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Abstract 

 

Flooding has the highest frequency of occurrence of all types of disaster arising from natural 

hazards across the globe. The anticipation and forecasting of floods is a key component in 

managing, preparing for and mitigating the effects of severe events, from local to international 

scales. This research aims to explore ways to extend the predictability of flood hazard at the 

global scale and provide earlier indications of potential flood events.  

Two approaches for predicting river flow extremes on seasonal timescales are developed and 

tested; statistical forecasts based on the known influence of El Niño and La Niña on river flow 

and flooding at the global scale, and dynamical forecasts using numerical weather prediction 

systems. The statistical forecast development has shown that the likelihood of increased or 

decreased flood hazard during El Niño and La Niña events is much more complex than is often 

perceived and reported. The dynamical forecasts are shown to be more skilful than a long-term 

average climatology in many rivers worldwide, up to four months in advance in some cases. 

These approaches both have the potential to provide early warning information, and to support 

El Niño preparedness activities. As such, a comparison of the ability of the two forecasts to 

predict hydrological extremes during El Niño is undertaken, highlighting regions of the globe 

where each forecast is (or is not) skilful compared to a forecast of climatology, and the 

advantages and disadvantages of each approach. 

Both of these new seasonal hydro-meteorological forecasts are openly available, with the 

dynamical forecasts produced operationally as part of the Global Flood Awareness System 

(GloFAS-Seasonal), supported by the Copernicus Emergency Management Service. This 

research has provided a step change in moving from forecasts that were previously only available 

for precipitation, to global-scale forecasts of hydrological variables at extended lead-times. 
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Chapter 1.  Introduction    
 

Chapter 1 

Introduction 

1.1 Motivation and Aims 

Flooding has the highest frequency of occurrence of all types of disaster arising from natural 

hazards across the globe, accounting for 39% of all “natural disasters” since the year 2000 

(Guha-Sapir et al., 2018). Floods can be caused by a variety of natural processes, and affect 

millions of people every year through displacement from homes, unsafe drinking water 

(sometimes leading to disease), destruction of infrastructure, and injury and loss of life. In 2017 

alone, >57 million people were affected worldwide by the >120 disasters resulting from floods 

(Guha-Sapir et al., 2018). With an increasing global population and increasing populations living 

in flood-prone areas, the anticipation and forecasting of floods is a key component in managing, 

preparing for and mitigating the effects of severe events, from local to international scales. 

Global overviews of upcoming flood events provide valuable information for organisations 

working at the global scale, across a range of water-related sectors from agriculture to 

humanitarian aid. Producing forecasts at the global scale has only become possible in recent 

years, due to the integration of meteorological and hydrological modelling capabilities, 

improvements in data, satellite observations and land-surface hydrology modelling, and 

increased resources and computer power (Alfieri et al., 2012, 2013; Bierkens, 2015; Brown et 

al., 2012; ECMWF, 2018a). While several forecasting centres produce operational forecasts1 of 

floods in the medium-range, that is, up to ~2 weeks ahead, earlier indications of potential flood 

events, many weeks or even months in advance, could provide crucial information for flood 

preparedness and disaster risk reduction. Indeed, the World Meteorological Organization 

(WMO, 2017) states that economic losses due to severe hydrometeorological events have 

increased, over the past fifty years, nearly 50 times, but that loss of life has decreased by a factor 

of 103. This significant decrease in loss of life is attributed to improved monitoring and 

forecasting of floods alongside more effective preparation and planning.  

The aim of this research is to explore ways to extend the predictability of flood hazard at the 

global scale and provide earlier indications of potential flood events.  Predictability is defined as 

                                                             
1 The term operational here refers to real-time forecasts produced by a forecasting centre, that are a 24/7 supported 
service ensuring timely dissemination and ongoing provision of forecasts.  
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“the extent to which future states of a system may be predicted based on knowledge of current 

and past states of the system”; in other words, predictability is the degree to which a prediction 

can be made, qualitatively or quantitatively, or the longest achievable lead time for a forecast. 

(AMS, 2012). Broadly speaking, there are two key ways in which the inherent predictability of 

the atmosphere and land surface can be used to provide early warning information: 

• Statistical analysis based on large-scale climate variability and teleconnections 

• Seasonal forecasting using coupled ocean-atmosphere general circulation models2 

While both of these have been studied and/or implemented for meteorological variables, 

forecasts of hydrological variables are often not considered or provided, particularly for large or 

global scales. For example, information on the likelihood of extreme precipitation driven by 

large-scale modes of climate variability is readily available, and is often used as a proxy for 

flooding due to the absence of the equivalent information for river flow. Additionally, while 

seasonal forecasts of meteorological variables including precipitation are produced at many 

operational forecasting centres, no such forecasts are available for river flow at the global scale. 

However, recent research has shown that the link between precipitation and flood magnitude is 

nonlinear (Stephens et al., 2015), and as such, precipitation may not be the best indicator of 

potential flood hazard (Coughlan de Perez et al., 2017). This thesis aims to combine both 

meteorological and hydrological aspects of flood predictability and forecasting, in order to 

explore both of the aforementioned avenues for extending flood predictability. This is done 

through the following specific objectives: 

1. Analyse the link between El Niño Southern Oscillation (ENSO), the most dominant 

mode of large-scale climate variability, and river flow across the globe, using historical 

events to answer the question “what is the likelihood of flooding during El Niño?”.  

2. Develop and test seasonal forecasts of flood hazard for the global river network, by 

driving the hydrological component of the Global Flood Awareness System (GloFAS) 

with seasonal meteorological forecasts from the European Centre for Medium-Range 

Weather Forecasts’ (ECMWF) coupled ocean-atmosphere general circulation model.  

                                                             
2 It is noted that coupled ocean-atmosphere GCMs here refer to the dynamical models used to produce seasonal 
forecasts. In hydrology, this is often also referred to as numerical weather prediction (NWP), however NWP 
traditionally refers to atmosphere-only models used to produce short-range (up to 5 days ahead) weather forecasts 
that are not suitable for forecasting on seasonal timescales.  
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3. Assess the potential usefulness of both the statistical (1) and dynamical (2) approaches 

to extending flood predictability and providing early indications of flood hazard at the 

global scale, for decision-making purposes. 

The results presented in this thesis will provide a hydrologically relevant, global scale analysis of 

flood hazard predictability, alongside providing the equivalent information for hydrological 

variables that exists for meteorology. This information has the potential to be used to inform 

decision-making across a range of water-related sectors, and aid flood preparedness and disaster 

risk reduction efforts.  

1.2 Structure of the Thesis 

This thesis is structured around four papers. To begin with, Chapter 2, the first paper presented 

in this thesis, provides a detailed overview of the current state of large-scale flood forecasting. 

Six operational large-scale flood forecasting systems are reviewed, and the challenges and future 

advances in global scale flood forecasting are discussed, including the possibility of extended-

range forecasting out to seasonal timescales. Chapter 3 provides further background material 

relating to ENSO and its influence on weather and climate, including river flow, to support the 

introductory literature presented in Chapter 4.  

Chapter 4 is the second of the papers presented in this thesis, addressing the first objective by 

using a new 110-year model reconstruction of river flow to evaluate the link between ENSO 

and river flow, and map the likelihood of increased or decreased flood hazard during El Niño 

and La Niña events.  

The second objective of this thesis is addressed in Chapter 5, which presents the third paper. 

Chapter 5 introduces GloFAS-Seasonal, the first global scale seasonal hydro-meteorological 

forecasting system designed to provide early indications of high and low river flow for the global 

river network. GloFAS-Seasonal was developed and implemented operationally as part of this 

research.  The paper provides technical detail regarding the development of the system, 

information on the forecast products available, and an initial evaluation of the skill of the 

forecasting system.  

Chapter 6 works towards the third objective of this thesis, evaluating the potential usefulness 

of both the statistically-based historical probabilities of ENSO-driven flood hazard presented 

in Chapter 4, and the resource-intensive GloFAS-Seasonal forecasting system presented in 
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Chapter 5. This fourth paper uses river flow observations to assess and compare the ability of 

the two forecasts to predict high and low river flow during El Niño. 

Chapter 7 summarises the findings and wider contribution of this thesis and outlines scope for 

further work. 

The four papers presented in this thesis have been reformatted as chapters, and have not been 

modified. The published versions of Chapters 2, 4 and 5 are provided in the Appendix, alongside 

further co-authored publications related to this work. Chapter 6 was still in press at the time of 

completing this thesis. Author contribution statements are provided at the beginning of each 

relevant chapter.  
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Chapter 2 

The Current State of Large Scale  

Flood Forecasting 

This chapter has been published as a review paper in Wiley Interdisciplinary Reviews (WIREs) 

Water with the following reference:  

Emerton, R. E., E. M. Stephens, F. Pappenberger, T. C. Pagano, A. H. Weerts, A. W. Wood, P. 

Salamon, J. D. Brown, N. Hjerdt, C. Donnelly, C. A. Baugh and H. L. Cloke, 2016: Continental 

and Global Scale Flood Forecasting Systems, WIREs Water, 3 (3), 391-418, 

doi:10.1002/wat2.1137*

The contributions of the authors of this paper are as follows: R.E.E. conducted the literature 

review and wrote the paper with guidance from H.L.C., E.M.S. and F.P., with the exception of 

parts of section 2.3.4, written by A.W.W., and section 2.6.3, written by C.A.B. Section 2.5 was 

written in collaboration with F.P. Further information beyond that which was documented in 

the literature was provided by P.S. (EFAS & GloFAS), T.C.P. (BoM FFWS), A.H.W. 

(GLOFFIS), A.W.W. and J.D.B. (U.S. HEFS), N.H. and C.D. (E-HYPE). All authors 

commented on the manuscript. Overall, 80% of the writing was undertaken by R.E.E.  

Abstract. Floods are the most frequent of natural disasters, affecting millions of people across 

the globe every year. The anticipation and forecasting of floods at the global scale is crucial to 

preparing for severe events and providing early awareness where local flood models and warning 

services may not exist. As numerical weather prediction models continue to improve, 

operational centres are increasingly using the meteorological output from these to drive 

hydrological models, creating hydro-meteorological systems capable of forecasting river flow 

and flood events at much longer lead times than has previously been possible. Furthermore, 

developments in, for example, modelling capabilities, data and resources in recent years have 

made it possible to produce global scale flood forecasting systems. In this paper, the current 

state of operational large scale flood forecasting is discussed, including probabilistic forecasting 

of floods using ensemble prediction systems. Six state-of-the-art operational large scale flood 

                                                           
* ©2016. The Authors. WIREs Water published by John Wiley & Sons. This is an open access article under the 
terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any 
medium, provided that the original work is properly cited. 

https://onlinelibrary.wiley.com/doi/10.1002/wat2.1137
https://onlinelibrary.wiley.com/doi/10.1002/wat2.1137
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forecasting systems are reviewed, describing similarities and differences in their approaches to 

forecasting floods at the global and continental scale. Currently, operational systems have the 

capability to produce coarse-scale discharge forecasts in the medium-range and disseminate 

forecasts and, in some cases, early warning products, in real time across the globe, in support of 

national forecasting capabilities. With improvements in seasonal weather forecasting, future 

advances may include more seamless hydrological forecasting at the global scale, alongside a 

move towards multi-model forecasts and grand ensemble techniques, responding to the 

requirement of developing multi-hazard early warning systems for disaster risk reduction. 

2.1 Introduction 

Flooding has the highest frequency of occurrence of all types of natural disaster across the 

globe, accounting for 39% of all natural disasters since 2000, with >94 million people affected 

by floods each year worldwide (Guha-Sapir et al., 2018) through displacement from homes, 

unsafe drinking water, destruction of infrastructure, injury and loss of life. With an 

increasing population living in flood-prone areas, the forecasting of floods is key to 

managing and preparing for imminent disaster. 

Investment in building resilience is prioritised in the Sendai Framework for Disaster Risk 

Reduction (DRR) 2015-2030 (UNISDR, 2015), with one component of this being the 

development and use of multi-hazard early warning systems (WMO, 2017). The World 

Meteorological Organization (WMO) states that economic losses due to severe hydro-

meteorological events have increased, over the past fifty years, nearly 50 times. However, the 

loss of life globally has decreased by a factor of 103. This significant decrease in loss of life 

is attributed to improved monitoring and forecasting of hydro-meteorological events 

alongside more effective preparation and planning. Four components are suggested by the 

WMO (WMO, 2017) for effective early warning systems; detection, monitoring and 

forecasting hazards, analyses of risks involved, dissemination of timely warnings and 

activation of emergency plans to prepare and respond. 

The development of forecasting systems producing forecasts and warnings of severe hazards 

such as floods, droughts, storms, fires and tropical cyclones on a global scale are critical for 

disaster risk reduction and further decreases in loss of life. The Sendai Framework for 

Disaster Risk Reduction 2015-2030 (UNISDR, 2015) states that at global and regional levels 

it is important to “promote co-operation between academic, scientific and research entities 

and networks and the private sector to develop new products and services to help reduce 
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disaster risk, in particular those that would assist developing countries and their specific 

challenges”, and forecasting systems such as those discussed here are essential in achieving 

this, particularly in providing forecasts for countries and regions where no other forecasts 

and early warnings are available. 

The need for large scale flood forecasting systems can be broken down into three key 

factors: 

i) To provide information on floodiness (Stephens et al., 2015) across areas larger than a 

catchment, for example to indicate where flooding during the rainy season will be worse than 

normal; information that is of high importance to humanitarian organisations (Braman et al., 

2013). 

ii) To provide forecasts in basins across the globe where currently there are no forecasts 

available, which is not a massive scale-up of resources. Large-scale forecasting is therefore cost-

effective compared to focussing on developing and providing hydro-meteorological forecasts 

for single catchments, and greatly aids disaster risk reduction and flood early warning efforts 

globally.  

iii) To support existing capabilities, for example by using ensemble forecasting techniques to 

enable probabilistic flood forecasts, or at longer lead-times for earlier warnings. Probabilistic 

and extended-range forecasting is computationally expensive, and in addition, many countries 

do not currently pay for access to these distributed meteorological forecast products and 

therefore are unable to produce any form of hydro-meteorological forecast. 

This review outlines the developments which have led to forecasting floods on the global 

scale, the current state-of-the-art in operational large-scale (continental and global) flood 

forecasting, and future developments in global scale flood forecasting and early warning. 

2.2 Advances in the Science and Techniques of Global Forecasting 

Producing forecasts at the global scale has only become possible in recent years, due to the 

integration of meteorological and hydrological modelling capabilities, improvements in data, 

satellite observations and land-surface hydrology modelling, and increased resources and 

computer power (Alfieri et al., 2012, 2013; Bierkens, 2015; Brown et al., 2012; ECMWF, 2018a). 

While several meteorological and hydrological forecasting centres now run operational flood 

forecasting models, many of these are for specific locations, river basins or countries (Alfieri et  
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al., 2012). 

Table 1: Technical details of quantitative precipitation forecasts used in large-scale flood forecasting (adapted 

from Alfieri et al., 2012). 

 

Global hydrological modelling is complex due to the geographical variation of rainfall-runoff 

processes and river regimes (Pappenberger et al., 2010), but large scale flood forecasting systems 

are now emerging with recent scientific and technological advances and increasing integration 

of hydrological and meteorological communities, allowing for uncertainty to be cascaded from 

the meteorological input to the river flow forecasts (Ramos et al., 2010). 

Product  

Type 

Spatial  

Extent 

Spatial 

Resolution 

Temporal 

Resolution 

Forecast 

Range 

Ocean-

Atmosphere 

Coupling 

Uncertainty 

Radar  

Nowcasting 

~10,000 - 

50,000km2 
1-4km 5-60min 1-6h No 

Low 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High 

Ensemble Radar 

Nowcasting 

~10,000 - 

50,000km2 
1-4km 5-60min 1-6h No 

Radar-NWP 

Blending 
Regional ~2km 15-60min ~6h No 

Limited-Area  

NWP 

Regional - 

Continental 
2-25km 1-6h 1-3 days Varies 

Ensemble 

Limited-Area 

NWP 

Regional - 

Continental 
2-25km 3-6h ~5-30 days Varies 

Global NWP Global ~15-100km ~3-6h ~5-30 days Varies 

Sub-seasonal to 

Seasonal 

Forecasts 

Continental - 

Global 
~25-100km ~3-24h ~15-60 days Yes 

Seasonal 

 Forecasts 
Global ~15-100km ~6-24h Months Yes 
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In this section we analyse the key advances that have enabled the forecasting of floods at the 

global scale. 

2.2.1 The Increasing Skill of Precipitation Forecasts 

The skill of precipitation forecasts in global NWP models has increased significantly in recent 

years (Liu et al., 2013; Mittermaier et al., 2013; Novak et al., 2014) (e.g., gaining ~2days 

precipitation skill since 2000 (Richardson et al., 2012)). With skilful medium-range quantitative 

precipitation forecasts (QPFs) being produced by NWP models across the globe, it has become 

possible to produce skilful forecasts of river flow and flooding at large scales for the purpose of 

early warning (Bartholmes and Todini, 2005). While there exist many different definitions of a 

skilful forecast, this typically refers to correlation of the forecast with observations out to a 

certain lead time. Table 1 outlines the resolutions and forecast ranges of some of the main QPF 

products used in operational large-scale flood forecasting systems (Alfieri et al., 2012). 

Precipitation is challenging to forecast due to the chaotic nature of the atmosphere (Lorenz, 

1969); whereby a small change in the initial conditions of the system can result in an 

unpredictable outcome. The underlying physical processes of precipitation generation are 

complex to model, and modelling deficiencies can lead to forecast inaccuracies, particularly at 

longer lead times (Cuo et al., 2011). In general, due to lack of observations, precipitation 

predictions are less skilful in the southern hemisphere, although the difference in the skill of 

forecasts between the hemispheres has reduced significantly since the introduction of satellite 

observations and data assimilation (Cuo et al., 2011; Simmons and Hollingsworth, 2002). 

Limited data are also an issue in much of the tropics, alongside difficulties associated with the 

simulation of convective precipitation (Krishnamurti et al., 1999). While QPF skill depends 

heavily on the region, season, intensity and storm type (Cuo et al., 2011), precipitation skill is 

generally good for rainfall generated by synoptic scale frontal weather systems (Olson et al., 

1995). The intensity of precipitation tends to be one of the major problems in QPFs, with 

convective (Krishnamurti et al., 1999) and orographic enhancement (Arduino et al., 2005) 

processes tending to result in an under-prediction of intensity, alongside the tendency of most 

global models to over-predict the intensity of light precipitation (Haiden et al., 2014). Many 

NWP models struggle with displacement (Cuo et al., 2011; Ebert and McBride, 2000); while the 

areal extent, timing and intensity of precipitation may be correct, precipitation displacement can 

be extremely detrimental to forecasts of river flow and flooding. 

With ongoing improvements to NWP models (resolution increases, new methods of simulating 

the physical processes and increasing computer power), (Mittermaier et al., 2013; Novak et al., 
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2014; Richardson et al., 2012; Tang et al., 2013), alongside developments in model 

interoperability services, cloud services, and open data and models, precipitation forecasts have 

become more useful to hydrological applications. 

2.2.2 Ensemble Flood Forecasting – Representing Uncertainty 

Over the past two decades, NWP has moved from single-solution forecasts of the future state 

of the atmosphere, to probabilistic forecasts using ensemble prediction systems (EPS;  Cloke 

and Pappenberger, 2009). Probabilistic forecasts allow the inherent uncertainties in NWP to be 

represented (Demeritt et al., 2007; Liu et al., 2013). In hydrological modelling, the four main 

sources of uncertainty are input data, evaluation data, model structure and model parameters 

(Kauffeldt, 2014; Pagano et al., 2013; Shaw et al., 2011; Wood and Lettenmaier, 2008). The 

relative importance of these uncertainties tends to vary according to catchment characteristics, 

event magnitude and lead time of the forecast (Cloke and Pappenberger, 2009; Ramos et al., 

2010), but it is generally accepted that the greatest uncertainty in flood forecasting beyond 2-3 

days lead time stems from the meteorological input (Cloke and Pappenberger, 2009; Kauffeldt, 

2014). 

The standard approach in NWP is to produce a single (deterministic) forecast from the initial 

state, whereas EPS recognise and represent the uncertainty in the initial conditions by perturbing 

them to produce several initial states (Buizza et al., 2005; Leutbecher and Palmer, 2008). The 

forecast model is run from each of the perturbed initial states, producing many varying, but 

valid and equally probable, forecast scenarios. In addition to sampling the error in the initial 

state, many centres also incorporate stochastic physics, which involves applying random 

perturbations of the parameterised physical processes (Buizza et al., 2007). 

Predictions of river discharge are usually produced by providing the EPS as input to a 

hydrological model (Clark and Hay, 2004; Cloke et al., 2013b; Cloke and Pappenberger, 2009; 

Pagano et al., 2013). Prior to this, some pre-processing may be required (Cloke et al., 2013b; 

Pagano et al., 2013); scale corrections (downscaling or disaggregating) are made, as due to the 

irregular shape of catchments, the scale (temporal and spatial) does not usually correspond 

between the EPS and the hydrological model (Liu et al., 2013). Bias or spread corrections may 

also need to be made (Cloke and Pappenberger, 2009). 

The use of EPS in flood forecasting allows probabilistic forecasts of flood events at much longer 

lead times than has previously been possible, and is useful in producing forecasts in catchments  
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Table 2: Operational large-scale flood forecasting systems. 

Forecasting 
System 

EFAS 
(European 

Flood 
Awareness 

System) 

E-HYPE 
(European 

Hydrological 
Predictions for 

the 
Environment) 

FFWS 
(Flood 

Forecasting 
& Warning 

Service) 

HEFS       
(Hydrologic 
Ensemble 
Forecast 
Service) 

GloFAS             
(Global Flood 

Awareness 
System) 

GLOFFIS 
(Global Flood 

Forecasting 
Information 

System) 

Domain 
Continental 

(Europe) 
Continental 

(Europe) 
Continental 
(Australia) 

Continental 
(USA) 

Global Global 

No. Ensemble 
Members 

65 1 ≤4 
23 Short to 

Medium Range, 
1 Long Range 

51 73 

Forecast Range 
(Days) 

15 10 10 
Sub-Hourly to 
Several Years 

45 15 

Spatial 
Resolution 

5km, Regular 
Grid 

~15km, 
Irregular Grid, 
Varies by Basin 

~10km Varies by Basin 
10km, Regular 

Grid 
10km, 50km, 
Regular Grid 

Forecast 
Frequency 

12-Hourly Daily 
6-Hourly to 
12-Hourly 

Sub-Daily to 
Daily 

Daily 6-Hourly 

NWP Input 

ECMWF ENS, 
ECMWF 

Deterministic, 
DWD 

Deterministic, 
COSMO- 

LEPS 

ECMWF 
Deterministic 

BoM 
ACCESS 
Global, 

Regional, 
City-Scale 

and 
Relocatable 

Deterministic 
Forecasts 

RFC 
Deterministic, 

WPC 
Deterministic, 
GEFS, CFS, 

Historical 
Observations 

ECMWF ENS 

ECMWF ENS, 
GEFS, GFS, 

Historical 
Forcing 

Rainfall-Runoff 
Model 

Lisflood 
Europe 

HYPE 

GR4J (Daily), 
GR4H 

(Hourly), 
URBS 

Suite of Models 
(see Figure 8) 

HTESSEL  
PCR-

GLOBWB, 
W3RA 

Routing Model 
Lisflood 
Europe 

HYPE 
Muskingum 

Channel 
Routing 

Suite of Models 
(see Figure 8) 

Lisflood Global Deltares wflow 

River Network JRC Dataset 
HydroSHEDS, 

HYDRO1K 
Catchment-

SIM 
Suite of Models 
(see Figure 8) 

HydroSHEDS, 
HYDRO1K 

PCR-
GLOBWB, 
SRTM90m, 

HydroSHEDS 

Organisation JRC, ECMWF SMHI BoM 
National 
Weather 
Service 

JRC, ECMWF Deltares 

Website www.efas.eu 
e-hypeweb. 

smhi.se 

www.bom.go
v.au/ 

water/floods 

water.weather.g
ov/ahps/foreca

sts.php 

www.globalfloo
ds.eu 

 

Corresponding 
Figure Number 

2 5 6 8 10 12 
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where no other input data is available. Cloke and Pappenberger (2009) give a detailed review of 

the benefits of ensemble over deterministic flood forecasts, particularly looking at advantages 

for issuing flood alerts and warnings. Probabilistic forecasts of upcoming events have been 

shown to provide greater skill than deterministic forecasts (Stephens and Cloke, 2014), and 

provide key information about the possibility of occurrence of an extreme event. 

2.2.3 Operational Large Scale Flood Forecasting 

There exist various large-scale hydrological models run by communities around the globe; 

Bierkens et al. (2015) give a detailed overview of the properties of 14 global scale and 4 

continental scale models. Not all of these models are used operationally for the purpose of flood 

forecasting, and as such, a list of operational continental and global scale flood forecasting 

models, alongside key system information, is provided in table 2. 

Figure 1 shows a simplified conceptual model for a large-scale flood forecasting system: the 

components required and the output generated within each component. The operational 

systems outlined in table 2 are the focus of this review, and each takes a different approach to 

the components of the conceptual model. In the following sections we benchmark the state of 

current science and technology in undertaking operational continental and global scale 

flood forecasting and early warning. 

Figure 1: A conceptual large-scale hydro-meteorological flood forecasting system. 

2.3 Continental Scale Flood Forecasting Systems 

There are currently four operational continental scale flood forecasting systems, two for 

Europe; the European Flood Awareness System (EFAS) of the European Commission (EC), 

and the European HYdrological Predictions for the Environment (E-HYPE) model of 
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the Swedish Meteorological and Hydrological Institute (SMHI). The Bureau of Meteorology 

(BoM) run the Flood Forecasting and Warning Service (FFWS) for Australia, and the U.S. 

National Weather Service (NWS) run a model covering the Continental USA; the 

Hydrologic Ensemble Forecasting Service (HEFS). This section outlines the components of, 

and the forecast products produced by, each system. 

2.3.1 The European Flood Awareness System 

EFAS is an EC initiative developed by the Joint Research Centre (JRC) to increase 

preparedness for riverine floods across Europe. It was in development from 2002, tested from 

2005-2010, and has been operational since 2012. After devastating, widespread flooding on the 

Elbe and Danube rivers in 2002, the EC began development of EFAS, with the aim of providing 

transnational, harmonised early warnings of flood events and hydrological information to 

national agencies, complementing local services (Thielen et al., 2009). Various consortia execute 

different aspects (e.g. computation and dissemination) of the EFAS operational suite.  

Figure 2: Components of the European Flood Awareness System (EFAS). 

Model Components 

Rather than using just one meteorological NWP forecast as input, EFAS uses four different 

forecasts; two ensemble forecasts and two deterministic. Figure 2 details the various 
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components of the EFAS suite, including key information regarding the NWP models. The 

precipitation, temperature and evaporation from each of the four forecasts are used as input to 

the Lisflood hydrological model, which is used as both the rainfall-runoff and the routing 

components shown in figure 1, and simulates canopy, surface and sub-surface processes such 

as snowmelt (including accounting for accelerated snowmelt during rainfall) and preferential 

(macropore) flow, soil and groundwater processes (Thielen et al., 2009). 

Simulated ensemble hydrographs are produced by Lisflood, however these alone do not 

constitute a flood forecast; a decision-making element needs to be incorporated (Thielen et al., 

2009). Due to the often limited number of discharge observations in many areas of the globe, 

these critical thresholds cannot be derived directly from observations. As such, meteorological 

data are run through Lisflood to calculate a 22-year timeseries of discharge, to provide a 

reference threshold for minor or major flooding at each grid cell. 

Figure 3: The European Flood Awareness System (EFAS) showing (a) the main interface with high (red) and 

medium (yellow) reporting points, flood alerts (warning triangles) and probability (% likelihood) of exceeding 

50mm of precipitation (green shading) during the forecast period (10 days), (inset a) the flood alert displayed 

when the alert point is clicked on, (b) the return period hydrograph with return period thresholds (1.5 years 

green, 2 years yellow, 5 years red, 20 years purple), (c) upstream snow melt forecast, (d) upstream precipitation 

forecast. 

Forecast Visualisation 

Alongside warnings for each forecast point, the EFAS interface (e.g. figure 3) provides 

ensemble hydrographs, which allow interpretation of the spread of the ensemble and the 

uncertainty in the forecast. Persistence diagrams showing information about the previous 
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four forecasts also give the user additional information on the forecast uncertainty, as NWP 

models should be able to pick up large scale synoptic weather systems which typically produce 

severe events, in advance, therefore showing a flood risk consistently in each forecast run 

(Thielen et al., 2009). The EFAS interface provides a map of Europe, with all points forecasting 

a flood event designated by a colour responding to the warning threshold; this allows an 

overview of forecast flood events across the continent. The information and visualisation 

within EFAS are designed to give clear, concise and unambiguous early warning results. 

Warning Dissemination 

Copernicus is the European Emergency Management Service, and EFAS is the operational 

flood early warning system designed to disseminate warnings for Europe under the 

Copernicus initiative. According to the World Meteorological Organization Executive Council 

(EC-LVII-Annex VII; WMO, 2005), National Meteorological and Hydrological Services 

(NMHS) constitute the single authoritative voice on weather warnings in their respective 

countries. Therefore, in order to respect the single voice principle also with regard to floods, 

EFAS real-time information is provided only to hydro-meteorological authorities signing a 

“Condition of Access” document.   

Box 1: Example of an operational EFAS flood alert, sent to EFAS partners and national and regional 

services on 25th June 2015 via the EFAS dissemination centre (the Swedish Meteorological and 

Hydrological Institute, SMHI). 

EFAS FLOOD ALERT REPORT 

Dear Partner,  

EFAS predicts a high probability of flooding for Norway - Otta and Lagen-Mjosa tributaries 

(Glomma basin) from Monday 29th June onwards.  

According to the latest forecasts (2015-06-25 12 UTC) up to 100% EPS (VAREPS) are 

exceeding the high threshold (>5 year simulated return period) and up to 86% EPS (VAREPS) 

exceeding the severe threshold (>20 year simulated return period).  

Compared to the VAREPS mean, the ECMWF deterministic forecast is comparable and the 

DWD deterministic forecast is lower.  

The earliest flood peak is expected for Saturday 4th of July 2015.  

Please monitor the event on the EFAS-IS interface (http://www.efas.eu) 
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EFAS sends warning emails to these national authorities responsible for flood forecasting, 

designed to bring awareness of an upcoming flood event, with further details accessed through 

the interface. There are four types of warning emails provided; Flood Alerts are issued when a 

river basin has a probability of exceeding critical flood thresholds more than 2 days ahead, 

Flood Watches are issued when there is a probability of a river basin exceeding critical 

thresholds but the event does not satisfy the conditions for a Flood Alert (such as river basin 

size or warning lead time), and Flash Flood Watches are issued when there is a probability 

>60% of exceeding the flash flood high alert threshold. An example of an EFAS Flood 

Alert is given in Box 1. The 2 day lead time criteria is specified as the forecasting systems used 

by the national authorities have usually issued a national warning with a lead time of up to 2 

days. Additionally, daily overviews are sent to the Emergency Response Coordination 

Centre (ERCC) of the EC, containing information on ongoing floods in Europe, as reported 

by the national services and EFAS warnings. 

Forecast Verification 

EFAS also undergoes forecast verification, with two methods used for this system. Firstly, 

the hits, false alarms and misses are assessed for each flood event, with events evaluated 

through feedback reports and news media. Secondly, skill scores are calculated and reported 

regularly through EFAS bulletins, available via the website (see table 2). 

Operational Applications 

EFAS is integrated in the daily forecasting procedures of many national hydrological 

services across Europe, providing operational early warnings and additional information 

which is used for decision making purposes at national and local scales. Additionally, EFAS 

is used by the ERCC to compile reports on the flood situation and outlook, and for the 

co-ordination of emergency response, at the continental scale.   

2.3.2 The European HYdrological Predictions for the Environment Model 

E-HYPE is a multipurpose model based on open data (table 3), which is used for various 

applications such as water management, research experiments and flood forecasting 

(Donnelly et al., 2016; SMHI, 2015). The E-HYPE Water in Europe Today (WET) tool 

(figure 4 ), compares the current hydrological situation with climatological data and past 

modelled events. The tool was originally designed to alert water managers to flow that is 

predicted to be outside of the normal range (based on the 75th and 25th percentiles), and 
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has evolved to provide information to many end users. Another setup of the HYPE model, 

EFAS-HYPE, uses further, restricted, datasets and is currently being tested as an additional 

model within EFAS. This section focusses on the river flow forecasts produced by the WET 

tool. 

Table 3: Databases used within the flood forecasting systems. Due to the alternative set-up of the BoM 

FFWS (including event-based modelling, nowcasting and significant forecaster input; see section 2.3.3), this 

information was not available.  

 

Data Type Data Source 

 EFAS E-HYPE HEFS GloFAS 

GLOFFIS 

PCRGLOB-
WB 

W3RA 

Topography/ 
Routing 

SRTM/CCM2 
HydroSHEDS 
& HYDRO1K 

NED & 
NHDPlus 

HydroSHEDS & 
HYDRO1K 

HydroSHEDS, 
HYDRO1K & 
NASA SRTM 

HydroSHEDS, 
HYDRO1K & 
NASA SRTM 

Land Cover CORINE 
CORINE and 

Globcover 2000 

NLCD, 
MODIS, 
AVHRR 

CORINE and 
Globcover 2000 

GLCC, MIRCA MODIS 

Urban Areas 
European Soil 
Data Centre 
(ESDAC) 

Euroland 
SoilSealing 2009 

n/a 
Harmonized 
World Soil 
Database 

GLCC n/a 

Lake Area 
& Spatial 

Distribution 

GLWD (Global 
Lake and Wetland 

Database) 

GLWD (Global 
Lake and 
Wetland 

Database) 

NHDPlus 
GLWD (Global 

Lake and Wetland 
Database) 

GLWD, 
GRaND (Global 

Reservoir and 
Dams Database) 

n/a 

Lakes and 
Reservoirs 

GLWD, GRaND 
(Global Reservoir 

and Dams 
Database) 

GLWD, 
ERMOBST, 

FLAKE-Global, 
International 

Water Power & 
Dam, ILEC 
World Lake 
Database, 

LEGOS, SMHI 

USGS & 
Federal state 

and local water 
management 
authorities 

(e.g. USACE, 
Reclamation) 

GLWD, Global 
Reservoir and 

Dams Database 
GRAND 

GLWD, 
FLAKE-Global, 
GRaND (Global 

Reservoir and 
Dams Database) 

n/a 

Soil Type 
European Soil 
Data Centre 
(ESDAC) 

Based on Land 
Use and 

Elevation 
SSURGO 

Harmonized 
World Soil 
Database 

FAO DSW n/a 

Crop Types n/a 
CAPRI, 

MIRCA-2000 
n/a n/a MIRCA n/a 

Irrigation 

EIM (European 
Irrigation Map), 
GMIA (Global 

Map of Irrigation 
Areas) 

EIM (European 
Irrigation Map), 
GMIA (Global 

Map of 
Irrigation Areas) 

NHDPlus, 
Local water 
authorities 

GMIA (Global 
map of Irrigation 

Areas) 
MIRCA n/a 
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Model Components 

In contrast to other systems, E-HYPE currently uses only deterministic NWP input to drive the 

hydrological model component, though ensemble forecasting is intended for future system 

developments. The HYPE model (Donnelly et al., 2016; Lindström et al., 2010) is a distributed 

rainfall-runoff model developed at SMHI, which divides catchments into subbasins rather than 

a regular grid. Each subbasin is further divided into classes based on land use, soil type and 

elevation (SMHI, 2015). Alongside processes such as snow accumulation and melting, 

evapotranspiration and groundwater recharge (Lindström et al., 2010), HYPE also takes into 

account anthropogenic influences including irrigation and hydropower (SMHI, 2015). 

Forecast Visualisation 

Within the WET tool, forecasts of river flow are compared to climatology, based on the 

ECMWF ERA-Interim reanalysis and evaluation datasets (figure 5) in order to produce an 

overview of river flow that is under or above the normal range. This information is displayed 

on a colour-coded map of the subbasins within the E-HYPE model (figure 4).  

 

Figure 4: The Water in Europe Today (WET) tool interface with example forecast (inset) showing above-

normal (blue shading) and below-normal (red shading) forecast river flow. The hydrograph shows current 

conditions and forecast river flow (black line) compared to climatology (blue shading). Forecasts are available 

at hypeweb.smhi.se/europehype/forecasts 
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Figure 5: Components of the European Hydrological Predictions for the Environment (E-HYPE) Water in 

Europe Today (WET) tool. 

Forecast Verification 

Through the E-HYPE and WET interface, various model performance statistics are available. 

The model is verified against observed discharge from river gauges, and allows the user to 

quickly evaluate the performance of the model with regard to timing, variability and volume 

error for the point of interest or across a larger region. The overall model performance in terms 

of mean annual discharge is also presented. Donnelly et al. (2016) present a new method for 

evaluating the performance of a multi-basin model and results from this evaluation of the 

historical model indicated that the model is suitable for predictions in ungauged basins as it 

captures the spatial variability of flow. While the model performs well in terms of long-term 

means and seasonality, the performance is less effective in terms of daily variability, particularly 

in Mediterranean and mountainous areas, and in regions of most anthropogenic influence.  

Operational Applications 

E-HYPE is currently being used in several applications across Europe, such as seasonal flow 

forecasting for the EU EUPORIAS project which aims to help societies to deal with climate 

variability, and providing data for use in oceanography models and as part of the SWITCH-

ON EU project. The WET tool is also used by various other smaller companies around 

Europe to provide water forecasts, for example soil-water forecasts for gardening companies.  

2.3.3 The Australian Flood Forecasting and Warning Service 

The Australian BoM has been producing flood forecasts operationally for several decades, 

with the technology and systems used to produce these forecasts continually evolving. More 

recently, the BoM has introduced short-term (up to 7 days ahead) continuous streamflow 

forecasting using deterministic NWP models, within the Hydrological Forecasting System 
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(HyFS) production environment (based on the Deltares Flood Early Warning System (FEWS) 

forecasting framework), alongside event-based hydrological modelling and nowcasting using 

radar rainfall estimates. The BoM services also rely on forecasters for the dissemination 

and communication of flood warnings and local information regarding river conditions.  

Model Components 

The NWP forecasts used to force the rainfall-runoff models are produced by the BoM’s 

Australian Community Climate and Earth-System Simulator (ACCESS) NWP model. 

ACCESS has four components running at different spatial scales and resolutions (figure 6). 

In addition to the NWP model output, forecasters and hydrologists at the BoM can produce 

“What If” precipitation scenarios with which to force the hydrological models. 

Alongside the semi-distributed GR (Génie Rural a 4 Parametres) hydrological models, 

event- based forecasting is used extensively; for this, local models are used in support of the 

continental scale system. The resulting river discharge estimations from both model versions 

are used, alongside observed data and statistical models, to produce automated graphical 

products such as maps, bulletins, warnings and alerts. 

Role of the Forecaster 

Whilst the other systems presented in this paper are almost entirely automated and model- 

based, the BoM system also relies on the input of expert meteorologists and hydrologists. In 

addition to producing “What If” scenarios to feed into the hydrological models, the 

forecasters are able to manually post-process the forecasts and observed data to produce 

further products and visualisations and assess the quality of the data and forecasts in real 

time. The forecasters are also able to produce additional warnings on the fly, for example if 

a reservoir is seen to fill, or their experience alerts them to an alternative possible scenario 

to those produced by the hydrological models. The hydrologists at the BoM are also 

responsible for dissemination and communication of the forecasts and warnings. 

A further reason for the input of forecasters is due to the challenges of producing operational 

flood forecasts for a large continent with an unevenly distributed population. Metropolitan 

areas have a dense observation network for both rainfall and river discharge, however there 

are large areas of Australia that have no flowing rivers, such as in the Northern Territory 

where there is an average of one river gauge every 13,360km2. 



21 

 

Chapter 2.  The current state of large scale flood forecasting  
 

C
o

m
p

o
n

en
ts

 o
f 

th
e 

A
u
st

ra
lia

n
 F

lo
o

d
 F

o
re

ca
st

in
g 

an
d
 W

ar
n

in
g 

S
er

v
ic

e 
(F

F
W

S
).

 



22 

 

Chapter 2.  The current state of large scale flood forecasting 
 

Warning Dissemination 

The final products delivered to the end users include flood watches and warnings, and 

information on current river levels and precipitation, which are disseminated to various 

users at specified stages in the evolution of a flood event, through a dedicated web interface, 

email, fax and telephone. These are usually text forecasts, an example of which is given in 

box 2 for a minor flood event, written by the hydrologists based on the output of the HyFS, 

but can also include automated alerts and bulletins for certain users. Figure 7 shows the 

corresponding publicly available graphics for this flood event, while the BoM hydrologists 

also have access to more sophisticated graphical products produced by the automated 

component of the HyFS, such as ensemble hydrographs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The BoM publicly available flood warnings showing (a) warnings and river conditions across 

Australia, (b) warnings and river conditions for a particular region, (c) current river levels at a specific warning 

point where flow is above the minor flood level. 
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Box 2: Example of a flood warning written by hydrologists at the Bureau of Meteorology.  

MINOR FLOOD WARNING FOR THE SNOWY RIVER 

Issued at 9:58am EST on Wednesday 15 July 2015 

River levels at Orbost are currently around the Minor Flood Level (4.2 metres) and rising. A 

peak of around 4.3-4.4 metres is expected during Wednesday afternoon [15/07/2015]. 

In the interests of community safety the SES suggests the following precautions: 

Don’t walk, ride or drive through floodwater,  

Don’t allow children to play in floodwater, 

Stay away from waterways and stormwater drains, and  

Keep well clear of fallen power lines 

Current Emergency Information is available at http://www.ses.vic.gov.au 

For emergency assistance call the SES on telephone number 132 500. 

For life threatening emergencies, call 000 immediately.  

The SES advises that rainfall run-off into waterways in recent fire affected areas may contain 

debris such as soil, ash, trees and rocks. People in fire affected areas should be alert to the 

potential for landslide and debris on roads.  

Weather Forecast: 

For the latest weather forecast see www.bom.gov.au/nsw/forecasts/ 

Next Issue: 

The next warning will be issued by 10:00am Thursday [16/07/2015]. 

Latest River Heights: 

Snowy R. at Basin Creek 4.33m falling 09:16 AM WED 15/07/15 

Buchan R. at Buchan 1.65m falling 08:45 AM WED 15/07/15 

Snowy R. at Jarrahmond 4.35m rising 09:00 AM WED 15/07/15 

Snowy R. at Orbost 4.18m rising 09:00 AM WED 15/07/15 

For latest rainfall and river level information see www.bom/gov.au/nsw/flood/ 
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Forecast Verification 

Currently, the BoM uses a manual verification approach, sampling 10% of the warnings issued, 

based on specifications set out for each forecast point such as a minimum lead time of 6 hours, 

or a peak forecast accuracy of ±0.5m. With updates to the FFWS, verification software will be 

introduced which will automatically compute statistics analysing the accuracy of the forecast 

river levels, peak and timing based on a comparison with observed river levels. The lead time 

provided for warnings will also be analysed and compared to the accuracy specifications, 

providing a measure of performance for a much greater sample of events, which will in turn 

drive further system improvement. Additionally, the HyFS continuous short-term forecasts are 

verified using a 15-day moving average climatology to calculate the mean absolute error skill 

score. 

Operational Applications 

At the BoM, the continuous short-term streamflow forecasts are used across Australia to 

provide an early indication of an upcoming flood event, in order to start making arrangements 

and decisions. These forecasts are then used as a “heads-up” to start running event-based 

models at the local scale to provide the official, public flood warnings. This is an excellent 

example of the use of large scale flood forecasting systems to enhance and supplement 

existing, local-scale forecasting capabilities.  

2.3.4 The U.S. Hydrologic Ensemble Forecast Service 

The HEFS is run by the NWS, and, for river basins across the U.S., provides “uncertainty- 

quantified forecast and verification products” (Demargne et al., 2014). From the late 1990s, 

NWS service assessments, alongside feedback from end users and the US National Academies 

(National Research Council, 2006) began to confirm the need for probabilistic river forecasts, 

for flood forecasting and water resources. In 2012, the HEFS began to run experimentally at 

several regional River Forecast Centres (RFCs), each of which forecasts streamflow for 100s of 

river locations, and is currently being rolled out operationally at all 13 RFCs.  

The HEFS aims to produce ensemble streamflow forecasts which seamlessly span lead times 

from less than one hour up to several years, and which are spatially and temporally consistent, 

calibrated (i.e. unbiased with an accurate spread) and verified. 
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Model Components 

The HEFS consists of five main components (Demargne et al., 2014), detailed in figure 8, 

and has been implemented to run as part of each RFCs configuration of the FEWS-based 

Community Hydrologic Prediction System (CHPS), which since 2010 has been the software 

platform used to run the traditional deterministic flood forecasts and long-range ESP 

forecasts. The system is designed to be driven with four meteorological forecast inputs, two 

of which (GEFS and CFSv2) are the output of NWP models; whereas the RFC forecasts and 

climatologies are created by meteorologists for the spatial units of the RFCs’ watershed models 

using predictions from the NCEP Weather Prediction Center (WPC), local NWS Weather 

Forecast Offices (WFOs) and other sources (NOAA, 2012). 

Each RFC may use different combinations of the 19 components within the Hydrological 

Processor (HP) suite, but the majority of RFC operations centre on a lumped implementation 

of the SAC-SMA (Burnash et al., 1973) and SNOW-17 (Anderson, 2006) models. The pre-

processing step within the HEFS (MEFP, figure 8) creates an ensemble of seamless, hours-

to-seasons, calibrated weather and climate forcings which are fed into the HP. Notably, 

through use of the MEFP and EnsPost pre- and post-processing components, both the 

uncertainties in the meteorological input and the hydrology are taken into account. 

Forecast Visualisation 

The graphics generator (figure 8) uses the resulting ensemble hydrographs to produce 

visualisations of the forecasts which can be communicated to a range of end users for the 

purpose of decision-making and warning dissemination. These final forecast products 

include spaghetti plots, exceedance probabilities in the form of bar graphs and probability 

distribution plots using comparisons with historical simulations (reanalysis datasets), and an 

expected value chart describing the ensemble distribution. Currently, graphics from the 

HEFS are operational at only a handful of RFCs and are currently being rolled out at the 

remaining RFCs. An example of an HEFS hydrograph for one river location, alongside the 

public web interface, is shown in figure 9. The forecast data associated with the graphical 

products is typically also available from the RFCs and many users can access the data directly 

to drive local decision support models. 
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Warning Dissemination 

NWS product requirements are codified through NWS Directives (NOAA, 2015), and the 

RFCs generally issue products based on hydro-meteorological analyses and long-range 

predictions that are not time-critical, and inform non-hazard related user activities and 

decisions, such as the Streamflow Guidance. The NWS Weather Forecast Offices (WFOs), in 

contrast, issue the primary hazard-centred alerts related to flooding, including products such 

as a Hydrologic Outlook (“hydro-meteorological conditions that could cause flooding or impact 

water supply”), Flood Watch (flooding is likely), or Flood Warning (flooding is imminent or 

occurring). The WFO hydrologic products are based primarily on RFC analyses and 

predictions; for instance, an RFC forecast exceeding a flood threshold triggers a 

recommendation to the WFO to release a flood warning that is reviewed by the WFO 

forecaster. Protocols for linking the newer HEFS ensemble forecasts to alerts are still in 

development.  

Forecast Verification 

An additional component of the HEFS shown in figure 8 is the Ensemble Verification 

System (EVS), which produces statistics such as the bias in the forecast probabilities, the 

skill relative to a ‘baseline’ forecasting system and the ability to discriminate between events. 

EVS runs within HEFS and is also freely available as a standalone application. The 

verification statistics are provided as graphical and textual products. They are used to guide 

research and development of the HEFS and to improve the configuration of the HEFS for 

operational forecasting. Studies by Brown et al. (2014a, 2014b) found that the skill of the 

precipitation forecasts used for the HEFS are greatest at lead times of up to one week, for 

moderate precipitation, and in the wet season (December to March), with limitations in the 

summer season due to difficulties in forecasting convection. The studies also showed that 

the skill of the streamflow forecasts, for both the HEFS and traditional RFC deterministic 

forecasts, is substantially increased through use of the EnsPost component.  

Operational Applications 

The HEFS is currently being implemented by all thirteen NWS RFCs, with existing or proposed 

applications ranging from flood forecasting to river navigation, reservoir operation, and long-

term planning and management of water resources. For example, reforecasts and operational 

forecasts from the HEFS are being used by the New York City Department of Environmental 

Protection (NYCDEP) to improve the management of water supply to NYC by optimizing the 
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quantity and quality of water stored in the NYC reservoirs while avoiding unnecessary 

infrastructure costs. 

Figure 9: The U.S. Hydrologic Ensemble Forecast System (HEFS) overview map of locations forecasting 

floods, with colour representing flood severity. An ensemble hydrograph is shown for a flood event at one 

river location, including observed stage and flow (green), forecast stage and flow (purple) in terms of 

probabilities, and colours indicating the forecast severity based on flood stage data (minor flood – yellow, 

moderate flood – red, major flood – pink). Forecasts are available at water.weather.gov/ahps/forecasts.php 

2.4 Global Scale Flood Forecasting Systems 

At present, there are just two flood forecasting systems that are operational at the global 

scale: the Global Flood Awareness System (GloFAS) of the ECMWF and EC, and the 

Global Flood Forecasting and Information System (GLOFFIS) run by Deltares. There also 

exists a Global Flood Monitoring System (GFMS) developed by NASA (the National 

Aeronautics and Space Administration) and the University of Maryland, which uses satellite 

precipitation as input to a hydrological model to produce real-time global maps of flood events. 

Global flood monitoring is an important aspect of disaster risk reduction and has many potential 

applications across the globe; however the GFMS is not an operational hydro-meteorological 

flood forecasting system and as such is not discussed in detail in this review. The reader is 

referred to the GFMS website (NASA, 2015) and publications (Wu et al., 2014; Yilmaz et al., 

2010) for further information on the GFMS. This section discusses the components of 

GloFAS and GLOFFIS, alongside the products and warnings provided to end users and 

verification techniques used to assess the performance of these systems. 
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2.4.1 The Global Flood Awareness System 

GloFAS has been producing probabilistic flood forecasts with up to two weeks lead time in 

a pre-operational environment since 2011 (Alfieri et al., 2013); this environment enables 

continuous research, development and testing in order to produce an operational tool that 

is independent of administrative and political boundaries. GloFAS can provide downstream 

countries with early warnings and information on upstream river conditions alongside global 

overviews of upcoming flood events in large river basins, for decision makers ranging from 

water authorities and hydropower companies to civil protection and international 

humanitarian aid organisations. 

Figure 10: Components of the Global Flood Awareness System (GloFAS).  

Model Components 

In contrast to the other systems presented in this paper, GloFAS uses surface and sub-

surface runoff forecasts produced by the NWP model rather than a separate rainfall-runoff 

component (figure 1). The Hydrology Tiled ECMWF Scheme for Surface Exchange over 

Land (HTESSEL) is contained within the IFS and is used as forcing for the Lisflood river 

routing model. Figure 10 details the components of GloFAS. Although Lisflood global (Van 

Der Knijff et al., 2010) is also a rainfall-runoff model, it is used here to simulate the routing 

processes and the groundwater processes, after re-sampling the runoff forecasts from the 

IFS to the 0.1o resolution of Lisflood. Additionally, GloFAS contains a loss function to 

account for water loss within the channel reaches in arid areas, which also simulates the 

river-aquifer and river-floodplain interaction and the influence of evaporation from large 

rivers.  
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Runoff from the ECMWF ERA-Interim reanalysis archive has also been run through 

Lisflood offline, producing a deterministic climatology of river flow which is used to compute 

return periods for the global river network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: The Global Flood Awareness System (GloFAS) interface showing (a) a global overview of severe 

(purple) high (red) and medium (yellow) reporting points, (b) a more detailed view of warning points in the 

U.S.A., (c) the return period hydrograph with return period thresholds (1.5 – green, 2 – yellow, 5 – red, and 

20 years – purple) for one point in the U.S.A. Forecasts are available at www.globalfloods.eu 

Forecast Visualisation 

Forecasts and warnings produced by GloFAS are provided through a password-protected 

interface (figure 11) where users can register to see a global overview of warning points, 

forecast precipitation accumulations, ensemble hydrographs including return period 

threshold exceedances and warnings, and persistence diagrams. The ECMWF and JRC do 

not directly disseminate flood warnings, as each country has national procedures to follow, 

but anyone is able to access and analyse the forecasts for decision-making purposes and 

research. It is noted that due to the forecast and warning responsibilities within Europe, all 
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countries for which EFAS produces forecasts are removed from the GloFAS interface as 

these are not publicly available. 

Forecast Verification 

Alfieri et al. (2013) analysed the performance of GloFAS, and found that forecasts were skilful 

at 58% of stations, which increased to 71% when model bias was removed. Evaluation of 

the early warning system found that the longest lead times, exceeding 25 days in some 

regions, are found in large river basins in South America, Africa and South Asia, while 

smaller basins have a maximum lead time of 20 days, and in some cases 10 days. The least 

skilful forecasts were for stations in arid and semi-arid regions, such as Australia, Mexico 

and the Sahel. Other discrepancies were found in relation to the modelling of snow 

accumulation and melting processes in HTESSEL and therefore the timing of the peak 

discharge during spring in snowmelt regions. Evaluation of GloFAS is updated regularly 

to reflect its continued and ongoing development. 

Operational Applications 

As of the 14th September 2015, GloFAS has 177 registered users from governmental or other 

public authorities (∼28%), non-governmental organisations (NGOs, ∼7%), the private sector 

(∼10%), and from academic/training and/or research institutions (∼55%). As with EFAS, 

GloFAS is used by national services to provide additional early flood information, and is used 

by, for example, civil protection and humanitarian aid organisations who benefit from a global 

overview of flood events and may have no other source of information for the region of interest. 

GloFAS is also used by the ERCC for the purpose of compiling reports on natural hazards and 

flood risk across the globe. 

2.4.2 The Global Flood Forecasting Information System 

The Global Flood Forecasting Information System (GLOFFIS) is a research-oriented 

operational system based on Delft-FEWS (Werner et al., 2013). GLOFFIS is one of three 

global systems run by Deltares in The Netherlands; also operational are a storm surge 

model, GLOSSIS (Deltares, 2018), and a water scarcity system GLOWASIS. These three 

systems belong to an open experimental Information and Communications Technology 

facility, IdLab, and are being used to test new ideas around interoperability, hydrologic 

predictability, big data and visualisation. 
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Model Components 

Similarly to the approaches taken by many of the continental- scale flood forecasting systems, 

GLOFFIS uses several meteorological inputs to drive the hydrological component of the 

system. The idea behind this is to validate, verify and inter-compare real-time rainfall 

(alongside temperature and potential evaporation) products as they become available. The 

initial conditions are derived from historical forcings based on both the GFS and the ECMWF 

control forecast (also extracted from the TIGGE archives), and a combination of 

FEWSNET (Africa) and Climate Prediction Center (CPC) Unified Gauge-Based Analysis 

of Global Daily Precipitation, complimented by GFS temperature and potential 

evaporation. Each of the NWP inputs are fed into two hydrological models (with multiple 

initial conditions); PCR-GLOBWB and W3RA, which also incorporates the HBV-96 snow 

module, to account for snow processes. 

The current components and resolution of GLOFFIS are detailed in Figure 12, with plans to 

update the resolution of the W3RA component to 0.05◦ (~5km) and implement an improved 

river network. In the future, the Japan Aerospace Exploration Agency (JAXA) Global Satellite 

Mapping of Precipitation (GSMaP) and the Global Precipitation Measurement (GPM) 

Integrated Multi-satellitE Retrievals for GPM (IMERG) products will also be added as 

additional datasets from which to derive initial conditions. 

 

Figure 13: Runoff output of the Global Flood Forecasting Information System (GLOFFIS) W3RA model 

in the Delft-FEWS forecast platform interface. 
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Forecast Verification 

Thorough statistical verification of GLOFFIS is underway using available open discharge and 

meteorological forecast data, alongside (real-time) eyeball verification. Real-time discharge data 

is being collected and can be accessed and compared with the simulated discharge within 

the Delft-FEWS GLOFFIS platform and reports generated by the system. The verification 

threshold levels are derived from long historical discharge records and historical simulations, 

similarly to the methods used in other continental and global scale forecasting systems. 

Operational Applications 

Although GLOFFIS is not yet fully implemented, it is being used internally at Deltares and by 

their customers, with discussions already underway between Deltares and other potential end 

users of the system. GLOFFIS is intended to be a research tool on predictability and 

interoperability first and foremost, but will be suitable for a variety of applications once fully 

operational.  

2.5 The Grand Challenges of Global Scale Flood Forecasting 

There are many challenges associated with global scale flood forecasting. These range from 

insufficient data, difficulties combining models and computer resource requirements, to the 

cost of running these models and methods of communicating forecasts efficiently. The 

challenges faced in operational flood forecasting are discussed in detail by Cloke and 

Pappenberger (2009), Hannah et al. (2011), Wood et al. (2011), Liu et al. (2012), Pappenberger 

et al. (2013, 2015a), Kauffeldt (2014), Pagano et al. (2014b) and Bierkens (2015); this section 

focusses on the current capabilities of the systems reviewed here, and discusses some of the 

grand challenges of global scale flood forecasting based on the current system limitations, 

alongside experiences and lessons learned from the development of these systems.  

2.5.1 Current Capabilities 

Large-scale flood forecasting has only become possible in recent years, and systems such as 

those outlined in this review are able to produce coarse-scale discharge forecasts at spatial scales 

covering entire continents or the globe using NWP products and other expertise, comparing 

these to observed and modelled historic events in order to produce forecasts of flood events 

in the medium-range, typically 7-15 days. Results from EFAS suggest that river flow and 

flood forecasts driven by meteorological forecasts are able to provide significant added value 

to the monitoring of European rivers (Alfieri et al., 2014a), whilst for GloFAS, results show 
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that the maximum added value is shown “(i) in medium-size river basins, (ii) in those with 

relatively fast response and (iii) in basins with no definite trend in the seasonal runoff”, with 

lead times of up to 1 month possible in some large river basins (Alfieri et al., 2013). These 

systems are also capable of producing and disseminating basic forecast, and in some cases 

early warning, products in real time and are key in supplementing national and local flood 

forecasting capabilities while supporting global scale activities. 

A recent study by Pappenberger et al. (2015a) provides evidence of the economic benefits of 

large-scale flood early warning systems, in addition to the clear benefits of forecasts and early 

warnings to populations at risk of flooding. The study demonstrates that the monetary benefit 

of EFAS is ∼400 Euros for every 1 Euro invested, indicating that large scale flood forecasting 

systems not only have the capability to provide early awareness of potential severe events, but 

also provide economic benefits through potential avoidance of flood damages. 

2.5.2 Improving Data Availability 

Grand Challenge: To access data of sufficient quality and length, assimilate new types of 

observations and meaningfully incorporate data of inhomogeneous quality.  

One of the major challenges in large scale forecasting lies in the availability of input data of 

the quality that is required (Hannah et al., 2011), such as data required for estimation of the 

initial hydrologic state, geographical boundaries of river basins and large/global scale datasets 

of land use, soil data etc. For example, smaller-scale national flood forecasting systems are 

often able to assimilate or update discharge information in real time, whereas continental and 

global scale models are limited by the lack of availability of real-time, open data for this 

purpose. 

Alongside the technical challenges associated with accessing and assimilating the data, there exist 

also non-technical data challenges. For example, there are difficulties with retrieving, quality 

controlling, formatting, archiving and redistributing the data collected (Pagano et al., 2014b) at 

centres across the globe. This often requires specialised training and staff, for example at the 

U.S. National Weather Service, much of the hydrologists' time is spent processing data and 

maintaining the infrastructure used to archive and distribute the data, and the stream 

measurements used in the BoM system are collected by several hundred entities and must be 

collated before processing.  
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More international and interdisciplinary data sharing (Hannah et al., 2011), through 

institutions such as the Global Runoff Data Centre (GRDC), and co-operation is essential in 

moving forward with global scale forecasting efforts, and would greatly increase the data 

available to forecasting centres not just for use in forcing these models, but for verification 

of the forecasts and continuous improvement of forecast accuracy. In order to work towards 

overcoming this challenge, it is important to contribute to open data policies and ensure that 

data availability is at the core of all related activities.   

2.5.3 Model Parameterisation 

Grand Challenge: To find regionalisation methods and ways to represent sub-grid scale uncertainty 

on the global scale.  

Alongside the problems associated with the data required for forecasting flood events, there are 

further challenges involved in the parameterisation of models, and the use of a single model for 

all catchments across a continent or the globe. Wood et al. (2011) discuss the possibility that 

much higher resolution forecasting systems will soon be feasible, which would further provide 

detailed information regarding the storage, movement, and quality of water. In order to 

implement models of higher resolutions, there are other challenges that must also be addressed; 

these challenges lie in the parameterisation of processes at both current and future spatial 

resolutions, and the “lack of knowledge involved in evaluating and constraining the uncertainty 

in those parameters given current and future data availability” (Wanders et al., 2014). 

This challenge could be addressed, for example, by developing scaling theories to represent 

effective parameterisation and associated uncertainties relevant to a global forecasting chain, 

and methods which can incorporate largely varying data and information availability. 

2.5.4 Improving Precipitation and Evaporation Forecasts 

Grand Challenge: To translate improved precipitation and evaporation forecasts into improved 

discharge forecasts.  

There have been many improvements in NWP and precipitation forecasting thus far, which 

have enabled global flood forecasting, as discussed earlier in this review. Despite these 

improvements, there are still limitations in the NWP forecasts which affect the discharge and 

therefore flood forecasts. Some of these have been discussed, such as difficulties predicting 

convection (Krishnamurti et al., 1999) and orographic enhancement processes (Arduino et al., 

2005). It is not only precipitation forecasts which need to be further improved, but other NWP 
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variables used in hydro-meteorological forecasting systems, such as evaporation. The challenge 

then lies in translating the continuous improvements made to the NWP forecasts into improved 

discharge forecasts.  

Moving forward, it will be important to develop tools and methods, such as satellite 

measurements, to measure potential evaporation and precipitation on a global level with 

acceptable accuracy.  

2.5.5 Incorporating Anthropogenic Influences 

Grand Challenge: To understand which of the anthropogenic influences are having a significant 

impact on hydrological forecasting and therefore need to be included in global forecasting 

models.  

The lack of knowledge of anthropogenic influences on runoff is a major challenge for large scale 

flood forecasting.  These influences, for which there is currently no global database, include 

dams and their regulation, reservoirs, weirs, water extraction, irrigation and river re-routing; 

some of this activity also goes unreported and unregulated creating additional barriers to 

incorporating information on water management.  One of the specific challenges noted by 

SMHI for Europe is the changes in processes modelled within these systems due to depleted 

aquifers. 

It is also important for these systems to incorporate aspects of anthropogenic influence such 

as land use and urban areas. Many of the users of these systems require information on 

potential impacts of the forecast flood events, for example the number of people likely to be 

affected and how much agricultural land is threatened. The inclusion of more impact 

information is one of the current limitations and focusses for the development of EFAS and 

GloFAS. A further challenge exists in terms of the unevenly distributed global population, 

which results in sparse data networks in large, unpopulated regions and difficulties in the 

dissemination and communication of forecasts and warnings; this challenge is specifically 

mentioned by the BoM for Australia, but exists also at the global scale. 

In order to account for anthropogenic influences in global flood forecasting systems, one 

solution would be to map all of these influences, and perform a sensitivity analysis to 

determine which are impacting the forecasts, so that the key anthropogenic influences can be 

incorporated into the models.  
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2.5.6 Resources and Costs 

Grand Challenge: To quantify, understand and communicate the values and benefits derived from 

a global forecast whilst establishing a cost effective execution of these forecasts. 

Thus far, the spatial resolution of global scale land surface models has largely been constrained 

by the computational resources required to run global weather models; currently, at best, ~20 

km. The monetary costs of producing forecasts using large-scale prediction systems must also 

be taken into account. While the costs of running these systems are not generally published, the 

aforementioned study by Pappenberger et al. (2015a) states that the estimated cost of EFAS 

(across the four EFAS operational centres, see section 2.3.1) is 1.8 million Euros per year, with 

an estimated 20 million Euros in development costs over 10 years. In addition, with each 

improvement and update to a forecasting system, it also becomes necessary to re-run model 

climatologies, re-calculate thresholds and revise decision-making criteria, all of which can be 

technologically challenging and require significant computational time and resources 

(Pappenberger et al., 2010; Simmons and Hollingsworth, 2002). 

As these systems develop, the resources required to run global flood forecasting systems will 

be reduced, whilst the technology used continues to improve. This will enable more centres 

to run global models at lower costs and with fewer time constraints in the future.  

2.5.7 Effective Communication of Forecasts 

Grand Challenge: To communicate uncertainties to a large range of user groups in countries across 

the globe, some of whom will not be known. Additionally, to embed these systems into national 

warning chains, whilst respecting sensitivities associated with the single voice principle (WMO, 

2005).  

A key challenge associated with global scale flood forecasting stems from the understanding and 

communication of flood forecasts. For instance, with the move towards ensemble flood 

forecasting, there is also a need for improved understanding of probabilistic forecasts. Ensemble 

forecasts produce large amounts of information, and it is vital that the most important 

information is conveyed appropriately for ease of use and correct interpretation of the forecasts, 

allowing for well-informed decisions and promoting a common understanding between end 

users.  

One of the key challenges at present for EFAS is ensuring that the flood forecast and warning 

information is easily accessible to a broad range of users from countries across Europe, who 
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interpret the forecasts very differently. This challenge is amplified further when producing 

forecasts, as with GloFAS and GLOFFIS, for the entire globe and a spectrum of users ranging 

from experts in the fields of hydrology and meteorology, to those with no experience in using 

these types of products. GloFAS already has a range of partners and end users, from those who 

are interested in discharge forecasts for specific stations, to those who are interested purely in 

the impact of the floods. An additional consideration is that of the single voice principle, which 

states that national services constitute the single authoritative voice on weather warnings in their 

respective countries. As more systems are introduced with the capability to produce forecasts 

and warnings, the more difficult this principle becomes; in future it may be that many 

institutions are able to disseminate warnings and benefit from the wealth of available forecasts 

and information, and a new challenge of the systems will be to become the trusted source of 

information. 

In order to effectively communicate forecasts and warnings, it is important to co-develop the 

forecast visualisations and warnings with a large range of users, and enable some flexibility for 

users to customise the interface. International and interdisciplinary cooperation is also key in 

moving forward with this challenge, as issuing forecasts and warnings can be challenging 

without the existence of a political agreement between upstream and downstream countries for 

the sharing of information related to floods (Hossain and Katiyar, 2006). 

2.5.8 Forecast Evaluation and Intercomparison 

Grand Challenge: To find new and novel methods to verify extremes, which are suitable for 

hydrological forecasting.  

Many forecasting systems, including large-scale flood forecasting systems, are moving towards 

ensemble forecasting methods. While there are many benefits to using a probabilistic approach, 

a key challenge associated with ensemble flood forecasting is the evaluation of flood forecasts, 

due to the low frequency of occurrence of extreme floods alongside the lack of data from 

different flood events (Cloke and Pappenberger, 2009). The analysis of an ensemble's ability to 

fully represent the uncertainty is also complex and uncertain in itself.  

This relates to a further grand challenge; that of implementing a Flood Forecasting 

Intercomparison Project to compare various aspects of these large-scale operational flood 

forecasting systems. This will be a valuable and important project moving forward, as these 

systems become more advanced and widely used for many applications, but is currently not 

undertaken due to the difficulties involved in comparing models of a variety of different scales, 
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with varying system set-ups and interfaces, and different objectives and end users. The 

computational resources required for such a project are also extensive.  

To have effective forecast evaluation measures in place, it is important for institutions running 

these systems to facilitate access to the forecasts, in order that the forecasts can be evaluated by 

an unbiased, external entity.  

2.6 The Future of Global Scale Flood Forecasting 

Flood forecasting at the large (continental and global) scale is key to providing overviews 

and early warnings of flood events across the globe, including regions where no alternative 

local-scale flood forecasts are available. This section outlines aspects of the future of global 

scale flood forecasting, as we continue to work towards overcoming the grand challenges and 

move towards ever more valuable multi-hazard forecast and early warning systems.    

2.6.1 Adaptive Modelling Strategies 

Adaptive modelling strategies involve the idea of adjusting model predictions in real time if 

discrepancies are observed between the forecast and observations, where discharge 

measurements are available in real time. This allows the uncertainty in the forecasts to be 

further constrained. In meteorological applications, this is referred to as data assimilation 

and is used routinely in weather forecasts and NWP, whereas it is often referred to as updating 

in hydrology, and is not widely used at present in applications such as those discussed here 

(Shaw et al., 2011). Simple applications of updating require starting new forecasts using 

available observations (sequential data assimilation; Rakovec et al., 2012), whereas more 

complex updating involves the adjustment of current predictions to the observations when 

discrepancies occur, assimilating the new observed data into the model in real time 

(variational data assimilation ). While data assimilation is not used extensively in flood 

forecasting systems to incorporate observations into the forecasts, this is likely to be 

increasingly incorporated in future to further improve the accuracy and lead time of large 

scale flood forecasts (Liu et al., 2012). An area of research which will be important in moving 

towards the incorporation of adaptive modelling strategies is the development of data 

assimilation toolboxes, allowing institutions to use and benefit from data assimilation tools 

which are otherwise incredibly complex. One example of this is OpenDA, “an open interface 

standard for a set of tools to quickly implement data assimilation and calibration for arbitrary 

numerical models” (Deltares, 2015). 
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2.6.2 Extended-Range Forecasting 

Future advances in global scale operational flood forecasting are likely to include more 

long-range forecasting. There already exists an element of river-specific predictability in some 

large rivers where the movement of a flood wave downstream can take days or weeks, and 

a flood event is a relatively certain outcome once large amounts of precipitation are recorded 

upstream. Realistic initial conditions can be beneficial to seasonal prediction; for example, 

relatively large soil storage capacity leads to long memory of soil moisture, and the accuracy 

of soil moisture initial conditions may be key in long- range forecasting (Fennessy and 

Shukla, 1999). The same is true of snow cover and snow pack, particularly in climate zones 

where snow is the major water resource (Li et al., 2009). 

Seasonal forecasts are currently used across a wide range of weather-sensitive sectors, with 

many operational weather forecasting centres producing seasonal forecasts, which provide 

“seasonal-mean estimates” of weather, such as whether the coming season will be wetter or 

drier than usual (Weisheimer and Palmer, 2014). Such forecasts have the potential to aid the 

forecasting of floods on seasonal timescales, providing crucial information for flood 

preparedness and mitigation (Yuan et al., 2015a). Seasonal hydrological forecasting has 

begun to emerge across the globe over the past decade, due to the ongoing development of 

coupled atmosphere-ocean-land general circulation models, while seasonal water supply 

forecasts have been used in the U.S. since the 1930s based on snow survey measurements, and 

later, precipitation data (Pagano et al., 2014a).  Yuan et al. (2015a)  highlight several questions 

related to the future of seasonal hydrological forecasting, from how to combine weather and 

climate models towards seamless hydrological forecasting, to how to improve the prediction 

of interannual variability of variables relevant to hydrological forecasting applications. 

Further to this, there also exists the challenge of the effective communication of seasonal 

flood forecasts and transfer of these forecasts into warnings and actions (Yuan et al., 2015a). 

The WMO S2S (Subseasonal to Seasonal) prediction project (WMO, 2015) aims to improve 

the understanding and forecast skill of the sub-seasonal and seasonal timescales, with a 

focus on extreme weather including floods, and will be key in moving towards extended-range 

flood forecasts.  

2.6.3 Flash Flood Forecasting 

Flash floods are associated with spatially and/or temporally intense precipitation and can have 

high societal impacts. For example 105 out of 139 countries list flash floods as being in the top 
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two of their most important hazards (WMO, 2006). Despite this there is currently no global 

flash flood forecasting system, but continental systems exist in Europe (as part of EFAS; 

Raynaud et al., 2015; Thielen et al., 2009); northern America (Gourley et al., 2012), southern 

Africa (Georgakakos et al., 2013) and Australia, alongside other national and basin scale systems 

around the globe (Hapuarachchi and Wang, 2008). These systems often take the form of one 

or a combination of empirical correlations, unit hydrographs and hydrological modelling driven 

by limited-area models (Hapuarachchi et al., 2011). 

The challenge of creating a global flash flood forecasting system is that global NWP systems 

typically have a limited resolution of many of the fine spatial scale processes, such as convection, 

which are responsible for intense precipitation. Increasing the spatial resolution of global NWP 

systems may reduce this issue and allow for the implementation of a methodology such as that 

of Alfieri et al. (2014b), which utilises the surface runoff estimated from HTESSEL to forecast 

extreme runoff risk. An alternative could be to use forecasts of parameters which can be used 

to estimate the likelihood of intense sub-grid scale precipitation arising. For example, the 

ECMWF NWP model forecasts the CAPE (convective available potential energy) and CAPE-

SHEAR parameters which show the atmospheric instability and the ability of supercell 

formation in the event of deep moisture convection, respectively (Tsonevsky, 2015). 

With continuous improvements to NWP systems, new continental and global flash flood 

routines will be developed based on global NWP models (ECMWF, 2015). In addition to flash 

floods, future applications of global flood forecasting and multi-hazard early warning systems 

will begin to include other types of flooding, for example coastal storm surges. 

2.6.4 Grand Ensemble Techniques 

Recent advances in meteorological forecasting and NWP have moved towards multi-model 

forecasts and grand ensemble techniques. Programmes such as TIGGE (The Observing 

System Research and Predictability EXperiment (THORPEX) Interactive Grand Global 

Ensemble; ECMWF, 2006), have led to advances in ensemble forecasting, predictability and 

development of severe weather prediction products in meteorology. In hydrology, combining 

models for flood forecasting presents an additional challenge (e.g. due to different river 

networks and climatologies), but despite this, future applications of flood forecasting should 

move towards the establishment of grand ensemble techniques. In the future, increased access 

to monthly and subseasonal (for example, through the S2S project; WMO, 2015) forecasts from 
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multiple centres will enable us to push the limits of predictability through use of these grand 

ensemble techniques (Fan et al., 2015).  

2.6.5 New Data Possibilities 

Alongside the recent and future advances in forecasting systems, other technologies are 

constantly advancing and will have beneficial impacts on flood forecasting across the globe. 

For example, new satellites and earth observation technologies for flood observation are 

being adopted in hydrology to improve flood forecasts (García-Pintado et al., 2015; Khan 

et al., 2012). Garcia-Pintado et al. (2015) discuss several earth observation techniques which 

have the potential to improve flood detection and forecasting. Improved data from satellites 

may be able to provide more accurate topographical, land cover, land use, river network 

and river width information (Yamazaki et al., 2014); these are some of the most important 

data regarding river basin characteristics, and their accuracy is key to flood forecasting 

systems. Real time satellite observations of river width during flooding would also serve to 

improve both forecasts and warnings in real time, and verification of the forecasting systems 

post-event. 

Alongside improved databases describing basin and river characteristics, observations of the 

data used as input to flood forecasting systems and in data assimilation techniques (Liu et al., 

2012) could include snowpack extent, water levels (from altimetry), river discharge, river 

width, snow and soil moisture. Currently, continental and global scale observations of many 

of these variables are not available, but global coverage from satellites could prove extremely 

beneficial in large-scale flood forecasting applications, particularly in regions of poor data 

availability (Wanders et al., 2014). 

2.7 Conclusions 

Here, two global and four continental scale operational flood forecasting systems have been 

reviewed, outlining the current state-of-the-art in operational large-scale flood forecasting. 

Producing forecasts at the global scale has only become possible in recent years, with 

scientific and technological advances and increasing integration of hydrological and 

meteorological communities. Due to these recent advances, large-scale flood forecasting 

systems are able to produce coarse-scale discharge forecasts at spatial scales covering entire 

continents or the globe using NWP products and other expertise, comparing these to 
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observed and modelled historic events in order to produce medium-range forecasts of flood 

events. 

Many countries are required to prepare for floods which originate outside of their borders. 

International and interdisciplinary collaboration is key in order to overcome many of the 

challenges involved in transboundary flood forecasting; large-scale forecasting systems have 

the potential to provide valuable added information about imminent flooding. So far, results 

from large-scale flood forecasting systems suggest that river flow and flood forecasts are able 

to provide significant added value to the monitoring of rivers across the globe (Alfieri et al., 

2013; Pagano et al., 2014b). There remain many challenges for global scale flood 

forecasting, from lack of available data of the quality and scale required, to the effective 

communication of forecasts and warnings to varying end users and communities across 

the globe; ongoing research aims to overcome these challenges to further improve the 

accuracy and applicability of large-scale flood forecasting. The systems outlined in this 

paper are continuously evolving and are already proving to be key in supplementing national 

and local forecasting capabilities while supporting global- scale activities.  
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Chapter 3 

El Niño Southern Oscillation  

3.1 Introduction 

In the previous chapter, the current state of large-scale flood forecasting was reviewed, alongside 

the grand challenges and future advances of large-scale flood forecasting, including extended-

range forecasts out to seasonal timescales. Despite the chaotic nature of the atmosphere 

(Lorenz, 1963), which introduces a limit of predictability, seasonal predictions are possible as 

they rely on components that vary on longer timescales and are themselves somewhat 

predictable, such as the ocean and land surface. This “second type predictability” (Lorenz, 1993) 

for river flow and hydrological forecasting comes from the initial conditions of the land surface, 

including soil moisture and snow cover,  and from large-scale modes of climate variability.  

This thesis aims to explore ways in which we can extend the predictability of flood hazard 

beyond the capabilities of medium-range forecasting systems, and provide even earlier 

indications of potential flood events, many weeks or even months in advance. Section 1.1 

introduced the two key ways to achieve this. Firstly, through statistical analysis based on large-

scale modes of climate variability, and secondly, through seasonal forecasts of river flow 

produced using coupled ocean-atmosphere general circulation models. Both are explored in the 

following chapters of this thesis. While the latter was introduced in section 2.6.2, and is 

expanded on in Chapter 5, this chapter provides additional background information on the 

potential for predictability through climate variability, focussing on the El Niño Southern 

Oscillation (ENSO), the dominant mode of interannual climate variability (McPhaden et al., 

2006).  

The modulation of extreme events, such as flooding, by the large-scale circulation is often the 

origin of predictability of these events at subseasonal and seasonal timescales (Vitart, 2014). The 

link between large-scale atmospheric features and teleconnections has been shown, for other 

events such as tropical cyclones and extreme heat, to improve predictability and extend the lead 

time of forecasts of extreme events (Vitart, 2014). In addition to ENSO, there exist several 

other modes of climate variability that influence river flow regionally and can contribute to 

seasonal predictability of hydrological variables. These teleconnections include the North 

Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD) and the Pacific Decadal Oscillation 
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(PDO) (Yuan et al., 2015a, and references therein). This thesis focusses on ENSO as a potential 

source of flood hazard predictability due to its global influence on weather and climate.  

3.2 ENSO Dynamics 

ENSO is the largest signal of interannual climate variability (Rasmusson and Wallace, 1983; 

Kessler et al., 2015); it is a naturally occurring phenomenon in the tropical Pacific that impacts 

weather, climate and society worldwide. This phenomenon sees sea surface temperatures (SSTs) 

in the central and eastern equatorial Pacific fluctuate between unusually warm (El Niño) and 

unusually cool (La Niña) conditions, a cycle that occurs over a period of ~2-7 years. The 

‘Southern Oscillation’ is the term given to the coinciding changes in atmospheric pressure 

between the east and west Pacific Ocean, which are themselves closely related to changes in the 

trade winds and represent the “atmospheric manifestation of the coupled ENSO phenomenon” 

(McPhaden et al., 2006). A schematic is provided in Figure 1.  

 

 

 

 

 

 

Figure 1: Schematic diagram of El Niño, normal (neutral) and La Niña conditions, indicating changes in 

SSTs across the Pacific Ocean (where red/orange indicates warmer SSTs, and blue/green cooler SSTs), and 

corresponding changes in the thermocline and convective circulation. Source: NOAA PMEL, 2018. 

El Niño is driven by a positive feedback between the strength of the trade winds and the SSTs 

in the equatorial Pacific, known as the Bjerknes feedback (Bjerknes, 1966). The trade winds 

blow from east to west along the equator, and have the effect of pushing warm tropical Pacific 

waters to the west of the ocean, confining the Warm Pool to the western Pacific (McPhaden 

and Picaut, 1990) and preventing the upwelling of cold water along the equator and the west 

coast of South America. This contrast in SSTs between the east and west Pacific further 

reinforces the atmospheric pressure difference, which in turn drives the trade winds (McPhaden 

et al., 2006).  
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During an El Niño, the trade winds weaken, while pressure falls in the east Pacific and rises in 

the west Pacific. With the trade winds weakened, the warm water doesn’t extend as far to the 

west, resulting in anomalously warm SSTs in the central and eastern Pacific, and the upwelling 

of cold water is cut off.  This positive feedback continues, with the SST anomalies (SSTAs) 

reinforcing the weakening of the trade winds, and so on, until an El Niño develops. In order 

for the system to return to neutral conditions, or reverse to La Niña conditions, a negative 

feedback is required.  

While the Bjerknes (positive) feedback drives El Niño, negative feedback is required to 

terminate an El Niño event. Both the atmosphere and ocean play a role in this, although the 

majority of the weakening results from the oceanic negative feedback and the delayed action of 

ocean wave dynamics, which allows the upwelling of cold water in the eastern Pacific to return. 

The thermodynamical heat flux feedback (Lloyd et al., 2009) is the main atmospheric negative 

feedback; the warm SSTs during an El Niño result in enhanced convection over the equatorial 

central and eastern Pacific. The weaker winds during an El Niño are strengthened due to the 

enhanced convection, and the increased cloud cover reduces incoming solar radiation resulting 

in a cooling of the SSTs.  

The exact mechanism behind the oceanic negative feedback is debated in the scientific literature, 

with four key proposed theories (‘oscillators’; Wang et al., 2016): the delayed oscillator (oceanic 

wave reflection at the western boundary, Battisti et al., 1989; Suarez and Schopf, 1988), the 

recharge oscillator (warm water is “discharged” to higher latitudes, Jin, 1997), the western Pacific 

oscillator (a western Pacific wind-forced Kelvin wave, Wang et al., 1999; Weisberg and Wang, 

1997), and the advective-reflective oscillator (anomalous zonal advection, Picaut et al., 1997). It 

is also possible that more than one of these oscillators occurs, or that they work together to 

produce the negative feedback required to revert to neutral or La Niña conditions, and as such, 

the unified oscillator (Wang, 2001) accounts for the dynamics of all four oscillators. Wang et al. 

(2016) provide a detailed review of the various oscillator theories. Understanding the 

mechanisms driving ENSO is key in terms of predicting its evolution and therefore the expected 

impacts of each El Niño and La Niña event. 

3.3 ENSO Diversity 

ENSO events (El Niño and La Niña) vary in terms of their magnitude, timing and spatial 

pattern. These variations have been observed for many years, but research into identifying, 

describing and understanding the possible types of El Niño (while La Niña events also vary 
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somewhat in these characteristics, the interevent variations are much less distinct) gained 

momentum after the 2004 event, which exhibited unusual SSTAs and resulted in different 

impacts than the ‘traditional’ El Niño (Capotondi et al., 2015). This differing El Niño pattern 

was termed ‘El Niño Modoki’ (meaning similar, but different in Japanese) by T. Yamagata in 

2004 (Ashok et al., 2007). While references are often made to the ‘Modoki’ and ‘Canonical’ El 

Niño types, they are more generally referred to as Central Pacific (CP) and Eastern Pacific (EP) 

El Niños respectively, referring to the location of the peak of the SSTAs (Capotondi et al., 2015; 

Kao and Yu, 2009; Takahashi et al., 2011). The peak SST warming typically occurs either in the 

central Pacific Ocean, in the Niño3.4 region (see Figure 2), or along the western coast of South 

America, in the Niño1+2 region. The difference in the spatial pattern of warming between CP 

and EP El Niño events can be seen in Figure 2.  

 

Figure 2: Spatial pattern of SSTAs during Central Pacific (CP, top) and Eastern Pacific (EP, bottom) 

El Niño events. The Niño3.4 and Niño1+2 regions are highlighted by the black boxes. Source: 

Takahashi, 2015. 

While the CP and EP classifications provide a useful basis for differentiating between the 

majority of El Niño events, some events cannot be classified as either CP or EP, presenting a 

more mixed pattern. The classification can also depend on the index and methodology used 
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(Capotondi et al., 2015; Williams and Patricola, 2018), and variations have been observed within 

the temporal evolution of a single El Niño event (Karnauskas, 2013). As such, it is suggested 

that El Niño events exist on a continuum (Johnson, 2013). The origin of the varying types of 

El Niño, and lack of variation of La Niña, is still debated, but a recent study by Chen et al. 

(2015) suggests that “the asymmetry, irregularity and extremes of El Niño” result from 

westerly wind bursts (WWBs), with WWBs tending to be stronger and more frequent during 

larger magnitude El Niños. WWBs refer to short-lived bursts of westerly winds (opposing the 

easterly trade winds) in the Western Pacific for a period of several days. They are often 

connected to the Madden-Julian Oscillation, the dominant component of intraseasonal tropical 

climate variability (Zhang, 2005), and are known to have occurred with the onset of every El 

Niño observed during the past 50 years (Chen et al., 2015). WWBs trigger oceanic Kelvin waves, 

which propagate eastwards across the Pacific, depressing the thermocline in the eastern Pacific 

and therefore reducing the upwelling of cold water, leading to warm SSTAs (Zhang, 2005) and 

therefore initiating the development of an El Niño event.  

Further to the variations in spatial SSTA pattern, there are also observed differences in the 

temporal evolution and magnitude of CP and EP El Niños. Onset of EP events occurs typically 

in (boreal) spring in the eastern Pacific, extending westward through summer and autumn, while 

CP events typically begin during the summer (Capotondi et al., 2015). Both types of event reach 

their peak during boreal winter. The magnitude of the SST warming can vary significantly from 

one event to the next, irrespective of the type of event, but the most extreme El Niños on 

record (those in 1982/83, 1997/98 and 2015/16) have all been EP events.  

ENSO teleconnections can be significantly influenced by the pattern, magnitude and timing of 

the SSTAs, with some locations observing a different pattern, or even sign, of precipitation and 

temperature anomalies between CP and EP El Niños (Capotondi et al., 2015). As such, ENSO 

diversity is a key consideration in terms of predicting the impacts of El Niño events, including 

flood hazard.  

3.4 Influence on Weather and Climate  

As discussed in section 3.1, this thesis focusses on ENSO as a source of predictability, due to 

its influence on weather and climate patterns at the global scale. While there exists a myriad of 

studies examining the impact of ENSO in specific regions around the world, this section 
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provides a brief global overview of the impacts on precipitation, temperature and tropical 

cyclones.  

Changes in the Walker Circulation and displacement of convection during ENSO events results 

in precipitation anomalies throughout the tropics. The Walker Circulation (Lau and Yang, 2015; 

Wang, 2004) refers to the large-scale atmospheric circulation along the equator; a schematic is 

shown in Figure 3. As mentioned in section 3.2, the trade winds blowing east to west along the 

equator have the effect of pushing warm water to the west, creating an SST gradient across the 

ocean basins. Air rises over the warmer water in the west of the basins and descends in the east, 

creating the various cells of the Walker Circulation. The more significant the warm pool, the 

stronger the upward motion and therefore convection and precipitation. During El Niño and 

La Niña, the changes in SST across the Pacific result in changes to the Walker Circulation.  

 

 

 

 

Figure 3: Schematic of the Walker Circulation during El Niño (left), neutral (centre) and La Niña (right) 

conditions, indicating the atmospheric circulation, areas of convection, and SSTAs (where blue indicates 

cooler SSTAs and orange warmer SSTAs). Adapted from Di Liberto (2014).  

During La Niña, the circulation is amplified, whereas during El Niño, the location of upward 

motion over the Pacific moves further to the east, disrupting the pattern of circulation across 

the globe. In addition, the Hadley Circulation, which sees rising air moving away from the 

equator towards higher latitudes and descending in the subtropics, can be impacted by changes 

to the Walker Circulation during El Niño and La Niña, thus modifying midlatitude circulation 

patterns (Wang, 2002). These changes to the global atmospheric circulation therefore result in 

anomalous weather patterns across the globe.  

The impact of El Niño and La Niña on global precipitation and temperature anomalies was 

widely established in the 1980s and 1990s, based on observations and satellite data (Bradley et 

al., 1987; Halpert and Ropelewski, 1992; Kiladis and Diaz, 1989; Lau and Sheu, 1988; 

Ropelewski and Halpert, 1987, 1989, 1996; Stoeckenius, 1981; Trenberth et al., 1998), with 

ENSO known to impact weather patterns on all seven continents, and in all ocean basins. One 

of the first studies to assess the impact using a gridded dataset with global coverage was that of 
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Dai and Wigley (2000). The study found that during an El Niño year, there is an increase in total 

annual precipitation by just ~0.2%; this is because ENSO events result in shifts in the location 

of rainfall belts, causing precipitation to fall in different locations than in a normal year. This is 

further emphasised by Goddard and Dilley (2005), in a study evaluating the impact of ENSO 

on climate anomalies and number of climate-related disasters, in light of the assumption that El 

Niño and La Niña result in more widespread climate anomalies “and therefore greater climate-

related socioeconomic losses”. They conclude that climate-related disasters do not increase 

during ENSO events, but climate anomalies are more predictable during El Niño and La Niña, 

and this added predictability could allow for communities from local to international scales to 

prepare for and mitigate the potential impacts.  The extreme El Niño event in 1997/98 

introduced a global interest in El Niño, both in the scientific communities and more widely in 

the general public, and extensive literature has since been published assessing local and regional 

impacts of ENSO events. 

 

 

 

 

 

 

 

 

Figure 4: Typical impacts December – February during an El Niño. Adapted from NOAA, 

Climate.gov (2016c). 

Typical ENSO impacts tend to be summarised using maps similar to the one shown in Figure 

4. While these are an over-simplification of possible impacts, since there exists substantial 

uncertainty arising from uncertainty in the data, and from differences in the impacts from one 

ENSO event to the next (discussed further in Chapter 4), they provide a simple overview of 

global ENSO teleconnections.  

Figure 4 indicates that northern Peru, parts of south-eastern South America, the southern USA, 

parts of eastern Africa, and China are likely to be wetter than usual during an El Niño, while 
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southern Africa, northern Australia, maritime south-east Asia and northern South America are 

likely to be drier than usual. The impacts also vary by season during an El Niño. The reverse 

tends to be true during a La Niña, with regions likely to be wet during an El Niño, more likely 

to be dry during a La Niña, and vice versa.  

In addition to the global precipitation and temperature teleconnections, ENSO also impacts 

tropical cyclone activity in the North Atlantic, western North Pacific, southern Indian Ocean 

and Australian region (Bell et al., 2014; Camargo et al., 2007). Changes in the Walker Circulation 

influence upper-tropospheric westerlies over the North Atlantic; during an El Niño, these 

westerlies are increased, which increases vertical wind shear and suppresses tropical cyclone 

activity (Bell et al., 2014). In both the western North Pacific (Chan, 1985; Jien et al., 2015) and 

the southwest Pacific (Chand et al., 2013; Nicholls, 1979) during El Niño, tropical cyclone 

genesis shifts further east, due to the eastward shift of the SSTAs, while tropical cyclone activity 

is increased due to the warmer SSTs, increased relative humidity and low vertical wind shear. 

3.5 Influence on River Flow and Flooding 

The influence of ENSO on precipitation further impacts river flow and flooding at the global 

scale. Furthermore, Chiew and McMahon (2002) propose that the relationship between ENSO 

and river flow is likely to be more pronounced than between ENSO and precipitation, as rainfall 

variability is enhanced in runoff, and river flow also integrates information spatially. This, 

alongside the nonlinear relationship between precipitation and flood magnitude (Stephens et al., 

2015), highlights the importance of considering hydrological variables in addition to the 

meteorology when considering the impacts of El Niño and La Niña.  

Again, there exist various studies examining the relationship between ENSO and river flow at 

local and regional scales. At the global scale, Chiew and McMahon (2002) identified regions of 

the globe with a significant relationship between ENSO and river flow, which are similar to 

those where an impact on precipitation is observed, as would be expected. More recent studies 

have further analysed the link between ENSO and flooding at the global scale. For example, the 

first studies to assess the impact of ENSO on flooding, at the global scale (Ward et al., 2010, 

2014a), found the influence on annual floods to be much greater than the influence on average 

river flows, with approximately one third of river basins around the globe impacted by ENSO. 

Ward et al. (2014b) also analysed both the positive and negative socio-economic impacts of El 

Niño and La Niña in terms of flood risk anomalies, showing “strong, complicated, and societally 

significant patterns” when looking at spatial variations rather than the global aggregations that 
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are often reported. Lee et al. (2018) also reinforce the importance of considering hydrological 

variables, highlighting the differences between ENSO-induced precipitation and streamflow 

anomalies in regions across the globe. The findings of these studies suggest that there is the 

possibility to provide probabilistic forecasts of ENSO-driven flood hazard at the global scale. 

3.6 Predictability of River Flow and Flood Hazard 

The known ENSO teleconnections discussed in sections 3.4 and 3.5 allow for the possibility to 

predict the likely impacts of ENSO events. While there are challenges associated with producing 

accurate predictions of ENSO events themselves, such as the spring predictability barrier 

(whereby forecasts of ENSO made before and during boreal Spring are less skilful; Duan and 

Wei, 2013; McPhaden, 2003; Wang-Chun Lai et al., 2018), the underlying decadal variability of 

ENSO (Barnston et al., 2012; Kirtman and Schopf, 1998) and ENSO diversity (see section 3.3), 

skilful predictions are possible with lead times of up to several months (Barnston et al., 2012). 

Once an ENSO event is forecast, statistical analyses of ENSO teleconnections can be used to 

predict the likely impacts should an El Niño or La Niña develop.  

Statistical forecasts such as historical probabilities provide information about typical ENSO 

impacts based on historical evidence. The following chapter builds on the existing literature by 

mapping the historical probabilities of high and low river flow during El Niño and La Niña, 

which can be used to highlight regions of the globe that are most likely to be at risk of flooding, 

or drought, during an ENSO event. Historical probabilities of ENSO-driven precipitation and 

temperature anomalies, such as those produced by the International Research Institute for 

Climate and Society (IRI, 2018), are often used for El Niño preparedness activities. This thesis 

aims to provide the equivalent information for river flow as exists for meteorological variables, 

thus working towards extending the predictability of flood hazard at the global scale.  
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Chapter 4 

Complex Picture for Likelihood of ENSO-

Driven Flood Hazard 

This chapter has been published in Nature Communications with the following reference:  

Emerton, R., H. L. Cloke, E. M. Stephens, E. Zsoter, S. J. Woolnough and F. Pappenberger, 

2017: Complex Picture for Likelihood of ENSO-Driven Flood Hazard, Nature Communications, 

8, 14796, doi:10.1038/ncomms14796* 

The roles of the other authors of this paper in relation to the project are as follows: H. L. Cloke 

(supervisor: academic) E. M. Stephens (supervisor: academic), E. Zsoter (collaborator: 

ECMWF), S. J. Woolnough (supervisor: academic), F. Pappenberger (collaborator: ECMWF). 

R.E. conceived and posed the research question, carried out the analysis, wrote the paper, 

prepared the figures and submitted the paper. The study design and interpretation of the results 

was done in collaboration with H.L.C., E.M.S., F.P. and S.J.W, and E.Z. created the ERA-

20CM-R dataset used in the study. The manuscript was written by R.E., with guidance and 

advice from H.L.C., E.M.S and F.P., and all authors commented on the manuscript. Overall, 

95% of the research and 85% of the writing was undertaken by R.E.    

Abstract. El Niño and La Niña events, the extremes of ENSO climate variability, influence 

river flow and flooding at the global scale. Estimates of the historical probability of extreme 

(high or low) precipitation are used to provide vital information on the likelihood of adverse 

impacts during extreme ENSO events. However, the nonlinearity between precipitation and 

flood magnitude motivates the need for estimation of historical probabilities using analysis of 

hydrological datasets. Here, this analysis is undertaken using the ERA-20CM-R river flow 

reconstruction for the 20th Century. Our results show that the likelihood of increased or 

decreased flood hazard during ENSO events is much more complex than is often perceived 

and reported; probabilities vary greatly across the globe, with large uncertainties inherent in the 

data and clear differences when comparing the hydrological analysis to precipitation.  

                                                           
* ©2017. The Authors. Nature Communications published by the Nature Publishing Group. This is an open access 
article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided that the original work is properly cited. 
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https://www.nature.com/articles/ncomms14796


56 

 

Chapter 4. Complex picture for likelihood of ENSO-driven flood hazard  
 

4.1 Introduction 

The El Niño Southern Oscillation (ENSO) is the most prominent pattern of interannual climate 

variability (McPhaden et al., 2006), and is known to influence river flow (Chiew and McMahon, 

2002) and flooding (Ward et al., 2014a, 2014b, 2016) at the global scale. In the absence of 

hydrological analyses, products indicating the likelihood of extreme precipitation are often used 

as an early indicator of flooding during extreme ENSO events (IRI, 2018). However, the 

nonlinearity between precipitation and flood magnitude and frequency (Stephens et al., 2015) 

means that it is important to assess the impact of ENSO not just on precipitation, but on river 

flow and flooding. This is especially important as, as stated by Chiew and McMahon (2002), “it 

is likely that the streamflow-ENSO relationship is stronger than the rainfall-ENSO relationship 

because the variability in rainfall is enhanced in runoff and because streamflow integrates 

information spatially”.   

Here, a global scale hydrological analysis is performed to estimate the historical probability of 

increased or decreased flood hazard in any given month during El Niño / La Niña events, 

assessing the added benefit of directly analysing river flow over the use of precipitation as a 

proxy for flood hazard.  

Historical probabilities provide useful information about typical ENSO impacts based on 

historical evidence (Bradley et al., 1987; Mason and Goddard, 2001) and are, as stated by Mason 

and Goddard (2001), “a better estimate of the future climate than the assumption that seasonal 

conditions will be the same as average”. Nonetheless, there are some key considerations when 

using such information. One such consideration is that no two El Niño events are the same 

(Davey et al., 2014; Mason and Goddard, 2001); differences in the peak amplitude, temporal 

evolution and spatial pattern of warming are likely to affect the timing and magnitude of the 

resulting impact on river flow. There are many suggested ways to classify ENSO diversity 

(Capotondi et al., 2015), for example, El Niño events are often described as ‘East Pacific’ (EP) 

or ‘Central Pacific’ (CP), dependent on where the peak warming occurs. While this is an over-

simplification of the complexity surrounding ENSO diversity, the location of the peak warming 

can alter the influence on river flow. An additional consideration is the influence of warming 

ocean temperatures on ENSO events and their related impacts. Recent studies (Cai et al., 2014, 

2015a) suggest that projected changes in the Walker Circulation and associated weakening of 

equatorial Pacific ocean currents are expected to result in more frequent, and more extreme, El 

Niño and La Niña events (Cai et al., 2015a, 2015b).  
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In the past, studies have been limited to reanalysis datasets of no longer than ~40 years (Ward 

et al., 2014a, 2014b, 2016), in which there is a sample of ≤ 10 El Niño and ≤ 13 La Niña events, 

or observational data with inconsistent coverage, both spatially and temporally (Chiew and 

McMahon, 2002). We have created a 20th Century (1901-2010) model reconstruction of river 

flow in order to obtain a hydrological dataset with consistent global coverage over an extended 

time period. Research by Essou et al. (2016) indicates that global meteorological reanalysis 

datasets “have good potential to be used as proxies to observations” in order to force 

hydrological models, particularly in regions where few observations are available. This dataset 

was created by forcing a research version (described in section 4.4.1) of the Global Flood 

Awareness System (GloFAS; Alfieri et al., 2013; Emerton et al., 2016) with the ERA-20CM 

(Hersbach et al., 2015) meteorological model reconstruction of the European Centre for 

Medium-Range Weather Forecasts (ECMWF) to produce a 10-member, 0.5o resolution 

reconstruction of river flow (from here on, ERA-20CM-R) containing 259,200 grid points 

covering the global river network (Supplementary Figure 1). Figure 1 depicts a time series of 

three key variables used in this study, alongside the timing of the 30 El Niño and 33 La Niña 

events identified in ERA-20CM-R (see section 4.4.2).   

Figure 1: Time series of three key ERA-20CM-R variables and timing of El Niño and La Niña events. 

(a) 3-month running mean sea surface temperature anomaly in the Niño3.4 region (SSTA3.4), and number 

of grid points globally in which monthly mean river flow (b) exceeds the top 25th percentile and (c) falls 

below the lower 25th percentile. Solid lines show the mean of the 10 ensemble members, while shading 

indicates the spread of the members. The SSTA3.4 is used to identify El Niño and La Niña years in the 

dataset, highlighted here by the grey shaded and hatched bars, respectively.   
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Previous work by Ward et al. (2014b) has looked at the influence of El Niño on flood return 

periods, quantifying the percentage anomaly during El Niño years in comparison with 

climatology (defined as the long-term average of historical river conditions or meteorological 

parameters). To ensure accurate estimation of historical probabilities of ENSO-driven flood 

hazard, this analysis was replicated using the new ERA-20CM-R dataset and gives similar results 

(Supplementary Figure 2).  

In this study, using a climatology of all years and all El Niño / La Niña years, we calculate the 

percentage of past El Niño / La Niña events during which the river flow fell in the upper [lower] 

quartile of climatology, defined here as “abnormally high [low] flow”. Our results show that the 

likelihood of increased or decreased flood hazard during ENSO events is much more complex 

than is often perceived and reported; probabilities vary greatly across the globe, with large 

uncertainties inherent in the data and clear differences when comparing the hydrological analysis 

to precipitation. 

4.2 Results 

4.2.1 Historical Probabilities During El Niño 

Figure 2a shows the historical probabilities for February during an El Niño, with the full set of 

El Niño and La Niña results presented in Supplementary Figures 7 and 8 respectively. El Niño 

events tend to span two calendar years, evolving in boreal spring and reaching their peak 

magnitude in winter of the same year, before decaying into the following spring/summer. 

Shortly after the peak, February sees some of the highest probabilities and extensive spatial 

coverage of regions influenced by El Niño (where >40% probability of abnormally high or low 

river flow represents a significant influence); 34.5% of the land surface indicates a significant 

increase in the probability of abnormally high or low river flow (19.2% for high, 15.3% for low) 

compared to any given year.  

The influence of El Niño on river flow can be seen as early as June (see Supplementary Figures 

7 and 8), shortly after ENSO tends to move into the warm phase, with some regions, mostly 

confined to the tropics, beginning to see up to a 50% probability of high or low river flow in 

the ensemble mean. In August and September, much of South America, south of the Amazon 

River, is somewhat likely (~40-60% probability) to observe higher than normal river flow 

however, in November, closer to the typical peak of El Niño events, a reversal to drier 

conditions across much of Brazil is observed. The southern USA has a high probability (up to  
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Figure 2: Historical probability of increased or decreased flood hazard during one month of an El 

Niño. (a) Probability of abnormally high (blue) or low (red) monthly mean river discharge. Based on the 

mean of the 10 ERA-20CM-R ensemble members exceeding the 75th percentile, or falling below the 25th 

percentile, of the 110-year river discharge climatology. (b) Uncertainty around the probability shown in (a), 

i.e. the difference between the minimum and maximum of the 10 ensemble members (%). The boxplot (b, 

inset) gives an example graphical representation of the uncertainty range at one grid point, marked on the 

map by an ‘x’, where the mean probability indicated in (a) is 63%. The range is given by the difference between 

the minimum and maximum of the 10 ensemble members; in this case 53% and 81%, giving a 28% range 

falling in the 20-40% bracket in (b).  The month of February is chosen as, occurring shortly after the peak of 

an El Niño, it sees extensive spatial coverage of land areas influenced by El Niño. 
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70%) of high river flow from December onwards, while Mexico is another region that 

experiences a reversal in the influence of El Niño, from decreased flood hazard up until 

September/October, to increased flood hazard from November onwards. Other regions are 

much more consistent, such as Indonesia, which has a high certainty of abnormally low river 

flow throughout the evolution, peak and decay of El Niño.  However, it is important to note 

that across the globe, the uncertainty around these probabilities can be high.  

4.2.2 Evaluating the Uncertainty 

Indeed, the historical probabilities themselves give an indication of the uncertainty in the 

response of the river flow to ENSO events. Here, the 10 ensemble members of ERA-20CM-R 

also allow interpretation of the uncertainty in the dataset, as each ensemble member represents 

an equally probable reconstruction of the river flow. In order to provide an indication of this 

uncertainty, Figure 2b shows the range of the probability around the mean probability shown 

in Figure 2a. The influence of El Niño is much more certain in some locations; for example, in 

coastal Ecuador/northern Peru, the probabilities vary by only 9%. These locations (darkest 

shading, 5-10% range) stand out in Figure 2b; these are the areas where there is potential to use 

such historical probabilities as an early indicator of increased or decreased flood hazard, as they 

tend to give high probabilities combined with small uncertainties. However, much of the globe 

shows a range of 20-40%, and some small regions, such as in northwest Spain and eastern 

Argentina, see a range up to 70% across the ensemble members. The implication is that while 

some regions see high probabilities of increased flood hazard, (e.g. up to 77% in northern Peru), 

across much of the globe the likelihood is much lower and much more uncertain than might be 

useful for decision-making purposes.  

4.2.3 Importance of the Hydrology 

Evaluating the historical probabilities of abnormally high or low precipitation, using the ERA-

20CM precipitation dataset, confirms that there is additional information which can be gained 

from the hydrological analysis. For example, parts of northern Africa are likely to see high 

precipitation in February (Supplementary Figure 3a); however, the River Nile is likely to see dry 

river conditions (Figure 2a), indicating that the river is influenced more by upstream rather than 

local precipitation. 

To further highlight the importance of considering the hydrological impacts, Figure 3 indicates 

regions, shown in pink [green], where the probability of high river flow is greater [smaller] than 

that of high precipitation. These differences suggest that the influence of El Niño is more 
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pronounced in the river flow in pink regions, and conversely, green highlights regions where 

the use of precipitation as a proxy for flood hazard results in an over-estimation of the 

probabilities. This could also indicate that the region is likely to experience a lagged influence 

of El Niño on river flow. The corresponding results for low flow are presented in 

Supplementary Figure 4. 

Figure 3: Comparison of historical probabilities based on precipitation and river flow. Regions where 

the difference in probability of abnormally high precipitation compared to probability of high river flow, in 

the month of February during an El Niño, is greater than 10% (based on the ensemble mean). Pink shading 

indicates that the probability of high precipitation is smaller than the probability of high river flow, while 

green shading indicates that probabilities are larger for precipitation.  

 

4.2.4 Historical Probabilities During La Niña 

El Niño events are often followed by a La Niña, the cool phase of ENSO. While La Niña events 

tend to be less widely discussed in the media, their influence on precipitation is often used as a 

proxy for flood hazard, as with El Niño. We have therefore extended this analysis to evaluate 

the probability of increased (or decreased) flood hazard during La Niña years. We find that 

many regions influenced by El Niño are likely to observe the opposite response during La Niña. 

Figure 4 shows these probabilities, again for February, during a La Niña event, with the full set 

of results shown in Supplementary Figure 8. It is evident that less of the land surface is 

significantly influenced by La Niña compared to El Niño during this month (22% of the land 

surface compared to 34.5%). Probabilities, while still significant, also tend to be lower than for  
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Figure 4: Historical probability of increased or decreased flood hazard during one month of a La 

Niña. (a) Probability of abnormally high (purple) or low (orange) monthly mean river discharge in the month 

of February during a La Niña. Based on the mean of the 10 ERA-20CM-R ensemble members exceeding the 

75th percentile, or falling below the 25th percentile, of the 110-year river discharge climatology. (b) Uncertainty 

around the probability shown in (a), i.e. the difference between the maximum and minimum of the 10 

ensemble members (%). 
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the same month during an El Niño; the highest probability of increased flood hazard shown in 

Figure 4a is 67%, and 69% for decreased flood hazard.  Again, the uncertainty surrounding this 

mean probability is large (20-40% and in some areas >70%) across much of the globe; this can 

be seen in Figure 4b. 

4.2.5 Maximum Probabilities During El Niño / La Niña 

While the monthly maps of historical probabilities give an indicator of the probability of 

increased (or decreased) flood hazard and when this is likely to occur, it is perhaps useful to 

consider the event as a whole, as the peak conditions occur at different times across the globe.  

Figure 5a [5b] shows the maximum probability of increased flood hazard during any month of 

an El Niño [La Niña] event; this provides an overview of whether a region is likely to experience 

a change in river conditions or not during or following the event. Figure 5 also indicates where 

the uncertainty surrounding the probabilities is high; this tends to be where the probability is 

lower, while regions with high probabilities also indicate higher certainty. This analysis further 

confirms that across much of the globe, such historical probabilities are much more uncertain 

than is often communicated. The corresponding results for decreased flood hazard are shown 

in Supplementary Figure 5. 

4.2.6 Comparison with Observations 

A comparison of the historical probabilities against observed datasets was also undertaken (see 

sections 4.4.5 - 4.4.6, and Supplementary Figure 6). While this proved challenging at the global 

scale due to a lack of consistent and extensive river flow records in regions of the world where 

ENSO events have the most influence, the evaluation suggests a potential over-estimation of 

the probabilities in both the precipitation and river flow reconstructions. This stresses that while 

these model reconstructions are currently the best available data for such research, there is a 

need for more extensive river flow observations in regions impacted by ENSO events. 

Throughout the results, the complexity and uncertainty surrounding such historical probabilities 

is evident. Indeed, observations of flooding in February 2016, during the strong 2015-16 El 

Niño event, reflect this complex picture of ENSO-driven flood hazard. The expected flooding 

(based on the results shown in Figure 2a) in Peru, Bolivia, Argentina and Angola was observed 

(FloodList, 2018); yet in several other regions, such as Eastern China, Japan and parts of the 

Middle East, no flood events were recorded.  Flooding also occurred in Indonesia despite a high 

likelihood of dry river conditions. In Kenya and Peru, two examples where flood preparedness 
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actions were taken ahead of El Niño, flooding was much less severe than expected (Muchangi, 

2016; Red Cross Red Crescent Climate Centre, 2015). A recent Nature correspondence (Cohen, 

2016) also highlighted the unexpected winter weather in the USA; California experienced 

heatwaves rather than prolonged rain events, while Seattle was expecting a worsening drought 

and instead endured the wettest winter on record (see also Supplementary Figure 7). 

 

Figure 5: Maximum probability of abnormally high river flow in any month during (a) an El Niño 

event and (b) a La Niña event. Based on the mean of the 10 ERA-20CM-R ensemble members exceeding 

the 75th percentile, or falling below the 25th percentile, of the 110-year river discharge climatology during, or 

shortly after the decay of, an ENSO event. Stippling indicates where the uncertainty surrounding this 

probability is high, i.e. the range of the ensemble members exceeds 25% probability.  
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4.3 Conclusions 

We have conducted a global hydrological analysis of ENSO as a predictor of flood hazard based 

on historical probability estimates using a new, extended-length model reconstruction of river 

flow. The importance of addressing the hydrology in addition to precipitation is evident in the 

differences between the probabilities of high river flow and precipitation, and in the ability to 

further evaluate areas likely to see a lagged influence of El Niño on river flow. We conclude that 

while it may seem possible to use historical probabilities to evaluate regions across the globe 

that are more likely to be at risk of flooding during an El Niño / La Niña, and indeed circle 

large areas of the globe under one banner of wetter or drier, the reality is much more complex. 

It is therefore important to undertake research that focusses on the region(s) of interest and 

consider the impact of ENSO diversity and other drivers of climate variability on the hydrology 

and flood hazard. 

4.4 Methods 

4.4.1 The New 20th Century River Flow Dataset 

For this study, we have created a 20th Century (1901-2010) reconstruction of river discharge, in 

order to obtain a dataset with consistent global coverage over an extended time period. This 

was achieved by forcing an alternative setup of the Global Flood Awareness System (GloFAS; 

Alfieri et al., 2013; Emerton et al., 2016) with the 10 ensemble members of the ERA-20CM 

(Hersbach et al., 2015) atmospheric model ensemble of the European Centre for Medium-

Range Weather Forecasts (ECMWF) to produce a 10-member ensemble of river discharge for 

the global river network (ERA-20CM-R).  

The operational set-up of GloFAS takes the runoff output from the ECMWF Integrated 

Forecast System (IFS) and runs this through the Lisflood hydrological routing model (Alfieri et 

al., 2013). Here, we instead use the Catchment-based Macro-scale Floodplain (CaMa-Flood; 

Yamazaki et al., 2011) routing model to create the river discharge reconstruction at 0.5o 

resolution from the gridded ERA-20CM runoff data. A map of the CaMa-Flood global river 

network is given in Supplementary Figure 1. We note here that the version of GloFAS used in 

this study is uncalibrated.  

While the use of the ERA-20CM model reconstruction allows a consistent analysis at the global 

scale, and provides a much longer time period over which to study these extreme events, there 

are limitations that must be considered. ERA-20CM incorporates ENSO and 20th century 
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climate trends, and assimilates sea-surface temperature and sea ice cover (Hersbach et al., 2015). 

It does not, however, assimilate atmospheric observations. This is a drawback as the model 

reconstruction is able to provide a statistical estimate of the climate, but is not able to reproduce 

synoptic situations. We have therefore undertaken a comparison with the best available 

precipitation and river discharge observations for the 20th Century and are satisfied that ENSO 

teleconnections are well-represented in ERA-20CM(-R). Of course, there is further uncertainty 

introduced when going back as far as the early 20th Century when fewer observations were 

available; the 10 ensemble members go some way to representing this uncertainty and are a key 

benefit of this particular dataset, and thus are considered throughout this study.  

4.4.2 Identifying the El Niño years 

In order to conduct this analysis, we first identified the El Niño / La Niña years in the dataset. 

This was done using the definition that the U.S. National Oceanic and Atmospheric 

Administration (NOAA) use to declare El Niño [La Niña] conditions operationally (NOAA, 

2016b). This definition states that the sea surface temperature (SST) anomaly must remain 

≥0.5oC [≤0.5°C], in the Niño3.4 region in the central Pacific (5°S - 5°N, 170°W - 120°W), for 

at least five consecutive three-month periods. Here, we extracted the ERA-20CM SST data and 

calculated the three-month running mean SST anomalies for the Niño3.4 region, allowing 

identification of the 30 [33] years in which El Niño[La Niña] conditions were present from 1901 

to 2010. These are listed in Supplementary Table 1, where the El Niño / La Niña year refers to 

the year in which the event evolves and typically also reaches its peak, as ENSO events often 

span two years, decaying into the following year. We note that while there is generally a good 

agreement between the ENSO events identified in ERA-20CM and those published by NOAA 

(NOAA, 2016a) for the same period, there are, however, some discrepancies. This is likely due 

to the different indices / definitions used to identify the ENSO events. For example, in 1977 

and 1979, El Niño events are identified by NOAA, using the Multivariate ENSO Index (NOAA, 

2016a), but these are not picked up in this study. In Figure 1, it is evident that the SST did 

exceed 0.5 oC in ERA-20CM, but this did not persist for long enough to be identified as an 

event. This is a limitation of the need to use one of the many varying methods of classifying and 

identifying ENSO events. This method was chosen as it is the most operationally relevant at 

the time of writing.   
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4.4.3 Historical Probability Estimation 

For the results presented in this study, the 110-year ERA-20CM-R climatology was used to 

calculate the upper and lower 25th, 10th and 5th percentiles of river discharge for every grid box. 

The historical probability of abnormally high or low river flow in any given month was then 

estimated, through calculation of the percentage of the 30 [33] identified El Niño [La Niña] 

years in which the river discharge exceeded (high flow) or fell below (low flow) the three 

percentile thresholds, for each of the 10 ensemble members of ERA-20CM-R. The analysis 

presented in this paper is based on percentiles so as to avoid potential large errors caused by 

bias in the dataset compared to observations (discussed further below).  

Maps of the resulting probabilities were produced based on the mean of the 10 ensemble 

members. As the number of ENSO events cover a substantial part of the 110-year period, there 

is a chance of picking up random effects. The maps produced therefore only display results 

where the probability is significantly greater than normal, i.e. ≥40%; an “event” (occurrence of 

abnormally high or low flow) with a probability of 40% during one month of an El Niño / La 

Niña has only a 5% chance of occurring by chance in that month, and thus represents a 

significant increase in the probability compared to the likelihood of occurring at random.  

Additionally, the spread in the ensemble members is designed to reflect the uncertainty in the 

dataset, and can indicate a range of possible outcomes or probabilities. As such, we have further 

calculated the uncertainty around the mean probability for the whole globe, based on the range 

across the ensemble members. For each ensemble member, the range between the minimum 

and maximum ensemble members was calculated for every grid box individually. This allows us 

to interpret the uncertainty in the probability caused by uncertainty in the dataset.  

El Niño / La Niña onset tends to occur in boreal spring/early summer and peak in winter 

(Trenberth, 1997), before decaying into the following spring. As such, the monthly analysis was 

undertaken for a period of two years; the year of onset, and the following year during which the 

El Niño / La Niña decays, in order to capture any lagged influence on river flow. Significant 

influence is shown in the results from June during the El Niño / La Niña year, to the following 

September (16 months). While it would seem advantageous to summarise the findings by season 

for simplicity, evaluation of the results shows that the patterns of influence across the globe can 

change dramatically, in some instances, from one month to the next. Summarising these maps 

into seasons may therefore result in a loss of information for some months.  
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4.4.4 Difference Between River Flow and Precipitation 

A key aim of this paper was to evaluate the added benefit of the hydrological analysis over the 

use of precipitation as a proxy for flood hazard. To do this, the same method used to estimate 

the historical probabilities in the river flow reconstruction (ERA-20CM-R) was also applied to 

the ERA-20CM precipitation reconstruction. The horizontal resolution of the ERA-20CM 

precipitation data is ~125km, while the river flow data is at 0.5° (~55km) resolution. In order 

to compare these, the results from the precipitation data were remapped to the higher resolution 

of the river flow data using a simple nearest neighbour remapping algorithm.  The difference 

between the historical precipitation probabilities and river flow probabilities was then calculated 

for the mean of the 10 ensemble members.  

4.4.5 Comparison with Observations – Precipitation 

In order to evaluate the results shown using the new ERA-20CM(-R) dataset, the same method 

for estimating historical probabilities was also applied to other, related datasets; the Global 

Precipitation Climatology Centre (GPCC) Full Data reanalysis (GPCC-FD; Schneider et al., 

2015) at 0.5o resolution, and the Global Runoff Data Centre (GRDC) river discharge 

observations (BfG, 2017). Again, percentiles are used throughout to allow reliable comparison 

with observations despite potentially large bias in the model reconstruction values compared to 

observed values.  

The GPCC-FD reanalysis is a global gridded precipitation dataset based on interpolated rain 

gauge data (Schneider et al., 2015). Comparing the ERA-20CM and GPCC-FD precipitation 

datasets indicates that the regions influenced by El Niño are well-represented by ERA-20CM 

(see Supplementary Figure 3b), and in line with well-known ENSO-sensitive regions, such as 

Australia, Indonesia, Argentina (the Rio de la Plata delta) and the southern USA – which have 

been shown to be well-represented in the GPCC-FD (Becker et al., 2013). However, the 

strength of this link appears to be over-estimated compared to observations, as the ERA-20CM 

data shows higher probabilities of abnormally high or low precipitation than the GPCC-FD. 

Some of this over-estimation may be caused by the use of the ensemble mean to produce the 

ERA-20CM maps, as averaging across the 10 ensemble members likely results in a reduction of 

the variance and we therefore pick up the forced part of the signal.  

4.4.6 Comparison with Observations – River Discharge 

As no gridded observational dataset of river discharge exists for the global river network, 

archived station data from the GRDC were used. Criteria for data suitability were chosen to 
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identify those stations which could be of use in this study. Firstly, only stations with at least a 

75-year record of observations between 1901 and 2010 were included; these could be stations 

recording on a daily or monthly basis. Of these, any stations with more than 50% of the data 

missing were removed. In total, 1287 stations fit the criteria (232 monthly, 1055 daily), of which 

the majority have <30% of the data missing. Each of these stations were manually checked to 

ensure that they correspond to the correct river point (taking into account location and upstream 

area) on the model river network. A key limitation of using the GRDC observations for this 

study is that many of these stations lie in river basins outside of the tropics and subtropics - the 

regions which tend to be most strongly influenced by ENSO events. This highlights the need 

for more consistent global river flow observations, but in their absence, model reconstructions 

and reanalyses present the best available data for regional and global scale research based on 

historical evidence.  

In order to compare the results based on observations with ERA-20CM-R, we produced a 

reliability diagram (Supplementary Figure 5) for the historical probability of abnormally high 

river flow, comparing the forecast (historical) probability of an event (in this case, river flow 

exceeding a given percentile) with the observed frequency of the event. This was achieved by 

first locating all grid points in the ERA-20CM-R dataset that contain a GRDC station that fit 

the criteria outlined above. For each percentage band (in 10% bins, as displayed on the maps 

shown in the results) of the “forecast”, the observed frequency of river flow exceeding the upper 

25th, 10th and 5th percentiles of the 110-year climatology was calculated for each GRDC station, 

before taking the mean across all stations, and all 16 months used in the analysis (June to the 

following September). This allows comparison of the predicted probability with the observed 

frequency. The reliability diagram (Supplementary Figure 5) and the discrepancy between 

forecasted and realised probabilities indicates that there is a potential over-estimation of the 

forecasted probabilities. There are limitations, however, in that we have very few, or no, 

observation stations with which to compare the results for the higher probabilities 

(Supplementary Figure 5, inset), particularly in regions that are most significantly influenced by 

El Niño / La Niña and where reliability may be better, such as the tropics. This suggests that 

such a reliability analysis may not be fully representative of the results. Additionally, the data 

records vary from station to station, therefore the number of El Niño / La Niña years included 

in the observational record of each station also varies. 
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Data Availability. The ERA-20CM, GPCC-FD and GRDC data that support the findings of 

this study are publicly available online at http://www.ecmwf.int/en/research/climate-reanalysis/era-

20cm-model-integrations, http://www.dwd.de/EN/ourservices/gpcc/gpcc.html and www.bafg.de/GRDC. 

The ERA-20CM-R data that support the findings of this study are available from the 

corresponding author upon reasonable request.  
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4.5 Supplementary Figures 

Table S1: El Niño and La Niña years identified in the ERA-20CM SST data between 1901 and 2010. 

ERA-20CM El Niño Years ERA-20CM La Niña Years 

1902 1939 1982 1903 1942 1970 

1904 1940 1986 1906 1943 1971 

1905 1941 1987 1907 1945 1973 

1911 1951 1991 1908 1949 1974 

1913 1952 1994 1909 1950 1975 

1914 1957 1997 1910 1954 1984 

1918 1963 2002 1916 1955 1988 

1923 1965 2004 1917 1956 1995 

1925 1968 2006 1924 1961 1998 

1930 1972 2009 1933 1962 1999 

   1938 1964 2007 
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Figure S1: The CaMaFlood 0.5o global river network used in this study.  

 

Figure S2: Percentage anomaly in the 100-year flood return period during El Niño. This replicates the analysis 

of Ward et al. (2014b) in order to ensure accurate estimation of the historical probabilities of ENSO-driven 

flood hazard using ERA-20CM-R.  
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Figure S3: Probability of abnormally high (blue) or low (red) total monthly precipitation during the month of 

February during an El Niño, based on total monthly precipitation exceeding the 75th percentile, or falling 

below the 25th percentile, of the 110-year (1901-2010) climatology. Using (a) the ERA-20CM dataset (based 

on the mean of the 10 ensemble members) and (b) the GPCC-FD gridded precipitation dataset based on 

interpolated gauge observations. The large area of 100% probability (red) across northern Africa in (b) is most 

likely a result of the interpolation used to produce the GPCC-FD dataset in a region with few available 

observations. 
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Figure S4: Regions where the difference in probability of abnormally low precipitation compared to 

probability of low river flow, in the month of February during an El Niño, is greater than 10% (based on the 

ensemble mean). Negative values (pink) indicate that the probability of low precipitation is smaller than the 

probability of low river flow, while positive values (green) indicate that probabilities are larger for precipitation.  
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Figure S5: Maximum probability of abnormally low river flow in any month during (a) an El Niño event and 

(b) a La Niña event. Based on the mean of the 10 ERA-20CM-R ensemble members exceeding the 75th 

percentile, or falling below the 25th percentile, of the 110-year river discharge climatology during, or shortly 

after the decay of, an ENSO event. Stippling indicates where the uncertainty surrounding this probability is 

high, i.e. the range of the ensemble members exceeds 25% probability.  
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Figure S6: Reliability diagram comparing the forecast probability of abnormally high flow to the observed 

frequency in the GRDC observations. Results are included for exceedance of three river flow thresholds; the upper 

25th, 10th and 5th percentiles. The results shown are an average across the 16 months from June during the El Niño 

year to the September following. Also shown is the number of available GRDC observation stations in each 

percentage band. 
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Figure S7 (continued on next page) 
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Figure S7: Probability of abnormally high (blue) or low (red) monthly mean river discharge during an El Niño. 

Each map shows the results for one month, based on the mean of the 10 ERA-20CM-R ensemble members 

exceeding the 75th percentile, or falling below the 25th percentile, of the 110-year ERA-20CM-R river discharge 

climatology. “Ev.” or “D.” indicates whether this map corresponds to the year in which the event typically 

evolves and peaks (“Ev.”), or the year in which the event is decaying (“D.”).  
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Figure S8 (continued on next page) 
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Figure S8: Probability of abnormally high (blue) or low (red) monthly mean river discharge during a La Niña. 

Each map shows the results for one month, based on the mean of the 10 ERA-20CM-R ensemble members 

exceeding the 75th percentile, or falling below the 25th percentile, of the 110-year ERA-20CM-R river discharge 

climatology. “Ev.” or “D.” indicates whether this map corresponds to the year in which the event typically 

evolves and peaks (“Ev.”), or the year in which the event is decaying (“D.”).  
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As discussed in Chapter 1, there are two key ways in which we can use the inherent predictability 

of the atmosphere and land state to extend the predictability of flood hazard and provide early 

indications of potential flood events. In this chapter, we have presented a statistical analysis of 

the likelihood of increased or decreased flood hazard during El Niño and La Niña, based on 

the link between the most prominent mode of interannual climate variability, ENSO, and river 

flow. The following chapter explores the use of coupled ocean-atmosphere GCMs to provide 

seasonal forecasts of flood hazard for the global river network.  
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Chapter 5 

Developing a Global Operational Seasonal 

Hydro-Meteorological Forecasting System 

This chapter has been published in Geoscientific Model Development with the following 

reference:  

Emerton, R., E. Zsoter, L. Arnal, H. L. Cloke, D. Muraro, C. Prudhomme, E. M. Stephens, P. 

Salamon and F. Pappenberger, 2018: Developing a global operational seasonal hydro-

meteorological forecasting system: GloFAS-Seasonal v1.0, Geoscientific Model Development, 11, 

3327-3346, doi:10.5194/gmd-11-3327-2018*

The contributions of the authors of this paper are as follows: F.P. proposed the operational 

development of the forecasting system, R.E. wrote the new code required to produce and 

process the seasonal river flow forecasts, and to produce the new forecast products. R.E. and 

L.A. designed the new forecast products. E.Z. implemented the forecasts into operations at 

ECMWF, and produced the ERA5-R reanalysis and GloFAS-Seasonal reforecasts. D.M. 

provided technical support for the website and operational implementation. R.E. wrote the user 

information for the GloFAS website, designed and carried out the forecast evaluation and wrote 

the paper, with the exception of Section 5.2.4, written by D.M. All authors were involved in 

discussions throughout development of the system, and all authors commented on the 

manuscript. Overall, R.E. conducted 75% of the development of GloFAS-Seasonal, assisted in 

the operational implementation, conducted 100% of the forecast evaluation and undertook 90% 

of the writing.  

Abstract. Global overviews of upcoming flood and drought events are key for many 

applications, including disaster risk reduction initiatives. Seasonal forecasts are designed to 

provide early indications of such events weeks, or even months, in advance, but seasonal 

forecasts for hydrological variables at large or global scales are few and far between. Here, we 

present the first operational global scale seasonal hydro-meteorological forecasting system: 

GloFAS-Seasonal. Developed as an extension of the Global Flood Awareness System 

                                                           
* ©2018. The Authors. Geoscientific Model Development, a journal of the European Geosciences Union published 
by Copernicus. This is an open access article under the terms of the Creative Commons Attribution License, which 
permits use, distribution and reproduction in any medium, provided that the original work is properly cited. 

https://doi.org/10.5194/gmd-11-3327-2018
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(GloFAS), GloFAS-Seasonal couples seasonal meteorological forecasts from ECMWF with a 

hydrological model, to provide openly available probabilistic forecasts of river flow out to 4 

months ahead for the global river network. This system has potential benefits not only for 

disaster risk reduction through early awareness of floods and droughts, but also for water-related 

sectors such as agriculture and water resources management, in particular for regions where no 

other forecasting system exists. We describe the key hydro-meteorological components and 

computational framework of GloFAS-Seasonal, alongside the forecast products available, 

before discussing initial evaluation results and next steps. 

5.1 Introduction 

Seasonal meteorological forecasts simulate the evolution of the atmosphere over the coming 

months. They are designed to provide an early indication of the likelihood that a given variable, 

for example precipitation or temperature, will differ from normal conditions, weeks or months 

ahead. Will a particular region be warmer or cooler than normal during the next summer? Or 

will a river have higher or lower flow than normal next winter? Seasonal forecasts of river flow 

have the potential to benefit many water-related sectors, from agriculture and water resources 

management, to disaster risk reduction and humanitarian aid through earlier indications of 

floods or droughts.  

Many operational forecasting centres produce long-range (seasonal) global forecasts of 

meteorological variables, such as precipitation (Weisheimer and Palmer, 2014). However, at 

present, operational seasonal forecasts of hydrological variables, particularly for large or global 

scales, are few and far between. A number of continental scale seasonal hydro-meteorological 

forecasting systems have begun to emerge around the globe over the past decade (Yuan et al., 

2015a), using seasonal meteorological forecasts as input to hydrological models to produce 

forecasts of hydrological variables. These  include the European Flood Awareness System 

(EFAS; Arnal et al., 2018; Cloke et al., 2013a), the European Service for Water Indicators in 

Climate Change Adaptation (SWICCA; Copernicus, 2018b), the Australian Government Bureau 

of Meteorology Seasonal Streamflow Forecasts (Bennett et al., 2017; BoM, 2018) and the USA’s 

National Hydrologic Ensemble Forecast Service (HEFS; Demargne et al., 2014; Emerton et al., 

2016).  There are also various ongoing research efforts using seasonal hydro-meteorological 

forecasting systems for forecast applications and research purposes at regional (Bell et al., 2017; 

Bennett et al., 2016; Crochemore et al., 2016; Meißner et al., 2017; Mo et al., 2014; Prudhomme 

et al., 2017; Wood et al., 2002, 2005; Yuan et al., 2013) and global (Candogan Yossef et al., 2017; 
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Yuan et al., 2015b) scales. In addition to the ongoing research into improved seasonal hydro-

meteorological forecasts at the global scale, an operational system providing consistent global 

scale seasonal forecasts of hydrological variables could be of great benefit in regions where no 

other forecasting system exists, and to organisations operating at the global scale (Coughlan De 

Perez et al., 2017).   

Often, in the absence of hydrological forecasts, seasonal precipitation forecasts are used as a 

proxy for flooding. It has been shown that forecasts of seasonal total rainfall, the most oft-used 

seasonal precipitation forecasts, are not necessarily a good indicator of seasonal floodiness 

(Stephens et al., 2015), and other measures of rainfall patterns, or seasonal hydrological 

forecasts, would be better indicators of potential flood hazard (Coughlan De Perez et al., 2017).  

While it seems a natural next step to produce global scale seasonal hydro-meteorological 

forecasts, this is not a simple task, not only due to the complexities of geographical variations 

in rainfall-runoff processes and river regimes across the globe, but also due to the computing 

resources required and huge volumes of data that must be efficiently processed and stored, and 

the challenge of effectively communicating forecasts for the entire globe. Indeed, global scale 

forecasting for medium-range timescales has only become possible in recent years due to the 

integration of meteorological and hydrological modelling capabilities, improvements in data, 

satellite observations and land-surface hydrology modelling, and increased resources and 

computer power (Emerton et al., 2016). In addition to continued improvements in computing 

capabilities, the recent move towards the development of coupled atmosphere-ocean-land 

models means that it is now becoming possible to produce seasonal hydro-meteorological 

forecasts for the global river network.  

Despite the chaotic nature of the atmosphere (Lorenz, 1963), which introduces a limit of 

predictability (generally accepted to be ~2 weeks), seasonal predictions are possible as they rely 

on components that vary on longer timescales and are themselves predictable to an extent. This 

“second type predictability” (Lorenz, 1993) for seasonal river flow forecasts comes from the 

initial conditions, and large-scale modes of climate variability. The most prominent pattern of 

climate variability is the El Niño Southern Oscillation (ENSO; McPhaden et al., 2006), which 

is known to affect river flow and flooding across the globe (Chiew and McMahon, 2002; 

Emerton et al., 2017; Guimarães Nobre et al., 2017; Ward et al., 2014a, 2014b, 2016). Other 

teleconnections also influence river flow in various regions of the globe, such as the North 

Atlantic Oscillation (NAO), Southern Oscillation (SOI), Indian Ocean Dipole (IOD) and 
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Pacific Decadal Oscillation (PDO), and contribute to the seasonal predictability of hydrologic 

variables (Yuan et al., 2015a). Coupled atmosphere-ocean-land models are key in representing 

these large-scale modes of variability in order to produce seasonal hydro-meteorological 

forecasts.  

This motivates the development of an operational global scale seasonal hydro-meteorological 

forecasting system as an extension of the Global Flood Awareness System (GloFAS; Alfieri et 

al., 2013), with openly available forecast products. GloFAS is developed by the European Centre 

for Medium-Range Weather Forecasts (ECMWF) and the European Commission Joint 

Research Centre (JRC), and has been producing probabilistic flood forecasts out to 30 days for 

the entire globe since 2012. In 2016, work began, in collaboration with the University of 

Reading, to implement a seasonal outlook in GloFAS, aiming to provide forecasts of both high 

and low river flow for the global river network, up to several months in advance. On 10th 

November 2017, the first GloFAS seasonal river flow forecast was released. This paper 

introduces the modelling system, its implementation and the available forecast products, and 

provides an initial evaluation of the potential usefulness and reliability of the forecasts.  

5.2 Implementation 

The GloFAS seasonal outlooks are produced by driving a hydrological river routing model with 

meteorological forecasts from ECMWF. The forecasts are run operationally on the ECMWF 

computing facilities. This section provides an overview of the computing facilities, introduces 

the key hydro-meteorological components of the modelling platform (the meteorological 

forecast input, hydrological model and reference climatology), and describes the computational 

framework of GloFAS-Seasonal.  

5.2.1 ECMWF High Performance Computing Facility 

ECMWF’s current High Performance Computing Facility (HPCF) has been in operation since 

June 2016, and is used for both forecast production and research activities. The HPCF 

comprises two identical Cray XC40 supercomputers, each of which is self-sufficient with their 

own storage, and each with equal access to the storage of the other. Each Cray XC40 consists 

of 20 cabinets of compute notes and 13 storage nodes. One compute node has 2 Intel Broadwell 

processors, each with 18 cores, giving 192 nodes (6912 cores) per cabinet. The Cray Aries 

interconnect is used to connect the processing power. The majority of the nodes of the HPCF 

are run using the high performance Cray Linux Environment, a stripped-down version of Linux, 
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as reducing the number of operating system tasks is critical for providing a highly scalable 

environment.  

In terms of storage, each Cray XC40 has ~10PB of storage, and the Data Handling System 

(DHS) also comprises two main applications; the Meteorological Archive and Retrieval System 

(MARS), which stores and provides access to meteorological data collected or produced by 

ECMWF, and ECFS, which stores data that is not suitable for storing on MARS. The DHS 

holds over 210PB of primary data, and the archive increases by ~233TB per day. The reader is 

referred to the ECMWF website, www.ecmwf.int, for further information on the HPCF and DHS. 

In addition to the Cray XC40s, the ECMWF computing facility also includes 4 Linux clusters 

consisting of 60 servers and 1PB of storage. The Linux clusters are currently used to run the 

river routing model used in GloFAS and to produce the forecast products, while the 

meteorological forcing and ERA5 reanalysis are produced on the HPCF. All data related to 

GloFAS-Seasonal are stored on the MARS and ECFS archives.  

5.2.2 Hydro-Meteorological Components 

 

Figure 1: Flowchart depicting the key GloFAS-Seasonal forecasting system components. 

5.2.2.1 Meteorological Forcing 

The first model component of the seasonal outlook is the meteorological forecast input from 

the ECMWF Integrated Forecast System (IFS, cycle 43r1 ;ECMWF, 2018c). GloFAS-Seasonal 

makes use of SEAS5, which is the latest version of ECMWF’s long-range ensemble forecasting 

system, made operational in November 2017 (ECMWF, 2017a; Stockdale et al., 2018). SEAS5 
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consists of 51 ensemble members (50 perturbed members and one unperturbed control 

member) and has a horizontal resolution of ~36km (TCO319). The system, which comprises a 

data assimilation system and a global circulation model, is run once a month, producing 

forecasts out to 7 months ahead. Initial pre-implementation testing of SEAS5 has suggested 

that in comparison to the previous version (System 4), SEAS5 better simulates sea surface 

temperatures (SSTs) in the Pacific Ocean, leading to improved forecasts of El Niño Southern 

Oscillation (ENSO; Stockdale et al., 2018), which is closely linked to river flow across the globe 

and can provide added predictability. 

SEAS5 is a configuration of the ECMWF IFS (cycle 43r1), including atmosphere-ocean 

coupling to the NEMO ocean model. SEAS5 is run operationally on the HPCF. Each ensemble 

member is a complex, HPC-intensive massively parallel code, written in Fortran (version F90). 

In addition, further complex scripting systems are required to control, prepare, run, post-

process and archive all IFS forecasts. The data assimilation systems used to prepare the initial 

conditions for the forecasts also make use of Fortran and run on the HPCF. For further 

information, the reader is referred to the IFS documentation (ECMWF, 2018c). 

5.2.2.2 Land Surface Component  

Within the IFS, which includes SEAS5, the Hydrology Tiled ECMWF Scheme of Surface 

Exchanges over Land, HTESSEL (Balsamo et al., 2011), is used to compute the land surface 

response to atmospheric forcing. HTESSEL simulates the evolution of soil temperature, 

moisture content and snowpack conditions through the forecast horizon, to produce a 

corresponding forecast of surface and subsurface runoff. This component allows for each grid 

box to be divided into tiles, with up to 6 tiles per grid box (bare ground, low and high vegetation, 

intercepted water and shaded and exposed snow), describing the land surface. For a given 

precipitation, the scheme distributes the water as surface runoff and drainage, with 

dependencies on orography and soil texture. An interception layer accumulates precipitation 

until saturation is reached, with the remaining precipitation partitioned between surface runoff 

and infiltration. HTESSEL also accounts for frozen soil, redirecting the rainfall and snowmelt 

to surface runoff when the uppermost soil layer is frozen, and incorporates a snow scheme. 

Four soil layers are used to describe the vertical transfer of water and energy, with subsurface 

water fluxes determined by Darcy’s law, and each layer has a sink to account for root extraction 

in vegetated areas. A detailed description of the hydrology of HTESSEL is provided by Balsamo 

et al., (2011).  
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HTESSEL comprises a Fortran library of ~20,000 lines of code, using both F77 and F90 

Fortran versions, and is implemented modularly. While HTESSEL can be run on diverse 

architectures from a workstation PC to the HPCF, operationally, it is run on the HPCF.  

5.2.2.3 River Routing Model 

As HTESSEL does not simulate water fluxes through the river network, Lisflood (Van Der 

Knijff et al., 2010), driven by the surface and sub-surface runoff output from HTESSEL 

interpolated to the 0.1o (~10km) spatial resolution of Lisflood, is used to simulate the 

groundwater (subsurface water storage and transport) processes and routing of the water 

through the river network. The initial conditions, used to start the Lisflood model, are taken 

from the ERA5-R river flow reanalysis (see Section 5.2.2.4).  

Lisflood is a spatially distributed hydrological model, including a 1-D channel routing model. 

Groundwater processes are modelled using two linear reservoirs, the upper zone representing a 

quick runoff component, including subsurface flow through soil macropores and fast 

groundwater, and the lower zone representing a slow groundwater component fed by 

percolation from the upper zone. The routing of surface runoff to the outlet of each grid cell, 

and the routing of runoff produced by every grid cell from surface, upper and lower 

groundwater zones through the river network, is done using a four-point implicit finite-

difference solution of the kinematic wave equations (Chow et al., 1988). The river network used 

is that of HydroSHEDS (Lehner et al., 2008), again interpolated to a 0.1o spatial resolution, 

using the approach of Fekete et al. (2001). For a detailed account of the Lisflood model set-up 

within GloFAS, the reader is referred to Alfieri et al. (2013).  

Lisflood is implemented using a combination of PCRaster GIS and Python, and is currently run 

operationally on the Linux cluster at ECMWF. 

5.2.2.4 Generation of Reforecasts and Reference Climatology 

In order to generate a reference climatology for GloFAS-Seasonal, the latest of ECMWF’s 

reanalysis products, ERA5, was used. Reanalysis datasets combine historical observations of the 

atmosphere, ocean and land surface with a data assimilation system; using global models to “fill 

in the gaps” and produce consistent global best estimates of the atmosphere, ocean and land 

state. ERA5 represents the current state of the art in terms of reanalysis datasets, providing a 

much higher spatial and temporal resolution (30km, hourly) compared to ERA-Interim (79km, 

3-hourly), and better representations of precipitation, evaporation and soil moisture (ECMWF,  
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2017b). In order to produce a river flow reanalysis (ERA5-R) for the global river network, the 

ERA5 surface and subsurface runoff variables were interpolated to 0.1o (~10km) resolution and 

used as input to the Lisflood model (see Section 5.2.2.3). ERA5 is currently still in production, 

and while it will cover the period from 1950 to present when completed, the full dataset will not 

be available until 2019. ERA5 is being produced in three “streams” in parallel; at the time of 

producing the ERA5-R reanalysis, 18 years of ERA5 data were available across the three streams 

(1990-1992, 2000-2007 & 2010-2016). In addition to the historical climatology, ERA5 is also 

produced in near-real-time, with a delay of just ~3 days, allowing its use as initial conditions for 

the river routing component of the GloFAS-Seasonal forecasts. The ERA5-R reanalysis is thus 

updated every month prior to producing the forecast. Figure 2 provides an overview of all 

datasets used in and produced for the development of GloFAS-Seasonal.  

Once the ERA5-R reanalysis was obtained, a set of GloFAS-Seasonal reforecasts was produced. 

From the 25-ensemble-member SEAS5 reforecasts produced by ECMWF, the surface and 

subsurface runoff variables were used to drive the Lisflood model, with initial conditions from 

ERA5-R. This generated 18 years of seasonal river flow reforecasts (one forecast per month out 

to 4 months lead time, with 25 ensemble members at 0.1o resolution). It is the weekly-averaged 

river flow from this reforecast dataset which is used as a reference climatology, including to 

calculate the high and low flow thresholds used in the real-time forecasts (described in Section 

5.2.2.4).  

5.2.3 GloFAS-Seasonal Computational Framework 

The GloFAS-Seasonal real-time forecasts are implemented and run operationally on the 

ECMWF computing facilities using ecFlow (Bahra, 2011; ECMWF, 2012), an ECMWF work 

package used to run large numbers of programs with dependencies on each other and on time. 

An ecFlow suite is a collection of tasks and scheduling instructions, with a user interface 

allowing interaction and monitoring of the suite, the code behind it, and the output. The 

GloFAS-Seasonal suite is run once per month, and is used to retrieve the raw SEAS5 forecast 

data, run this through Lisflood and produce the final forecast products and visualisations using 

the newly developed GloFAS-Seasonal postprocessing code.  

The GloFAS-Seasonal suite performs tasks (detailed below) such as retrieving data, running 

Lisflood, computing weekly averages and forecast probabilities from the raw Lisflood river flow 

forecast data, and producing maps and hydrographs for the interface. It is primarily written in 

Python (version 2.7), with some elements written in R (version 3.1) and shell scripts 
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incorporating Climate Data Operators (CDO). The code was developed and tested on 

OpenSUSE Leap 42 systems.  

 

Figure 3: The GloFAS-Seasonal ecFlow suite. The inset image shows the subtasks within the lisflood task, 

for 1 of the 51 ensemble members. Colours indicate the status of each task, where yellow = complete, green 

= active, orange = suspended, pale blue = waiting, turquoise (not shown) = queued and red (not shown) = 

aborted / failed. Grey boxes indicate dependencies, for example “lisflood == complete” indicates that the 

lisflood task and all lisflood subtasks must have successfully completed in order for the average task to run. 

 

When a new SEAS5 forecast becomes available (typically on the 5th of the month at 00:00UTC), 

the GloFAS-Seasonal ecFlow suite is automatically deployed. The structure of, and tasks within, 

the ecFlow suite are shown in Figure 3. Each ‘task’ represents one script from the GloFAS-

Seasonal code. The suite first retrieves the latest raw SEAS5 forecast surface and sub-surface 
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variables for all 51 ensemble members (stagefc and getfc tasks), alongside the river flow reference 

climatology (see Section 5.2.2.4) for the corresponding month of the forecast (copywb task). The 

Lisflood river routing model (described in Section 5.2.2.3) is then run for each of the 51 

ensemble members (lisflood task). Lisflood is initialised using the ERA5-R river flow reanalysis 

(see Section 5.2.2.4), and driven with the SEAS5 surface and sub-surface runoff forecast, to 

produce the 4-month ensemble river flow forecast at a daily time step, from which the weekly-

averaged ensemble river flow forecast is obtained (average task). The weekly averages are 

computed for every Monday-Sunday, starting from the first Monday of each month, so that the 

weekly averages correspond from one forecast to the next. While SEAS5 provides forecasts out 

to 7 months ahead, the first version of GloFAS-Seasonal uses only the first 4 months. This is 

in order to reduce the data volumes required, and to allow assessment of the forecast skill out 

to 4 months ahead, before possible extension of the forecasts out to 7 months ahead in the 

future.  

Once the weekly averaging is complete, the ‘forecast product’ section of the suite is deployed, which 

post-processes the raw forecast output to produce the final forecast products displayed on the 

web interface. The code behind the ‘forecast product’ section is provided in the supplementary 

material. For a full description of the forecast products, including examples, see Section 5.3. 

The suite computes the full forecast distribution (distribution task), followed by the probability 

of exceedance for each week of the forecast and for every grid point (probability task), based on 

the number of ensemble members exceeding the high flow threshold or falling below the low 

flow threshold. The high and low flow thresholds are defined as the 80th and 20th percentiles of 

the reference climatology, for the week of the year corresponding to the forecast week, so as to 

use thresholds based on time of year of the forecast. From these weekly exceedance 

probabilities, the maximum probability of exceedance across the 4-month forecast horizon is 

calculated for each grid point (maxprob task). Basin-averaged maximum probabilities are also 

produced (basinprob task), by calculating the mean maximum probability of exceedance across 

every grid point at which the upstream area exceeds 1500km2 in each of the 306 major world 

river basins used in GloFAS-Seasonal (see Section 5.3.1). A minimum upstream area of 1500km2 

is chosen as the current resolution of the global model is such that reliable forecasts for very 

small rivers are not feasible. To put this in context, the upstream area of the River Kennet (a 

tributary of the River Thames) is ~1000km2, while the upstream area of the River Thames is 

~10,000 km2, the Mekong ~800,000 km2, and the Amazon ~6,000,000 km2.  
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These probabilities are used to produce the forecast visualisation for the web interface (Section 

5.3). Firstly, the map task produces colour-coded maps of both the river network, again for grid 

points at which the upstream area exceeds 1500km2, and the major world river basins. The 

reppoint task then produces an ensemble hydrograph and persistence diagrams for a subset of 

grid points (the ‘reporting points’) across the globe. Further details on the location of reporting 

points are given in Section 5.3.3. Finally, the web task collates and subsequently transfers all data 

required for the web interface.   

This process, from the time a new SEAS5 forecast becomes available, takes ~4 hours on average 

to complete, with up to 10 tasks running in parallel (for example, running Lisflood for 10 

ensemble members at the same time). It is possible to speed up this process by running more 

ensemble members in parallel, however, the speed is sufficient that it is not necessary to use 

further resources to produce the forecast more quickly. GloFAS-Seasonal forecast products are 

typically produced by the 5th of the month at 05:00UTC and made available via the web interface 

on the 10th of the month at 01:00UTC. This is the earliest that the GloFAS-Seasonal forecasts 

can be provided publicly, under the Copernicus license agreement. Data is automatically 

archived at ECMWF as the suite runs in real-time; ~285GB of data from each SEAS5 forecast 

are used as input for GloFAS-Seasonal. Each GloFAS-Seasonal forecast run produces an 

additional ~1.8TB of data, and makes use of the ~18TB reference climatology.  

5.2.4 GloFAS Web Interface 

The GloFAS website is based on a User-Centred Design (UCD), meaning that user needs are 

core to the design principles (ISO13407). The website uses Web 2.0 concepts such as simplicity, 

joy of use and usability, that are synonymous with engaging users. It is a Rich Internet 

Application (RIA), aiming to provide the same level of interactivity and responsiveness as 

desktop applications.  The website is designed for those engaged in flood forecasting and water 

resources, as users can browse various aspects of the current forecast or past forecasts in a 

simple and intuitive way, with spatially distributed information. Map layers containing different 

information, e.g. flood probabilities for different flood severities, precipitation forecasts, 

seasonal outlooks, etc. can be activated, and the user can also choose to overlay other 

information such as land use, urban areas or flood hazard maps. The interface consists of three 

principal modules: MapServer, GloFAS Web Map Service Time and the Forecast Viewer. These 

are outlined below.  
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5.2.4.1 MapServer 

MapServer (Open Source Geospatial Foundation, 2016) is an open source development 

environment for building spatially-enabled internet applications, developed by the University of 

Minnesota. MapServer has built-in functionality to support industry standard data formats and 

spatial databases, which is significant to this project, and the support of popular Open 

Geospatial Consortium (OGC) standards including WMS. In order to exploit the potential of 

asynchronous data transfer between server and client, the GloFAS raster data has to be divided 

into a grid of adequate dimensions and an optimal scale sequence.  

5.2.4.2 GloFAS Web Map Service Time 

The OpenGIS Web Map Service (WMS) is a standard protocol for serving geo-referenced map 

images over the internet. A Web Map Service Time (WMS-T) is a web service that produces 

maps in several raster formats or in vector format that may come simultaneously from multiple 

remote and heterogeneous sources. A WMS server can provide support to temporal requests 

(WMS-T), by providing a TIME parameter with a time value in the request.  

The WMS Specification (OGC, 2015) describes three HTTP requests; GetCapabilities, GetMap 

and GetFeatureInfo. GetCapabilities returns an XML document describing the map layers available 

and the server's capabilities (i.e. the image formats, projections, and geographic bounds of the 

server). GetMap returns a raster map image. The request arguments, such as the layer id and 

image format should match those listed as available in the GetCapabilities return document. 

GetFeatureInfo is optional, and is designed to provide WMS clients with more information about 

features in the map images that were returned by earlier GetMap requests. The response should 

contain data relating to the features nearest to an image coordinate specified in the 

GetFeatureInfo request. The structure of the data returned is not defined in the specification 

and is left up to the WMS server implementation. The GloFAS WMS-T (GloFAS, 2018b) can 

be freely used, allowing access to the GloFAS layers in any GIS environment, such as QGIS 

(QGIS Development Team, 2017) or ArcMAP (Environmental Systems Research Institute, 

2018). The user manual for the GloFAS WMS-T is available via the GloFAS website (GloFAS, 

2018a). 

5.2.4.3 Forecast Viewer 

The GloFAS forecast viewer is based on the Model View Controller (MVC) architectural pattern 

used in software engineering. The pattern isolates "domain logic" (the application logic for the 
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user) from input and presentation (User Interface, UI), permitting independent development, 

testing and maintenance of each. A fundamental part of this is the AJAX (Asynchronous 

JavaScript and XML) technology used to enhance user-friendly interfaces for web mapping 

applications. AJAX technologies have a number of benefits; the essential one is removing the 

need to reload and refresh the whole page after every event. Careful application design and 

component selection results in a measurably smaller web server load in geodata rendering and 

publishing, as there is no need to link and send the whole html document, just the relevant part 

that needs to be changed.  

GloFAS uses OpenLayers (OpenLayers, 2018) as a WMS client. OpenLayers is a JavaScript-

based web mapping toolkit designed to make it easy to put a dynamic map on any web page. It 

doesn’t depend on the server technology and can display a set of vector data, such as points, 

with aerial photographs as backdrop maps from different sources. Closely coupled to the map 

widget is a layer manager that controls which layers are displayed with facilities for adding, 

removing and modifying layers. The new layers associated with GloFAS-Seasonal are described 

in the following section.  

5.3 Forecast Products 

The GloFAS seasonal outlook is provided as three new forecast layers in the GloFAS forecast 

viewer: the basin overview, river network and reporting point layers. Each of the three layers 

represents a different forecast product, described in the following sections. Information on each 

of the layers is also provided for end users of the forecasts under the dedicated ‘Seasonal 

Outlook’ page of the GloFAS website.  

5.3.1 Basin Overview Layer 

The first GloFAS seasonal outlook product is designed to provide a quick global overview of 

areas that are likely to experience unusually high or low river flow over the coming 4 months. 

The “Basin Overview” layer displays a map of 306 major world river basins, colour-coded 

according to the maximum probability of exceeding the high (blue) or low (orange) flow 

thresholds (the 80th and 20th percentiles of the reference climatology, respectively) during the 4-

month forecast horizon. This value is calculated for each river basin by taking the average of 

the maximum exceedance probabilities at each grid cell within the basin (using only river pixels 

with an upstream area >1500km2). The three different shades of orange / blue indicate the 

probability: dark (>90%), medium (75-90%) and light (50-75%).  Basins that remain white are 
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those where the probability of unusually high or low flow does not exceed 50% during the 4-

month forecast horizon. An example is shown in Figure 4.  

As mentioned in Section 5.2.2.3, the Lisflood river network is based on HydroSHEDS (Lehner 

et al., 2008). In order to generate the river basins used in GloFAS-Seasonal, the corresponding 

HydroBASINS (Lehner and Grill, 2013) data were used. HydroBASINS consists of a suite of 

polygon layers depicting watershed boundaries at the global scale. These watersheds were 

manually merged using QGIS (QGIS Development Team, 2017) to create a global polygon 

layer of major river basins based on the river network used in the model.  

 

Figure 4. Example screenshot of the seasonal outlook layers in the GloFAS web interface. Shown here are 

both the "basin overview" layer and "river network" layer, both indicating the maximum probability of 

unusually high (blue) or low (orange) river flow during the 4-month forecast horizon. The darker the colour, 

the higher the probability: darkest shading = >90% probability, medium shading = 75-90% probability, light 

shading = 50-75% probability. A white basin or light grey river pixel indicates that the forecast does not 

exceed 50% probability of high or low flow during the forecast horizon. Legends providing this information 

are available for each layer by clicking on the green “i” next to the layer toggle (shown at the bottom left in 

this example). 

5.3.2 River Network Layer 

The second map layer provides similar information at the sub-basin scale, by colour-coding the 

entire model river network according to the maximum exceedance probability during the 4-

month forecast horizon. This allows the user to zoom in to their region of interest and view the 

forecast maximum exceedance probabilities in more detail. Again, only river pixels with an 
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upstream area >1500km2 are shown. The same colour scheme is used for both the basin 

overview and river network layers, with blue indicating high flow (exceeding the 80th percentile) 

and orange low flow (falling below the 20th percentile) and darker colours indicating higher 

probabilities. In the river network layer, additional colours also represent areas where the 

forecast does not exceed 50% probability of exceeding either the high or low flow threshold 

(light grey), and where the river pixel lies in a climatologically arid area and the forecast 

probability cannot be defined (darker grey-brown). Examples of the river network layer can be 

seen in both Figure 4 (globally) and Figure 5 (zoomed in).  

 

Figure 5: Example of the "reporting points" GloFAS seasonal outlook layer in the web interface. Black circles 

indicate the reporting points, which provide the ensemble hydrograph (top right) and persistence diagrams 

for both low flow (centre right) and high flow (bottom right). Also shown is an example section of the “river 

network” seasonal outlook layer, indicating the maximum probability of high (blue) or low (orange) river flow 

during the 4-month forecast horizon. The darker the colour, the higher the probability. 

5.3.3 Reporting Points Layer 

In addition to the two summary map layers, reporting points are provided at both static and 

dynamic locations throughout the global river network, providing additional forecast 

information; an ensemble hydrograph and a persistence diagram.  

Static points originally consisted of a selection of gauged river stations included in the Global 

Runoff Data Centre (GRDC; BfG, 2017); this set of points has since been expanded to further 

include points at locations of particular interest to GloFAS partners. There now exist ~2200 

static reporting points in the GloFAS interface.  
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Dynamic points are generated to provide the additional forecast information throughout the global 

river network, including river reaches where there are no static points. These points are obtained 

for every new forecast based on a set of selection criteria, adapted from the GloFAS flood 

forecast dynamic point selection criteria (Alfieri et al., 2013): 

− The maximum probability of high [low] river flow (exceeding [falling below] the 80th [20th] 

percentile of the reference climatology) during the 4-month forecast horizon must be 

≥50% for at least 5 contiguous pixels of the river network.  

− The upstream area of the selected point must be ≥4000km2. 

− Dynamic reporting points are generated starting from the most downstream river pixel 

complying with the previous two selection criteria. A new reporting point is then generated 

every 300km upstream along the river network, unless a static reporting point already exists 

within a short distance of the new dynamic point, or the forecasts further upstream no 

longer comply with the previous two criteria.  

Reporting points are displayed as black circles in the “reporting points” seasonal outlook layer. 

An example is shown in Figure 5. Clicking on a reporting point brings up a new window, 

containing a hydrograph and persistence diagram alongside some basic information about the 

location, such as the latitude and longitude, and the upstream area of the point in the model 

river network. The number of dynamic reporting points can vary from one forecast to the next 

due to the criteria applied; for example, the March 2018 forecast included ~1600 dynamic points 

in addition to the static points, thus ~3800 reporting points were available globally.  

The ensemble hydrographs (also shown in Figure 5) display a fan plot of the ensemble forecast 

of weekly-averaged river flow out to 4 months, indicating the spread of the forecast and 

associated probabilities. Also shown are thresholds based on the reference climatology; the 

median, and the 80th and 20th percentiles. These thresholds are displayed as a three-week moving 

average of the weekly-averaged river flow for the given threshold, for the same months of the 

climatology as that of the forecast (i.e. a forecast for J-F-M-A also displays thresholds based on 

the reference climatology for J-F-M-A). This allows comparison of the forecast to typical and 

extreme conditions for the time of year.  

Persistence diagrams (see Figure 5) show the weekly probability of exceeding the high and low 

flow thresholds, for the current forecast (bottom row) and previous three forecasts, colour-

coded to match the probabilities indicated in the map layers. These diagrams are provided in 
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order to highlight the evolution of the forecast, which can indicate whether the forecast is 

progressing consistently, or whether behaviour is variable from month to month.  

5.4 Forecast Evaluation  

In this section, the GloFAS-Seasonal reforecasts are evaluated using historical river flow 

observations. Benchmarking a forecasting system is important to evaluate and understand the 

value of the system, and in order to communicate the skill of the forecasts to end users 

(Pappenberger et al., 2015b). This evaluation is designed to measure the ability of the forecasts 

to predict the correct category of an ‘event’, i.e. the ability of the forecast to predict that weekly-

averaged river flow will fall in the upper 80th or lower 20th percentile of climatology, using a 

climatology of historical observations as a benchmark. This can be referred to as the potential 

usefulness of the forecasts, and is of particular importance for decision-making purposes (Arnal 

et al., 2018). Another key aspect of probabilistic forecasts to consider is their reliability, which 

indicates the agreement between forecast probabilities and the observed frequency of events.  

The potential usefulness is assessed using the relative operating characteristic (ROC) curve, 

which is based on ratios of the proportion of events (the probability of detection, POD) and 

non-events (the false alarm rate, FAR) for which warnings were provided (Mason and Graham, 

1999), where in this case warnings are treated as forecasts of river flow exceeding the 80th or 

falling below the 20th percentile of the reference climatology (see Section 5.2.2.4). These ratios 

allow for estimation of the probability that an event will be predicted.  

For each week of the forecast (out to 16 weeks, corresponding to the forecasts provided via the 

interface, for example the hydrograph shown in Figure 5), the POD (eq. 1) and FAR (eq. 2) are 

calculated for both the 80th and 20th percentile events at each observation station: 

    𝑃𝑂𝐷 =
hits

hits+misses
     (1) 

                      𝐹𝐴𝑅 =
false alarms

false alarms+correct negatives
      (2) 

where a hit is defined when the forecast correctly exceeded [fell below] the 80th [20th] percentile 

of the reference climatology during the same week that the observed river flow exceeded [fell 

below] the 80th [20th] percentile of the observations at that station. It follows that a miss is defined 

when an event was observed but the forecast did not exceed the threshold, and a false alarm 

when the forecast exceeded the threshold but no event was observed. From these, the area 

under the ROC curve (AROC) is calculated, again for both the 80th and 20th percentile events. 
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The AROC (0 ≤ AROC ≤ 1, where 1 is perfect) indicates the skill of the forecasts compared to 

the long-term average climatology (which has an AROC of 0.5) and is used here to evaluate the 

potential usefulness of the forecasts. The maximum lead time at which forecasts are more skilful 

than climatology (AROC > 0.5) is identified; a forecast with an AROC < 0.5 would be less 

skilful than climatology, and thus not useful. 

The reliability of the forecasts is assessed using attributes diagrams, which show the relationship 

between the forecast probability and the observed frequency of the events. While the ROC 

measures the ability of a forecasting system to predict the correct category of an event, the 

reliability assesses how closely the forecast probabilities correspond to the actual chance of 

observing the event. As such, these evaluation metrics are useful to consider together. As with 

the ROC calculations, the reliability is assessed for each week of the forecast (out to 16 weeks), 

and for both the 80th and 20th percentile events. The range of forecast probabilities is divided 

into 10 bins (0-10%, 10-20%, etc.), and the forecast probability is plotted against the frequency 

at which an event was observed for forecasts in each probability bin. Perfect reliability is 

exhibited when the forecast probability and the observed frequency are equal, for example if a 

forecast predicts that an event will occur with a probability of 60%, then the event should occur 

on 60% of the occasions that this forecast was made. Attributes diagrams can also be used to 

assess the sharpness and resolution of the forecasts. Forecasts that do not discriminate between 

events and non-events are said to have no resolution (a forecast of climatology would have no 

resolution), and forecasts which are capable of predicting events with probabilities that differ 

from the observed frequency, such as forecasts of high or 0 probability, are said to have 

sharpness.  

The GloFAS-Seasonal reforecasts (of which there are 216, covering 18 years, as described in 

Section 5.2.2.4 and Figure 2) are compared to river flow observations that have been made 

available to GloFAS, covering 17 years of the study period up to the end of 2015, when the data 

were collated (see Figure 2). To ensure a large enough sample size for this analysis, alongside 

the best possible spatial coverage, the following criteria are applied to the data: 

− The weekly river flow data record available for each station must contain no more than 

53% (9 years) missing data. The high and low flow thresholds (the 80th and 20th 

percentile, respectively) are calculated using the observations for each station, and for 

each week, across the 17 years of data, so a sample size of 17 is the maximum possible. 

A threshold of (up to) 53% missing data allows for a minimum sample size of 8. 
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Selecting a smaller threshold reduced the number of stations, and the spatial coverage 

across the globe, significantly. The percentage of missing data is calculated at each 

station and for each week of the dataset independently, and as such the number of 

stations used can vary slightly with time.  

− The upstream area of the corresponding grid point in the model river network must be 

at least 1500km2.  

These criteria allow for the use of 1140±14 stations globally. While the dataset contains 6122 

stations, just 1664 of these contain data during the 17-year period, and none have the full 17 

years of data available. Data from human-influenced rivers have not been removed, as in this 

study we are interested in identifying the ability of the forecasting system in its current state to 

predict observed events, rather than the ability of the hydrological model to represent natural 

flow.   

5.4.1 Potential Usefulness 

In order to gain an overview of the potential usefulness of the GloFAS-Seasonal forecasts across 

the globe, we map the maximum lead time at which the forecasts are more skilful than 

climatology (i.e. AROC > 0.5), at each observation station, averaged across all forecast months. 

These results are shown in Figure 6, and it is clear that forecasts of both high and low flow 

events are more skilful than climatology across much of the globe, with potentially useful 

forecasts at many stations out to 4 months ahead. However, there are regions where the 

forecasts are (on average, across all forecast months) not useful (i.e. AROC < 0.5), such as the 

western USA and Canada (excluding coastlines), much of Africa, and additionally across parts 

of Europe for low flow events. As forecasts with an AROC larger than but close to 0.5 could 

be deemed as only marginally more skilful than climatology, we apply a skill buffer, setting the 

threshold to AROC > 0.6 for a forecast to be deemed as potentially useful. These results are 

mapped in Figure 7, and clearly indicate the reduction in the lead time at which forecasts are 

potentially useful (for both high and low flow events) at many stations, implying that in some 

locations, forecasts beyond the first 1-2 months are only marginally more skilful than 

climatology. There are, however, stations in some rivers with an AROC > 0.6 out to 4 months 

lead time, and many locations across the globe that still indicate that forecasts are potentially 

useful 1-2 months ahead for both high and low flow events. 

These results can be further broken down by season, indicating whether the forecasts are more 

potentially useful at certain times of the year. Maps showing the maximum lead time at which  
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Figure 6: Maximum forecast lead time (target week, averaged across all months) at which the area under the 

ROC curve (AROC) is greater than 0.5 for high flow events (flow exceeding the 80th percentile of 

climatology, top panel) and low flow events (flow below the 20th percentile of climatology, bottom panel), at 

each observation station. This is used to indicate the maximum lead time at which forecasts are more skilful 

than the long-term average. Dot size corresponds to the upstream area of the location – thus larger dots 

represent larger rivers and vice versa. Grey dots indicate that (on average, across all months) forecasts are less 

skilful than climatology at all lead times. 
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Figure 7: Maximum forecast lead time (target week, averaged across all months) at which the area under the 

ROC curve (AROC) is greater than 0.6 for high flow events (flow exceeding the 80th percentile of climatology, 

top panel) and low flow events (flow below the 20th percentile of climatology, bottom panel), at each 

observation station. This is used to indicate the maximum lead time at which forecasts are deemed skilful. 

Dot size corresponds to the upstream area of the location – thus larger dots represent larger rivers and vice 

versa. Grey dots indicate that (on average, across all months) forecasts are less skilful than climatology at all 

lead times. Maps for each season are provided in the supplementary material. 

 

AROC > 0.6 for each season (for forecasts started during the season; e.g. DJF indicates the 

average results for forecasts produced on 1st December, 1st January and 1st February) are 
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provided for high and low flow events in the supplementary material, Figure S1 and S2, 

respectively.  The following paragraphs provide an overview of these results for each continent; 

for further detail please refer to the maps. 

South America: For high flow events, forecasts for the Amazon basin in DJF and MAM are 

potentially useful out to longer lead times (up to 3-4 months) and at more stations than in JJA 

and SON, with similar results in MAM for low flow events. In contrast, further south, forecasts 

are most potentially useful in JJA and SON, up to 4 months ahead. In the more mountainous 

regions of western South America, forecasts in JJA and SON are generally less skilful than 

climatology for high and low flow events. In the northwest, however, for some stations, 

forecasts started in DJF and MAM are potentially useful up to 3 months ahead.  

North America: In eastern North America, JJA and SON forecasts are most potentially useful, 

with more stations indicating an AROC > 0.6 out to 2-3 months ahead. However, during all 

seasons there are several stations in the east showing skill out to varying lead times.  Much of 

the western half of the continent (excluding coastal areas) sees forecasts that are less skilful than 

climatology during all seasons, although some stations do indicate skill up to 4 months ahead 

for high flow, for forecasts started in MAM and JJA, and for low flow in MAM. At many coastal 

stations in the west, forecasts of high flow events started in DJF, MAM and JJA do indicate skill 

out to 3-4 months, and out to ~6 weeks in SON.  

Europe: Forecasts for European rivers generally perform best for high flow events in SON and 

DJF, with the exception of some larger rivers in eastern Europe, for which the forecasts are 

more potentially useful in JJA and SON. In MAM and JJA, the number of stations indicating 

no skill is generally higher. In contrast, forecasts for low flow events are less skilful than 

climatology across much of Europe. Particularly in northeast Europe and Scandinavia, forecasts 

produced in the summer months of JJA have an AROC < 0.6 at all stations, with only a few 

stations indicating any skill in other seasons, whereas in central and southeast Europe forecasts 

of low flow events are most skilful in JJA and SON, out to 3-4 months ahead in the larger rivers. 

These results are similar to those of Arnal et al. (2018) for the potential usefulness of the EFAS 

seasonal outlook.  

Asia: Although the number of available stations is very limited, the few stations available in 

southeast Asia indicate that the forecasts are potentially useful out to 3-4 months ahead, 

particularly for forecasts started in DJF and MAM, preceding the start of the wet season. For 
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low flow events, this skill extends into JJA, whereas forecasts made in SON, towards the end of 

the wet season, tend to be less skilful than climatology.  

Australia & New Zealand: Forecasts are most skilful out to longer lead times in the Murray-

Darling river basin in the southeast, in particular for forecasts started in JJA and SON during 

the southern hemisphere winter and spring. In northern Australia, forecasts started in DJF and 

MAM for high flow events, and MAM and JJA for low flow events, are potentially useful out 

to 3-4 months ahead. This corresponds with the assessment of the skill of the Bayesian joint 

probability modelling approach for sub-seasonal to seasonal streamflow forecasting in Australia 

by Zhao et al. (2016), who found that forecasts in northern Australian catchments tend to be 

more skilful for the dry season (May to October) than the wet season (December to March). At 

the 3 stations in New Zealand, forecasts are only skilful for high flow events during the first 

month of lead time, in DJF and MAM; however, for low flow events forecasts made in SON 

for the southern stations are potentially useful out to 4 months ahead.  

Africa: While the spatial distribution of stations is limited, for high flow events forecasts are seen 

to be potentially useful at some of the stations in eastern Africa, particularly in SON and to a 

lesser extent in DJF. In southern Africa, there is skill in DJF and MAM, although the maximum 

lead time varies significantly from station to station. For low flow, there is little variation 

between the seasons; forecasts are generally less skilful than climatology across the continent, 

with some stations in DJF in southern and western Africa indicating skill in the first 1-2 months 

only.  

5.4.2 Reliability 

To provide an overall picture of the reliability of the GloFAS-Seasonal forecasts, attributes 

diagrams are produced for forecasts aggregated across all observation stations globally, for both 

the 80th and 20th percentile events. In order to assess geographical differences in forecast 

reliability, attributes diagrams are also produced for forecasts aggregated across the stations 

within each of the major river basins used in the GloFAS-Seasonal forecast products (see 

Section 5.3.1). Many of these river basins do not contain a large enough number of stations to 

produce useful attributes diagrams, and as such, results in this section are presented for one 

river basin per continent for this initial evaluation. The river basin chosen for each continent is 

that which contains the largest number of observation stations.  

The globally aggregated results (Figure 8) indicate that, in general, the forecasts have more 

reliability than a forecast of climatology, though the reliability is less than perfect. It is important 
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to note that the globally aggregated results shown in Figure 8 mask any variability between river 

basins. Overall, the reliability appears to be slightly better for forecasts of high flow events than 

low flow events, and for lower probabilities, indicated by the steeper positive slope showing 

that as the forecast probability increases, so does the verified chance of the event. The forecasts 

for both high and low flow events exhibit sharpness, although more so for high flow events, 

meaning that they have the ability to forecast probabilities that differ from the climatological 

average. This is indicated by the histograms inset within the attributes diagrams in Figure 8; a 

forecast with sharpness will show a range of forecast probabilities differing from the 

climatological average (20%), and a forecast with perfect sharpness will show peaks in the 

forecast frequency at 0% and 100%. Forecasts with no, or low, sharpness will show a peak in 

the forecast frequency near to the climatological average. A forecast can have sharpness but still 

be unreliable. Figure 8 also suggests that in general, GloFAS-Seasonal forecasts have a tendency 

to over-predict the likelihood of an event occurring. 

 

Figure 8: Attributes diagram for forecasts of high flow events (flow exceeding the 80th percentile of 

climatology, left) and low flow events (flow below the 20th percentile of climatology, right), aggregated across 

all observation stations globally. Results are shown for lead time weeks 4, 8, 12 and 16, and indicate the 

reliability of the forecasts. The histograms (inset) show the frequency at which forecasts occur in each 

probability bin, and are used to indicate forecast sharpness. Attributes diagrams for selected river basins are 

provided in the supplementary material.  

The following paragraphs summarise the forecast reliability for one river basin per continent; 

for a map of the location of these river basins, please refer to Figure S3. The attributes diagrams 

for these river basins for both the 80th and 20th percentile events, and for each season, are 
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provided in Figure S4 – S8. Each attributes diagram displays the results for forecast weeks 4,8,12 

and 16, representing the reliability out to 1,2,3 and 4 months ahead. There are no river basins in 

Asia containing enough stations to produce an attributes diagram.  

South America, Tocantins River (Figure S4). For high flow events, forecasts for the Tocantins River 

indicate good reliability in all seasons, particularly up to 50% probability. Forecasts in the higher 

probability bins tend to over-predict, and this over-prediction worsens with lead time. In MAM 

and JJA, the forecasts tend to slightly under-predict in the lower probability bins. The forecasts 

have sharpness, but it is clear that the sample size of high probability forecasts is limited. There 

is a tendency to over-predict the likelihood of low flow events in all seasons, but the forecasts 

show good reliability for the lower probability bins, particularly in SON and DJF. In JJA, the 

resolution of the forecasts is low.  

North America, Lower Mississippi River (Figure S5). For high flow events, the sample size of high 

probability forecasts is small, and as such it is difficult to evaluate the reliability of these 

forecasts. The forecasts at lower probabilities have good reliability, particularly out to 2 months 

ahead in MAM and JJA. In SON and DJF, forecasts are more reliable at longer lead times. There 

is a tendency to under-predict at low probabilities and over-predict at high probabilities. For 

low flow events, the forecasts have a tendency to over-predict in all seasons, and the resolution 

of the forecasts is lower than for high flow events. At higher probabilities, forecasts of low flow 

events are more reliable than climatology, but the resolution is particularly low for probabilities 

up to 50-60%.  The forecasts for both high and low flow events have sharpness. 

Europe, River Rhone (Figure S6). For the River Rhone, the reliability is better than climatology at 

all lead times for high flow events, although there is a lack of forecasts of higher probabilities, 

particularly in MAM and JJA, as may be expected in the summer months. In SON, the reliability 

of forecasts up to 60-70% is good at all lead times, and in DJF the forecasts are more reliable in 

the first 2 months of lead time for most probability bins. The reliability is less good for low flow 

events, but is generally better than climatology, particularly in summer (JJA). In winter (DJF), 

the resolution and reliability of the forecasts are poor. For all seasons and lead times, and for 

both events, the forecasts have sharpness.  

Australia, River Murray (Figure S7). The attributes diagrams for both high and low flow events 

indicate that forecasts are often over-confident in this river basin, with probabilities of 0-10% 

for low flow events, and 0-30% and 90-100% for high flow events, occurring frequently. As 

such, the sample size of forecasts in several of the bins is low. For high flow events, forecasts 
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tend to over-predict at high probabilities, and under-predict at low probabilities. The reliability 

is very good up to ~30%, after which the sample size is too small. For low flow events, there is 

a tendency to under-predict, but based on the forecasts available, the reliability is better than 

climatology at all lead times. The reliability for low flow events is better in SON and DJF (spring 

and summer), than MAM and JJA (autumn and winter) and for high flow events there is less 

differentiation between the seasons.  

Africa, Orange River (Figure S8). For the Orange River, forecasts of high flow events exhibit good 

reliability for lower probabilities in SON, DJF and MAM (spring through autumn), particularly 

at longer lead times in SON and DJF, with a tendency to over-predict at higher probabilities. 

Resolution and reliability are poor for high flow events in JJA (winter), with probabilities of 90-

100% predicted too frequently. For low flow events, forecasts of 0-10% are very frequent, and 

the forecasts under-predict in all seasons, although the reliability is better than climatology at all 

lead times (based on a limited sample of forecasts for most probability bins). Reliability for low 

flow events is best in DJF (summer).  

5.4.3 Discussion 

The results presented provide an initial evaluation of the potential usefulness and reliability of 

GloFAS-Seasonal forecasts. For decision-making purposes, it is important to measure the ability 

of a forecasting system to predict the correct category of an event. As such, an event-based 

evaluation of the forecasts is used to assess whether the forecasts were able to correctly predict 

observed high and low river flow events over a 17-year period, and whether it is able to do so 

with good reliability. The initial results are promising, indicating that the forecasts are, on 

average, potentially useful up to 1-2 months ahead in many rivers worldwide, and up to 3-4 

months ahead in some locations. The GloFAS-Seasonal forecasts have sharpness, i.e. they are 

able to predict forecasts with probabilities that differ from climatology, and overall have better 

reliability than a forecast of climatology, but with a tendency to over-predict at higher 

probabilities. It is also clear that there exists a frequency bias in the reliability results, as often 

there is a small sample of high probability forecasts. Typically, the reliability is seen to be better 

when there is a higher forecast frequency on which to base the results. As would be expected, 

the potential usefulness and reliability of the forecasts vary by region, season and forecast lead 

time.  

Considering the evaluation results by season  allows further analysis of the times of year in which 

the forecasts are potentially useful and/or reliable. For example, in southeast Australia, forecasts 
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are seen to be potentially useful up to 4 months ahead in JJA and SON, but for forecasts 

produced in DJF the skill only extends to 1 month ahead, and forecasts are less skilful than 

climatology at several of the stations in MAM. In many rivers across the globe, it is the case that 

forecasts are potentially useful in some seasons, but not in others, and may be more reliable in 

certain seasons than others. As such, the maps provided in Figure S1 and S2 are intended to 

highlight where and when the forecasts are likely to be useful, information that is key in terms 

of decision-making.  

It is clear that there are regions and seasons where the forecasts are less skilful than climatology 

and do not have good reliability, and thus in these rivers it would be more useful to use a long-

term average climatology than seasonal hydro-meteorological forecasts of river flow. This lack 

of skill could be due to several factors, such as certain hydrological regimes that may not be 

well-represented in the hydrological model or may be difficult to forecast at these lead times 

(for example snow dominated-catchments, or regions where convective storms produce most 

of the rainfall in some seasons), poor skill of the meteorological forecast input, poor initial 

conditions from the ERA5-R reanalysis, extensive management of rivers that cannot be 

represented by the current model, or the lack of model calibration. While this initial evaluation 

is designed to provide an overview of whether the forecasts are potentially useful and reliable 

in predicting high and low flow events, more extensive analysis is required to diagnose the 

sources of predictability in the forecasts and the potential causes of poor skill. Additionally, it is 

evident that observations of river flow, particularly covering the reforecast period, are both 

spatially and temporally limited across large areas of the globe. A more extensive analysis should 

make use of the globally consistent ERA5-R river flow reanalysis as a benchmark in order to 

fully assess the forecast skill worldwide, including in regions where no observations are available.  

The verification metrics used also require that a high or low flow event is predicted with the 

correct timing, in the same week as that in which it occurred. This is asking a lot of a seasonal 

forecasting system and for many applications, such as water resources and reservoir 

management, a forecast of the exact week in which an event is expected at a lead time of several 

months ahead may not be necessary. That such a system shows real skill despite this being a 

tough test for the model, and is able to successfully predict observed high or low river flow in 

a specific week, several weeks or months ahead, provides optimism for the future of global scale 

seasonal hydro-meteorological forecasting. Further evaluation should aim to assess the skill of 

the forecasts with a more relaxed constraint on the event timing, and also make use of alternative 

skill measures to cover different aspects of the forecast skill, such as the spread and bias of the 
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forecasts. It will also be important to assess whether the use of weekly-averaged river flow is 

the most appropriate way to display the forecasts. While this is commonly used for applications 

such as drought early awareness and water resources management, there may be other aspects 

of decision-making, such as flood forecasting, for which other measures may be more 

appropriate, for example daily averages or floodiness (Stephens et al., 2015).  

Future development of GloFAS-Seasonal will aim to address these evaluation results and 

improve the skill and reliability of the current forecasts, and will also aim to overcome some of 

the grand challenges in operational hydrological forecasting, such as seamless forecasting and 

the use of data assimilation. Seamless forecasting will be key in the future development of 

GloFAS; the use of two different meteorological forecast inputs for the medium-range and 

seasonal versions of the model means that discrepancies can occur between the two timescales 

thus providing confusing, inconsistent forecast information to users. Additionally, the use of 

river flow observations could lead to significant improvements in skill, through calibration of 

the model using historical observations, and assimilation of real-time data to adjust the forecasts. 

This remains a grand challenge due to the lack of openly available river flow data, particularly 

in real time.  

5.5 Conclusions 

In this paper, the development and implementation of a global scale operational seasonal hydro-

meteorological forecasting system, GloFAS-Seasonal, was presented, and an event-based 

forecast evaluation was carried out using two different but complementary verification metrics, 

to assess the capability of the forecasts to predict high and low river flow events.  

GloFAS-Seasonal provides forecasts of high or low river flow out to 4 months ahead for the 

global river network through three new forecast product layers via the openly available GloFAS 

web interface at www.globalfloods.eu. Initial evaluation results are promising, indicating that in 

many rivers, forecasts are both potentially useful, i.e. more skilful than a long-term average 

climatology, out to several months ahead in some cases, and overall more reliable than a forecast 

of climatology. Forecast skill and reliability vary significantly by region and by season. 

The initial evaluation however also indicates a tendency of the forecasts to over-predict, in 

general, and in some regions forecasts are currently less skilful than climatology; future 

development of the system will aim to improve the forecast skill and reliability with a view to 

providing potentially useful forecasts across the globe. Development of GloFAS-Seasonal will 
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continue based on results of the forecast evaluation, and on feedback from GloFAS partners 

and users worldwide, in order to provide a forecast product that remains state-of-the-art in 

hydro-meteorological forecasting, and caters to the needs of its users. Future versions are likely 

to address some of the grand challenges in hydro-meteorological forecasting in order to improve 

forecast skill, such as data assimilation, and will also include more features, such as flexible 

percentile thresholds and indication of the forecast skill via the interface. A further grand 

challenge that is important in terms of global scale hydro-meteorological forecasting and indeed 

for the development of GloFAS, is the need for more observed data (Emerton et al., 2016), 

which is essential not only for providing initial conditions to force the models, but also for 

evaluation of the forecasts and continuous improvement of forecast accuracy. 

While such a forecasting system requires extensive computing resources, the potential for use 

in decision-making across a range of water-related sectors, and the promising results of the 

initial evaluation, suggest that it is a worthwhile use of time and resources to develop such global 

scale systems. Recent papers have highlighted that seasonal forecasts of precipitation are not 

necessarily a good indicator of potential floodiness, and called for investment in better forecasts 

of seasonal flood risk (Coughlan De Perez et al., 2017; Stephens et al., 2015). Coughlan de Perez 

et al. (2017) state that “ultimately, the most informative forecasts of flood hazard at the seasonal 

scale could be seasonal streamflow forecasts using hydrological models”, and that better 

seasonal forecasts of flood risk could be hugely beneficial for disaster preparedness.  

GloFAS-Seasonal represents a first attempt at overcoming the challenges of producing and 

providing openly-available seasonal hydro-meteorological forecast products, which are key for 

organisations working at the global scale, and for regions where no other forecasting system 

exists. We provide, for the first time, seasonal forecasts of hydrological variables for the global 

river network, by driving a hydrological model with seasonal meteorological forecasts. GloFAS-

Seasonal forecasts could be used in addition to other forecast products such as seasonal rainfall 

forecasts and short-range forecasts from national hydro-meteorological centres across the globe, 

to provide useful added information for many water-related applications, from water resources 

management and agriculture to disaster risk reduction.   
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Code Availability. The ECMWF IFS source code is available subject to a license agreement, 

and as such access is available to the ECMWF member-state weather services and other 

approved partners. The IFS code is also available for educational and academic purposes as part 

of the OpenIFS project (ECMWF, 2011, 2018b), with full forecast capabilities and including 

the HTESSEL land surface scheme, but without modules for data assimilation. Similarly, the 

GloFAS river routing component source code is not openly available; however, the ‘forecast 

product’ code (prior to implementation in ecFlow) that was newly developed for GloFAS-

Seasonal, used for a number of tasks such as computing exceedance probabilities and producing 

the graphics for the interface, is provided in the supplementary material. 

Data Availability. ECMWF’s ERA5 reanalysis and SEAS5 reforecasts are available through 

the Copernicus Climate Data Store (Copernicus, 2018a). The ERA5-R river flow reanalysis and 

the GloFAS-Seasonal reforecasts (daily data) are currently available from the authors on request, 

and will be made available through ECMWF’s data repository in due course. The majority of 

the observed river flow data was provided by the Global Runoff Data Centre (GRDC; BfG, 

2017). This data is freely available from www.bafg.de/GRDC. Additional data was provided by 

the Russian State Hydrological Institute (SHI, 2018), the European Flood Awareness System 

(EFAS, 2017), Somalia Water and Land Information Management (SWALIM, 2018), South 

Africa Department for Water and Sanitation (DWA, 2018), Colombia Institute of Hydrology, 

Meteorology and Environmental Studies (IDEAM, 2014), Nicaragua Institute of Earth Studies 

(INETER, 2016), Dominican Republic National Institute of Hydraulic Resources (INDRHI, 

2017), Brazil National Centre for Monitoring and Forecasting of Natural Hazards (Cemaden, 

2017), Environment Canada Water Office (Environment Canada, 2014), Nepal Department of 

Hydrology and Meteorology (DHM, 2017), Red Cross Red Crescent Climate Centre (RCCC, 

2018), Chile General Water Directorate (DGA, 2018), Historical Database on Floods (BDHI, 

2018).  
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5.6 Supplementary Figures  

Figure S1 (continued on next page) 
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Figure S1:  Maximum forecast lead time at which the area under the ROC curve (AROC) is greater than 0.6 

for high flow events (flow exceeding the 80th percentile of climatology), at each observation station, for 

forecasts started in each season. This is used to indicate the maximum lead time at which forecasts are skilful. 

Grey dots indicate that forecasts started in that season have an AROC < 0.6 at all lead times. 
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Figure S2 (continued on next page) 
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Figure S2:  Maximum forecast lead time at which the area under the ROC curve (AROC) is greater than 0.6 

for low flow events (flow below the 20th percentile of climatology), at each observation station, for forecasts 

started in each season. This is used to indicate the maximum lead time at which forecasts are skilful. Grey 

dots indicate that forecasts started in that season have an AROC < 0.6 at all lead times. 
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Figure S3:  Map of the GloFAS-Seasonal major river basins, highlighting the river basins used for the forecast 

reliability evaluation. 
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Figure S4: Attributes diagram for forecasts of high flow events (flow exceeding the 80th percentile of 

climatology, left) and low flow events (flow below the 20th percentile of climatology, right) aggregated across 

all observation stations in the Tocantins river basin (40 stations), for each season. Results are shown for lead 

time weeks 4, 8, 12 and 16, and indicate the reliability of the forecasts. The histograms (inset) show the 

frequency at which forecasts occur in each probability bin, and are used to indicate forecast sharpness.  
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Figure S5: Attributes diagram for forecasts of high flow events (flow exceeding the 80th percentile of 

climatology, left) and low flow events (flow below the 20th percentile of climatology, right) aggregated across 

all observation stations in the Lower Mississippi river basin (35 stations), for each season. Results are shown 

for lead time weeks 4, 8, 12 and 16, and indicate the reliability of the forecasts. The histograms (inset) show 

the frequency at which forecasts occur in each probability bin, and are used to indicate forecast sharpness.  
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Figure S6: Attributes diagram for forecasts of high flow events (flow exceeding the 80th percentile of 

climatology, left) and low flow events (flow below the 20th percentile of climatology, right) aggregated across 

all observation stations in the Rhone river basin (8 stations), for each season. Results are shown for lead time 

weeks 4, 8, 12 and 16, and indicate the reliability of the forecasts. The histograms (inset) show the frequency 

at which forecasts occur in each probability bin, and are used to indicate forecast sharpness.  
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Figure S7: Attributes diagram for forecasts of high flow events (flow exceeding the 80th percentile of 

climatology, left) and low flow events (flow below the 20th percentile of climatology, right) aggregated across 

all observation stations in the Murray river basin (12 stations), for each season. Results are shown for lead 

time weeks 4, 8, 12 and 16, and indicate the reliability of the forecasts. The histograms (inset) show the 

frequency at which forecasts occur in each probability bin, and are used to indicate forecast sharpness.  
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Figure S8: Attributes diagram for forecasts of high flow events (flow exceeding the 80th percentile of 

climatology, left) and low flow events (flow below the 20th percentile of climatology, right) aggregated across 

all observation stations in the Orange river basin (46 stations), for each season. Results are shown for lead 

time weeks 4, 8, 12 and 16, and indicate the reliability of the forecasts. The histograms (inset) show the 

frequency at which forecasts occur in each probability bin, and are used to indicate forecast sharpness.  
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Chapters 4 and 5 have explored the two key ways in which we can use the inherent predictability 

of the atmosphere and land surface to extend flood hazard predictability, through statistical 

analysis based on large-scale climate variability and teleconnections (Chapter 4), and through 

seasonal forecasting using coupled ocean-atmosphere GCMs (Chapter 5). The following chapter 

addresses the third aim of this thesis; assessing the potential usefulness of both of these 

approaches to extending flood hazard predictability at the global scale, for decision-making 

purposes.   
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Chapter 6 

What is the Most Useful Approach for Forecasting 

Hydrological Extremes During El Niño? 

This chapter has been published in Environmental Research Communications with the 

following reference:  

Emerton, R., E. M. Stephens and H. L. Cloke, 2019: What is the most useful approach for 

forecasting hydrological extremes during El Niño?, Environmental Research Communications, 

doi:10.1088/2515-7620/ab114e* 

The contributions of the authors of this paper are as follows: R.E. posed the research question, 

designed the study with the assistance of E.M.S. and H.L.C., and carried out the analysis. R.E. 

led the interpretation of the results and writing of the paper, with input from E.M.S. and H.L.C. 

Overall, 90% of the research and 85% of the writing was undertaken by R.E.    

Abstract. In the past, efforts to prepare for the impacts of El Niño-driven flood and drought 

hazards have often relied on seasonal precipitation forecasts as a proxy for hydrological 

extremes, due to a lack of hydrologically relevant information. However, precipitation forecasts 

are not the best indicator of hydrological extremes. Now, two different global scale hydro-

meteorological approaches for predicting river flow extremes are available to support flood and 

drought preparedness. These approaches are statistical forecasts based on large-scale climate 

variability and teleconnections, and resource-intensive dynamical forecasts using coupled ocean-

atmosphere general circulation models. Both have the potential to provide early warning 

information, and both are used to prepare for El Niño impacts, but which approach provides 

the most useful forecasts?  

This study uses river flow observations to assess and compare the ability of two recently-

developed forecasts to predict high and low river flow during El Niño: statistical historical 

probabilities of ENSO-driven hydrological extremes, and the dynamical seasonal river flow 

outlook of the Global Flood Awareness System (GloFAS-Seasonal). Our findings highlight 

regions of the globe where each forecast is (or is not) skilful compared to a forecast of 

                                                             
* ©2019. The Authors. Environmental Research Communications published by IOP Publishing. This is an open 
access article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided that the original work is properly cited. 

https://iopscience.iop.org/article/10.1088/2515-7620/ab114e
https://iopscience.iop.org/article/10.1088/2515-7620/ab114e
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climatology, and the advantages and disadvantages of each forecasting approach. We conclude 

that in regions where extreme river flow is predominantly driven by El Niño, or in regions where 

GloFAS-Seasonal currently lacks skill, the historical probabilities generally provide a more 

useful forecast. In areas where other teleconnections also impact river flow, with the effect of 

strengthening, mitigating or even reversing the influence of El Niño, GloFAS-Seasonal forecasts 

are typically more useful. 

6.1 Introduction 

Global overviews of upcoming flood and drought events provide valuable information for 

organisations working at the global scale, across a range of water-related sectors from agriculture 

to humanitarian aid. Producing such forecasts at the global scale has only become possible in 

recent years due to the integration of meteorological and hydrological modelling capabilities, 

improvements in data, satellite observations, and increased computer power (Alfieri et al., 2012, 

2013; Bierkens, 2015; Brown et al., 2012). While several forecasting centres now produce 

operational forecasts of floods in the medium-range, up to ~2 weeks ahead (Emerton et al., 

2016), earlier indications, many weeks or even months in advance, could be beneficial for water 

resources and disaster risk management. 

Broadly speaking, there are two key ways to extend the predictability of river flow and provide 

earlier indications of flood hazard: statistical forecasts, typically based on large-scale climate 

variability and teleconnections, and dynamical forecasts using coupled ocean-atmosphere 

general circulation models (GCMs). 

Operational seasonal forecasts, using both statistical and dynamical approaches, are widely 

available for meteorological variables, but the hydrology is often not represented, particularly 

for large or global scales. This means that forecasts of precipitation are often used as a proxy 

for flooding. However, research has shown that the link between precipitation and flood 

magnitude is nonlinear (Stephens et al., 2015), and as such, precipitation may not be the best 

indicator of potential flood hazard (Coughlan De Perez et al., 2017). Recently, there has been 

an effort to provide the equivalent early awareness information for hydrological variables, as 

exists for meteorological variables.  

Global scale statistical forecasts often rely on ENSO (El Niño Southern Oscillation) 

teleconnections. ENSO is the largest signal of interannual climate variability (McPhaden et al., 

2006); a phenomenon in which sea surface temperatures (SSTs) in the central and eastern 

equatorial Pacific fluctuate between warm (El Niño) and cool (La Niña) conditions. ENSO is 
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known to influence various aspects of weather and climate, including river flow (Chiew and 

McMahon, 2002) and flooding (Ward et al., 2014b, 2014a, 2016), worldwide. Historical 

probabilities, such as those provided by the International Research Institute for Climate and 

Society (IRI, 2018) for precipitation and temperature, are an example of a statistical forecast 

that is often used for El Niño preparedness activities.  

In response to a lack of hydrologically-relevant information on ENSO impacts, Emerton et al. 

(2017) estimated historical probabilities of high and low river flow during El Niño and La Niña. 

These historical probabilities provide statistical forecasts of extreme river flow, based on the 

links between past ENSO events and river flow across the globe.  

The recent move towards the development of coupled atmosphere-ocean-land models means 

that it is also now becoming possible to produce seasonal dynamical hydro-meteorological 

forecasts. The first operational global seasonal river flow forecasting system was implemented 

in 2017, as part of the Global Flood Awareness System (GloFAS; Alfieri et al., 2013). GloFAS-

Seasonal (Emerton et al., 2018) provides openly-available dynamical forecasts of high and low 

river flow out to 4 months ahead by forcing a hydrological river routing model with seasonal 

forecast output from a GCM. 

Both forecast approaches have the potential to provide early warning information through 

provision of hydrologically-relevant global scale forecasts, and both are used to prepare for El 

Niño impacts, but more research is required to explore whether statistical forecasts are able to 

provide stronger indications of changes in hydrological extremes than seasonal dynamical 

forecasts.  

This study uses river flow observations to compare the potential usefulness of these two global 

scale forecasts of river flow during El Niño events. Both forecasts are compared to a forecast 

of climatology and then against each other, using an event-based verification approach. 

6.2 Forecasting Approaches 

6.2.1 Dynamical Approach: GloFAS-Seasonal 

GloFAS-Seasonal provides global scale seasonal hydro-meteorological forecasts using a GCM. 

Implemented in 2017, it is run by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the European Commission Joint Research Centre (JRC), as part of the 

Copernicus Emergency Management Services. It uses surface and subsurface runoff forecasts 

from ECMWF’s latest seasonal meteorological forecasting system, SEAS5 (ECMWF, 2017a; 
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Figure 1: (a) Example of the GloFAS-Seasonal forecast website, displaying the probability of exceeding both 

the high (blue) and low (orange) river flow thresholds. (b) Example of the HistProbs forecast for one week 

during an El Niño. The map displays the probability of exceeding both the high (blue) and low (red) river 

flow thresholds. While both examples display forecasts for February during an El Niño event, (a) indicates 

the maximum probability over the 4-month lead time for a forecast started in February, and (b) indicates the 

probability for one week in February only. 

(a) 

(b) 
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Stockdale et al., 2018), to drive a river routing model, Lisflood (Van Der Knijff et al., 2010), 

producing forecasts of river flow out to 4 months ahead. The GloFAS website 

(www.globalfloods.eu, see Figure 1a for example) provides seasonal outlooks of the likelihood 

of exceeding / falling below the climatological thresholds of high (80th percentile) and low (20th 

percentile) weekly-averaged river flow. 

For this study, we make use of the GloFAS-Seasonal reforecasts, which were produced using the 

SEAS5 reforecasts (ECMWF, 2018d; Emerton et al., 2018) initialised with the ERA5-R river 

flow reanalysis (Emerton et al., 2018). ERA5 (Hersbach and Dee, 2016) is currently still in 

production, and as such, 34 years of data were available with which to produce the reforecasts: 

1981-1983, and 1986-2016. 

6.2.2 Statistical Approach: Historical Probabilities 

Historical Probabilities (hereafter referred to as HistProbs) provide information about typical 

El Niño impacts based on historical evidence (Bradley et al., 1987; Mason and Goddard, 2001). 

The probability of an impact is predicted based on the frequency of occurrence during past El 

Niños.  

The HistProbs of high and low river flow during ENSO events from Emerton et al. (2017) have 

been reproduced in this study for weekly-averaged river flow, in order to directly compare them 

with GloFAS-Seasonal. Following the method of Emerton et al. (2017), we used the ERA-

20CM-R 10-member, 110-year (1901-2010) river flow climatology to calculate the upper and 

lower 20th percentile of river flow for each grid . We then calculate, for each week of an El Niño, 

the percentage of historical El Niños during which the high or low flow threshold was exceeded. 

The use of ERA-20CM-R allows for more El Niños to be included in the calculation of the 

HistProbs, with 30 El Niños identified over the 110-year period. An El Niño is identified when 

the SST anomaly in the central equatorial Pacific Ocean (Niño3.4 region; 5°S - 5°N, 170°- 

120°W) exceeds +0.5oC for at least five consecutive (overlapping) three-month periods.  

The HistProbs (Figure 1b) were estimated for each grid point, through calculation of the 

percentage of the 30 historical El Niños in which the river flow exceeded the high flow 

threshold, or fell below the low flow threshold, during the same week. This was repeated for 

each of the 10 ensemble members of ERA-20CM-R. The ensemble mean probability was then 

interpolated from the 0.5o (~50km) resolution of ERA-20CM-R, to the 0.1o (~10km) resolution 

of GloFAS-Seasonal; it is this higher-resolution ensemble mean that is used throughout this 

study. 

http://www.globalfloods.eu/
http://www.globalfloods.eu/
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6.3 Evaluation Data and Methods 

This study evaluates the predictability of hydrological extremes during El Niño in both GloFAS-

Seasonal and the HistProbs by assessing the ability of each system to predict high and low river 

flow, with the correct timing, during an El Niño. The ability of a forecast to predict events of 

the correct category is referred to as the “potential usefulness” and is of particular importance 

for decision-making purposes (Arnal et al., 2018).  

The potential usefulness is calculated using the relative operating characteristic (ROC) curve, 

based on ratios of the probability of detection (POD) and the false alarm rate (FAR) (Mason 

and Graham, 1999). These ratios are calculated by assessing whether a forecast correctly 

predicted an observed event, or whether it missed the event or provided a false alarm, and allow 

for estimation of the probability that an event will be predicted. The POD (eq. 1) and FAR (eq. 

2) are calculated as follows: 

𝑃𝑂𝐷 =
hits

hits+misses
     (1) 

𝐹𝐴𝑅 =
false alarms

false alarms+correct negatives
     (2) 

where a hit is defined when the forecast correctly predicted flow exceeding [falling below] the 

80th [20th] percentile during the same week that the observed river flow exceeded [fell below] the 

80th [20th] percentile of the observations at that location. It follows that a miss is defined when 

an event was observed but the forecast did not exceed the threshold, a false alarm when the 

forecast exceeded the threshold but no event was observed, and a correct negative when no event 

was observed and the forecast did not exceed the threshold.  

The ROC curve is constructed from the FAR (horizontal axis) and POD (vertical axis) at 

different probability thresholds (in this case, in 10% bins), therefore providing information on 

the likelihood that an event will be predicted at a given probability threshold. The geometrical 

area under the ROC curve (AROC; 0 ≤ AROC ≤ 1) provides a summary statistic for the 

performance of a probabilistic forecast, where a forecast that correctly predicts every observed 

event (with no recorded false alarms or missed events) would have an AROC of 1. An AROC 

< 0.5 indicates that the skill of the forecasts is less than a forecast of climatology, which has an 

AROC of 0.5.  

The AROC is used to infer the potential usefulness of the forecast; a forecast that is more skilful 

than a forecast of climatology is said to be potentially useful, whereas a forecast that is less skilful 
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than a forecast of climatology is not useful. This approach has previously been used in the 

evaluation of seasonal river flow forecasts (Arnal et al., 2018; Emerton et al., 2018). Often, 

seasonal forecasts are provided in terms of the likelihood that a given variable will be above or 

below normal (based on terciles) in the coming months. The evaluation technique used in this 

study presents a significant challenge for both forecasting systems, requiring that they predict 

more extreme weekly-averaged river flow, in the same week as that in which it was observed, 

several weeks to months ahead.  

6.3.1 Observed Data 

The two forecasts are evaluated over the same 34-year period (1981-2015), using river flow 

observations obtained from the Global Runoff Data Centre (GRDC; BfG, 2017), alongside 

observations that have been made available to GloFAS (Emerton et al., 2018).  To ensure a 

large enough sample size for the forecast evaluation, alongside the best possible spatial coverage, 

the following criteria are applied to the data: 

− The weekly-averaged river flow record at each station must contain data for at least 50% 

(17 years) of the evaluation period, in order to calculate the observed high and low flow 

thresholds (80th and 20th percentiles) for each station, and for each week of the year.  

− The weekly-averaged river flow record at each station must contain at least 6 El Niños 

over which to evaluate the forecasts. 

− The upstream area of the corresponding grid point in the model river network must be 

at least 1500km2.  

Data from human-influenced rivers have not been removed, as we are interested in identifying 

the ability of both forecasting approaches to predict observed events, rather than their ability to 

represent natural flow. Of the 2355 stations in the database, ~1250 contain enough data to meet 

the above criteria and are used in this study.  

6.3.2 Calculating Potential Usefulness of GloFAS-Seasonal 

To evaluate the potential usefulness of GloFAS-Seasonal we calculate the AROC for each 

season during an El Niño using the observations as a benchmark. The AROC for a season is 

calculated by grouping together forecasts for every week during the season for all 11 El Niño 

events between 1981 and 2015. 
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The AROC is also calculated for lead times of 1-4 months ahead, by selecting the GloFAS-

Seasonal weekly-averaged river flow forecast that would have been available 1, 2, 3 and 4 months 

ahead of each week of the El Niño event. For example, for the fourth week in January the 

forecast available one month ahead would be the fourth week of the forecast produced at the 

start of January, the forecast available two months ahead would be the 8th week of the forecast 

produced in December, and three months ahead the 12th week of the forecast produced in 

November. Following the same method, for the second week in December, the forecast 

available one month ahead for that week, would be the 6th week of the forecast produced in 

November. This is necessary because while GloFAS-Seasonal predicts weekly-averaged river 

flow, the forecasts are updated just once per month.  

6.3.3 Calculating Potential Usefulness of the Historical Probabilities 

To evaluate the potential usefulness of the HistProbs we calculate the AROC for each season 

during an El Niño event using the observations as a benchmark.  

The HistProbs are a “static” forecast, that is, the forecasts do not change with lead time and 

there is just one probability for high or low river flow during each week of an El Niño. As such, 

the AROC is calculated by comparing the river flow in each week of the 11 El Niño events in 

the observations, with the HistProb of high or low river flow for the corresponding week of the 

year. The AROC for a season is calculated by grouping together forecasts for every week during 

the season, for all 11 El Niño events between 1981 and 2015.  

6.4 Results 

The results presented in this section compare the “potential usefulness” of both GloFAS-

Seasonal and the HistProbs during an El Niño. The following criteria are used to define the 

“most useful” forecast, based on the null hypothesis that the potential usefulness of the two 

forecasts is not significantly different: 

− If GloFAS-Seasonal has an AROC > 0.5 and the HistProbs < 0.5, or both exceed 0.5 

but GloFAS-Seasonal has an AROC > 0.1 larger than the HistProbs, GloFAS-Seasonal 

is most useful 

− If the HistProbs have an AROC > 0.5, and GloFAS-Seasonal < 0.5, or both exceed 0.5 

but the HistProbs have an AROC > 0.1 larger than GloFAS-Seasonal, the HistProbs are 

most useful 
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− If both forecasts have an AROC > 0.5, and within 0.1 of each other, both are useful 

and similar 

− If both forecasts have an AROC < 0.5, neither are useful 

The statistical significance of the difference in AROC between the two forecasts was 

investigated using a bootstrap procedure. For each season and each observation location, all 

available forecasts for both GloFAS-Seasonal (132 forecasts per season across the 11 El Niño 

events, at each lead time of 1-4 months ahead) and the HistProbs (143 forecasts per season, 

providing an independent probability for each week of the season, but the same probability for 

a given week across all 11 El Niño events), were resampled with replacement, and the resulting 

AROC was calculated. This process was repeated 1000 times. 

 

 

 

 

 

 

Figure 2: Box plots of the AROC differences (GloFAS - HistProbs) at lead times of (a) 1, and (b) 3 months 

ahead for both high (blue) and low (orange) river flow in MAM globally (for stations where at least one of 

the forecasts has an AROC > 0.5), calculated from a bootstrap procedure that was repeated 1000 times using 

resampling of the 132 [144] GloFAS-Seasonal [HistProbs] forecasts, with replacement. The bottom and top 

of the boxes correspond to the 25th and 75th percentiles, respectively. The notch represents the 95% 

confidence interval around the median from a 1000-bootstrapped sample. 

Figure 2 displays box plots of the global bootstrapped AROC differences (GloFAS-Seasonal - 

HistProbs) at lead times of 1 and 3 months ahead for high and low river flow in MAM during 

an El Niño. These results indicate that, aggregated globally, there is evidence that GloFAS-

Seasonal provides an improved AROC for forecasts of both high and low river flow, however, 

this is not statistically significant. For high [low] flow 3 months ahead, the median AROC 

difference is 0.32 [0.18], across all stations where at least one of the two forecasts is potentially 

useful (AROC > 0.5). Further assessment of the bootstrapped AROC differences for each 

individual station indicates that at ~95.5% of the locations where the median AROC difference 

(a) (b) 
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of the 1000-bootstrapped sample exceeds ±0.1, the choice of the most useful forecast is 

statistically significant to the 95% confidence level (at ~4.5% of stations, this is not the case, 

and using a threshold of ±0.1 does not provide a statistically significant result). At locations 

where the median AROC difference is <0.1, choosing a ‘most useful’ forecast would not provide 

a statistically significant result, and therefore it is reasonable to class the forecasts as ‘similar’ (or 

‘not useful’ depending on the AROC values). 

6.4.1 Probability of High Flow 

Figure 3a indicates that for forecasts of high river flow 3 months ahead, for MAM during an El 

Niño, the most useful forecast varies by region, and there are many locations where neither 

forecast is more skilful than a forecast of climatology (grey dots). 

Across much of North America, the HistProbs provide a more useful forecast of high river flow 

than GloFAS-Seasonal, except along the east coast, where GloFAS-Seasonal forecasts are more 

skilful. In the regions of South America that are more likely to see high flow during an El Niño, 

GloFAS-Seasonal is more useful at several locations, particularly in northern Peru, while the 

HistProbs are more useful in southern Brazil. In Europe, the HistProbs are more useful in the 

west, and GloFAS-Seasonal is more useful in the east.  

Figure 4 shows the AROC values for each forecast at locations where they are more skilful than 

climatology. Generally, the AROC for the HistProbs lies in the 0.5-0.6 range, meaning they are 

only marginally more skilful than climatology, except in some small regions, such as north-west 

USA where the AROC reaches 0.7-0.8. There are also regions where GloFAS-Seasonal forecasts 

are only marginally more skilful than climatology, such as the east coast of North America, but 

the majority of locations show an AROC of 0.6-0.8.  

Results for all seasons and lead times are provided in the supplementary material. In general, 

the results tend to be consistent with lead time, although as may be expected, the skill of 

GloFAS-Seasonal is reduced at longer lead times in some locations. The skill of both forecasts 

varies more significantly with season than with lead time. Figure S1 shows that areas where 

neither is useful are more widespread in JJA, when El Niño typically begins to develop, and 

both become more widely skilful through SON and DJF as El Niño intensifies. The timing of 

El Niño onset varies from one event to the next, which results in more uncertainty in the 

HistProbs for JJA than for other seasons. For GloFAS-Seasonal, forecasts made ahead of JJA 

are likely to be more uncertain due to uncertainty in forecasting the timing and magnitude of El 

Niño. Forecasts of El Niño produced before and during spring tend to be much less successful 
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(the infamous “spring predictability barrier”), although the cause of this remains controversial 

(Barnston et al., 2012; Duan and Wei, 2013; McPhaden, 2003; Wang-Chun Lai et al., 2018).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Maps indicating the most potentially useful forecast 3 months ahead for (a) high river flow ( >80th 

percentile of climatology) and (b) low river flow ( <20th percentile of climatology) in MAM, at each 

observation location.  

 

6.4.2 Probability of Low Flow 

Figure 3b provides the same results for forecasts of low river flow. Locations where neither 

forecast is more skilful than climatology are more widespread. However, some of these regions, 

such as the USA, are more likely to see high river flow during an El Niño.  

Most Useful Forecast 

Probability of High Flow 

Most Useful Forecast 

Probability of Low Flow 

(a) 

(b) 
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In the low flow regions in the USA, South America, Africa and Australia, there are locations at 

which the HistProbs are potentially useful (see Figures 2b and 3a), but the variability from one 

location to the next is much higher than for forecasts of high river flow. The skill of the 

HistProbs increases during and after the peak of El Niño, in DJF and MAM. This is likely due 

to the delayed response of river flow to the El Niño-driven precipitation, which is more 

prominent for low flow and drought, than for high flow and flooding. This is also reflected in 

the HistProbs themselves (not shown), which highlight the lagged response of river flow to El 

Niño, and that the influence on rivers can continue beyond the return to neutral ENSO 

conditions. 

In general, GloFAS-Seasonal is the most useful forecast for low river flow in the same regions 

as for high flow, while the HistProbs are more useful over the Amazon basin and north-west 

USA, particularly in DJF and MAM. Interestingly, Figure 4 indicates that for low river flow, the 

AROC values for the two forecasts tend to be very similar; within ±0.2. The GloFAS-Seasonal 

AROC values are similar to those for high river flow, reaching 0.6-0.8 in many locations, but 

where the HistProbs are potentially useful, the AROC can also reach 0.6-0.7, and 0.8 at some 

locations. As with the forecasts for high river flow, some variations in the results are seen with 

lead time, but these are less significant than the variations from one season to the next. 

Additional results for all seasons and lead times are provided in the supplementary material. 

6.4.3 Discussion 

The results presented in sections 4.1 and 4.2 highlight areas of the globe where potentially useful 

forecasts of hydrological extremes during El Niño are available, and indicate that the skill of 

both forecasts varies by region and season, and to some extent with lead time.   

Overall, where there is a strong El Niño influence on river flow the HistProbs are able to 

provide a potentially useful forecast of high flow in regions where GloFAS-Seasonal lacks skill. 

The HistProbs presented here are estimated based only on SSTs in the Niño3.4 region in the 

central Pacific, and therefore are not able to reflect ENSO diversity. For example, flooding in 

Peru is known to be driven by El Niños which exhibit larger SST anomalies in the eastern Pacific 

than the central Pacific. 

In fact, the impact of ENSO diversity provides some indication as to why GloFAS-Seasonal is 

more useful than the HistProbs in specific regions (e.g. northern Peru, east coast of North 

America, southern Africa, eastern Europe and Australia). All of these regions are similarly, if 

not more strongly, influenced by other modes of climate variability, such as the Indian Ocean  
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Figure 4: Maps indicating (a) the AROC of the HistProbs for both high river flow ( >80th percentile of 

climatology, blue) and low river flow ( <20th percentile of climatology, red) in MAM, (b) the AROC of 

GloFAS-Seasonal 3 months ahead for high river flow in MAM, and (c) the AROC of GloFAS-Seasonal 3 

months ahead for low river flow in MAM. On all 3 maps, the darker the colour, the higher the skill (and 

potential usefulness) of the forecast. Grey dots indicate that the forecast is not useful at that location; i.e. the 

forecast has an AROC ≤ 0.5.   

GloFAS-Seasonal  

High Flow AROC 

GloFAS-Seasonal  

Low Flow AROC 
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Dipole (IOD), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). A 

NWP model, by design, should be able to represent the impact of these other modes of 

variability on weather patterns. 

Wang et al. (2015) show that generally, an El Niño combined with a warm phase PDO gives a 

similar, but stronger, pattern of influence on wet-dry anomalies. However, in some regions the 

wet-dry anomaly during El Niño is reversed when combined with a cold phase PDO. In regions 

where the impact is similar regardless of the PDO phase, the HistProbs are generally more 

useful than GloFAS-Seasonal, particularly for high flow. Regions where the wet-dry anomaly is 

reversed depending on the PDO phase, tend to correspond to those where GloFAS-Seasonal 

is more useful. There are some exceptions, however, such as high latitude Canada and Siberia, 

where the HistProbs are more useful. These correspond to regions where GloFAS-Seasonal has 

been shown to generally be less skilful than climatology (Emerton et al., 2018). As the PDO is 

a decadal oscillation varying on much longer timescales than ENSO, it is likely to influence El 

Nino impacts over several events in turn. It is therefore a potential source of uncertainty in the 

HistProbs (see Emerton et al., 2017), as they are conditioned only on ENSO, and a change in 

the PDO may represent a change in the climate state from the period over which the HistProbs 

are estimated. The state of the PDO, however, is accounted for within a dynamical seasonal 

forecasting system. 

Further regions where GloFAS-Seasonal tends to provide a more useful forecast, for both high 

and low river flow, include southern Africa and Australia, which are known to be influenced by 

the IOD (Behera et al., 2005; Hoell et al., 2017; Marchant et al., 2007; Washington and Preston, 

2006). Saji and Yamagata (2003) show that the IOD impacts African rain variability regardless 

of the ENSO phase, but ENSO only has an impact when combined with an IOD event. As 

mentioned previously, the skill can vary significantly by season, and recent research (MacLeod, 

2018) has also shown that SEAS5, the meteorological forecast input of GloFAS-Seasonal, is 

more skilful at predicting short rains (OND) than long rains (MAM) in east Africa, as the short 

rains have much stronger teleconnections with ENSO and the IOD than the long rains. In 

Australia and south-east Asia, the IOD increases [decreases] the chance of rainfall during its 

negative [positive] phase (Ashok et al., 2003). Additionally, the NAO has been shown to 

influence flood occurrence in Europe, with extreme rainfall more likely in parts of eastern 

Europe during the positive phase of the NAO (Guimarães Nobre et al., 2017). 
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While the HistProbs are able to, in general, provide a more skilful forecast than climatology in 

the majority of regions influenced by El Niño, there are locations where GloFAS-Seasonal is 

less skilful than climatology in all seasons and at all lead times. In these locations, GloFAS-

Seasonal is unable to correctly predict the magnitude, and/or the timing, of the observed events. 

A study by Hirpa et al. (2018) identifies regions of bias in GloFAS river flow simulations. 

Regions of negative bias generally correspond to those where GloFAS-Seasonal is not skilful in 

this study. Future work should determine whether  calibration of GloFAS, such as that 

presented by Hirpa et al. (2018) for the medium-range GloFAS forecasts, could improve the 

skill of the seasonal forecasts. As GloFAS-Seasonal is further developed, it will also be important 

to consider a wider range of skill metrics for verification, taking into account both the skill and 

the value of the forecasting system (Cloke et al., 2017). The evaluation technique used in this 

study presents a significant challenge for both forecasting systems, requiring that they predict 

high or low weekly-averaged river flow, in the same week as that in which it was observed, 

several weeks to months ahead.  

Prediction of El Niño events is also key for both types of forecast. As a dynamical model, 

GloFAS-Seasonal incorporates forecasts of SSTs and therefore ENSO. Decision-makers often 

rely on forecasts of El Niño before consulting forecasts such as the HistProbs, when an El Niño 

event is forecast or developing. ECMWF’s seasonal forecasts of ENSO events are world-leading 

(Barnston et al., 2012; ECMWF, 2018d), and SEAS5 represents an improvement in the skill of 

these forecasts over the previous version of the forecasting system, S4. However, there is a 

decrease in the skill of the IOD in SEAS5, with forecasts producing cold events that are too 

large and too frequent, alongside a slight deterioration in the skill of upper level winds 

(ECMWF, 2018d), which are important for representing teleconnections across the globe. While 

dynamical models are better able to represent the complex interactions between the various 

modes of climate variability and their associated teleconnections by design, it is still possible 

that the evolution of El Nino may be uncertain or incorrectly predicted, or that even a perfect 

forecast of El Nino evolution may poorly simulate the teleconnections due to the nonlinearity 

of the teleconnections and their impacts. This can have important implications for seasonal 

predictability of ENSO teleconnections using GCMs (Turner et al., 2005). 

A further point of consideration is that while this study makes use of >1200 river flow 

observation stations around the globe, there are large areas of the world, including some that 

are significantly impacted by El Niño, where there is very sparse to no data coverage. At many 

of the stations used, management of water resources will be evident in the river flow records, 
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particularly during periods of low flow conditions, and this is likely to affect the evaluation 

results.  

Statistical forecasts such as the HistProbs are limited in that they can only forecast the response 

to events which we have previously observed. With recent research suggesting that the 

frequency of extreme El Niño events, such as those in 1982-83, 1997-98 and 2015-16, is likely 

to increase with future climate change (Cai et al., 2014, 2015a), this limitation could become 

more and more relevant. The HistProbs were also estimated using the longer ERA-20CM-R 

dataset. This dataset provides more El Niños over which to calculate the probabilities, and has 

been shown to represent ENSO teleconnections, but is unable to reproduce synoptic situations 

as no atmospheric observations were assimilated (Hersbach et al., 2015). Future work should 

explore whether the skill of statistical forecasts such as the HistProbs could be improved using 

different reanalysis products, such as ERA5.  

While currently there are areas of the globe where GloFAS-Seasonal is less skilful than 

climatology, this is the just the first version of the first global scale operational seasonal river 

flow forecasting system. Future improvements to the input datasets (e.g. topography, river flow 

observations, lakes and reservoirs), seasonal precipitation forecasts and hydrological models 

could result in a dynamical forecasting system that consistently provides a more useful forecast 

of hydrological extremes, with the benefit that such dynamical forecasts are not constrained to 

periods of time when there is an El Niño. A third approach, not considered in this study, could 

be to combine statistical and dynamical forecasts to produce a hybrid system; recent studies 

suggest this approach could enhance prediction skill at seasonal timescales (Schepen et al., 2012; 

Slater and Villarini, 2018). Research shows that seasonal hydrological forecasts are able to 

inform local decisions and actions, and that while uncertainty is not necessarily a barrier to the 

use of such forecasts, a range of information, including forecast skill, different forecast types 

and local knowledge are important, alongside a need for higher resolutions to aid local decision-

making (Neumann et al., 2018).  

6.5 Conclusions 

This paper has evaluated the ability of two different seasonal forecasting approaches, statistical 

historical probabilities and the dynamical GloFAS-Seasonal, to predict both high and low river 

flow during El Niño, with the correct timing. Previous research has highlighted the importance 

of considering the hydrology in addition to meteorological variables, with precipitation often 

used by decision-makers as a proxy for river flow. These recently-developed forecasts, both of 
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which are used for El Niño preparedness activities, aim to provide hydrologically relevant 

predictions of hydrological extremes. 

While the results presented indicate that the skill of both forecasts varies by location, season 

and lead time, and it is important to remember that both approaches have uncertainties 

associated with them and regions where they lack skill, we are able to draw the following 

conclusions, to answer the question: what is the most useful approach for forecasting 

hydrological extremes during El Niño?  

1. In regions that are strongly influenced by central Pacific El Niños, and in those where 

GloFAS-Seasonal forecasts currently lack skill, Historical Probabilities generally provide a 

more useful forecast.   

2. In regions where river flow is also influenced by other teleconnections, GloFAS-Seasonal 

forecasts are typically more useful, as they are better able to account for the characteristics 

of each El Niño, including the location, timing and magnitude of the SST anomalies, and 

simulate the response to other modes of climate variability coinciding with El Niño. For 

example, the phase of the PDO, IOD, NAO, can act to strengthen, mitigate or even reverse 

the river flow response to El Niño at a regional scale. 

3. At lead times of a season ahead, dynamical seasonal forecasts, such as the GloFAS-Seasonal 

river flow forecasts and seasonal precipitation forecasts, are better able to account for the 

interaction between various modes of climate variability. Historical Probabilities are, 

however, available at even earlier lead times, when an El Niño is first forecast or begins to 

develop. 

We further emphasise that while there is often significant interest in the impacts of El Niño due 

to its global teleconnections, in some regions, it is important to consider that other modes of 

climate variability can play a key role in addition to ENSO, or may be able to provide added 

predictability over the use of ENSO as a predictor of hydrological extremes. As more global 

scale seasonal hydro-meteorological forecasting systems are developed and forecasts are 

improved, it will be important to revisit the question of which approach is more useful for 

forecasting hydrological extremes. To forecast high and low river flow on seasonal timescales, 

and with the correct timing, is a challenging endeavour. That either or both of these forecasts 

has some ability to predict these events, several weeks to months in advance, provides optimism 

for the future of seasonal hydro-meteorological forecasting and its use in decision-making across 

many water-related sectors.  
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Figure S1: Maps indicating the most potentially useful forecast for high river flow ( >80th percentile of 

climatology, left) and low river flow ( <20th percentile of climatology, right) in JJA (El Niño onset), at each 

observation location, for lead times (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5+ months ahead. The 5+ months ahead map 

is used to indicate whether the HistProbs are potentially useful ahead of the lead time at which GloFAS-Seasonal 

forecasts are available.  
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Figure S2: Maps indicating the most potentially useful forecast for high river flow ( >80th percentile of 

climatology, left) and low river flow ( <20th percentile of climatology, right) in SON (El Niño onset), at each 

observation location, for lead times (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5+ months ahead. The 5+ months ahead map 

is used to indicate whether the HistProbs are potentially useful ahead of the lead time at which GloFAS-Seasonal 

forecasts are available. 
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Figure S3: Maps indicating the most potentially useful forecast for high river flow ( >80th percentile of 

climatology, left) and low river flow ( <20th percentile of climatology, right) in DJF (El Niño peak), at each 

observation location, for lead times (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5+ months ahead. The 5+ months ahead map 

is used to indicate whether the HistProbs are potentially useful ahead of the lead time at which GloFAS-Seasonal 

forecasts are available. 
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Figure S4: Maps indicating the most potentially useful forecast for high river flow ( >80th percentile of 

climatology, left) and low river flow ( <20th percentile of climatology, right) in MAM (El Niño decay), at each 

observation location, for lead times (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5+ months ahead. The 5+ months ahead map 

is used to indicate whether the HistProbs are potentially useful ahead of the lead time at which GloFAS-Seasonal 

forecasts are available. 
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Chapter 7 

Conclusions 

The aim of this thesis has been to explore ways in which to extend the predictability of flood 

hazard at the global scale, and provide earlier indications of potential flood events. While several 

forecasting centres produce operational forecasts of floods in the medium-range, earlier 

indications, many weeks or even months in advance, could provide crucial information for flood 

preparedness and disaster risk reduction. For example, preparedness actions such as distributing 

humanitarian funds, providing training to humanitarian actors and prepositioning aid items, 

require longer lead times than can be provided by medium-range forecasts. There are two key 

ways to use the inherent predictability of the atmosphere and land surface to provide early 

warning information: 

• Statistical analysis based on large-scale climate variability and teleconnections 

• Seasonal forecasting using coupled ocean-atmosphere general circulation models 

Both of these have been widely studied and/or implemented for meteorological variables, but 

the hydrology has often not been considered or included, particularly for large or global scales. 

This thesis has made progress towards providing the equivalent early awareness information for 

river flow, as exists for meteorological variables, through three main objectives:  

1. Analyse the link between El Niño Southern Oscillation (ENSO), the most dominant 

mode of interannual large-scale climate variability, and river flow across the globe, using 

historical events to answer the question “what is the likelihood of flooding during El 

Niño?”.  

2. Develop and test seasonal forecasts of flood hazard for the global river network, by 

driving the hydrological component of the Global Flood Awareness System (GloFAS) 

with seasonal meteorological forecasts from the European Centre for Medium-Range 

Weather Forecasts’ (ECMWF) coupled ocean-atmosphere general circulation model.  

3. Assess the potential usefulness of both the statistical (1) and dynamical (2) approaches 

to extending flood predictability and providing early indications of flood hazard at the 

global scale, for decision-making purposes. 
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This thesis has been structured around four papers, presented as a detailed review of the current 

state of large-scale flood forecasting (Chapter 2; Emerton et al., 2016) followed by an additional 

chapter providing background information on ENSO (Chapter 3), and three papers (Chapters 

4-6; Emerton et al., 2017, 2018, 2019) addressing each of the above objectives. The following 

sections summarise the key conclusions from each results chapter, highlight the scientific 

advances presented in this thesis, and discuss reflections on this research and the potential for 

future work.  

7.1 Key Conclusions 

7.1.1 Objective 1: Historical Probabilities of ENSO-Driven Flood Hazard 

The first objective of this thesis was addressed in paper 2 (presented in Chapter 4). ENSO is 

known to influence river flow and flooding at the global scale, with the literature suggesting the 

possibility of using this link to provide probabilistic predictions of flooding during ENSO 

events (El Niño and La Niña). The objective of this paper was to assess the likelihood of 

flooding during El Niño using hydrological data; this was achieved through estimation of the 

historical probabilities of high (and low) river flow using a new 110-year (1901-2010) river flow 

reconstruction, and was further extended to include results for La Niña. Historical probabilities 

are designed to provide useful information about typical ENSO impacts based on historical 

evidence. This paper provides, for the first time, the equivalent historical probabilities 

for river flow during ENSO events, to those which existed for meteorological variables such 

as precipitation and temperature.  

In addition to providing global maps of historical probabilities for high and low river flow, this 

paper further addressed several other key aspects of using ENSO as a predictor of flood hazard. 

The importance of addressing the hydrology in addition to precipitation was 

highlighted by the differences between the probabilities of high river flow and precipitation, 

and in the ability to further evaluate areas likely to see a lagged influence of El Niño and La 

Niña on river flow. This has implications for decision-making, particularly in light of the fact 

that El Niño preparedness activities have often relied on forecasts of precipitation as a proxy 

for flood hazard. A key conclusion from this paper is that the reality of using historical 

probabilities to evaluate regions of the globe that are more likely to be at risk of flooding 

during El Niño or La Niña is much more complex than is often perceived or reported. 

In the run-up to an El Niño or La Niña, potential impacts are often communicated by circling 
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large areas of the globe under one banner of wetter or drier. However, probabilities can vary 

significantly from one month to the next, and the uncertainty surrounding such historical 

probabilities is evident in the results. The implication here is that while some regions see high 

probabilities of increased flood hazard, across much of the globe, the likelihood is much 

lower and more uncertain than might be useful for decision-making purposes.  

7.1.2 Objective 2: Seasonal Hydro-Meteorological Forecasts using GloFAS 

In paper 1 (Chapter 2, section 2.6.2), extended-range hydrological forecasting was introduced 

as a likely future advance in global scale operational flood forecasting. While seasonal forecasts 

are already used across a wide range of weather-sensitive sectors, seasonal hydrological 

forecasting has only begun to emerge during the past decade. There exist challenges such as 

how to effectively combine global scale meteorological and hydrological models for seasonal 

applications, the computing resources and costs involved with producing global scale 

probabilistic seasonal forecasts, and how to effectively communicate seasonal forecasts and 

transfer the forecasts into warnings and actions.  

The second objective of this thesis was to develop and test seasonal forecasts of river flow at 

the global scale using coupled ocean-atmosphere general circulation models (GCMs), by driving 

the GloFAS river routing model (Lisflood; Van Der Knijff et al., 2010) with seasonal forecasts 

from ECMWF (SEAS5; Stockdale et al., 2018). During the course of this PhD, a four-month 

placement working in the Environmental Forecasts (EFAS/GloFAS) team at ECMWF led to 

the operational implementation of this research as the first global scale seasonal hydro-

meteorological forecasting system, as part of GloFAS. Paper 3 (Chapter 5) introduced 

GloFAS-Seasonal, providing an overview of the new forecast products provided, the hydro-

meteorological components of the forecasting system, the computational framework used to 

run the models and produce the forecasts, and an initial evaluation of the forecast skill and 

reliability for predicting high and low river flow events.  

GloFAS-Seasonal provides forecasts of high or low river flow out to 4 months ahead for 

the global river network that are openly available through the GloFAS website 

(www.globalfloods.eu). The initial evaluation results are promising, indicating that in many rivers, 

forecasts are both potentially useful (i.e. more skilful than a long-term average 

climatology) out to several months ahead in some cases, and are overall more reliable 

than a forecast of climatology. The forecast skill and reliability vary by region and season. 

The evaluation also indicated a tendency of the forecasts to over-predict, and there are regions 
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of the globe where the forecasts are less skilful than climatology (i.e. not useful) at all lead times. 

The potential for use in decision-making across a range of water-related sectors, and the 

promising results of the initial evaluation, suggest that it is a worthwhile use of time and 

resources to develop such global scale systems.  

7.1.3 Objective 3: Which Approach is More Useful? 

Through objectives 1 and 2, two new seasonal forecasts of high and low river flow were 

produced, one using a simple statistical approach, and the other using a resource-intensive 

dynamical forecasting approach. Both have the potential to provide early warning information 

at the global scale, and to be used to prepare for El Niño impacts. The third objective of this 

thesis was to assess the potential usefulness of these two different approaches to extending the 

predictability of flood hazard. This objective was addressed in paper 4 (Chapter 6), which 

assessed and compared the two newly-developed forecasts of hydrological extremes during El 

Niño, and further extended the research objective to include forecasts of low flow in addition 

to high flow or flood hazard. The evaluation was designed to assess the ability of the forecasts 

to predict high and low weekly-averaged river flow, with the correct timing. Seasonal forecasts 

are typically provided in terms of the likelihood of a given variable being above or below normal 

in the coming weeks or months. The evaluation of the ability of the forecasts to predict more 

extreme river flow, with the correct timing, presents a new approach and a more significant 

challenge, particularly on seasonal timescales.  

In this paper, information is provided on where each forecast is (or is not) skilful, and the 

advantages and disadvantages of each forecasting approach. Such information is key in 

terms of both decision-making and evaluating recent advances in the science of seasonal 

hydrological forecasting. The results indicate that the skill of both forecasts varies by location, 

season and lead time. The key conclusions, answering the question “what is the most useful 

approach for forecasting hydrological extremes during El Niño?”, are that historical 

probabilities are generally more useful in regions that are strongly influenced by central 

Pacific El Niños, whereas GloFAS-Seasonal is typically more useful in regions where 

river flow is also influenced by other teleconnections. While dynamical forecasts such 

as GloFAS-Seasonal are able to account for the interaction between various modes of 

climate variability, up to a season ahead, historical probabilities are available at even 

earlier lead times, when an El Niño event is first forecast or begins to develop.   
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7.2 Scientific Advances 

Recent studies (e.g. Coughlan De Perez et al., 2017) have called for more investment in 

hydrologically relevant forecasts of flood hazard, and highlighted that more research is required 

to explore whether forecasts based on climate variability provide better predictions than 

dynamical forecasts. This thesis has not only addressed the research questions and objectives 

outlined in Chapter 1, but has further provided two new, openly-available, hydrologically-

relevant forecasts of hydrological extremes. The key contributions of this work are summarised 

below: 

1. Previous work (e.g. Ward et al., 2014a, 2014b, 2016) has evaluated the link between 

ENSO and flooding. This thesis builds on these studies in order to further contribute 

to the understanding of these links and to provide, for the first time, probabilistic 

hydrologically-relevant forecast information based on ENSO teleconnections.  

2. The issue of uncertainty in these oft-used historical probabilities of ENSO impacts is 

explored and addressed in the context of the use of such information for decision-

making purposes. The likelihood of increased or decreased flood hazard due to El Niño 

and La Niña was found to be much more complex and uncertain than is typically 

perceived and reported, both in the scientific literature and more widely.  

3. The importance of considering hydrological variables when forecasting flood hazard, 

rather than relying on precipitation as a proxy, is highlighted throughout this thesis. In 

particular, the differences between the historical probabilities of ENSO-driven 

precipitation and extreme river flow were assessed; the forecasts of river flow are shown 

to provide additional information on the lagged influence of ENSO on flooding 

compared to increased precipitation.  

4. As part of this research, the first global seasonal hydro-meteorological forecasting 

system was developed and implemented operationally. GloFAS-Seasonal represents a 

first attempt at overcoming the challenges of producing and providing openly-available 

seasonal hydro-meteorological forecast products, which are key for organisations 

working at the global scale, and for regions where no other forecasting system exists. 

5. Evaluation of the GloFAS-Seasonal forecasts has highlighted regions of the globe where 

there is skill in predicting hydrological extremes out to several months ahead, providing 
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both optimism for the future of seasonal hydrological forecasting, and scope for further 

improving the seasonal forecasts implemented as part of this research. 

6. The potential usefulness of the two newly-developed forecasts of hydrological extremes 

was assessed and compared to provide information on their ability to predict observed 

high and low river flow, with the correct timing. This addresses, for the first time, the 

question of whether statistical forecasts based on climate variability are able to provide 

more reliable predictions of hydrological extremes than dynamical forecasts.  

7. Information is provided on where each of the two newly-developed forecasts is (or is 

not) skilful at predicting hydrological extremes during El Niño, and the advantages and 

disadvantages of both the statistical historical probabilities and dynamical GloFAS-

Seasonal forecasts. Such information is key in terms of both decision-making, and 

evaluating recent advances in the science of seasonal hydrological forecasting. 

8. Several new, extended-length, global river flow reanalysis products have been produced 

as part of this research. The 110-year ERA-20CM-R (producing using ERA-20CM; 

Emerton et al., 2017; Hersbach et al., 2015) is the longest globally consistent river flow 

dataset available, and ERA5-R (produced using ERA5; Emerton et al., 2018; Hersbach 

and Dee, 2016) represents the state-of-the-art in terms of reanalysis products. The ERA-

Interim/Land (Balsamo et al., 2015) reanalysis has also been used to produce several 

river flow reanalysis products, using various hydrological model set-ups. Additionally, a 

dataset containing 34 years of GloFAS-Seasonal reforecasts has been produced 

(Emerton et al., 2018, 2019). These data are all openly available for use by the scientific 

community. 

The findings of this thesis have implications for an international, inter-disciplinary community 

of scientists and decision-makers in three major, current research areas: ENSO, hydro-

meteorological extremes, and seasonal forecasting. The research has potential applications in 

decision-making across a wide range of water-related sectors, from agriculture and water 

resources management to flood preparedness and disaster risk reduction. Throughout this 

thesis, there has been a focus on furthering research into the predictability of flood hazard at 

the global scale, and also on providing the equivalent hydrologically relevant forecasting 

information that existed for meteorological variables. Additionally, there has been an emphasis 

on providing the information and analysis required to effectively communicate the forecasts 

produced as part of this research.  
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In Chapter 4, significant emphasis was put on understanding the uncertainty associated with 

producing and using historical probabilities, from the uncertainty inherent in the probabilities 

themselves due to ENSO diversity, and from the underlying uncertainties in the datasets used 

to produce the probabilities. Both of the forecasts produced have the potential to be used for 

El Niño preparedness activities, and as such, Chapter 6 provided information on the potential 

usefulness of the forecasts at various lead times and in different seasons during an El Niño, 

based on comparisons with observed river flow. Such information is key in terms of decision-

making, particularly in the run-up to predicted El Niño events. 

In section 7.1.2, the design and implementation of GloFAS-Seasonal was mentioned. 

Development of the forecasts involved careful consideration of the new forecast layers that 

would be provided through the GloFAS website. The design was based on both the existing 

European Flood Awareness System (EFAS) seasonal outlooks and the GloFAS medium-range 

flood forecasts, and further incorporated feedback from users of the EFAS seasonal outlook. 

Beyond the research scope of exploring the possibility of producing such forecasts, it was also 

necessary to consider how the forecasting system would be implemented operationally at 

ECMWF; this was achieved through collaboration with Ervin Zsoter and the GloFAS team. 

7.3 Reflections and Next Steps 

Each of the papers presented in this thesis has contributed scientific advances towards 

extending the predictability of flood hazard at the global scale. While significant progress has 

been made, the research has also raised further questions and provided motivation for further 

research. While each chapter presents some aspects for future work, this section considers some 

reflections on the completed research and outlines several key examples where this work could 

be extended and built upon. 

Chapter 4 provided historical probabilities of ENSO-driven flood hazard, and one of the key 

uncertainties highlighted in this work is that of ENSO diversity. The research presented in 

Chapters 4 and 6 was based on statistical analysis of the links between the Niño3.4 SST index 

(in the central Pacific) and river flow across the globe; future research should aim to account 

for ENSO diversity by considering eastern Pacific El Niño events, which can result in 

considerably different impacts to central Pacific events, and events of different magnitude. The 

importance of ENSO diversity for global teleconnections was discussed in more detail in 

Chapter 3, section 3.3.  It would also be of interest to extend the analysis presented in Chapter 

6 to assess whether similar results are obtained during La Niña events.  
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Building on this, in Chapter 6, the role of various other teleconnections was discussed in the 

context of the skill of both the historical probabilities and GloFAS-Seasonal forecasts. There is 

potential for enhanced predictability of flood hazard based on the interaction of multiple 

teleconnections, such as ENSO and the Indian Ocean Dipole (IOD), or ENSO and the Pacific 

Decadal Oscillation (PDO). Thus far, it has not been possible to conduct such research or 

produce historical probabilities for some combinations of teleconnections, due the insufficient 

length of data records when considering, for example, only the years in which there was a 

positive IOD and neutral ENSO conditions. With improved datasets, it may be possible in 

future to produce statistical analyses conditioned on combinations of teleconnections that result 

in enhanced river flow predictability.  

The issue of limited data is one that has been raised several times throughout this thesis. In 

order to produce consistent, global scale forecasts, it is necessary to make use of reanalysis 

products, using models to “fill in the gaps” where observations are not available. Multiple 

reanalysis products have been produced and used for this research, including the 110-year ERA-

20CM-R and the higher-resolution ERA5-R. Both have associated benefits and disadvantages; 

while ERA-20CM-R allows for a larger sample size of El Niño and La Niña events, it has a 

much lower resolution and does not assimilate atmospheric observations, therefore cannot 

reproduce synoptic situations. ERA5-R provides a higher resolution and assimilates 

atmospheric observations, and is produced in near-real-time, but the shorter length of the 

dataset results in a smaller sample size of ENSO events. As new reanalysis products are 

produced and their skill improved, it will be interesting to re-estimate the historical probabilities 

and provide a comparison of the likelihood of ENSO-driven flood hazard when deriving the 

probabilities using different datasets.  

In addition, since these reanalysis products are used to produce the forecasts, they cannot also 

be used to evaluate the skill of the forecasts, unless the aim of the evaluation is to assess the 

forecast’s ability to predict events within the model world only. As such, observed data was used 

for the forecast evaluations undertaken in this thesis. The use of observations allowed for 

assessment of the ability of the forecasts to predict observed events, but there are large areas of 

the globe where no observations were available. Indeed, many of the regions with sparse data 

coverage are located where the impacts of ENSO are most significant. In Chapter 2, both data 

availability and evaluation of forecasts of extreme events were discussed as two of the grand 

challenges for the future of global scale flood forecasting. It would be beneficial to collate data 
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from a larger number of national and international organisations, for use in evaluating the 

forecasts across as much of the globe as possible, as information on forecast skill is crucial for 

decision-making. Further to this, there exist a wide range of forecast verification metrics, 

designed to assess various aspects of the forecasts and their value (Cloke et al., 2017). For this 

research, the ROC score was chosen due to its relevance for decision-making. Going forward, 

it will also be important to assess other aspects of the forecasts, such as the timing of events, 

the ensemble spread and bias in the river flow, and work in collaboration with end users to 

provide useful and detailed information on forecast skill. Work has already begun in partnership 

with ECMWF and the University of Reading to conduct a more thorough investigation of the 

skill of both GloFAS and GloFAS-Seasonal.  

GloFAS-Seasonal, as an operational forecasting system, will continue to be developed and 

improved based on the latest scientific advances and on feedback from GloFAS users and 

partners. Since the publication of Chapter 6, GloFAS-Seasonal has been upgraded to v2.0, 

which includes a calibrated version of the river routing model. The calibration is described in a 

recent paper by Hirpa et al. (2018), and it will be interesting to assess the impact of this 

calibration on the skill of the GloFAS-Seasonal forecasts. While making improvements to the 

river routing is a key aspect of improving hydro-meteorological forecasting systems such as 

GloFAS-Seasonal, research has suggested that the largest contribution to errors in flood 

forecasting comes from the precipitation forecasts used to drive the hydrological models 

(Sperna Weiland et al., 2015). Future improvements to GloFAS-Seasonal are likely to include 

post-processing of the precipitation forecasts, improvements to the land surface scheme 

(HTESSEL, which is currently primarily used for the meteorological forecasts of ECMWF and 

has limitations for river flow forecasting) and the way that anthropogenic influences (such as 

reservoirs, dams and water extraction) are accounted for, incorporation of data assimilation 

techniques, and added information such as forecast skill displayed through the forecast interface.  

Finally, throughout this thesis, flood hazard and hydrological extremes were considered in terms 

of river flow exceeding, or falling below, a given percentile threshold. A recent study by 

Coughlan de Perez et al. (2017) considered various metrics of extreme rainfall and their 

correlation with floodiness (Stephens et al., 2015), in order to assess whether seasonal rainfall 

forecasts should be used for flood preparedness. Their findings show that the best indicator of 

floodiness varies widely across the study region of Africa. It would be worth extending the 

research presented in this thesis to consider different metrics of flood hazard, such as return 
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period thresholds or indeed floodiness, as different metrics may be more appropriate for various 

applications.   

7.4 Closing Remarks 

This thesis presents research that has provided some of the equivalent forecast information for 

hydrological variables as exists for meteorological variables, and extended the predictability of 

flood hazard at the global scale. Whilst significant improvements have been made in recent years 

in the field of seasonal forecasting, both for meteorological and hydrological variables, there are 

many grand challenges still to face in the future of global scale flood forecasting and 

predictability. As the forecasting community moves towards fully integrated Earth system 

models, we are likely to see more, and better, hydrological forecasts at the global scale. Such 

forecasts have the potential to provide early warning information for a range of applications 

worldwide, from agriculture and water resources management to flood preparedness and 

disaster risk reduction. The importance of effectively communicating forecasts is evident in 

terms of their potential use and associated uncertainties, and working with both the users of 

such forecasts and the centres producing the forecasts is paramount for improving not only the 

skill but the usability and value of seasonal forecasts and early warning information. 
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INTRODUCTION

Flooding has the highest frequency of occurrence
of all types of natural disasters across the globe,

accounting for 39% of all natural disasters since
2000, with >94 million people affected by floods
each year worldwide1 through displacement from
homes, unsafe drinking water, destruction of infra-
structure, injury, and loss of life. With an increasing
population living in flood-prone areas, the forecast-
ing of floods is key to managing and preparing for
imminent disaster.

Investment in building resilience is prioritized in
the Sendai Framework for Disaster Risk Reduction
(DRR) 2015–2030,2 with one component of this
being the development and use of multi-hazard warn-
ing systems.3 The World Meteorological Organiza-
tion (WMO) states that economic losses due to
severe hydrometeorological events have increased by
nearly 50 times over the past 50 years. However, the
global loss of life has decreased by a factor of 103.
This significant decrease in loss of life is attributed to
improved monitoring and forecasting of hydrome-
teorological events alongside more effective prepara-
tion and planning. Four components are suggested
by the WMO3 for effective early warning systems:
detection, monitoring, and forecasting hazards; ana-
lyses of risks involved; dissemination of timely warn-
ings; and activation of emergency plans to prepare
and respond.

The development of forecasting systems pro-
ducing forecasts and warnings of severe hazards
such as floods, droughts, storms, fires, and tropical
cyclones on a global scale are critical for disaster
risk reduction and further decreases in loss of life.
The Sendai Framework for DRR 2015–20302 states
that at global and regional levels, it is important to
‘promote co-operation between academic, scientific
and research entities and networks and the private
sector to develop new products and services to help
reduce disaster risk, in particular those that would
assist developing countries and their specific
challenges’,2 and forecasting systems such as those
discussed here are essential in achieving this, partic-
ularly in providing forecasts for countries and
regions where no other forecasts and early warnings
are available.

The need for large-scale flood forecasting sys-
tems can be broken down into three key factors:

(i) to provide information on floodiness4 across
areas larger than a catchment, for example, to
indicate where flooding during the rainy season
will be worse than normal; information that is

of high importance to humanitarian
organizations5;

(ii) to provide forecasts in basins across the globe
where there are currently no forecasts availa-
ble, which is not a massive scale-up of
resources; large-scale forecasting is therefore
cost-effective compared to focusing on devel-
oping and providing hydrometeorological
forecasts for single catchments and greatly
aids disaster risk reduction and flood early
warning efforts globally;

(iii) to support existing capabilities, for example,
by using ensemble forecasting techniques to
enable probabilistic flood forecasts, or at
longer lead times for earlier warnings; proba-
bilistic and extended-range forecasting is com-
putationally expensive, and in addition, many
countries do not currently pay for access to
these distributed meteorological forecast pro-
ducts and therefore are unable to produce
any form of hydrometeorological forecast.

This review outlines the developments that have led
to forecasting floods on the global scale, the current
state-of-the-art technology in operational large-scale
(continental and global) flood forecasting, and future
developments in global-scale flood forecasting and
early warning.

ADVANCES IN THE SCIENCE AND
TECHNIQUES OF GLOBAL
FORECASTING

Producing forecasts at the global scale has only
become possible in recent years due to the integration
of meteorological and hydrological modeling capabil-
ities, improvements in data, satellite observations and
land-surface hydrology modeling, and increased
resources and computer power.6–10 While several
meteorological and hydrological forecasting centers
now run operational flood forecasting models, many
of these are for specific locations, river basins, or
countries.8

Global hydrological modeling is complex due
to the geographical variation of rainfall-runoff pro-
cesses and river regimes,11 but large-scale flood fore-
casting systems are now emerging with recent
scientific and technological advances and increasing
integration of hydrological and meteorological com-
munities, allowing for uncertainty to be cascaded
from the meteorological input to the river flow
forecasts.12
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In this section, we analyze the key advances
that have enabled the forecasting of floods at the
global scale.

The Increasing Skill of Precipitation
Forecasts
The skill of precipitation forecasts in global numeri-
cal weather prediction (NWP) models has increased
significantly in recent years13–15 (e.g., gaining ~2 days
precipitation skill since 200016). With skilful
medium-range quantitative precipitation forecasts
(QPFs) being produced by NWP models across the
globe, it has become possible to produce skilful fore-
casts of river flow and flooding at large scales for the
purpose of early warning.17 Table 1 outlines the
resolutions and forecast ranges of some of the main
QPF products used in operational large-scale flood
forecasting systems.8

Precipitation is challenging to forecast due to
the chaotic nature of the atmosphere,18 where a small
change in the initial conditions of the system can
result in an unpredictable outcome. The underlying
physical processes of precipitation generation are
complex to model, and modeling deficiencies can lead
to forecast inaccuracies, particularly at longer lead
times.19 In general, due to the lack of observations,
precipitation predictions are less skilful in the south-
ern hemisphere, although the difference in the skill of
forecasts between the hemispheres has reduced signif-
icantly since the introduction of satellite observations
and data assimilation.19,20 Limited data are also an
issue in much of the tropics alongside difficulties
associated with the simulation of convective precipi-
tation.21 While QPF skill depends heavily on the
region, season, intensity, and storm type,19 precipita-
tion skill is generally good for rainfall generated by
synoptic-scale frontal weather systems.22 The inten-
sity of precipitation tends to be one of the major pro-
blems in QPFs, with convective21 and orographic
enhancement23 processes tending to result in an

under-prediction of intensity alongside the tendency
of most global models to over-predict the intensity of
light precipitation.24 Many NWP models struggle
with displacement;19,25 while the areal extent, timing,
and intensity of precipitation may be correct, precipi-
tation displacement can be extremely detrimental to
forecasts of river flow and flooding.

With ongoing improvements to NWP mod-
els13,14,16,26 (resolution increases, new methods of
simulating the physical processes, and increasing
computer power), precipitation forecasts have
become more useful to hydrological applications.

Ensemble Flood Forecasting—
Representing Uncertainty
Over the past 2 decades, NWP has moved from
single-solution forecasts of the future state of the
atmosphere to probabilistic forecasts using ensemble
prediction systems (EPS).27 Probabilistic forecasts
allow the inherent uncertainties in NWP to be repre-
sented.15,28 In hydrological modeling, the four main
sources of uncertainty are input data, evaluation
data, model structure, and model parameters.29–32

The relative importance of these uncertainties tends
to vary according to catchment characteristics, event
magnitude, and lead time of the forecast,12,27 but it is
generally accepted that the greatest uncertainty in
flood forecasting beyond 2–3 days lead time stems
from the meteorological input.27,29

The standard approach in NWP is to produce a
single (deterministic) forecast from the initial state,
whereas EPS recognise and represent the uncertainty
in the initial conditions by perturbing them to pro-
duce several initial states.33,34 The forecast model is
run from each of the perturbed initial states, produ-
cing many varying, but valid and equally probable,
forecast scenarios. In addition to sampling the error
in the initial state, many centers also incorporate sto-
chastic physics, which involves applying random per-
turbations of the parameterized physical processes.35

TABLE 1 | Technical details of quantitative precipitation forecasts used in large-scale flood forecasting8

Product Type Spatial Extent Spatial Resolution Temporal Resolution Forecast Range Uncertainty

Radar nowcasting ~10,000–50,000km2 1–4 km 5–60 min 1–6 h Low

#
High

Ensemble radar nowcasting ~10,000–50,000 km2 1–4 km 5–60 min 1–6 h

Radar-NWP blending Regional ~2 km 15–60 min ~6 h

Limited-area NWP Regional–Continental 2–25 km 1–6 h 1–3 days

Ensemble limited-area NWP Regional–Continental 2–25 km 3–6 h ~5–30 days

Global NWP Global ~15–100 km ~3–6 h ~5–30 days

Seasonal forecasts Global ~15–100 km ~6–24 h Months

WIREs Water Continental and global scale flood forecasting systems
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Predictions of river discharge are usually pro-
duced by providing the EPS as input to a hydrologi-
cal model.27,32,36,37 Prior to this, some pre-processing
may be required32,37; scale corrections (downscaling
or disaggregating) are made as the scale (temporal
and spatial) does not usually correspond between the
EPS and the hydrological model due to the irregular
shape of catchments.15 Bias or spread corrections
may also need to be made.27

The use of EPS in flood forecasting allows
probabilistic forecasts of flood events at much longer
lead times than has previously been possible and is
useful in producing forecasts in catchments where no
other input data is available.27 Cloke and Pappenber-
ger27 give a detailed review of the benefits of ensem-
ble over deterministic flood forecasts, particularly
looking at advantages for issuing flood alerts and
warnings. Probabilistic forecasts of upcoming events
have been shown to provide greater skill than deter-
ministic forecasts38 and provide key information
about the possibility of occurrence of an extreme
event.

Operational Large-Scale Flood
Forecasting
There exist various large-scale hydrological models
run by communities around the globe; Bierkens
et al.39 give a detailed overview of the properties of
14 global scale and 4 continental scale models. Not
all of these models are used operationally for the pur-
pose of flood forecasting, and as such, a list of opera-
tional continental and global scale flood forecasting
models, alongside key system information, is pro-
vided in Table 2.

Figure 1 shows a simplified conceptual model
for a large-scale flood forecasting system, the compo-
nents required and the output generated within each
component. The operational systems outlined in
Table 2 are the focus of this review, and each takes a
different approach to the components of the concep-
tual model. In the following sections, we benchmark
the state of current science and technology in under-
taking operational continental- and global-scale flood
forecasting and early warning.

CONTINENTAL-SCALE FLOOD
FORECASTING SYSTEMS

There are currently four operational continental-
scale flood forecasting systems, two for Europe:
the European Flood Awareness System (EFAS)
of the European Commission (EC) and the European
HYdrological Predictions for the Environment

(E-HYPE) model of the Swedish Meteorological
and Hydrological Institute (SMHI). The Bureau of
Meteorology (BoM) runs the Flood Forecasting
and Warning Service (FFWS) for Australia, and the
U.S. National Weather Service (NWS) run a model
covering the continental USA, the Hydrologic Ensem-
ble Forecasting Service (HEFS). This section outlines
the components of, and the forecast products pro-
duced by, each system.

The European Flood Awareness System
EFAS is an EC initiative developed by the Joint
Research Centre (JRC) to increase preparedness for
riverine floods across Europe. It was in development
from 2002, tested from 2005 to 2010, and has been
operational since 2012. After devastating, wide-
spread flooding on the Elbe and Danube rivers in
2002, the EC began development of EFAS, with the
aim of providing transnational, harmonized early
warnings of flood events and hydrological informa-
tion to national agencies, complementing local ser-
vices.42 Various consortia execute different aspects
(e.g., computation and dissemination) of the EFAS
operational suite.43

Model Components
Rather than using just one meteorological NWP fore-
cast as input, EFAS uses four different forecasts, two
ensemble forecasts and two deterministic. Figure 2
details the various components of the EFAS suite,
including key information regarding the NWP mod-
els. The precipitation, temperature, and evaporation
from each of the four forecasts are used as input to
the Lisflood hydrological model, which is used as
both the rainfall-runoff and the routing components
shown in Figure 1 and simulates canopy, surface,
and sub-surface processes such as snowmelt (includ-
ing accounting for accelerated snowmelt during rain-
fall) and preferential (macropore) flow, soil, and
groundwater processes.42

Simulated ensemble hydrographs are produced
by Lisflood; however, these alone do not constitute a
flood forecast. A decision-making element needs to
be incorporated.42 Due to the often limited number
of discharge observations in many areas of the globe,
these critical thresholds cannot be derived directly
from observations. Meteorological data are run
through Lisflood to calculate 22-year time series of
discharge, to provide a reference threshold for minor
or major flooding at each grid cell.
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Statistical processing of
output between components
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Forecast Visualisation
Alongside warnings for each forecast point, the EFAS
interface (e.g. Figure 3) provides ensemble hydro-
graphs, which allow the interpretation of the spread
of the ensemble and the uncertainty in the forecast.
Persistence diagrams showing information about the
previous four forecasts also give the user additional
information on the forecast uncertainty as NWP
models should be able to pick up large-scale synoptic
weather systems that typically produce severe events
in advance, therefore showing a flood risk consist-
ently in each forecast run.42 The EFAS interface pro-
vides a map of Europe, with all points forecasting a
flood event designated by a color responding to the
warning threshold; this allows an overview of fore-
cast flood events across the continent. The informa-
tion and visualization within EFAS are designed to
give clear, concise, and unambiguous early warning
results.42

Warning Dissemination
Copernicus is the European Emergency Management
Service, and EFAS is the operational flood early
warning system designed to disseminate warnings for
Europe under the Copernicus initiative. According to
the WMO Executive Council (EC-LVII-Annex VII),43

National Meteorological and Hydrological Services

(NMHS) constitute the single authoritative voice on
weather warnings in their respective countries. There-
fore, in order to respect the single voice principle
with regard to floods, EFAS real-time information is
provided only to hydro-meteorological authorities
signing a ‘Condition of Access’ document. EFAS
sends warning emails to these national authorities
responsible for flood forecasting, designed to bring
awareness of an upcoming flood event, with further
details accessed through the interface. There are four
types of warning emails provided. Flood Alerts are
issued when a river basin has a probability of exceed-
ing critical flood thresholds more than 2 days ahead;
Flood Watches are issued when there is a probability
of a river basin exceeding critical thresholds, but the
event does not satisfy the conditions for a Flood Alert
(such as river basin size or warning lead time); and
Flash Flood Watches are issued when there is a
>60% probability of exceeding the flash flood high
alert threshold. An example of an EFAS Flood Alert
is given in Box 1. The 2-day lead time criteria is spe-
cified as the forecasting systems used by the national
authorities have usually issued a national warning
with a lead time of up to 2 days. Additionally, daily
overviews are sent to the Emergency Response Coor-
dination Centre (ERCC) of the EC, containing infor-
mation on ongoing floods in Europe, as reported by
the national services and EFAS warnings.

F
o
re

c
a
s
t 
re

tu
rn

 p
e
ri

o
d
 [
Y
e
a
rs

]
U

p
s
tr

e
a
m

 s
n
o
w

m
e
lt
 [
m

m
/h

o
u
r]

U
p
s
tr

e
a
m

 p
re

c
ip

it
a

ti
o
n
 [
m

m
/h

o
u
r]

100

50
(a) (b)

(c)

(d)

20

10

5

2

EUE 0%-100%

Tue 30 Wed 1 Thu 2 Fri 3 Sat 4 Sun 5 Mon 6 Tue 7 Wed 8 Thu 9

Tue 30 Wed 1 Thu 2 Fri 3 Sat 4 Sun 5 Mon 6 Tue 7 Wed 8 Thu 9

EUE 25%-75% DWD EUD EUE 50%

EUE 0%-100% EUE 25%-75% DWD EUD EUE 50%

1

1

0.8

0.6

0.4

0.2

0

0

1

2

Fri 26 Sat 27 Sun 28 Mon 29 Tue 30 Wed 1 Tue 2 Fri 3 Sat 4 Sun 5 Mon 6 Tue 7 Wed 8 Thu 9

FIGURE 3 | The European Flood Awareness System (EFAS) showing (a) the main interface with high (red) and medium (yellow)
reporting points, flood alerts (warning triangles), and probability (% likelihood) of exceeding 50mm of precipitation (green shading) during
the forecast period (10 days); (inset a) the flood alert displayed when the alert point is clicked on; (b) the return period hydrograph with return
period thresholds (1.5 years green, 2 years yellow, 5 years red, 20 years purple); (c) upstream snow melt forecast; (d) upstream precipitation
forecast.

WIREs Water Continental and global scale flood forecasting systems

Volume 3, May/June 2016 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. 397



Forecast Verification
EFAS also undergoes forecast verification, with two
methods used for this system. First, the hits, false
alarms, and misses are assessed for each flood event,
with events evaluated through feedback reports and
news media. Secondly, skill scores are calculated and
reported regularly through EFAS bulletins, available
via the website (see Table 2).

Operational Applications
EFAS is integrated in the daily forecasting procedures
of many national hydrological services across Europe,
providing operational early warnings and additional
information that is used for decision-making purposes
at national and local scales. Additionally, EFAS is
used by the ERCC to compile reports on the flood sit-
uation and outlook and for the coordination of emer-
gency response at the continental scale.

The European HYdrological Predictions
for the Environment Model
E-HYPE is a multipurpose model based on open data
(Table 3), which is used for various applications such
as water management, research experiments, and
flood forecasting.45 The E-HYPE Water in Europe

Today (WET) tool (Figure 4) compares the current
hydrological situation with climatological data and
past modeled events. The tool was originally designed
to alert water managers to flow that is predicted to be
outside the normal range (based on the 75th and
25th percentiles) and has evolved to provide informa-
tion to many end users. Another setup of the HYPE
model, EFAS-HYPE, uses further restricted datasets
and is currently being tested as an additional model
within EFAS. This section focuses on the river flow
forecasts produced by the WET tool.

Model Components
In contrast to other systems, E-HYPE currently uses
only deterministic NWP input to drive the hydrologi-
cal model component, although ensemble forecasting
is intended for future system developments. The
HYPE model45,46 is a distributed rainfall-runoff
model developed at SMHI, which divides catchments
into sub-basins rather than a regular grid. Each sub-
basin is further divided into classes based on land
use, soil type, and elevation.44 Alongside processes
such as snow accumulation and melting, evapotran-
spiration, and groundwater recharge,46 HYPE also
takes into account anthropogenic influences including
irrigation and hydropower.44

Forecast Visualization
Within the WET tool, forecasts of river flow are com-
pared to climatology based on the ECMWF ERA-
Interim reanalysis and evaluation datasets (Figure 5)
in order to produce an overview of river flow that is
under or above the normal range. This information is
displayed on a color-coded map of the sub-basins
within the E-HYPE model (Figure 4).

Forecast Verification
Through the E-HYPE and WET interface, various
model performance statistics are available. The model
is verified against observed discharge from river
gauges and allows the user to quickly evaluate the
performance of the model with regard to timing, vari-
ability, and volume error for the point of interest or
across a larger region. The overall model performance
in terms of mean annual discharge is also presented.
Donnelly et al.45 present a new method for evaluating
the performance of a multi-basin model, and results
from this evaluation of the historical model indicated
that the model is suitable for predictions in ungauged
basins as it captures the spatial variability of flow.
While the model performs well in terms of long-term
means and seasonality, the performance is less effec-
tive in terms of daily variability, particularly in

BOX 1

EXAMPLE OF AN EFAS FLOOD ALERT,
SENT TO EFAS PARTNERS AND
NATIONAL AND REGIONAL SERVICES

EFAS FLOOD ALERT REPORT
Dear Partner,
EFAS predicts a high probability of flooding

for Norway—Otta and Lagen-Mjosa tributaries
(Glomma basin) from Monday June
29 onwards.

According to the latest forecasts (2015-06-25
12 UTC), up to 100% EPS (VAREPS) are exceed-
ing the high threshold (>5 year simulated
return period) and up to 86% EPS (VAREPS)
exceeding the severe threshold (>20-year simu-
lated return period).

Compared to the VAREPS mean, the ECMWF
deterministic forecast is comparable and the
DWD deterministic forecast is lower.

The earliest flood peak is expected for
Saturday, July 4, 2015.

Please monitor the event on the EFAS-IS
interface (http://www.efas.eu)

Overview wires.wiley.com/water
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Mediterranean and mountainous areas, and in
regions of the most anthropogenic influence.

Operational Applications
E-HYPE is currently being used in several applications
across Europe, such as seasonal flow forecasting for the
EU European Provision Of Regional Impacts Assess-
ments on Seasonal and Decadal Timescales (EUPORIAS)
project, which aims to help societies deal with climate
variability, and providing data for use in oceanography
models and as part of the Sharing Water-related Infor-
mation to Tackle Changes in the Hydrosphere - for
Operational Needs (SWITCH-ON) EU project. The
WET tool is also used by various other smaller compa-
nies around Europe to provide water forecasts, for exam-
ple, soil-water forecasts for gardening companies.

The Australian Flood Forecasting and
Warning Service
The Australian BoM has been producing flood fore-
casts operationally for several decades, with the tech-
nology and systems used to produce these forecasts
continually evolving. More recently, the BoM has

introduced short-term (up to 7 days ahead) continuous
streamflow forecasting using deterministic NWP mod-
els within the Hydrological Forecasting System (HyFS)
production environment [based on the Deltares Flood
Early Warning System (FEWS) forecasting framework]
alongside event-based hydrological modeling and now-
casting using radar rainfall estimates. The BoM ser-
vices also rely on forecasters for the dissemination and
communication of flood warnings and local informa-
tion regarding river conditions.

Model Components
The NWP forecasts used to force the rainfall-runoff
models are produced by the BoM’s Australian
Community Climate and Earth-System Simulator
(ACCESS) NWP model. ACCESS has four compo-
nents running at different spatial scales and resolu-
tions (Figure 6). In addition to the NWP model
output, forecasters and hydrologists at the BoM can
produce ‘What If’ precipitation scenarios, which can
force the hydrological models.

Alongside the semi-distributed GR (�Genie Rural
á 4 Paramétres) hydrological models, event-based

FIGURE 4 | The Water in Europe Today (WET) tool interface with example forecast (inset) showing above-normal (blue shading) and below-
normal (red shading) forecast river flow. The hydrograph shows current conditions and forecast river flow (black line) compared to climatology
(blue shading). Forecasts are available at hypeweb.smhi.se/europehype/forecasts.

Overview wires.wiley.com/water

400 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, May/June 2016

http://hypeweb.smhi.se/europehype/forecasts


forecasting is used extensively; for this, local models
are used in support of the continental scale system.
The resulting river discharge estimations from both
model versions are used, alongside observed data
and statistical models, to produce automated graphi-
cal products such as maps, bulletins, warnings, and
alerts.

Role of the Forecaster
Whilst the other systems presented in this paper are
almost entirely automated and model-based, the

BoM system also relies on the input of expert meteor-
ologists and hydrologists. In addition to producing
‘What If’ scenarios to feed into the hydrological mod-
els, the forecasters are able to manually post-process
the forecasts and observed data to produce further
products and visualizations and assess the quality of
the data and forecasts in real time. The forecasters
are also able to produce additional warnings on the
fly, for example, if a reservoir is seen to fill or their
experience alerts them to an alternative possible sce-
nario to those produced by the hydrological models.
The hydrologists at the BoM are also responsible for

Input and calibration datasets
Topography, soil type, land use, lakes
and wetland, irrigation, crop type and

water demand, discharge, glacier
areas, snow, evapotranspitation,

WFDEI forcing data

Post-processing
Comparison of river flow forecasts

to climatology

Water in Europe today
(WET) web interface

ECMWFIFS
(European centre for medium-range

weather forecasts integrated
forecast system)

Deterministic system
10 days, global

16 km horizontal resolution

E-HYPE
(European hydrological predictions

for the environment)

Hydrological model of the SMHI
rainfall-runoff and runoff routing

Evaluation datasets
Historical discharge data from the
global run off data centre (GRDC),

European water archive(EWA),
Baltex hydrological data centre

(BHDC)

FIGURE 5 | Components of the European Hydrological Predictions for the Environment (E-HYPE) Water in Europe Today (WET) tool.
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Forecaster-driven
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Statistical models
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Sémi-distributed rainfall-runoff models of the institut

national de recherche en sciences et technologies pour
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Unified river basin simulator (URBS)
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FIGURE 6 | Components of the Australian Flood Forecasting and Warning Service (FFWS).
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dissemination and communication of the forecasts
and warnings.

A further reason for the input of forecasters is
due to the challenges of producing operational flood
forecasts for a large continent with an unevenly dis-
tributed population. Metropolitan areas have a dense
observation network for both rainfall and river dis-
charge; however, there are large areas of Australia
that have no flowing rivers, such as in the Northern
Territory where there is an average of one river
gauge every 13,360 km2.

Warning Dissemination
The final products delivered to the end users include
flood watches and warnings and information on cur-
rent river levels and precipitation, which are dissemi-
nated to various users at specified stages in the
evolution of a flood event through a dedicated web
interface, email, fax, and telephone. These are usually
text forecasts, an example of which is given in Box 2
for a minor flood event, written by the hydrologists
based on the output of the HyFS but can also
include automated alerts and bulletins for certain
users. Figure 7 shows the corresponding publicly
available graphics for this flood event, while the BoM
hydrologists also have access to more sophisticated
graphical products produced by the automated com-
ponent of the HyFS, such as ensemble hydrographs.

Forecast Verification
Currently, the BoM uses a manual verification
approach, sampling 10% of the warnings issued,
based on specifications set out for each forecast point
such as a minimum lead time of 6 h or a peak fore-
cast accuracy of �0.5 m. With updates to the Flood
Forecasting and Warning Service (FFWS), verification
software will be introduced, which will automatically
compute statistics analyzing the accuracy of the fore-
cast river levels, peak, and timing based on a com-
parison with observed river levels. The lead time
provided for warnings will also be analyzed and
compared to the accuracy specifications, providing a
measure of performance for a much greater sample
of events, which will, in turn, drive further system
improvement. Additionally, the HyFS continuous
short-term forecasts are verified using a 15-day mov-
ing average climatology to calculate the mean abso-
lute error skill score.

Operational Applications
At the BoM, the continuous short-term streamflow
forecasts are used across Australia to provide an
early indication of an upcoming flood event in order

to start making arrangements and decisions. These
forecasts are then used as a ‘heads-up’ to start run-
ning event-based models at the local scale to provide
official, public flood warnings. This is an excellent
example of the use of large-scale flood forecasting
systems to enhance and supplement existing, local-
scale forecasting capabilities.

BOX 2

EXAMPLE OF A FLOOD WARNING
WRITTEN BY HYDROLOGISTS AT THE
BUREAU OF METEOROLOGY

MINOR FLOOD WARNING FOR THE SNOWY
RIVER Issued at 9:58 am EST on Wednesday, July
15, 2015

River levels at Orbost are currently around
the Minor Flood Level (4.2 m) and rising.
A peak of around 4.3–4.4 m is expected during
Wednesday afternoon [15/07/2015].

In the interests of community safety, the SES
suggests the following precautions:
Don’t walk, ride or drive through floodwater,
Don’t allow children to play in floodwater, Stay
away from waterways and stormwater drains,
and Keep well clear of fallen power lines

Current Emergency Information is available
at http://www.ses.vic.gov.au For emergency
assistance, call the SES on telephone number
132 500. For life threatening emergencies, call
000 immediately.

The SES advises that rainfall run-off into
waterways in recent fire-affected areas may
contain debris such as soil, ash, trees and rocks.
People in fire-affected areas should be alert to
the potential for landslide and debris on roads.

Weather Forecast:
For the latest weather forecast see www.bom.
gov.au/nsw/forecasts/

Next Issue:
The next warning will be issued by 10:00 am
Thursday [16/07/2015].

Latest River Heights:
Snowy R. at Basin Creek 4.33 m falling 09:16
AM WED 15/07/15 Buchan R. at Buchan 1.65m
falling 08:45 AM WED 15/07/15 Snowy R. at Jar-
rahmond 4.35 m rising 09:00 AM WED 15/07/15
Snowy R. at Orbost 4.18 m rising 09:00 AM
WED 15/07/15

For latest rainfall and river level information
see www.bom/gov.au/nsw/flood/
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conditions for a particular region; (c) current river levels at a specific warning point where flow is above the minor flood level.
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The U.S. Hydrologic Ensemble Forecast
Service
The HEFS is run by the NWS and, for river basins
across the U.S., provides ‘uncertainty- quantified fore-
cast and verification products’.40 From the late
1990s, NWS service assessments, alongside feedback
from end users and the US National Academies,47

began to confirm the need for probabilistic river fore-
casts for flood forecasting and water resources. In
2012, the HEFS began to run experimentally at sev-
eral regional River Forecast Centres (RFCs), each of
which forecasts streamflow for hundreds of river loca-
tions, and is currently being rolled out operationally
at all 13 RFCs. The HEFS aims to produce ensemble
streamflow forecasts that seamlessly span lead times
from less than 1 h up to several years and that are
spatially and temporally consistent, calibrated (i.e.,
unbiased with an accurate spread), and verified.

Model Components
The HEFS consists of five main components,40

detailed in Figure 8, and has been implemented to
run as part of each RFC’s configuration of the Flood
Early Warning System (FEWS)-based Community
Hydrologic Prediction System (CHPS), which has
been the software platform used to run the tradi-
tional deterministic flood forecasts and long-range
ESP forecasts since 2010. The system is designed to
be driven with four meteorological forecast inputs,
two of which (GEFS and CFSv2) are the output of
NWP models, while the RFC forecasts and climatolo-
gies are created by meteorologists for the spatial units
of the RFCs’ watershed models using predictions
from the NCEP Weather Prediction Center (WPC),
local NWS Weather Forecast Offices (WFOs), and
other sources.48

Each RFC may use different combinations of
the 19 components within the Hydrological Proces-
sor (HP) suite, but the majority of RFC operations
center on a lumped implementation of the SAC-
SMA49 and SNOW-1750 models. The pre-processing
step within the HEFS (MEFP, Figure 8) creates an
ensemble of seamless hours-to-seasons, calibrated
weather and climate forcings, which are fed into the
HP. Notably, through use of the MEFP and EnsPost
pre- and post-processing components, both the
uncertainties in the meteorological input and the
hydrology are taken into account.

Forecast Visualization
The graphics generator (Figure 8) uses the resulting
ensemble hydrographs to produce visualizations of
the forecasts that can be communicated to a range of
end users for the purpose of decision making and
warning dissemination. These final forecast products
include spaghetti plots, exceedance probabilities in
the form of bar graphs and probability distribution
plots using comparisons with historical simulations
(reanalysis datasets), and an expected value chart
describing the ensemble distribution. Graphics from
the HEFS are currently operational at only a handful
of RFCs and are currently being rolled out at the
remaining RFCs. An example of an HEFS hydro-
graph for one river location, alongside the public
web interface, is shown in Figure 9. The forecast data
associated with the graphical products are also typi-
cally available from the RFCs, and many users can
access the data directly to drive local decision sup-
port models.

Warning Dissemination
NWS product requirements are codified through
NWS Directives,41 and the RFCs generally issue

River forecast centers and
weather prediction centre

Deterministic forecasts

7 days

Observed data
River discharge/flow

EnsPost
Postprocessing of streamflow forecast ensembles using

autoregressive statistical model

Correction of residual systematic bias and spread errors

remaining after prior steps to reduce input and modelling
errors (MEFP)

Graphics generator
and interface

Ensemble verification
service

Global ensemble forecast
system

NCEP GEFS ensemble forecasts
21 ensemble members

1–7 days, 55 km resolution

8–16 days, 70 km resolution

Meteorological ensemble forecast
processor

Pre-processing of weather and climate forecasts-
statistical generation of ensemble fields from single-

value predictions (deterministic forecasts or

ensemble forecast averages)

Matching of spatial and temporal scales
bias correction

Hydrologic processor

Hydrologic, hydraulic, reservoir and routing models:
BASEFLOW simulation model, channel loss, consumptive use,

continuous incremental api, glacier routing, gridded snow-17,
joint reservoir regulation, lag and k routing, layered coefficient

routing, muskingum routing, rain-snow elevation, sacramento
soil moisture accounting, sacramento with heat transfer, single

reservoir regulation, snow-17, ssarr reservoir regulation,
SSAR channel routing, tatum coefficient routing, unit

hydrograph

Climate forecast system
NCEP CFS deterministic forecasts

9 months, 100 km resolution

Historical observations
Climatological forcing

FIGURE 8 | Components of the U.S. Hydrologic Ensemble Forecast System (HEFS).40,41
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products based on hydrometeorological analyzes and
long-range predictions that are not time critical and
inform non-hazard-related user activities and deci-
sions, such as the Streamflow Guidance. The NWS
Weather Forecast Offices (WFOs), in contrast, issue
the primary hazard-centered alerts related to flood-
ing, including products such as a Hydrologic Out-
look (‘hydrometeorological conditions that could
cause flooding or impact water supply’), Flood
Watch (flooding is likely), or Flood Warning (flood-
ing is imminent or occurring). The WFO hydrologi-
cal products are based primarily on RFC analyzes
and predictions; for instance, an RFC forecast
exceeding a flood threshold triggers a recommenda-
tion to the WFO to release a flood warning that is
reviewed by the WFO forecaster. Protocols for link-
ing the newer HEFS ensemble forecasts to alerts are
still in development.

Forecast Verification
An additional component of the HEFS shown in
Figure 8 is the Ensemble Verification System (EVS),
which produces statistics such as the bias in the fore-
cast probabilities, the skill relative to a ‘baseline’
forecasting system, and the ability to discriminate
between events.46 EVS runs within HEFS and is also
freely available as a stand-alone application. The ver-
ification statistics are provided as graphical and

textual products. They are used to guide research
and development of the HEFS and to improve the
configuration of the HEFS for operational forecast-
ing. Studies by Brown et al.51,52 found that the skill
of the precipitation forecasts used for the HEFS are
the greatest at lead times of up to 1 week for moder-
ate precipitation and in the wet season (December to
March), with limitations in the summer season due
to difficulties in forecasting convection. The studies
also showed that the skill of the streamflow forecasts,
for both the HEFS and traditional RFC deterministic
forecasts, is substantially increased through the use
of the EnsPost component.

Operational Applications
The HEFS is currently being implemented by all
13 NWS RFCs, with existing or proposed applica-
tions ranging from flood forecasting to river naviga-
tion, reservoir operation, and long-term planning
and management of water resources. For example,
reforecasts and operational forecasts from the HEFS
are being used by the New York City Department of
Environmental Protection (NYCDEP) to improve the
management of water supply to NYC by optimizing
the quantity and quality of water stored in the NYC
reservoirs while avoiding unnecessary infrastructure
costs.

Short-term probabilistic guidance (experimental)
Hudson (NY)

Data as of 09:00 AM EDT Mar 11
For official forecast, go to http://weather.water.gov/ahps

8AM
Sat

Mar 09

S
ta

g
e

 (
ft
) F

lo
w

 (c
fs

)

8AM
Mon

Mar 11

8AM
Wed

Mar 13

8AM
Fri

Mar 15

8AM
Sun

Mar 17

10000
9500
9000
8500

8000
7500
7000
6500
6000
5500

Observed

Median
Most likely 25-75%

Likely 10-90%
Less likely 5-95%

5000
4500

4000

MAJOR FLOOD

MODERATE FLOOD

MINOR FLOOD

5 Gauges: Major flooding
24 Gauges: Moderate flooding
93 Gauges: Minor flooding
0 Gauges: Near flood stage
0 Gauges: No flooding
0 Flood category not defined
0 At or below low water threshold
0 Gauges: Forecasts are not current
0 Gauges: No forecast within selected

timeframe
0 Gauges: Out of service

3500
3000

2500
2000

1500
1000
500
03.0

4.7
5.4
6.1

6.5
7.0

7.3
7.7
8.0

8.3
8.6
8.9
9.2
9.4
9.7
9.9

10.1

10.3
10.6
10.8
11.0

8AM
Tue

Mar 19

8AM
Thu

Mar 21
Site Time (EDT)

FIGURE 9 | The U.S. Hydrologic Ensemble Forecast System (HEFS) overview map of locations forecasting floods, with color representing flood
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GLOBAL-SCALE FLOOD
FORECASTING SYSTEMS

At present, there are just two flood forecasting sys-
tems that are operational at the global scale, the
Global Flood Awareness System (GloFAS) of the
ECMWF and EC and the Global Flood Forecasting
and Information System (GLOFFIS) run by Deltares.
There also exists a Global Flood Monitoring Sys-
tem53,54 (GFMS) developed by the National Aero-
nautics and Space Administration (NASA) and the
University of Maryland, which uses satellite precipi-
tation as input to a hydrological model to produce
real-time global maps of flood events. Global flood
monitoring is an important aspect of disaster risk
reduction and has many potential applications across
the globe; however, the GFMS is not an operational
hydrometeorological flood forecasting system and, as
such, is not discussed in detail in this review. The
reader is referred to the GFMS website55 and publi-
cations53,54 for further information on the GFMS.
This section discusses the components of GloFAS
and GLOFFIS along with the products and warnings
provided to end users and verification techniques
used to assess the performance of these systems.

The Global Flood Awareness System
GloFAS has been producing probabilistic flood
forecasts with up to 2 weeks lead time in a
pre-operational environment since 20119; this envi-
ronment enables continuous research, development,
and testing in order to produce an operational tool
that is independent of administrative and political
boundaries. GloFAS can provide downstream coun-
tries with early warnings and information on

upstream river conditions alongside global overviews
of upcoming flood events in large river basins for
decision makers ranging from water authorities and
hydropower companies to civil protection and inter-
national humanitarian aid organizations.

Model Components
In contrast to the other systems presented in this
paper, GloFAS uses surface and sub-surface runoff
forecasts produced by the NWP model rather than a
separate rainfall-runoff component (Figure 1). The
Hydrology Tiled ECMWF Scheme for Surface
Exchange over Land (HTESSEL) is contained within
the IFS and is used as forcing for the Lisflood river
routing model. Figure 10 details the components of
GloFAS. Although Lisflood global55 is also a rainfall-
runoff model, it is used here to simulate the routing
processes and the groundwater processes after re-
sampling the runoff forecasts from the IFS to the 0.1o

resolution of Lisflood. Additionally, GloFAS contains
a loss function to account for water loss within the
channel reaches in arid areas, which also simulates
the river–aquifer and river–floodplain interaction and
the influence of evaporation from large rivers.

Runoff from the ECMWF ERA-Interim reana-
lysis archive has also been run through Lisflood off-
line, producing a deterministic climatology of river
flow that is used to compute return periods for the
global river network.

Forecast Visualization
Forecasts and warnings produced by GloFAS are
provided through a password-protected interface
(Figure 11) where users can register to see a global
overview of warning points, forecast precipitation
accumulations, ensemble hydrographs including

Input & calibration datasets
Topography, river network,

soil type, soil texture,
land use, lakes and reservoirs, irrigation

Lisflood
(Routing)

dynamic wave model,
regular grid,

0.1° resolution, global

GloFAS IS
(Interface)

Lisflood
(Routing)

ERA-Interim
Approximately 30 year reanalysis dataset

ECMWF IFS
(European centre for medium-range

weather forecasts integrated
forecast system)

Ensemble prediction system (ENS)
+ HTESSEL (Hydrology tiled ECMWF

scheme for surface exchange over
land)

51 ensemble members
1–10 days, 32 km resolution
11–15 days, 65 km resolution

Runoff (surface &
subsurface flows)

Return
periods

FIGURE 10 | Components of the Global Flood Awareness System (GloFAS).
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return period threshold exceedances and warnings,
and persistence diagrams. The ECMWF and JRC do
not directly disseminate flood warnings as each coun-
try has national procedures to follow, but anyone is
able to access and analyze the forecasts for decision-
making purposes and research. It is noted that due to
the forecast and warning responsibilities within
Europe, all countries for which EFAS produces fore-
casts are removed from the GloFAS interface as these
are not publicly available.

Forecast Verification
Alfieri et al.9 analyzed the performance of GloFAS
and found that forecasts were skilful at 58% of sta-
tions, which increased to 71% when model bias was
removed. Evaluation of the early warning system9

found that the longest lead times, exceeding 25 days
in some regions, are found in large river basins in
South America, Africa, and South Asia, while smaller
basins have a maximum lead time of 20 days and, in
some cases, 10 days. The least skilful forecasts were
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for stations in arid and semi-arid regions, such as
Australia, Mexico, and the Sahel. Other discrepancies
were found in relation to the modeling of snow accu-
mulation and melting processes in HTESSEL and
therefore the timing of the peak discharge during
spring in snowmelt regions. Evaluation of GloFAS is
updated regularly to reflect its continued and ongo-
ing development.

Operational Applications
As of the September 14, 2015, GloFAS has 177 regis-
tered users from governmental or other public autho-
rities (�28%), non-governmental organizations
(NGOs, �7%), the private sector (�10%), and from
academic/training and/or research institutions
(�55%). As with EFAS, GloFAS is used by national
services to provide additional early flood information
and is used by, for example, civil protection and
humanitarian aid organizations who benefit from a
global overview of flood events and may have no
other source of information for the region of interest.
GloFAS is also used by the ERCC for the purpose of
compiling reports on natural hazards and flood risk
across the globe.

The Global Flood Forecasting
Information System
The Global Flood Forecasting Information System
(GLOFFIS) is a research-oriented operational system
based on Delft-FEWS.56 GLOFFIS is one of three
global systems run by Deltares in the Netherlands;
also operational are a storm surge model,
GLOSSIS,57 and a water scarcity system, GLOWA-
SIS. These three systems belong to an open, experi-
mental information and communications technology
facility, IdLab, and are being used to test new ideas
around interoperability, hydrological predictability,
big data, and visualization.

Model Components
Similar to the approaches taken by many of the
continental-scale flood forecasting systems, GLOFFIS
uses several meteorological inputs to drive the hydro-
logical component of the system. The idea behind
this is to validate, verify, and inter-compare real-time
rainfall (alongside temperature and potential evapo-
ration) products as they become available. The initial
conditions are derived from historical forcings based
on both the GFS and the ECMWF control forecast
(also extracted from the TIGGE archives) and a

FIGURE 12 | Components of the Global Flood Forecasting Information System (GLOFFIS).
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combination of FEWSNET (Africa) and Climate Pre-
diction Center (CPC) Unified Gauge-Based Analysis
of Global Daily Precipitation, complimented by GFS
temperature and potential evaporation. Each of the
NWP inputs are fed into two hydrological models
(with multiple initial conditions), PCR-GLOBWB
and W3RA, which also incorporate the HBV-96
snow module,58 to account for snow processes.

The current components and resolution of
GLOFFIS are detailed in Figure 12, with plans to
update the resolution of the W3RA component to
0.05� (~5km) and implement an improved river net-
work. In the future, the Japan Aerospace Exploration
Agency (JAXA) Global Satellite Mapping of Precipita-
tion (GSMaP) and the Global Precipitation Measure-
ment (GPM) Integrated Multi-satellitE Retrievals for
GPM (IMERG) products will also be added as addi-
tional datasets from which to derive initial conditions.

Forecast Visualization
As the GLOFFIS and interoperability experiment is a
very recent development, many aspects have yet to be
implemented. The IdLab is also intended to investi-
gate visualization and data exchange, and for GLOF-
FIS, multiple visualization and data access and
exchange methods will be tested/validated. An exam-
ple of the Delft-FEWS interface for GLOFFIS is
shown in Figure 13. The two forthcoming

visualization platforms for GLOFFIS are not yet
available, but there is a plan to offer access via a
platform similar to the system developed for Guana-
bara bay59 and via the Deltares adaguc portal,60

originally developed by KNMI.61

Forecast Verification
Thorough statistical verification of GLOFFIS is
underway using available open discharge and mete-
orological forecast data alongside (real-time) eyeball
verification. Real-time discharge data is being col-
lected and can be accessed and compared with the
simulated discharge within the Delft-FEWS GLOFFIS
platform and reports generated by the system. The
verification threshold levels are derived from long
historical discharge records and historical simula-
tions, similar to the methods used in other
continental- and global-scale forecasting systems.9

Operational Applications
Although GLOFFIS is not yet fully implemented, it is
being used internally at Deltares and by their custo-
mers, with discussions already underway between
Deltares and other potential end users of the system.
GLOFFIS is intended to be a research tool on predict-
ability and interoperability first and foremost but will
be suitable for a variety of applications once fully
operational.

FIGURE 13 | Runoff output of the Global Flood Forecasting Information System (GLOFFIS) W3RA model in the Delft-FEWS forecast platform
interface.

WIREs Water Continental and global scale flood forecasting systems

Volume 3, May/June 2016 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. 409



THE GRAND CHALLENGES OF
GLOBAL-SCALE FLOOD
FORECASTING

There are many challenges associated with global-
scale flood forecasting. These range from insufficient
data and difficulties combining models and computer
resource requirements to the cost of running these
models and methods of communicating forecasts effi-
ciently. The challenges faced in operational flood
forecasting are discussed in detail by Cloke and
Pappenberger,27 Hannah et al.,62 Wood et al.,63 Liu
et al.,64 Pappenberger et al.,65,66 Kauffeldt,29 Pagano
et al.67 and Bierkens10; this section focuses on the
current capabilities of the systems reviewed here and
discusses some of the grand challenges of global-scale
flood forecasting based on the current system’s lim-
itations alongside experiences and lessons learned
from the development of these systems.

Current Capabilities
Large-scale flood forecasting has only become possi-
ble in recent years, and systems such as those out-
lined in this review are able to produce coarse-scale
discharge forecasts at spatial scales covering entire
continents or the globe using NWP products and
other expertise, comparing these to observed and
modeled historic events in order to produce forecasts
of flood events in the medium range, typically 7–15
days. Results from EFAS suggest that river flow and
flood forecasts driven by meteorological forecasts are
able to provide significant added value to the moni-
toring of European rivers,68 whilst for GloFAS,
results show that the maximum added value is shown
‘(i) in medium-size river basins, (ii) in those with rela-
tively fast response and (iii) in basins with no definite
trend in the seasonal runoff’,9 with lead times of up
to 1 month possible in some large river basins.9

These systems are also capable of producing and dis-
seminating basic forecast, and in some cases, early
warning, products in real time and are key in supple-
menting national and local flood forecasting capabil-
ities while supporting global-scale activities.

A recent study by Pappenberger et al.66 pro-
vides evidence of the economic benefits of large-scale
flood early warning systems in addition to the clear
benefits of forecasts and early warnings to popula-
tions at risk of flooding. The study demonstrates that
the monetary benefit of EFAS is �€400 for every €1
invested, indicating that large-scale flood forecasting
systems not only have the capability to provide early
awareness of potential severe events but also provide

economic benefits through potential avoidance of
flood damages.

Improving Data Availability
Grand Challenge: to access data of sufficient quality
and length, assimilate new types of observations, and
meaningfully incorporate data of inhomogeneous
quality.

One of the major challenges in large-scale fore-
casting lies in the availability of input data of the
quality that is required,62 such as data required for
estimation of the initial hydrological state, geographi-
cal boundaries of river basins, and large-/global-scale
datasets of land use, soil data etc. For example,
smaller-scale national flood forecasting systems are
often able to assimilate or update discharge informa-
tion in real time, while continental- and global-scale
models are limited by the lack of availability of real-
time, open data for this purpose.

Along with the technical challenges associated
with accessing and assimilating the data, non-technical
data challenges also exist. For example, there are diffi-
culties with retrieving, quality controlling, formatting,
archiving, and redistributing the data collected67 at
centers across the globe. This often requires special-
ized training and staff, for example, at the U.-
S. National Weather Service, much of the
hydrologists’ time is spent processing data and main-
taining the infrastructure used to archive and distrib-
ute the data, and the stream measurements used in the
BoM system are collected by several hundred entities
and must be collated before processing.67

More international and interdisciplinary data
sharing,62 through institutions such as the Global
Runoff Data Centre (GRDC), and cooperation is
essential in moving forward with global-scale fore-
casting efforts and would greatly increase the data
available to forecasting centers not just for use in
forcing these models but for verification of the fore-
casts and continuous improvement of forecast accu-
racy. In order to work towards overcoming this
challenge, it is important to contribute to open data
policies and ensure that data availability is at the
core of all related activities.

Model Parameterization
Grand Challenge: to find regionalization methods
and ways to represent sub-grid scale uncertainty on
the global scale.

Alongside the problems associated with the
data required for forecasting flood events, there are
further challenges involved in the parameterization of
models and the use of a single model for all catch-
ments across a continent or the globe. Wood et al.63
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discuss the possibility that much higher resolution
forecasting systems will soon be feasible, which
would further provide detailed information regarding
the storage, movement, and quality of water. In order
to implement models of higher resolutions, there are
other challenges that must also be addressed; these
challenges lie in the parameterization of processes at
both current and future spatial resolutions and the
‘lack of knowledge involved in evaluating and con-
straining the uncertainty in those parameters given
current and future data availability’.69

This challenge could be addressed, for example,
by developing scaling theories to represent effective
parameterization and associated uncertainties rele-
vant to a global forecasting chain and methods that
can incorporate largely varying data and information
availability.

Improving Precipitation and Evaporation
Forecasts
Grand Challenge: to translate improved precipitation
and evaporation forecasts into improved discharge
forecasts.

There have been many improvements in NWP
and precipitation forecasting thus far, which have
enabled global flood forecasting, as discussed earlier
in this review. Despite these improvements, there are
still limitations in the NWP forecasts that affect the
discharge and therefore flood forecasts. Some of these
have been discussed, such as difficulties predicting
convection21 and orographic enhancement pro-
cesses.23 It is not only precipitation forecasts that
need to be further improved but other NWP vari-
ables used in hydrometeorological forecasting sys-
tems, such as evaporation. The challenge then lies in
translating the continuous improvements made to the
NWP forecasts into improved discharge forecasts.

Moving forward, it will be important to
develop tools and methods, such as satellite measure-
ments, to measure potential evaporation and precipi-
tation on a global level with acceptable accuracy.

Incorporating Anthropogenic Influences
Grand Challenge: to understand which of the anthro-
pogenic influences have a significant impact on
hydrological forecasting and therefore need to be
included in global forecasting models.

The lack of knowledge of anthropogenic influ-
ences on runoff is a major challenge for large-scale
flood forecasting.70 These influences, for which there
is currently no global database, include dams and
their regulation, reservoirs, weirs, water extraction,
irrigation, and river re-routing; some of this activity
also goes unreported and unregulated, creating

additional barriers to incorporating information on
water management. One of the specific challenges
noted by SMHI for Europe is the changes in pro-
cesses modeled within these systems due to depleted
aquifers.

It is also important for these systems to incor-
porate aspects of anthropogenic influence such as
land use and urban areas. Many of the users of these
systems require information on potential impacts of
the forecast flood events, for example, the number of
people likely to be affected and how much agricul-
tural land is threatened. The inclusion of more
impact information is one of the current limitations
and focuses for the development of EFAS and Glo-
FAS. A further challenge exists in terms of the une-
venly distributed global population, which results in
sparse data networks in large, unpopulated regions
and difficulties in the dissemination and communica-
tion of forecasts and warnings; this challenge is spe-
cifically mentioned by the BoM for Australia but also
exists at the global scale.

In order to account for anthropogenic influ-
ences in global flood forecasting systems, one solu-
tion would be to map all of these influences and
perform a sensitivity analysis to determine which are
impacting the forecasts, so that the key anthropo-
genic influences can be incorporated into the models.

Resources and Costs
Grand Challenge: to quantify, understand, and com-
municate the values and benefits derived from a
global forecast whilst establishing a cost-effective
execution of these forecasts.

Thus far, the spatial resolution of global-scale
land surface models has largely been constrained by
the computational resources required to run global
weather models, currently, at best, ~20 km. The
monetary costs of producing forecasts using large-
scale prediction systems must also be taken into
account. While the costs of running these systems are
not generally published, the aforementioned study by
Pappenberger et al.66 states that the estimated cost of
EFAS (across the four EFAS operational centres, see
section The European Flood Awareness System) is
€1.8 million per year, with an estimated €20 million
in development costs over 10 years. In addition, with
each improvement and update to a forecasting sys-
tem, it also becomes necessary to re-run model cli-
matologies, re-calculate thresholds, and revise
decision-making criteria, all of which can be techno-
logically challenging and require significant computa-
tional time and resources.11,20
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As these systems develop, the resources
required to run global flood forecasting systems will
be reduced, whilst the technology used continues to
improve. This will enable more centers to run global
models at lower costs and with fewer time con-
straints in the future.

Effective Communication of Forecasts
Grand Challenge: to communicate uncertainties to a
large range of user groups in countries across the
globe, some of whom will not be known, and to
embed these systems into national warning chains,
whilst respecting sensitivities associated with the sin-
gle voice principle.43

A key challenge associated with global-scale
flood forecasting stems from the understanding and
communication of flood forecasts. For instance, with
the move towards ensemble flood forecasting, there
is also a need for improved understanding of proba-
bilistic forecasts. Ensemble forecasts produce large
amounts of information, and it is vital that the most
important information is conveyed appropriately for
ease of use and correct interpretation of the forecasts,
allowing for well-informed decisions and promoting
a common understanding between end users.

One of the current key challenges for EFAS is
ensuring that the flood forecast and warning infor-
mation is easily accessible to a broad range of users
from countries across Europe, who interpret the fore-
casts very differently. This challenge is amplified fur-
ther when producing forecasts, as with GloFAS and
GLOFFIS, for the entire globe and a spectrum of
users ranging from experts in the fields of hydrology
and meteorology to those with no experience in using
these types of products. GloFAS already has a range
of partners and end users, from those who are inter-
ested in discharge forecasts for specific stations to
those who are interested purely in the impact of the
floods. An additional consideration is that of the sin-
gle voice43 principle, which states that national ser-
vices constitute the single authoritative voice on
weather warnings in their respective countries. As
more systems are introduced with the capability of
producing forecasts and warnings, the more difficult
this principle becomes; in future, it may be that many
institutions are able to disseminate warnings and
benefit from the wealth of available forecasts and
information, and a new challenge of the systems will
be to become the trusted source of information.

In order to effectively communicate forecasts
and warnings, it is important to co-develop the fore-
cast visualizations and warnings with a large range
of users and enable some flexibility for users to

customize the interface. International and interdisci-
plinary cooperation is also key in moving forward
with this challenge as issuing forecasts and warnings
can be challenging without the existence of a political
agreement between upstream and downstream coun-
tries for the sharing of information related to
floods.71

Forecast Evaluation and Intercomparison
Grand Challenge: to find new and novel methods to
verify extremes, which are suitable for hydrological
forecasting.

Many forecasting systems, including large-scale
flood forecasting systems, are moving towards
ensemble forecasting methods. While there are many
benefits to using a probabilistic approach, a key chal-
lenge associated with ensemble flood forecasting is
the evaluation of flood forecasts due to the low fre-
quency of occurrence of extreme floods alongside the
lack of data from different flood events.27 The analy-
sis of an ensemble’s ability to fully represent the
uncertainty is also complex and uncertain in itself.

This relates to a further grand challenge, that of
implementing a Flood Forecasting Intercomparison
Project to compare various aspects of these large-
scale operational flood forecasting systems. This will
be a valuable and important project moving forward
as these systems become more advanced and widely
used for many applications but is currently not
undertaken due to the difficulties involved in compar-
ing models of a variety of different scales, with vary-
ing system set-ups and interfaces and different
objectives and end users. The computational
resources required for such a project are also
extensive.

To have effective forecast evaluation measures
in place, it is important for institutions running these
systems to facilitate access to the forecasts so that the
forecasts can be evaluated by an unbiased, external
entity.

THE FUTURE OF GLOBAL-SCALE
FLOOD FORECASTING

Flood forecasting at the large (continental and
global) scale is key to providing overviews and early
warnings of flood events across the globe, including
regions where no alternative local-scale flood fore-
casts are available. This section outlines aspects of
the future of global-scale flood forecasting as we con-
tinue to work towards overcoming the grand chal-
lenges and move towards ever more valuable multi-
hazard forecast and early warning systems.
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Adaptive Modeling Strategies
Adaptive modeling strategies involve the idea of
adjusting model predictions in real time if discrepan-
cies are observed between the forecast and observa-
tions, where discharge measurements are available in
real time. This allows the uncertainty in the forecasts
to be further constrained. In meteorological applica-
tions, this is referred to as data assimilation and is
used routinely in weather forecasts and NWP; how-
ever, it is often referred to as updating in hydrology
and is not widely used at present in applications such
as those discussed here.30 Simple applications of
updating require starting new forecasts using availa-
ble observations (sequential data assimilation72),
whereas more complex updating involves the adjust-
ment of current predictions to the observations when
discrepancies occur, assimilating the new observed
data into the model in real time (variational data
assimilation72). While data assimilation is not used
extensively in flood forecasting systems to incorpo-
rate observations into the forecasts, this is likely to
be increasingly incorporated in future to further
improve the accuracy and lead time of large-scale
flood forecasts.63

An area of research that will be important in
moving towards the incorporation of adaptive mod-
eling strategies is the development of data assimila-
tion toolboxes, allowing institutions to use and
benefit from data assimilation tools that are other-
wise incredibly complex. One example of this is
OpenDA, ‘an open interface standard for a set of
tools to quickly implement data assimilation and cali-
bration for arbitrary numerical models’.73

Extended-Range Forecasting
Future advances in global-scale operational flood
forecasting are likely to include more long- range
forecasting. There already exists an element of river-
specific predictability in some large rivers where the
movement of a flood wave downstream can take
days or weeks, and a flood event is a relatively cer-
tain outcome once large amounts of precipitation are
recorded upstream. Realistic initial conditions can be
beneficial to seasonal prediction; for example, rela-
tively large soil storage capacity leads to long mem-
ory of soil moisture, and the accuracy of soil
moisture initial conditions may be key in long-range
forecasting.74 The same is true of snow cover and
snow pack, particularly in climate zones where snow
is the major water resource.75

Seasonal forecasts are currently used across a
wide range of weather-sensitive sectors, with many
operational weather forecasting centers producing

seasonal forecasts, which provide ‘seasonal-mean
estimates’ of weather, such as whether the coming
season will be wetter or drier than usual.76 Such fore-
casts have the potential to aid the forecasting of
floods on seasonal time scales, providing crucial
information for flood preparedness and mitigation.77

Seasonal hydrological forecasting has begun to
emerge across the globe over the past decade due to
the ongoing development of coupled atmosphere–
ocean–land general circulation models,77 while the
seasonal water supply forecasts have been used in the
U.S. since the 1930s based on snow survey measure-
ments and, later, precipitation data. 78 Yuan et al.77

highlight several questions related to the future of
seasonal hydrological forecasting, from how to com-
bine weather and climate models toward seamless
hydrological forecasting to how to improve the pre-
diction of inter-annual variability of variables rele-
vant to hydrological forecasting applications. There
also exists the challenge of the effective communica-
tion of seasonal flood forecasts and transfer of these
forecasts into warnings and actions.77 The WMO
S2S (Sub-seasonal to Seasonal) prediction project79

aims to improve the understanding and forecast skill
of the sub-seasonal and seasonal time scales, with a
focus on extreme weather including floods, and will
be key in moving towards extended-range flood
forecasts.

Flash Flood Forecasting
Flash floods are associated with spatially and/or tem-
porally intense precipitation and can have high socie-
tal impacts. For example, 105 out of 139 countries
list flash floods as being in the top two of their most
important hazards.80 Despite this, there is currently
no global flash flood forecasting system, but conti-
nental systems exist in Europe (as part of EFAS),42,81

northern America,82 southern Africa,83 and Australia
alongside other national- and basin-scale systems
around the globe.84 These systems often take the
form of one or a combination of empirical correla-
tions, unit hydrographs, and hydrological modeling
driven by limited area models.85

The challenge of creating a global flash flood
forecasting system is that global NWP systems typi-
cally have a limited resolution of many of the fine
spatial scale processes, such as convection, which are
responsible for intense precipitation. Increasing the
spatial resolution of global NWP systems may reduce
this issue and allow for the implementation of a
methodology such as that of,86 which utilizes the sur-
face runoff estimated from HTESSEL to forecast
extreme runoff risk. An alternative could be to use
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forecasts of parameters that can be used to estimate
the likelihood of intense sub-grid scale precipitation
arising. For example, the ECMWF NWP model fore-
casts the convective available potential energy
(CAPE) and CAPE-SHEAR parameters that show the
atmospheric instability and the ability of supercell
formation in the event of deep moisture convection,
respectively87.

With continuous improvements to NWP sys-
tems, new continental and global flash flood routines
will be developed based on global NWP models.88 In
addition to flash floods, future applications of global
flood forecasting and multi-hazard early warning sys-
tems will begin to include other types of flooding, for
example, coastal storm surges.

Grand Ensemble Techniques
Recent advances in meteorological forecasting and
NWP have moved toward multi-model forecasts and
grand ensemble techniques. Programs such as
TIGGE89 [The Observing System Research and Pre-
dictability EXperiment (THORPEX) Interactive
Grand Global Ensemble] have led to advances in
ensemble forecasting, predictability, and development
of severe weather prediction products in meteorol-
ogy. In hydrology, combining models for flood fore-
casting presents an additional challenge (e.g., due to
different river networks and climatologies), but
despite this, future applications of flood forecasting
should move toward the establishment of grand
ensemble techniques.90 In the future, increased access
to monthly and sub-seasonal (for example, through
the S2S project79) forecasts from multiple centers will
enable us to push the limits of predictability through
use of these grand ensemble techniques.90

New Data Possibilities
Alongside the recent and future advances in forecast-
ing systems, other technologies are constantly advan-
cing and will have beneficial impacts on flood
forecasting across the globe. For example, new satel-
lites and earth observation technologies for flood
observation are being adopted in hydrology to
improve flood forecasts.91,92 García-Pintado et al.92

discuss several earth observation techniques that
have the potential to improve flood detection and
forecasting. Improved data from satellites may be
able to provide more accurate topographical, land
cover, land use, river network and river width infor-
mation93; these are some of the most important data
regarding river basin characteristics, and their accu-
racy is key to flood forecasting systems. Real-time

satellite observations of river width during flooding
would also serve to improve both forecasts and
warnings in real time and verification of the forecast-
ing systems post-event.

Alongside improved databases describing basin
and river characteristics, observations of the data
used as input to flood forecasting systems and in data
assimilation techniques63 could include snowpack
extent, water levels (from altimetry), river discharge,
river width, snow, and soil moisture. Continental-
and global-scale observations of many of these vari-
ables are not currently available, but global coverage
from satellites could prove extremely beneficial in
large-scale flood forecasting applications, particularly
in regions of poor data availability.69

CONCLUSIONS

Here, two global- and four continental-scale opera-
tional flood forecasting systems have been reviewed,
outlining the current state-of-the-art technology in
operational large-scale flood forecasting. Producing
forecasts at the global scale has only become possible
in recent years, with scientific and technological
advances and the increasing integration of hydrologi-
cal and meteorological communities. Due to these
recent advances, large-scale flood forecasting systems
are able to produce coarse-scale discharge forecasts at
spatial scales covering entire continents or the globe
using NWP products and other expertise, comparing
these to observed and modeled historic events in order
to produce medium-range forecasts of flood events.

Many countries are required to prepare for
floods that originate outside of their borders. Interna-
tional and interdisciplinary collaboration is necessary
in order to overcome many of the challenges involved
in transboundary flood forecasting; large-scale fore-
casting systems have the potential to provide valuable
added information about imminent flooding. So far,
results from large-scale flood forecasting systems sug-
gest that river flow and flood forecasts are able to pro-
vide significant added value to the monitoring of rivers
across the globe.9,67 Many challenges remain for
global-scale flood forecasting, from lack of available
data of the quality and scale required to the effective
communication of forecasts and warnings to varying
end users and communities across the globe. Ongoing
research aims to overcome these challenges to further
improve the accuracy and applicability of large-scale
flood forecasting. The systems outlined in this paper
are continuously evolving and are already proving to
be key in supplementing national and local forecasting
capabilities while supporting global-scale activities.

Overview wires.wiley.com/water

414 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, May/June 2016



ACKNOWLEDGMENTS

This work has been funded by the Natural Environment Research Council (NERC) as part of the SCENARIO
Doctoral Training Partnership under grant NE/L002566/1. This paper has also received funding from the
European Union’s Horizon 2020 research and innovation programme (grant no. 641811) and SWITCHON
FP7 programme (grant no. 603587). The time of E. Stephens has been funded by Leverhulme Early Career Fel-
lowship ECF-2013-492.

REFERENCES
1. Guha-Sapir G, Below R, Hoyois P. The CRED/EM-

DAT International Disaster Database 2015, Universit´e
Catholique de Louvain - Brussels – Belgium, 2015.
Available at: www.emdat.be. (Accessed January
27, 2015).

2. UNISDR. Sendai framework for disaster risk reduction
2015–2030, 2014. Available at: http://www.preven-
tionweb.net/files/43291_sendaiframeworkfordrren.pdf.
(Accessed September 21, 2015).

3. World Meteorological Organisation (WMO). Disaster
Risk Reduction (DRR) Programme, Available at:
www.wmo.int/pages/prog/drr/projects/Thematic/
MHEWS/MHEWS_en.html. (Accessed July 17, 2015).

4. Stephens E, Day JJ, Pappenberger F, Cloke H. Precipi-
tation and floodiness. Geophys Res Lett 2015, 42(23):
10316–10323. doi:10.1002/2015GL066779.

5. Braman LS, van Aalst MK, Mason SJ, Suarez P, Ait-
Chellouche Y, Tall A. Climate forecasts in disaster
management: Red Cross flood operations in West
Africa, 2008. Disasters 2013, 37:144–164.
doi:10.1111/j.1467-7717.2012.01297.x.

6. ECMWF. Changes in ECMWF model, Available at:
www.ecmwf.int/en/forecasts/documentation-and-sup-
port/changes-ecmwf-model. (Accessed August 5, 2015).

7. Brown A, Milton S, Cullen M, Golding B, Mitchell J,
Shelly A. Unified modeling and prediction of weather
and climate: a 25-year journey. Bull Am Meteorol Soc
2012, 93:1865–1877. doi:10.1175/BAMS-D-
12-00018.1.

8. Alfieri L, Salamon P, Pappenberger F, Wetterhall F,
Thielen J. Operational early warning systems for
water-related hazards in Europe. Environ Sci Pol
2012, 21:35–49.

9. Alfieri L, Burek P, Dutra E, Krzeminski B, Muraro D,
Thielen J, Pappenberger F. GloFAS - global ensemble
streamflow forecasting and flood early warning.
Hydrol Earth Syst Sci 2013, 17:1161–1175.

10. Bierkens MFP. Global hydrology 2015: state, trends,
and directions. Water Resour Res 2015, 51:1–25.
doi:10.1002/2015WR017173.

11. Pappenberger F, Cloke H, Balsamo G, Ngo-Duc T,
Oki T. Global runoff routing with the hydrological

component of the ECMWF NWP system. Int J Clima-
tol 2009, 30:2155–2174.

12. Ramos MH, Mathevet T, Thielen J,
Pappenberger F. Communicating uncertainty in
hydrometeorological forecasts: mission impossible?
Meteorol Appl 2010, 17:223–235. doi:10.1002/
met.202.

13. Novak DR, Bailey C, Brill KF, Burke P, Hogsett WA,
Rausch R, Schichtel M. Precipitation and temperature
forecast performance at the Weather Prediction Center.
Weather Forecast 2013, 29:489–504. doi:10.1175/
WAF-D-13-00066.1.

14. Mittermaier M, Roberts N, Thompson SA. A long-
term assessment of precipitation forecast skill using the
Fractions Skill Score. Meteorol Appl 2013,
20:176–186. doi:10.1002/met.296.

15. Liu Y, Duan Q, Zhao L, Ye A, Tao Y, Miao C, Mu X,
Schaake JC. Evaluating the predictive skill of post-
processed NCEP GFS ensemble precipitation forecasts
in China’s Huai river basin. Hydrol Process 2013,
27:57–74. doi:10.1002/hyp.9496.

16. Richardson D, Bidlot J, Ferranti L, Ghelli A,
Haiden T, Hewson T, Janousek M, Prates F, Vitart F.
Verification Statistics and Evaluations of ECMWF
Forecasts in 2011–2012. Technical Memorandum 688.
Berkshire, England: ECMWF; 2012.

17. Bartholmes J, Todini E. Coupling meteorological and
hydrological models for flood forecasting. Hydrol
Earth Syst Sci 2005, 9:333–346.

18. Lorenz E. The predictability of a flow which contains
many scales of motion. Tellus A 1969, 21:289–307.

19. Cuo L, Pagano TC, Wang QJ. A review of quantitative
precipitation forecasts and their use in short- to
medium-range streamflow forecasting. J Hydrome-
teorol 2011, 12:713–728. doi:10.1175/
2011JHM1347.1.

20. Simmons AJ, Hollingsworth A. Some aspects of the
improvement in skill of numerical weather prediction.
Q J R Meteorol Soc 2002, 128:647–677. doi:10.1256/
003590002321042135.

21. Krishnamurti TN, Kishtawal CM, LaRow TE,
Bachiochi DR, Zhang Z, Williford CE,
Gadgil S, Surendran S. Improved weather and seasonal

WIREs Water Continental and global scale flood forecasting systems

Volume 3, May/June 2016 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. 415

http://creativecommons.org/licenses/by/4.0/
http://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf
http://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf
http://www.wmo.int/pages/prog/drr/projects/Thematic/MHEWS/MHEWS_en.html
http://www.wmo.int/pages/prog/drr/projects/Thematic/MHEWS/MHEWS_en.html
http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model


climate forecasts from multimodel superensemble.
Science 1999, 285:1548–1550. doi:10.1126/
science.285.5433.1548.

22. Olson DA, Junker NW, Korty B. Evaluation of
33 years of quantitative precipitation forecasting at the
NMC. Weather Forecast 1995, 10:498–511.
doi:10.1175/1520-0434(1995)010h0498:
EOYOQPi2.0.CO;2.

23. Arduino G, Reggiani P, Todini E. Recent advances in
flood forecasting and flood risk assessment. Hydrol
Earth Syst Sci 2005, 9:280–284.

24. Haiden T, Janousek M, Bauer P, Bidlot J, Ferranti L,
Hewson T, Prates F, Richardson D, Vitart F. Evalua-
tion of ECMWF Forecasts, Including 2013–2014
Upgrades. Technical Memorandum 742. Berkshire,
England: ECMWF; 2014.

25. Ebert EE, McBride JL. Verification of precipitation in
weather systems: determination of systematic errors.
J Hydrol 2000, 239:179–202. doi:10.1016/S0022-
1694(00)00343-7.

26. Tang Y, Lean HW, Bornemann J. The benefits of the
Met Office variable resolution NWP model for fore-
casting convection. Meteorol Appl 2013, 20:417–426.
doi:10.1002/met.1300.

27. Cloke H, Pappenberger F. Ensemble flood forecasting:
a review. J Hydrol 2009, 375:613–626.

28. Demeritt D, Cloke H, Pappenberger F, Thielen J,
Bartholmes J, Ramos MH. Ensemble predictions and
perceptions of risk, uncertainty, and error in flood
forecasting. Environ Hazards 2007, 7:115–127.
doi:10.1016/j.envhaz.2007.05.001.

29. Kauffeldt A. Disinformative and Uncertain Data in
Global Hydrology: Challenges for Modelling and
Regionalisation [dissertation]. Uppsala: Uppsala Uni-
versitet; 2014, 79 p.

30. Shaw E, Beven K, Chappell NA, Lamb R. Hydrology
in Practice. 4th ed. Oxfordshire, England: Spon Press;
2011, 543 p.

31. Wood AW, Lettenmaier DP. An ensemble approach
for attribution of hydrologic prediction uncertainty.
Geophys Res Lett 2008, 35:1–5. doi:10.1029/
2008GL034648.

32. Pagano TC, Shrestha DL, Wang QJ, Robertson D,
Hapuarachchi P. Ensemble dressing for hydrological
applications. Hydrol Process 2013, 27:106–116.
doi:10.1002/hyp.9313.

33. Buizza R, Houtekamer PL, Pellerin G, Toth Z, Zhu Y,
Wei M. A comparison of the ECMWF, MSC, and
NCEP global ensemble prediction systems. Mon
Weather Rev 2005, 133:1076–1097. doi:10.1175/
MWR2905.1.

34. Leutbecher M, Palmer T. Ensemble forecasting. J Com-
put Phys 2008, 227:2515–3539.

35. Buizza R, Milleer M, Palmer T. Stochastic representa-
tion of model uncertainties in the ECMWF ensemble

prediction system. Q J R Meteorol Soc 1999,
125:2887–2908.

36. Clark MP, Hay LE. Use of medium-range numerical
weather prediction model output to produce forecasts
of streamflow. J Hydrometeorol 2004, 5:15–32.
doi:10.1175/1525-7541(2004)005h0015:
UOMNWPi2.0.CO;2.

37. Hydrological processes special issue, edited by
Hannah L. Cloke, Florian Pappenberger,
Florian Pappenberger, Schalk Jan van Andel, Jutta
Thielen, Maria-Helena Ramos, Hydrological ensemble
prediction systems. Hydrol Process 2013, 27:1–4.
doi:10.1002/hyp.9679.

38. Stephens E, Cloke H. Improving flood forecasts for
better flood preparedness in the UK (and beyond).
Geogr J 2014, 180:310–316. doi:10.1111/geoj.12103.

39. Bierkens MFP, Bell VA, Burek P, Chaney N,
Condon LE, David CH, de Roo A, Doll P, Drost N,
Famiglietti JS, et al. Hyper-resolution global hydrologi-
cal modelling: what is next? “Everywhere and locally
relevant”. Hydrol Process 2015, 29:310–320.

40. Demargne J, Wu L, Regonda SK, Brown JD, Lee H,
He M, Seo DJ, Hartman R, Herr HD, Fresch M,
et al. The science of NOAA’s operational hydrologic
ensemble forecast system. Bull Am Meteorol Soc 2014,
95:79–98.

41. NOAA (National Oceanic and Atmospheric Adminis-
tration). NWS Directives System; Operations and Ser-
vices, http://www.nws.noaa.gov/directives/010/010.
htm. (Accessed September 9, 2015).

42. Thielen J, Bartholmes J, Ramos MH, de Roo A. The
European Flood Alert System - part 1: concept and
development. Hydrol Earth Syst Sci 2009,
13:125–140.

43. World Meteorological Organization (WMO). EC
statement on the role and operation of National Mete-
orological and Hydrological Services, Available at:
www.wmo.int/pages/governance/policy/ec_state-
ment_nmhs_en.html. (Accessed September 30, 2015)

44. SMHI. About E-HYPE, hypeweb.smhi.se/europehype/
about/. (Accessed May 29, 2015).

45. Donnelly C, Andersson JCM, Arheimer B. Using flow
signatures and catchment similarities to evaluate the E-
HYPE multi-basin model across Europe. Hydrol Sci J
2015. doi:10.1080/02626667.2015.1027710.

46. Lindstrom G, Pers C, Rosberg J, Stromqvist J,
Arheimer B. Development and testing of the HYPE
(Hydrological Predictions for the Environment) water
quality model for different spatial scales. Hydrol Res
2010, 41:3–4.

47. Completing the Forecast: Characterizing and Commu-
nicating Uncertainty for Better Decisions Using
Weather and Climate Forecasts. Committee on Esti-
mating and Communicating Uncertainty in Weather
and Climate Forecasts; Board on Atmospheric Sciences
and Climate; Division on Earth and Life Studies;

Overview wires.wiley.com/water

416 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, May/June 2016

http://www.nws.noaa.gov/directives/010/010.htm
http://www.nws.noaa.gov/directives/010/010.htm
http://www.wmo.int/pages/governance/policy/ec_statement_nmhs_en.html
http://www.wmo.int/pages/governance/policy/ec_statement_nmhs_en.html
http://hypeweb.smhi.se/europehype/about/
http://hypeweb.smhi.se/europehype/about/


National Research Council. Washington, DC: The
National Academies Press; 2006, 112 p.

48. NOAA. CHPS Documentation, http://www.nws.noaa.
gov/oh/hrl/ general/indexdoc.htm\#hefs. (Accessed June
12, 2015)

49. Burnash R, Ferral R, McGuire R, McGuire R. A Gen-
eralized Streamflow Simulation System: Conceptual
Modeling for Digital Computers. Sacramento, CA: U.
S. Department of Commerce, National Weather Serv-
ice, and State of California, Department of Water
Resources; 1973, 204 p.

50. Anderson E. National Weather Service River Forecast
System-Snow Accumulation and Ablation Model.
Technical Memorandum NWS HYDRO-17. Washing-
ton, DC: US Department of Commerce; 1973.

51. Brown JD, Wu L, He M, Regonda S, Lee H, Seo DJ.
Verification of temperature, precipitation, and stream-
flow forecasts from the NOAA/NWS Hydrologic
Ensemble Forecast Service (HEFS): 1. Experimental
design and forcing verification. J Hydrol 2014,
519:2869–2889. doi:10.1016/j.jhydrol.2014.05.028.

52. Brown JD, He M, Regonda S, Wu L, Lee H, Seo DJ.
Verification of temperature, precipitation, and stream-
flow forecasts from the NOAA/NWS Hydrologic
Ensemble Forecast Service (HEFS): 2. Streamflow veri-
fication. J Hydrol 2014, 519:2847–2868. doi:10.1016/
j.jhydrol.2014.05.030.

53. Wu H, Adler RF, Tian Y, Huffman GJ, Li H, Wang J.
Real-time global flood estimation using satellite-based
precipitation and a coupled land surface and routing
model. Water Resour Res 2014, 50:2693–2717.
doi:10.1002/2013WR014710.

54. Yilmaz KK, Adler RF, Tian Y, Hong Y, Pierce HF.
Evaluation of a satellite-based global flood monitoring
system. Int J Remote Sens 2010, 31:3763–3782.
doi:10.1080/01431161.2010.483489.

55. NASA. Global Flood and Landslide Monitoring, http://
pmm.nasa.gov/trmm/flood-and-landslide-monitoring.
(Accessed December 9, 2015).

56. van der Knijff J, Younis J, de Roo A. Lisflood: a GIS-
based distributed model for river basin scale water bal-
ance and flood simulation. Int J Geogr Inf Sci 2010,
24:189–212.

57. Werner M, Schellekens J, Gijsbers P, van Dijk M, van
den Akker O, Heynert K. The Delft - FEWS flow fore-
casting system. Environ Model Softw 2013, 40:65–77.
doi:10.1016/j.envsoft.2012.07.010.

58. Verlaan M, De Kleermaeker S, Buckman L. GLOSSIS:
Global storm surge forecasting and information system
2015. In: Australasian Coasts & Ports Conference,
Auckland, New Zealand, 15–18 September, 2015.

59. Deltares. The wflow_hbv model, http://schj.home.
xs4all.nl/html/wflow\_hbv.html. (Accessed June
16, 2015).

60. Deltares. Guanabara Limpa Project Interface, http://
guanabaralimpa.deltares.nl/. (Accessed August
21, 2015).

61. Deltares. Adaguc Portal, http://adaguc.deltares.nl/.
(Accessed August 21, 2015).

62. Hannah DM, Demuth S, van Lanen HAJ, Looser U,
Prudhomme C, Rees G, Stahl K, Tallaksen LM. Large-
scale river flow archives: importance, current status
and future needs. Hydrol Process 2011,
25:1191–1200. doi:10.1002/hyp.7794.

63. Wood EF, Roundy JK, Troy TJ, van Beek LPH,
Bierkens MFP, Blyth E, de Roo A, Doll P, Ek M,
Famiglietti J, et al. Hyperresolution global land surface
modeling: meeting a grand challenge for monitoring
Earth’s terrestrial water. Water Resour Res 2011,
47:1944–7973. doi:10.1029/2010WR010090.

64. Liu Y, Weerts AH, Clark M, Hendricks Franssen HJ,
Kumar S, Moradkhani H, Seo DJ, Schwanenberg D,
Smith P, van Dijk AIJM, et al. Advancing data assimi-
lation in operational hydrologic forecasting: pro-
gresses, challenges, and emerging opportunities.
Hydrol Earth Syst Sci 2012, 16:3863–3887.
doi:10.5194/hess-16-3863-2012.

65. Pappenberger F, Stephens E, Thielen J, Salamon P,
Demeritt D, van Andel SJ, Wetterhall F, Alfieri L.
Visualizing probabilistic flood forecast information:
expert preferences and perceptions of best practice in
uncertainty communication. Hydrol Process 2013,
27:132–146.

66. Pappenberger F, Cloke H, Parker D, Wetterhall F,
Richardson D, Thielen J. The monetary benefit of early
flood warnings in Europe. Environ Sci Policy 2015,
51:278–291.

67. Pagano TC, Wood AW, Ramos MH, Cloke HL,
Pappenberger F, Clark MP, Cranston M, Kavetski D,
Mathevet T, Sorooshian S, et al. Challenges of opera-
tional river forecasting. J Hydrometeorol 2014,
15:1692–1707. doi:10.1175/jhm-d-13-0188.1.

68. Alfieri L, Pappenberger F, Wetterhall F, Haiden T,
Richardson D, Salamon P. Evaluation of ensemble
streamflow predictions in Europe. J Hydrol 2014,
517:913–922. doi:10.1016/j.jhydrol.2014.06.035.

69. Wanders N, Karssenberg D, de Roo A, de Jong SM,
Bierkens MFP. The suitability of remotely sensed soil
moisture for improving operational flood forecasting.
Hydrol Earth Syst Sci 2014, 18:2343–2357.
doi:10.5194/hess-18-2343-2014.

70. Widen-Nilsson E, Halldin S, Xu C. Global water-
balance modelling with WASMODM: parameter esti-
mation and regionalisation. J Hydrol 2007,
340:105–118.

71. Hossain F, Katiyar N. Improving flood forecasting in
international river basins. EOS Trans AGU 2006,
87:49–60.

72. Rakovec O, Weerts AH, Hazenberg P, Torfs PJJF,
Uijlenhoet R. State updating of a distributed

WIREs Water Continental and global scale flood forecasting systems

Volume 3, May/June 2016 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. 417

http://www.nws.noaa.gov/oh/hrl/ general/indexdoc.htm\#hefs
http://www.nws.noaa.gov/oh/hrl/ general/indexdoc.htm\#hefs
http://pmm.nasa.gov/trmm/flood-and-landslide-monitoring
http://pmm.nasa.gov/trmm/flood-and-landslide-monitoring
http://schj.home.xs4all.nl/html/wflow\_hbv.html
http://schj.home.xs4all.nl/html/wflow\_hbv.html
http://guanabaralimpa.deltares.nl/
http://guanabaralimpa.deltares.nl/
http://adaguc.deltares.nl/


hydrological model with ensemble kalman filtering:
effects of updating frequency and observation network
density on forecast accuracy. Hydrol Earth Syst Sci
2012, 16:3435–3449. doi:10.5194/hess-16-3435-2012.

73. Deltares. OpenDA, https://www.deltares.nl/en/soft-
ware/openda/. (Accessed December 9, 2015).

74. Fennessy MJ, Shukla J. Impact of initial soil wetness
on seasonal atmospheric prediction. J Clim 1999,
12:3167–3180.

75. Li H, Luo L, Wood E, Schaake J. The role of initial
conditions and forcing uncertainties in seasonal hydro-
logic forecasting. J Geophys Res 2009, 114:1–10.

76. Weisheimer A, Palmer TN. On the reliability of sea-
sonal climate forecasts. J R Soc Interface 2014,
11:1–10. doi:10.1098/rsif.2013.1162.

77. Yuan X, Wood EF, Ma Z. A review on climate-model-
based seasonal hydrologic forecasting: physical under-
standing and system development. Wiley Interdiscip
Rev Water 2015, 2:523–536. doi:10.1002/wat2.1088.

78. Pagano T, Wood A, Werner K, Tama-Sweet R. West-
ern U.S. water supply forecasting: a tradition evolves.
EOS Forum 2014, 95:28–29. doi:10.1002/
2014EO030007.

79. World Meteorological Organisation (WMO). Subsea-
sonal to Seasonal Prediction Project, http://www.wmo.
int/pages/prog/arep/wwrp/new/S2S_project_main_page.
html. (Accessed September 21, 2015).

80. World Meteorological Organization (WMO). Capacity
Assessment of National Meteorological and Hydrologi-
cal Services in Support of Disaster Risk Reduction.
Geneva: World Meteorological Organization;
2008, 338 p.

81. Raynaud D, Thielen J, Salamon P, Burek P,
Anquetin S, Alfieri L. A dynamic runoff co-efficient to
improve flash flood early warning in Europe: evalua-
tion on the 2013 central European floods in Germany.
Meteorol Appl 2014, 22:410–418.

82. Gourley J, Erlingis J, Hong Y, Wells E. Evaluation of
tools used for monitoring and forecasting flash floods
in the United States. Weather Forecast 2012,
27:158–173.

83. Georgakakos, K, Graham, R, Jubach, R, Modrick, T,
Shamir, E, Spencer, C, Sperfslage, J. 2013. Global

Flash Flood Guidance System, Phase 1, HRC Technical
Report No. 9. San Diego, CA: Hydrologic Research
Center; February 28, 2013, 151 p.

84. Hapuarachchi HAP, Wang QJ. A Review of Methods
and Systems Available for Flash Flood Forecasting.
Water for a Healthy Country National Research Flag-
ship. Clayton: CSIRO; 2008, 61 p.

85. Hapuarachchi HAP, Wang QJ, Pagano TC. A review
of advances in flash flood forecasting. Hydrol Process
2011, 2:2771–2784.

86. Alfieri L, Pappenberger F, Wetterhall F. The extreme
runoff index for flood early warning in Europe. Nat
Hazards Earth Syst Sci 2014, 14:1505–1515.

87. Tsonevsky I. New EFI parameters for forecasting
severe convection. ECMWF Newsl 2015, 144:27–32.

88. ECMWF. A global approach to predicting flash floods,
http://www.ecmwf.int/en/about/media-centre/news/
2015/global-approach-predicting-flash-floods.
(Accessed December 9, 2015).

89. ECMWF. TIGGE - The THORPEX Interactive Grand
Global Ensemble, http://tigge.ecmwf.int/ (Accessed
September 9, 2015).

90. Fan FM, Schwanenberg D, Collischonn W, Weerts A.
Verification of inflow into hydropower reservoirs using
ensemble forecasts of the TIGGE database for large
scale basins in Brazil. J Hydrol Reg Stud 2015,
4:196–227. doi:10.1016/j.ejrh.2015.05.012.

91. Khan S, Hong Y, Vergara H, Gourley J,
Brakenridge G, De Groeve T, Flamig Z, Policelli F,
Yong B. Microwave satellite data for hydrologic mod-
eling in ungauged basins. IEEE Geosci Remote Sens
Lett 2012, 9:663–667. doi:10.1109/
LGRS.2011.2177807.

92. García-Pintado J, Mason DC, Dance SL, Cloke HL,
Neal JC, Freer J, Bates PD. Satellite-supported flood
forecasting in river networks: a real case study.
J Hydrol 2015, 523:706–724. doi:10.1016/j.
jhydrol.2015.01.084.

93. Yamazaki D, O’Loughlin F, Trigg M, Miller Z,
Pavelsky T, Bates P. Development of the global width
database for large rivers. Water Resour Res 2014,
50:3467–3480.

Overview wires.wiley.com/water

418 © 2016 The Authors. WIREs Water published by Wiley Periodicals, Inc. Volume 3, May/June 2016

https://www.deltares.nl/en/software/openda/
https://www.deltares.nl/en/software/openda/
http://www.wmo.int/pages/prog/arep/wwrp/new/S2S_project_main_page.html
http://www.wmo.int/pages/prog/arep/wwrp/new/S2S_project_main_page.html
http://www.wmo.int/pages/prog/arep/wwrp/new/S2S_project_main_page.html
http://www.ecmwf.int/en/about/media-centre/news/2015/global-approach-predicting-flash-floods
http://www.ecmwf.int/en/about/media-centre/news/2015/global-approach-predicting-flash-floods
http://tigge.ecmwf.int/


 207 

 

Appendix 

 

A2: Complex picture for likelihood of ENSO-driven flood hazard 

This paper presents the published version of chapter 4 of this thesis, with the following 

reference: 

Emerton, R., H. L. Cloke, E. M. Stephens, E. Zsoter, S. J. Woolnough and F. Pappenberger, 

2017: Complex Picture for Likelihood of ENSO-Driven Flood Hazard, Nature Communications, 

8, 14796, doi:10.1038/ncomms14796* 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

                                                           
* ©2017. The Authors. Nature Communications published by the Nature Publishing Group. This is an open access 
article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided that the original work is properly cited. 
 

https://www.nature.com/articles/ncomms14796


208  

 

Appendix 

 

 

 



ARTICLE

Received 9 Nov 2016 | Accepted 31 Jan 2017 | Published 15 Mar 2017

Complex picture for likelihood of ENSO-driven
flood hazard
R. Emerton1,2,3, H.L. Cloke1,2, E.M. Stephens1, E. Zsoter1,3, S.J. Woolnough4 & F. Pappenberger3

El Niño and La Niña events, the extremes of ENSO climate variability, influence river flow and

flooding at the global scale. Estimates of the historical probability of extreme (high or low)

precipitation are used to provide vital information on the likelihood of adverse impacts during

extreme ENSO events. However, the nonlinearity between precipitation and flood magnitude
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E
l Niño Southern Oscillation (ENSO) is the most prominent
pattern of inter-annual climate variability1, and is known to
influence river flow2 and flooding3–5 at the global scale. In

the absence of hydrological analyses, products indicating the
likelihood of extreme precipitation are often used as an early
indicator of flooding during extreme ENSO events6. However, the
nonlinearity between precipitation and flood magnitude and
frequency7 means that it is important to assess the impact of
ENSO not just on precipitation, but on river flow and flooding.
This is especially important as, as stated by Chiew and
McMahon2, ‘it is likely that the streamflow-ENSO relationship
is stronger than the rainfall-ENSO relationship because the
variability in rainfall is enhanced in runoff and because
streamflow integrates information spatially’.

Here, a global scale hydrological analysis is performed to
estimate the historical probability of increased or decreased flood
hazard in any given month during El Niño/La Niña events,
assessing the added benefit of directly analysing river flow over
the use of precipitation as a proxy for flood hazard.

Historical probabilities provide useful information about
typical ENSO impacts based on historical evidence8,9 and are,
as stated by Mason and Goddard8, ‘a better estimate of the future
climate than the assumption that seasonal conditions will be the
same as average’. Nonetheless, there are some key considerations
when using such information. One such consideration is that no
two El Niño events are the same8,10; differences in the peak
amplitude, temporal evolution and spatial pattern of warming are
likely to affect the timing and magnitude of the resulting impact
on river flow. There are many suggested ways to classify ENSO
diversity11, for example, El Niño events are often described as
‘East Pacific’ (EP) or ‘Central Pacific’ (CP), dependent on where
the peak warming occurs. While this is an over-simplification of
the complexity surrounding ENSO diversity, the location of the
peak warming can alter the influence on river flow. An additional
consideration is the influence of warming ocean temperatures on
ENSO events and their related impacts. Recent studies12,13

suggest that projected changes in the Walker circulation and
associated weakening of equatorial Pacific ocean currents are
expected to result in more frequent, and more extreme, El Niño
and La Niña events12,14.

In the past, studies have been limited to reanalysis data sets of
no longer than B40 years3–5, in which there is a sample of p10
El Niño and p13 La Niña events, or observational data with
inconsistent coverage, both spatially and temporally2. We have
created a twentieth century (1901–2010) model reconstruction of
river flow in order to obtain a hydrological data set with
consistent global coverage over an extended time period. Research
by Essou et al.15 indicates that global meteorological reanalysis
data sets ‘have good potential to be used as proxies to
observations’ in order to force hydrological models, particularly
in regions where few observations are available. This data set was
created by forcing a research version (described in the Methods)
of the Global Flood Awareness System16,17 (GloFAS) with
the ERA-20CM18 meteorological model reconstruction of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) to produce a 10-member, 0.5� resolution
reconstruction of river flow (from here on, ERA-20CM-R)
containing 259,200 grid points covering the global river
network (Supplementary Fig. 1). Figure 1 depicts a time series
of three key variables used in this study, alongside the timing of
the 30 El Niño and 33 La Niña events identified in ERA-20CM-R
(see Methods).

Previous work by Ward et al.4 has looked at the influence of El
Niño on flood return periods, quantifying the percentage
anomaly during El Niño years in comparison with climatology
(defined as the long-term average of historical river conditions or

meteorological parameters). To ensure accurate estimation of
historical probabilities of ENSO-driven flood hazard, this analysis
was replicated using the new ERA-20CM-R data set and gives
similar results (Supplementary Fig. 2).

In this study, using a climatology of all years and all El Niño/La
Niña years, we calculate the percentage of past El Niño/La Niña
events during which the river flow fell in the upper (lower)
quartile of climatology, defined here as ‘abnormally high (low)
flow’. Our results show that the likelihood of increased or
decreased flood hazard during ENSO events is much more
complex than is often perceived and reported; probabilities vary
greatly across the globe, with large uncertainties inherent in the
data and clear differences when comparing the hydrological
analysis to precipitation.

Results
Historical probabilities during El Niño. Figure 2a shows the
historical probabilities for February during an El Niño, with the
full set of El Niño and La Niña results presented in
Supplementary Figs 7 and 8, respectively. El Niño events tend to
span two calendar years, evolving in boreal spring and reaching
their peak magnitude in winter of the same year, before decaying
into the following spring/summer. Shortly after the peak,
February sees some of the highest probabilities and extensive
spatial coverage of regions influenced by El Niño (where 440%
probability of abnormally high or low river flow represents a
significant influence); 34.5% of the land surface indicates a sig-
nificant increase in the probability of abnormally high or low
river flow (19.2% for high, 15.3% for low) compared to any given
year.

The influence of El Niño on river flow can be seen as early as
June (see Supplementary Fig. 7), shortly after ENSO tends to
move into the warm phase, with some regions, mostly confined to
the tropics, beginning to see up to a 50% probability of high or
low river flow in the ensemble mean. In August and September,
much of South America, south of the Amazon River, is somewhat
likely (B40–60% probability) to observe higher than normal river
flow; however, in November, closer to the typical peak of El Niño
events, a reversal to drier conditions across much of Brazil is
observed. The southern USA has a high probability (up to 70%)
of high river flow from December onwards, while Mexico is
another region that experiences a reversal in the influence of El
Niño, from decreased flood hazard up until September/October,
to increased flood hazard from November onwards. Other
regions are much more consistent, such as Indonesia, which
has a high certainty of abnormally low river flow throughout the
evolution, peak and decay of El Niño. However, it is important to
note that across the globe, the uncertainty around these
probabilities can be high.

Evaluating the uncertainty. Indeed, the historical probabilities
themselves give an indication of the uncertainty in the response of
the river flow to ENSO events. Here, the 10 ensemble members of
ERA-20CM-R also allow interpretation of the uncertainty in the
data set, as each ensemble member represents an equally probable
reconstruction of the river flow. To provide an indication of this
uncertainty, Fig. 2b shows the range of the probability around the
mean probability shown in Fig. 2a. The influence of El Niño is
much more certain in some locations; for example, in coastal
Ecuador/northern Peru, the probabilities vary by only 9%. These
locations (darkest shading, 5–10% range) stand out in Fig. 2b;
these are the areas where there is potential to use such historical
probabilities as an early indicator of increased or decreased flood
hazard, as they tend to give high probabilities combined with
small uncertainties. However, much of the globe shows a range of
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20–40%, and some small regions, such as in northwest Spain and
eastern Argentina, see a range up to 70% across the ensemble
members. The implication is that while some regions see high
probabilities of increased flood hazard (e.g., up to 77% in
northern Peru), across much of the globe the likelihood is much
lower and much more uncertain than might be useful for deci-
sion-making purposes.

Importance of the hydrology. Evaluating the historical prob-
abilities of abnormally high or low precipitation, using the ERA-
20CM precipitation data set, confirms that there is additional
information which can be gained from the hydrological analysis.
For example, parts of northern Africa are likely to see high pre-
cipitation in February (Supplementary Fig. 3a); however, the
River Nile is likely to see dry river conditions (Fig. 2a), indicating
that the river is influenced more by upstream rather than local
precipitation.

To further highlight the importance of considering the
hydrological impacts, Fig. 3 indicates regions, shown in pink
(green), where the probability of high river flow is greater
(smaller) than that of high precipitation. These differences
suggest that the influence of El Niño is more pronounced in
the river flow in pink regions, and conversely, green highlights
regions where the use of precipitation as a proxy for flood hazard
results in an overestimation of the probabilities. This could also
indicate that the region is likely to experience a lagged influence
of El Niño on river flow. The corresponding results for low flow
are presented in Supplementary Fig. 4.

Historical probabilities during La Niña. El Niño events are
often followed by a La Niña, the cool phase of ENSO. While La
Niña events tend to be less widely discussed in the media, their
influence on precipitation is often used as a proxy for flood
hazard, as with El Niño. We have therefore extended this analysis
to evaluate the probability of increased (or decreased) flood
hazard during La Niña years. We find that many regions

influenced by El Niño are likely to observe the opposite response
during La Niña. Figure 4 shows these probabilities, again for
February, during a La Niña event, with the full set of results
shown in Supplementary Fig. 8. It is evident that less of the land
surface is significantly influenced by La Niña compared to El
Niño during this month (22% of the land surface compared to
34.5%). Probabilities, while still significant, also tend to be lower
than for the same month during an El Niño; the highest prob-
ability of increased flood hazard shown in Fig. 4a is 67, and 69%
for decreased flood hazard. Again, the uncertainty surrounding
this mean probability is large (20–40% and in some areas 470%)
across much of the globe; this can be seen in Fig. 4b.

Maximum probabilities during El Niño/La Niña. While the
monthly maps of historical probabilities give an indicator of the
probability of increased (or decreased) flood hazard and when
this is likely to occur, it is perhaps useful to consider the event as
a whole, as the peak conditions occur at different times across the
globe. Figure 5a (b) shows the maximum probability of increased
flood hazard during any month of an El Niño (La Niña) event;
this provides an overview of whether a region is likely to
experience a change in river conditions or not during or following
the event. Figure 5 also indicates where the uncertainty sur-
rounding the probabilities is high; this tends to be where the
probability is lower, while regions with high probabilities also
indicate higher certainty. This analysis further confirms that
across much of the globe, such historical probabilities are much
more uncertain than is often communicated. The corresponding
results for decreased flood hazard are shown in Supplementary
Fig. 5.

Comparison with observations. A comparison of the historical
probabilities against observed data sets was also undertaken (see
Methods and Supplementary Fig. 6). While this proved challen-
ging at the global scale due to a lack of consistent and extensive
river flow records in regions of the world where ENSO events
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Figure 1 | Time series of three key ERA-20CM-R variables and timing of El Niño and La Niña events. (a) Three-month running mean sea surface

temperature anomaly in the Niño3.4 region (SSTA3.4), and number of grid points globally in which monthly mean river flow (b) exceeds the top

25th percentile and (c) falls below the lower 25th percentile. Solid lines show the mean of the 10 ensemble members, while shading indicates the spread

of the members. The SSTA3.4 is used to identify El Niño and La Niña years in the data set, highlighted here by the grey shaded and hatched bars,

respectively.
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Figure 2 | Historical probability of increased or decreased flood hazard during one month of an El Niño. (a) Probability of abnormally high (blue) or low

(red) monthly mean river discharge. Based on the mean of the 10 ERA-20CM-R ensemble members exceeding the 75th percentile, or falling below the 25th

percentile, of the 110-year river discharge climatology. (b) Uncertainty around the probability shown in (a), i.e., the difference between the minimum and

maximum of the 10 ensemble members (%). The boxplot (b, inset) gives an example graphical representation of the uncertainty range at one grid point,

marked on the map by an ‘x’, where the mean probability indicated in (a) is 63%. The range is given by the difference between the minimum and maximum

of the 10 ensemble members; in this case 53 and 81%, giving a 28% range falling in the 20–40% bracket in (b). The month of February is chosen as,

occurring shortly after the peak of an El Niño, it sees extensive spatial coverage of land areas influenced by El Niño.
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have the most influence, the evaluation suggests a potential
overestimation of the probabilities in both the precipitation and
river flow reconstructions. This stresses that while these model
reconstructions are currently the best available data for such
research, there is a need for more extensive river flow observa-
tions in regions impacted by ENSO events.

Throughout the results, the complexity and uncertainty
surrounding such historical probabilities is evident. Indeed,
observations of flooding in February 2016, during the strong
2015–2016 El Niño event, reflect this complex picture of ENSO-
driven flood hazard. The expected flooding (based on the results
shown in Fig. 2a) in Peru, Bolivia, Argentina and Angola was
observed19; yet in several other regions, such as Eastern China,
Japan and parts of the Middle East, no flood events were
recorded. Flooding also occurred in Indonesia despite a high
likelihood of dry river conditions. In Kenya and Peru, two
examples where flood preparedness actions were taken ahead of
El Niño, flooding was much less severe than expected20,21.
A recent Nature correspondence22 also highlighted the
unexpected winter weather in the USA; California experienced
heatwaves rather than prolonged rain events, while Seattle was
expecting a worsening drought and instead endured the wettest
winter on record (see also Supplementary Fig. 7).

Discussion
We have conducted a global hydrological analysis of ENSO as a
predictor of flood hazard based on historical probability estimates
using a new, extended-length model reconstruction of river flow.
The importance of addressing the hydrology in addition to
precipitation is evident in the differences between the probabil-
ities of high river flow and precipitation, and in the ability to
further evaluate areas likely to see a lagged influence of El Niño
on river flow. We conclude that while it may seem possible to use
historical probabilities to evaluate regions across the globe that
are more likely to be at risk of flooding during an El Niño/La

Niña, and indeed circle large areas of the globe under one banner
of wetter or drier, the reality is much more complex. It is
therefore important to undertake research that focuses on the
region(s) of interest and consider the impact of ENSO diversity
and other drivers of climate variability on the hydrology and
flood hazard.

Methods
The new twentieth century river flow data set. For this study, we have created a
twentieth century (1901–2010) reconstruction of river discharge, in order to obtain
a data set with consistent global coverage over an extended time period. This was
achieved by forcing an alternative setup of the GloFAS16,17 with the 10 ensemble
members of the ERA-20CM18 atmospheric model ensemble of the ECMWF to
produce a 10-member ensemble of river discharge for the global river network
(ERA-20CM-R).

The operational set-up of GloFAS takes the runoff output from the ECMWF
Integrated Forecast System (IFS) and runs this through the Lisflood hydrological
routing model16. Here, we instead use the Catchment-based Macro-scale
Floodplain23 (CaMa-Flood) routing model to create the river discharge
reconstruction at 0.5� resolution from the gridded ERA-20CM runoff data. A map
of the CaMa-Flood global river network is given in Supplementary Fig. 1. We note
here that the version of GloFAS used in this study is uncalibrated.

While the use of the ERA-20CM model reconstruction allows a consistent
analysis at the global scale, and provides a much longer time period over which
to study these extreme events, there are limitations that must be considered.
ERA-20CM incorporates ENSO and twentieth century climate trends, and
assimilates sea-surface temperature and sea ice cover18. It does not, however,
assimilate atmospheric observations. This is a drawback as the model
reconstruction is able to provide a statistical estimate of the climate, but is not able
to reproduce synoptic situations. We have therefore undertaken a comparison with
the best available precipitation and river discharge observations for the twentieth
century and are satisfied that ENSO teleconnections are well-represented in ERA-
20CM(-R). Of course, there is further uncertainty introduced when going back as
far as the early twentieth century when fewer observations were available; the 10
ensemble members go some way to representing this uncertainty and are a key
benefit of this particular data set, and thus are considered throughout this study.

Identifying the El Niño years. To conduct this analysis, we first identified the
El Niño/La Niña years in the data set. This was done using the definition that the
US National Oceanic and Atmospheric Administration (NOAA) use to declare El
Niño (La Niña) conditions operationally24. This definition states that the sea

Probability high precip. < probability high flow

Probability high precip. > probability high flow

Figure 3 | Comparison of historical probabilities based on precipitation and river flow. Regions where the difference in probability of abnormally high

precipitation compared to probability of high river flow, in the month of February during an El Niño, is greater than 10% (based on the ensemble mean).

Pink shading indicates that the probability of high precipitation is smaller than the probability of high river flow, while green shading indicates that

probabilities are larger for precipitation.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14796 ARTICLE

NATURE COMMUNICATIONS | 8:14796 | DOI: 10.1038/ncomms14796 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


surface temperature (SST) anomaly must remain Z0.5 �C (p0.5 �C), in the
Niño3.4 region in the central Pacific (5� S–5� N, 170�–120� W), for at least five
consecutive 3-month periods. Here, we extracted the ERA-20CM SST data and
calculated the 3-month running mean SST anomalies for the Niño3.4 region,
allowing identification of the 30 (33) years in which El Niño (La Niña) conditions
were present from 1901 to 2010. These are listed in Supplementary Table 1, where
the El Niño/La Niña year refers to the year in which the event evolves and typically

also reaches its peak, as ENSO events often span 2 years, decaying into the
following year. We note that while there is generally a good agreement between the
ENSO events identified in ERA-20CM and those published by NOAA25 for the
same period, there are, however, some discrepancies. This is likely due to the
different indices/definitions used to identify the ENSO events. For example, in 1977
and 1979, El Niño events are identified by NOAA, using the Multivariate ENSO
Index25, but these are not picked up in this study. In Fig. 1, it is evident that the

100 90

Probability (%) of abnormally low flow Probability (%) of abnormally high flow

80 70 60 50 40 50 60 70 80 90 100

70 40 20 10
Uncertainty (%) around the probability shown in (a)

5 10 20 7040

b

a

Figure 4 | Historical probability of increased or decreased flood hazard during one month of a La Niña. (a) Probability of abnormally high (purple) or low

(orange) monthly mean river discharge in the month of February during a La Niña. Based on the mean of the 10 ERA-20CM-R ensemble members

exceeding the 75th percentile, or falling below the 25th percentile, of the 110-year river discharge climatology. (b) Uncertainty around the probability shown

in (a), i.e., the difference between the maximum and minimum of the 10 ensemble members (%).
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SST did exceed 0.5 �C in ERA-20CM, but this did not persist for long enough to be
identified as an event. This is a limitation of the need to use one of the many
varying methods of classifying and identifying ENSO events. This method was
chosen as it is the most operationally relevant at the time of writing.

Historical probability estimation. For the results presented in this study, the 110-
year ERA-20CM-R climatology was used to calculate the upper and lower 25th,
10th and 5th percentiles of river discharge for every grid box. The historical
probability of abnormally high or low river flow in any given month was then
estimated, through calculation of the percentage of the 30 (33) identified El Niño
(La Niña) years in which the river discharge exceeded (high flow) or fell below (low
flow) the three percentile thresholds, for each of the 10 ensemble members of ERA-
20CM-R. The analysis presented in this paper is based on percentiles so as to avoid
potential large errors caused by bias in the data set compared to observations
(discussed further below).

Maps of the resulting probabilities were produced based on the mean of the 10
ensemble members. As the number of ENSO events cover a substantial part of the
110-year period, there is a chance of picking up random effects. The maps
produced therefore only display results where the probability is significantly greater

than normal, i.e., Z40%; an ‘event’ (occurrence of abnormally high or low flow)
with a probability of 40% during one month of an El Niño/La Niña has only a 5%
chance of occurring by chance in that month, and thus represents a significant
increase in the probability compared to the likelihood of occurring at random.

Additionally, the spread in the ensemble members is designed to reflect the
uncertainty in the data set, and can indicate a range of possible outcomes or
probabilities. As such, we have further calculated the uncertainty around the mean
probability for the whole globe, based on the range across the ensemble members.
For each ensemble member, the range between the minimum and maximum
ensemble members was calculated for every grid box individually. This allows us to
interpret the uncertainty in the probability caused by uncertainty in the data set.

El Niño/La Niña onset tends to occur in boreal spring/early summer and peak
in winter25, before decaying into the following spring. As such, the monthly
analysis was undertaken for a period of 2 years; the year of onset, and the following
year during which the El Niño/La Niña decays, in order to capture any lagged
influence on river flow. Significant influence is shown in the results from June
during the El Niño/La Niña year, to the following September (16 months). While it
would seem advantageous to summarize the findings by season for simplicity,
evaluation of the results shows that the patterns of influence across the globe can
change dramatically, in some instances, from one month to the next. Summarizing

Maximum probability (%) of abnormally high flow during an EI Niño
40

b

a

Uncertainty > 25%

Uncertainty > 25%

50 60 70 80 90 100

40 50 60 70 80 90 100
Maximum probability (%) of abnormally high flow during a La Niño

Figure 5 | Maximum probability of increased flood hazard during an ENSO event. Maximum probability of abnormally high river flow in any month

during (a) an El Niño event and (b) a La Niña event. Based on the mean of the 10 ERA-20CM-R ensemble members exceeding the 75th percentile, or falling

below the 25th percentile, of the 110-year river discharge climatology during, or shortly after the decay of, an ENSO event. Stippling indicates where the

uncertainty surrounding this probability is high, i.e., the range of the ensemble members exceeds 25% probability.
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these maps into seasons may therefore result in a loss of information for some
months.

Difference between river flow and precipitation. A key aim of this paper was to
evaluate the added benefit of the hydrological analysis over the use of precipitation
as a proxy for flood hazard. To do this, the same method used to estimate the
historical probabilities in the river flow reconstruction (ERA-20CM-R) was also
applied to the ERA-20CM precipitation reconstruction. The horizontal resolution
of the ERA-20CM precipitation data is B125 km, while the river flow data is at
0.5� (B55 km) resolution. To compare these, the results from the precipitation
data were remapped to the higher resolution of the river flow data using a simple
nearest neighbor remapping algorithm. The difference between the historical
precipitation probabilities and river flow probabilities was then calculated for the
mean of the 10 ensemble members.

Comparison with observations—precipitation. To evaluate the results shown
using the new ERA-20CM(-R) data set, the same method for estimating historical
probabilities was also applied to other, related data sets: the Global Precipitation
Climatology Centre (GPCC) Full Data reanalysis (GPCC-FD)26 at 0.5� resolution,
and the Global Runoff Data Centre (GRDC) river discharge observations27. Again,
percentiles are used throughout to allow reliable comparison with observations
despite potentially large bias in the model reconstruction values compared to
observed values.

The GPCC-FD reanalysis is a global gridded precipitation data set based on
interpolated rain gauge data26. Comparing the ERA-20CM and GPCC-FD
precipitation data sets indicates that the regions influenced by El Niño are well-
represented by ERA-20CM (see Supplementary Fig. 3b), and in line with well-
known ENSO-sensitive regions, such as Australia, Indonesia, Argentina (the Rio de
la Plata delta) and the southern USA—which have been shown to be well-
represented in the GPCC-FD28. However, the strength of this link appears to be
overestimated compared to observations, as the ERA-20CM data show higher
probabilities of abnormally high or low precipitation than the GPCC-FD. Some of
this overestimation may be caused by the use of the ensemble mean to produce the
ERA-20CM maps, as averaging across the 10 ensemble members likely results in a
reduction of the variance and we therefore pick up the forced part of the signal.

Comparison with observations—river discharge. As no gridded observational
data set of river discharge exists for the global river network, archived station data
from the GRDC were used. Criteria for data suitability were chosen to identify
those stations which could be of use in this study. Firstly, only stations with at least
a 75-year record of observations between 1901 and 2010 were included; these could
be stations recording on a daily or monthly basis. Of these, any stations with more
than 50% of the data missing were removed. In total, 1287 stations fit the criteria
(232 monthly, 1,055 daily), of which the majority have o30% of the data missing.
Each of these stations were manually checked to ensure that they correspond to the
correct river point (taking into account location and upstream area) on the model
river network. A key limitation of using the GRDC observations for this study is
that many of these stations lie in river basins outside of the tropics and
subtropics—the regions that tend to be most strongly influenced by ENSO events.
This highlights the need for more consistent global river flow observations, but in
their absence, model reconstructions and reanalyses present the best available data
for regional and global scale research based on historical evidence.

To compare the results based on observations with ERA-20CM-R, we produced
a reliability diagram (Supplementary Fig. 5) for the historical probability of
abnormally high river flow, comparing the forecast (historical) probability of an
event (in this case, river flow exceeding a given percentile) with the observed
frequency of the event. This was achieved by first locating all grid points in the
ERA-20CM-R data set that contain a GRDC station that fit the criteria outlined
above. For each percentage band (in 10% bins, as displayed on the maps shown in
the Results) of the ‘forecast’, the observed frequency of river flow exceeding the
upper 25th, 10th and 5th percentiles of the 110-year climatology was calculated for
each GRDC station, before taking the mean across all stations, and all 16 months
used in the analysis (June to the following September). This allows comparison of
the predicted probability with the observed frequency. The reliability diagram
(Supplementary Fig. 5) and the discrepancy between forecasted and realized
probabilities indicates that there is a potential overestimation of the forecasted
probabilities. There are limitations, however, in that we have very few, or no,
observation stations with which to compare the results for the higher probabilities
(Supplementary Fig. 5, inset), particularly in regions that are most significantly
influenced by El Niño/La Niña and where reliability may be better, such as the
tropics. This suggests that such a reliability analysis may not be fully representative
of the results. Additionally, the data records vary from station to station; therefore,
the number of El Niño/La Niña years included in the observational record of each
station also varies.

Data availability. The ERA-20CM, GPCC-FD and GRDC data that support the
findings of this study are publicly available online at http://www.ecmwf.int/en/
research/climate-reanalysis/era-20cm-model-integrations, http://www.dwd.de/EN/
ourservices/gpcc/gpcc.html and www.bafg.de/GRDC. The ERA-20CM-R data that

support the findings of this study are available from the corresponding author
upon reasonable request.
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A3: Developing a global operational seasonal hydro-meteorological 

forecasting system: GloFAS-Seasonal v1.0 

This paper presents the published version of chapter 5 of this thesis, with the following 

reference: 

Emerton, R., E. Zsoter, L. Arnal, H. L. Cloke, D. Muraro, C. Prudhomme, E. M. Stephens, P. 

Salamon and F. Pappenberger, 2018: Developing a global operational seasonal hydro-

meteorological forecasting system: GloFAS-Seasonal v1.0, Geoscientific Model Development, 11, 

3327-3346, doi:10.5194/gmd-11-3327-2018* 
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Abstract. Global overviews of upcoming flood and drought
events are key for many applications, including disaster risk
reduction initiatives. Seasonal forecasts are designed to pro-
vide early indications of such events weeks or even months
in advance, but seasonal forecasts for hydrological variables
at large or global scales are few and far between. Here,
we present the first operational global-scale seasonal hydro-
meteorological forecasting system: GloFAS-Seasonal. De-
veloped as an extension of the Global Flood Awareness Sys-
tem (GloFAS), GloFAS-Seasonal couples seasonal meteoro-
logical forecasts from ECMWF with a hydrological model
to provide openly available probabilistic forecasts of river
flow out to 4 months ahead for the global river network. This
system has potential benefits not only for disaster risk re-
duction through early awareness of floods and droughts, but
also for water-related sectors such as agriculture and water
resources management, in particular for regions where no
other forecasting system exists. We describe the key hydro-
meteorological components and computational framework of
GloFAS-Seasonal, alongside the forecast products available,
before discussing initial evaluation results and next steps.

1 Introduction

Seasonal meteorological forecasts simulate the evolution of
the atmosphere over the coming months. They are designed
to provide an early indication of the likelihood that a given
variable, for example precipitation or temperature, will dif-
fer from normal conditions weeks or months ahead. Will a
particular region be warmer or cooler than normal during the
next summer? Or will a river have higher or lower flow than
normal next winter? Seasonal forecasts of river flow have
the potential to benefit many water-related sectors from agri-
culture and water resources management to disaster risk re-
duction and humanitarian aid through earlier indications of
floods or droughts.

Many operational forecasting centres produce long-range
(seasonal) global forecasts of meteorological variables, such
as precipitation (Weisheimer and Palmer, 2014). However, at
present, operational seasonal forecasts of hydrological vari-
ables, particularly for large or global scales, are few and
far between. A number of continental-scale seasonal hydro-
meteorological forecasting systems have begun to emerge
around the globe over the past decade (Yuan et al., 2015a),
using seasonal meteorological forecasts as input to hydro-
logical models to produce forecasts of hydrological vari-
ables. These include the European Flood Awareness System
(EFAS; Arnal et al., 2018; Cloke et al., 2013), the Euro-
pean Service for Water Indicators in Climate Change Adapta-
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tion (SWICCA; Copernicus, 2018b), the Australian Govern-
ment Bureau of Meteorology Seasonal Streamflow Forecasts
(Bennett et al., 2017; BoM, 2018), and the USA’s National
Hydrologic Ensemble Forecast Service (HEFS; Demargne et
al., 2014; Emerton et al., 2016). There are also various on-
going research efforts using seasonal hydro-meteorological
forecasting systems for forecast applications and research
purposes at regional (Bell et al., 2017; Bennett et al., 2016;
Crochemore et al., 2016; Meißner et al., 2017; Mo et al.,
2014; Prudhomme et al., 2017; Wood et al., 2002, 2005;
Yuan et al., 2013) and global (Candogan Yossef et al., 2017;
Yuan et al., 2015b) scales. In addition to the ongoing research
into improved seasonal hydro-meteorological forecasts at
the global scale, an operational system providing consis-
tent global-scale seasonal forecasts of hydrological variables
could be of great benefit in regions where no other forecast-
ing system exists and to organisations operating at the global
scale (Coughlan De Perez et al., 2017).

Often, in the absence of hydrological forecasts, seasonal
precipitation forecasts are used as a proxy for flooding. It has
been shown that forecasts of seasonal total rainfall, the most
often used seasonal precipitation forecasts, are not necessar-
ily a good indicator of seasonal floodiness (Stephens et al.,
2015), and other measures of rainfall patterns, or seasonal
hydrological forecasts, would be better indicators of poten-
tial flood hazard (Coughlan De Perez et al., 2017).

While it seems a natural next step to produce global-scale
seasonal hydro-meteorological forecasts, this is not a simple
task, not only due to the complexities of geographical vari-
ations in rainfall–run-off processes and river regimes across
the globe, but also due to the computing resources required
and huge volumes of data that must be efficiently processed
and stored and the challenge of effectively communicating
forecasts for the entire globe. Indeed, global-scale forecast-
ing for medium-range timescales has only become possi-
ble in recent years due to the integration of meteorologi-
cal and hydrological modelling capabilities, improvements in
data, satellite observations, and land-surface hydrology mod-
elling, and increased resources and computer power (Emer-
ton et al., 2016). In addition to continued improvements in
computing capabilities, the recent move towards the devel-
opment of coupled atmosphere–ocean–land models means
that it is now becoming possible to produce seasonal hydro-
meteorological forecasts for the global river network.

Despite the chaotic nature of the atmosphere (Lorenz,
1963), which introduces a limit of predictability (generally
accepted to be ∼ 2 weeks), seasonal predictions are possible
as they rely on components that vary on longer timescales
and are themselves predictable to an extent. This “second
type predictability” (Lorenz, 1993) for seasonal river flow
forecasts comes from the initial conditions and large-scale
modes of climate variability. The most prominent pattern
of climate variability is the El Niño–Southern Oscillation
(ENSO; McPhaden et al., 2006), which is known to affect
river flow and flooding across the globe (Chiew and McMa-

hon, 2002; Emerton et al., 2017; Guimarães Nobre et al.,
2017; Ward et al., 2014a, b, 2016). Other teleconnections
also influence river flow in various regions of the globe, such
as the North Atlantic Oscillation (NAO), Southern Oscilla-
tion (SOI), Indian Ocean Dipole (IOD), and Pacific Decadal
Oscillation (PDO), and contribute to the seasonal predictabil-
ity of hydrologic variables (Yuan et al., 2015a). Coupled
atmosphere–ocean–land models are key in representing these
large-scale modes of variability in order to produce seasonal
hydro-meteorological forecasts.

This motivates the development of an operational global-
scale seasonal hydro-meteorological forecasting system as an
extension of the Global Flood Awareness System (GloFAS;
Alfieri et al., 2013), with openly available forecast products.
GloFAS is developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the European Com-
mission Joint Research Centre (JRC) and has been produc-
ing probabilistic flood forecasts out to 30 days for the entire
globe since 2012. In 2016, work began in collaboration with
the University of Reading to implement a seasonal outlook
in GloFAS, aiming to provide forecasts of both high and low
river flow for the global river network up to several months
in advance. On 10 November 2017, the first GloFAS sea-
sonal river flow forecast was released. This paper introduces
the modelling system, its implementation, and the available
forecast products and provides an initial evaluation of the po-
tential usefulness and reliability of the forecasts.

2 Implementation

The GloFAS seasonal outlooks are produced by driving a
hydrological river routing model with meteorological fore-
casts from ECMWF. The forecasts are run operationally
on the ECMWF computing facilities. This section provides
an overview of the computing facilities, introduces the key
hydro-meteorological components of the modelling plat-
form (the meteorological forecast input, hydrological model,
and reference climatology), and describes the computational
framework of GloFAS-Seasonal.

2.1 ECMWF High-Performance Computing Facility

ECMWF’s current High-Performance Computing Facility
(HPCF) has been in operation since June 2016 and is used for
both forecast production and research activities. The HPCF
comprises two identical Cray XC40 supercomputers, each of
which is self-sufficient with their own storage and each with
equal access to the storage of the other. Each Cray XC40 con-
sists of 20 cabinets of compute notes and 13 storage nodes.
One compute node has two Intel Broadwell processors, each
with 18 cores, giving 192 nodes (6912 cores) per cabinet. The
Cray Aries interconnect is used to connect the processing
power. The majority of the nodes of the HPCF are run using
the high-performance Cray Linux Environment, a stripped-
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down version of Linux, as reducing the number of operating
system tasks is critical for providing a highly scalable envi-
ronment.

In terms of storage, each Cray XC40 has ∼ 10 PB of stor-
age, and the data handling system (DHS) also comprises two
main applications: the Meteorological Archive and Retrieval
System (MARS), which stores and provides access to meteo-
rological data collected or produced by ECMWF, and ECFS,
which stores data that are not suitable for storing on MARS.
The DHS holds over 210 PB of primary data, and the archive
increases by ∼ 233 TB per day. The reader is referred to the
ECMWF website at https://www.ecmwf.int/ for further in-
formation on the HPCF and DHS.

In addition to the Cray XC40s, the ECMWF computing
facility also includes four Linux clusters consisting of 60
servers and 1 PB of storage. The Linux clusters are currently
used to run the river routing model used in GloFAS and to
produce the forecast products, while the meteorological forc-
ing and ERA5 reanalysis are produced on the HPCF. All data
related to GloFAS-Seasonal are stored on the MARS and
ECFS archives.

2.2 Hydro-meteorological components

2.2.1 Meteorological forcing

The first model component of the seasonal outlook is
the meteorological forecast input from the ECMWF Inte-
grated Forecast System (IFS, cycle 43r1; ECMWF, 2018b).
GloFAS-Seasonal makes use of SEAS5, which is the latest
version of ECMWF’s long-range ensemble forecasting sys-
tem made operational in November 2017 (ECMWF, 2017a;
Stockdale et al., 2018). SEAS5 consists of 51 ensemble
members (50 perturbed members and 1 unperturbed con-
trol member) and has a horizontal resolution of ∼ 36 km
(TCO319). The system, which comprises a data assimila-
tion system and a global circulation model, is run once a
month, producing forecasts out to 7 months ahead. Initial
pre-implementation testing of SEAS5 has suggested that in
comparison to the previous version (System 4), SEAS5 bet-
ter simulates sea surface temperatures (SSTs) in the Pa-
cific Ocean, leading to improved forecasts of the El Niño–
Southern Oscillation (ENSO; Stockdale et al., 2018), which
is closely linked to river flow across the globe and can pro-
vide added predictability.

SEAS5 is a configuration of the ECMWF IFS (cycle 43r1),
including atmosphere–ocean coupling to the NEMO ocean
model. SEAS5 is run operationally on the HPCF. Each en-
semble member is a complex, HPC-intensive, massively par-
allel code written in Fortran (version F90). In addition, fur-
ther complex scripting systems are required to control, pre-
pare, run, post-process, and archive all IFS forecasts. The
data assimilation systems used to prepare the initial condi-
tions for the forecasts also make use of Fortran and run on

the HPCF. For further information, the reader is referred to
the IFS documentation (ECMWF, 2018b).

2.2.2 Land surface component

Within the IFS, which includes SEAS5, the Hydrology Tiled
ECMWF Scheme of Surface Exchanges over Land, HTES-
SEL (Balsamo et al., 2011), is used to compute the land
surface response to atmospheric forcing. HTESSEL simu-
lates the evolution of soil temperature, moisture content, and
snowpack conditions through the forecast horizon to produce
a corresponding forecast of surface and subsurface run-off.
This component allows for each grid box to be divided into
tiles, with up to six tiles per grid box (bare ground, low
and high vegetation, intercepted water, and shaded and ex-
posed snow) describing the land surface. For a given precipi-
tation, the scheme distributes the water as surface run-off and
drainage, with dependencies on orography and soil texture.
An interception layer accumulates precipitation until satura-
tion is reached, with the remaining precipitation partitioned
between surface run-off and infiltration. HTESSEL also ac-
counts for frozen soil, redirecting the rainfall and snowmelt
to surface run-off when the uppermost soil layer is frozen,
and incorporates a snow scheme. Four soil layers are used to
describe the vertical transfer of water and energy, with sub-
surface water fluxes determined by Darcy’s law, and each
layer has a sink to account for root extraction in vegetated
areas. A detailed description of the hydrology of HTESSEL
is provided by Balsamo et al. (2011).

HTESSEL comprises a Fortran library of ∼ 20 000 lines
of code, using both F77 and F90 Fortran versions, and is
implemented modularly. While HTESSEL can be run on di-
verse architectures from a workstation PC to the HPCF, op-
erationally it is run on the HPCF.

2.2.3 River routing model

As HTESSEL does not simulate water fluxes through the
river network, Lisflood (Van Der Knijff et al., 2010), driven
by the surface and subsurface run-off output from HTESSEL
interpolated to the 0.1◦ (∼ 10 km) spatial resolution of Lis-
flood is used to simulate the groundwater (subsurface wa-
ter storage and transport) processes and routing of the water
through the river network. The initial conditions used to start
the Lisflood model are taken from the ERA5-R river flow
reanalysis (see Sect. 2.2.4).

Lisflood is a spatially distributed hydrological model, in-
cluding a 1-D channel routing model. Groundwater processes
are modelled using two linear reservoirs, the upper zone rep-
resenting a quick run-off component, including subsurface
flow through soil macropores and fast groundwater, and the
lower zone representing a slow groundwater component fed
by percolation from the upper zone. The routing of surface
run-off to the outlet of each grid cell, and the routing of
run-off produced by every grid cell from the surface, upper,
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Figure 1. Flowchart depicting the key GloFAS-Seasonal forecasting system components.

and lower groundwater zones through the river network, is
done using a four-point implicit finite-difference solution of
the kinematic wave equations (Chow et al., 2010). The river
network used is that of HydroSHEDS (Lehner et al., 2008),
again interpolated to a 0.1◦ spatial resolution using the ap-
proach of Fekete et al. (2001). For a detailed account of the
Lisflood model set-up within GloFAS, the reader is referred
to Alfieri et al. (2013).

Lisflood is implemented using a combination of PCRas-
ter GIS and Python and is currently run operationally on the
Linux cluster at ECMWF.

2.2.4 Generation of reforecasts and reference
climatology

In order to generate a reference climatology for GloFAS-
Seasonal, the latest of ECMWF’s reanalysis products, ERA5,
was used. Reanalysis datasets combine historical observa-
tions of the atmosphere, ocean, and land surface with a data
assimilation system; global models are used to “fill in the
gaps” and produce consistent global best estimates of the at-
mosphere, ocean, and land state. ERA5 represents the current
state of the art in terms of reanalysis datasets, providing a
much higher spatial and temporal resolution (30 km, hourly)
compared to ERA-Interim (79 km, 3-hourly) and better rep-
resentations of precipitation, evaporation, and soil moisture
(ECMWF, 2017b). In order to produce a river flow reanal-
ysis (ERA5-R) for the global river network, the ERA5 sur-
face and subsurface run-off variables were interpolated to
0.1◦ (∼ 10 km) resolution and used as input to the Lisflood
model (see Sect. 2.2.3). ERA5 is currently still in produc-
tion, and while it will cover the period from 1950 to present

when completed, the full dataset will not be available until
2019. ERA5 is being produced in three “streams” in par-
allel; at the time of producing the ERA5-R reanalysis, 18
years of ERA5 data were available across the three streams
(1990–1992, 2000–2007, and 2010–2016). In addition to the
historical climatology, ERA5 is also produced in near real
time, with a delay of just ∼ 3 days, allowing its use as initial
conditions for the river routing component of the GloFAS-
Seasonal forecasts. The ERA5-R reanalysis is thus updated
every month prior to producing the forecast. Figure 2 pro-
vides an overview of all datasets used in and produced for
the development of GloFAS-Seasonal.

Once the ERA5-R reanalysis was obtained, a set of
GloFAS-Seasonal reforecasts was produced. From the 25-
ensemble-member SEAS5 reforecasts produced by ECMWF,
the surface and subsurface run-off variables were used to
drive the Lisflood model with initial conditions from ERA5-
R. This generated 18 years of seasonal river flow reforecasts
(one forecast per month out to 4 months of lead time, with 25
ensemble members at 0.1◦ resolution). It is the weekly aver-
aged river flow from this reforecast dataset which is used as
a reference climatology, including to calculate the high and
low flow thresholds used in the real-time forecasts (described
in Sect. 2.3).

2.3 GloFAS-Seasonal computational framework

The GloFAS-Seasonal real-time forecasts are implemented
and run operationally on the ECMWF computing facilities
using ecFlow (Bahra, 2011; ECMWF, 2012), an ECMWF
work package used to run large numbers of programmes with
dependencies on each other and on time. An ecFlow suite
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is a collection of tasks and scheduling instructions with a
user interface allowing for the interaction and monitoring of
the suite, the code behind it, and the output. The GloFAS-
Seasonal suite is run once per month and is used to re-
trieve the raw SEAS5 forecast data. It runs this through Lis-
flood and produces the final forecast products and visuali-
sations using the newly developed GloFAS-Seasonal post-
processing code.

The GloFAS-Seasonal suite performs tasks (detailed be-
low) such as retrieving data, running Lisflood, computing
weekly averages and forecast probabilities from the raw Lis-
flood river flow forecast data, and producing maps and hydro-
graphs for the interface. It is primarily written in Python (ver-
sion 2.7), with some elements written in R (version 3.1) and
shell scripts incorporating climate data operators (CDOs).
The code was developed and tested on OpenSUSE Leap 42
systems.

When a new SEAS5 forecast becomes available (typically
on the 5th of the month at 00:00 UTC), the GloFAS-Seasonal
ecFlow suite is automatically deployed. The structure of and
tasks within the ecFlow suite are shown in Fig. 3. Each “task”
represents one script from the GloFAS-Seasonal code. The
suite first retrieves the latest raw SEAS5 forecast surface and
subsurface variables for all 51 ensemble members (stagefc
and getfc tasks), alongside the river flow reference clima-
tology (see Sect. 2.2.4) for the corresponding month of the
forecast (copywb task). The Lisflood river routing model (de-
scribed in Sect. 2.2.3) is then run for each of the 51 ensem-
ble members (lisflood task). Lisflood is initialised using the
ERA5-R river flow reanalysis (see Sect. 2.2.4) and driven
with the SEAS5 surface and subsurface run-off forecast to
produce the 4-month ensemble river flow forecast at a daily
time step, from which the weekly averaged ensemble river
flow forecast is obtained (average task). The weekly aver-
ages are computed for every Monday–Sunday starting from
the first Monday of each month so that the weekly averages
correspond from one forecast to the next. While SEAS5 pro-
vides forecasts out to 7 months ahead, the first version of
GloFAS-Seasonal uses only the first 4 months. This is in or-
der to reduce the data volumes required and to allow for the
assessment of the forecast skill out to 4 months ahead before
possible extension of the forecasts out to 7 months ahead in
the future.

Once the weekly averaging is complete, the forecast prod-
uct section of the suite is deployed, which post-processes the
raw forecast output to produce the final forecast products dis-
played on the web interface. The code behind the forecast
product section is provided in the Supplement. For a full de-
scription of the forecast products, including examples, see
Sect. 3. The suite computes the full forecast distribution (dis-
tribution task), followed by the probability of exceedance for
each week of the forecast and for every grid point (proba-
bility task) based on the number of ensemble members ex-
ceeding the high flow threshold or falling below the low
flow threshold. The high and low flow thresholds are defined

as the 80th and 20th percentiles of the reference climatol-
ogy for the week of the year corresponding to the forecast
week to use thresholds based on time of year of the forecast.
From these weekly exceedance probabilities, the maximum
probability of exceedance across the 4-month forecast hori-
zon is calculated for each grid point (maxprob task). Basin-
averaged maximum probabilities are also produced (basin-
prob task) by calculating the mean maximum probability of
exceedance across every grid point at which the upstream
area exceeds 1500 km2 in each of the 306 major world river
basins used in GloFAS-Seasonal (see Sect. 3.1). A minimum
upstream area of 1500 km2 is chosen, as the current resolu-
tion of the global model is such that reliable forecasts for
very small rivers are not feasible.

These probabilities are used to produce the forecast visu-
alisation for the web interface (Sect. 3). Firstly, the map task
produces colour-coded maps of both the river network, again
for grid points at which the upstream area exceeds 1500 km2,
and the major world river basins. The reppoint task then pro-
duces an ensemble hydrograph and persistence diagrams for
a subset of grid points (the “reporting points”) across the
globe. Further details on the location of reporting points are
given in Sect. 3.3. Finally, the web task collates and subse-
quently transfers all data required for the web interface.

This process, from the time a new SEAS5 forecast be-
comes available, takes∼ 4 h on average to complete, with up
to 10 tasks running in parallel (for example, running Lisflood
for 10 ensemble members at the same time). It is possible
to speed up this process by running more ensemble mem-
bers in parallel; however, the speed is sufficient so that it is
not necessary to use further resources to produce the fore-
cast more quickly. GloFAS-Seasonal forecast products are
typically produced by the 5th of the month at 05:00 UTC
and made available via the web interface on the 10th of the
month at 01:00 UTC. This is the earliest that the GloFAS-
Seasonal forecasts can be provided publicly under the Coper-
nicus licence agreement. Data are automatically archived at
ECMWF as the suite runs in real time; ∼ 285 GB of data
from each SEAS5 forecast are used as input for GloFAS-
Seasonal. Each GloFAS-Seasonal forecast run produces an
additional ∼ 1.8 TB of data and makes use of the ∼ 18 TB
reference climatology.

2.4 GloFAS web interface

The GloFAS website is based on a user-centred design
(UCD), meaning that user needs are core to the design princi-
ples (ISO13407). The website uses Web 2.0 concepts such as
simplicity, joy of use, and usability that are synonymous with
engaging users. It is a rich internet application (RIA) aiming
to provide the same level of interactivity and responsiveness
as desktop applications. The website is designed for those en-
gaged in flood forecasting and water resources, as users can
browse various aspects of the current forecast or past fore-
casts in a simple and intuitive way, with spatially distributed
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Figure 2. All datasets used and produced for GloFAS-Seasonal, including reanalysis, reforecasts, real-time forecasts, and observations.

information. Map layers containing different information,
e.g. flood probabilities for different flood severities, precipi-
tation forecasts, and seasonal outlooks, can be activated and
the user can also choose to overlay other information such
as land use, urban areas, or flood hazard maps. The inter-
face consists of three principal modules: MapServer, GloFAS
Web Map Service Time, and the Forecast Viewer. These are
outlined below.

2.4.1 MapServer

MapServer (Open Source Geospatial Foundation, 2016) is an
open source development environment for building spatially
enabled internet applications developed by the University of
Minnesota. MapServer has built-in functionality to support
industry standard data formats and spatial databases, which
is significant to this project, and the support of popular Open
Geospatial Consortium (OGC) standards including WMS. In
order to exploit the potential of asynchronous data transfer
between server and client, the GloFAS raster data have to be
divided into a grid of adequate dimensions and an optimal
scale sequence.

2.4.2 GloFAS Web Map Service Time

The OpenGIS Web Map Service (WMS) is a standard pro-
tocol for serving geo-referenced map images over the inter-
net. A web map service time (WMS-T) is a web service that
produces maps in several raster formats or in vector format
that may come simultaneously from multiple remote and het-
erogeneous sources. A WMS server can provide support to
temporal requests (WMS-T) by providing a TIME parameter
with a time value in the request.

The WMS specification (OGC, 2015) describes three
HTTP requests; GetCapabilities, GetMap, and GetFeature-
Info. GetCapabilities returns an XML document describing
the map layers available and the server’s capabilities (i.e.
the image formats, projections, and geographic bounds of
the server). GetMap returns a raster map image. The request
arguments, such as the layer ID and image format, should
match those listed as available in the GetCapabilities return
document. GetFeatureInfo is optional and is designed to pro-
vide WMS clients with more information about features in
the map images that were returned by earlier GetMap re-
quests. The response should contain data relating to the fea-
tures nearest to an image coordinate specified in the GetFea-
tureInfo request. The structure of the data returned is not de-
fined in the specification and is left up to the WMS server
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Figure 3. The GloFAS-Seasonal ecFlow suite. The inset image shows the sub-tasks within the Lisflood task for 1 of the 51 ensemble
members. Colours indicate the status of each task. Yellow: complete, green: active, orange: suspended, pale blue: waiting, turquoise (not
shown): queued, and red (not shown): aborted or failed. Grey boxes indicate dependencies; for example, “lisflood= complete” indicates that
the Lisflood task and all Lisflood sub-tasks must have successfully completed in order for the average task to run.

implementation. The GloFAS WMS-T (GloFAS, 2018b) can
be freely used, allowing access to the GloFAS layers in any
GIS environment, such as QGIS (QGIS Development Team,
2017) or ArcMAP (Environmental Systems Research Insti-
tute, 2018). The user manual for the GloFAS WMS-T is
available via the GloFAS website (GloFAS, 2018a).

2.4.3 Forecast Viewer

The GloFAS Forecast Viewer is based on the model view
controller (MVC) architectural pattern used in software en-
gineering. The pattern isolates “domain logic” (the applica-

tion logic for the user) from input and presentation (user in-
terface, UI), permitting the independent development, test-
ing, and maintenance of each. A fundamental part of this is
the AJAX (asynchronous JavaScript and XML) technology
used to enhance user-friendly interfaces for web mapping
applications. AJAX technologies have a number of benefits;
the essential one is removing the need to reload and refresh
the whole page after every event. Careful application design
and component selection results in a measurably smaller web
server load in geodata rendering and publishing, as there is
no need to link and send the whole html document, just the
relevant part that needs to be changed.
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GloFAS uses OpenLayers (OpenLayers, 2018) as a WMS
client. OpenLayers is a JavaScript-based web mapping
toolkit designed to make it easy to put a dynamic map on
any web page. It does not depend on the server technology
and can display a set of vector data, such as points, with
aerial photographs as backdrop maps from different sources.
Closely coupled to the map widget is a layer manager that
controls which layers are displayed with facilities for adding,
removing, and modifying layers. The new layers associated
with GloFAS-Seasonal are described in the following sec-
tion.

3 Forecast products

The GloFAS seasonal outlook is provided as three new
forecast layers in the GloFAS Forecast Viewer: the basin
overview, river network, and reporting point layers. Each of
the three layers represents a different forecast product de-
scribed in the following sections. Information on each of the
layers is also provided for end users of the forecasts under the
dedicated “Seasonal Outlook” page of the GloFAS website.

3.1 Basin overview layer

The first GloFAS seasonal outlook product is designed to
provide a quick global overview of areas that are likely to
experience unusually high or low river flow over the com-
ing 4 months. The “basin overview” layer displays a map of
306 major world river basins colour coded according to the
maximum probability of exceeding the high (blue) or low
(orange) flow thresholds (the 80th and 20th percentiles of
the reference climatology, respectively) during the 4-month
forecast horizon. This value is calculated for each river basin
by taking the average of the maximum exceedance proba-
bilities at each grid cell within the basin (using only river
pixels with an upstream area > 1500 km2). The three differ-
ent shades of orange–blue indicate the probability: dark (>
90 %), medium (75 %–90 %), and light (50 %–75 %). Basins
that remain white are those in which the probability of un-
usually high or low flow does not exceed 50 % during the
4-month forecast horizon. An example is shown in Fig. 4.

As mentioned in Sect. 2.2.3, the Lisflood river network
is based on HydroSHEDS (Lehner et al., 2008). In order to
generate the river basins used in GloFAS-Seasonal, the corre-
sponding HydroBASINS (Lehner and Grill, 2013) data were
used. HydroBASINS consists of a suite of polygon layers de-
picting watershed boundaries at the global scale. These wa-
tersheds were manually merged using QGIS (QGIS Develop-
ment Team, 2017) to create a global polygon layer of major
river basins based on the river network used in the model.

3.2 River network layer

The second map layer provides similar information at the
sub-basin scale by colour-coding the entire model river net-

work according to the maximum exceedance probability dur-
ing the 4-month forecast horizon. This allows the user to
zoom in to their region of interest and view the forecast max-
imum exceedance probabilities in more detail. Again, only
river pixels with an upstream area > 1500 km2 are shown.
The same colour scheme is used for both the basin overview
and river network layers, with blue indicating high flow (ex-
ceeding the 80th percentile), orange low flow (falling be-
low the 20th percentile), and darker colours indicating higher
probabilities. In the river network layer, additional colours
also represent areas where the forecast does not exceed 50 %
probability of exceeding either the high or low flow thresh-
old (light grey) and where the river pixel lies in a climatolog-
ically arid area such that the forecast probability cannot be
defined (darker grey–brown). Examples of the river network
layer can be seen in both Fig. 4 (globally) and Fig. 5 (zoomed
in).

3.3 Reporting points layer

In addition to the two summary map layers, reporting points
are provided at both static and dynamic locations throughout
the global river network, providing additional forecast infor-
mation: an ensemble hydrograph and a persistence diagram.

Static points originally consisted of a selection of gauged
river stations included in the Global Runoff Data Centre
(GRDC; BfG, 2017); this set of points has since been ex-
panded to further include points at locations of particular in-
terest to GloFAS partners. There are now ∼ 2200 static re-
porting points in the GloFAS interface.

Dynamic points are generated to provide the additional
forecast information throughout the global river network, in-
cluding river reaches for which there are no static points.
These points are obtained for every new forecast based on a
set of selection criteria adapted from the GloFAS flood fore-
cast dynamic point selection criteria (Alfieri et al., 2013).

– The maximum probability of high (low) river flow (ex-
ceeding or falling below) the 80th (20th) percentile of
the reference climatology) during the 4-month forecast
horizon must be ≥ 50 % for at least five contiguous pix-
els of the river network.

– The upstream area of the selected point must be ≥
4000 km2.

– Dynamic reporting points are generated starting from
the most downstream river pixel complying with the
previous two selection criteria. A new reporting point
is then generated every 300 km upstream along the river
network, unless a static reporting point already exists
within a short distance of the new dynamic point or the
forecasts further upstream no longer comply with the
previous two criteria.

Reporting points are displayed as black circles in the “report-
ing points” seasonal outlook layer. An example is shown in
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Figure 4. Example screenshot of the seasonal outlook layers in the GloFAS web interface. Shown here are both the “basin overview” layer
and “river network” layer, both indicating the maximum probability of unusually high (blue) or low (orange) river flow during the 4-month
forecast horizon. The darker the colour, the higher the probability: darkest shading indicates > 90 % probability, medium shading indicates
75 %–90 % probability, and light shading indicates 50 %–75 % probability. A white basin or light grey river pixel indicates that the forecast
does not exceed 50 % probability of high or low flow during the forecast horizon. Legends providing this information are available for each
layer by clicking on the green “i” next to the layer toggle (shown at the bottom left in this example).

Fig. 5. Clicking on a reporting point brings up a new window
containing a hydrograph and persistence diagram alongside
some basic information about the location, such as the lat-
itude and longitude, and the upstream area of the point in
the model river network. The number of dynamic reporting
points can vary from one forecast to the next due to the cri-
teria applied; for example, the March 2018 forecast included
∼ 1600 dynamic points in addition to the static points, and
thus ∼ 3800 reporting points were available globally.

The ensemble hydrographs (also shown in Fig. 5) display
a fan plot of the ensemble forecast of weekly averaged river
flow out to 4 months, indicating the spread of the forecast and
associated probabilities. Also shown are thresholds based on
the reference climatology: the median and the 80th and 20th
percentiles. These thresholds are displayed as a 3-week mov-
ing average of the weekly averaged river flow for the given
threshold for the same months of the climatology as that of
the forecast (i.e. a forecast for J–F–M–A also displays thresh-
olds based on the reference climatology for J–F–M–A). This
allows for a comparison of the forecast to typical and extreme
conditions for the time of year.

Persistence diagrams (see Fig. 5) show the weekly prob-
ability of exceeding the high and low flow thresholds for
the current forecast (bottom row) and previous three fore-
casts colour coded to match the probabilities indicated in the

map layers. These diagrams are provided in order to highlight
the evolution of the forecast, which can indicate whether the
forecast is progressing consistently or whether behaviour is
variable from month to month.

4 Forecast evaluation

In this section, the GloFAS-Seasonal reforecasts are evalu-
ated using historical river flow observations. Benchmarking
a forecasting system is important to evaluate and understand
the value of the system and in order to communicate the skill
of the forecasts to end users (Pappenberger et al., 2015). This
evaluation is designed to measure the ability of the forecasts
to predict the correct category of an “event”, i.e. the abil-
ity of the forecast to predict that weekly averaged river flow
will fall in the upper 80th or lower 20th percentile of cli-
matology using a climatology of historical observations as a
benchmark. This can be referred to as the potential usefulness
of the forecasts and is of particular importance for decision-
making purposes (Arnal et al., 2018). Another key aspect of
probabilistic forecasts to consider is their reliability, which
indicates the agreement between forecast probabilities and
the observed frequency of events.
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Figure 5. Example of the “reporting points” GloFAS seasonal outlook layer in the web interface (a). Black circles indicate the reporting
points, which provide the ensemble hydrograph (b) and persistence diagrams for both low flow (c) and high flow (d). Also shown is an
example section of the “river network” seasonal outlook layer indicating the maximum probability of high (blue) or low (orange) river flow
during the 4-month forecast horizon. The darker the colour, the higher the probability.

The potential usefulness is assessed using the relative op-
erating characteristic (ROC) curve, which is based on ra-
tios of the proportion of events (the probability of detection,
POD) and non-events (the false alarm rate, FAR) for which
warnings were provided (Mason and Graham, 1999); in this
case warnings are treated as forecasts of river flow exceeding
the 80th or falling below the 20th percentile of the reference
climatology (see Sect. 2.2.4). These ratios allow for the esti-
mation of the probability that an event will be predicted.

For each week of the forecast (out to 16 weeks, corre-
sponding to the forecasts provided via the interface; for ex-
ample, the hydrograph shown in Fig. 5), the POD (Eq. 1) and
FAR (Eq. 2) are calculated for both the 80th and 20th per-
centile events at each observation station:

POD=
hits

hits+misses
, (1)

FAR=
false alarms

hits+ false alarms
, (2)

where a hit is defined when the forecast correctly exceeded
(fell below) the 80th (20th) percentile of the reference cli-
matology during the same week that the observed river flow
exceeded (fell below) the 80th (20th) percentile of the obser-
vations at that station. It follows that a miss is defined when
an event was observed but the forecast did not exceed the
threshold, and a false alarm when the forecast exceeded the
threshold but no event was observed. From these, the area un-

der the ROC curve (AROC) is calculated, again for both the
80th and 20th percentile events. The AROC (0≤AROC≤ 1,

where 1 is perfect) indicates the skill of the forecasts com-
pared to the long-term average climatology (which has an
AROC of 0.5) and is used here to evaluate the potential use-
fulness of the forecasts. The maximum lead time at which
forecasts are more skilful than climatology (AROC > 0.5) is
identified; a forecast with an AROC < 0.5 would be less skil-
ful than climatology and thus not useful.

The reliability of the forecasts is assessed using attributes
diagrams, which show the relationship between the forecast
probability and the observed frequency of the events. While
the ROC measures the ability of a forecasting system to pre-
dict the correct category of an event, the reliability assesses
how closely the forecast probabilities correspond to the ac-
tual chance of observing the event. As such, these evalua-
tion metrics are useful to consider together. As with the ROC
calculations, the reliability is assessed for each week of the
forecast (out to 16 weeks) and for both the 80th and 20th per-
centile events. The range of forecast probabilities is divided
into 10 bins (0 %–10 %, 10 %–20 %, etc.), and the forecast
probability is plotted against the frequency at which an event
was observed for forecasts in each probability bin. Perfect
reliability is exhibited when the forecast probability and the
observed frequency are equal; for example, if a forecast pre-
dicts that an event will occur with a probability of 60 %, then
the event should occur on 60 % of the occasions that this fore-
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cast was made. Attributes diagrams can also be used to assess
the sharpness and resolution of the forecasts. Forecasts that
do not discriminate between events and non-events are said
to have no resolution (a forecast of climatology would have
no resolution), and forecasts which are capable of predicting
events with probabilities that differ from the observed fre-
quency, such as forecasts of high or 0 probability, are said to
have sharpness.

The GloFAS-Seasonal reforecasts (of which there are 216
covering 18 years, as described in Sect. 2.2.4 and Fig. 2)
are compared to river flow observations that have been made
available to GloFAS, covering 17 years of the study period up
to the end of 2015 when the data were collated (see Fig. 2).
To ensure a large enough sample size for this analysis, along-
side the best possible spatial coverage, the following criteria
are applied to the data.

– The weekly river flow data record available for each sta-
tion must contain no more than 53 % (9 years) missing
data. The high and low flow thresholds (the 80th and
20th percentile, respectively) are calculated using the
observations for each station and for each week across
the 17 years of data, so a sample size of 17 is the maxi-
mum possible. A threshold of (up to) 53 % missing data
allows for a minimum sample size of eight. Selecting
a smaller threshold reduced the number of stations and
the spatial coverage across the globe significantly. The
percentage of missing data is calculated at each station
and for each week of the dataset independently, and as
such the number of stations used can vary slightly with
time.

– The upstream area of the corresponding grid point in the
model river network must be at least 1500 km2.

These criteria allow for the use of 1140±14 stations globally.
While the dataset contains 6122 stations, just 1664 of these
contain data during the 17-year period, and none have the
full 17 years of data available. Data from human-influenced
rivers have not been removed, as in this study we are inter-
ested in identifying the ability of the forecasting system in its
current state to predict observed events rather than the ability
of the hydrological model to represent natural flow.

4.1 Potential usefulness

In order to gain an overview of the potential usefulness of
the GloFAS-Seasonal forecasts across the globe, we map the
maximum lead time at which the forecasts are more skil-
ful than climatology (i.e. AROC > 0.5) at each observation
station averaged across all forecast months. These results
are shown in Fig. 6, and it is clear that forecasts of both
high and low flow events are more skilful than climatology
across much of the globe, with potentially useful forecasts
at many stations out to 4 months ahead. However, there are
regions where the forecasts are (on average across all fore-

cast months) not useful (i.e. AROC < 0.5), such as the west-
ern USA and Canada (excluding coastlines), much of Africa,
and additionally across parts of Europe for low flow events.
As forecasts with an AROC larger than but close to 0.5 could
be deemed as only marginally more skilful than climatology,
we apply a skill buffer, setting the threshold to AROC > 0.6
for a forecast to be deemed as potentially useful. These re-
sults are mapped in Fig. 7 and clearly indicate the reduction
in the lead time at which forecasts are potentially useful (for
both high and low flow events) at many stations, implying
that in some locations, forecasts beyond the first 1–2 months
are only marginally more skilful than climatology. There
are, however, stations in some rivers with an AROC > 0.6
out to 4 months of lead time and many locations across the
globe that still indicate that forecasts are potentially useful
1–2 months ahead for both high and low flow events.

These results can be further broken down by season, in-
dicating whether the forecasts are more potentially useful
at certain times of the year. Maps showing the maximum
lead time at which AROC > 0.6 for each season (for fore-
casts started during the season; e.g. DJF indicates the aver-
age results for forecasts produced on 1 December, 1 January,
and 1 February) are provided for high and low flow events in
Figs. S1 and S2 in the Supplement, respectively.

The following paragraphs provide an overview of these re-
sults for each continent; for further detail please refer to the
maps.

South America. For high flow events, forecasts for the
Amazon basin in DJF and MAM are potentially useful out
to longer lead times (up to 3–4 months) and at more stations
than in JJA and SON, with similar results in MAM for low
flow events. In contrast, further south, forecasts are most po-
tentially useful JJA and SON up to 4 months ahead. In the
more mountainous regions of western South America, fore-
casts in JJA and SON are generally less skilful than climatol-
ogy for high and low flow events. In the north-west, however,
for some stations, forecasts started in DJF and MAM are po-
tentially useful up to 3 months ahead.

North America. In eastern North America, JJA and SON
forecasts are most potentially useful, with more stations in-
dicating an AROC > 0.6 out to 2–3 months ahead. However,
during all seasons there are several stations in the east show-
ing skill out to varying lead times. Much of the western half
of the continent (excluding coastal areas) sees forecasts that
are less skilful than climatology during all seasons, although
some stations do indicate skill up to 4 months ahead for high
flow, for forecasts started in MAM and JJA, and for low flow
in MAM. At many coastal stations in the west, forecasts of
high flow events started in DJF, MAM, and JJA indicate skill
out to 3–4 months and out to ∼ 6 weeks in SON.

Europe. Forecasts for European rivers generally perform
best for high flow events in SON and DJF, with the exception
of some larger rivers in eastern Europe, for which the fore-
casts are more potentially useful in JJA and SON. In MAM
and JJA, the number of stations indicating no skill is gener-
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Figure 6. Maximum forecast lead time (target week, averaged across all months) at which the area under the ROC curve (AROC) is greater
than 0.5 (a) for high flow events (flow exceeding the 80th percentile of climatology) and (b) low flow events (flow below the 20th percentile
of climatology) at each observation station. This is used to indicate the maximum lead time at which forecasts are more skilful than the
long-term average. Dot size corresponds to the upstream area of the location – thus larger dots represent larger rivers and vice versa. Grey
dots indicate that (on average, across all months) forecasts are less skilful than climatology at all lead times.

ally higher. In contrast, forecasts for low flow events are less
skilful than climatology across much of Europe. Particularly
in north-east Europe and Scandinavia, forecasts produced in
the summer months of JJA have an AROC < 0.6 at all sta-

tions, with only a few stations indicating any skill in other
seasons, whereas in central and south-east Europe forecasts
of low flow events are most skilful in JJA and SON out to 3–
4 months ahead in the larger rivers. These results are similar
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Figure 7. Maximum forecast lead time (target week, averaged across all months) at which the area under the ROC curve (AROC) is greater
than 0.6 for (a) high flow events (flow exceeding the 80th percentile of climatology) and (b) low flow events (flow below the 20th percentile
of climatology) at each observation station. This is used to indicate the maximum lead time at which forecasts are deemed skilful. Dot size
corresponds to the upstream area of the location – thus larger dots represent larger rivers and vice versa. Grey dots indicate that (on average,
across all months) forecasts are less skilful than climatology at all lead times. Maps for each season are provided in the Supplement.

to those of Arnal et al. (2018) for the potential usefulness of
the EFAS seasonal outlook.

Asia. Although the number of available stations is very
limited, the few stations available in South East Asia indicate

that the forecasts are potentially useful out to 3–4 months
ahead, particularly for forecasts started in DJF and MAM
preceding the start of the wet season. For low flow events,
this skill extends into JJA, whereas forecasts made in SON
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towards the end of the wet season tend to be less skilful than
climatology.

Australia and New Zealand. Forecasts are most skilful out
to longer lead times in the Murray–Darling river basin in the
south-east, in particular for forecasts started in JJA and SON
during the Southern Hemisphere winter and spring. In north-
ern Australia, forecasts started in DJF and MAM for high
flow events and MAM and JJA for low flow events are poten-
tially useful out to 3–4 months ahead. This corresponds with
the assessment of the skill of the Bayesian joint probability
modelling approach for sub-seasonal to seasonal streamflow
forecasting in Australia by Zhao et al. (2016), who found
that forecasts in northern Australian catchments tend to be
more skilful for the dry season (May to October) than the wet
season (December to March). At the three stations in New
Zealand, forecasts are only skilful for high flow events dur-
ing the first month of lead time in DJF and MAM; however,
for low flow events forecasts made in SON for the southern
stations are potentially useful out to 4 months ahead.

Africa. While the spatial distribution of stations is limited,
for high flow events forecasts are seen to be potentially useful
at some of the stations in eastern Africa, particularly in SON
and to a lesser extent in DJF. In southern Africa, there is skill
in DJF and MAM, although the maximum lead time varies
significantly from station to station. For low flow, there is lit-
tle variation between the seasons; forecasts are generally less
skilful than climatology across the continent, with some sta-
tions in DJF in southern and western Africa indicating skill
in the first 1–2 months only.

4.2 Reliability

To provide an overall picture of the reliability of the GloFAS-
Seasonal forecasts, attributes diagrams are produced for fore-
casts aggregated across all observation stations globally for
both the 80th and 20th percentile events. In order to assess
geographical differences in forecast reliability, attributes di-
agrams are also produced for forecasts aggregated across the
stations within each of the major river basins used in the
GloFAS-Seasonal forecast products (see Sect. 3.1). Many of
these river basins do not contain a large enough number of
stations to produce useful attributes diagrams, and as such
the results in this section are presented for one river basin per
continent for this initial evaluation. The river basin chosen
for each continent is that which contains the largest number
of observation stations.

The globally aggregated results (Fig. 8) indicate that, in
general, the forecasts have more reliability than a forecast of
climatology, though the reliability is less than perfect. It is
important to note that the globally aggregated results shown
in Fig. 8 mask any variability between river basins. Overall,
the reliability appears to be slightly better for forecasts of
high flow events than low flow events, and for lower proba-
bilities, indicated by the steeper positive slope showing that
as the forecast probability increases, so does the verified

chance of the event. The forecasts for both high and low
flow events exhibit sharpness, although more so for high flow
events, meaning that they have the ability to forecast proba-
bilities that differ from the climatological average. This is
indicated by the histograms inset within the attributes dia-
grams in Fig. 8; a forecast with sharpness will show a range
of forecast probabilities differing from the climatological av-
erage (20 %), and a forecast with perfect sharpness will show
peaks in the forecast frequency at 0 % and 100 %. Forecasts
with no or low sharpness will show a peak in the forecast fre-
quency near the climatological average. A forecast can have
sharpness but still be unreliable. Figure 8 also suggests that in
general, GloFAS-Seasonal forecasts have a tendency to over-
predict the likelihood of an event occurring.

The following paragraphs summarise the forecast reliabil-
ity for one river basin per continent; for a map of the location
of these river basins, please refer to Fig. S3. The attributes di-
agrams for these river basins for both the 80th and 20th per-
centile events and for each season are provided in Figs. S4–
S8. Each attributes diagram displays the results for forecast
weeks 4, 8, 12, and 16, representing the reliability out to 1,
2, 3, and 4 months ahead. There are no river basins in Asia
containing enough stations to produce an attributes diagram.

South America, Tocantins River (Fig. S4). For high flow
events, forecasts for the Tocantins River indicate good relia-
bility in all seasons, particularly up to 50 % probability. Fore-
casts in the higher-probability bins tend to over-predict, and
this over-prediction worsens with lead time. In MAM and
JJA, the forecasts tend to slightly under-predict in the lower-
probability bins. The forecasts have sharpness, but it is clear
that the sample size of high-probability forecasts is limited.
There is a tendency to over-predict the likelihood of low flow
events in all seasons, but the forecasts show good reliability
for the lower-probability bins, particularly in SON and DJF.
In JJA, the resolution of the forecasts is low.

North America, Lower Mississippi River (Fig. S5). For
high flow events, the sample size of high-probability fore-
casts is small, and as such it is difficult to evaluate the relia-
bility of these forecasts. The forecasts at lower probabilities
have good reliability, particularly out to 2 months ahead in
MAM and JJA. In SON and DJF, forecasts are more reliable
at longer lead times. There is a tendency to under-predict at
low probabilities and over-predict at high probabilities. For
low flow events, the forecasts have a tendency to over-predict
in all seasons, and the resolution of the forecasts is lower than
for high flow events. At higher probabilities, forecasts of low
flow events are more reliable than climatology, but the reso-
lution is particularly low for probabilities up to 50–60 %. The
forecasts for both high and low flow events have sharpness.

Europe, River Rhône (Fig. S6). For the River Rhône, the
reliability is better than climatology at all lead times for high
flow events, although there is a lack of forecasts of higher
probabilities, particularly in MAM and JJA, as may be ex-
pected in the summer months. In SON, the reliability of fore-
casts up to 60–70 % is good at all lead times, and in DJF the
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Figure 8. Attributes diagram for forecasts of (a) low flow events (flow below the 20th percentile of climatology) and (b) high flow events
(flow exceeding the 80th percentile of climatology) aggregated across all observation stations globally. Results are shown for lead time
weeks 4, 8, 12, and 16 and indicate the reliability of the forecasts. The histograms (inset) show the frequency at which forecasts occur in each
probability bin and are used to indicate forecast sharpness. Attributes diagrams for selected river basins are provided in the Supplement.

forecasts are more reliable in the first 2 months of lead time
for most probability bins. The reliability is less good for low
flow events, but is generally better than climatology, partic-
ularly in summer (JJA). In winter (DJF), the resolution and
reliability of the forecasts is poor. For all seasons and lead
times and for both events, the forecasts have sharpness.

Australia, Murray River (Fig. S7). The attributes diagrams
for both high and low flow events indicate that forecasts are
often over-confident in this river basin, with probabilities
of 0 %–10 % for low flow events and 0 %–30 % and 90 %–
100 % for high flow events, occurring frequently. As such,
the sample size of forecasts in several of the bins is low. For
high flow events, forecasts tend to over-predict at high proba-
bilities and under-predict at low probabilities. The reliability
is very good up to ∼ 30 %, after which the sample size is
too small. For low flow events, there is a tendency to under-
predict, but based on the forecasts available, the reliability is
better than climatology at all lead times. The reliability for
low flow events is better in SON and DJF (spring and sum-
mer) than MAM and JJA (autumn and winter), and for high
flow events there is less differentiation between the seasons.

Africa, Orange River (Fig. S8). For the Orange River, fore-
casts of high flow events exhibit good reliability for lower
probabilities in SON, DJF, and MAM (spring through au-
tumn), particularly at longer lead times in SON and DJF, with
a tendency to over-predict at higher probabilities. Resolution
and reliability are poor for high flow events in JJA (winter),
with probabilities of 90 %–100 % predicted too frequently.
For low flow events, forecasts of 0 %–10 % are very frequent,
and the forecasts under-predict in all seasons, although the
reliability is better than climatology at all lead times (based

on a limited sample of forecasts for most probability bins).
Reliability for low flow events is best in DJF (summer).

4.3 Discussion

The results presented provide an initial evaluation of the po-
tential usefulness and reliability of GloFAS-Seasonal fore-
casts. For decision-making purposes, it is important to mea-
sure the ability of a forecasting system to predict the cor-
rect category of an event. As such, an event-based evaluation
of the forecasts is used to assess whether the forecasts were
able to correctly predict observed high and low river flow
events over a 17-year period and whether it is able to do so
with good reliability. The initial results are promising, indi-
cating that the forecasts are, on average, potentially useful
up to 1–2 months ahead in many rivers worldwide and up to
3–4 months ahead in some locations. The GloFAS-Seasonal
forecasts have sharpness, i.e. they are able to predict forecasts
with probabilities that differ from climatology, and overall
have better reliability than a forecast of climatology, but with
a tendency to over-predict at higher probabilities. It is also
clear that there is a frequency bias in the reliability results,
as often there is a small sample of high-probability forecasts.
Typically, the reliability is seen to be better when there is a
higher forecast frequency on which to base the results. As
would be expected, the potential usefulness and reliability of
the forecasts vary by region, season, and forecast lead time.

Considering the evaluation results by season allows for
further analysis of the times of year in which the forecasts
are potentially useful and/or reliable. For example, in south-
east Australia, forecasts are seen to be potentially useful up to
4 months ahead in JJA and SON, but for forecasts produced
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in DJF the skill only extends to 1 month ahead, and forecasts
are less skilful than climatology at several of the stations in
MAM. In many rivers across the globe, it is the case that fore-
casts are potentially useful in some seasons, but not in others,
and may be more reliable in certain seasons than others. As
such, the maps provided in Figs. S1 and S2 are intended to
highlight where and when the forecasts are likely to be use-
ful, information that is key in terms of decision-making.

It is clear that there are regions and seasons in which the
forecasts are less skilful than climatology and do not have
good reliability, and thus in these rivers it would be more
useful to use a long-term average climatology than seasonal
hydro-meteorological forecasts of river flow. This lack of
skill could be due to several factors, such as certain hy-
drological regimes that may not be well-represented in the
hydrological model or may be difficult to forecast at these
lead times (for example, snow-dominated catchments or re-
gions where convective storms produce most of the rainfall
in some seasons), poor skill of the meteorological forecast
input, poor initial conditions from the ERA5-R reanalysis,
extensive management of rivers that cannot be represented
by the current model, or the lack of model calibration. While
this initial evaluation is designed to provide an overview of
whether the forecasts are potentially useful and reliable in
predicting high and low flow events, more extensive anal-
ysis is required to diagnose the sources of predictability in
the forecasts and the potential causes of poor skill. Addition-
ally, it is evident that observations of river flow, particularly
covering the reforecast period, are both spatially and tempo-
rally limited across large areas of the globe. A more extensive
analysis should make use of the globally consistent ERA5-R
river flow reanalysis as a benchmark in order to fully assess
the forecast skill worldwide, including in regions where no
observations are available.

The verification metrics used also require that a high or
low flow event is predicted with the correct timing in the
same week as that in which it occurred. This is asking a
lot of a seasonal forecasting system and for many applica-
tions, such as water resources and reservoir management,
a forecast of the exact week in which an event is expected
at a lead time of several months ahead may not be neces-
sary. That such a system shows real skill despite this being
a tough test for the model and is able to successfully predict
observed high or low river flow in a specific week, several
weeks or months ahead, provides optimism for the future of
global-scale seasonal hydro-meteorological forecasting. Fur-
ther evaluation should aim to assess the skill of the forecasts
with a more relaxed constraint on the event timing and also
make use of alternative skill measures to cover different as-
pects of the forecast skill, such as the spread and bias of the
forecasts. It will also be important to assess whether the use
of weekly averaged river flow is the most appropriate way to
display the forecasts. While this is commonly used for appli-
cations such as drought early awareness and water resources
management, there may be other aspects of decision-making,

such as flood forecasting, for which other measures may be
more appropriate, for example daily averages or floodiness
(Stephens et al., 2015).

Future development of GloFAS-Seasonal will aim to ad-
dress these evaluation results and improve the skill and re-
liability of the current forecasts; it will also aim to over-
come some of the grand challenges in operational hydrolog-
ical forecasting, such as seamless forecasting and the use of
data assimilation. Seamless forecasting will be key in the fu-
ture development of GloFAS; the use of two different meteo-
rological forecast inputs for the medium-range and seasonal
versions of the model means that discrepancies can occur be-
tween the two timescales, thus producing confusing and in-
consistent forecast information for users. Additionally, the
use of river flow observations could lead to significant im-
provements in skill through calibration of the model using
historical observations and assimilation of real-time data to
adjust the forecasts. This remains a grand challenge due to
the lack of openly available river flow data, particularly in
real time.

5 Conclusions

In this paper, the development and implementation of a
global-scale operational seasonal hydro-meteorological fore-
casting system, GloFAS-Seasonal, was presented, and an
event-based forecast evaluation was carried out using two
different but complementary verification metrics to assess the
capability of the forecasts to predict high and low river flow
events.

GloFAS-Seasonal provides forecasts of high or low river
flow out to 4 months ahead for the global river network
through three new forecast product layers via the openly
available GloFAS web interface at http://www.globalfloods.
eu (last access: 16 August 2018). Initial evaluation results are
promising, indicating that in many rivers, forecasts are both
potentially useful, i.e. more skilful than a long-term average
climatology out to several months ahead in some cases, and
overall more reliable than a forecast of climatology. Forecast
skill and reliability vary significantly by region and by sea-
son.

The initial evaluation, however, also indicates a tendency
of the forecasts to over-predict in general, and in some re-
gions forecasts are currently less skilful than climatology; fu-
ture development of the system will aim to improve the fore-
cast skill and reliability with a view to providing potentially
useful forecasts across the globe. Development of GloFAS-
Seasonal will continue based on results of the forecast eval-
uation and on feedback from GloFAS partners and users
worldwide in order to provide a forecast product that remains
state of the art in hydro-meteorological forecasting and caters
to the needs of its users. Future versions are likely to address
some of the grand challenges in hydro-meteorological fore-
casting in order to improve forecast skill, such as data assim-
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ilation, and will also include more features, such as flexible
percentile thresholds and indication of the forecast skill via
the interface. A further grand challenge that is important in
terms of global-scale hydro-meteorological forecasting, and
indeed for the development of GloFAS, is the need for more
observed data (Emerton et al., 2016), which is essential not
only for providing initial conditions to force the models, but
also for evaluation of the forecasts and continuous improve-
ment of forecast accuracy.

While such a forecasting system requires extensive com-
puting resources, the potential for use in decision-making
across a range of water-related sectors, and the promising re-
sults of the initial evaluation, suggest that it is a worthwhile
use of time and resources to develop such global-scale sys-
tems. Recent papers have highlighted the fact that seasonal
forecasts of precipitation are not necessarily a good indica-
tor of potential floodiness and called for investment in better
forecasts of seasonal flood risk (Coughlan De Perez et al.,
2017; Stephens et al., 2015). Coughlan de Perez et al. (2017)
state that “ultimately, the most informative forecasts of flood
hazard at the seasonal scale could be seasonal streamflow
forecasts using hydrological models” and that better seasonal
forecasts of flood risk could be hugely beneficial for disaster
preparedness.

GloFAS-Seasonal represents a first attempt at overcoming
the challenges of producing and providing openly available
seasonal hydro-meteorological forecast products, which are
key for organisations working at the global scale and for re-
gions where no other forecasting system exists. We provide,
for the first time, seasonal forecasts of hydrological vari-
ables for the global river network by driving a hydrologi-
cal model with seasonal meteorological forecasts. GloFAS-
Seasonal forecasts could be used in addition to other fore-
cast products, such as seasonal rainfall forecasts and short-
range forecasts from national hydro-meteorological centres
across the globe, to provide useful added information for
many water-related applications from water resources man-
agement and agriculture to disaster risk reduction.

Code availability. The ECMWF IFS source code is available sub-
ject to a licence agreement, and as such access is available to the
ECMWF member-state weather services and other approved part-
ners. The IFS code is also available for educational and academic
purposes as part of the OpenIFS project (ECMWF, 2011, 2018a),
with full forecast capabilities and including the HTESSEL land
surface scheme, but without modules for data assimilation. Simi-
larly, the GloFAS river routing component source code is not openly
available; however, the “forecast product” code (prior to implemen-
tation in ecFlow) that was newly developed for GloFAS-Seasonal
and used for a number of tasks such as computing exceedance prob-
abilities and producing the graphics for the interface is provided in
the Supplement.

Data availability. ECMWF’s ERA5 reanalysis and SEAS5 refore-
casts are available through the Copernicus Climate Data Store
(Copernicus, 2018a). The ERA5-R river flow reanalysis and the
GloFAS-Seasonal reforecasts (daily data) are currently available
from the authors on request and will be made available through
ECMWF’s data repository in due course. The majority of the ob-
served river flow data were provided by the Global Runoff Data
Centre (GRDC; BfG, 2017). These data are freely available from
https://www.bafg.de/ (last access: 16 August 2018). Additional data
were provided by the Russian State Hydrological Institute (SHI,
2018), the European Flood Awareness System (EFAS, 2017), So-
malia Water and Land Information Management (SWALIM, 2018),
South Africa Department for Water and Sanitation (DWA, 2018),
Colombia Institute of Hydrology, Meteorology and Environmental
Studies (IDEAM, 2014), Nicaragua Institute of Earth Studies (IN-
ETER, 2016), Dominican Republic National Institute of Hydraulic
Resources (INDRHI, 2017), Brazil National Centre for Monitor-
ing and Forecasting of Natural Hazards (Cemaden, 2017), Environ-
ment Canada Water Office (Environment Canada, 2014), Nepal De-
partment of Hydrology and Meteorology (DHM, 2017), Red Cross
Red Crescent Climate Centre (RCCC, 2018), Chile General Water
Directorate (DGA, 2018), and the Historical Database on Floods
(BDHI, 2018).

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-11-3327-2018-
supplement.
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ABSTRACT

In the last decade operational probabilistic ensemble flood forecasts have become common in sup-

porting decision-making processes leading to risk reduction. Ensemble forecasts can assess uncertainty,

but they are limited to the uncertainty in a specific modeling system.Many of the current operational flood

prediction systems use a multimodel approach to better represent the uncertainty arising from insufficient

model structure. This study presents a multimodel approach to building a global flood prediction system

using multiple atmospheric reanalysis datasets for river initial conditions and multiple TIGGE forcing

inputs to the ECMWF land surface model. A sensitivity study is carried out to clarify the effect of using

archive ensemble meteorological predictions and uncoupled land surface models. The probabilistic dis-

charge forecasts derived from the different atmospheric models are compared with those from the

multimodel combination. The potential for further improving forecast skill by bias correction and

Bayesian model averaging is examined. The results show that the impact of the different TIGGE input

variables in the HTESSEL/Catchment-Based Macroscale Floodplain model (CaMa-Flood) setup is

rather limited other than for precipitation. This provides a sufficient basis for evaluation of the multi-

model discharge predictions. The results also highlight that the three applied reanalysis datasets have

different error characteristics that allow for large potential gains with a multimodel combination. It is

shown that large improvements to the forecast performance for all models can be achieved through ap-

propriate statistical postprocessing (bias and spread correction). A simple multimodel combination

generally improves the forecasts, while a more advanced combination using Bayesian model averaging

provides further benefits.

1. Introduction

Operational probabilistic ensemble flood forecasts

have become more common in the last decade (Cloke

and Pappenberger 2009; Demargne et al. 2014; Olsson

and Lindström 2008). Ensemble forecasts are a good

way of assessing forecast uncertainty, but they are

limited to the uncertainty captured by a specific

modeling system. A multimodel approach can address

this shortcoming and provide a more complete rep-

resentation of the uncertainty in the model structure,

also potentially reducing the errors (Krishnamurti

et al. 1999).

‘‘Multimodel’’ can refer to systems using multiple

meteorological models, hydrological models, or both

(Velázquez et al. 2011). According to Emerton et al.

(2016), among the many regional-scale operational hy-

drological ensemble prediction systems across the globe,

at present there are six large-scale (continental and

global) models: four that run at continental scale over

Europe, Australia, and the United States and two that

are available globally. The U.S. Hydrologic Ensemble

Forecast Service (HEFS), run by the National Weather

Service (NWS; Demargne et al. 2014), and the Global

Flood Forecasting Information System (GLOFFIS), a
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recent development at Deltares in the Netherlands, are

examples of systems using different hydrological models

as well as multiple meteorological inputs. The European

Flood Awareness System (EFAS) developed by the

Joint Research Centre (JRC) of the European Com-

mission and ECMWF operates using a single hydro-

logical model with multimodel meteorological input

(Thielen et al. 2009). Finally, the European Hydrologi-

cal Predictions for the Environment (E-HYPE) Water

in Europe Today (WET) model of the Swedish Meteo-

rological and Hydrological Institute (SMHI; Donnelly

et al. 2015), the Australian Flood Forecasting and

Warning Service, and the Global Flood Awareness

System (GloFAS; Alfieri et al. 2013), running in col-

laboration between ECMWF and JRC, all use one main

hydrological model and one meteorological model

input.

While the multimodel approach has traditionally in-

volved the use of multiple forcing inputs and hydrolog-

ical models to generate discharge forecasts, it also allows

for consideration of multiple initial conditions. In keep-

ing with GloFAS, this paper uses atmospheric reanalysis

data to generate the initial conditions of the land surface

components of the forecasting system; therefore, a

multimodel approach based on three reanalysis datasets

is trialed.

The Observing System Research and Predictability

Experiment (THORPEX) Interactive Grand Global

Ensemble (TIGGE; Bougeault et al. 2010) archive is an

invaluable source of multimodel meteorological forc-

ing data. The archive has attracted attention among

hydrological forecasters and is already being exten-

sively used in hydrological applications. The first pub-

lished example of a hydrometeorological forecasting

application was by Pappenberger et al. (2008). In that

paper, the forecasts of nine TIGGE centers were used

within the setting of EFAS for a case study of a flood

event in Romania in October 2007 and showed that the

lead time of flood warnings could be improved by up to

4 days through the use of multiple forecasting models

rather than a single model. This study and other sub-

sequent studies using TIGGE multimodel data (e.g.,

He et al. 2009, 2010; Bao and Zhao 2012) have in-

dicated that combining different models not only in-

creases the skill, but also the lead time at which

warnings could be issued. He et al. (2009) highlighted

this and further showed that individual systems of the

multimodel forecast have systematic errors in time

and space that would require temporal and spatial

postprocessing. Such postprocessing should carefully

maintain spatial, temporal, and intervariable correla-

tions; otherwise, they lead to deteriorating hydrologi-

cal forecast skill.

The scientific literature contains numerous studies on

methods that can lead to significant gain in forecast skill

by combining and postprocessing different forecast

systems. Statistical ensemble postprocessing techniques

target the generation of sharp and reliable probabilistic

forecasts from ensemble outputs. Hagedorn et al. (2012)

showed, based on TIGGE, that by considering an equal-

weight multimodel approach, a selection of best NWP

models might be needed to gain skill on the best-

performing single model. In addition to this, the cali-

bration of the best single model using a reforecast

dataset can lead to comparable or even superior quality

to the multimodel prediction. Gneiting and Katzfuss

(2014) focus on various methodologies that require

weighting of the different contributing forecasts to op-

timize model error corrections. They recommend the

application of well-established techniques in the oper-

ational environment such as the nonhomogeneous re-

gression or Bayesian model averaging (BMA). The

BMA method generates calibrated and sharp probabil-

ity density functions (PDFs) from ensemble forecasts

(Raftery et al. 2005), where the predictive PDF is a

weighted average of the PDFs centered on the bias-

corrected forecasts. The weights reflect the relative skill

of the individual members over a training period. The

BMA has been widely used and proved to be beneficial

in hydrological ensemble systems (e.g., Ajami et al.

2007; Cane et al. 2013; Dong et al. 2013; Liang et al. 2013;

Todini 2008; Vrugt and Robinson 2007).

Previous studies have used hydrological models,

rather than land surface models, to analyze the benefits

of multimodel forecasting and have focused on indi-

vidual catchments. The potential of multimodel fore-

casts at the regional or continental scale shown in

previous studies provides the motivation for building a

global multimodel hydrometeorological forecasting

system.

In this study we present our experiences in building

a multimodel hydrometeorological forecasting system.

Global ensemble discharge forecasts with a 10-day hori-

zon are generated using the ECMWF land surface model

and a river-routing model. The multimodel approach

arises from the use of meteorological forecasts from four

models in the TIGGE archive and the derivation of river

initial conditions using three global reanalysis datasets.

Themain focus of our study is the quality of the discharge

forecasts derived from the TIGGE data. We analyze the

Hydrology Tiled ECMWF Scheme of Surface Exchanges

over Land (HTESSEL)/Catchment-Based Macroscale

Floodplain model (CaMa-Flood) setup and the scope

for error reduction by applying the multimodel approach

and different postprocessing methods on the forecast

data. Three sets of experiments are undertaken to test
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(i) the sensitivity of the forecasting system to the input

variables, (ii) the potential improvements in forecasting

historical discharge that can be achieved by a combina-

tion of different reanalysis datasets, and (iii) the use of

bias correction and model combination to improve the

predictive distribution of the forecasts.

In section 2 the datasets, models, and methodology

used throughout the paper are described. Section 3

summarizes the discharge experiments we produced and

analyzed. In section 4, we provide the results, while

section 5 gives conclusions to the paper.

2. System description and datasets

a. HTESSEL land surface model

The hydrological component of this study was the

HTESSEL (Balsamo et al. 2009, 2011) land surface

model. The HTESSEL scheme follows a mosaic (or

tiling) approach where the grid boxes are divided into

patches (or tiles), with up to six fractions over land

(bare ground, low and high vegetation, intercepted

water, and shaded and exposed snow) and two extra

tiles over water (open and frozen water) exchanging

energy and water with the atmosphere. The model is

part of the Integrated Forecast System (IFS) at

ECMWF and is used in coupled atmosphere–surface

mode on time ranges from medium range to seasonal

forecasts. In addition, the model provides a research

test bed for applications where the land surface model

can run in a stand-alone mode. In this so-called ‘‘off-

line’’ version the model is forced with near-surface

meteorological input (temperature, specific humidity,

wind speed, and surface pressure), radiative fluxes

(downward solar and thermal radiation), and water

fluxes (liquid and solid precipitation). This offline

methodology has been explored in various research

applications where HTESSEL or other models were

applied (e.g., Agustí-Panareda et al. 2010; Dutra et al.

2011; Haddeland et al. 2011).

b. CaMa-Flood river routing

CaMa-Flood (Yamazaki et al. 2011) was used to in-

tegrate HTESSEL runoff over the river network into

discharge. CaMa-Flood is a distributed global river-

routing model that routes runoff to oceans or inland

seas using a river network map. A major advantage of

CaMa-Flood is the explicit representation of water level

and flooded area in addition to river discharge. The re-

lationship between water storage (the only prognostic

variable), water level, and flooded area is determined on

the basis of the subgrid-scale topographic parameters

based on a 1-km digital elevation model.

c. TIGGE forecasts

The atmospheric forcing for the forecast experiments

is taken from the TIGGE archive where all variables are

available on a standard 6-h forecast frequency. The en-

semble systems of ECMWF, the Met Office (UKMO),

the National Centers for Environmental Prediction

(NCEP), and the China Meteorological Administration

(CMA) provide, in the TIGGE archive, meteorological

forcing fields from the 0000 UTC runs with 6-h fre-

quency starting from 2006 to 2008 depending on the

model. All four models were only available with the

complete forcing variable set from August 2008.

ECMWF was available with 50 ensemble members on

32-km horizontal resolution (;50km before January

2010) up to 15 days ahead, UKMO was available with

23 members on ;60-km horizontal resolution (;90km

beforeMarch 2010) also up to 15 days ahead, NCEPwas

available with 20 members on ;110-km horizontal res-

olution up to 16 days ahead, and finally CMA was

available with 14 members on ;60-km horizontal reso-

lution up to 10 days ahead. In testing the sensitivity of

the experimental setup to meteorological forcing (see

section 4a) the ECMWF control forecasts were used,

extracted directly from ECMWF’s Meteorological Ar-

chival and Retrieval System (MARS), where the mete-

orological variables are available without the TIGGE

restrictions. These have the same resolution as the 50

ensemble members but start from the unperturbed

analysis.

d. Reanalysis data

The discharge modeling experiments require re-

analysis data, which are used to provide the climate and

the initial conditions needed for the HTESSEL land

surface model runs and to produce the river initial

conditions required in the CaMa-Flood routing part of

the TIGGE forecast experiments.

In this study we have used three different reanalysis

datasets: two produced by ECMWF, ERA-Interim

(hereafter ERAI) and ERA-Interim/Land with Global

Precipitation Climatology Project, version 2.2 (GPCP

v2.2), precipitation (Huffman et al. 2009) correction

(hereafter ERAI-Land; Balsamo et al. 2015), and a third,

the Modern-Era Retrospective Analysis for Research

and Applications (MERRA) land upgrade (MERRA-

Land) produced by NOAA. The combination of these

three sources was a proof of concept to potential added

value of the multi-initial conditions.

ERAI is ECMWF’s global atmospheric reanalysis

from 1979 to present produced with an older (2006)

version of the ECMWF IFS on a T255 spectral resolu-

tion (Dee et al. 2011). ERAI-Land is a version of ERAI
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at the same 80-km spatial resolution with improvements

for land surface. It was produced in offline mode with a

2014 version of the HTESSEL land surface model using

atmospheric forcing from ERAI, with precipitation ad-

justments based onGPCP v2.2, where the ERAI 3-hourly

precipitation is rescaled to match the monthly accumu-

lated precipitation provided by the GPCP v2.2 product

[for more details, please consult Balsamo et al. (2010)].

The MERRA-Land dataset is similar to ERAI-Land

in that it is a land-only version of the MERRA land

model component, produced also in offline mode, using

improved precipitation forcing and an improved ver-

sion of the catchment land surface model (Reichle

et al. 2011).

e. Discharge data

In this study a subset of the observations available in

GloFAS was used, mainly originating from the Global

Runoff Data Centre (GRDC) archive. TheGRDC is the

digital worldwide depository of discharge data and as-

sociated metadata. It is an international archive of data

started in 1812, and it fosters multinational and global

long-term hydrological studies.

For the discharge modeling, a dataset of 1121 stations

with upstream areas over 10 000 km2 was available until

the end of 2013. GRDC has a gradually decreasing

number of stations with data in the archive limiting their

use for more recent years. For the forecast discharge, we

limited our analyses to the period from August 2008 to

May 2010. This period provided the optimal compromise

in increasing the sample size between the length of the

period and the number of stations with good data cov-

erage. For the reanalysis discharge experiments and also

for generating the observed discharge climate, stations

with a minimum of 15 years of available observations

were used in the 30-yr period from 1981 to 2010. For the

forecast experiments, stations with at least 80% of the

observations available were used in the 22-month period

from August 2008 to May 2010. Figure 1 shows the ob-

servation availability in the reanalysis and TIGGE

forecast experiments. It highlights that for the reanalysis

the coverage is better globally, with about 850 stations,

while the forecast experiments have around 550 stations

with large missing areas, mainly in Africa and Asia.

f. Forecasting system setup

To produce runoff from the TIGGE atmospheric

ensemble variables (see section 2c), HTESSEL experi-

ments were run with 6-hourly forcing frequency and

hourly model time step. For the instantaneous variables

(such as 2-m temperature), linear interpolation was used

to move from the 6-h to hourly time step used in the

HTESSEL simulations. For accumulated variables (such

as precipitation), a disaggregation algorithm that con-

serves the 6-hourly totals was used. The disaggregation

algorithm divides into hourly values based on a linear

combination of the current and adjacent 6-hourly totals

with weights derived from the time differences.

The climate and the initial conditions needed for the

HTESSEL land surface model runs to produce runoff

were taken from ERAI-Land, the same initial condi-

tions for all models and ensemble members without

FIG. 1. Location of discharge observing stations that could be processed in the discharge experiments. The blue points are used in both

the reanalysis (at least 15 years of data available in 1981–2010) and in the TIGGE forecast experiment (at least 80%of days available from

August 2008 to May 2010) evaluation. The yellow points provide enough observation only for the reanalysis while the red points have

enough data available only for the TIGGE forecasts.
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perturbations. The other two reanalysis datasets could

also be used to initialize HTESSEL, but the variability

on the resulting TIGGE runoff (and thus on the

TIGGE discharge) would be very small compared

with the impact of the TIGGE atmospheric forcing

(especially precipitation, see also section 4a) and the

impact of the TIGGE forecast routing initialization

(see section 3b for further details).

HTESSELwas set to T255 spectral resolution (;80km).

This was the horizontal resolution used in ERAI and

was an adequate compromise between the highest

(ECMWF mainly ;50 km) and lowest (NCEP with

;110 km) forcing model resolution that also allowed

fast enough computations. The TIGGE forcing fields

were transformed to T255 using bilinear interpolation.

The TIGGE archive includes variables at the surface

and several pressure levels. However, variables are not

available on model levels, and as such, temperature,

wind, and humidity at the surface (i.e., 2m for temper-

ature and humidity and 10m for wind) were used in

HTESSEL rather than on the preferred lowest model

level (LML).

Similarly, TIGGE contains several radiation vari-

ables, but not the downward radiations required by

HTESSEL. To run HTESSEL without major technical

modifications, we had to use a radiation replacement for

all TIGGE models and ensemble members. We used

ERAI-Land for this purpose, as it does not favor any of

the TIGGE models used in this study. This way, for one

daily run the same single radiation forecast was used for

all ensemble members and all models. These 10-day

radiation forecasts were built from 12-h ERAI-Land

short-range predictions. To reduce the possible spinup

effects in the first hours of the ERAI-Land forecasts, the

6–18-h radiation fluxes were combined (as 12-h sections)

from subsequent 0000 and 1200 UTC runs, following the

approach described in Balsamo et al. (2015). The sen-

sitivity to the HTESSEL input variables will be dis-

cussed in section 4a.

In this study we were able to process four models out

of the 10 global models archived in TIGGE: ECMWF,

UKMO, NCEP, and CMA. The other six models do not

archive one or more of the forcing variables, in addition

to the downward radiation, required for this study.

The runoff produced by HTESSEL for TIGGE was

routed over the river network by CaMa-Flood. These

relatively short experiments for the TIGGE forecasts

required initial river conditions. These were provided by

three CaMa-Flood runs for the 1980–2010 period with

ERAI, ERAI-Land, and MERRA-Land runoff input.

The discharge forecasts were produced by CaMa-

Flood out to 10 days (T 1 240h), the longest forecast

horizon common to all models. No perturbations were

applied on the river initial conditions for the ensemble

members. The forecasts were extracted from the CaMa-

Flood 15-arc-min (;25 km) model grid for every 24-h

similarly to the 24-h reporting frequency of the dis-

charge observations.

3. Experiments

The main focus of the experiments was on the quality

of the discharge forecasts derived from the TIGGEdata.

Three sets of experiments were performed to test the

HTESSEL/CaMa-Flood setup and the scope for error

reduction by applying the multimodel approach and

different postprocessing methods:

d Discharge sensitivity to meteorological forcing: The

first experiment (section 4a) tests the sensitivity of the

forecasting system to the input variables.
d Reanalysis impact on discharge: The second experi-

ment (section 4b) evaluates the potential improve-

ments on the historical discharge that can be achieved

by a combination of different reanalysis datasets.
d Improving the forecast distribution: In the third

experiment (section 4c), the use of bias correction

and model combination to improve the predictive

distribution of the forecast is considered.

a. Discharge sensitivity to meteorological forcing

In section 2f, a number of compromises in the cou-

pling of HTESSEL and forecasts from the TIGGE ar-

chive were introduced. Sensitivity experiments were

conducted to study the impact of these. Table 1

provides a short description of the experiments.

The baseline for the comparisons is the discharge

forecasts generated by HTESSEL and CaMa-Flood

driven by ECMWF ensemble control (EC) forecasts.

These forecasts were produced weekly (at 0000 UTC)

throughout 2008–12 to cover several seasons (;260

forecast runs in total). In the baseline setup, the LML

meteorological output for temperature, wind, and hu-

midity was used to drive HTESSEL.

The first sensitivity test (Surf vs LML) was to replace

these LML values with the surface values (as 2-m tem-

perature and humidity and 10-m wind) from the same

model run. This mirrors the change needed to make use

of the TIGGE archive. Because of limitations in the

TIGGE archive, the ERAI-Land radiation was used for

all forecasts. Substitution of the ECMWF EC radiation

in the HTESSEL input by ERAI-Land is the second

sensitivity test (Rad). Further to this, substitution of the

wind (Wind), temperature, humidity, and surface pres-

sure together (THP), and precipitation (Prec) fromERAI-

Land in place of the ECMWF EC run values was also
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evaluated. Temperature and humidity were analyzed

together because of the sensitive nature of the balance

between these two variables. Although these changes

were not applied on the TIGGE data, they give a more

complete picture on sensitivity to the forcing variables.

This puts into context the discharge errors that we in-

directly introduced through the TIGGE–HTESSEL setup

changes.

The impact on the errors was compared by evaluating

the ratio of the magnitude (absolute value) of the dis-

charges to the baseline experiments, discharge value.

These changes in relative discharge were computed for

each station as the average of the relative changes over

all runs (in the 2008–12 period with weekly runs) and

also as a global average of all available stations.

b. Reanalysis impact on discharge

For the forecast of CaMa-Flood routing, the river initial

conditions are provided by reanalysis-based simulations

(see section 2d). They do not make use of observed river

flow and therefore are an estimate of the observed values.

The quality of the forecast discharge is expected to be

strongly dependent on the skill of this reanalysis-derived

historical discharge. This is highlighted in Fig. 2, where

ERAI-Land, ERAI, and MERRA-Land are compared

for a station in the United States for a 4-yr period.

Each of these reanalyses provides different error

characteristics that can potentially be harnessed by

using a multimodel approach. For this station ERAI

has a tendency to produce occasional high peaks, while

MERRA-Land has a strong negative bias. Although

Fig. 2 is only a single example, it highlights the large

variability between these reanalysis datasets and

therefore a potentially severe underestimation of the

uncertainties in the subsequent forecast experiments by

using only a single initialization dataset.

The impact of the multimodel approach was analyzed

by experiments with the historical discharges derived

from ERAI, ERAI-Land, and MERRA-Land inputs.

Three sets of CaMa-Flood routing runs were performed

for each of the four TIGGE models for the whole

22-month period in 2008–10, each initialized from one of

the three reanalysis-derived historical river conditions.

The performance of the historical discharge was evalu-

ated independently of the TIGGE forecasts on the pe-

riod of 1981–2010.

c. Improving the forecast distribution

In the third group of experiments a number of post-

processing techniques were applied at each site with the

aim of improving the forecast distribution for the ob-

served data. Here we outline the techniques with ref-

erence to a single site and forecast origin t. The forecast

values available are denoted fm, j,t, i, wherem indices over

the forecast products (ECMWF, UKMO, NCEP, and

CMA), j indices over the Nm ensemble members in

forecast product m, and i5 1, . . . , 10 indicates the

available lead times.

FIG. 2. Example of discharge produced by ERAI-Land (red),

ERAI (green), and MERRA-Land (blue) forcing and the corre-

sponding observations (black) for a GRDC station on the Rainy

River at Manitou Rapids in the United States.

TABLE 1. Description of the sensitivity experiments with the ECMWF EC forecasts. The baseline is the reference run at the LML for

wind, temperature, and humidity forcing. The other experiments are with different changes for the forcing variables. First, the LML is

changed to surface (Surf), then different variables of the EC and their combinations are substituted by ERAI-Land data. Roman font

means EC forcing input while italicized font denotes substituted ERAI-Land input.

Sensitivity expt

Forcing variable setup

Rad THP Wind Prec

Baseline EC-Surf EC-LML EC-LML EC-Surf

Surf vs LML EC-Surf EC-Surf EC-Surf EC-Surf

Rad ERAI-Surf EC-LML EC-LML EC-Surf

Wind EC-Surf EC-LML ERAI-LML EC-Surf

THP EC-Surf ERAI-LML EC-LML EC-Surf

Rad 1 THP ERAI-Surf ERAI-LML EC-LML EC-Surf

Rad 1 THP 1 Wind ERAI-Surf ERAI-LML ERAI-LML EC-Surf

Rad 1 THP 1 Wind 1 Prec ERAI-Surf ERAI-LML ERAI-LML ERAI-Surf
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1) BIAS CORRECTION

As a first step we analyzed the biases of the data. As

described in section 3b, the historical river initial con-

ditions have potentially large errors. In addition, the

variability of the discharge in a 10-day forecast horizon

is generally much smaller than derived from reanalysis

over a long period. Therefore, any timing or magnitude

error in the historical discharge provided initial condi-

tions means the forecast errors can be very large and will

change only slightly, in relative terms, throughout the

10-day forecast period.

As bias was expected to be a very important aspect of

the errors, three methods of computing the bias cor-

rection em, j,t,i to add to the forecast fm, j,t,i were proposed.

The first of these is to apply no correction (or un-

corrected); that is, em, j,t,i 5 0 in all cases. The second

method, referred to as 30-day correction, removes the

mean bias of the 30-day period preceding the actual

forecast run for each forecast product at each specified

forecast range. Themean bias is computed as an average

error of the ensemble mean over a 30-day period. In this

case, given a series of 30 dates t5 1, . . . , N30 and ob-

served discharge data yt, the bias corrections are given

by

�
N30

t51
�
Nm

j51

(y
t
2 f

m, j, t2i, i
)

N
30
N

m

.

The third correction method, referred to as initial time

correction, focused specifically on the historical

discharge-based initial condition errors. The error at

initialization of the routing fm, j,t,0, that is, the error of the

historical discharge, was used as a correction for all

forecast ranges. This initial time correction gives

e
m, j,t,i

5 y
t
2 f

m, j,t,0
.

This method therefore uses a specific error correction

for each individual forecast run from day 1 to day 10.

Because of the common initialization, the initial time

correction was the same for all four TIGGE models for

all three historical discharge experiments, respectively.

2) MULTIMODEL COMBINATION

To investigate the potential further benefits of com-

bining different forecast products, two model combina-

tion strategies were trialed. The naïve combination

strategy [also referred to as multimodel combination

(MM)] was based on utilizing a grand ensemble with

each member having equal weight. In this combination,

the larger ensembles (the largest being ECMWF with

50 members) get larger weights. In direct analogy to the

case of a single forecast product, the cumulative forecast

distribution is expressed in terms of the indicator func-

tion d(z), which takes the value 1 if the statement z is

true and 0 otherwise, as

Pr(Y
t1i

, y) 5

�
m
�
Nm

j51

d( f
m, j,t,i

1 e
m, j,t,i

, y)

�
m

N
m

.

Here em, j,t,i indicates one of the three bias corrections we

introduced in the previous section.

In the second combination strategy, BMAwas used to

explore further the effects of weighted combination

and a temporally localized bias correction. Since dis-

charge is always positive, the variables were trans-

formed so that their distributions marginalized over

time are standard Gaussian. This is achieved using the

normal quantile transform (Krzysztofowicz 1997), with

the upper and lower tails handled as in Coccia and

Todini (2011). The transformed values of the bias-

corrected forecasts and observations are denoted ~f m, j,t,i

and ~yt, respectively.

This study follows the BMA approach proposed by

Fraley et al. (2010) for systems with exchangeable

members with the weight wm, t, i, linear bias correction

(with parameters am, t, i and bm, t, i), and nugget variance

s2
m, t, i being identical for each ensemblemember within a

given forecast product. The resulting cumulative fore-

cast distribution in the transformed space is then a

weighted combination of standard Gaussian cumulative

distributions F, specifically,

Pr( ~Y
t1i

, y)5 �
m

w
m, t, i �

Nm

j51

F
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m, t, i
2 b

m, t, i
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m, j, t, i

s
m, t, i

!
.

As indicated by the origin and lead time subscripts, the

BMA parameters were estimated for each forecast ori-

gin and lead time. Estimation bias proceeds by first fit-

ting the linear correction using least squares before

estimating the weight and variance terms using maxi-

mum likelihood (Raftery et al. 2005). A moving window

of 30 days of data, before the initialization of the fore-

casts similarly to the 30-day correction, was utilized for

the estimation to mimic operational practice.

As the initial conditions were expected to play an

important role, a further forecast was introduced in the

context of the BMA analysis. The deterministic persis-

tence forecast is, throughout the 10-day forecast range,

the most recent observation available at time of issue,

that is,
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f
m, 1, t, i

5 y
t
.

This persistence forecast was also used as a simple ref-

erence to compare our forecasts against.

To aid comparison with the naïve combination

strategy a similar-sized ensemble of forecasts was gen-

erated from the BMA combination by applying en-

semble copula coupling (Schefzik et al. 2013) to a

sample generated by taking equally spaced quantiles

from the forecast distribution and reversing the

transformation.

3) VERIFICATION STATISTICS

The forecast distributions were evaluated using the

continuous ranked probability score (CRPS; Candille

andTalagrand 2005). TheCRPS evaluates the global skill

of the ensemble prediction systems by measuring a dis-

tance between the predicted and the observed cumulative

density functions of scalar variables. For a set of dates

t5 1, . . . , N with observations and probabilistic forecasts

issued with the same lead time (which are realizations of

the random variables Yt1i), the CRPS can be defined as

CRPS5
1

N
t

�
Nt

t51

ð‘
2‘

[Pr(Y
t1i

, y)2 d(y$ y
t
)]2 dy .

The CRPS has a perfect score of 0 and has the advantage

of transforming into the mean absolute error for de-

terministic forecasts and thus providing a simple way of

comparing different types of systems. In this study the

method of Hersbach (2000) for computing the CRPS

from samples was used. The global CRPS reported for

each lead time were produced by pooling the samples

from all the stations before computing the scores.

As the CRPS has the unit of the physical quantity

(e.g., for discharge m3 s21), comparing scores can be

problematic and is only meaningful if two homogeneous

sample-based scores are compared. For example, dif-

ferent geographical areas or different seasons cannot

really be compared. In this study we ensured that, for

any comparison of forecast models and postprocessed

versions, the samples were homogeneous. We consid-

ered the same days in the verification period at each

station specifically, and also the same stations in the

global analysis, producing equal sample sizes across all

compared products.

To help compare results across different stations and

areas, we used the CRPS-based skill score (CRPSS) with

the reference system of the observed discharge climate

in our verification. We produced the daily observed

climate for the 30-yr period of 1981–2010 and pooled

observations from a 31-day window centered over each

day. Observed climate was produced for stations with at

least 10 years of data available in total (310 values) for

all days of the year.

Each of the historical discharge experiments produce

a time series of discharges (ft: t 5 1, . . . , N), which were

compared to the observed data using the mean absolute

error (MAE)-based skill score (MAESS) with the ob-

served daily discharge climate (obsclim) as reference,

MAESS5 12
MAE

MAE
obsclim

,

and the sample Pearson correlation coefficient (CORR),
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�
N

t51

(f
t
2 f )( y

t
2 y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

t51

(f
t
2 f )2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

t51

(y
t
2 y)2

s ,

where the bar denotes the temporal average of the

variable. The MAE reflects the ability of the systems to

match the actual observed discharge, while the corre-

lation highlights the quality of match between the tem-

poral behavior of the historical forecast time series and

the observation time series.

4. Results

First, we present the findings of the sensitivity experi-

ments carried out, using the ECMWF EC forecast, on the

impact of the HTESSEL coupling with the TIGGE mete-

orological input. Then we compare the quality of the his-

torical discharge produced from the ERAI, ERAI-Land,

and MERRA-Land datasets and the impact of their com-

bination. Finally, from the large number of forecast prod-

ucts described in sections 3b and 3c, we present results that

aid interpretation of the discharge forecast skills and errors

with focus on the potential multimodel improvements:

d the four uncorrected TIGGE forecasts with ERAI-

Land initialization;
d the MM combination of the four uncorrected models

with the ERAI, ERAI-Land, and MERRA-Land

initializations and the grand ensemble of these three

MM combinations (called GMM hereafter);
d the GMM combinations of the 30-day-corrected, the

initial-time-corrected, and the combined initial-time-

and 30-day-corrected MM forecasts (first initial-time-

correct the forecasts, then apply the 30-day correction

on these); and
d finally, the GMM of the BMA combined MM fore-

casts (from all three initializations) with the uncor-

rected models, the initial-time-corrected models, and

also the uncorrected models extended by the persis-

tence as a separate single value model.
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a. Discharge sensitivity to meteorological forcing

The impact of replacing HTESSEL forcing variables

other than precipitation (combination of Rad, Wind,

and THP tests) with ERAI-Land (Fig. 3) is rather small

(;3% by T 1 240, brown curve in Fig. 3). The least

influential is the Wind (red curve), while the biggest

contribution comes from the THP (green curve). When

all ensemble forcing is replaced, including precipitation,

the impact jumps to;15% by T1 240 h, showing that a

largemajority of the change in the discharge comes from

differences in precipitation (not shown).

The analysis of different areas and periods (seeTable 2)

highlights that larger impacts are seen for the winter

period where the contribution of precipitation decreases

and the contribution of the other forcing variables, both

individually and combined, increases by approximately

twofold to fivefold (this is particularly noticeable for

THP). This is most likely a consequence of the snow-

related processes, with snowmelt being dependent on

temperature, radiation, and also wind in the cold seasons.

This also implies that the results are dependent on

seasonality, a result that was also found by Liu et al.

(2013), who looked at the skill of postprocessed pre-

cipitation forecasts using TIGGE data for the Huai River

basin in China. In this study, because of the relatively

short period we were able to use in the forecasts verifi-

cation, scores were only computed for the whole verifi-

cation period and no seasonal differences were analyzed.

Regarding the change from LML to surface forcing

for temperature (2m), wind (10m), and humidity (2m),

the potential impact can be substantial, as shown by an

example for 1–10 January 2012 in Fig. 4. In such cold

winter conditions, large erroneous surface runoff values

could appear in some parts of Russia when switching to

surface forcing in HTESSEL. The representation of dew

deposition is a general feature of HTESSEL that can be

amplified in stand-alone mode. When coupled to the

atmosphere, the deposition is limited in time, as it leads

to a decrease of atmospheric humidity. However, in

stand-alone mode, since the atmospheric conditions are

prescribed, large deposition rates can be generated

when the atmospheric forcing is not in balance (e.g.,

after model grid interpolation or changing from LML to

surface forcing).

This demonstrates that with a land surface model such

asHTESSEL, particular care needs to be taken in design

of the experiments when model imbalances are ex-

pected. The use of surface data was an acceptable com-

promise as the sensitivity experiments highlighted only a

small impact caused by the switch from LML to surface

forcing (black dashed line in Fig. 3), and similarly by the

impact of the Rad test, confirming that the necessary

changes in the TIGGE land surface model setup did not

have a major impact on the TIGGE discharge.

b. Reanalysis impact on discharge

The quality of the historical river flow that provides

initial conditions for the CaMa-Flood TIGGE routing is

expected to have a significant impact on the forecast

skill. We analyze the discharge performance that is

FIG. 3. Impact of different forcing configurations in HTESSEL

on the discharge outputs as a relative change compared to baseline.

The black dashed line displays the impact of changing the LML to

surface forcing (2m for temperature and humidity, 10m for wind).

The colored lines highlight the impact of replacing different EC

forcing variables, either individually or in combination, with ERAI-

Land data.

TABLE 2. Detailed evaluation of the discharge sensitivity experiments at T 1 240 h range for different areas and periods. Relative

discharge differences are shown after replacing EC forcing variables, either individually or in combination, by ERAI-Land, and also the

LMLwith surface forcing (2m for temperature and humidity, 10m for wind). The whole globe, the northern extratropics (defined here as

358–708N), and the tropics (308S–308N) as well as the specific seasons are displayed.

Avg diff (%) Rad THP Wind Rad 1 THP 1 Wind Rad 1 THP 1 Wind 1 Prec Surf vs LML

Global 1.0 2.4 0.6 2.9 15.6 0.7

Northern extratropics 1.0 3.1 0.6 3.5 12.8 0.8

Northern extratropics JJA 0.5 0.6 0.2 0.9 13.0 0.3

Northern extratropics DJF 1.1 2.9 0.7 3.6 9.5 0.8

Tropics 1.0 1.1 0.5 1.8 17.6 0.5

Tropics JJA 0.9 0.9 0.4 1.5 15.0 0.5

Tropics DJF 1.2 1.3 0.6 2.1 18.7 0.6
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highlighted in Fig. 5. This shows the MAESS and

CORR for the ERAI-, ERAI-Land-, and MERRA-

Land-simulated historical discharge from 1981 to 2010,

and for their equal-weight multimodel average (MMA).

The results are provided as continental and also as

global averages of the available stations for Europe

(;150 stations), North America (;350 stations), South

America (;150 stations), Africa (;80 stations), Asia

(mainly Russia, 60 stations), and Australia and Indonesia

(;50 stations), making ;840 stations globally.

The general quality of these global simulations is quite

low. The MAESS averages over the available stations

(see Fig. 1) are ,0 for all continents, that is, large-scale

average performance is worse than the daily observed

climatology. The models are closest to the observed

climate performance over Europe and Australia and

FIG. 4. Surface runoff output of HTESSEL for the period 1–10 Jan 2012 (240-h accumulation) from two EC experiments, using (a) surface

forcing and (b) LML forcing, where possible. In (a), very large erroneous surface runoff values appear in very cold winter conditions.

FIG. 5. Historical discharge forecast performance for ERAI-Land, ERAI, MERRA-Land, and their equal-weight MMA. MAESS and

CORR are provided for each continent (NorthAmerica, SouthAmerica, Europe, Africa, Asia, andAustralia and Indonesia). The reference

forecast system in the skill score is the observed discharge climate as daily prediction. CORRare also provided for the observed climate. The

scores are continental and global averages of the individual scores of the available stations (for station reference, see Fig. 1).
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Indonesia. The correlation between the simulated and

observed time series shows a slightly more mixed pic-

ture, at least in some cases; especially Europe and

Australia and Indonesia, the model is better than the

observed climate. It is interesting to note that although

the observed climate produces a high forecast time se-

ries correlation, in Asia the reanalysis discharge scores

very low for all three sources. This could be related to

the problematic handling of the snow in that area.

Figure 2 shows an example where MERRA-Land

displayed a very strong negative bias. This example

highlights the large variability among these data sources

and is not an indication of the overall quality. Although

MERRA-Land shows generally negative bias (not

shown), the overall quality of the three reanalysis-driven

historical discharge datasets is rather comparable. The

highest skill and correlation is generally shown by

ERAI-Land for most of the regions with the exception

of Africa and Australia, where MERRA-Land is supe-

rior. ERAI, as the oldest dataset, appears to be the least

skillful. Reichle et al. (2011) have found the same re-

lationship between MERRA-Land and ERAI using 18

catchments in the United States. Although they com-

puted correlation between seasonal anomaly time series

(rather than the actual time series evaluated here), they

could show that runoff estimates had higher correlation

of the anomaly time series in MERRA-Land than

in ERAI.

The multimodel average of the three simulations is

clearly superior in the global and also in the continental

averages, with very few exceptions that have marginally

lower MMA scores compared with the best individual

reanalysis. The MMA is able to improve on the best of

the three individual datasets at about half of the stations

globally, both in the MAESS and CORR. Figure 6

shows the improvements in correlation. The points

where the combination of the three reanalyses helps to

improve on the best model cluster are mainly over Eu-

rope, Amazonia, and the eastern United States. On the

other hand, theNorthernHemisphere winter areas seem

to show mainly deterioration. This again is most likely

related to the difficulty in the snow-related processes,

which can hinder the success of the combination if, for

example, one model is significantly worse with larger

biases than the other two. Further analysis could help

identify these more detailed error characteristics,

providing a basis for further potential improvements.

c. Improving the forecast distribution

Figure 7 displays example hydrographs of some ana-

lyzed forecast products for a single forecast run to

provide a practical impression of our experiments. The

forecasts from 18 April 2009 are plotted for the GRDC

station of Lobith in the Netherlands. The thin solid

colored lines are the four TIGGE models (ECMWF,

UKMO, NCEP, and CMA) plotted together (MM) with

ERAI-Land (red), ERAI (green), and MERRA-Land

(blue) initializations. They start from very different

levels that are quite far from the observation (thick

black line), but then seem to converge to roughly the

FIG. 6. Relative improvements in CORR by equal-weight average of ERAI-Land, ERAI, andMERRA-Land discharges. Values show

the change in CORR compared with the best of ERAI-Land, ERAI, and MERRA-Land. Positive values show improvement while

negative change means lower skill in the average than in the best of the three historical discharges.
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same range in this example. The ensemble mean of the

initial error-corrected MMs (from the three initializa-

tions with dashed lines), which by definition start from

the observed discharge at T1 0 h, then follow faithfully

the pattern of the mean of the respective MMs. The

30-day-corrected forecasts (dashed–dotted lines) follow

a pattern relative to theMM ensemble means set by the

performance of the last 30 days. The combination of

the two bias-correction methods (dotted lines) blends

the characteristics of the two; all three versions start

from the observation (as first the initial error is removed)

and then follow the pattern set by the past 30-day per-

formance of this initial time-corrected forecast. Finally,

the BMA-transformed (uncorrected) MMs (thin gray

lines) happen to be closest to the observations in this

example, showing a rather uniform spread throughout the

processed range from T 1 24h to T 1 240h.

The quality of the TIGGE discharge forecasts based

on the verified period from August 2008 to May 2010 is

strongly dependent on the historical discharge that is

used to initialize them. Figure 5 highlighted that the

daily observed discharge climate is a better predictor

than any of the three historical reanalysis-driven dis-

charges (MAESS, 0). It is therefore not surprising that

the uncorrected TIGGE forecasts show similarly low

relative skill based on the CRPS (Fig. 8). Figure 8 also

shows the performance of the four models (gray dashed

lines). In this study, we concentrate on the added value

of the multimodel combination and do not distinguish

between the four raw models. The scores change very

little over the 10-day forecast period, showing a mar-

ginal increase in CRPSS as lead time increases. This is

indicative of the incorrect initialization, with the fore-

cast outputs becoming less dependent on initialization

further into the medium range, and slowly converging

toward climatology.

The first stage of the multimodel combination is the

red line in Fig. 8, the combination of the uncorrected

four models with the same ERAI-Land initialization.

On the basis of this verification period and global station

list, the simple equal-weight combination of the en-

sembles does not really seem to be able to improve on

the best model. However, we have to acknowledge that

the performance in general is very low.

The other area where we expect improvements

through the multimodel approach is the initialization.

Figure 8 highlights a significant improvement when using

FIG. 7. Example of different discharge forecast products for the

GRDC station of Lobith on the Rhine River in the Netherlands. All

forecasts are from the run at 0000UTC 18Apr 2009 up toT1 240 h.

The following products are plotted:multimodel combinations of four

TIGGEmodels (ECMWF, UKMO,NCEP, and CMA) with ERAI-

Land (solid red lines), ERAI (solid green lines), andMERRA-Land

(solid blue lines) initializations; 30-day-corrected (dashed–dotted

lines), initial-time-corrected (dashed lines), and 30-day- and initial-

time-corrected (dotted lines) versions of the three multimodel

combinations, each with all three initializations (with the respective

colors); and finally, the BMA versions of the three multimodel

combinations (all with gray lines, only from T1 24 h). The verifying

observations are displayed by the black line.

FIG. 8. Discharge forecast performance for forecast ranges from

T 1 0 h to T 1 240 h from August 2008 to May 2010 as global

averages of CRPSS (computed at each station over the whole pe-

riod) with the following forecast products. Gray lines indicate the

four TIGGE models (ECMWF, UKMO, NCEP, and CMA) with

ERAI-Land initialization, and a multimodel combination of these

four models with ERAI-Land (red line), ERAI (green line), and

MERRA-Land (blue line) initialization is also shown. The orange

line represents a grand combination of these three multimodels,

and grand combinations for six postprocessed products are shown:

the multimodel of the 30-day correction (burgundy dashed line),

the initial error correction (purple dashed line with markers), the

30-day and initial error correction combination (solid burgundy

line with markers), two BMA versions of the multimodel—one

with the uncorrected forecasts (black line without markers) and

one with the uncorrected forecasts extended by the persistence as

predictor (black line with circles)—and the persistence forecast

(light blue dashed line with circles). The CRPSS is positively ori-

ented and has a perfect value of 1. The 0 value line represents the

quality of the reference system, the daily observed discharge

climate.
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three historical discharge initializations instead of only

one. The quality of the ERAI-Land (red), ERAI

(green), and MERRA-Land (blue) initialized forecasts

(showed here only the multimodel combination ver-

sions) are comparable, with the ERAI-Land slightly

ahead, which is in agreement with the results of the

direct historical discharge comparisons presented in

section 4b. However, the grand combination of the three

is able to improve significantly (orange line) on all of

them. The improvement is much larger at shorter lead

times as the TIGGEmeteorological inputs provide lower

spread, and therefore the spread introduced by the dif-

ferent initializations is able to have a bigger impact.

The quality of the discharge forecasts could be im-

proved noticeably by introducing different initial con-

ditions. However, the CRPSS is still significantly below

0, pointing to the need for postprocessing. In this study,

we have experimented with a few methods that were

proven to be beneficial.

The 30-day correction removed the mean bias of the

most recent 30 runs from the forecasts. Figure 8 shows

the grand combination of the 30-day bias-corrected

multimodels (with all three initializations), which

brings the CRPSS to almost 0 throughout the 10-day

forecast range (burgundy dashed line in Fig. 8). This

confirms that the forecasts are severely biased. In addi-

tion, the shape of the curve remains fairly horizontal,

suggesting this correction is not making the best use of

the temporal patterns in the bias.

Further significant improvements in CRPSS are

gained at shorter forecast ranges by using the initial time

correction (purple dashed line with markers in Fig. 8),

which does make use of temporal patterns in the bias.

The shape of this error curve shows a typical pattern

with the CRPSS decreasing with forecast range, re-

flecting the decreasing impact of the initial time cor-

rection and increased uncertainty in the forecast. The

impact of the initial time errors gradually decreases until

it finally disappears by around day 5 or 6, when the

30-day correction becomes superior.

The combination of the two methods, by applying the

30-day bias correction to forecasts already adjusted by

the initial time correction, blends the advantages of both

corrections. The CRPSS is further improved mainly in

the middle of the 10-day forecast period with dis-

appearing gain by T 1 240 h (solid burgundy line with

markers in Fig. 8).

The fact that the performance of the 30-day correc-

tion is worse in the short range than the initial time

correction highlights that the impact of the errors at

initial time has a structural component that cannot be

explained by the temporally averaged bias. Similarly,

the initial time correction cannot account exclusively

for the large biases in the forecasts as its impact trails

off relatively quickly.

The persistence forecast shows a distinct advantage

over these postprocessed forecasts (light blue dashed

line with circles in Fig. 8). There is positive skill up to

T1 144 h and the advantage of the persisted observation

as a forecast diminishes, so that by T 1 240 h its skill is

similar to that of the combined corrected forecasts. This

further highlights that the utilization of the discharge

observations in the forecast production promises to

provide a really significant improvement.

It is suggested that the structure of the initial errors

has two main components: (i) biases in the reanalysis

initializations due to biases in the forcing (e.g., pre-

cipitation) and in the simulations (e.g., evapotranspira-

tion) and (ii) biases introduced by timing errors in the

routing model due, in part, to the lack of optimized

model parameters. A further evaluation of the weight of

each of these error sources is beyond the scope of

this study.

The final of our trialed postprocessing methods is the

BMA. In Fig. 8, similarly to the other postprocessed

products, only the grand combination is displayed of the

three BMA-transformed MMs with the different ini-

tializations. The BMA of the uncorrected forecasts was

able to increase further the CRPSS markedly across all

forecast ranges except T 1 24h (black line without

markers). The results for T 1 24h suggest that at this

lead time the perfect initial error correction fromT1 0 h

still holds superior.

The other two BMA versions, one with the uncor-

rected forecasts extended by the persistence as predictor

(black line with circles) and one with the initial-time-

corrected forecasts (not shown), both provide further

skill improvements. The one with the persistence per-

forms overall better, especially in the first few days. The

BMA incorporating the persistence forecast remains

skillful up to T 1 168 h, the longest lead time of any of

the forecast methods tested. At longer lead times (days

8–10) the BMA of the uncorrected model forecast ap-

pears to provide the highest skill of all the postprocessed

products. This is evidence that the training of the BMA

is not optimal. This is in part due to the estimation

methodology used. More significantly experiments (not

reported) show that the optimal training window for the

BMA varies across sites, showing a different picture for

the BMA with or without persistence, and also de-

livering potentially higher global average skill using a

longer window.

Although Fig. 8 shows only the impact of the four

postprocessing methods on the grand combination of

the MM forecasts, the individual MMs with the three

initializations show the same behavior. The GMMs
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always outperform the three MMs for all the post-

processing products; for example, for the most skillful

method, the BMA, the grand combination extends the

positive skill by ;1 day (from around 5 days to 6 days,

not shown).

The distribution of the skill increments over all sta-

tions provided by different combination and post-

processing products is summarized in Fig. 9 at T 1 24h

(Fig. 9a) and T 1 240 h (Fig. 9b). The reference skill is

the average CRPSS of the four TIGGE models with the

ERA-Land initialization (these values are represented

by the gray dashed lines in Fig. 8). Figure 9 highlights the

structure of the improvements in different ranges of the

CRPSS for the different methods over all verified sta-

tions in the period from August 2008 to May 2010. The

picture is characteristically different at different lead

times, as suggested by the T 1 24h and T 1 240 h plots.

At short range, the improvements of the different

products scale nicely into separate bands. The relatively

simple MM combination of the four models with ERAI-

Land (red circles) does not improve on the forecast; the

increments are small and with mixed sign. The GMM

combination of the three uncorrected MMs (green tri-

angles) shows a marked improvement, and the 30-day

correction version (orange triangles) improves further

while the initial time correction products (cyan squares

and purple stars) show the largest improvement over

most of the stations. At this short T 1 24h range, the

BMA (blue stars) of the uncorrected forecasts is slightly

behind, which is a general feature across the displayed

CRPSS range from 25 to 1.

In contrast to the short range, T 1 240 h provides a

significantly different picture. The relatively clear

ranking of the products is gone by this lead time. The

MM and GMM combinations are able to improve

slightly for most of the stations, but at this range the

contribution seems to be generally always positive. The

postprocessing methods at this medium range, however,

deteriorate the forecasts sometimes, especially in the

range from 21 to 0.5 (the 30-day correction seems to

behave noticeably better in this respect). The general

improvements are clear though for most of the stations,

and also the overall ranking of themethods seen in Fig. 8

is reflected, although much less clearly than at T1 24 h,

with the BMA topping the list at T 1 240 h.

Finally, Fig. 10 presents the discharge performance we

could achieve in this study for all the stations that could

be processed in the period from August 2008 to May

2010 at T 1 240 h. It displays the CRPSS of the best

overall product, the GMM with the BMA of the un-

corrected forecasts (combination of the three BMA-

transformed MMs with the three initializations without

initial time or 30-day bias correction). The variability of

the scores is very large geographically, but there are

emerging patterns. Higher performance is observed in

the Amazon and in central and western parts of the

FIG. 9. Distribution of the skill increments over all stations provided by six combination and postprocessing products for two time ranges:

(a) T 1 24 h and (b) T 1 240 h. The x axis shows the reference skill, the average CRPSS of the four TIGGE models with the ERA-Land

initialization, while the y axis displays the CRPSS of the postprocessed forecasts at the stations. The six products are theMM combination of

the four models with ERAI-Land (red circles), the GMM combination of the three uncorrected MMs (green triangles), and the GMM

combination of four postprocessed products: the 30-day-corrected MMs (orange triangles), the initial-time-corrected MMs (cyan squares),

the combined 30-day- and initial-time-corrected MMs (purple stars), and finally the BMA-transformed MMs of the uncorrected forecasts

(blue stars), where all theMMs are the threeMMwith the different initializations. The diagonal line represents no skill improvement; above

this line the six products are better, while below it they are worse than the reference. The CRPSS values are computed based on the period

from August 2008 to May 2010. Some of the stations that have reference CRPSS below 25 are not plotted.
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United States, while lower CRPSSs are seen over the

Rocky Mountains in North America and in northerly

points in Europe and Russia. Unfortunately, the geo-

graphical coverage of the stations is not good enough to

draw more detailed conclusions.

5. Conclusions

This study has shown aspects of building a global

multimodel hydrometeorological forecasting system

using the TIGGE archive and analyzed the impact of the

postprocessing required to run a multimodel system on

the forecasts.

The atmospheric input was taken from four opera-

tional global meteorological ensemble systems, using

data available from TIGGE. The hydrological compo-

nent of this study was the HTESSEL land surface model

while the CaMa-Flood global river-routing model was

used to integrate runoff over the river network. Obser-

vations from the GRDC discharge archive were used for

evaluation and postprocessing.

We have shown that the TIGGE archive is a valuable

resource for river discharge forecasting, and three main

objectives were successfully addressed: (i) the sensitivity

of the forecasting system to the meteorological input

variables, (ii) the potential improvements to the histor-

ical discharge dataset (which provides initial river con-

ditions to the forecast routing), and (iii) improving the

predictive distribution of the forecasts. The main out-

comes can be grouped as follows:

(i) The impact of replacing or altering the input

meteorological variables to fit the system require-

ments is small and allows the use of variables from

the TIGGE archive for this hydrological study.

(ii) Themultimodel average historical discharge dataset

provides a very valuable source of uncertainty and a

general gain in skill.

(iii) Significant improvements in the forecast distribu-

tion can be produced through the use of initial time

and 30-day bias corrections on the TIGGE model

discharge, or on the combination of the forecast

models; however, the combination of techniques

used has a big impact on the improvement ob-

served, with the best BMA products providing

positive skill up to 6 days.

The quality of the raw TIGGE-based discharge fore-

casts has been shown to be low, mainly determined by

the limited performance of the reanalysis-driven his-

torical river conditions analyzed in section 4b. The lower

skill is in agreement with results found in other studies.

For example, Alfieri et al. (2013) showed that in the

context of GloFAS, the LISFLOODhydrological model

(Van Der Knijff et al. 2010), forced by ERAI-Land

runoff, shows variable performance based on the 1990–

2010 historical period. From the analyzed 620 global

observing stations the Pearson’s correlation coefficient

reaches as low as 20.2, and only 71% of them provide

correlation values above 0.5. Donnelly et al. (2015)

highlighted similar behavior with the E-HYPE system

based on 181 river gauges in Europe for 1981–2000. The

FIG. 10. Global CRPSS distribution of the highest quality postprocessed product at T1 240 h, the grandmultimodel combination of the

BMA-transformed uncorrected forecasts, based on the period from August 2008 to May 2010. The CRPSS is positively oriented and has

a perfect value of 1. The 0 value represents the quality of the reference system, the daily observed discharge climate.
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correlation component of the Kling–Gupta efficiency

started around 0, and geographical distribution of values

in Europe was very similar to our result (not shown).

The lowest correlation was found mainly in Spain and in

Scandinavia, with a comparable average value to our

European mean of 0.6–0.7 (see Fig. 5).

The combination and postprocessing methods we

applied to the discharge forecasts provided significant

improvement of the skill. Although the simple multi-

model combinations and the 30-day bias correction

(removing the mean error of the most recent 30 days)

both provide significant improvements, they are not

capable of achieving positive global skill (i.e., out-

perform the daily observed discharge climate). The

initial time correction, by adjusting to the observations

at initial time and applying this error correction into

the forecast, is able to provide skill in the short range

(only up to 2–3 days), especially when combined with

the 30-day correction. However, the impact quickly

wears off and for longer lead times (up to about 6 days)

only the BMA postprocessing method is able to pro-

vide positive average global skill (closely followed by

the persistence).

Although other studies could show significant im-

provement by using multiple meteorological inputs

(e.g., Pappenberger et al. 2008), in this study the impact

of combining different TIGGE models is rather small.

This is most likely a consequence of the overwhelming

influence of the historical river conditions on the river

initialization. The grand combinations, when we com-

bine the forecasts produced with different reanalysis-

driven historical river conditions, however, always

outperform the individual MMs (single initialization)

for all the postprocessing products. They provide a no-

ticeable overall skill improvement, which in our study

translated into an extension of the lead time, when the

CRPSS drops below 0, by about one day as a global

average for the most skillful BMA forecasts.

In the future we plan to extend this study to address

other aspects of building a skillful multimodel hydrome-

teorological system. The following areas are considered:

(i) Include other datasets that provide global coverage

of runoff data on high enough horizontal resolu-

tion, such as the Japanese 55-year Reanalysis

(JRA-55; Kobayashi et al. 2015) or the NCEP

Climate Forecast System Reanalysis (CFSR; Saha

et al. 2010) to provide further improvements in the

initial river condition estimates.

(ii) Introduce the multihydrology aspect by adding

an additional land surface model such as the Joint

UK Land Environment Simulator (JULES; Best

et al. 2011).

(iii) The presented scores in this study are relatively low

even with the postprocessing methods applied. To

achieve significantly higher overall scores, the in-

formation on the discharge observations should be

utilized in the modeling.

(iv) Similarly, the discharge quality could be signifi-

cantly improved by better calibration of many of

the watersheds in the CaMa-Flood routing.

(v) Alternatively, the application of different river-

routing schemes such as LISFLOOD, which is

currently used in the GloFAS, would also pro-

vide potential increase in the skill through the

multimodel use.

(vi) Further analysis of the errors and the trialing of

other postprocessing methods could also lead to

potential improvements. In particular, better al-

lowance should be made for temporal correlation

in the forecast errors. The use of the extreme

forecast index (Zsótér 2006) as a tool to compare

the forecasts to the model climate could potentially

bring added skill into the flood predictions.
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Abstract. While this paper has a hydrological focus (a glos-
sary of terms highlighted by asterisks in the text is included
in Appendix A), the concept of our decision-making activity
will be of wider interest and applicable to those involved in
all aspects of geoscience communication.

Seasonal hydrological forecasts (SHF) provide insight into
the river and groundwater levels that might be expected over
the coming months. This is valuable for informing future
flood or drought risk and water availability, yet studies in-
vestigating how SHF are used for decision-making are lim-
ited. Our activity was designed to capture how different wa-
ter sector users, broadly flood and drought forecasters, water
resource managers, and groundwater hydrologists, interpret
and act on SHF to inform decisions in the West Thames,
UK. Using a combination of operational and hypothetical
forecasts, participants were provided with three sets of pro-
gressively confident and locally tailored SHF for a flood
event in 3 months’ time. Participants played with their “day-
job” hat on and were not informed whether the SHF repre-
sented a flood, drought, or business-as-usual scenario. Par-
ticipants increased their decision/action choice in response
to more confident and locally tailored forecasts. Forecast-
ers and groundwater hydrologists were most likely to request
further information about the situation, inform other organi-
zations, and implement actions for preparedness. Water re-
source managers more consistently adopted a “watch and
wait” approach. Local knowledge, risk appetite, and expe-
rience of previous flood events were important for inform-

ing decisions. Discussions highlighted that forecast uncer-
tainty does not necessarily pose a barrier to use, but SHF
need to be presented at a finer spatial resolution to aid local
decision-making. SHF information that is visualized using
combinations of maps, text, hydrographs, and tables is ben-
eficial for interpretation, and better communication of SHF
that are tailored to different user groups is needed. Decision-
making activities are a great way of creating realistic sce-
narios that participants can identify with whilst allowing the
activity creators to observe different thought processes. In
this case, participants stated that the activity complemented
their everyday work, introduced them to ongoing scientific
developments, and enhanced their understanding of how dif-
ferent organizations are engaging with and using SHF to aid
decision-making across the West Thames.

1 Introduction

There has been a recent shift away from the conventional lin-
ear model of science, where research is carried out within
the scientific community with the expectation that users will
be able to access and apply the information, towards co-
production and stakeholder-led initiatives that bring together
scientists and decision-makers to frame and deliver “ac-
tionable research” (Asrar et al., 2012; Lemos et al., 2012;
Meadow et al., 2015). Regular and clear communication
between scientists and policy-makers and practitioners in

Published by Copernicus Publications on behalf of the European Geosciences Union.



36 J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions?

workshops, focus groups, consultations, and interviews, and
through the development of games, activities, and interactive
media, is imperative for ensuring that projects deliver im-
pact outside of the academic environment. Here, we share
findings from an activity that explored the use of seasonal
hydrological forecasts∗ for local decision-making. This was
conducted as part of an IMPREX (IMproving PRedictions
and management of hydrological Extremes) stakeholder fo-
cus group for the West Thames, UK (van den Hurk et al.,
2016; IMPREX, 2018a), co-organized by the University of
Reading (UoR), UK, Environment Agency (EA) and sup-
ported by the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Seasonal hydrological forecasts (SHF) have the ability to
predict principal changes in the hydrological environment
such as river flows and groundwater levels weeks or months
in advance. This has the potential to benefit humanitarian
action and economic decision-making, e.g. to provide early
warning of potential flood and drought events, assist with
water quality monitoring, and ensure optimal management
and use of water resources for public water supply, agricul-
ture, and industry (Chiew et al., 2003; Arnal et al., 2017; Li
et al., 2017; Meißner et al., 2017; Turner et al., 2017). SHF
systems covering a range of spatial scales have been devel-
oped – Hydrological Outlook UK forecasts at a national level
(Prudhomme et al., 2017; CEH, 2018) – while the Coperni-
cus European and Global Flood Awareness Systems (EFAS
and GloFAS) provide operational forecasts over larger scales
(JRC, 2018a, b). Recent research has demonstrated improve-
ments in SHF quality∗, including increased accuracy out to
4 months for high-flow events during the winter in Europe
(Arnal et al., 2018; Emerton et al., 2018).

There is growing interest in SHF amongst policy-makers
and practitioners; however, in many cases, there is limited
information about whether SHF products are actually being
used. Research output has focused largely on technical sys-
tem development and improvements to forecast skill∗ (see
the review by Yuan et al., 2015), with relatively fewer studies
exploring how users engage with and apply SHF to inform
decisions (see Crochemore et al., 2015; Viel et al., 2016).
Many seasonal forecasting studies, including those investi-
gating the application of seasonal meteorological forecasts∗

(which provide information about future weather variables,
rather than hydrology more specifically), have identified
forecast uncertainty∗, whereby forecast skill and sharpness∗

decrease with increasing lead time∗ (Wood and Lettenmaier,
2008; Soares and Dessai, 2015), and how this uncertainty
can be communicated effectively as key barriers to use (Ar-
nal et al., 2016; Vaughan et al., 2016). Non-technical fac-
tors, including the level of knowledge and training required
to interpret and apply SHF information effectively (Bolson
et al., 2013; Soares and Dessai, 2016), the visualization, for-
mat, and compatibility of the information provided (Fry et
al., 2017; Soares et al., 2018), and the level of communica-
tion between different users in the water sector and between

research developers and practitioners (Golding et al., 2017),
have all been found to act as both barriers and enablers, de-
pending on the user group in question.

The potential for SHF to meet the needs of the water sec-
tor is recognized by a host of UK environmental organiza-
tions, including the EA, the Met Office, and research centres
(see Prudhomme et al., 2017). The West Thames specifically
is underlain by a slowly responding, largely groundwater-
driven hydrogeological system (Mackay et al., 2015), mean-
ing that there is potential for extreme hydrological events
such as the drought of 2010–2012 (Bell et al., 2013) and
winter floods of 2013–2014 (Neumann et al., 2018) to be de-
tected weeks or months in advance. It also has a dense pop-
ulation and high demands for water which require effective
long-term management of resources for public drinking sup-
ply, industry, agriculture, and wastewater treatment (further
details about the West Thames can be found in Sect. 2.2).
The value of using SHF in the West Thames is of particular
interest to the EA; however, information on the level of un-
derstanding, uptake, and application is currently unknown.
We therefore aimed to develop a clearer understanding about
how different professional water sector users – broadly fore-
casters, groundwater hydrologists, and water resource man-
agers – are currently engaging with SHF in the West Thames
using a decision-making activity.

In the context of flood science communication with ex-
perts, real-time activities such as simulation exercises (that
imitate real-world processes and behaviours) or roleplay
(where participants engage with real-world scenarios but take
on personas and positionalities that differ from their own)
are known to be effective when engaging with stakehold-
ers who bring a range of scientific ideas and perspectives to
the table (McEwen et al., 2014). Such activities encourage
participants to apply their knowledge to realistic situations
and to reflect on issues and the perspectives of other stake-
holders (Pavey and Donoghue, 2003, p. 7). They are also
valuable for understanding decision-making processes, e.g.
for environmental hazards and conflicting community views
(Harrison, 2002), for capacity building in response to new
water legislation (Farolfi et al., 2004), and for understand-
ing climate forecasts and decision-making (Ishikawa et al.,
2011). Our decision-making activity provided an interactive
and entertaining platform that encouraged participants to en-
gage with real-world scenarios whilst fostering discussions
about the barriers and enablers to use of SHF. Using three
activity stages, participants were provided with sets of pro-
gressively confident and locally tailored SHF for the next 3
to 4 months. The SHF were produced using output from op-
erational systems including Hydrological Outlook UK and
the European Flood Awareness System (EFAS), and hypo-
thetical forecasts generated through scientific research (see
Neumann et al., 2018). Participants were asked to play in real
time, i.e. as if receiving the forecasts on the day for the next 3
to 4 months. They did not know in advance whether the SHF
represented a flood, drought, or business-as-usual scenario
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and had to use their knowledge and experiences to make in-
formed decisions based on the maps, hydrographs∗, tables,
and text provided. In reality, all three sets of SHF represented
the same time period: winter 2013–2014 (a period of exten-
sive flooding nationwide that occurred at the end of 2 years
of drought conditions in the UK). Between December 2013
and February 2014 the West Thames experienced extreme
flooding from fluvial and groundwater sources which had
knock-on impacts for local water quality, sewage treatment,
and water resource management – opening up discussions
for all participants. Given that issues relating to flood and
drought risk, water quality, and water resource management
in the West Thames are generally managed by local and
regional-area authorities (Thames Water, 2010), the activity
focused on whether SHF can be used to support decision-
making at the local level. To the best of our knowledge, this
scale of practical application has yet to be explored, we sus-
pect mainly due to the lower skill of seasonal meteorological
forecasts in Europe, particularly with respect to precipitation,
which is a key variable of interest for hydrology (Arribas et
al., 2010; Doblas-Reyes et al., 2013). A brief overview of the
focus group is provided in Sect. 2, the full activity set-up is
detailed in Sect. 3, and the findings and the discussion are
presented in Sects. 4 and 5.

2 Overview of the focus group

2.1 Aims of the focus group

The focus group was developed in collaboration with the EA
and in line with the objectives of the IMPREX project. The
aims were the following.

– Introduce and discuss current SHF projects, products,
and initiatives for the UK and Europe.

– Engage with participants’ experiences and knowledge
of using SHF.

– Learn how SHF are being applied in the West Thames
and recognize how different users in the water sector ap-
proach and apply SHF information for decision-making.

– Identify limitations and barriers to use.

– Identify future opportunities for SHF application and re-
search.

These aims were delivered through a series of four interac-
tive sessions designed to actively engage participants to share
their knowledge and experiences of SHF, and short presenta-
tions that introduced the main topics surrounding SHF and
informed participants about current SHF projects and devel-
opments in the scientific research. While this paper focuses
on the decision-making activity (interactive session 2), dis-
cussions from the other sessions are also presented where

relevant. An outline of the focus group programme is pro-
vided in Supplement 1 and a full report of the activities is
available; see Neumann et al. (2017).

2.2 The West Thames in southern England

2.2.1 Physical geography

The West Thames refers to the non-tidal portion of the
Thames River Basin∗, from its source in the Cotswolds in the
west of England to 230 km downstream at Teddington Lock
in western London (Fig. 1). It covers an area of 9857 km2

(the Thames basin is 16 980 km2) and comprises 10 river
catchments∗ that are the tributaries∗ that feed directly into
the River Thames (Fig. 1). The western catchments are pre-
dominantly rural; land use is a mix of agriculture and wood-
land with rolling hills and wide, flat floodplains (elevation
up to 350 m a.s.l.). Towards the centre and east, the region
becomes increasingly urbanized, encompassing the towns
of Reading and Slough and outskirts of Greater London
(elevation 4 m a.s.l. at Teddington Lock). Lithology∗ varies
markedly across the West Thames. Catchments overlaying
the Cotswolds (upstream) and the Chilterns (middle sections)
are dominated by chalk and limestone aquifers∗ with high
baseflow∗, while a band of less-permeable clays and mud-
stones separates these two areas. Sandstones, mudstones,
and clays are also prevalent towards London (downstream)
– these catchments have higher levels of surface runoff∗ and
can exhibit a flashier∗ response to storm events (Bloomfield
et al., 2011; EA, 2009).

2.2.2 Water demands, risk, and management – why the
West Thames is of interest

The West Thames is a highly pressured environment –
15 million people and a substantial part of the UK’s economy
rely directly on its water supply (EA, 2015). There are more
than 2000 licensed abstraction points in the chalk aquifers
and superficial alluvium and river terrace gravel deposits;
90 % of abstractions are for public water supply, the rest
providing water for agriculture, aquaculture, and industry
(Thames Water, 2010). There are 12 000 registered wastewa-
ter discharge points; pollution from sewage treatment works,
transport, and urban areas affects more than 45 % of rivers,
water bodies, and aquifers, largely towards London. Diffuse
pollution and sedimentation from agricultural and forestry
practice are the main contributors to poor water quality in
the upper catchments, especially during times of high rain-
fall (EA, 2015).

Urbanization and land-use change in combination with
more varied rainfall patterns have seen the region affected
by a number of extreme drought and flood events in recent
years (EA, 2009; Parry et al., 2015; Muchan et al., 2015).
Across the Thames Basin, 200 000 properties are at risk from
a 1 : 100∗-year fluvial flood, with 10 000 at risk from a 1 : 5∗-
year event (EA, 2009). Low and high river flows also pose
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Figure 1. Location and lithology of the West Thames and its 10 main river catchments.

risks to navigation and management of the canal network
which is highly important for recreation, local living, and the
economy (Wells and Davis, 2016).

2.3 Participants

2.3.1 Who took part?

SHF have the potential for wide-ranging application and it
was important to capture the different perspectives of the
West Thames water sector. The organizers agreed that the
focus group would work well with a relatively small num-
ber of participants (up to 12) so that all perspectives could
be heard. Based on discussions held between the organiz-
ers, individuals from local organizations working in estab-
lished (i.e. long-term/permanent/leadership) roles relevant to
SHF in the West Thames were invited; many but not all par-
ticipants had previously collaborated with the University of
Reading and/or EA. In some cases, an invitee was unable to
attend due to prior commitments or because they had a col-
league who they felt would be a better fit for the focus group.
A total of 17 participants were invited from six organizations
– 12 accepted and 11 took part on the day. They were respon-
sible for flood and drought forecasting (F× 3), groundwater
modelling and hydrogeology (GH× 2), navigation (N× 1),
water resource and reservoir management (WR× 2), public
water supply (WS× 2), and wastewater modelling and oper-
ations (WW× 1). They represented five organizations: two
non-departmental public bodies (sponsored by government
agencies), two science and research centres, one water ser-
vice company, and one non-for-profit organization (Table 1).

2.3.2 Current engagement with SHF

By inviting local stakeholders we ensured that participants
represented a range of different water sector personas and
were familiar with the West Thames environment. We did not
assume that participants had any prior knowledge of SHF and
invitees were encouraged to attend even if they were unfamil-
iar with the concept as this would be an important indicator
of the state of play in the West Thames (invite poster; see
Supplement 1).

All 11 focus group participants were familiar with the con-
cept of seasonal hydrological forecasting and 10 regularly
used SHF in their everyday job (according to results from
interactive session 1 – “What are seasonal hydrological fore-
casts?”). Using post-its, participants noted that Hydrologi-
cal Outlook UK (CEH, 2018) and the associated raw fore-
casts from the analogue, hydrological, and meteorological
models (produced by the UK Met Office, Centre for Ecol-
ogy and Hydrology, British Geological Survey, EA, Natural
Resources Wales, Scottish Environment Protection Agency,
and Rivers Agency Northern Ireland) were the main sources
of SHF information currently being used, primarily for flood
and drought outlook, groundwater monitoring, and river flow
projection purposes. Scientific research, operational plan-
ning, and sharing of information with other organizations in
the water sector were also listed as reasons for engaging with
SHF. It is important to note that no prior definitions or infor-
mation were provided and no restrictions or guidance were
placed on what participants should write down. This suggests
that many in the water sector are using SHF to obtain an in-
sight into whether the upcoming season will be drier or wet-
ter than normal, but that they also believe SHF potentially
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Table 1. Breakdown of participants who took part in the activity.

Job title Organization type Role in the activity

Modelling and Forecasting Team Leader Public body/government agency (1) Flood and drought forecaster
Chief Hydrometeorologist Public body/government agency (2) Flood and drought forecaster
Climate Scientist (Professor) Science and research centre (1) Flood and drought forecaster
Thames Water Resources Technical Specialist Public body/government agency (1) Groundwater modelling and hydrogeology
Groundwater Research Directorate Science and research centre (2) Groundwater modelling and hydrogeology
Principal Hydrologist for Water Management Not-for-profit (charitable trust) Navigation
Water Resources, Environment and Business Directorate Public body/government agency (1) Water resource and reservoir management
Abstraction and Transfers Analyst Water service company Water resource and reservoir management
Water Strategy and Resources Modeller Water service company Public water supply
Thames Region Hydrologist Public body/government agency (1) Public water supply
Wastewater Modelling Specialist Water service company Wastewater modelling and operations

have the capability to forecast possible flood and drought
risk, which could be used to support decision-making and
provide better preparedness. This is an encouraging starting
point, although many participants noted that this potential is
not currently being realized due to the uncertainty and coarse
spatio-temporal resolution of SHF; e.g. Hydrological Out-
look UK forecasts are only published monthly for the main
UK river basins.

3 Set-up of the decision-making activity

3.1 Background

Our activity was inspired by the success of previous decision-
making activities and games run by the HEPEX (Hydro-
logical Ensemble Prediction EXperiment) community (e.g.
Ramos et al., 2013; Crochemore et al., 2015; Arnal et al.,
2016). The aim was to better understand how different water
sector users in the West Thames interpret and act on SHF by
providing them with hydrological context, maps, and fore-
casts for the region. The activity was designed for the West
Thames so that we could capture the relationship between
local stakeholders and the environment in which they work.

3.2 Activity design

3.2.1 Overview of the set-up

The set-up of the activity (illustrated in Fig. 2) had the
following structure: Choose groups > Define the Objec-
tives > Background Context > Stage 1 > Stage 2 > Stage 3.

Participants divided themselves into three groups based on
their area of expertise and where they felt they could best
contribute to the discussions. There were three flood and
drought “forecasters” and two “groundwater hydrologists”.
The remaining participants (navigation, water resource and
reservoir management, public water supply and wastewa-
ter operations) grouped themselves as “water resource man-
agers”. While the results and discussions focus on these three
broad groups, individual perspectives are also included to

capture the variety of water sector personas present. There
were also three research facilitators and three note-takers
whose role it was to capture and record the key discussion
points.

Groups were first provided with background context to
the West Thames to set the scene, followed by three sets
of progressively confident SHF for the next 3 to 4 months
(Stages 1–3). Stage 1 forecasts were from Hydrological Out-
look UK, Stage 2 were from EFAS-Seasonal (European
Flood Awareness System) and Stage 3 were “improved”
output from EFAS-Seasonal (Fig. 2 and Sect. 3.4). Partic-
ipants were asked to discuss the information presented in
their groups and make informed decisions about each of the
10 West Thames catchments (Fig. 1 and Sect. 3.3.2). All
groups were provided with exactly the same information and
discussion was encouraged. The activity took around 2 h and
timings were only loosely controlled.

SHF at all three stages of the activity represented the same
time period – dating from 1 November 2013 to 28 Febru-
ary 2014 (or 31 January 2014 for Hydrological Outlook UK,
which only extends to 3 months; CEH, 2018). These dates
captured a period of severe and widespread river and ground-
water flooding in the West Thames (Huntingford et al., 2014;
Kendon and McCarthy, 2015; Muchan et al., 2015). Par-
ticipants did not know the dates of the forecasts, nor were
they informed whether the situation being forecasted was
a high flow (flood), low flow (drought) or a business-as-
usual scenario. Dates were removed from all information,
and streamflow- and groundwater-level units were removed
from the Stage 2 and Stage 3 EFAS hydrographs, although
exceedance thresholds were provided for context. The de-
cision to remove units was advised by the EA. The con-
cern was that participants familiar with average and high-
flow values for specific catchments would deduce that the
SHF must represent the 2013–2014 floods, which would bias
their decision-making based on their previous experience and
memories. No information on forecast skill or quality was
given and participants were asked to treat all information as
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Background context – setting the scene: 

 

Discuss in teams and individually make informed decisions for each of the 10 western Thames catchments based on three sets of 
SHF (Stages 1 – 3) 

- Stick individual colour-coded decisions (dots) on map (see Table 2) 

- Record individual thought-process on empathy chart (see Fig. 4) 
 

Objective:  

3 x  
forecasters 

 

2 x groundwater 
hydrologists 

 

 

6 x 
 water resource 

managers 
 

Identify the different catchment characteristics and the 

associated risks and opportunities  

 

 

 
Gain an understanding of the current hydrological situation 

to help put the upcoming SHF and decision-making into 

context 

 

 

1) Catchment maps 
- Elevation, slope, flood risk,  

land-use, hydrogeology 

2) Current hydrological situation 
- Hydrological summary (NRFA, 2013)  

- Past month, season and year 
- Rainfall, river flows, groundwater   

   levels and reservoir stocks 
 

 

 

Hydrological outlook UK  
(CEH, 2013). 

Operational regional SHF 
information with reference to 

normal conditions. 
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groundwater level forecasts 

(maps, charts, text) 
 

 

EFAS-seasonal  
(Arnal et al., 2018) 

Operational SHF from the 
European flood awareness 

system. 

Four months streamflow and 
groundwater level forecasts  

(hydrographs, maps) 

‘Improved’ EFAS-seasonal  
(Neumann et al., 2018) 

Non-operational SHF from the 
European flood awareness 

system. 

Four months streamflow and 
groundwater level forecasts  

(hydrographs, maps) 
 

 

STAGE 1 

STAGE 2 

STAGE 3 

Figure 2. Set-up of the activity.

being “current”, i.e. as if receiving the SHF today, for the
next 3–4 months to create a realistic forecasting scenario.

3.2.2 Recording the decisions

In real life, a user’s decision process can encompass a
range of possible actions and associated consequences
(Crochemore et al., 2015). Decisions can be controlled by
providing participants with a set of options to choose from,
e.g. to deploy temporary flood defences or not – the conse-
quences of which usually determine the outcome of a game
or activity. In this case, participants were asked to select from
a broad range of colour-coded options (Table 2), but spe-
cific decisions were not defined as these had the potential to
differ greatly between participants and might prompt unreal-

istic answers. At each stage, the colour-coded options were
discussed by the three groups, simulating conversations that
could happen in real life, but it was stressed that the colour
chosen was to be representative of what an individual par-
ticipant, or their organization, would do with the SHF infor-
mation in each catchment. This was recorded on an A1 map
using coloured sticky dots marked with the participant’s ini-
tials (n∼ 110 dots per map (11 participants, 10 catchments))
(Fig. 3). In cases where participants were not familiar with
all catchments, or did not feel able to make an informed de-
cision, they did not place a dot. It was important to gather
a written record explaining how and why the decisions were
reached, and so participants were also asked to complete an
A4 empathy map at each stage (Fig. 4). Originally designed
as a collaborative tool to be used in business and marketing,
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Figure 3. Participants’ individual colour-coded decisions recorded on an A1 map.

Table 2. Colour codes and corresponding action or decision to be taken.

Decision to be made or action to be taken

Ignore the SHF information: wait for the more skilful forecasts with shorter lead times (e.g. a 7–10-day forecast).

Look at the SHF information: decide there is no notable risk and do nothing at this point.

Look at the SHF information: discuss or pass the information on to relevant colleagues/departments in your
organization and agree to keep an eye on the situation.

Look at the SHF information: discuss or pass the information on to relevant colleagues/departments in
your organization but also external partners – actively request further information about the situation or seek
advice on possible actions.

Look at the SHF information: decide to implement or set in motion action(s) in a catchment, e.g. to help with
drought preparedness, early warning, repairs, or maintenance to flood defences.

empathy maps aim to gain a deeper understanding about an
external user’s experiences and decisions (Gray, 2017). Here,
we adapted the traditional use by asking individuals to reflect
on their own decisions based on their real-life experiences
and discussions with other group members. This allowed us
to capture individuals’ thought processes, influences, discus-
sions, and the potential risks and gains associated with their
decision (Fig. 4). By combining the information recorded on

empathy maps for each group, we also gathered an overview
of the shared understanding between forecasters, groundwa-
ter hydrologists, and water resource managers and how their
SHF needs and expectations match and differ when it comes
to decision-making.
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Figure 4. Empathy map completed by each participant during Stages 1–3.

3.3 Background context

Groups were given information about the West Thames
catchment characteristics and “current” hydrological condi-
tions (units and dates removed) to place the upcoming SHF
into context and aid interpretation.

3.3.1 Catchment characteristics – driving factors, risks
and opportunities

Five maps (Supplement 2) that provided a visual representa-
tion and a numerical breakdown of the characteristic differ-
ences between each catchment were given to participants.

– Hydrogeology∗ – dominant geological type (sandstone,
chalk, clay)

– Elevation – minimum, maximum and mean elevation
(m a.s.l.)

– Slope – minimum, maximum and standard deviation of
slope angle (degrees)

– Land cover – dominant land use (urban, woodland, agri-
cultural, semi-natural)

– Flood risk – flood warning and flood alert areas and an
indication of “urban flood risk”

Participants were asked to discuss and identify the key differ-
ences between catchments and highlight the associated risks
and opportunities. As some participants were more familiar
with specific areas/catchments based on their day job, the
maps provided a wider view of where catchment characteris-
tics differ across the West Thames region.

3.3.2 Current hydrological situation

To help set the scene with respect to initial conditions, i.e. the
“current” levels of water contained in the soil, groundwater,
rivers, and reservoirs, groups were provided with informa-
tion from the Hydrological Summary (NRFA, 2018) for the
last month, past season, and past year (October 2013, June
to September 2013, and November 2012 to October 2013
with dates removed). The Hydrological Summary (Supple-
ment 3) focuses on rainfall, river flows, groundwater levels,
and reservoir stocks and places the events of each month,
and the conditions at the end of the month, into a historical
context. In the real world, decision-makers are already pre-
pared with this information; thus, providing evidence about
whether hydrological conditions were wet, dry, or normal at
the point of receiving the forecasts was an important piece of
information for the participants to consider.

3.4 Activity Stages 1–3: the seasonal hydrological
forecasts

3.4.1 Stage 1 – Hydrological Outlook UK

The first set of SHF information provided to participants was
the Hydrological Outlook UK (from 1 November 2013 to
31 January 2014, with dates removed) (CEH, 2013). This
provided regional information for the next 3 months with ref-
erence to normal conditions for precipitation, temperature,
river flows and groundwater levels. Hydrological Outlook
UK uses observations, ensemble models and expert judge-
ment (CEH, 2018) to produce the seasonal forecasts. Infor-
mation is publicly available and consists of text, graphs, ta-
bles and regional maps (examples are shown in Fig. 5 and
the full set of forecasts provided to participants are in Sup-
plement 4).
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Figure 5. UK 3-month outlook maps from November 2013 (colours based on the percentile range of historical observed values). (a) Regional
river flow forecasts created from climate forecasts. (b) Groundwater level forecasts at 25 UK boreholes created from climate forecasts (CEH,
2013).

3.4.2 Stage 2 – EFAS-Seasonal

EFAS-Seasonal (European Flood Awareness System) is an
operational system that monitors and forecasts streamflow∗

across Europe, with the potential to predict higher than nor-
mal streamflow events up to 2 months ahead in an operational
capacity, and up to 7 months in practice (JRC, 2018a; Arnal
et al., 2018). It runs on a 5 km× 5 km grid and uses the LIS-
FLOOD hydrological model (Van der Knijff et al., 2010; Al-
fieri et al., 2014). Seasonal ensemble∗ meteorological fore-
casts from the ECMWF’s “System 4” operational meteoro-
logical forecasting system (Molteni et al., 2011) are used as
input to LISFLOOD, from which seasonal ensemble hydro-
logical forecasts are generated on the first day of each month
(see Arnal et al., 2018, for details).

For the activity, SHF were produced from 1 Novem-
ber 2013 out to 4 months to focus on the period of ex-
treme stormy weather and flooding experienced. As EFAS-
Seasonal is designed to run at the scale of large river basins
(i.e. the whole Thames basin), GIS shapefiles were used to
extract forecast information for the 10 West Thames catch-
ments using Python v3.5. This provided more locally tai-
lored forecasts compared with Hydrological Outlook UK
(Stage 1).

To ascertain whether participants had a preference for how
SHF information is presented, the Stage 2 forecasts were pre-
sented as both hydrographs and choropleth∗ maps (Fig. 6).

Ensemble hydrographs for streamflow (m3 s−1) and ground-
water levels (mm) indicated the predicted trajectory of the
hydrological conditions for the next 4 months in each of the
10 catchments (n.b. the greater the spread, the more uncer-
tain the forecast) (Fig. 6a). Units and dates were removed;
however, exceedance thresholds∗, based on daily observed
streamflow and groundwater records between 1994 and 2014
for each of the catchments, were provided for context (EA,
2017; NRFA, 2017). Q50 (median) indicated average stream-
flow and groundwater conditions for the catchment. Q10
(90th percentile) indicated high streamflow/high groundwa-
ter level conditions – 90 % of all recorded observations over
the previous 20-year period fell below this line.

The choropleth maps showed the maximum probability
that the full forecast ensemble for a catchment exceeded the
Q10 (90th percentile) threshold in a given month (Fig. 6b),
thus providing a snapshot of the probability of potentially
extreme conditions at catchment level. The full set of EFAS-
Seasonal SHF provided to participants can be found in Sup-
plement 5.

3.4.3 Stage 3 – “Improved” EFAS-Seasonal

Stage 3 followed the exact same set-up and provided the
same style output (Fig. 7a, b) as Stage 2 – the only differ-
ence being that the seasonal meteorological forecasts used as
input to LISFLOOD were taken from a set of atmospheric re-
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Figure 6. Four-month hydrological forecasts from EFAS-Seasonal (Stage 2). (a) Ensemble hydrographs for streamflow (light blue) and
groundwater levels (dark blue) for the Lower Thames (LT) catchment. Exceedance thresholds (based on records from 1994 to 2014) are
shown as Q10 (dashed line) and Q50 (dotted line). (b) Choropleth map shows the maximum probability that the full hydrograph ensemble
for a catchment exceeds the Q10 streamflow threshold in a given month.

laxation experiments∗ conducted as part of a scientific study
in the West Thames (see Neumann et al., 2018) rather than
the operational seasonal meteorological forecasts from “Sys-
tem 4”.

Atmospheric relaxation experiments were conducted by
the ECMWF in late 2014 after the extreme weather and
flooding (Rodwell et al., 2015). The aim was to recreate
the atmospheric conditions that prevailed between Novem-
ber 2013 and February 2014, so that the ECWMF could
better understand how weather anomalies across the globe
contributed to the flooding experienced in the West Thames
(Neumann et al., 2018). The SHF at Stage 3 represented near
“perfect” forecasts as they were produced once the floods
had happened and the weather conditions were known. The
hydrographs are thus much sharper and more accurate than
those presented to the participants at Stage 2 (Fig. 7, Supple-
ment 6). It is important to note that this is not something that

can be achieved by operational systems currently, but does
represent the theoretical upper level of forecast skill that may
be available to water sector users in the future.

4 Results

4.1 Background context

4.1.1 Catchment differences – “hydrogeology is the
driving factor of risks and opportunities”

All groups recognized spatial variability between the catch-
ments and general consensus was that hydrogeology was
the most important factor determining flood risk, drought
risk, and water availability in the West Thames (Supple-
ment 2). All groups were interested in the persistence, hy-
drological memory, and slower response of the groundwater-
driven catchments upstream (e.g. the Evenlode, Thames, and
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Figure 7. Four-month hydrological forecasts from the “Improved” EFAS-Seasonal (Stage 3). (a) Ensemble hydrographs for streamflow
(light blue) and groundwater levels (dark blue) for the Lower Thames (LT) catchment. Exceedance thresholds (based on records from 1994
to 2014) are shown as Q10 (dashed line) and Q50 (dotted line). (b) Choropleth map shows the maximum probability that the full hydrograph
ensemble for a catchment exceeds the Q10 streamflow threshold in a given month.

South Chilterns and Kennet) as these provided the great-
est opportunity for water supply but also increased risk of
local groundwater flooding and widespread fluvial flooding
further downstream. Forecasters also highlighted the risks
posed by impermeable catchments (e.g. the Cherwell and
Lower Thames) that have a flashier response to rainfall. Wa-
ter resource managers stated that upstream reservoirs were
at increased risk of pollution (from agriculture), whilst dry
weather (drought) was a greater issue towards London.

4.1.2 Current hydrological situation – “normal”

Hydrological Summary placed the “current” hydrological
conditions for river flows, groundwater levels, and reservoir
stocks within the “normal” range (Supplement 3). Maps indi-
cated that rainfall was below average over the past season but
above average the previous month. All groups were happy

with the current hydrological situation (no risks currently),
although water resource managers stated that rainfall defi-
ciency in the background should be kept in mind due to fu-
ture drought potential.

4.2 Participant responses from Stages 1 to 3

The findings from each stage of the activity are presented be-
low. At no point did participants ignore the SHF information
(no black stickers were placed on the maps), which matched
previous discussions about organizations’ current use of SHF
(Sect. 2.3.2). Colour-coded decisions made by all partici-
pants (calculated by counting the stickers on the A1 catch-
ment maps) are represented as pie charts. An accompanying
bar chart details the breakdown of choices made by each par-
ticipant and their specific role in the water sector (Fig. 8a–c).
Quotes and information in the text are taken from discussions
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F = Flood and drought forecasters     WR = Water resource specialists 
GH = Groundwater hydrologists         WS = Public water supply managers 
N = Navigations officer       WW = Wastewater operations 
 

Figure 8. Summary of decisions and actions taken by different water sector personas based on (a) Hydrological Outlook UK; (b) EFAS-
Seasonal; and (c) “Improved” EFAS-Seasonal. Blue – no notable risk; green – discuss internally; yellow – discuss externally and seek advice;
red – implement action. Refer to Table 2 for full colour code descriptors.
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recorded on the day and empathy maps – these are presented
for the three groups (forecasters, groundwater hydrologists,
and water resource managers).

4.2.1 Stage 1 – Hydrological Outlook UK

General consensus was for normal or above-normal condi-
tions over the next 3 months; however, the information was
“too vague to be actionable”. Forecasters and groundwater
hydrologists were more likely to discuss the situation with
colleagues and keep an eye on the situation (green/blue), al-
though there was some disagreement about the level of risk.
Those involved in water resources, water supply, navigation,
and wastewater operations (water resource managers) identi-
fied no risks requiring action (blue) (Fig. 8a).

Key statements:
“Analogy with the summer 2007
floods∗ suggests that there’s a risk
that might be worth communicating
internally. Political influences e.g.
known flooding hotspots might also be
singled out for further engagement.
However, there’s not much evidence to
divert from a normal pattern of
preparedness.”
∗The UK suffered extensive flooding during June and

July 2007 (the West Thames was flooded in late July).

Thirteen people died and damages exceeded

3.2 billion GBP nationwide

(Chatterton et al., 2010).

“No major issues currently but there
is a signal for rising groundwater
levels, potentially leading to flood risk
– discuss with colleagues and keep an
eye on borehole observations and
new forecasts.”

“Conditions are favourable from
a water resources perspective –
possibly heading more towards flood
than drought conditions but currently
no notable risk and no concerns.
Discussions may arise during regular
business briefings, but unlikely to be
pursued unless changes are observed.”

4.2.2 Stage 2 – EFAS-Seasonal

General consensus was for above-average streamflow and
groundwater levels. Although the SHF provided more detail
compared with Hydrological Outlook UK (Stage 1), clarity
remained an issue. There was a general shift towards more
internal communication (green), although actions were taken

by the wastewater operations manager in the water resource
managers’ group (yellow/red) (Fig. 8b).

Key statements:
“Repeated rainfall events can lead
to accumulated flood risk in the
Lower Thames and Thame and South
Chilterns. Streamflow appears to
convey more risk than groundwater
levels. Would discuss in general terms
with colleagues and internal decision-
makers to avoid an over-reaction at
senior level.”

“A moderate risk of groundwater
flooding (especially if the time period
is for autumn – winter) but river flows
do not appear to contribute much to
groundwater risk at this stage and the
forecasts are uncertain. Our attention
is focused on the chalk catchments
and Thames gravels; no direct
actions are taken at the moment but
we’d keep an eye on the situation and
discuss at monthly meetings.”

“No significant concerns from a
water resources or navigation
perspective however, there is
potential for localised flood risk
which may impact on water
supply and turbidity. Not all
catchments are affected so focus
attention on Cotswolds and the
Vale, Cherwell, Thame and South
Chilterns and Colne where maps
indicate high probability
of Q10 exceedance. Discuss at
internal briefings.”

4.2.3 Stage 3 – “Improved” EFAS-Seasonal

General consensus was for confident forecasts that showed
a high risk of streamflow and groundwater flooding in ap-
proximately 6 weeks’ time. At this stage, forecasters and
groundwater hydrologists were looking to verify the relia-
bility and quality of the forecasts. Internal discussion and
wider communication (green/yellow) were actively explored,
although forecasters and groundwater hydrologists were still
more likely to act on the information compared with water
resource managers (Fig. 8c).
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Key statements:
“Compared with our previous
experiences of SHF these are very
sharp with a strong signal and we
would actively seek expert guidance as
to the quality of the forecasts. If credible,
our concern is that the signal is likely to
represent a nationwide flood risk (not
just the West Thames). Low-consequence
actions that deliver a measured message
should be implemented – e.g., identifying
and locating resources and stocks,
movement of temporary flood defences
to high risk areas, completing projects,
careful media release, strategic planning
and staff briefing.”

“There’s high probability of
substantially exceeding the Q10
threshold. Catchment characteristics
are important to identify areas most
at risk of groundwater flooding
(chalk and gravels). Drawing on
previous experiences we’d discuss
the situation, obtain regular updates
from partner organisations, use
localised groundwater models to
verify forecasts and consider
communication via press release.”

“These are confident forecasts that
give a good overview of magnitude
and sequencing of possible flood
events and subsequent knock-on
effects to water quality. Expect
issues in 2–4 months so any actions
taken would depend on how regularly
forecasts are updated. We’d keep an
eye on groundwater levels, hold
internal briefings and discuss with
groundwater team members to ensure
they are kept informed and prepared.
For navigation and wastewater
operations where impacts can directly
affect the public, we’d consider
some open discussion with customers
who will want to know how long an
event might last.”

5 Discussion

Our decision-making activity was designed to help under-
stand how different water sector users engage with and act on
SHF at a local level. The SHF for the three activity stages rep-

resented an extreme flood event between November 2013 and
February 2014. There was clear evidence that more confident
(sharper) and locally tailored forecasts led to increased levels
of decision and action, although water sector users did not re-
spond uniformly. Forecasters and groundwater hydrologists
were most likely to inform other organizations, request fur-
ther information about the situation, and implement action,
while water resource managers more consistently adopted a
“watch and wait” approach. In this section, the results are
discussed in more detail and the findings are placed into the
wider context of policy, practice, and next steps based on dis-
cussions captured during the focus group.

5.1 Operational SHF systems can support
decision-making and uncertainty is expected

Throughout the focus group, participants expressed posi-
tively the potential for SHF to deliver better preparedness
and early warning of flood and drought events, and the ben-
efits associated with more consistent management of water
resources, whilst recognizing that low skill and coarse reso-
lution are current barriers to use (see also Soares and Des-
sai, 2015, 2016; Vaughan et al., 2016; Soares et al., 2018).
These benefits and barriers were demonstrated during the ac-
tivity as participants increased their level of decision-making
in response to the more confident and locally tailored fore-
casts presented: Stage 1 Hydrological Outlook UK > Stage 2
EFAS-Seasonal > Stage 3 “Improved” EFAS-Seasonal.

Hydrological Outlook UK is the first operational SHF sys-
tem for the UK and was the product that participants were
most familiar with, likely due to its partnership set-up (Prud-
homme et al., 2017). All groups indicated that the regional
focus of the maps, i.e. the whole Thames basin, and lack of
resolution and certainty as to the trajectory of the upcom-
ing hydrological conditions, limited their ability to make in-
formed decisions. No participants however ignored or dis-
missed the information despite there being no perceived risk.
All agreed that on a day-to-day basis, Hydrological Out-
look UK serves as a useful outlook tool when supplemented
with additional sources of information including water situa-
tion reports (UK Gov, 2018) and other hydro-meteorological
forecasts. As of 2017, exactly how the water sector uses Hy-
drological Outlook UK in practice had yet to be assessed
(Bell et al., 2017), and here we provide a first step towards
answering this question.

Stage 2 (EFAS-Seasonal) also represented an operational
forecasting system designed to run at the scale of the whole
Thames basin akin to Hydrological Outlook UK. The fore-
casts however were presented at a catchment level on a
month-by-month basis to provide a more localized outlook.
This finer spatio-temporal resolution allowed participants
to supplement the SHF with their knowledge of local hy-
drogeology and other risk factors to identify those catch-
ments where attention would likely be most needed. This led
to increased levels of communication within organizations,
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even though the overall hydrological outlook was very sim-
ilar to that observed at Stage 1 (uncertain but with indica-
tion towards normal–high flows). The use of large-scale (re-
gional or global) operational forecasting products that trigger
worthwhile actions at the local level has been demonstrated
at shorter lead times (e.g. Coughlan de Perez et al., 2016).
While the development of higher-resolution seasonal mete-
orological forecasts and better representation of the coupled
system and initial conditions are expected to lead to improve-
ments in SHF (Lewis et al., 2015; Bell et al., 2017; Arnal et
al., 2018), we pose the open question: do operational systems
such as Hydrological Outlook UK already have the poten-
tial to support better communication and decision-making if
they could be presented at a more local scale? This would
require careful communication of the uncertainty, reliability,
and skill of the forecast, and how to do this effectively is a
topic of current interest in meteorological and hydrological
forecasting (e.g. Ramos et al., 2013; Vaughan et al., 2016;
Fry et al., 2017). Although communicating uncertainty was
not a specific focus of our activity, one key message from
the focus group was that “uncertainty is expected” with SHF
and water sector users would engage with a local forecast,
even if they chose not to act on it. As pointed out by Viel
et al. (2016), “low skill” is not the same as “no skill”, and
SHF which may have minimal value from the perspective of
a scientific researcher can sometimes elicit significant inter-
est from the view of a water sector user who is familiar with
the area. Importantly, it should also be noted that although
no measures of forecast skill and quality were included in our
activity, participants only expressed a need to verify the qual-
ity of the forecasts at Stage 3. In discussions as to why this
was the case, the forecasters and groundwater hydrologists
stated that holding internal briefings and increasing aware-
ness of “at risk” catchments are suitable low-cost actions
when dealing with SHF that indicate some degree of risk,
even if the information is uncertain and unverified. At Stage
3, to obtain such confident SHF was well beyond current op-
erational standards; thus, its reliability was questioned. Par-
ticipants did agree however that even in the absence of infor-
mation on forecast quality, a sharper, more confident forecast
that indicated high potential flood risk would be more likely
to provoke a response than a dispersive one, even if the max-
imum of the forecast ensemble indicated values of compara-
ble magnitude in both cases.

5.2 Interactions with SHF are user-specific and should
be tailored accordingly

The manner in which users approached and used SHF dif-
fered markedly depending on the perceived severity of the
flood event; the responsibilities and risk appetite of an or-
ganization; and the local knowledge and experiences pos-
sessed by the individual (see also Kirchhoff et al., 2013;
Golding et al., 2017). Forecasters and groundwater hydrol-
ogists displayed the lowest risk appetite, admitting that they

were likely to err on the side of caution to avoid negative
media impacts, economic damages, and loss of trust by the
public.

“Analogy with the summer floods of 2007 . . .
my previous experience makes me think that the
risk is worth communicating. . . ” – forecaster at
Stage 1/2.

“A much stronger and more coherent signal re-
garding river flows and groundwater levels, but the
forecasts indicate that the potential impact isn’t
right now . . . we’ll keep an eye on the situation”
– water resource manager at Stage 3.

While a flood event is less of an immediate issue for water
resource managers, secondary effects relating to closure of
canals (navigation), turbidity, and sewer surcharge (wastew-
ater operations) did invoke action where there was potential
to impact on the public. Participants were notably proactive
where they had had previous experience of extreme events,
e.g. forecasters’ analogies with the 2007 floods (Chatterton
et al., 2010), or had been witness to poor management; e.g.
the wastewater operations manager recognized high potential
for groundwater flooding and sewer surcharge at 1 month’s
lead time in the Evenlode, Cherwell, and Colne (Fig. 7).

“Based on previous operational issues, I’d advise
pre-emptive actions such as the cleaning and main-
tenance of pumping stations for these catchments”
– Wastewater operations manager at Stage 2/3.

This highlights the value of retaining institutional mem-
ory where possible (see also McEwen et al., 2012) and be-
ing aware of organizations’ or individuals’ pre-determined
positions or perceived self-interests which may largely be
founded on previous experiences (Ishikawa et al., 2011).

It is important to note that while this activity focused on
a flood event, decisions made by the groups would almost
certainly have differed if the SHF had indicated drought con-
ditions. The impacts of drought have the potential to affect
larger areas, for longer (Bloomfield and Marchant, 2013),
notably with respect to agriculture (Li et al., 2017), reservoir
management (Turner et al., 2017) and navigation (Meißner
et al., 2017). The difference in response between water sec-
tor users supports the notion that tailoring SHF information
to specific user groups will improve uptake and ability to in-
form decision-making (Jones et al., 2015; Lorenz et al., 2015;
Vaughan et al., 2016; Soares et al., 2018), an area currently
being explored by the IMPREX Risk Outlook (IMPREX,
2018b).

5.3 Communication is both a barrier and enabler to
decision-making

Communication is one of the most frequently identified bar-
riers when it comes to uptake and use of seasonal meteoro-
logical and hydrological forecasts (Soares and Dessai, 2015;
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Vaughan et al., 2016; Golding et al., 2017; Soares et al.,
2018). Discussions captured during the focus group and in-
dicated on some empathy maps identified two key communi-
cation barriers in the West Thames: (1) between water sector
users themselves and how they interpret and communicate
SHF information and (2) a disconnect between scientists de-
veloping the forecasts and those involved in policy, practice
and decision-making.

All groups said they felt better able to interpret and com-
municate the messages when presented with a range of com-
plementary forms of SHF information including maps, hy-
drographs, and text, with maps being of particular value.
This supports findings by Lorenz et al. (2015), who identified
clear differences in users’ comprehension of and preference
for visualizations of climate information. Mapping informa-
tion was also found to be important in the survey by Vaughan
et al. (2016), while numerical representations were preferred
over text and graphics in the study by Soares et al. (2018).
Many participants said they would feel better prepared and
able to discuss upcoming hydrological conditions if SHF in-
formation was visualized in a variety of ways and regular en-
gagement was made a routine part of their job (see Sect. 5.4).

A number of participants also felt that scientific improve-
ments and developments to SHF are not being adequately
communicated to those involved in policy and practice. Gen-
eral consensus was that knowledge exchange events and
information sharing services through projects such as IM-
PREX are an excellent way of addressing this disconnect.
Presentations during the focus group shared findings from
other projects, including the European Provision Of Regional
Impacts Assessments on Seasonal and Decadal Timescales
(EUPORIAS) (Met Office, 2018), the End-to-end Demon-
strator for improved decision-making in the water sector
in Europe (EDgE), Service for Water Indicators in Climate
Change Adaptation (SWICCA) (Copernicus, 2017a, b), and
Improving Predictions of Drought for User Decision Making
(IMPETUS) (Prudhomme et al., 2015) – much of which was
new knowledge to some participants. It was further expressed
that stakeholder events yield maximum benefit for both the
scientist and the user when they are co-produced with an or-
ganization that is involved in receiving, tailoring, and dis-
tributing SHF information (Rapley et al., 2014). Importantly,
we do not want to be in the position whereby SHF skill has
improved but the credibility and reliability of the information
is questioned by decision-makers who have not been kept up
to date with developments. The potential for this disconnect
was demonstrated by both forecasters and groundwater hy-
drologists at Stage 3 (“Improved” EFAS-Seasonal) whereby
decisions would only be made if the accuracy of the forecast
could be verified.

“Forecast signal is implausibly strong but, if valid,
gives a clear signal for disturbed conditions”

“Surprised at forecast and the strength of the sig-
nal. . . IF credible, then actions need to be taken”

“Would definitely talk to the Environment Agency
and search for other monitoring data to verify the
forecast” – forecasters and groundwater hydrolo-
gists at Stage 3.

In this case, the SHF at Stage 3 were hypothetical and no
information on forecast quality was given; however, the fore-
casts provided a good representation of what scientists hope
to achieve with operational seasonal forecasting systems in
the future (Neumann et al., 2018). This emphasizes the need
to keep water sector users informed of scientific develop-
ments (see also Bolson et al., 2013), and to build awareness
and knowledge around interpreting and using forecast quality
information, as it is becoming more widely adopted in sea-
sonal forecasting (see Copernicus, 2017a; Fry et al., 2017).

5.4 Implications for future policy and decision-making

The EA is the public body responsible for managing flood
risk in the UK. They focus on maintaining a certain level
of preparedness whilst recognizing that particular conditions
and types of flooding/drought are more likely at different
times of year. Currently, the EA use SHF predominantly as
supporting information and rely on shorter-range forecasts
for action. As co-developers of this focus group, the EA rec-
ognized the following points for future consideration.

1. To upskill and help staff interpret SHF information re-
ceived.

2. To identify suitable low-consequence actions that could
be taken based on SHF.

3. To move beyond the current position of using SHF for
information only, to making conscious decisions as part
of routine incident management strategies (relies on 1
and 2).

“Regular review and discussion of extended
outlooks (5–30 days) and the 1–3 months fore-
casts during weekly handover between the in-
coming and outgoing flood duty teams would
improve familiarity of long range forecast
products and dealing with the uncertainty that
they present. This would be an excellent way
of considering the possible conditions and the
potential for disruption going forward.” – EA
activity co-developer.

In short, more engagement with SHF and improved clarity
for easier interpretation by different users will ensure that
SHF have a valuable role to play in future decision-making
at the local scale.

5.5 Learning outcomes and future considerations

Encouragingly, we identified that SHF are being used, and
participants agreed that the decision-making activity was an
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entertaining platform for fostering discussions which com-
plemented their everyday work and general understanding of
SHF. From the participants’ perspective, learning outcomes
included knowing more about the ongoing scientific develop-
ments in SHF and a better understanding of how different or-
ganizations in the West Thames water sector are using SHF.
Many also stated that the activity and focus group discus-
sions enhanced their ability to think about possible decisions
and actions that may be taken in the future. As the activity
developers, we found that the group discussions stimulated
participants’ motivations and interests more so than would
have been achieved by asking participants to engage on an
individual basis. We also advocate the use of empathy maps
or other forms of obtaining a written record of participant
thought processes in addition to their decision choices.

Our activity was designed to provide a first insight into
the current state of play regarding SHF in the West Thames.
Although 11 participants was a small sample size, they rep-
resented an important and well-balanced mix of water sec-
tor decision-makers in the West Thames. The only exception
was the agricultural sector, which could not attend, and thus
it would be interesting to capture this perspective with on-
going research (e.g. Li et al., 2017). We also recognize the
possibility that those who took part had a vested interest in
SHF; however, we did encourage participants to attend even
where they had no background knowledge or experience of
SHF. Finally, we advocate that others conducting a similar
activity may wish to consider whether participant interpre-
tation can be subconsciously influenced by the information
provided. For example, flood risk maps were provided as
part of the background context, but may have inadvertently
led participants to consider the upcoming forecasts with re-
spect to high-flow events. Likewise, there is potential that the

3-month SHF (Stage 1) may have been interpreted differently
to the 4-month forecasts (Stage 2 and Stage 3) and we do not
know the degree to which individuals may have been swayed
to place a particular colour on the map based on the conver-
sations they had with their group members (and how big an
influence such conversations play in real life). Discussions
with the participants at the end of the activity with respect to
these points would have been helpful.

6 Conclusions

Key findings were that engagement is user-specific and SHF
have the potential to be more useful if they could be pre-
sented at a scale which matches that employed in decision-
making. The ability to interpret messages is aided by com-
plementary forms of SHF visualization that provide a wider
overview of the upcoming hydrological outlook, with maps
being of particular value. However, improved communica-
tion between scientists, providers, and users is required to
ensure that users are kept up to date with developments. We
conclude that the current level of understanding in the West
Thames provides an excellent basis upon which to incorpo-
rate future developments of operational forecasts and for fa-
cilitating communication and decision-making between wa-
ter sector partners.

Data availability. All data/graphs/information that were used by
participants for the focus group activity are included in the Sup-
plement. Individual participant results are not publicly available in
order to protect anonymity. If readers require further information,
this may be provided by contacting the corresponding author.
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Appendix A: Glossary

Aquifer underground layer of water-bearing permeable rock which can occur at various depths.
Atmospheric relaxation
experiments

are used by meteorologists once an extreme weather event has happened. Put simply, when
a seasonal forecast predicts the wrong weather, scientists “force” the conditions in the atmo-
sphere so that they can try to recreate the extreme weather conditions and better understand
what happened.

Baseflow the portion of the river flow (streamflow) that is sustained between rainfall events and is
fed into streams and rivers by delayed shallow subsurface flow. Not to be confused with
“groundwater” which is water which has entered an aquifer, or “groundwater flow” where
water enters a river having been in an aquifer.

Choropleth map uses differences in shading, patterning or colouring in proportion to the value of a given
variable in areas of interest.

Exceedance threshold a user-defined threshold (e.g. 90 %) that is based on river flow or groundwater level observa-
tions (measurements) from the previous 20 years. E.g. if an exceedance threshold is set to the
90th percentile, this means that 90 % of all recorded observations over the past 20 years fell
below this level.

Flashy rivers and catchments that respond quickly to rainfall events.
Forecast ensemble instead of running a single forecast (known as a deterministic forecast that has one outcome),

computer models can run a forecast several times using slightly different starting conditions
(to account for uncertainties in the forecasting process). The complete set of forecasts is
referred to as the ensemble, and the individual forecasts are known as ensemble members.
Each ensemble member represents a different possible scenario, and each scenario is equally
likely to happen.

Forecast quality the SHF is compared to, or verified against, a corresponding observation of what actually
happened, or a good estimate of the true outcome. SHF quality describes the degree to which
the forecast corresponds to what actually happened (see also “forecast skill”).

Forecast sharpness describes the spread or variability among the different ensemble members of a forecast (the
different forecast values). The more concentrated (close together) the ensemble members are,
the sharper the forecast is, and vice versa. Importantly, a forecast can be sharp even if it is
wrong i.e. far from what actually happened. (See also “forecast ensemble”.)

Forecast skill the SHF quality can be compared to the quality of a benchmark or reference, usually another
forecast. The relative quality of the SHF over this reference forecast is the SHF skill (see also
“forecast quality”).

Forecast uncertainty the skill and accuracy of SHF tends to decrease with increasing lead time due to factors
such as variations in weather conditions, how the hydrological model has been set-up to
represent complex processes, and how well the hydrological model has captured the real-
world hydrologic conditions at the time the forecast is started (e.g. how wet is the soil or how
much water is currently in the river?). There is an element of uncertainty in all forecasts that
can amplify with time. Ensemble forecasting is one way of representing forecast uncertainty.
(See also “forecast ensemble”.)

Hydrogeology the area of geology that deals with the distribution and movement of below-ground water in
the soil, rocks and aquifers.

Hydrograph a graph showing how river and groundwater levels are expected to change over time at a
specific location. Ensemble hydrographs show the full spread of the forecast ensemble.

Lead time the length of time between when the SHF is started (initiated) and the occurrence of the
phenomena (e.g. flood) being predicted. Can also be used to represent the point at which the
SHF is started and the beginning of the forecast validity period (e.g. from 3 weeks).

Lithology the general physical characteristics of rocks.
River basin the largest and total area of land drained by a major river (in this case the River Thames) and

all its tributaries. (See also “river catchment”.)
River catchment the area of land drained by a river. “Catchment” and “basin” are sometimes used interchange-

ably. Here catchments represent the drainage areas of the River Thames main tributaries, of
which there are 10 in the West Thames.
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Seasonal hydrological
forecasts (SHF)

provide information about the hydrological conditions e.g. streamflow (river flows), ground-
water levels and soil moisture levels, that might be expected over the next few months (e.g.
from 3 weeks out to 7 months).

Seasonal meteorological
forecasts

provide information about the weather conditions e.g. rainfall, air temperature, humidity,
pressure, wind, that might be expected over the next few months (e.g. from 3 weeks out
to 7 months).

Streamflow the flow of water in a stream or river. Also known as river flow.
Surface runoff the flow of water that occurs when water from excess rainfall, meltwater or drainage systems

flows over the Earth’s surface and not into the ground.
Tributary a river or stream that flows into a larger stream, river or lake. Tributaries do not flow into the

sea.
1 : 100-year flood event a 100-year flood is a flood event that has a 1 % chance of occurring in any given year.
1 : 5-year flood event a 1-in-5-year flood is a flood event that has a 20 % chance of occurring in any given year.

www.geosci-commun.net/1/35/2018/ Geosci. Commun., 1, 35–57, 2018



54 J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions?

Information about the Supplement

– Supplement 1: Invitation flyer and programme for the
focus group

– Supplement 2: West Thames catchment characteristic
maps

– Supplement 3: Hydrological Summary: October 2013,
June–September 2013 and November 2012–October
2013

– Supplement 4: Stage 1 Hydrological Outlook UK:
November 2013–January 2014

– Supplement 5: Stage 2 EFAS-Seasonal: November
2013–February 2014

– Supplement 6: Stage 3 “Improved” EFAS-Seasonal:
November 2013–February 2014

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gc-1-35-2018-supplement.

Author contributions. JLN and LA designed the decision-
making activity. JLN, LA, SH, and HLC co-organized the set-up
of the focus group. All the authors took part in delivering the focus
group, including as note-takers, organizers, and presenters of their
scientific research. JLN wrote the manuscript with input from all
the authors.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. The information and findings in this paper are based
on discussions and actions captured during the decision-making ac-
tivity. They should not be taken as representing the views or practice
of particular organizations or institutions.

Acknowledgements. This work was funded by the EU Hori-
zon 2020 IMPREX project (http://www.imprex.eu/, last access:
21 May 2018) (641811) with additional financial support provided
by the University of Reading’s Endowment Fund. Support-
in-kind was also provided by the NERC LANDWISE project
(https://landwise-nfm.org/about/, last access: 10 July 2018)
(NE/R004668/1). We would like to express our sincere thanks to
all participants who shared their knowledge and experience relating
to seasonal hydrological forecasting and to their organizations
who enabled their participation. We would especially like to thank
Stuart Hyslop and Simon Lewis at the EA for their support in
the organization of the day and also Len Shaffrey (Department of
Meteorology, University of Reading) for his input on the day.

Edited by: Katharine Welsh
Reviewed by: two anonymous referees

References

Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richard-
son, D., and Salamon, P.: Evaluation of ensemble stream-
flow predictions in Europe, J. Hydrol., 517, 913–922,
https://doi.org/10.1016/j.jhydrol.2014.06.035, 2014.

Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L.,
Stephens, E., Wetterhall, F., van Andel, S. J., and Pappenberger,
F.: Willingness-to-pay for a probabilistic flood forecast: a risk-
based decision-making game, Hydrol. Earth Syst. Sci., 20, 3109–
3128, https://doi.org/10.5194/hess-20-3109-2016, 2016.

Arnal, L., Wood, A. W., Stephens, E., Cloke, H., and Pappen-
berger, F.: An Efficient Approach for Estimating Streamflow
Forecast Skill Elasticity, J. Hydrometeorol., 18, 1715–1729,
https://doi.org/10.1175/JHM-D-16-0259.1, 2017.

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme,
C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful
seasonal forecasts of streamflow over Europe?, Hydrol. Earth
Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-
2018, 2018.

Arribas, A., Glover, M., Maidens, A., Peterson, K., Gor-
don, M., MacLachlan, C., Graham, R., Fereday, D., Camp,
J., Scaife, A. A., Xavier, P., McLean, P., and Colman,
A.: The GloSea4 Ensemble Prediction System for Sea-
sonal Forecasting, Mon. Weather. Rev., 139, 1891–1910,
https://doi.org/10.1175/2010MWR3615.1, 2010.

Asrar, G. R., Hurrell, J. W., and Busalacchi, A. J.: A need for “ac-
tionable” climate science and information: summary of WCRP
open science conference, B. Am. Meteorol. Soc., 94, ES8–ES12,
https://doi.org/10.1175/BAMS-D-12-00011.1, 2012.

Bell, V. A., Davies, H. N., Kay, A. L., Marsh, T. J., Brookshaw,
A., and Jenkins, A.: Developing a large-scale water-balance ap-
proach to seasonal forecasting: application to the 2012 drought in
Britain, Hydrol. Process., 27, https://doi.org/10.1002/hyp.9863,
2013.

Bell, V. A., Davies, H. N., Kay, A. L., Brookshaw, A., and Scaife,
A. A.: A national-scale seasonal hydrological forecast system:
development and evaluation over Britain, Hydrol. Earth Syst.
Sci., 21, 4681–4691, https://doi.org/10.5194/hess-21-4681-2017,
2017.

Bloomfield, J. P. and Marchant, B. P.: Analysis of ground-
water drought building on the standardised precipitation in-
dex approach, Hydrol. Earth Syst. Sci., 17, 4769–4787,
https://doi.org/10.5194/hess-17-4769-2013, 2013.

Bloomfield, J. P., Bricker, S. H., and Newell, A. J.: Some relation-
ships between lithology, basin form and hydrology: A case study
from the Thames basin, UK, Hydrol. Process., 25, 2518–2530,
https://doi.org/10.1002/hyp.8024, 2011.

Bolson, J., Martinez, C., Breuer, N., Srivastava, P., and Knox, P.:
Climate information use among southeast US water managers:
beyond barriers and toward opportunities, Reg. Environ. Change,
13, 141–151, https://doi.org/10.1007/s10113-013-0463-1, 2013.

CEH: Hydrological Outlook – Further Information for Novem-
ber 2013, available at: http://www.hydoutuk.net/archive/2013/
november-2013/further-information-november-2013/ (last ac-
cess: 25 April 2018), 2013.

CEH: Hydrological Outlook UK, available at: http://www.
hydoutuk.net/, last access: 9 April 2018.

Geosci. Commun., 1, 35–57, 2018 www.geosci-commun.net/1/35/2018/

https://doi.org/10.5194/gc-1-35-2018-supplement
http://www.imprex.eu/
https://landwise-nfm.org/about/
https://doi.org/10.1016/j.jhydrol.2014.06.035
https://doi.org/10.5194/hess-20-3109-2016
https://doi.org/10.1175/JHM-D-16-0259.1
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.1175/2010MWR3615.1
https://doi.org/10.1175/BAMS-D-12-00011.1
https://doi.org/10.1002/hyp.9863
https://doi.org/10.5194/hess-21-4681-2017
https://doi.org/10.5194/hess-17-4769-2013
https://doi.org/10.1002/hyp.8024
https://doi.org/10.1007/s10113-013-0463-1
http://www.hydoutuk.net/archive/2013/november-2013/further-information-november-2013/
http://www.hydoutuk.net/archive/2013/november-2013/further-information-november-2013/
http://www.hydoutuk.net/
http://www.hydoutuk.net/


J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions? 55

Chatterton, J., Viavattene, C., Morris, J., Penning-Rowsell, E., and
Tapsell, S.: The costs of the summer 2007 floods in England,
Environment Agency Report SC070039, Rio House, Bristol, UK,
2010.

Chiew, F. H. S., Zhou, S. L., and McMahon, T. A.: Use of seasonal
streamflow forecasts in water resources management, J. Hydrol.,
270, 135–144, 2003.

Copernicus: EDgE, Climate Change Service, available at: http:
//edge.climate.copernicus.eu/ (last access: 31 May 2018), 2017a.

Copernicus: SWICCA: Service for Water Indicators in Climate
Change Adaptation, SMHI, available at: http://swicca.climate.
copernicus.eu/ (last access: 31 May 2018), 2017b.

Coughlan de Perez, E., van den Hurk, B., van Aalst, M. K., Amuron,
I., Bamanya, D., Hauser, T., Jongma, B., Lopez, A., Mason, S.,
Mendler de Suarez, J., Pappenberger, F., Rueth, A., Stephens,
E., Suarez, P., Wagemaker, J., and Zsoter, E.: Action-based flood
forecasting for triggering humanitarian action, Hydrol. Earth
Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-
2016, 2016.

Crochemore, L., Ramos, M.-H., Pappenberger, F., van Andel, S. J.,
and Wood, A. W.: An experiment on risk-based decision-making
in water management using monthly probabilistic forecasts, B.
Am. Meteorol. Soc., 97, 541–551, 2015.

Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P.,
and Rodrigues, L. R. L: Seasonal climate predictability and fore-
casting: status and prospects, WIREs Clim. Change, 4, 245–268,
https://doi.org/10.1002/wcc.217, 2013.

EA (Environment Agency): Thames Catchment Flood Management
Plan – Managing Flood Risk, Summary Report December 2009,
EA, Kings Meadow House, Reading, 2009.

EA (Environment Agency): The costs and impacts of the win-
ter 2013 to 2014 floods, Technical Report SC140025, De-
fra/Environment Agency Joint R&D programme, 2015.

EA (Environment Agency): Groundwater Level Measurements
(AfA075), Data contains Environment Agency information© En-
vironment Agency and/or database right, All rights reserved,
Data sourced under Environment Agency Conditional Licence,
2017.

Emerton, R., Zsoter, E., Arnal, L., Cloke, H. L., Muraro, D., Prud-
homme, C., Stephens, E. M., Salamon, P., and Pappenberger, F.:
Developing a global operational seasonal hydro-meteorological
forecasting system: GloFAS-Seasonal v1.0, Geosci. Model
Dev., 11, 3327–3346, https://doi.org/10.5194/gmd-11-3327-
2018, 2018.

Farolfi, S., Hassan, R., Perret, S., and MacKay, H.: A role-playing
game to support multi-stakeholder negotiations related to water
allocation in South Africa: First applications and potential devel-
opments, Midrand: Water Resources as Ecosystems: Scientists,
Government and Society at the Crossroads, 2004.

Fry, M., Smith, K., Sheffield, J., Watts, G., Wood, E., Cooper, J.,
Prudhomme, C., and Rees, G.: Communication of uncertainty in
hydrological predictions: a user-driven example web service for
Europe, Geophys. Res. Abstr., EGU2017-16474, EGU General
Assembly 2017, Vienna, Austria, 2017.

Golding, N., Hewitt, C., Zhang, P., Bett, P., Fang, X., Hu, H., and
Nobert, S.: Improving user engagement and uptake of climate
services in China, Climate Services, 5, 39–45, 2017.

Gray, D.: Gamestorming – Empathy Map, available at:
http://gamestorming.com/empathy-mapping/ (last access:
1 May 2018), 2017.

Harrison, J.: Flood hazard management: Using an alternative
community-based approach, Planet, 4, 5–6, 2002.

Huntingford, C., Marsh, T., Scaife, A. A., Kendon, E. J., Han-
naford, J., Kay, A. L., Lockwood, M., Prudhomme, C., Rey-
nar, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H. C.,
Roberts, M., Stott, P. A., Bell, V. A., Bailey, M., Jenkins, A.,
Legg, T., Otto, F. E. L., Massey, N., Schaller, N., Slingo, J.,
and Allen, M. A.: Potential influences on the United King-
dom’s floods of winter 2013/14, Nat. Clim. Change, 4, 769–777,
https://doi.org/10.1038/nclimate2314, 2014.

Ishikawa, T., Barnson, A. G., Kastens, K. A., and Louchouarn, P.:
Understanding, evaluation, and use of climate forecast data by
environmental policy students, in: Qualitative inquiry in geo-
science education research, edited by: Feig, A. D. and Stokes,
A., Geological Society of America Special Paper 474, 153–170,
Geol. Soc. Am., Denver, CO, 2011.

IMPREX: Thames River Basin, available at: http://imprex.eu/
thames-river-basin (last access: 8 April 2018), 2018a.

IMPREX: Risk Outlook Tool, available at: http://www.imprex.eu/
innovation/risk-outlook (last access: 21 May 2018), 2018b.

Jones, L., Dougill, A., Jones, R. G., Steynor, A., Watkiss, P., Kane,
C., Koelle, B., Moufouma-Okia, W., Padgham, J., Ranger, N.,
Roux, J.-P., Suarez, P., Tanner, T., and Vincent, K.: Ensuring
climate information guides long-term development, Nat. Clim.
Change, 5, 812–814, https://doi.org/10.1038/nclimate2701,
2015.

JRC: European Flood Awareness System, available at: https://www.
efas.eu/ (last access: 9 April 2018), 2018a.

JRC: Global Flood Awareness System, available at: http://www.
globalfloods.eu/user-information/seasonal_outlook/ (last access:
9 April 2018), 2018b.

Kendon, M. and McCarthy, M.: The UK’s wet and
stormy winter of 2013/2014, Weather, 70, 40–47,
https://doi.org/10.1002/wea.2465, 2015.

Kirchhoff, C. J., Lemos, M. C., and Engle, N. L.: What
influences climate information use in water management?
The role of boundary organizations and governance regimes
in Brazil and the U.S., Environ. Sci. Policy, 26, 6–18,
https://doi.org/10.1016/j.envsci.2012.07.001, 2013.

Lemos, M. C., Kirchhoff, C. J., and Ramprasad, V.: Narrowing the
climate information usability gap, Nat. Clim. Change, 2, 789–
794, 2012.

Lewis, H., Mittermaier, M., Mylne, K., Norman, K., Scaife, A.,
Neal, R., Pierce, C., Harrison, D., Jewell, S., Kendon, M., Saun-
ders, R., Brunet, G., Golding, B., Kitchen, M., Davies, P., and
Pilling, C.: From months to minutes – exploring the value of
high-resolution rainfall observation and prediction during the UK
winter storms of 2013/2014, Meteorol. Appl., 22, 90–104, 2015.

Li, Y., Giuliani, M., and Castelletti, A.: A coupled human–natural
system to assess the operational value of weather and climate
services for agriculture, Hydrol. Earth Syst. Sci., 21, 4693–4709,
https://doi.org/10.5194/hess-21-4693-2017, 2017.

Lorenz, S., Dessai, S., Forster, P., and Paavola, J.: Tailor-
ing the visual communication of climate projections
for local adaptation practitioners in Germany and the

www.geosci-commun.net/1/35/2018/ Geosci. Commun., 1, 35–57, 2018

http://edge.climate.copernicus.eu/
http://edge.climate.copernicus.eu/
http://swicca.climate.copernicus.eu/
http://swicca.climate.copernicus.eu/
https://doi.org/10.5194/hess-20-3549-2016
https://doi.org/10.5194/hess-20-3549-2016
https://doi.org/10.1002/wcc.217
https://doi.org/10.5194/gmd-11-3327-2018
https://doi.org/10.5194/gmd-11-3327-2018
http://gamestorming.com/empathy-mapping/
https://doi.org/10.1038/nclimate2314
http://imprex.eu/thames-river-basin
http://imprex.eu/thames-river-basin
http://www.imprex.eu/innovation/risk-outlook
http://www.imprex.eu/innovation/risk-outlook
https://doi.org/10.1038/nclimate2701
https://www.efas.eu/
https://www.efas.eu/
http://www.globalfloods.eu/user-information/seasonal_outlook/
http://www.globalfloods.eu/user-information/seasonal_outlook/
https://doi.org/10.1002/wea.2465
https://doi.org/10.1016/j.envsci.2012.07.001
https://doi.org/10.5194/hess-21-4693-2017


56 J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions?

United Kingdom, Philos. T. Roy. Soc. A, 373, 20140457,
https://doi.org/10.1098/rsta.2014.0457, 2015.

Mackay, J. D., Jackson, C. D., Brookshaw, A., Scaife, A. A., Cook,
J., and Ward, R. S.: Seasonal forecasting of groundwater levels in
principal aquifers of the United Kingdom, J. Hydrol., 530, 815–
828, https://doi.org/10.1016/j.jhydrol.2015.10.018, 2015.

McEwen, L. J., Krause, F., Jones, O., and Garde Hansen, J.: Sus-
tainable flood memories, informal knowledge and the develop-
ment of community resilience to future flood risk, Transactions
on Ecology and The Environment, 159, 253–263, 2012.

McEwen, L., Stokes, A., Crowley, K., and Roberts, C.: Using role-
play for expert science communication with professional stake-
holders in flood risk management, J. Geogr. Higher Educ., 38,
277–300, https://doi.org/10.1080/03098265.2014.911827, 2014.

Meadow, A., Ferguson, D., Guido, Z., Horangic, A., Owen, G.,
and Wall, T.: Moving toward the deliberate co-production of
climate science knowledge, Weather, Clim. Soc., 7, 179–191,
https://doi.org/10.1175/WCAS-D-14-00050.1, 2015.

Meißner, D., Klein, B., and Ionita, M.: Development of a monthly
to seasonal forecast framework tailored to inland waterway trans-
port in central Europe, Hydrol. Earth Syst. Sci., 21, 6401–6423,
https://doi.org/10.5194/hess-21-6401-2017, 2017.

Met Office.: EUPORIAS Project, available at: https://www.
metoffice.gov.uk/research/collaboration/euporias, last access:
16 June 2018.

Molteni, F., Stockdale, T., Alonso-Balmaseda, M., Buizza, R., Fer-
ranti, L., Magnusson, L., Mogensen, K., Palmer, T. N., and Vi-
tart, F.: The new ECMWF seasonal forecast system (System 4),
ECMWF Tech. Memo., 656, 1–49, 2011.

Muchan, K., Lewis, M., Hannaford, J., and Parry, S.: The win-
ter storms of 2013/2014 in the UK: hydrological responses and
impacts, Weather, 70, 55–61, https://doi.org/10.1002/wea.2469,
2015.

Neumann, J. L., Arnal, L., Emerton, R., Griffith, H., The-
ofanidi, S., and Cloke, H.: Supporting the integra-
tion and application of seasonal hydrological forecasts
in the West Thames, Technical Report for IMPREX,
https://doi.org/10.13140/RG.2.2.19905.25447, 2017.

Neumann, J. L., Arnal, L. L. S., Magnusson, L., and Cloke,
H. L.: The 2013/14 Thames basin floods: Do improved me-
teorological forecasts lead to more skilful hydrological fore-
casts at seasonal timescales?, J. Hydrometeorol., 19, 1059–1075,
https://doi.org/10.1175/JHM-D-17-0182.1, 2018.

NRFA (National River Flow Archive): Search for Gauging Sta-
tions, available at: http://nrfa.ceh.ac.uk/data/search, last access:
10 July 2017.

NRFA (National River Flow Archive): Monthly Hydro-
logical Summaries, available at: https://nrfa.ceh.ac.uk/
monthly-hydrological-summary-uk?page=5, last access: 22
May 2018.

Parry, S., Prudhomme, C., Wilby, R., and Wood, P.: Chronology of
drought termination for long records in the Thames catchment,
in: Drought: Research and Science-Policy Interfacing, edited by:
Andreu, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo,
D., and van Lanen, H., London, Taylor & Francis (CRC Press),
165–170, 2015.

Pavey, J. and Donoghue, D.: The use of role play and VLEs in teach-
ing environmental management, Planet, 10, 7–10, 2003.

Prudhomme, C., Shaffrey, L. C., Woolings, T., Jackson, C. R.,
Fowler, H. J., and Anderson, B.: IMPETUS: Improving predic-
tions of drought for user decision-making, in: Drought: Research
and Science-Policy Interfacing, edited by: Andreu, J., Solera, A.,
Paredes-Arquiola, J., Haro-Monteagudo, D., and van Lanen, H.,
CRC Press, https://doi.org/10.1201/b18077-47, 2015.

Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight,
J., Bell, V., Jackson, C., Svensson, C., Parry, S., Bachiller-
Jareno, N., Davies, H., Davis, R., Mackay, J., McKenzie, A.,
Rudd, A., Smith, K., Bloomfield, J., Ward, R., and Jenk-
ins, A.: Hydrological Outlook UK: an operational stream-
flow and groundwater level forecasting system at monthly
to seasonal time scales, Hydrolog. Sci. J., 62, 2753–2768,
https://doi.org/10.1080/02626667.2017.1395032, 2017.

Ramos, M. H., van Andel, S. J., and Pappenberger, F.: Do prob-
abilistic forecasts lead to better decisions?, Hydrol. Earth Syst.
Sci., 17, 2219–2232, https://doi.org/10.5194/hess-17-2219-2013,
2013.

Rapley, C. G., de Meyer, K., Carney, J., Clarke, R., Howarth, C.,
Smith, N., Stilgoe, J., Youngs, S., Brierley, C., Haugvaldstad, A.,
Lotto, B., Michie, S., Shipworth, M., and Tuckett, D.: Time for
Change? Climate Science Reconsidered, Report of the UCL Pol-
icy Commission on Communicating Climate Science, 2014.

Rodwell, M. J., Ferranti, L., Magnusson, L., Weisheimer, A., Ra-
bier, F., and Richardson, D.: Diagnosis of northern hemispheric
regime behaviour during winter 2013/14, ECMWF Tech. Memo.,
769, 1–12, 2015.

Soares, M. B. and Dessai, S. J.: Exploring the use of seasonal cli-
mate forecasts in Europe through expert elicitation, Climate Risk
Management, 10, 8–16, 2015.

Soares, M. B. and Dessai, S. J.: Barriers and enablers to the use
of seasonal climate forecasts amongst organisations in Europe,
Climatic Change, 137, 89–103, https://doi.org/10.1007/s10584-
016-1671-8, 2016.

Soares, M. B., Alexander, M., and Dessai, S. J.: Sectoral use of cli-
mate information in Europe: A synoptic overview, Climate Ser-
vices, 9, 5–20, 2018.

Thames Water: Hydrological Context for Water Quality And Ecol-
ogy Preliminary Impact Assessments, Technical Appendix B,
Thames Water Utilities Ltd 2W0H Lower Thames Operating
Agreement (Cascade Consulting), 2010.

Turner, S. W. D., Bennett, J. C., Robertson, D. E., and Galelli, S.:
Complex relationship between seasonal streamflow forecast skill
and value in reservoir operations, Hydrol. Earth Syst. Sci., 21,
4841–4859, https://doi.org/10.5194/hess-21-4841-2017, 2017.

UK Gov: Water Situation Reports, available at: https://www.gov.uk/
government/collections/water-situation-reports-for-england, last
access: 5 May 2018.

Van der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD:
a GIS-based distributed model for river basin scale water bal-
ance and flood simulation, Int. J. Geogr. Inf. Sci. 24, 189–212,
https://doi.org/10.1080/13658810802549154, 2010.

van den Hurk, B. J. J. M., Bouwer, L. M., Buontempo, C., Döscher,
R., Ercin, E., Hananel, C., Hunink, J. E., Kjellström, E., Klein,
B., Manez, M., Pappenberger, F., Pouget, L., Ramos, M.-H.,
Ward, P. J., Weerts, A. H., and Wijngaard, J. B.: Improving pre-
dictions and management of hydrological extremes through cli-
mate services, Climate Services, 1, 6–11, 2016.

Geosci. Commun., 1, 35–57, 2018 www.geosci-commun.net/1/35/2018/

https://doi.org/10.1098/rsta.2014.0457
https://doi.org/10.1016/j.jhydrol.2015.10.018
https://doi.org/10.1080/03098265.2014.911827
https://doi.org/10.1175/WCAS-D-14-00050.1
https://doi.org/10.5194/hess-21-6401-2017
https://www.metoffice.gov.uk/research/collaboration/euporias
https://www.metoffice.gov.uk/research/collaboration/euporias
https://doi.org/10.1002/wea.2469
https://doi.org/10.13140/RG.2.2.19905.25447
https://doi.org/10.1175/JHM-D-17-0182.1
http://nrfa.ceh.ac.uk/data/search
https://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk?page=5
https://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk?page=5
https://doi.org/10.1201/b18077-47
https://doi.org/10.1080/02626667.2017.1395032
https://doi.org/10.5194/hess-17-2219-2013
https://doi.org/10.1007/s10584-016-1671-8
https://doi.org/10.1007/s10584-016-1671-8
https://doi.org/10.5194/hess-21-4841-2017
https://www.gov.uk/government/collections/water-situation-reports-for-england
https://www.gov.uk/government/collections/water-situation-reports-for-england
https://doi.org/10.1080/13658810802549154


J. L. Neumann et al.: Can seasonal hydrological forecasts inform local decisions and actions? 57

Vaughan, C., Buja, L., Kruczkiewicz, A., and Goddard, L.: Iden-
tifying research priorities to advance climate services, Climate
Services 4, 65–74, 2016.

Viel, C., Beaulant, A.-L., Soubeyroux, J.-M., and Céron, J.-P.: How
seasonal forecast could help a decision maker: an example of
climate service for water resource management, Adv. Sci. Res.,
13, 51–55, https://doi.org/10.5194/asr-13-51-2016, 2016.

Wells, M. and Davis, H.: Water transfer for public water supply via
the CRT canal network, presentation Black and Veatch, 2016.

Wood, A. W. and Lettenmaier, D. P.: An ensemble approach for
attribution of hydrologic prediction uncertainty, Geophys. Res.
Lett., 35, L14401, https://doi.org/10.1029/2008GL034648, 2008.

Yuan, X., Wood, E. F., and Ma, Z.: A review on climate-
model-based seasonal hydrologic forecasting: physical under-
standing and system development, WIREs Water, 2, 523–536,
https://doi.org/10.1002/wat2.1088, 2015.

www.geosci-commun.net/1/35/2018/ Geosci. Commun., 1, 35–57, 2018

https://doi.org/10.5194/asr-13-51-2016
https://doi.org/10.1029/2008GL034648
https://doi.org/10.1002/wat2.1088


286  

 

Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 287 

 

Appendix 

 

 

A6: Global flood forecasting for averting disasters worldwide 

This book chapter presents a co-author contribution arising through collaboration during this 

PhD, and has the following reference: 

Hirpa, F. A., F. Pappenberger, L. Arnal, C. A. Baugh, H. L. Cloke, E. Dutra, R. Emerton, B. 

Revilla-Romero, P. Salamon, P. J. Smith, E. Stephens, F. Wetterhall, E. Zsoter and J. Thielen-

del Pozo, 2018: Global flood forecasting for averting disasters worldwide. Global Flood Hazard: 

Applications in Modeling, Mapping and Forecasting, G. Schumann, P. D. Bates, H. Apel and G. T. 

Aronica, Eds., AGU Geophysical Monograph 233, John Wiley & Sons, Hoboken USA, 205-

228 

As this book chapter is not an open access publication, it has been included in this thesis for 

the purpose of the examination only and will not be available in any post-examination copies. 

R.E. wrote the subsections “Global Flood Forecasting Systems” and “Continental-scale Flood 

Forecasting Systems” (12.3.1 and 12.3.2, pages 206-211, with the exception of section 

12.3.1.1.2.), within the section “The Current Status of Large-Scale Flood Forecasting”.  

 

 

 

 

 

 

 

 

 

 

 

 

 


