as impor-227

tantly, however, we can examine the entire posterior distribution of key parameters to228

learn about the data generating process.229

An introduction to a Bayesian approach to estimating structural time series models230

is presented in Koop (2003). Unlike the approach outlined in Koop, we map the pos-231

terior distribution for the parameters of the hyper parameters Ψ using a random walk232

2The latents have been integrated out of the likelihood function as opposed to the ‘concentrated’ or
‘profile’ likelihood. See Harvey (1989) for details.
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Metropolis-Hastings algorithm (see Koop 2003, p.92). This is a simple and efficient233

computational tool for the posterior distribution given that that the number of hyper234

parameters are few. Given draws of Ψ from the posterior distribution of the hyper pa-235

rameters, the smoothed estimates of the latents can then be generated using the Kalman236

Smoother along with an estimate of the covariance matrix for the latents. This could be237

done by simply plugging in a point estimate Ψ̂ and obtaining conditional estimates of238

the latents at that value. However, using the Kalman Smoother to generate the latents239

in this way is not fully Bayesian, because a fully Bayesian estimate of the latents would240

embody the parameter the posterior uncertainty (variability) in the estimates of the241

latents (Ψ). A fully Bayesian approach requires a draw for each of the latents which242

needs to be made for every posterior draw of Ψ within the sampler. While we follow243

this latter approach, we note that it yields similar results in most cases in comparison244

to where the former approach is followed.245

3.3 Bayesian Model Comparison246

By employing Bayesian methods we are also able to compare model performance247

very easily. Working directly with the marginalised likelihood f ({yt} : Ψ,Γ0) has the248

advantage that the values of f ({yt} : Ψg,Γ0) can, for posterior draws of Ψg (where249

g = 1, ..., G), be recorded directly within the estimation process facilitating model com-250

parison. In order to compare models we use the Deviance Information Criteria (DIC)251

of Spiegelhalter et al. (2002). The DIC provides a measure of model performance in252

terms of the balance between goodness of fit and model complexity. In the literature, a253

model with the smallest DIC is considered the preferred model according the DIC cri-254

teria. The DIC is a Bayesian analog of the Classical information criteria (e.g. Akaike).255

Numerically it computes a value of K, which is an estimate of the ‘effective number of256

parameters’. The DIC rewards a high average log likelihood, but penalizes each model257

according the effective number of parameters.258

3.4. Priors259

As discussed above, the use of the Kalman Filter requires priors to be specified for the260

latents (Γ0). These need to be specified in both a Bayesian or Classical context. While, in261

principle, these can be specified using prior information, an alternative, ‘non informative’262

approach is to use the first few observations of the explanatory variables in order to263

construct a proper prior, after which we exclude these observations in estimation. This264

can be done more easily, but equivalently, by setting the mean of the latents to zero and265

the covariance of the latents can be set to be equal to a very large value (e.g. I×108
266
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where I is an identity matrix). The predictive error likelihood (Harvey, 1989, p126) is267

then summed from t = n + d + 1, where n + d is equal to the number of regressors in268

the model and d is equal to the number of non-stationary components in the transition269

equation. Within the Classical approach no further priors are required.270

However, if a Bayesian approach is used, then priors are also required for the hyper271

parameters Ψ. These can be set in a reasonably non-informative way by reparameterising272

the model as Ψ∗ = (lnσ2
e , lnσ

2
v , lnσ

2
w) and then adopting a flat (improper) prior273

p (Ψ∗) = I[−u,∞]

(
lnσ2

e

)
× I[−u,∞]

(
lnσ2

w

)
× I[−u,∞]

(
lnσ2

w

)
(5)

where I[−u,∞] (x) denotes an indicator function which is equal to one if x ∈[−u,∞] and zero274

otherwise. The finite bottom bound is required because as the variance goes to zero,275

then the logged variance becomes near unidentified (which means that the likelihood276

become invariant to smaller values) below a small value −u. Here we set u = 25 (results277

are negligibly different to those we present if we set u = 10 or 50).278

4. Empirical Section279

4.1. Data280

The temperature data that we employ in this Section are obtained from the CRU281

website. These are global temperature anomalies from 1850 to 20093. The forcing282

measures are those used in Mills (2009) available on David Stern’s website4 from 1850283

to 2000. Therefore, our estimated models are over this shorter time period, 1850 to 2000.284

The construction of this data has been discussed in a number of places and therefore we285

do not repeat this here.286

In this paper, as in Mills (2009), we employ the aggregate forcing measure that is287

a linear sum of the greenhouse gases, sulphur dioxides, and solar components. The use288

of aggregative or total forcing can be justified from a theoretical view since they are289

constructed in such a way that the measures should be summable. Moreover, previous290

work using total forcing has suggested that this measure is cointegrated with tempera-291

ture anomalies, and Mills (2009) also finds that a test for equality of the forcing measures292

accepts this restriction. As can be seen from this plot, there is an evident rise in both293

radiative forcing and temperatures over most of the later part of last century.294

3The series we use is Hadcrut3gl. We note that the variance adjusted version of the series available
from the Website http://www.cru.uea.ac.uk/cru/data/temperature/ gives very similar results in the
models we estimated.

4http://www.sterndavidi.com/datasite.html

9



Table 1: Null of Cointegration

No Trend Trend
Cµ=0.218 Cτ=0.219

P value (0.133) P value (0.005)

4.2 Tests for Integration.295

Since the unit root behaviour and tests under the null of no cointegration have been296

presented in the preceding literature we will not repeat this analysis herein. However,297

briefly, as in previous work (e.g. Mills, 2009) unit root tests indicated that both tem-298

perature and radiative forcing series are non-stationary. Both series (temperature and299

radiative forcing) are consistent with being integrated of order one according to Aug-300

mented Dickey Fuller tests along with other tests including those that adopt a unit root301

as the alternative hypothesis. The results of these tests are available from the authors302

on request.303

4.3 Null Hypothesis of No Cointegration304

Tests for cointegration (Johansen rank test) allowing for a restricted trend and in-305

tercept in the long run relationship, indicate that forcing and temperature series are306

cointegrated. The VAR analysis suggests that, using a model with an intercept and a307

time trend, two lags are appropriate (on the basis of an F test of the significance of a308

third lag, and according to both Akaike and Bayes information criteria), and that the309

hypothesis of no cointegration is rejected at below the 1% level of significance. This was310

also supported by Bayesian estimation of the VAR with and without rank restrictions.311

Regardless of lag length, the DIC criteria supported cointegrated models over a fully312

differenced VAR or VAR without rank restrictions. Again due to length constraints313

these are not reported here.314

4.4 Null Hypothesis of Cointegration315

The tests for cointegration, adopting cointegration as the null rather than the alter-316

native, is less definitive. The critical values for the tests of no cointegration Cµ and Cτ317

are given in Shin (1994). However, we simulated the p-values for our sample size (151)318

using 10,000 Monte Carlo trials5. These results are presented in Table 1.319

As can be seen from Table 1, we cannot reject the cointegration hypothesis at the 10%320

level of significance if a trend is not included in the regression, but if a trend is included,321

5Our simulated critical values are very similar to those produced in Shin, (1994), therefore, we
believe that our p-values should be accurate.
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we would reject the cointegration hypothesis at a very low level of significance. The trend322

in the FM regression is not significant, therefore we may as well conclude that the No323

Trend result is reliable (i.e. preferred). Nonetheless, the rejection of the cointegration324

hypothesis when a trend is included needs to be given some weight. Therefore, it is325

not completely clear that the null of cointegration between the two variables cannot be326

rejected using these tests.327

4.5 Structural Time Series Results328

Moving on to an analysis of the structural time series model represented by equation329

(3) under alternative restrictions, we first discuss the Classical Maximum Likelihood330

results, before assessing the results from the Bayesian analysis. In all models (containing331

a random trend βt), the estimate for the parameter σ2
w was indistinguishable from zero332

and a p-value for this restriction based on an adjusted likelihood ratio test was close333

to one. Therefore, for subsequent analysis we imposed the restriction that σ2
w = 0 (the334

trend term βt in the equation is time invariant) for all models.335

Therefore, we have three models:336

• M1: σ2
e and σ2

v (unrestricted model)337

• M2: σ2
v = 0 (cointegrated model)338

• M3: σ2
e = 0 (random walk error model)339

M1 contains both a stochastic intercept and a random error and nests both models340

M2 and M3 as special cases. M2 is equivalent to a standard regression with a stationary341

error (a cointegrated model). M3 has a non-stationary error, with only a random walk342

intercept.343

4.6 Classical Results344

The results presented in this paper include up to three lags of the temperature345

variable as explanatory variables in equation (3). A fourth lag is insignificant in all346

models that we estimated. The significance of the lags depended on the restrictions347

that were placed on the variance terms. For models that have the restriction σ2
e = 0348

imposed, all three lags are highly significant. For models that imposed :σ2
v = 0 only the349

first lag is highly significant. Therefore, we present results for one, two and three lags.350

Due to failure of detectability and stabilisability conditions (see Harvey, 1989 for351

details) if σ2
w = 0, then a formal test of σ2

v = 0 cannot be constructed using likelihood352

ratio, Lagrange Multiplier or Wald statistics. Thus, for performing a formal Classical353
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test of the cointegration hypothesis, we rely on the Shin tests statistics presented in354

Table 1.355

A valid test can be constructed for σ2
e = 0 using a likelihood ratio test provided the356

significance is adjusted to take account that it is on the edge of the parameter space.357

The p-values results for testing restrictions σ2
e = 0 are presented in Table 2 for M3358

containing one, two and three lags.359

Table 2. Likelihood Ratio Tests and Likelihood Comparisons

1 lag 2 lags 3 lags
Null Model= M3∗ 1E-5 0.0005 0.1529
ln(LM2)-ln(LM3) 8.468 3.25 -0.450

*The alternative model is M1. Values represent P-Values for the null hypothesis

As we noted above, the significance of the lags implies that three lags are definitely360

required for a valid test of M3. As we can see from Table 1 when the model contains one361

or two lags only, σ2
e = 0 is rejected. However, where there are three lags in the model we362

cannot reject the null at the 10% level. In other words, provided three lags are included363

in the model (all of which are significant), a model with a pure random walk cannot be364

rejected.365

The importance of the number of lags to include is also apparent when comparing366

models M1, M2 and M3. Comparing the log-likelihoods for each of the models, the367

likelihood function M2 is higher than for M3 for one and two lags, but if three lags368

are included then the likelihood function for the pure random walk error model (M3)369

is in fact slightly higher than for M2. In summary, if three lags are included, then a370

model which has a random walk error cannot be rejected and, this model has a higher371

likelihood function than the cointegrated model.372

Henceforth, we only report the results for models with three lags. The reason for373

this is that for the Classical results the coefficients of explanatory variables are almost374

identical for models M1 and M2 regardless of whether one, two or three lags are included.375

However, as we have outlined above for M3, the third lag is highly significant. Therefore,376

results for M3 would be biased unless three lags are included.377

We now present, in Table 3, our Classical estimates for the structural time series378

models.379
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Table 3. Classical Estimates of Coefficients

M1 M2 M3

tempt−1
.424

(.0829)

0.541

(0.082)

-.338

(.083)

tempt−2
-.1466

(.089)

-0.105

(0.093)

-.361

(.079)

tempt−3
.0253

(.0829)

.111

(.081)

-.2603

(.080)

forcing
.2548

(.0963)

.2434

(.063)

.164

(.226)

trend
.0011

(.0017)

.0001

(.004)

.0082

(.0091)

σe .0958 .1021

σv .0170 . .1073

-2LogL -642.818 -640.87 -641.77

Prediction error variance .011795 .011862 .011656

AIC -4.3209 -4.3152 -4.3327

BIC -4.1411 -4.1354 -4.1529

Normality P-Values∗ 0.3829 0.3026 0.6075

Numbers in parentheses are standard errors
∗From Bowman Shenton Statistic (Harvey, p.260)

380

Considering the Classical results in Table 2, the coefficients for the explanatory381

variables are presented along with estimates of the variances of innovations that drive382

the irregular and random walk components plus other summary statistics. All models383

appear to have normal errors, and according to both the information criteria used,384

M3 is the preferred model. In M1 it is evident that the variances σ2
e is estimated to be385

considerably larger than for σ2
v . However, this change in M2 and M3 whereby setting one386

of the variances to zero, yields a variance estimate of a similar magnitude for the other.387

This may seem surprising, given that the effects of innovations of vt are cumulative and388

would generally therefore be expected to have smaller variance. However, examination389

of the coefficients for the lagged temperatures in the models reveal that coefficients390

are very different in models M1 and M2 compared with M3. The lag coefficients in391

M3 are all negative and sum to around -0.96. This means that the apparently irregular392

component in the series is being captured by negative correlations from period to period,393

even though each shock is treated as having a permanent impact. Notably, the estimates394

from unrestricted model M1 are much more similar to M2 than M3. Importantly, both395
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M1 and M2 have a highly significant positive coefficient on the forcing variable (0.2548396

and 0.2434 respectively).397

Given the magnitudes of the lag coefficients, the long-run multipliers, which are398

defined as α

1−
∑3

i=1
γi

for the impact of forcing on temperatures, are approximately 0.34399

and 0.54 for M1 and M2 respectively. This is in contrast to the smaller and insignificant400

coefficient from M3 (0.1649) and a corresponding long run multiplier at just over half401

that value. Therefore, the findings with regard to the impact of radiative forcing are402

substantively different if we use M3 rather than M1 or M2. Furthermore, as discussed403

above, the restriction of M1 to M2 cannot be rejected on the basis of a Likelihood Ratio404

test, and M3 has a slightly higher likelihood (providing 3 lags are included in the model).405

These results may seem confusing since the unrestricted model M1 yields rather sim-406

ilar results to the restricted cointegrated model M2, yet M3 which yields very different407

estimates seems to be marginally preferred to M2 (if three lags are included). The rea-408

son for this outcome is that there is a global maximum likelihood which has a relatively409

small variance in the random walk component and a larger variance in the irregular410

component. However, the evidence here suggests another local maximum with a small411

irregular component and larger random walk component. Maximum likelihood estima-412

tion reflects only the former (global maximum). However, from a Bayesian perspective,413

point estimates should be derived from the full posterior density, not just a single mode.414

For this reason we now consider Bayesian estimation.415

4.7 Bayesian Results416

The Bayesian estimates of all three models above are presented in Table 4. These417

are presented along with the DIC for each model, which should be at a minimum for418

the best performing model.419

First, it is evident that the two restricted models (M2 and M3) yield virtually identi-420

cal estimates to the Classical results reported in Table 2. This is because by restricting421

either of the variances the values of σe or σv derived from the mean of the posterior422

are almost the same as their maximum likelihood components and we have only a very423

small standard deviation.424

Second, the unrestricted model, when estimated using a Bayesian approach, yields425

quite different results from the Classical approach. Examining the coefficients of M1 it426

becomes clear that the estimates sit in between M2 and M3. This is because, in effect,427

it averages over M2 and M3, since both these models have reasonably high posterior428

densities. This can best be seen by the contour plots of the joint posterior densities for429

σe and σv displayed in Figure 1. There are two clear posterior modes, one where σe is430

very small and σv is around 0.10 and one where σv is very small and σe is around 0.10.431
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Between these two modes there is a ridge of a lower density region that highlights the432

negative covariance between σe and σv. The point estimates obtained by taking the mean433

posterior values are 0.0614 and 0.0575, but neither of these points are high density points434

as such. Rather they sit somewhere in the middle between the two posterior modes.435

The rest of these coefficients also reflect this tendency to average between these two436

highly competing models.437

Third, according the DIC, the models are ranked M3 (top) followed by M1 and438

then M2 which concurs with the Classical information criteria. Thus, the cointegrated439

model is less preferred as compared to the unrestricted model of random walk errors.440

Radiative forcing retains its positive coefficient estimate, but the standard deviations for441

this coefficient are as large or larger for both M1 and M3. Thus a (Bayesian) credible442

interval would contain considerable mass below zero. Interpreting this in Classical terms443

would suggest that the forcing variable is insignificant.444

Table 4. Bayesian Coefficient Estimates

M1 M2 M3

tempt−1
.053

(.351)

0.541

(.082)

-.338

(.089)

tempt−2
-.251

(.128)

-.1056

(.093)

-0.3609

(.0801 )

tempt−3
-0.115

(.159)

.1109

(.082)

-0.2603

(.0811)

forcing
.194

(.180)

0.253

(.063)

0.1649

(.229)

trend
.0047

(0.007)

.0001

(.0004)

.0082

(.009)

σe .0614 .1027 .

σv .0575 .1080

DIC -206.8472 -206.727 -207.60

Numbers in Parentheses are standard deviations.

445
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Figure 1: Contour plot for the joint posterior densities

5. Discussion446

Most recently Mills (2009) presented statistical evidence that there is a ‘long-run447

equilibrium’ between radiative forcing measures and temperature using data from 1850-448

2000. Mills (2009) builds upon work by Brohan et al. (2006), Stern and Kaufmann449

(2000), Kaufmann and Stern (2002), Kaufmann et al. (2006) that broadly supports the450

contention that forcing measures have a quantitative impact on global temperatures.451

Dergiades at al. (2016) provide results on long-run changes in radiative forcing and452

surface temperature consistent with the theory of anthropogenic climate change. Fol-453

berth et al. (2012) find that increased emissions and radiative forcing have a significant454

(negative) impact globally on megacities.455

The results we have presented in our analysis are an example of how there remains456

uncertainty about the form and strength of the statistical relationship between global457

temperatures and human activity. Indeed, our results are not suggesting that there is no458

direct human role in climate change, far from it. But from a strategic perspective they459

speak to the idea that there is still uncertainty as to the specific causal mechanisms and460

as such we need to be somewhat cautious when it comes to how we might best articulate461

the specific type of policy interventions required. This point is also discussed by Tol462

(2018) in an excellent overview of the economics of climate change. As is explained,463
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climate change is universally agreed to be a negative externality and that policy does464

need to be put in place to deal with the effects. However, what remains a hotly debated465

issues is the impact of climate change. The reason why this is so contentious is that466

the impact will in turn inform the price that is placed on carbon and differences opinion467

of this have serious ramifications for policy. Therefore, econometric analysis showing468

causal links between temperature and human activity still matter as this can inform the469

focus of such policy interventions and also the likely price of carbon required to induce470

the necessary changes in behaviour. So remaining uncertainty about the relationships,471

such as the one examined in the paper matter.6472

The impact of any statistical results in this domain can be considered in terms of how473

they may or may not influence policy making. Although there is a general consensus474

about the impact of human economic activity on the climate there still remains much475

uncertainty as to the precise mechanisms through which this works (for examples of this476

within areas of environmental policy making, see Touza and Perrings (2011), Eichner477

and Pethig (2018) and Kersting (2018)). This uncertainty, however, can causes problem478

for government when it comes to making credible commitments. Clearly, if governments479

are able to state a credible position regarding climate policy this can reduce uncertainty480

for economic agents. However, credible commitments by government cannot typically481

be enforced and as such economic agents will always place some positive probability482

on a policy change and as a result a loss of some degree of credibility. But there is483

also the need for policy responses to be flexible especially as new information becomes484

available. An obvious and well understood consequence of this resulting uncertainty will485

be impacts in terms of investment directed to dealing with aspects of climate change.486

Zetland (2017) argues that within the context of group cooperation in the provision487

of public goods it may be easier to promote cooperation in the provision public goods488

within a more competitive setting whereby teams (or coalitions) are encouraged to489

beat other teams (or coalitions) rather than cooperating with them. Of course, there490

are steeps that can be taken to minimize the impact of credible commitment whilst491

retaining flexibility. But, the econometric results we present and the literature we add492

to demonstrate clear that there remains aspects of uncertainty and that this means that493

there must be flexibility in policy making even if this impacts on policy makers ability494

to credible commitment to policy options today.495

Mills (2010) provides a useful take on this issue. Essentially, statistically arguments496

alone will not provide definitive evidence or singularly resolve many of the most highly497

6We contend that there needs to be less strident expression of opinion about this topic and the
research published. This is neatly illustrated in the response to Tol (2016) by Cook et al. (2016) who
criticise Tol because of a specific use of data on opinions about climate change. Exchanges such as this
distract attention from the very real and important issues that climate change presents.
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debated issues within the literature. As he neatly explains, when it comes to examining498

these issues:499

“Statistical arguments alone are unlikely to settle issues such as these, but neither500

are appeals to only physical models or the output of computer simulations of coupled501

general circulation models. In such circumstances it would appear that, to quote another502

ageless proverb, ‘you pays your money and you takes your choice’. Indeed, it could be503

argued that such a proverb is particularly apposite given the ongoing debate concerning504

the potential costs of combating global warming and climate change, the most notable505

recent protagonists being Stern (2007) and his reviewers, for example, Nordhaus (2007),506

Tol and Yohe (2006) and Weitzman (2007).” (p. 424).507

Finally, there is scope for micro and context specific studies of greenhouse gas emis-508

sions to provide greater context to the type of global study we have presented here.509

For example, the single and multiple country level studies, such as those undertaken510

by Guntin-Araujo et al (1999), Fereidouni (2013), Yusuf et al. (2014) and Raheem and511

Ogebe (2017) can help to empirically link global carbon dioxide emissions with specific512

sources.513

The way to address this is as follows. If going to further our understanding of global514

temperatures there is a need to examine and challenge existing hypotheses - this is not515

to refute global warming but to at least raise the prospect that current mechanisms516

as they are understood may need to be redefined in light of alternative model results.517

This is a very important result while formulating appropriate environmental policy at518

national and international levels, to realise more effective outcomes.519

6. Conclusions520

In this paper, we have presented further empirical investigation of the relationship521

between radiative forcing and global temperature anomalies. Unlike other recent work522

exploring this relationship, we used a structural time series approach comparing alter-523

native models as well as adopting cointegration as the null hypothesis. Our findings524

suggest that previous findings of cointegration between forcing measures and tempera-525

tures should be treated tentatively. While the data is consistent with a positive impact526

of radiative forcing on temperatures, the significance of the impact of forcing was model527

dependent. While a model that assumes cointegration between forcing temperatures528

performs reasonably well, a non-cointegrated model performs just as well, or on the basis529

of the tests conducted here, even better. This was particularly evident when examining530

the posterior density of the standard deviations in the irregular and random walk errors.531

The reason for this finding has been explained using Bayesian methods. Specifically,532

a contour plot of the posterior densities showed two peaks, one in a cointegrated region533
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and another in a cointegrated region. In addition, the DIC model selection criteria also534

suggested that restricting the model to one with only a random walk error improved the535

performance of the model. Finally, in models where temperatures and total forcing are536

not treated as being cointegrated, then the evidence that total forcing has an impact on537

temperatures is reduced. However, we would contend that given the ongoing debates538

within the literature regarding how best to statistically capture, explain and model this539

relationship, that researchers should avoid being too strident in their claims about model540

performance. This then inevitably implies uncertainty regarding our understanding of541

the relationship which in turn has implications for how policy makers respond to and542

use statistical results of this in policy design and implementation.543
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