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Abstract  

Reproduction is an indispensable function that is under the control of a 

sophisticated network of regulatory signals that originates from and is integrated by 

the hypothalamic-pituitary-gonadal axis, which is primarily driven by gonadotropin 

releasing hormone (GnRH) from the hypothalamus. Compelling evidence 

accumulating over the last few decades has revealed that kisspeptin, a hypothalamic 

neuropeptide encoded by KiSS-1 gene, has a key role in promoting the release of 

GnRH and luteinizing hormone (LH) in various mammalian species. However, the 

possibility that kisspeptin exerts additional ‘peripheral’ actions at the level of the 

gonad has received little attention and no studies have been directed at the bovine 

ovary. Another neuropeptide, neuromedin B (NMB), belonging to the bombesin-

related peptide family, has been shown to have various physiological roles including 

the regulation of various exocrine and endocrine secretions but its potential action at 

the gonadal level has not been explored. This thesis reports a series of experiments 

designed to investigate: (1) whether KiSS-1 and NMB and their cognate receptors 

are expressed in bovine endocrine tissues; (2) whether kisspeptin and NMB, alone 

and in combination with their antagonist, can influence the steroidogenesis in 

cultured ovarian cells; (3) whether expression of KiSS-1 and NMB by cultured 

ovarian cells is regulated by gonadotropins and other factors; (4) whether NMB, 

kisspeptin-10, TGF- β -1, BMP-6 and TSP-1 and their respective antagonist 

modulate capillary network formation in a follicular angiogenesis model; (5) 

whether TGF-β-1 and BMP-6 (alone and in combination with their antagonists) 

affect ovarian steroidogenesis in vitro; (6) whether expression of steroidogenesis 

transcripts and other angiogeneic factors by cultured ovarian cells is regulated by 

TGF-β-1 and BMP-6. The laboratory techniques used to address the above included 

primary ovarian cell culture systems (bovine ovarian theca and granulosa cells 

under non-luteinized and luteinized conditions, cell migration and follicular 

angiogenesis models), steroid immunoassays (androstenedione, oestradiol and 

progesterone), real-time PCR and immunohistochemistry. The results of RT-PCR 

confirmed that KiSS-1 and its receptor (GPR54) and NMB are expressed in different 

bovine endocrine tissues including pituitary, adrenal, testis, ovarian corpus luteum, 

theca cells and granulosa cells. Moreover, changing levels of thecal and granulosal 

expressions were detected during different stages of follicle development. However, 
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cell culture experiments offered no evidence to support the hypothesis that 

kisspeptin and NMB have a direct intra-ovarian role to modulate follicular or luteal 

steroidogenesis or cell proliferation under basal or gonadotrophin stimulated 

conditions. Neither did they affect ovarian theca cell migration evaluated using a 

wound-healing ‘scratch’ assay. Results from the follicular angiogenesis model 

indicate that while TGF-β-1 and BMP-6 reduced VEGF/FGF-induced capillary 

network formation, kisspeptin, NMB and TSP-1 were without effect. In conclusion, 

the results provided no evidence to support intrafollicular roles of kisspeptin or 

NMB peptides in modulating steroidogenesis, cell proliferation, cell migration or 

angiogenesis. However, both TGF-β-1 and BMP-6 were implicated as negative 

regulators of follicular angiogenesis, a finding that warrants further research, given 

their inhibitory action on thecal steroidogenesis. 
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1.1. Sexual reproduction 

Sexual reproduction of mammalians is defined in biology as a process resulting in 

the formation of a genetically novel individual (Rastogi, 2007). Reproductive 

efficiency has a major influence on profitability of dairy farms. Improvement in 

reproductive performance in dairy cattle encompasses aspects related to resumption 

of ovarian function, detection of oestrus, and establishment and maintenance of 

pregnancy (Santos et al., 2009). Reproduction is an indispensable function that is 

under the control of a sophisticated network of regulatory signals. These regulatory 

dynamic signals originate from and are integrated by the hypothalamus which is 

responsible for the secretion of kisspeptin that, in turn, regulates the secretion of 

gonadotropin releasing hormone GnRH (Pinilla et al., 2012).  

1.2. Hypothalamic-pituitary-ovarian (HPO) axis  

The oestrous cycle is regulated by a key hormone from the hypothalamus known as 

GnRH that, in turn, stimulates the release of follicle stimulating hormone (FSH) and 

luteinizing hormone (LH) from the anterior pituitary. Progesterone (P4), oestradiol 

(E2) and inhibins are, in turn, released from the ovaries and prostaglandin F2α 

(PGF2α) is secreted from the uterus. These hormones function through a system of 

positive and negative feedback to govern the oestrous cycle. GnRH controls the 

oestrous cycle via its action on the anterior pituitary to drive the secretion of the 

gonadotrophs, LH and FSH. The transportation of GnRH from the hypothalamus to 

the pituitary gland occurs via the hypophyseal portal blood system. GnRH binds to 

its G-protein coupled receptor on the cell surface of the gonadotroph cells. As a 

result of this binding, intercellular calcium is released in order to activate 

intermediaries in the mitogen activated protein kinase (MAPK) signaling pathway 

which contributes in the release of FSH and LH from storage compartments in the 

cytoplasm of gonadotroph cells.  The storage of FSH is only for short periods, while 

LH is stored for a longer period through the oestrous cycle (Crowe and Mullen, 

2013). During the follicular stage of the oestrous cycle there is a basal level of P4 

due to the regression of the CL. The elevated concentrations of E2 is associated 

with the rapid proliferation of the pre-ovulatory dominant follicle (DF), along with 

low levels of circulating P4, stimulates a cascade of GnRH leading to an ovulation-

inducing LH surges, and allows the display of oestrus behaviour. Ovulation occurs 
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10-14 hours after oestrus and is followed by the luteal stage of the oestrous cycle. 

Met-oestrus phase is the beginning of the luteal stage when the CL is formed from 

the ruptured ovulated follicle and typically lasts for 3-4 days. After ovulation phase, 

P4 levels is increased due to the formation of the CL in which the GCs and TCs of 

the ovulated DF lutenize and release P4 in order to establish and maintain 

pregnancy and/or resume the oestrous cycle. Through the di-oestrous stage, P4 

levels remain high and persistent waves of follicle development continue to be 

started by the secretion of FSH from the anterior pituitary. But these DFs that grow 

during the luteal stage of the oestrous cycle do not ovulate, due to insufficient LH 

pulse frequently. During the luteal stage of the oestrous cycle, P4 through its 

negative feedback action, only permits the production of greater amplitude (but less 

frequent) LH pulses (one pulse per 3-4 hours) that are insufficient for ovulation of 

the DF. Lastly, through the pro-oestrous phase, P4 levels plummet when the CL 

degenerates in response to PGF2α production from the uterus (Figure 1.1) (Forde et 

al, 2011).  
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Figure 1.1 Hormonal control of the female reproductive cycle that involves 

hormones produced by the hypothalamus, pituitary and ovaries. It can be concluded 

that LH and FSH are secreted from the pituitary while E2 and P4 are secreted from 

the ovaries. E2 and P4 are secreted from the follicle (and CL) which causes the 

thickness of the endometrium of the uterus to increase (OpenStax College, 2013).  
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1.3. Female reproductive organs in cattle  

The ovary is the female reproductive organ that functions in the release of 

unfertilized eggs (oocytes) along with the production of steroid hormones that play 

a significant role in the reproductive cycle. The genital tract of the female cow 

exists in the pelvic cavity and consists of vulva, vagina, cervix, uterus, fallopian 

tubes (oviducts), ovaries and their supporting structures. The ovaries are bean-

shaped structures, 1-4 cm long and 1-3 cm in diameter; their size differs according 

to the stage of the reproductive cycle. They are attached to the uterus by the 

Fallopian tubes that open anteriorly into the fimbriae, funnel-shaped structures 

adjacent to, but not directly connected to the ovaries. The fimbriae guide gametes 

from the ovary into the fallopian tubes (Mukasa-Mugerwa, 1989). The ovary is 

capsulated within the tunica albugina tissue. It is divided into two zones, the 

external is known as the cortex and consists of stromal tissue, quiescent primordial 

follicles and different stages of growing/regressing follicles and corpora lutea. The 

internal zone is known as the medulla and consists of stromal tissue, blood vessels, 

nerves and smooth muscle fibres (Figure 1.2). The ovarian follicles mainly produce 

different steroid hormones such as androgens, oestrogens and progesterone and as 

well as various growth factors and cytokines including oxytocin, inhibin, activin 

and insulin-like growth factor (Bloom and Fawcett, 1975).  
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Figure 1.2 Schematic illustration of the morphology and architecture of a 

mammalian ovary through the reproductive cycle (Copyright 2001 Benjamh 

Cummings, an imprint of Addison Wesley Longman, Inc).   

1.4.  Folliculogenesis and the bovine oestrous cycle  

1.4.1. Early follicular development  

Key structures within the ovary are developing follicle that contain the oocyte and 

two types of somatic cells, granulosa cells (GC) and theca cells (TC). During the 

fetal phase, development of oocytes and follicles is started and takes 6-month to be 

completed. When quiescent primordial follicles activate and become committed to 

the development pathway, they undergo various sequential phases of development. 

There are 4 stages of follicle development starting with resting primordial follicles, 

which consists of an oocyte surrounded by a single layer of flattened pre-GCs. The 

second stage is the primary follicle, which is referred to as the activated primordial 

follicle. It has an oocyte, surrounded by a single layer of cuboidal GC. The third 

stage is the secondary follicle, when GC proliferation continues forming up to 7 

layers enclosing the oocyte.  At this stage the basement membrane forms around the 

GC and cells from the outer layer (stroma) condense around this to form TC. This 

TC becomes vascularized whereas the GC remains avascular. The last stage or 

antral stage when the secondary follicle enlarges further and a fluid-filled antrum is 

formed. The continues growth of this follicle is accompanied by further GC and TC 
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proliferation, increased vascularity of the theca and further growth of the oocyte 

(Figure 1.3) (Hutt and Albertini, 2007). Eventually, expansion of the antrum leads 

to a thinning of the follicular wall around the time of ovulation (Knight et al., 2012; 

Whittier, 1993). 

 

Figure 1.3 A diagram illustrates complete follicular development stages. Preantral 

phase: characterized by the formation and beginning of growth and activation of 

primordial follicles and growth of primary and secondary follicles. Antral phase: in 

which the formation of tertiary follicle (antral-filled follicular fluid cavity). Follicle 

growth occurs across the stages of recruitment, selection, dominance, and 

preovulatory phase of follicular waves. Oogonia develop from primordial germ cells 

and differentiate into oocytes in the ovary. Primordial follicles have a single layer of 

flattened granulosa cells. Primary follicles develop a single layer of cuboidal 

granulosa cells. Secondary follicles consist of two or more layers of cuboidal 

granulosa cells and a small number of theca cells. Oocytes are present in all 

preantral follicles. Tertiary follicle contains numerous granulosa cell layers, theca 

cells and primary oocyte and are characterized by the presence of an antral cavity 

containing follicular fluid. Follicular fluid is a plasma exudate conditioned by 

secretory products from the granulosa cells and oocyte. The Preovulatory (or 

Graafian) follicle is the final stage of follicle development; they are larger in size, 

have additional antral fluid and may have a secondary oocyte (post-LH surge) 

(Araujo et al., 2014).  

1.4.2. Follicle recruitment  

The word recruitment has been defined to distinguish two different phases of 

follicle development. There are two stages of follicle recruitment, ‘initial’ 

recruitment and ‘cyclic’ recruitment. Initial recruitment is the point at which, the 

initiation of primordial follicles growth is stimulated by intraovarian and/or other 
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unknown factors, while, other primordial follicles continue to be quiescent for a 

long period of time. Initial recruitment is considered as a continuous process that 

commences after follicle formation in the foetus, long before pubertal onset. 

Following initial recruitment, the growth of the oocyte becomes a prominent feature 

of developing follicles; however, oocytes remain arrested in the prophase of 

meiosis. For primordial follicles that fail to recruit, the default mechanism for them 

is to remain dormant.  

On the other hand, cyclic recruitment is characterized by transient increases of 

circulatory FSH through each reproductive cycle after pubertal onset that rescue 

growing antral follicle from atresia. During this stage a limited number of follicles 

continue to grow and survive with the support of FSH, whereas the default 

mechanism is to undergo atresia. The growth of oocytes of these follicles has 

already been largely completed; they are enclosed by a zona pellucida, and are 

capable of resuming meiosis (Figure 1.4) (table 1.1) (McGee and Hsueh, 2000; 

Regan et al., 2017). 
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Figure 1.4 A schematic shows follicle initial and cyclic recruitment. A certain 

number of primordial follicles are endowed in early life, and most of them are 

maintained in a resting state. Before and throughout reproductive life a number of 

dormant primordial follicles are activated and initiate growth (Initial recruitment). 

Activated primordial follicles grow through primary and secondary stages before 

developing an antral cavity. Most of follicles undergo atresia at the antral stage, 

however, a few of them are rescued under ideal gonadotropin influence that appears 

in a cyclic manner after puberty (Cyclic recruitment) to reach the preovulatory 

phase (modified from McGee and Hsueh, 2000).  
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Table 1.1 Differences between initial and cyclic recruitment of ovarian follicles 

(modified from McGee and Hsueh, 2000).  

 

1.4.3. Follicle Selection and dominance  

Following initial recruitment into the growth pool, follicular development involves 

emergence, selection and dominance followed by either atresia or ovulation of the 

dominant follicle (DF). As is generally known, the synthesis and release of both 

FSH and LH have a dominant function in ovarian follicle development. As 

discussed below in more detail (section 1.4.8), cattle typically display 2-3 

successive waves of follicle development (i.e. cyclic recruitment) during a single 

oestrous cycle although only one of these culminates in ovulation. In each wave of 

follicular development, FSH levels rise as emergence occurs. This becomes closely 

associated with follicular growth, whereby FSH binds to its receptor FSHR, which 

is found in the GC by day 3 of follicular wave. As a result, FSH performs its 

required downstream signaling which affects cellular growth and proliferation. 

Besides increased FSH levels, the activity of aromatase enzyme in the follicular GC 

has also risen in order to convert androgen to oestrogen. As the DF is selected from 

the growing cohort of small antral follicles, its diameter increases faster than other 

cohort follicles and follicular E2 and inhibin levels are up regulated, identifying this 

follicle as the healthy dominant follicle of the cohort. When the DF reaches ~9 mm 

 Initial recruitment 

(initiation of growth) 
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in diameter, dominance occurs and this leads to the suppression of FSH secretion 

which limits cohort follicle growth and prevents further follicle wave emergence 

until the DF undergoes either atresia or ovulates. Basically, the increase in E2 in 

concert with inhibin plays a key endocrine role which supresses FSH levels from 

the anterior pituitary through a negative feedback mechanism. The selected DF 

responds to LH and continues growth in the face of decreasing FSH levels. The 

switch from FSH to LH dependency is controlled via the acquisition of LH 

receptors (LHR) on the GC of DF. At different phases of follicular development, 

LHR is localized to the TC and GC of healthy follicles. As follicle develops, LHR 

in the theca cells rises and from 8-9mm diameter GC start to express LHR which is 

required for selection to become the ovulatory DF. It has been confirmed that the 

increase of LH levels in the circulation during follicle selection, permits the DF to 

secrete E2 and grow in response with decreasing FSH levels. (Crowe and Mullen, 

2013; Singh and Krishna, 2010). 

1.4.4. Ovulation and corpus luteum formation  

Ovulation is the following stage after the selection of Dominant follicle. During the 

early luteal stage, LH pulses occur with lesser amplitude and greater frequency 

between 20 and 30 pulses per 24 hours, while in the mid-luteal phase, the LH pulses 

are of greater amplitude and lesser frequency from 6 to 8 pulses per 24 hours, this 

gives insufficient amplitude and frequency for final maturation and further 

ovulation of the DF. Consequently, the DF produced during the luteal stage of the 

estrous cycle undergoes atresia, E2 and inhibin secretion declines, and this ends 

negative feedback block to the hypothalamus-pituitary. Thus, FSH production can 

rise and a new follicle wave emerges. E2 concentration can be used as a marker to 

identify the DF, which has greater follicular fluid E2 concentration than other 

follicles in the cohort. The production of E2 depends on the conversion of TC-

derived androgen into estrogen in the neighboring GC in accordance with two 

cell/two gonadotropin hypothesis referred to earlier. In the TC, the binding between 

LH and its receptor stimulates the conversion of cholesterol to androgen 

(androstenedione and testosterone). Then, the produced androgen diffuses into the 

adjacent granulosa cells where it is converted to estrogen. The role of E2 is not only 

on follicle development but also it has a positive feedback mechanism action to the 

hypothalamus-pituitary gland to promote the ovulation-inducing LH surge, and to 
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induce oestrus behaviour. Thus, the LH pulses achieve sufficient amplitude and 

frequency to induce final maturation and ovulation of the DF (Crowe and Mullen, 

2013; Singh and Krishna, 2010). The ovulatory response to LH involves the 

resumption of meiosis in the oocyte, the growth of the cumulus, the rupture of the 

follicle, and the release of a cumulus–oocyte complex (COC) that comprises a 

fertilizable oocyte. Once the oocyte is released, the remaining follicle cells, the GC 

and TC in particular, undergo reprogramming of final differentiation to generate the 

corpus luteum (CL) throughout a mechanism described as luteinization. Thus, the 

gene expression pathway started by FSH is down regulated and is exchanged for 

gene pathways that regulate matrix formation and luteinization (Rimon-Dahari et 

al., 2016). 

The CL originates at the site of the ovulated follicle. Luteinizing hormone LH is the 

main luteotropic hormone, which functions in provoking luteinisation of pre-

ovulatory follicle, including GCs and TCs transforming them into granulosa-lutein 

and theca-lutein cells. The major role of the CL is securing optimum production of 

progesterone (P4) during the luteal phase of oestrous cycle to support the 

establishment of pregnancy (Forde et al., 2011). In addition the CL persists and 

progesterone secretion is sustained throughout gestation if pregnancy is established. 

CL ‘rescue’ in cattle is initiated by interferon tau secreted by the trophoblast of the 

early embryo.   

1.4.5. Angiogenesis  

Ovarian angiogenesis comprises remodelling of the blood vasculature that takes 

place concurrently with folliculogenesis at the embryonic stage and remains a 

highly active process during follicle growth and luteinization. The ovary, like the 

uterus, has the ability to remodel vascular network through tight regulation within 

each reproductive cycle. Primordial and primary follicles have no vascular network 

and depend on the diffusion for oxygen and metabolite transfer. Throughout 

follicular development stages, growing pre-antral and antral follicles acquire a well-

developed vascular network in the internal and external theca layers. The GC layer 

remains avascular until ovulation (Brown and Russell, 2014). Once ovulation has 

occurred and CL formation commences, an enormous angiogenic process takes 

place; breakdown of the basement membrane occurs which leads to the penetration 
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of newly formed blood vessels into the inner parts of the follicle (Rimon-Dahari et 

al., 2016). 

1.4.6. Atresia  

At birth, the number of oocytes in the ovaries far exceeds the number that will 

actually be ovulated throughout the reproductive lifecycle of the female. As 

previously mentioned, primordial follicles can be quiescent, committed to growth, 

ovulatory or atretic. After birth, the number follicle-enclosed oocytes declines 

gradually and, commencing at puberty, a small proportion of these (<0.1%) will 

undergo full maturation and ovulation. However, the majority will degenerate in 

process called atresia (Jablonka-Shar-i. et al., 1994; Greenwald, 1989; Plendl, 

2000).   

1.4.7. Follicular development and the bovine oestrous cycle  

The entire period of ovarian folliculogenesis has been estimated to be 160 days in 

cattle. This includes the development of activated primordial follicles into tertiary 

follicles. However, it has been estimated that the time required for follicles to grow 

from the secondary follicles (pre-antral stage) to a mature ovulatory size is about 42 

days. In the bovine, during embryonic development, arrested primordial follicles at 

meiotic prophase I start to leave the resting pool and enter into the pre-antral growth 

stage. The wave pattern of antral follicle growth has been observed as early as 2 

weeks of age in cattle. The pre-antral phases of follicular development occur 

independently of gonadotropic hormones support, but follicles become more 

responsive to GnRH at the early-antral stages. At the age of puberty, the cyclic 

development of antral follicles takes place as a result of various changes in 

hypothalamic and pituitary gonadotropin hormones (Baerwald, 2009; Craig et al., 

2006).  

The oestrous cycle is formally defined as the cyclical pattern of ovarian activity of 

female animals that ultimately enables mating and consequent establishment of 

pregnancy. The onset of oestrous cycles occurs at the time of sexual maturity. In 

cattle, puberty occurs generally at 6-12 months of age and commonly at a body 

weight of 200-250 kg. The normal duration of a bovine oestrous cycle is 

approximately 18-24 days. The cycle involves two separate stages: the luteal stage 
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(14-18) days and the follicular stage (4-6) days. The luteal stage is the phase 

following ovulation when the CL is formed (known as met-oestrous and di-

oestrous), whereas the follicular stage is the phase following the regression of the 

corpus luteum until ovulation occurs (known as pro-oestrus and oestrus). Through 

the follicular stage, development and ovulation of the ovulatory follicle takes place, 

the oocyte is released into the oviduct allowing the potential for fertilization (Forde 

et al, 2011).  

1.4.8. Follicular wave and hormonal profiles during the oestrous cycle in 

cattle 

It is well known that the mammalian ovary is a highly dynamic organ that 

undergoes different physiological activities including sequential waves of follicular 

growth and regression, rupture of mature follicles and the ovarian wall during 

ovulation, repair of the ovulation wound and the formation and subsequent 

regression of functional corpora lutea (Donadeu et al., 2012). During the bovine 

oestrous cycle, follicular development occurs in a wave-like fashion with typically 2 

or 3 waves through each cycle (Knopf et al., 1989). Some studies reporting >68% of 

cows with 2 follicular waves pattern whereas others report >70% of cows with 3 

follicular waves pattern per oestrous cycle (Ginther et al., 1989 and Jaiswal et al., 

2009). The explanation for the prevalence of one wave patthern over the other is not 

clear, though the wave pattern is slightly repeatable within an animal and 3 wave-

patterns are related to a longer oestrous cycle (Jaiswal et al., 2009). In cattle, the 

first follicular wave is initiated when a group of follicles emerge and grow in 

response to a transient FSH surge on day 0, the day of ovulation (Adams et al., 1992 

and García-Guerra et al., 2017). In two-wave cycles, emergence of the second wave 

occurs on day 9 or 10, and in three-wave cycles it occurs on day 8 or 9.  In three-

wave cycles, emergence of the third wave typically occurs on day 15 or 16. Because 

of raised levels of progesterone during the luteal phase, dominant follicles of 

successive waves undergo atresia if dominance is achieved prior to luteal 

regression. At luteolysis progesterone levels fall allowing the dominant follicle to 

becomes the ovulatory follicle, with ovulation triggered by an LH surge generated 

by the positive feedback action of oestradiol arising from the dominant follicle. 

Emergence of the next wave is delayed until the day of ensuing ovulation. In two-

wave cycles CL regression occurs on day 16, while in three-wave cycles it usually 
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occurs around day 19. Thus cows with 2-wave patterns typically have shorter 

oestrous cycle (19-20 days compared with 22-23 days in 3-wave patterns). 

Therefore, the so-called 21-day-oestrous cycle of cattle occurs only as an average 

between two- and three-wave patterns (Figure 1.5) (Adams et al., 2008).  

 

Figure 1.5 Dynamics of ovarian follicular development and gonadotropin secretion 

during two- and three-wave oestrous cycles in cattle. Dominant and subordinate 

follicles are shown as open (viable) or shaded (atretic) circles. A surge in circulating 

FSH levels (thick line) leads emergence of each wave. A surge in circulating LH 

levels (thin line) leads to ovulation. The LH surge is preceded and succeeded by a 

period of high-LH pulse frequency as a result of low-circulating progesterone levels 

(i.e., period of luteolysis and luteogenesis, respectively) (Adams et al., 2008).  
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1.4.9. Physiological changes associated with the menstrual cycle in human  

The menstrual cycle in women is regulated by various endocrine, autocrine and 

paracrine factors that are responsible for controlling the development of ovarian 

follicles, ovulation, luteinisation, luteolysis and endometrium remodelling (Golden 

and Carlson, 2008). The menstrual cycles of women differ in length (26-35 days; 

average 28 days). During the luteal-follicular transition a rise in FSH level induces 

continued growth of a cohort of small antral follicle; this is accompanied by 

increased secretion of inhibin B through the early follicular stage. In the mid-

follicular stage (~day 7), the ovulatory DF is selected and as this DF grows, it 

stimulates the release of E2 and inhibin A which increase in the week prior to 

ovulation. Evidence suggests that, as in catlle, follicular development occurs in a 

wave-like pattern with typically 2 or 3 waves through each cycle; two-thirds of 

women display two follicular waves while one third display three-follicular waves 

per cycle (Baerwald et al., 2003a and Baerwald et al., 2003b). Women with three-

wave pattern show longer cycles, and a later increase in the E2 and LH surge that 

promote ovulation (Figure 1.6). In response to LH pulses, the CL releases P4, E2 

and inhibin A, and reaches its functional peak according to size, secretions, and 

vascularisation from 6 to 7 days after ovulation. In contrast to cattle, in which 

uterine pulses of PGF2α initiate luteolysis, cyclic regression of the human CL 

occurs independently of the uterus. Regression of the CL can be stopped by human 

chorionic gonadotropin (hCG), the luteotrophic signal from the implanting 

trophoblast, secreted some 8 days after conception. Cyclic luteal regression is 

accompanied by as abrupt fall in P4, E2 and inhibin A and menstruation is initiated 

and executed via uterine prostaglandin E and PGF2α production, vasoconstriction 

and matrix metalloprotease secretion by leukocytes. With the exception of the 

luteolytic mechanism, many aspects of ovarian function and hormone changes 

throughout the human menstrual cycle are similar to the oestrous cycles in cows and 

mares, justifying research into comparative features of menstrual and oestrous 

cycles in monovulatory species (Mihm et al., 2011). 
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Figure 1.6 A schematic of follicular wave patterns and changes in systemic 

gonadotrphins, steroids and inhibins through follicular stages of the human 

menstrual cycle. During the selection of DF, cohort follicles that undergo atresia are 

shaded. * 2-W (2-wave women), 3-W (3-wave women) and Prog (P4) (Mihm et al., 

2011). 

1.5. Ovarian steroidogenesis and its regulation  

1.5.1. Steroidogenic pathway in the ovary 

Steroidogenic enzymes have a role in the biosynthesis of different steroid hormones 

that are all derived from cholesterol. They consist of various specific cytochrome 

P450 enzymes (CYPs), hydroxysteroid dehydrogenase (HSDs), and steroid 

reductases. There are several endocrine organs that have the ability to synthesize 

biologically active steroids such as the ovary, testis and adrenal cortex. The 

biosynthesis of all steroid hormones initiates from cholesterol which is converted to 

pregnenolone by CYP11A1 enzyme. This enzyme is bound to the inner membrane 

of the mitochondria and is expressed in all steroidogenic tissues; however, it is not 

found in nonsteroidogenic tissues. Then, under the effect of 3β hydroxysteroid 

dehydrogenase (3β-HSD) enzyme, pregnenolone is converted to progesterone. The 

enzyme is found in the mitochondria and smooth endoplasmic reticulum, and 

widely distributed in steroidogenic and non-steroidogenic tissues. Thus, 
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pregnenolone and progesterone become the precursors for the production of all 

other steroid hormones (Figure 1.7).  

The ovary produces oocytes along with the secretion of steroid hormones for sexual 

and reproductive function. The basic structure of the developing follicle is an oocyte 

surrounded by layers of GCs followed by layers of TCs, where steroidogenesis 

takes place. The theca layer is highly vascularized and TCs secrete P4, as well as 

A4 and testosterone which act as a precursor for estrogen synthesis in the GC. A4 

and testosterone diffuse into the adjacent non-vascularized GC where they are 

converted into E2 by cytochrome P450 aromatase (CYP19A1) and 17 β -HSD 

enzymes. In the preovulatory follicle, once the follicle reaches the final maturation 

stage, oestrogen synthesis increased dramatically under the effect of the aromatase 

enzyme up-regulation, initially by FSH and then by LH. This process is enhanced 

when the oestrogen up-regulates LH receptors which, as a result, initiate the positive 

feedback mechanism which generate the preovulatory LH surge, in order to 

stimulate ovulation. After LH surge, the follicle enters the luteal stage and forms a 

corpus luteum, which is responsible for the secretion of P4. The subsequent 

decrease in LH level is associated with a reduced aromatase expression and sharp 

decline in estrogen production by GC. Correspondingly up-regulation of CYP11A1 

and 3β-HSD levels enhances P4 production that then accompanies the stage of 

follicular rupture and luteinisation (Sanderson, 2006).  

 

 

 

 

 

 

 

 



34 
 

Figure 1.7 The steroid biosynthesis pathway for the conversion of substrate 

cholesterol to the P4, A4 and E2 in the ovary. 

1.5.2. Two-cell two-gonadotropin model 

A two-gonadotrophin, two-cell hypothesis has been proposed to explain ovarian 

steroidogenesis. According to this LH acts directly on TC in order to stimulate 

biosynthesis of androgen (Androstenedione A4 and testosterone). These molecules 

diffuse to adjacent GC where the enzyme complex (aromatase) converts them to 

oestrogens (oestrone, E2), under the influence of FSH (Figure 1.8). 

 

 

Figure 1.8 Two-cell, two-gonadotrophin model of follicular steroidsynthesis. LH 

acts on the theca cells to stimulate the synthesis of androgens (A4 and testosterone). 

Then, these molecules diffuse to the adjacent granulosa cells where the aromatase 

enzyme converts them to oestrogens (oestrone and E2) under the influence of FSH.  
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1.6. Intra-ovarian factors regulating follicular function  

In addition to steroids there are many other intra-ovarian regulation factors which 

have either an indirect role via the negative feedback mechanism to the 

hypothalamus-pituitary glands or direct actions on ovarian cells e.g. through altering 

the synthesis of E2 by GC, or androgen by TC (Crowe and Mullen, 2013). 

1.6.1. TGF-beta super family  

Several members of the transforming growth factor-β family (TGF-β) are known to 

have a key role in follicular and oocyte development (Knight and Glister, 2006). 

These family members include anti-Mullerian hormone (AMH)/Mullerian inhibiting 

substance (MIS), activin, follistatin, inhibins, several bone morphogenetic proteins 

(BMP) and growth differentiation factor (GDF)-9. Several ligands of this family 

(inhibins, activins) where first discovered in follicular fluid via their effect on the 

secretion of pituitary FSH (Qiao and Feng, 2010) but they also exert local intra-

ovarian actions. Activin acts to up regulate the secretion of E2, while follistatin 

(activin binding protein) blocks activins positive steroidogenic effects. Inhibins that 

are secreted by GCs have a function in the suppression of FSH produced in the 

anterior pituitary that, in turn, regulates the oestrous cycle (Crowe and Mullen, 

2013). At a local level inhibin can also stimulate androgen production by TC 

(knight et al., 2012). 

1.6.2. Other growth factors 

The epidermal growth factor family (EGF) comprises a range of soluble growth 

factor molecules that play a significant role in the regulation of cell growth, 

proliferation and differentiation. In the ovary, EGF is found in the follicular fluid, 

promoting follicular growth and oocyte meiotic maturation via the binding to its 

EGF receptor (EGFR) which initiates signaling transduction system (Hsieh et al., 

2009). The fibroblast growth factor family (FGFs) are a group of polypeptides that 

have an important function in development, cell growth, tissue repair and 

transformation. These factors are expressed in the GCs and TCs of growing 

follicles, and also have a role in regulating FSH action (Schreiber et al., 2012). The 

insulin like growth factor family (IGFs) are multifunctional polypeptides with 

insulin-like action. They consist of two ligands (IGF-I) and (IGF-II), two receptors 

(IGFR-I) and (IGFR-II), and several binding proteins (IGFBP 1-6) and proteases 
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inducing pregnancy associated plasma protein-A (PAPP-A) which are implicated in 

ovarian follicular development (Sudo et al., 2007). Brain-derived neurotrophic 

factor (BDNF) and nerve growth factor (NGF) are major members of the 

neurotrophin family (NT) which is responsible for the development of central and 

peripheral nervous systems. These members may also be involved in 

folliculogenesis and cytoplasmic competence of the oocyte (Linher-Melville and Li, 

2013).  

1.7. Kisspeptin (KISS-1) and its receptor (GPR54) system 

1.7.1. Introduction  

A pivotal advance in understanding of the neuronal mechanisms in the 

hypothalamus regulating GnRH production into the portal vessels, and consequently 

the final pathway by which the brain controls gonadal function, came with the 

recognition of the physiological functions of the neural peptide, kisspeptin and its 

receptor (GPR54) (Ahmed et al., 2009). Kisspeptin, encoded by the KiSS-1 gene, is 

a potent endogenous secretagogue of GnRH, and its neuronal system governs both 

the pulsatile gonadotropin secretion that drives follicular development, 

spermatogenesis and steroidogenesis, and the preovulatory gonadotropin surge that 

triggers ovulation in females. The pulsatile mode is controlled by negative feedback 

mechanism via gonadal steroids, while the surge mode is in response to positive 

feedback mechanism via estrogen (Ohkura et al., 2009).  

1.7.2. Discovery of kisspeptin  

The product of the KiSS-1 gene was originally identified as a tumour metastasis 

suppressor by a group in Hershy, PA, USA, (Lee et al., 1996). Thereafter, the KiSS-

1 gene and components of this endogenous ligand-G-protein-coupled receptor 

system were discovered between 1996 and 2001 (Kotani et al., 2001; Ohtaki et al., 

2001). In 2003, two independent studies documented the presence of inactive 

mutations and deletions of the orphan receptor gene called GPR54 gene in patients 

suffering from idiopathic hypogonadotropic hypogonadism. These observations 

from the groups of de Roux and Seminara were the first to highlight the 

indispensable functions of GPR54 and its ligands in the control of key aspects of 

reproduction (Pinilla et al., 2012). Such genetic findings in human were 

substantiated experimentally using mice engineered to lack functional GPR54, 
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which exhibit reduced gonadal size and low levels of gonadotropins and steroids 

hormones, and failure to undergo puberty (de Roux et al., 2003; Funes et al., 2003; 

Seminara et al., 2003; Messager et al., 2005). However, in cattle, the association of 

KiSS-1 to the GnRH-gonadotropin response in reproductive physiology remains 

poorly understood (Ezzat Ahmed et al., 2013; Pinilla et al., 2012). On the other 

hand, several groups have shown that central or peripheral administration of 

kisspeptin, stimulates GnRH secretion in mouse (Gottsch et al., 2004), rat (Matsui 

et al., 2004; Navarro et al., 2004 and 2005) sheep (Messager et al., 2005), monkey 

(Shahab et al., 2005; Plant et al., 2005) and human (Dhillo et al., 2005) and it seems 

highly probable that similar mechanisms operate in the bovine.  

1.7.3. Amino acid sequence of kisspeptin  

The KiSS-1 gene encodes a precursor peptide that is further processed to generate 

biologically active forms of kisspeptin of different length (10-13-14-54 amino 

acids) (Oakley et al., 2009). In human, the kisspeptin precursor includes 145 amino 

acids, with a putative 19-amino acids signal sequence, two dibasic cleavage sites at 

amino acids 57 and 67, and one site for terminal cleavage and amidation at amino 

acids 121-124, which formed the biologically active kisspeptins (Kotani et al., 

2001; Muir et al., 2001; Ohtaki tet al., 2001). The proteolysis of prepro-kisspeptin 

gives kp-54 with a 54-amino acids peptide initially known as metastin. 

Additionally, the other peptide fragments of the kiss-1 precursor including kp-10, 

13 and 14 share the COOH-terminal region of kp-54 (Figure 1.9) (Ohtaki et al., 

2001). The COOH-terminal decapeptide of kisspeptin, Kp-10, has been widely used 

to investigate the physiological actions of kisspeptin-GPR54 signaling. Also, kp-10 

is the minimal sequence required for receptor activation in mammals, with higher 

potency than longer peptides (Pinilla et al., 2012). 
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Figure 1.9 Main structural features of KiSS-1 gene and its products. Several 

kisspeptins are formed by proteolytic cleavage from prepro-kisspeptin, which is a 

common precursor, encoded kiss-1 gene. In human, the KiSS-1 gene is consist of 

four exon, the first two being non-coding exons (West et al., 1998). Yet, an 

alternative genomic composition, with three exons, the first one being non-coding, 

has been also proposed (Luan et al., 2007). The human kisspeptin precursor consists 

of 145 amino acids, with a 19 amino acids signal peptide and a central region with 

54 amino acids. Lower molecular weight forms of kisspeptin including kiss-14, 13, 

and 10 exist; the latter corresponds to the common COOH-terminal 10-amino acid 

having the RF-amide motif that is able to completely activate GPR54 (Pinilla et al., 

2012).  

1.7.4. Biological action of kisspeptin  

The effects of centrally or peripherally administrated kisspeptin on GnRH secretion 

have been reported in various mammals since the initial observation in rodents 

(Gottsch et al., 2004; Matsui et al., 2004). Kisspeptin consistently promotes the 

secretion of gonadotropin LH but various studies have reported that it has less effect 

on FSH secretion (Caraty et al., 2007; Lents et al., 2008; Smith et al., 2009).  In 

reproduction, puberty is considered as a successful event that is associated with the 
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interaction between the gonadotropic axis and somatotropic axis. It has been 

postulated that kisspeptin not only has a role in promoting the release of LH but also 

growth hormone (GH) in prepubertal female cattle. Given its potential role as a 

metastasis suppressor, the possibility exists that kisspeptin may exert action in other 

tissues (Ahmed et al., 2009).  

1.7.5. Anatomy of kisspeptin neurone distribution  

The distribution of KiSS-1 expressing neurons has been examined by two 

techniques, in situ hybridization and/or immunohistochemistry in sheep, goats, pigs 

and horses (Okamura et al., 2013). The most consistent population of KiSS-1 

expressing neurons are found exclusively in two discrete regions within the 

hypothalamus, rostrally in the preoptic area (POA) and caudally in the arcuate 

nucleus (ARC) of the forebrain across different mammalian species (Lehman et al., 

2010; Smith et al., 2006). Also it was found that KiSS-1 mRNA is expressed in cells 

in the anteroventral periventricular nucleus (AVPV), the periventricular nucleus 

(PeN), the anterodorsal preoptic nucleus (ADP) and the (ARC) (Gottsch et al., 2004 

and Smith et al., 2005a,b).  

1.7.6. Action of kisspeptin on gonadotropin secretion  

KiSS-1 neurons appear to act directly on GnRH neurons to trigger the secretion of 

GnRH. Areas of kiss-1 neurons including the Arc and AVPV send projections to the 

medial POA (Canteras et al., 1994; Simonian et al., 1999). As the majority of GnRH 

neurons express KiSS-1 receptor (GPR54), upon stimulation by kisspeptin, GnRH 

neurons are stimulated to secrete GnRH (Figure 1.10). The GnRH in turn stimulates 

the release of gonadotropins LH and FSH from the pituitary. Although the ability of 

kiss-1, GPR54 and GnRH signaling to simulate the release of LH and FSH under 

experimental conditions has been shown, it provides little insight into the functional 

significance of kiss-1 (Smith et al., 2006). 
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Figure 1.10 Proposed interactions between KiSS-1 secreting neurons and GnRH 

neurons (Smith et al., 2006).  

1.7.7. Other actions of kisspeptin in the control of reproduction  

Although the experimental data on kisspeptin-GPR54 signaling points out its 

primary site of action at the hypothalamus, evidence obtained proposes other 

regulatory effects of kisspeptin among various mammalian species at other levels of 

the reproductive system. The possibility of direct actions of kisspeptin on gonads 

remains barely studied to date and this was identified as one area of investigation to 

be followed during the current research project utilizing bovine follicle cell culture 

models. As generally known, the ovary is a complex endocrine organ, which has an 

essential role in oocyte formation and hormones synthesis. Evidence has been 

reported for the expression of KiSS-1 gene and protein in human, rat and monkey 

ovary (Castellano et al., 2006; Gaytan et al., 2009). Also, the expression of GPR54 

at the mRNA and protein level has been reported in some of these previously 

mentioned species (Pinilla et al., 2012). To our knowledge, detailed expression 

analysis studies in cattle have not been published and evidence that KiSS-1 and 

GPR54 may be expressed in the adrenal, pituitary, testis and ovary of cow has not 

been reported.  
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Regarding the ovary, studies on rats were the first to document KiSS-1 and GPR54 

expression at different phases of postnatal maturation, through the cycle and in 

response to hormonal manipulations. Interestingly, studies showing low and stable 

levels of GPR54 mRNA in the ovary through the estrus cycle, have also 

demonstrated an increase in expression of ovarian KiSS-1 throughout the pubertal 

transition. In addition, the expression of ovarian kiss-1 peaked at the afternoon of 

pro-estrus (Castellano et al., 2006). In good agreement, studies on the Siberian 

hamster documented that kisspeptin immunoreactivity increased through the 

ovulatory transition including pro-estrus and estrus (Shahed and Young, 2009). It 

appears that the expression of KiSS-1 is under the control of pituitary 

gonadotropins, since protocols of gonadotropin stimulation were able to stimulate 

KiSS-1 mRNA levels in immature rat ovary; preventing the preovulatory surge of 

gonadotropins blocked the rise of ovarian KiSS-1 expression (Castellano et al., 

2006).  

In addition, recent analysis of ovulatory dysfunction in a rat model indicated that the 

inhibition of the synthesis of prostaglandin is associated with a marked suppression 

of ovarian KiSS-1 mRNA levels through the ovulatory period. In other word, the 

expression of KiSS-1, which is induced by gonadotropin, was blocked by prevention 

of prostaglandin synthesis (Gaytan et al., 2009). The above observation suggests a 

putative role of KiSS-1 in the regulation of ovulation. The finding of kisspeptin 

immunoreactivity in different ovarian compartments including theca cells, corpus 

luteum and the interstitial gland might indicate other ovarian roles of kisspeptin-

GPR54 signaling (Castellano et al., 2006 and Gaytan et al., 2009). As mentioned 

above, this is one of the aspects selected for investigation in the present study.  
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1.8. Neuromedin B (NMB) and its receptor (NMBR) 

In relation to a potential role of NMB in ovarian function, a theca cell microarray 

study carried out in this laboratory (Glister et al., 2013), indicated that NMB is 

expressed in these cells and was amongst the most highly down-regulated 

transcripts in bovine TCs in response to BMP-6 treatment (~10-fold suppression). 

This observation drew our attention to NMB as another potential intrafollicular 

regulatory factor and prompted experiments on NMB reported in this thesis. 

1.8.1. Discovery  

In 1970, Erspamer et al. discovered bombesin and the related peptide ranatensin in 

frog skin. The first mammalian bombesin-like peptide was purified from porcine 

non-antral gastric and intestinal tissue and known as gastrin-releasing peptide for its 

effective gastrin releasing activity. Gastrin- releasing peptide which consist of 27-

amino acid peptide and bombesin share the same seven C-terminal amino acid 

sequence. Neuromedin B (NMB), a highly conserved member of a family of 

bombesin-related decapeptide in mammals, was originally isolated from porcine 

spinal cord and is involved in the neural communication system. Since the C-

terminal seven amino acid sequence is identical, this peptide is believed to be the 

mammalian homologue of ranatensin (Zhao et al., 2012). Human cDNA encoding 

NMB was firstly isolated by Krane et al in 1988 using screening of human 

hypothalamic libraries that lead to identification of its molecular structure. 

Consequently, the NMB gene was purified from rats, and a 117-amino acid prepro-

NMB was revealed through nucleotide sequence analysis. It has been reported that 

the Neuromedin (NMBR) is part of the G protein-coupled receptor (GPCR) family 

which, when activated by NMB, plays several physiological functions. NMBR 

amino acid sequence is well conserved among different species (Ma et al., 2016). 

1.8.2. Tissue-specific expression of NMN and NMBR 

Since its discovery, NMB has been shown using RT-PCR and in situ hybridization 

to be widely expressed in central nervous system (CNS) and in peripheral organs. In 

humans, NMB is largely expressed in the hypothalamus, stomach and colon and to a 

smaller degree in the cerebellum, pancreas and adrenal glands, in adipose tissues 

and in the urinary tract. In rats, NMB mRNA has been highly identified in the 

dentate gyrus, olfactory bulb, dorsal root ganglion and brain stem. In peripheral 
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tissues and organs, NMB has been identified in the esophagus, stomach, intestines, 

uterus, urinary bladder, lungs, gall bladder, adipose tissues, gastrointestinal tissues, 

pancreas and pituitary (Ma et al., 2016; Kameda et al., 2014). 

Expression of NMBR mRNA has been found in human, rats, mouse and monkeys. 

Highly expression levels of NMBR mRNA are reported in the CNS and in various 

peripheral tissues. In the CNS, the NMBR is extensively expressed in several brain 

regions, including the caudate nucleus, amygdala, thalamus, hippocampus, brain 

stem, hypothalamus, spinal cord and olfactory region in rat and mouse. In peripheral 

tissues, broad distribution of the NMBR has been reported in the testis, urogenital 

smooth muscles, gastrointestinal system, esophagus and adipose tissues. 

Additionally, NMB receptors have been reported on several types of tumors, such as 

CNS tumors, small cell and nonsmall cell lung cancers, carcinoids (intestinal, 

thymic, and bronchial), human pancreatic cancer cell lines and ovarian epithelial 

cancers (Ma et al., 2016). 

As previously mentioned, molecular structure of NMB was initially discovered in 

human by Krane et al. (1988) and its human cDNA isolated by screening human 

hypothalamic libraries. NMB is encoded in a prepro-NMB, a 76-amino acid 

precursor which has a 24-amino acid signal peptide, a NMB-32 and a 17-amino acid 

carboxyl-terminal extension peptide. The carboxyl terminal of NMB-32 coding 

region is flanked by glycine a-amidation donor and a dibasic (Lys-Lys) cleavage 

recognition site which doubtless divides mature NMB-32 from its carboxyl-terminal 

extension peptide through proteolytic processing. Two NMB transcripts of 750-850 

bases were revealed by northern blot analysis in human brain and gastrointestinal 

tissues with great expression levels in hypothalamus, stomach, colon and low levels 

in cerebellum, pancreas and adrenals. Hybridization analysis of human genomic 

DNA with NMB probe is reliable with a single human NMB-encoding gene. 

Analysis of human-mouse somatic cell hybrids specified the localization of this 

gene on chromosome 15, q11-qter region (Ohki-Hamazaki, 2000). 

1.8.3. Biological action of Neuromedin B  

The binding between NMB and its receptor is involved in several has important 

physiological regulations such as smooth muscle contraction, glucose metabolism 

and pancreatic endocrine or exocrine function. Also, NMB activates the 
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proliferation of carcinoma cells in prostate cancer, nonsmall-cell lung cancer, and 

colon cancer, as well as the differentiation of rat osteoblasts. In the pituitary gland, 

the expression and function of NMB have been studied, particularly in thyrotrophs 

(Kameda et al., 2014).  

NMB/NMBR also a role in various behaviors such as fear and anxiety, stress, 

itching and scratching behavior, feeding, and thermoregulation. It also appears to 

have regulatory roles in reproduction, blood pressure, blood glucose, energy balance 

and cell growth (Ma et al., 2016).  

1.8.4. Ligand binding  

It has been proven in some studies that NMBR rapidly internalize and cleave bound 

agonist. At 22℃, NMB and its receptor showed maximal binding after 5 and 15 

minutes, and in cells expressing native or transfected receptors more than 70% of 

the binding between the NMB and its receptor was internalized by 6o minutes 

(Benya et al., 1992). Continuous exposure to agonist resulted in receptor 

suppression due to NMBR internalization and consequence elimination of agonist 

caused receptor recycling from an intracellular site to cell surface which is not rely 

on protein synthesis (Ohki-Hamazaki, 2000). 

1.8.5. Signaling transduction  

Upon binding of NMB to its receptor, several intracellular signaling mechanisms 

are activated. Phospholipase C is activated and lead to the increase of cellular 

inositol phosphate and cytosolic Ca2+ levels in different NMBR-expressing cells 

such as rat C6 glioma cells, small cell lung cancer cell lines, NMBR transfected 

broblasts and cultured brain microvascular endothelial cells (Kroog et al., 1995; 

Wang et al., 1992; Benya et al., 1992 and 1994; Moody et al., 1995; Vigne et al., 

1995). Cellular responses are mediated via heterotrimeric G-protein comprised 

monomeric G𝛼q and dimeric Gβγ linked to NMBR (Shapira et al., 1994; Jian et al., 

1999). NMB/NMBR binding catalyses the exchange of GDP bound to the G𝛼 

subunit for GTB. After detachment from Gβγ subunits, functional GTP bound G𝛼 

subunit then stimulates βisoform of phospholipase C which catalyses the hydrolysis 

of phosphatidyl inositol 4,5-bisphosphate (PIP2) in the cell membrane. Subsequent 

products, inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) mediate 
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signaling pathways as second messengers. Then, the binding between IP3 and the 

receptors in the endoplasmic reticulum (ER) activates the release of Ca2+ from 

intracellular stores resulting in the increase of cytosol Ca2+. Another molecule of 

second messenger, DAG, stimulates PKC. PKC signaling cascades probably control 

arachidonic acid secretion from NMB stimulation, and this leads to increase 

intracellular cAMP (Moody et al., 1995; Rozengurt, 1998). NMB also triggers 

tyrosine phosphorylation of multiple proteins involving p125FAK and paxillin, one of 

the main adhesion substances (Lach et al., 1995). Additionally, p74raf-1 and p42mapk 

stimulation can appear in a PKC-independent manner, indicating that several 

signaling mechanisms may be activated following NMBR stimulation (Ohki-

Hamazaki, 2000; Charlesworth and Rozengurt, 1997). 
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2. Aims of Study 
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1. Investigate whether KiSS-1 and NMB and their cognate receptors are 

expressed in bovine endocrine tissues with particular focus on the ovary. 

2. Explore whether kisspeptin and NMB, alone and in combination with their 

antagonists, can influence the steroidogenic pathway in cultured ovarian 

cells in vitro.  

3. Investigate whether expression of KiSS-1, kisspeptin receptor and NMB by 

cultured ovarian cells is regulated by gonadotropins and other factors. 

4. Examine the effect of kisspeptin-10 on bovine ovarian cortical stromal cell 

migration using an in vitro wound healing ‘scratch’ assay.  

5. Investigate whether NMB, kisspeptin-10, TGF-β-1, BMP-6 and TSP-1 and 

their respective antagonist modulate capillary network formation in a 

follicular angiogenesis model in vitro.  

6. Investigate whether TGF-β-1 and BMP-6 (alone and in combination with 

their antagonists) affect ovarian steroidogenesis in the above-mentioned 

follicular angiogenesis model. 

7. Explore whether expression of steroidogenic transcripts and other 

angiogeneic factors by cultured ovarian cells is regulated by TGF-β-1 and 

BMP-6.  
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3. Materials and Methods 
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3.1. Bovine ovarian cell culture  

3.1.1. Materials 

Unless otherwise state, all materials were purchased from Sigma UK Ltd. (Poole, 

Dorest, UK), Life Technologies Ltd. (Paisley, UK), Fisher Scientific Ltd. 

(Loughborough, Leicestershire, UK), TOCRIS bioscience by R&D systems 

(Abingdon, UK) and Lonza (Wokingham.UK).  

3.1.2. Bovine ovary collection  

In all experiments, bovine ovaries at random stages of the oestrous cycle in cattle 

were collected from a local abattoir in Guildford, Surrey and delivered back to the 

laboratory within 50 minutes in medium-199 (M-199) containing 

antibiotic/antimycotic solution 1% v/v (Sigma, A9909). These ovaries came from 

animals of unknown breed, age, health and reproductive cycle background.    

3.1.3. Media preparations 

3.1.3.1. Culture media 

3.1.3.1.1. McCoy’s 

Culture media were freshly prepared on the day of ovary collection under aseptic 

conditions in a laminar flow hood. This consisted of McCoy’s 5A (500ml) modified 

medium (Sigma, M-8403), supplemented with antibiotic/antimycotic solution 1% 

v/v (Sigma, A9909), TSS (apo-transferrin) 5μg/ml (Sigma, T-2036) and sodium 

selenite 5ng/ml (Sigma, S-9133), Insulin 10ng/ml (bovine pancreas, Sigma, I-1882), 

HEPES 20mM (Sigma, H-4034) and bovine serum albumin (BSA) 0.1% (Sigma, A-

9418). Cultured medium used for granulosa cells was also supplemented with 10-7M 

androstenedione. For cells cultured under serum-supplemented conditions, 2% fetal 

calf serum (FCS) was included in addition to the other supplemented mentioned 

above.  

3.1.3.1.2. Endothelial cell culture medium 

Culture media were freshly prepared on the day of ovary collection under aseptic 

conditions in a laminar flow hood. This consisted of EBM-2 endothelial cell basal 

medium (500ml; Larnzo, CC-4176), supplemented with undefined concentration of 

Hydrocortisone (Lonza, CC-4112A), R3- insulin like growth factor-1 (Lonza, CC-



50 
 

4115A), Ascorbic acid (Lonza CC-4116A), Human epidermal growth factor (hEGF) 

(Lonza CC-4317A), Antibiotics (GA-1000) (Lonza CC-4381) and Heparin (CC-

4396A. In-house supplements including Apo-transferrin (TSS) 5µg/ml (Sigma, T-

2036) and sodium selenite 5ng/ml (Sigma, S-9133), Insulin 10ng/ml (bovine 

pancreas, Sigma, I-1882) and BSA 0.1% (Sigma, A-9418) were also added. BSA 

was supplemented to the media after day 1 until the end of the culture period. Cells 

were cultured under serum-supplemented conditions (2% FCS) in addition to the 

other supplemented mentioned above for day 1 only.  

3.1.4. Ovary processing and follicle selection  

From the time of collection from a local abattoir the bovine ovaries were immersed 

in sterile supplemented M-199. On arrival in the laboratory, ovaries with a healthy 

appearance were washed in 70% ethanol for approximately 30 seconds then the 

excess tissues were trimmed off and the ovaries were maintained in fresh 

supplemented M-199.  Medium sized follicles with a morphologically normal 

healthy appearance were dissected out aseptically in a laminar flow cabinet and 

transferred into petri-dish containing 5ml Dulbecco’s phosphate buffer saline 

(DPBS). Follicle diameter was measured using a ruler and follicles 4-8 mm in 

diameter were selected for further processing to recover GC and TC for cell culture.  

3.1.4.1. Granulosa cell preparation (GC) 

Follicular fluid, cumulus-oocyte complex and loose GCs were aspirated using a 19-

gauge needle attached to a 5ml syringe. Follicles were hemisected in a petri-dish 

contains DPBS and then cut in half to scrap the inner surface (i.e. GCs) using a 

sterile inoculating loop. After that, the cell suspension was transferred into a 

centrifuge tube, filled up with DPBS, centrifuged at 1500rpm for 10 minutes; then 

the supernatant was discarded and the pellet ready for osmotic shock treatment to 

lyse any red blood cells present (see section 3.1.5. below). Scraped follicles ‘shells’ 

were retained in a tube containing supplemented M-199 ready for theca cell 

preparation. 

3.1.4.2. Theca cell preparation (TC) 

Hemisected follicle ‘shells’ that had been gently scraped to remove GCs were put 

into a 50ml centrifuge tube containing supplemented M-199. They were shaken 
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vigorously for approximately 20 seconds to remove any remaining GCs and then 

the ‘shells’ were allowed to settle down. The supernatant was removed and replaced 

with fresh supplemented M-199 and the previous step was repeated twice. At this 

time, follicles were placed in a petri-dish containing supplemented M-199 using 

watchmaker’s forceps. The theca internal layer was peeled away from stromal tissue 

under a dissecting microscope (Wild M8, Leica) with a uniform light. The collected 

TC layers were incubated in 10ml cultured medium containing 1% (v/v) trypsin 

inhibitor and (10mg/ml stock) and 10% (v/v) collagenase (10mg/ml stock) in a 

shaking water bath at 37 ℃ for 45 minutes. The dispersed tissue was triturated after 

30 minutes with a sterile Pasteur pipette for 5 minutes and returned back into water 

bath. After the trituration step, any large debris was allowed to settle down and the 

TC supernatant was placed into a new centrifuge tube which was centrifuged at 

1500rpm (400 g) for 10 minutes. The supernatant was removed and the TC pellet 

retained for osmotic shock treatment.   

3.1.4.3. Stromal cell preparation (SC) 

Bovine stromal tissue slices (~0.5mm) were dissected from the ovarian cortex up to 

about 1mm depth; all visible follicles and CL were avoided. Slices were collected in 

a sterile petri dish and cut by sterile blades in to small pieces (0.5mm). They were 

collected in 18 ml of medium-199 in a universal tube supplemented with 1% (v/v) 

trypsin inhibitor (10mg/ml stock), 10% (v/v) collagenase (10mg/ml stock) and 2% 

(v/v) DNase (2.5mg/ml) in a shaking water bath at 37℃ for 1 hour. Note, trypsin 

inhibitor was added to the collagenase dissociation medium to eliminate any 

contaminating trypsin present in the collagenase preparation. SCs were triturated 

after 1 hour with a sterile Pasteur pipette for 5 minutes and returned back to the 

shaking water bath for 30 minutes. Cells were triturated again for 5 minutes and 

then any large debris was allowed to settle down and SC supernatant was placed 

into a new 50ml centrifuge tube. Then, the tube was centrifuged at 1500rpm for 10 

minutes. The supernatant was removed and the SC pellet retained for osmotic shock 

treatment.   

3.1.5. Osmotic shock and cell seeding procedure  

The cell pellets obtained from the above procedures were resuspended in 5ml PBS. 

Any contaminating red blood cells were removed by adding 10ml double distilled 
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water for 10 seconds followed immediately by addition of 10ml of 2x PBS to 

restore isotonicity. The cells were centrifuged at 1500rpm for 10 minutes and then 

the supernatant was removed. Each cell pellet was diluted in pre-equilibrated culture 

medium for a cell counting step using the trypan blue dye exclusion method.  

3.1.6. Trypan blue dye exclusion method 

This method was used to determine cell viability on the principle that only dead 

(non-viable) cells take up the dye while live (viable) cells remain clear. 50µl of cell 

suspension was diluted 1:10 using 250µl of trypan blue solution 0.4% (w/v) and 

200µl of culture medium. The solution was mixed thoroughly and incubated at 

room temperature for 3 minutes. Cells number was then counted under a 

microscope using a haemocytometer.  

3.1.7. Cell plating and culture 

Cells were seeded and cultured into either 96-well or 24-well tissue culture plates 

(Nunclon, Life Technologies Ltd, Paisley, UK). Plates were incubated at 38.5℃ 

with saturating humidity in 5% CO2 in air. Based on cell counting by trypan blue 

dye exclusion method, the serum free cell suspension was seeded either at a density 

of 500,000 viable cells/250µl (96-well plates), 363,000 viable cells/1ml (24-well 

plates), or 100,000 cells/1ml (24-well plates). For serum supplemented cell culture 

(2%), cell suspension was seeded at a density of 100,000 viable cells/250μl (96-well 

plates). However, SC were seeded into (12-well plates) at a density of 100,000 

viable cells/1ml with (10% FCS). Note, culturing GC and TC using defined serum-

free preserves a non-luteinized phenotype reflected by LH-induced A4 secretion by 

TC and FSH-induced E2 secretion by GC. Culturing GC and TC under serum-

supplemented conditions promote spontaneous luteinisation, as indicated by 

reduced A4/E2 secretion and greatly increased secretion of P4 (Glister et al., 2001, 

Glister et al., 2005 and Kayani et al., 2009).  

3.1.8. Media change during the experiments 

3.1.8.1. McCoy’s 

After an initial 48h incubation period, culture medium was removed and replaced 

with fresh medium with/without treatments in this manner every 48 hours for 7 days 

of culture. Disturbance of cells was kept to minimum by removing only 70% of the 
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total volume in each well. Plates to which the spent medium had been transferred 

were then sealed with Parafilm and stored at -20℃ until used for hormonal assay. 

3.1.8.2. Endothelial cell medium 

After an initial ~6 hours incubation period, culture medium was removed and 

replaced with serum free fresh medium supplemented with BSA and with/without 

treatments every 24 hours for 7 days of culture. During media replacement, cells 

were washed (x1) with (DPBS). Plates to which the spent medium had been 

transferred were sealed with Parafilm to be stored at -20℃ until used for hormonal 

assay. Plates with adherent cell monolayers were either fixed for immunostaining or 

lysed for RNA extraction (see below).  

3.1.9. Neutral red assay   

This technique was performed for the estimation of viable cell number at the end of 

culture using the vital dye neutral red (3-Amino-7-dimethyl-amino-2-

methylphenazine hydrochloride) described by Campbell, Scaramuzzi and Webb 

(1996). Viable cells readily take up the dye, thus the amount of dye consequently 

released upon cell lysis is directly proportional to the number of viable cells. 

Briefly, after 7 days of culture, 175µl of conditioned media were removed and kept 

in 96-well plates at 20℃. The culture medium was replaced with (200µl/well) of 

pre-warmed culture medium containing 50µg/ml neutral red dye. The plates were 

incubated at 38.5℃  for 3 hours. After this incubation period, the medium was 

discarded and replaced with 4% paraformaldehyde solution for 3 minutes. 

Paraformaldehyde was discarded and 200µl of lysis buffer containing 1% (v/v), 

glacial acetic acid and 50% ethanol in water was added to each well. The cells were 

lysed and released the neutral red. Due to the loosely clumped nature of the cultured 

cells, the plates were centrifuged briefly at each stage where the reagent was 

discarded from the cells, to minimize any cell loss and counting error. The plates 

were incubated overnight at 4℃ and then the absorbance was determined at 540nm 

(with a 600nm reference filter) using a microwell plate reader. Absorbance units 

were converted into cell number using a calibration curve generated by incubating 

known number of viable cells with neutral red solution (performed by Dr Clair 

Glister in this laboratory). The cell number was calculated using the following 

formula derived from this calibration experiment: 
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             Cell number = (-20150+720800)*(absorbance-0.05) 

3.1.10. ApoTox-Glo TM Triplex Assay  

The ApoTox-Glo™ Triplex Assay combines three Promega assay chemistries to 

assess viability, cytotoxicity and caspase activation events within a single assay 

well. Reagent preparation, storage and use were done in accordance with the 

manufacturer’s instructions. A black 96-well plate was used containing <20,000 

cells with a final volume of 100μl/well. A 20μl of viability/cytotoxicity reagent 

contained both glycyl-phenylalanyl-aminofluorocoumarin (GF-AFC) substrate and 

bis-alanylalanyl-phenylalanyl-rhodamine 110 (bis-AFF-R110) substrate was added 

to each well, and briefly mixed by orbital shaking (300-500rpm) for 30 seconds. 

The plate was incubated for 2 hours at 37℃ and fluorescence measured at the 

following two wavelength sets; 400ex/505em (viability) and 485ex/520em 

(cytotoxicity). After that, a 100μl of Caspase-Glo®3/7 reagent was added to all 

wells and briefly mixed by orbital shaking (300-500rpm) for 30 seconds. The plate 

was incubated for 30 minutes at room temperature and luminescence was measured.  

3.2. Peptides 

3.2.1. Kisspeptin-10  

The kisspeptin-10 (rat), endogenous ligand for the rodent kiss-1 receptor was 

purchased from Tocris Bioscience. Kisspeptin-10 corresponds to the C-terminal 

region of the kiss-1 peptide, kiss-1 (-112-121) and its sequences is shown in table 

3.1. Note that rodent and bovine sequences are identical.  

3.2.2. Kisspeptin 234 

The Kiss-1/GPR54 antagonist kisspeptin 234 was purchased from Tocris 

Bioscience. It inhibits kisspeptin-10 stimulation of inositol phosphate (IP) and 

release of GnRH; its peptides sequence is listed in table 3.1.  

3.2.3. Neuromedin B  

Neuromedin B (porcine), is a mammalian bombesin-like peptide and endogenous 

ligand for the neuromedin B receptor; it was first isolated from pig spinal cord and 

has a role in regulating endocrine and exocrine secretion, smooth muscle 

contraction, blood pressure, feeding, and cell growth. Neuromedin B was purchased 
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from Tocris Bioscience. This peptide sequences is identical to the corresponding 

bovine peptide and listed in table 3.1.   

3.2.4. BIM 23042  

BIM 23042, a selective neuromedin B receptor (NMB-R1 and BB1) antagonist, was 

purchased from Tocris Bioscience and its peptide sequence is listed in table 3.1.  

3.2.5. TGF-𝜷-1 

TGF-β-1 is a multifunctional protein that controls proliferation, differentiation and 

other functions in many cell types. TGF-β1-1 is involved in hematopoiesis and 

endothelial differentiation. Recombinant Human TGF-β1-1 Protein was purchased 

from R&D systems (ProDots formulation). 

3.2.6. SB 431542   

This is a potent and selective inhibitor of the transforming growth factor-β (TGF-β) 

type 1 receptor activin receptor- like kinase ALK5 and its relatives ALK4 and 

ALK7. It supresses TGF-β-induced proliferation of human osteosarcoma cells. It 

stimulates proliferation, differentiation and sheet formation of ESC-derived 

endothelial cells. Also it inhibits TGF-β-induced EMT, migration, invasion and 

VEGF secretion in several human cancer cell lines. SB 431542 was purchased from 

Tocris Biosciences. 

3.2.7. BMP-6  

Bone Morphogenetic Protein 6 (BMP-6), also known as Vgr-1, is a member of the 

BMP subfamily of TGF-beta superfamily proteins. BMPs are involved in a wide 

range of processes including embryogenesis, tissue morphogenesis, cell 

differentiation and migration, and tumorigenesis. Recombinant human BMP-6 was 

purchased from R&D systems.  

3.2.8. K02288  

K02288, a potent and selective inhibitor of type I bone morphogenic protein (BMP) 

receptors, was purchased from Tocris Biosciences.  
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3.2.9. FGF  

Fibroblast growth factor is a member of the FGF family that involved angiogenesis, 

wound healing, embryonic development and various endocrine signaling pathways. 

Bovine Recombinant FGF was purchased from R and D systems. 

3.2.10. VEGF 

Vascular endothelial growth factor also known as vascular permeability factor 

(VPF), is a potent mediator of both angiogenesis and vasculogenesis. Bovine 

Recombinant VEFG was purchased from R and D systems. 

3.2.11. Thrombospondin-1 

TSP-1 regulates a wide range of cellular functions including their interactions with 

other cells and with the extracellular matrix (ECM). Recombinant human 

Thrombospondin-1 was purchased from R and D systems.   

Table 3. 1 Peptide sequences. 

 

Product name 

 

Peptide sequence 

Kisspeptin-10 rat Tyr-Asn-Trp-Asn-Ser-Phe-Gly-Leu-Arg-Tyr-NH2 

Kisspeptin 234 
Ac-D-Ala-Asn-Trp-Asn-Gly-Phe-Gly-D-Trp-Arg-

Phe-NH2 

Neuromedin B porcine Gly-Asn-Leu-Trp-Ala-Thr-Gly-His-Phe-Met-NH2 

BIM 23042 D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 

 

3.3. Steroid hormone assays 

3.3.1. Competitive enzyme-linked immunosorbant assay (ELISA)  

The steroid enzyme-linked immunosorbant assay (ELISA) methods used for steroid 

measurements throughout this project were developed ‘in-house’ in Professor 

Knight’s laboratory. The principle is based on competition between variable amount 

of unlabelled steroid (antigen) in sample and fixed amount of labelled steroid 

enzyme-conjugated hormone (antigen) which is the detection reagent. The test 

sample and a fixed amount of enzyme-conjugated antigen were added into the 

antibody-coated well of microtiter plate. Antigen and enzyme-conjugated antigen 



57 
 

compete to bind to bind to the limited amount of antibody in the well surface. The 

more antigen in the sample the more it will compete with enzyme-conjugated 

antigen and less enzyme-conjugated antigen will bind to the plate, resulting in a 

lower color signal begin generated. A quantitative hormone measurement can be 

made from a standard curve of known dilution of the desired hormone.  

3.3.1.1. Androstenedione (A4) ELISA  

3.3.1.1.1. Assay buffers  

3.3.1.1.1.1. Plate coating buffer  

The plate coating solution buffer made up of 0.17mM sodium acetate in dH2O.  

3.3.1.1.1.2. Assay diluent buffer  

Gelatin phosphate buffer with proclin (GPBP) was used as assay diluent buffer. The 

assay diluents were made up of 10% of 10X PBS (v/v), 90% of distilled water and 

0.1% gelatine (w/v); gelatine was heated and dissolved in 200ml distilled water with 

constant stirring on the hotplate stirrer. Then Proclin 2000 was added at 0.05% (v/v) 

as a preservative and the diluent was stored at 4℃. 

3.3.1.1.1.3. 10X azide-free PBS stock (PH 7.2) 

10X azide-free PBS solution was used as a stock for the preparation of washing 

buffer assay and assay diluent. This buffer contains 80g of NaCl, 2g of KCl, 16.9g 

of Na2HPO42H2O and 2.4g of KH2PO4, which were dissolved in 1 litre of distilled 

water. The buffer was stored at room temperature for several months.  

3.3.1.1.1.4. Wash buffer (0.1% Tween) 

Wash buffer (PBS+0.1% tween) consisted of 250ml of 10X PBS stock, 2250ml 

distilled water and 2.5ml of tween. This buffer was stored in 4℃ for up to 2 weeks.   

3.3.1.1.1.5. Substrate buffer (0.05M) citrate-phosphate buffer (PH 5.0) 

This buffer comprised 2.58g citric acid (anhydrous), 3.62g disodium hydrogen 

orthophosphate (anhydrous) dissolved in 500ml of distilled water and store at 4℃ 

for up to 1 month.  
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3.3.1.1.2. Preparation of antibody-coated microtitre plates and enzyme-

labelled antigen  

Gelatine phosphate buffer (GPB) was used as the assay buffer for diluting samples 

and standards. The standards were prepared in the range 1.5-10,000pg/ml as 3 fold 

serial dilutions and stored at 4℃ while the samples were diluted to appropriate 

concentration in GPB before running the assay. The goat anti-androstenedione 

serum (IR637; gift from the late Prof GS Pope, National Institute for Research in 

Dairying, Shinfield, Berkshire, UK) was diluted 1:10,000 in 0.17mM sodium 

acetate buffer. 96 well microtiter plates (Nunc Maxisorb, Life Technologies) were 

coated with 100µl/well of A4 antibody and incubated at room temperature for 24 

hours in a moist sealed box. Before the assay, the antibody was aspirated, plates 

washed (x3) with wash buffer and any free sites on the plates were blocked with 

250µl/well GPB. Then, plates were kept in a moist, sealed box and stored at 4℃ 

until next day.  

3.3.1.1.3. Assay protocol  

At this stage, plates were washed (x3) with wash buffer on an automatic plate 

washer (Wellwash 4MK 2, Denly) and banged dry on paper towel before use. The 

assay was run with duplicate wells for standards, samples and QC samples which 

were added before and after samples for checking the intra assay accuracy. 

100μl and 50μl of GPB were added to wells as non-specific binding (NSB) and 

maximum binding (Bmax) respectively. 50μl of standards and diluted samples were 

added to wells. 50μl of Androstenedione-horseradish peroxidase conjugate (CAL 

Bioreagents, Los Angeles, CA, USA) was diluted 1:10,000 in GPB buffer and 

applied to each well except NSB and mixed thoroughly. The plates were incubated 

at room temperature in a moist box for 4 hours. After 4 hours incubation, the plates 

were washed with wash buffer and 200µl of freshly prepared o-phenylenediamine 

(OPD) horseradish peroxidase substrate was added to each well and the plates were 

incubated at room temperature in a dark box to allow the color to develop 

depending on the reaction for 2 hours. The absorbance was read at 450nm (600nm 

reference filter) on a microplate reader (Emax, Molecular Device). A standard curve 

was constructed using SoftMax Pro V5 program. A typical standard curve is shown 

in (Figure 3.1). 
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3.3.1.1.4. Sensitivity and reproducibility  

The minimum detection level of the assay was approximately 10pg/ml and inter- 

and intra- assay CVs were <15%. 

 

Figure 3. 1 Typical standard curve obtained in androstenedione ELISA.  

 

3.3.1.2. Oestradiol (E2) ELISA  

3.3.1.2.1. Assay buffers 

3.3.1.2.1.1. Plate coating buffer  

Carbonate buffer was used as plate coating buffer. This buffer contains 1.55g of 

Na2CO and 2.965g of NaHCO3, dissolved in 1 litre of distilled water and was stored 

at 4℃. 

The rest of the buffers are the same as those used in Androstenedione assay.  
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3.3.1.2.2. Preparation of antibody-coated microtitre plates and enzyme-

labelled antigen  

Gelatine phosphate buffer (GPB) was used as the assay buffer for diluting samples 

and standards. The standards were prepared in the range 1.5-10000pg/ml as three 

fold serial dilutions and stored at 4℃ while the samples were diluted to appropriate 

concentration in GPB before running the assay. The goat anti-estradiol serum 

(510/6; gift from the late Prof GS Pope, National Institute for Research in Dairying, 

Shinfield, Berkshire, UK) was diluted 1:10,000 in 0.05M carbonate buffer (pH 9.6). 

96 well microtiter plates (Nunc Maxisorp, Life Technologies) were coated with 

100µl/well of E2 antibody and incubated at room temperature for 24 hours in a 

moist sealed box. After incubation period, the antibody was aspirated, plates washed 

with wash buffer and any free sites on the plates were immediately blocked with 

250µl/well GPB. Then, plates were kept in a moist, sealed box and stored at 4℃ 

until next day.  

3.3.1.2.3. Assay protocol  

At this stage, plates were washed (x3) with wash buffer on an automatic plate 

washer (Wellwash 4MK 2, Denly) and banged dry on paper towel before use. The 

assay was run with duplicate wells for standards, samples and QC samples which 

were added before and after samples for checking the intra assay accuracy. 100μl 

and 50μl of GPB were added to wells as non-specific binding (NSB) and maximum 

binding (Bmax) respectively. 50μl of standards and diluted samples were added to 

wells. 50μl of Oestradiol-horseradish peroxidase conjugate (Fitzgerald Industries, 

MA, USA) was diluted 1:2,000 in GPB buffer and applied to each well except NSB 

well and mixed thoroughly. The plates were incubated at room temperature in a 

moist box for 4 hours. After 4 hours incubation, the plates were washed and 200µl 

of freshly prepared o-phenylenediamine (OPD) horseradish peroxidase substrate 

was added to each well and the plates were incubated at room temperature in a dark 

box to allow the color to develop depending on the reaction for 2 hours. The 

absorbance was read at 450nm (600nm reference filter) on a microplate reader 

(Emax, Molecular Device). A standard curve was constructed using SoftMax Pro 

V5 program. A typical standard curve is shown in (Figure 3.2). 
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3.3.1.2.4. Sensitivity and reproducibility  

The minimum detection level of the assay was approximately 10pg/ml and inter- 

and intra- assay CVs were <15%. 

 

Figure 3. 2 Typical standard curve obtained in oestradiol ELISA.  

3.3.1.3. Progesterone (P4) ELISA  

3.3.1.3.1. Assay buffers  

3.3.1.3.1.1. Plate coating buffer  

The same assay buffer was used as in the Androstenedione assay.  

3.3.1.3.1.2. Assay diluent buffer (PH 7.0) 

Gelatine phosphate buffer (GPB) was used as the assay buffer. This buffer contains 

0.1% (w/v) gelatin, 0.05M NaH2PO4, 0.05M Na2HPO4, 0.15M NaCl and 0.1% 

(w/v) NaN3. The pH was adjusted to 7.0 and the buffer was stored at 4℃.   
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3.3.1.3.1.3. Wash buffer (PH 7.5) 

The wash buffer used was 0.05M Tris HCL containing 0.15M NaCl, 0.1% NaN3 

and 0.05% (v/v) Tween 20. The pH was adjusted to 7.5 and the buffer was stored at 

room temperature.  

3.3.1.3.2. Preparation of antibody-coated microtitre plates and enzyme-

labelled antigen 

Gelatine phosphate buffer (GPB) was used as the assay buffer for diluting samples 

and standards. The standards were prepared in the range 0.008-50ng/ml as 3-fold 

serial dilutions and stored at 4℃ while the samples were diluted to appropriate 

concentration in GPB. The goat anti-progesterone serum (711/12; gift from the late 

Prof GS Pope, National Institute for Research in Dairying, Shinfield, Berkshire, 

UK) was raised against progesterone 11-∝-succinyl-BSA and diluted 1:4,000 in 

17mM sodium acetate buffer. A 96 well microtiter plates (Nunc Maxisorp, Life 

Technologies) were coated with 100µl/well of P4 antibody and incubated at room 

temperature for 24 hours in a moist sealed box. After incubation period, the 

antibody was aspirated, plates were washed with wash buffer containing azide and 

any free sites on plates were blocked immediately with 250µl/well GPB with azide. 

Then, plates were kept in a moist sealed box and stored at 4℃ until used.  

3.3.1.3.3. Assay protocol 

At this stage, plates were washed (x3) with wash buffer containing azide on an 

automatic plate washer (Wellwash 4MK, Denly) and banged dry on paper towel 

before use. The assay was run with duplicate wells for standards, samples and QC 

samples which were added before and after samples for checking the intra assay 

accuracy. 100μl and 50μl of GPB were added to wells as non-specific binding 

(NSB) and maximum binding (Bmax) respectively. 50μl of standards and diluted 

samples were added to wells. 50μl of progesterone alkaline phosphate conjugate 

which was diluted 1:2000 in GTB buffer and applied to each well except NSB well 

and mixed thoroughly. Progesterone in standards and samples was competing with 

progesterone-alkaline phosphate conjugate for binding to the “solid phase” 

antibody. The plates were incubated at room temperature in a moist box for 

overnight. After overnight incubation, the plates were washed and 200µl of freshly 
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prepared p-nitrophenylphosphate (pNPP) substrate solution (Sigma) was added to 

each well and the plates were incubated at room temperature in a dark box to allow 

the colour to develop depending on the reaction for ~2 hours. The absorbance was 

read at 450nm (600nm reference filter) on a microplate reader (Emax, Molecular 

Device). A standard curve was constructed using SoftMax Pro V5 program. A 

typical standard curve is shown in (Figure 3.3). 

3.3.1.3.4. Sensitivity and Reproducibility  

The minimum detection level of the assay was approximately 20pg/ml and inter- 

and intra- assay CVs were <15%. 

 

Figure 3. 3 Typical standard curve obtained in progesterone ELISA.  

3.4. Gene expression analysis  

3.4.1. Sample preparation 

3.4.1.1. Total RNA extraction from bovine endocrine tissues 

Bovine adrenal, pituitary, testis and corpus luteum were processed for RNA 

isolation using TRI-reagent procedure according to the manufacturer’s instructions. 

Tissue samples were homogenized in 500µl of TRI reagent and allowed to stand at 

room temperature for 5-10 minutes. Samples were centrifuged at 12,000g, 4℃ for 
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10 minutes. The aqueous supernatant was removed to a clean tube and samples were 

preceded to RNA extraction procedure. Then 50µl of bromo-chloropropane was 

added to each homogenate, caped and inverted repeatedly to mix for 15 seconds. 

The mixtures were allowed to stand for 15 minutes at room temperature following 

by centrifugation at 12,000g, 4℃ for 15 minutes. After centrifugation, 3 separate 

phases were formed; the colorless upper aqueous phase which contained RNA, a 

white cloudy interphase which contained the DNA and a red organic phase which 

contained protein. The upper colourless aqueous phase was removed into new 

DNase-RNase-free microcentrifuge tube. RNA was precipitated by adding 250µl of 

isopropanol, mixed and stood at room temperature for 15 minutes then centrifuged 

to form pellet at 12,000g, 4 ℃  for 25 minutes. After that, the supernatant was 

discarded and 500µl of 75% ethanol was added to wash RNA pellet then the tube 

was centrifuged at 12,000g, 4℃ for 15 minutes. The supernatant was removed and 

the pellet was re-suspended in 50µl RNase-free water.  

Removal of genomic DNA-DNase treatment 

The extracted RNA samples were treated with RNase-free DNase kit (RQI; 

Promega, UK LtD) to get rid of any contaminating genomic DNA that may have 

been presented and cause false positive in PCRs. Briefly, 5µl of DNase reaction 

buffer and 2.5µl of DNase enzyme were added into each sample then mixed and 

incubated at 37℃ for 15 minutes. The TRI method was repeated in section 3.4.1.1. 

and the treated RNA was re-suspended in 50µl RNase-free water. The samples were 

kept in -80℃ freezer for subsequent cDNA synthesis.  

3.4.1.2. Total RNA extraction from cultured cells    

TC culture cells were prepared as previously described in Materials and method 

section 3.1.4.2. The prepared cell suspensions were seeded into 24-well tissue 

culture plates at a density of 100,000/ml. Plates were incubated at 38 ℃  with 

saturating humidity in 5% CO2 in air. At the end of culture, media were collected 

for hormonal assay. Cells were lysed and RNA extraction was performed by using 

RNeasy Mini Kit (Qiagen, UK) and treated using the RNase free DNase set 

(Qiagen, UK) to eliminate any potential genomic DNA contamination. The kit was 



65 
 

used according to the manufacturer’s instruction. The samples were stored in -80℃ 

for subsequent cDNA synthesis.  

3.4.2. Quantification and purity assessment of RNA 

The RNA quality and quantity were determined by spectrophotometer 

(NanoDrop2000, ThermoScientific, UK) at 260/280. 1µl was added to the machine 

to check the RNA in each sample. Nucleic acid absorbs light in the UV range with 

the optimum wavelength (𝜆max) at 260nm. However, 𝜆max is dependent on the state 

of nucleotides. 𝜆max absorbance values are highest for free nucleotides, lower for 

single-stranded DNA (ss-DNA) or RNA, lowest for double-stranded DNA (ds-

DNA). 1 absorbance unit at A260 from 1mm pathlength is equivalent to 40µg/ml. 

Since contaminating protein that remains from nucleic acid extraction absorbs the 

light at 280nm, samples purity were calculated by ratio of absorbance at 260 and 

280nm (A260/A280). Pure RNA sample gives an A260/A280  approximately 2. A ratio 

of 1.8 to 2.0 indicated good quality RNA. 

3.4.3. RNA integrity analysis using agarose gel electrophoresis 

The most common technique used to analyse total RNA integrity is to run an aliquot 

of samples on agarose gel stained with ethidium bromide (EtBr). Ethidium bromide 

enables the visualization of fragments by the interaction between the nucleic acids 

and the fluorescent molecule under the ultra violet (UV) light. Agarose gel 

electrophoresis separates RNA and DNA fragments according to size and by 

intensity of EtBr staining indicates the amount of nucleic acid present. 1% (w/v) 

agarose was mixed with 1x of Tris Acetate (TAE) buffer and heated in microwave 

until the agarose powder was dissolved. The mixture was allowed to cool to 

approximately 50 ℃ and 0.001% EtBr was added and gently mixed. Then, the 

mixture was poured into gel tray in gel tank (Bio-Rad) with an appropriate comb 

and allowed to set for approximately 30 minutes. After solidifying, the gel was 

placed in a submarine gel tank (Bio-Rad Laboratories Ltd., Hemel Hempsted, 

Hertfordshire, UK) filled up with TAE buffer. Samples and a 100bp DNA ladder 

were mixed with 20% (V/V) Blue/Orange 6X loading dye (Promega, Madison, WI, 

USA) in a volume ratio of 5:1 (sample: dye) and loaded to each well. The gel 

electrophoresis principle is based on the fact that when an electric field is applied 

across the gel, negatively charged DNA or RNA migrates toward cathode electrode. 
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The rate of migration depends on size and shape (smaller fragments migrate faster 

than bigger fragments). Gel was run at 50V until separation of bands was achieved 

(30-45 minutes). Lastly, the gel was visualized under a UV transilluminator-imager, 

U:Genius 3 (Syngene, Cambridge, UK) using built-in software U;Genius V3.0.7.0. 

Intact, non-degraded RNA appears as sharp, clear bands of 28S and 18S ribosomal 

RNA in a 2:1 ratio.  

3.4.4. cDNA synthesis  

Complementary DNA (cDNA) was synthesized from total RNA template (1µg per 

reaction) using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Cheshire, UK) according to the manufacturer’s instruction. The 

reaction plates were placed in an Eppendorf’s Mastercycler Gradient thromocycler 

cDNA for 10 minutes at 25℃, 120 minutes at 37℃, 5 minutes at 85℃ and then on 

hold at 4℃. 

3.4.5. Quantitative RT-PCR  

3.4.5.1. Primer validation 

Primers were designed using their accession number for each gene through online 

design tool 

(http://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?ORGANISM=9913&INP

UT_SEQUENCE=AC_000164.1&LINK_LOC=nuccore). They were specifically 

checked against all know bovine (Bos Taurus) transcripts as part of the design 

procedure. All primers were designed to anneal to the target sequence and amplify 

regions within the coding sequence of key genes of interest as well as for the 

housekeeping gene, β-actin (ACTB) which was used for normalization of gene 

expression analysis by real-time PCR.  

Prior to using in the experiments, the primers for the gene of interest were verified 

and selected according to their melting curve, PCR efficiency >85% that assessed 

by the slope of the cDNA template dilution plot and the presence of single amplicon 

product of the predicted size which was indicated by agarose gel electrophoresis 

(100μM stock in 1x TE buffer). The primers were prepared according to the 

manufacturer’s instruction. The mixture of forward and reverse primers was diluted 

in Tris-EDTA (TE) buffer to a concentration of 2.5µM. The cDNA samples were 



67 
 

diluted 1:10, 1:50, 1:250, 1:1250 and 1:6250 in TE buffer. The list of primers 

sequences and accession numbers used for the experiments is show in Table 2.    

3.4.5.2. Amplification of target sequences  

The quantitative RT-PCR was performed by applying 5µl cDNA templates (typical 

dilution 1:40), 1µl each of forward and reverse primers and 7µl QuantiTect SYBER 

Green QPCR 2X ‘hot start’ Master Mix (Qiagen). Samples were processed on an 

AB StepOne Plus real-time PCR machine (Applied Biosystem, UK) using the 

following protocol: 1 cycle only at 95℃ for 15 minutes, then 40 cycles of 95℃ for 

15 seconds and 60℃ for 1 minute. A melt curve was included at the end of each run. 

The method that was used to semi-quantitatively compare the difference between 

the abundance of each mRNA transcript was Ct method using β-actin as the 

housekeeping control. Ct values for each transcript in a given sample were first 

normalized to β-actin Ct value (which was uniform across all experimental group: 

ANOVA P>0.1). For tissue samples, Ct values for each transcript in a given 

sample were normalised to the average Ct value for that transcript in all tissue 

samples. For cell culture experiments, Ct values for each treatment were 

normalised to the Ct value of the respective vehicle-treated control group. Finally, 

Ct values were converted to fold difference for graphical presentation using the 

formula 2(-Ct).  
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Table 3. 2 List of primers used for Quantitative RT-PCR  

 

Target 

 

Accession 

number 

 

Forward primer 5`-3` 

 

Reverse primer 5`-3` 

 

Amplicon size 

(bP) 

KiSS-1 v1 AB466319.1 TCAGGACACAGCCAAGGCAAGG TGAAGGCGGTGGCACAAAGG 108 

KiSS-1 v2 AB466319.1 AAGGCAAGGGCACTTCCAAGACC TTTCCAGTGTCTCCCTGAAGGCG 110 

KiSS-1R v1 XM_003582417.2 TTCGTCATCTGCCGCCACAAGC TGCACATGAAGTCGCCCAGAACC 154 

KiSS-1R v2 XM_003582417.2 TGTTGCTCGGGTGAACAGTGG AGCCACTGCGCGTTTATACCCC 112 

𝑨𝑪𝑻𝑩 NM_173979.3 ATCACCATCGGCAATGAGCGGTTC CGGATGTCGACGTCACACTTCATGA 128 

NMB NM_001075270.2 ATGGGCAAGAAGAGCCTGGAGC AGCTTGCTTTTGCAGGAGGACCC 126 

NMBR NM_001205710.1 AAAGGGATTTCCTACCCGCCCC TGATGTTGCCCAGCAAGCCC 111 

BEX2 NM_001077087.1 ACGGTCACCCTCTTGCTTCTTGG GCAACACTTCGACTCAGACCTGC 116 

STAR NM_174189 TTTTTTCCTGGGTCCTGACAGCGTC ACAACCTGATCCTTGGGTTCTGCACC 103 
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HSD3B1 NM_174343.2 GCCACCTAGTGACTCTTTCCAACAGCG TGGTTTTCTGCTTGGCTTCCTCCC 111 

CYP11A1 NM_176644 CAGTGTCCCTCTGCTCAACGTCC TTATTGAAAATTGTGTCCCATGCGG 103 

LHR NM_176644 CAGTGTCCCTCTGCTCAACGTCC TTATTGAAAATTGTGTCCCATGCGG 103 

VEGF NM_174304 GACAAAGGCACAGACGTTGTGGTCA TGATCTGCAAGACGAGACTGGCATG 301 

FGF NM_174305.1 CGCCACTGAGTTGATTTTTGCTGAGA TAAGGCTTTGCGCATGACCAGGTC 301 

INHA NM_174381.1 ATTGCCTCAGTCGATGCCCAGACC AAAAAGCCAGCCGCGCTGC 92 

NR5A1 M31836.1 CAAGAAAATCCCTGTGGGCCTTGC TTAACTCAAGCTGCCTCGCCTTGC 124 

TGFB1 M13440.1 CCAAGCGGCTGTACTGCAAGAACG TGATGTGTGGGTCGCTCTTCTCGC 96 

TGFB2 NM_174094.3 GAGCCCGAGGACCAAGATGTCTCC CCTCAGCCTCTCCAGCATCTGGC 91 

TGFB3 S45997.1 CGGGCTACCACTACGGGCTGC CGGGCTACCACTACGGGCTGC 125 

INSL3 XM_592497.2 TGGCTGACCCGCAGAGAGGAAATAGA CCGGAACTGAACCCGTTAATGTCCAC 107 
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3.5. Wound Healing “Scratch” assay to evaluate cell migration 

The in vitro scratch assay is a simple method used to investigate the effect of 

various treatments on cell migration. This assay was carried out to test the effect 

of (kisspeptin-10) on ovarian SC migration. The technique is based on the 

observation that, upon creation of a new artificial gap, a so called “scratch”, on a 

confluent monolayer, the cells on the edge of the newly created gap will move 

toward the opening to close the “scratch” until new cell-cell contacts are 

established. Comparison of images captured at the beginning and at intervals 

during cell migration to close the scratch, allows one to determine the degree of 

cell migration. It is important to select a time point that does not result in either 

complete closure or zero closure. An 18 h time point was chosen for evaluating 

the extent of SC migration. This was based on previous experiments in the 

laboratory conducted by Dr Moafaq Samir and was judged to be appropriate as 

the extent of scratch closure in control SC was around 60-70 %.  

3.6. Immunohistochemistry  

Bovine ovaries were dissected into segments and fixed in formalin for 48 hours, 

before being dehydrated through an alcohol series, embedded in wax and 

sectioned (5µm) onto Superfrost charged slides (VWR, Lutterworth, UK). 

Sections were dewaxed and rehydrated prior to boiling in citrate buffer (10mM 

citric acid, pH6.0), blocking of endogenous peroxidase (3% H202 in methanol) 

and blocking of nonspecific binding with 20% normal goat serum (NGS, Vector 

Laboratories Ltd, Peterborough, UK). After this, sections were incubated in rabbit 

polyclonal antibody against NMBR (1:100; ab188807, Abcam, USA) diluted in 

2% NGS. The primary antibodies were incubated overnight at 4°C and then 

detected using biotinylated goat anti-rabbit diluted 1:250 in 2% NGS and Vector 

Elite ABC reagents (Vector), prepared as per manufacturer’s instructions. 

Visualization of bound antibodies was determined using 3,3’–diaminobenzidine 

tetrahydrochloride (DAB; Vector), prior to slides being counterstained with 

haematoxylin, dehydrated through an alcohol series and mounted with coverslips 

using DPX mounting medium. Sections were imaged using a Zeiss Axioscop 2 

microscope and AxioCam digital camera under a 20x objective lens. 
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3.7. Follicular angiogenesis cell culture system  

A novel in vitro angiogenesis system, which utilizes primary cells derived from 

the theca interna, was developed based on the method described by Robinson et al 

(2008) for bovine early CL tissue. In this system, tubule-like structures are 

produced and after 7 days in culture, a network of endothelial cells has developed, 

which resembles a capillary bed.  

3.7.1. Coating of coverslips  

Sterile coverslips (circular, 19mm diameter x 0.25mm thick) obtained from 

(Thermo Scientific, Rochester, NY) were transferred to wells of a 24-well plate 

(Nunclon, Life Technologies Ltd, Paisley, UK). 1ml of Attachment Factor 1X was 

added to each well and incubated at 38.5℃ with saturating humidity in 5% CO2 in 

air until used.  

3.7.2. Isolation of theca layers  

The preparation of bovine TC was described in section 3.1.4.2. 

3.7.3. Preparation of cells for immunostaining studies  

3.7.3.1. Fixation of cells 

At the end of culture, media were either discarded or kept for hormonal assay. 

Cells were fixed immediately and permeabilized in acetone:methanol (1:1) at 4℃ 

for 5 minutes then washed with 1X PBS (3 x 5 minutes).  

3.7.3.2. Blocking  

Endogenous peroxidase blocking prevented unrelated peroxidases from being 

visualized. An endogenous peroxidase block 3% (v/v) hydrogen peroxide in 

methanol was applied for 10 minutes at room temperature. Plates were washed in 

1X PBS buffer (3 x 5 minutes). Followed by serum blocking with 20% (v/v) 

normal goat serum for 30 minutes at room temperature, to prevent any binding to 

non-target sites.     
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3.7.3.3. Von Willebrand Factor (vWF) antibody stage 

Polyclonal rabbit anti-human vWF antibody (Dako, High Wycombe, UK) was 

used at 5μg/ml diluted in 2% (v/v) normal goat serum in 1X PBS. A 200μl of the 

antibody solution was applied to each well and then incubated in a humidifier box 

for overnight at 4℃. 

3.7.3.4. Secondary antibody stage 

On the second day, plates were washed in 1X PBS (3 x 5 minutes). The primary 

antibodies were detected using Vector ABC Elite method as follows: biotinylated 

secondary goat ant-rabbit antibody was diluted 1:250 with 2% (v/v) normal goat 

serum in 1X PBS and incubated for 30 minutes at room temperature. Plates were 

then washed in 1X PBS (3 x 5 minutes). The avidin-biotin complex was then 

prepared according to manufacturer’s instructions and applied to each well. After 

that, plates were incubated for 30 minutes at room temperature followed by 

further washes in 1X PBS (3 x 5 minutes).  

3.7.3.5. Antigen detection stage  

Visualisation of bound antibodies was determined using 3,3’-diaminobenzidine 

tetrahydrochloride (DAB). The DAB solution was prepared according to the 

manufacturer’s instructions and incubated for 2 minutes, after which the reaction 

was stopped by washing the wells in distilled water.  

3.7.3.6. Counterstaining and mounting stage  

Plates were counterstained with haematoxylin for 20 seconds, washed in tap water 

and then washed once in water before being dehydrated through a series of 

alcohols (70% ethanol (v/v) 1 x 5 minutes), (90% ethanol  (v/v) 1 x 5 minutes and 

100% ethanol (v/v) 2 x 5 minutes. Coverslips were placed in histoclear for (2 x 20 

seconds), removed (with cells attached) from the 24-well plates and then mounted 

on slides using DPX mountain medium. Images of all sections were visualised 

under 5x objective lens and then captured using an inverted microscope (Zeiss A1 

Inverted Epifluorescent Microscope) fitted with a camera (Nikon NIS Elements).  
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3.7.3.7. Image analysis of von Willebrand factor immunostaining  

A quantification method was developed, based on a protocol previously used to 

quantify area of vWF staining in a luteal endothelial cell culture (Robinson et al., 

2008). All image analysis was performed using ImageJ 2.0.0. The areas of brown 

staining (vWF) were highlighted and only areas stained positively for vWF with 

endothelial cell cluster were recorded. This was repeated for a total of 25 fields of 

view across the whole coverslip. Two coverslips were examined for each 

treatment and from this the mean area average of vWF staining was recorded. 
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4. Does kisspeptin exert a local modulatory effect on ovarian 

steroidogenesis? 
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4.1. Introduction  

Antral follicle growth in the ovaries of cows is regulated by the action of 

gonadotropins. The pulsatile release of gonadotropin-releasing hormone (GnRH) 

from the hypothalamus into the hypophyseal portal circulations promotes tonic 

gonadotropin secretion from the pituitary, leading to follicular development and 

steroidogenesis in the ovaries (Naniwa et al., 2013). The ovarian steroids 

including oestrogen and progesterone control the central female reproductive axis 

through feedback actions. A positive feedback mechanism action on the 

hypothalamus involves the secretion of oestrogen in the late follicular phase that 

is necessary for the release of the GnRH-mediated preovulatory luteinizing 

hormone (LH) surge. In contrast, oestrogen and progesterone exerts negative 

feedback actions on the release of GnRH during the rest of reproductive cycle 

(Gal et al., 2016). In the last decade, kisspeptins, the product of the KiSS-1 gene 

that act via the surface G-protein-coupled receptor-54 (GPR-54), has attracted 

attention as having a pivotal neuroendocrine role in the regulation of GnRH/LH 

release and hence ovulation, in many mammalian species including rodents, 

ruminants and primates. Kisspeptin was originally discovered as a metastasis 

suppressor and shown to prevent tumor spread (Mead et al., 2007). It has been 

also suggested that kisspeptin controls trophoblast invasion (Bilban et al., 2004). 

Additional actions of kisspeptin at other levels of the hypothalamic-pituitary-

gonadal axis, in particular the ovaries, have been suggested but remain under-

investigated (Merhi et al., 2016, Gaytan et al., 2014, Naniwa et al., 2013; Gaytan 

et al., 2009). Moreover, the expression of KiSS-1 and GPR54 genes has been 

reported in the ovary of some species. Kisspeptin and GPR54 immunoreactivity 

was detected in ovarian tissues and their gene expression levels evidently 

fluctuate in a cyclic-dependant manner under the control of pituitary LH. Taken 

together, these observations suggested a potential role of kisspeptins in the local 

control of ovarian function. However, the physiological relevance of an ovarian 

kiss-1/GPR54 system remains under-explored to date (Gaytan et al., 2009). The 

aims of the study reported in this chapter were firstly to investigate whether KiSS-

1 and its receptor (GPR54) are expressed in the bovine ovary and other endocrine 

tissues. Secondly, to examine whether kisspeptin can influence the steroidogenic 

pathway in cultured ovarian cells. Thirdly, to investigate the effect of a kisspeptin 
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antagonist (alone and in combination with kisspeptin) on ovarian steroidogenesis 

in vitro. Fourthly, to investigate whether expression of KiSS-1 and its receptor by 

cultured ovarian cells is regulated by gonadotropins and other factors that were 

previously shown to modulate follicle steroidogenesis including BMPs (Glister et 

al., 2003 and 2005) and TNFα (Glister et al., 2014 and Samir et al., 2017). The 

laboratory techniques that have been used to address the above include a primary 

ovarian cell culture system (bovine ovarian theca and granulosa cells under non-

luteinized and luteinized conditions), steroid immunoassay (androstenedione, 

oestradiol and progesterone) and real-time qPCR.  
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4.2. Materials and methods 

4.2.1. Cell culture 

Randomly cycling bovine ovaries were collected from a local abattoir then 

granulosa, theca and stromal cells were isolated and cultured according to section 

3.1.4.  

All treatments were applied as stated below. The spent culture medium was 

collected and retained for hormonal assay and replaced with fresh medium with 

the appropriate treatments every 48 hours. Viable cell number at the end of the 

culture was determined by neutral red assay (see section 3.1.9).  

4.2.2. Preparation and administration of treatments  

Kisspeptin-10 and kisspeptin 234 (antagonist) were dissolved in water and 20% 

(w/v) acetonitrile / water respectively to give a stock concentration of 10-3M. 

Then stocks were diluted in sterile medium to give desired concentrations of the 

working solutions. A set of 5 dose-levels was prepared and a 25 μl applied to each 

well to give a final concentration of 10-6, 10-7, 10-8, 10-9 and 10-10M respectively. 

LH and FSH were prepared from frozen stock solutions of 100μg/ml that were 

pre-aliquoted into cryovials and stored under liquid nitrogen. Then LH and FSH 

stock solutions were diluted in complete medium supplemented with 0.3% (w/v) 

of BSA to give final stocks concentration of 500ng/ml.  

FSK was prepared from a stock solution of 10mM in DMSO and diluted in 

complete medium supplemented with 0.3% (w/v) of BSA to give desired 

concentrations. Prior to conducting the experiments optimal concentrations of LH, 

FSH and FSK were established in pilot studies testing effects of 8 serial 

concentrations of LH and FSH on A4 and E2 secretion by non-luteinized cells. 

Also 3 does-levels of FSK were selected as optimal concentrations to give a 

maximum stimulation of A4, E2 and P4 secretions respectively. The initial stocks 

solution were diluted in sterile medium and filtered with 0.2μm membrane filter. 

A 25μl of each treatment were applied to wells to give final concentrations of LH, 

FSH and FSK (100pg/ml, 0,33ng/ml and 10μM) respectively.  
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4.2.3. Gene expression analysis  

4.2.3.1. Sample preparation, total mRNA extraction, purification, cDNA 

synthesis, and RT-PCR 

Samples were collected and processed according to section 3.4.1. Total RNA 

extracts were quantified as in section 3.4.2 and tested for integrity as in section 

3.4.3. First-strand cDNA was synthesized as described in section 3.4.4 following 

by RT-qPCR analysis as described in section 3.4.4 using specific primer pairs as 

shown in table 3.2.    

4.2.3.2. The expression of KiSS-1 and GPR54 mRNA in different bovine 

endocrine and ovarian tissues  

Bovine adrenal, pituitary, testis and ovarian GC, TC and CL tissues were 

processed for RNA isolation using Tri-reagent procedure and cDNA synthesis 

using the AB high capacity cDNA synthesis kit according to the manufacture 

instructions as described in section 3.4.1.1 and 3.4.4. The cDNA samples from 

GC, TC and CL at different stages of follicle and luteal development were kindly 

provided by my laboratory colleague Dr Warakorn Cheewasopit and Dr Moafaq 

Samir. Then, cDNA samples were used for RT-qPCR for the detection of the 

expression of kiss-1 and its receptor using their designed primers and β-actin for 

normalization of gene expression as described in section 3.4.5 The set of primers 

used to detect the desired genes as well as housekeeping gene are listed in table 

3.2. Melt curve analysis and agarose gel electrophoresis were used to verify that 

each selected primer pair gave a single amplicon of the predicted size and Tm. 

After that, cDNA samples were diluted 1:10 and 5μl of these diluted cDNA 

samples were used for qPCR. Volume of 2μl of forward and reverse primers, and 

7μl of QuantiTect SYBR Green 2X “hot start” Master Mix (Qiagen) were added. 

Samples were run for 40 cycles on an AB StepOne plus real-time PCR instrument 

(Applied Biosystems). The method that was used to compare the difference 

between each mRNA transcript was ΔΔCt method using β-actin as the house 

keeping control. Resultant ∆Ct values for individual replicates within each tissue 

group were then normalised to the average ∆Ct value of these different tissues to 

give ΔΔCt values. Finally, ΔΔCt values were converted to fold difference for 

graphical presentation using the formula 2(-ΔΔCt).  
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4.2.3.3. The expression of KiSS-1 in ovarian cells treated with LH, FSH, 

FSK and other factors  

The cDNA samples from cultured ovarian cells analysed for KiSS-1 expression 

were kindly provided by my laboratory colleagues Dr Moafaq Samir and Dr 

Claire Glister. Cells which had been treated with LH, FSH, TNFα, BMPs and 

FSK for 7 days were used for RNA extraction procedure using Qiagen RNeasy 

mini-column kits followed by cDNA synthesis using the AB high capacity cDNA 

synthesis kit; qPCR was used for the detection of the expression of kiss-1 using as 

described in sections 3.4.1.2, 3.4.4 and 3.4.5.  

4.2.3.4. The expression of KiSS-1 and GPR54 in stromal cells (SC) treated 

with kisspepin-10  

Cortical stromal cells which had been treated with kisspeptin-10 for 18 hours in 

the wound healing assay as described in 3.1.4.3 and 3.5 were lysed and used for 

RNA extraction procedure using Qiagen RNeasy mini-column kit followed by 

cDNA synthesis using the AB high capacity cDNA synthesis kit, and RT-qPCR 

for the detection of the expression of KiSS-1 and its GPR54 using their designed 

primers and β-actin for normalization of gene expression as described in sections 

3.4.1.2, 3.4.4 and 3.4.5. The wound healing assay data was analysed by one-way 

analysis of variance (ANOVA) using the statistical software StatView. 

4.2.4. Hormone immunoassays 

A4, E2 and P4 concentrations in retained spent media were determined by ELISA 

as described in section 3.3.  

4.2.4.1. The effect of kisspeptin-10, kisspeptin antagonist, LH and FSK on 

TCs (A4 and P4 secretion)  

Bovine ovarian TCs were cultured in 96 well plates as described in section 

3.1.4.2. After 48 hours incubation period, 175μl of cultured medium were 

removed and replaced with control and treatment (containing medium), and then 

plates were placed in the incubator. Media were applied every 48 hours for 6 

days. At two time points (96h, 144h) medium were collected for hormonal assay.  
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Depending on the type of cells whether they are non-luteinized or luteinized with 

2% serum, 25μl of LH and FSK were added to wells to give final concentration of 

100pg/ml and 10μM/ml respectively. 25μl of kisspeptin-10 and its antagonist 

were applied to wells to give final concentrations of 10-10, 10-9, 10-8, 10-7 and 10-

6M. There were two experimental designs carried out; (a) the presence/absence of 

LH, kisspeptin-10 and kisspeptin antagonist and (b) the presence/absence of LH 

or FSK and kisspeptin-10 along with expected optimum dose of kisspeptin-10 (10-

7M) in each well. Conditioned media were assessed for A4 and P4 by ELISA 

assay. The A4 and P4 production data were analysed by two-way analysis of 

variance (ANOVA). 

4.2.4.2. The effect of kisspeptin-10, kisspeptin antagonist, FSH and FSK 

on GCs (E2 and P4 secretion)  

Bovine ovarian GCs were cultured in 96 well plates as described in section 

3.1.4.1. After 48 hours incubation period, 175μl of cultured medium were 

removed and replaced with control and treatment (containing medium), and then 

plates were placed in the incubator. Media were applied every 48 hours for 6 

days. At two time points (96h, 144h) medium were collected for hormonal assay.  

Depending on the type of cells whether they are non-luteinized or luteinized with 

2% serum, 25μl of FSH and FSK were added to wells to give final concentration 

of 0.33ng/ml and 10μM/ml respectively. Kisspeptin-10 and its antagonist were 

prepared as mentioned above to give final concentrations of 10-10, 10-9, 10-8, 10-7 

and 10-6M. There were two experimental designs carried out; (a) the 

presence/absence of LH, kisspeptin-10 and kisspeptin antagonist and (b) the 

presence/absence of LH or FSK and kisspeptin-10 along with expected optimum 

dose of kisspeptin-10 (10-7M) in each well. Conditioned media were assessed for 

E2 and P4 by ELISA assay. The E2 and P4 production data were analysed by 

two-way analysis of variance (ANOVA). 
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4.2.4.3. The effect of kisspeptin-10 on migration of bovine ovarian cortical 

stromal cells (SCs) assessed using a wound healing assay 

Bovine ovarian cortical SCs were cultured in 24 well plates with 10% serum until 

confluence as described in section 3.1.4.3 950μl of medium was discarded from 

each well and cells were treated with new medium supplemented with mytomycin 

C (5μg/ml, inhibitor of cell division) at the same day of making wound scratches 

as following: (a) control cells (vehicle treated). (b) Cells treated with 50μl of 

kisspeptin-10 (Sigma) diluted to achieve 10-8M, 10-7M and 10-6M as final 

concentrations. Using a 200μl pipette tip, the straight wound scratch was made, 

keeping the pipette tip at an angle of around 30 degrees to keep the scratch width 

limited. Then, using the inverted microscope (Zeiss A1 Inverted Epifluorescent 

Microscope) fitted with a camera (Nikon NIS Elements), images were taken for 

both wound edges of each well using a 10x objective lens. After 18 hours of 

incubation, pictures of the wound were taken again. 

4.3. Statistical analysis 

The effects of the various treatments on hormone secretion and gene expression 

were evaluated by two-way analysis of variance (2-way ANOVA). Individual 

pairwise comparisons within different treatments range were subsequently made 

by Fisher’s PLSD. In order to reduce heterogeneity of variance, some dates were 

log-transformed prior to statistical analysis. Unless otherwise stated, results are 

presented mean ±SEM of ≥ 3 independent batches of cultured cells.  
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4.4. Results  

4.4.1. The expression of KiSS-1 and GPR54 in different bovine endocrine 

tissues  

The expression of KiSS-1 in different bovine endocrine tissues including pituitary, 

testis, theca cells and granulosa cells and corpus luteum varied significantly 

(P<0.0001) with adrenal gland having the lowest level (figure 4.1a). Also the 

expression of GPR54 varied significantly (P<0.0001), being highest in pituitary 

and lowest in testis (figure 4.1b).  

Follicular expression of KiSS-1 showed a highly significant effect by follicle 

category, with maximum expression in the small size class analyzed (Figure 4.2a). 

Likewise, the expression of GPR54 was also significantly affected by follicle size 

class (Figure 4.2b). In addition, the expression of KiSS-1 and its receptor was 

significantly different between TC and GC.  

As shown in figure 4.3a and 4.3b, the expression of KiSS-1 and GPR54 in CL 

tissue tended to be greater in mid-luteal stage compare with growing or regression 

stages. However, the difference is not significant. 
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Figure 4. 1 Comparison of the relative abundance of mRNA transcripts for (a) 

KiSS-1 and (b) its receptor in different bovine endocrine tissues including adrenal 

gland (A, n=6), corpus luteum (CL, n=13), granulosa cell (GC, n=38), pituitary 

gland (P, n=6), testis (T, n=6) and theca cell (TC, n=43). Values are means ±SEM 

and one-way ANOVA results are shown. 



83 
 

3-
4

5-
6

7-
8

9-
10

11
-1

8 
E:P

>1

11
-1

8 
E:P

<1

0

2

4

6

8

10
GC

TC

Follicle size category P<0.0001

Cell type P=0.79

Follicle size category*Cell type p=0.06

(ANOVA)

(a)

(8)

(5)

(9)

(11)

(9) (9)

(4)

(6)
(4)

(5)
(8)

(3)

Follicle size category (mm)

K
iS

S
-1

 e
x
p

re
ss

io
n

(R
el

a
ti

v
e 

tr
a
n

sc
ri

p
t 

a
b

u
n

d
a
n

ce
)

3-
4

5-
6

7-
8

9-
10

11
-1

8 
E:P

>1

11
-1

8 
E:P

<1

0

5

10

15
GC

TC

Follicle size category P<0.0001

Cell type P=0.008

Follicle size category*Cell type p=0.0008

(ANOVA)

(b)

(8)

(9)

(5)(11)
(9)

(9)

(4)

(6)
(4)

(5)
(8)

(3)

Follicle size category (mm)

K
iS

S
-1

R
  

ex
p

re
ss

io
n

(R
e
la

ti
v

e 
tr

a
n

sc
r
ip

t 
a

b
u

n
d

a
n

c
e)

 

Figure 4. 2 A comparison of the relative abundance of mRNA transcript for (a) 

KiSS-1 and (b) GPR54 in GC and TC from ovarian follicles. Values are means 

±SEM and summarized two-way ANOVA results are shown. *Numbers in 

parenthesis above bars are n-values.  
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Figure 4. 3 The expression of (a) KiSS-1 and (b) its receptor in CL tissue at 

growing (G, n=4), mid-luteal (M, n=5) and regressing (R, n=4) stages. Values are 

means ±SEM and results of one-way ANOVA and pairwise comparisons are 

shown. 
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4.4.2. The expression of KiSS-1 mRNA in cells treated with LH, FSH, FSK 

and other factors 

The expression of KiSS-1 in cultured TC treated with/without LH and different 

BMPs (2ng/ml) showed a varied effect of BMPs (p<0.0003). LH tended to 

increase KiSS-1 expression but the effect was not significant (Figure 4.4a). 

Likewise, expression of KiSS-1 in LTC treated with FSK was not affected (Figure 

4.4c).  

The expression of KiSS-1 in cultured GC treated with TNFα (10ng/ml) was not 

affected under both basal and FSH-induced conditions (Figure 4.4b). Likewise 

expression of KiSS-1 by LGC was not affected by FSK (Figure 4.4d). 
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Figure 4. 4 Comparison of the relative abundance of mRNA for KiSS-1 in (a); 

non-luteinized TC cultured in the presence/ absence of LH and different BMPs 

ligand at concentrations of 100pg/ml and 2ng/ml respectively, (b); non-luteinized 

GC cultured in the presence/absence of FSH and TNF 𝛼  at concentrations of 

0.33ng/ml and 10ng/ml respectively, (c); luteinized TC and (d) luteinized GC 

cultured in the presence/absence of 10𝜇M of FSK. Values are means ±SEM (n=3-

7 in dependant batches of cell) and two-way ANOVA results are shown. 
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4.4.3. The effect of kisspeptin-10 on SC migration assessed by wound 

healing assay  

As shown in Figure 4.5, there was no significant effect of kisspeptin-10 on the 

percentage of wound closure by cultured SCs. 
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Figure 4. 5 Lack of effect of kisspeptin-10 on the percentage of wound closure by 

cultured SCs. Values are means ±SEM (n=3 independent batches of cells). 
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4.4.4. The expression of KiSS-1 and GPR54 in SC used for the wound 

healing assay  

The statistical analysis showed no significant difference in the expression of KiSS-

1 and its receptor in cultured SCs exposed to kisspeptin-10 (Figure 4.6). 
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Figure 4. 6 Relative abundance of mRNA transcript for (a) KiSS-1 and (b) 

GPR54 in bovine SCs treated with kisspeptin-10. Values are means ±SEM (n=4 

independent batches of cells). 

 

4.4.5. The effect of kisspeptin-10 and kisspeptin antagonist on basal and 

LH-induced A4 and P4 secretion by non-luteinized bovine TC  

As shown in Figures 4.7, 4.8 and 4.9 LH promoted a significant increase in 

secretion of both A4 and P4 and a small though significant decrease in viable cell 

number at the end of culture. However basal and LH-stimulated production of A4 

and P4 by non-luteinized TC was not affected by kisspeptin-10 or kisspeptin 

antagonist. Likewise, there was no effect on viable cell number at the end of the 

culture period. 

 

 

 

 



87 
 

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

20

40

60

80

100
0

100 pg/ml LH

KISS P=0.98

+/- LH P<0.0001

KISS*LH P=0.99 (ANOVA)
(a)

Kisspeptin (M)

A
4 

n
g/

m
l

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

50

100

150
0

100 pg/ml LH

KISS P=0.98

+/- LH P<0.0001

KISS*LH P=0.99 (ANOVA)
(b)

Kisspeptin (M)

P
4 

n
g/

m
l

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

100000

200000

300000

400000

500000
0

100 pg/ml LH

KISS P=0.91

+/- LH P=0.04

KISS*LH P=0.95 (ANOVA)
(c)

Kisspeptin (M)

C
el

l n
u

m
be

r

 

Figure 4. 7 The effects of LH and kisspeptin-10, alone and in combination, on the 

production of (a) A4 and (b) P4 by non-luteinized bovine TC; panel (c) shows the 

viable cell number at the end of the culture. Values are means ±SEM (n=6 

independent batches of cells) and two-way ANOVA results are shown.  



88 
 

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

50

100

150

200

250
0

100 pg/ml LH

KISSA P=0.98

+/- LH P=0.02

KISSA*LH P=0.96 (ANOVA)
(b)

Kisspeptin antagonist (M)

A
4 

n
g/

m
l

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

20

40

60

80
0

100 pg/ml LH

KISSA P=0.98

+/- LH P<0.0001

KISSA*LH P=0.99 (ANOVA)
(b)

Kisspeptin antagonist (M)

P
4 

n
g/

m
l

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

100000

200000

300000

400000

500000
0

100 pg/ml LH

KISSA P=0.99

+/- LH P=0.06

KISSA*LH P>0.99 (ANOVA)

(d)

Kisspeptin antagonist (M)

C
el

l n
u

m
be

r

 

Figure 4. 8 The effects of LH and kisspeptin antagonist, alone and in 

combination, on the production of (a) A4 and (b) P4 by bovine non-luteinized TC; 

panel (c) shows the viable cell number at the end of the culture. Values are means 

±SEM (n=4 independent batches of cells) and two-way ANOVA results are 

shown.  
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Figure 4. 9 The effects of LH and kisspeptin antagonist in combination with a 

fixed concentration of kisspeptin-10 (10-7M), on the production of (a) A4 and (b) 

P4 by bovine non-luteinized TC under basal and LH-stimulated conditions; panel 

(c) shows the viable cell number at the end of the culture. Values are means 

±SEM (n=5 independent batches of cells) and two-way ANOVA results are 

shown.  
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4.4.6. The effect of kisspeptin-10 and kisspeptin antagonist on basal and 

FSK-induced secretion of P4 by luteinized TC 

As shown in Figure 4.10 kisspeptin-10 and kisspeptin antagonist did not modify 

basal or FSK-induced secretion of P4 by luteinized TC, or change viable cell 

number. Beside, Figure 4.10 demonstrates the release of (e) P4, and (f) cell 

number at the end of the culture period.  
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Figure 4. 10 Lack of effect of kisspeptin-10 and kisspeptin antagonist, alone and 

in combination, on basal and FSK-stimulated production of P4 by luteinized 

bovine TC (a, c and e) and on viable cell number at the end of the culture (b, d 

and f). In (e) and (f) all cells were treated with a fixed concentration of kisspeptin-

10 (10-7M). Values are means ±SEM (n=5-6 independent batches of cells) and 

two-way ANOVA results are shown.  
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4.4.7. The effect of kisspeptin-10 and kisspeptin antagonist on basal and 

FSH-induced E2 and P4 secretion by non-luteinized bovine GC 

As shown in Figure 4.11 basal and FSH-stimulated production of E2 and P4 by 

non-luteinized GC was not affected by kissspeptin-10 or kisspeptin antagonist. 

Likewise, there was no effect on viable cell number at the end of the culture 

period. Treatment of GC with a kisspeptin antagonist also has no effect on steroid 

secretion or cell number (Figure 4.12 and 4.13).  
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Figure 4. 11 The effects of FSH and kisspeptin-10, alone and in combination, on 

the production of (a) E2 and (b) P4 by non-luteinized bovine GC; panel (c) shows 

the viable cell number at the end of the culture. Values are means ±SEM (n=3 

independent batches of cells) and two-way ANOVA results are shown.  
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Figure 4. 12 The effects of FSH and kisspeptin antagonist, alone and in 

combination, on the production of (a) E2 and (b) P4 by non-luteinized bovine GC; 

panel (c) the viable cell number at the end of the culture. Values are means ±SEM 

(n=3 independent batches of cells) and two-way ANOVA results are shown.  
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Figure 4. 13 The effects of kisspeptin antagonist in combination with a fixed 

concentration of kisspeptin-10 (10-7M), on the production of (a) E2 and (b) P4 by 

bovine non-luteinized GC under basal and FSH-stimulated conditions; panel (c) 

shows the viable cell number at the end of the culture. Values are means ±SEM 

(n=3 independent batches of cells) and two-way ANOVA results are shown. 
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4.4.8. The effect of kisspeptin-10 and kisspeptin antagonist, on basal and 

FSK-stimulated P4 secretion by luteinized bovine GC 

As shown in Figure 4.14 kisspeptin-10 and kisspeptin antagonist did not modify 

basal or FSK-induced secretion of P4 by luteinized GC or change viable cell 

number at the end of the culture period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

500

1000

1500

2000
0

10M FSK

(a)
KISS P=0.97

+/-FSK P<0.0001

KISS*FSK P=0.73 (ANOVA)

Kisspeptin (M)

P
4

 n
g
/m

l

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

200000

400000

600000
0

10M FSK

(b)
KISS P=0.99

+/- FSK P<0.0001

KISS*FSK P=0.99 (ANOVA)

Kisspeptin (M)

C
el

l 
n

u
m

b
er

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

1000

2000

3000
0

10M FSK

(c)
KISSA P=0.85
+/-FSK P<0.0001

KISSA*FSK P=0.36 (ANOVA)

Kisspeptin antagonist (M)

P
4

 n
g
/m

l

0 -1
0

10
-9

10
-8

10
-7

10
-6

10

0

200000

400000

600000
0

10M FSK

(d)
KISSA P=0.99
+/- FSK P<0.0001

KISSA*FSK P=0.99 (ANOVA)

Kisspeptin antagonist (M)

C
el

l 
n

u
m

b
er

0 -8

10
-7

10
-6

10

0

1000

2000

3000

4000
0

10M FSK

(e) KISSA P=0.62
+/- FSK P<0.0001

KISSA*FSK P=0.54 (ANOVA)

Kisspeptin antagonist (M)

Kisspeptin (M) 10
-7

10
-7

10
-7

10
-7

P
4

 n
g
/m

l

0 -8

10
-7

10
-6

10

0

200000

400000

600000
0

10M FSK

KISSA P=0.99

+/- FSK P=0.002
KISSA*FSK P=0.84 (ANOVA)

(f)

Kisspeptin antagonist (M)

Kisspeptin (M) 10
-7

10
-7

10
-7

10
-7

C
el

l 
n

u
m

b
er

 

Figure 4. 14 Lack of effect of kisspeptin-10 and kisspeptin antagonist, alone and 

in combination, on basal and FSK-stimulated production of P4 by luteinized 

bovine GC (a, c and e) and on viable cell number at the end of the culture (b, d 

and f). In (e) and (f) all cells were treated with a fixed concentration of kisspeptin-

10 (10-7M). Values are means ±SEM (n=3 independent batches of cells) and two-

way ANOVA results are shown.  
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4.5. Discussion 

Compelling evidence has now established the vital role of the kiss-1/GPR54 system 

in the hypothalamus, which is integrally involved in the regulation of development 

and function of the male and female reproductive axis. On the basis of genetic, 

molecular and pharmacological methods, this indispensable role was expected to be 

primarily or entirely conducted at hypothalamic levels, in which KiSS-1 neurons have 

been suggested as gatekeepers of the GnRH system (Dungan et al., 2006). Although 

many studies now support this contention, evidence has also been reported indicating 

expression of KiSS-1 and GPR54 genes in different peripheral tissues, including 

placenta and other reproductive organ, for instance the gonads. However, the 

physiological functions of kisspeptin in peripheral tissues remain uncertain (Ohtaki et 

al., 2001; Terao et al., 2004). Based on preliminary evidence showing expression of 

KiSS-1 gene and GPR54 in various bovine endocrine tissues including the ovary, the 

present study aimed to determine (i) whether KiSS-1 and GPR54 gene expression is 

sensitive to changes in ovarian physiology (i.e. follicle development stage, CL stages) 

(ii) whether kisspeptin-10 and a kisspeptin antagonist can modulate steroid 

production by cultured bovine theca and granulosa cells and (iii) whether 

gonadotropins and other regulatory molecules can influence expression of KiSS-1 and 

GPR54 in cultured ovarian cells. 

Our RT-qPCR results conclusively showed that the genes encoding KiSS-1 and its 

receptor GPR54 are indeed expressed in different bovine tissues including pituitary, 

adrenal, testis, corpus luteum, theca cell and granulosa cell. Thus, the adrenal gland 

seems to show the lowest level of the expression of KiSS-1 gene. While the 

expression of KiSS-1 receptor varied significantly, being by far the highest in 

pituitary and lowest in testis. More interestingly, our current data demonstrated that 

the profiles of ovarian KiSS-1 gene and GPR54 expression in theca and granulosa 

cells from follicles at different stages of development are clearly distinct. Therefore, a 

series of experiments have been conducted using the agonist and antagonist 

(kisspeptin-10 and kisspeptin 234) to determine the potential function of kisspeptin 

signaling in ovarian follicles. 

As previously mentioned, KiSS-1 was originally identified as a metastasis suppressor 

in melanoma and referred to as ‘metastin’. A subtractive hybridization study 

involving human melanoma cell lines that differed in their metastatic capacity 

revealed that tumor cells with low invasiveness selectively overexpressed KiSS-1 
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gene (Lee et al., 1996). Furthermore, the direct administration of the kiss-1 peptide 

inhibited pulmonary metastasis of melanoma cells in mice (Ohtaki et al., 2001). In the 

present studies, we have used kisspeptin-10 (metastin-45-54), a short 10 amino acid 

peptide of the carboxy-terminal region that is proteolytically cleaved from metastin. 

Kisspeptin-10 is 10 times as active as metastin and considered as a candidate for 

clinical use (Tomita et al., 2007). Migration of cow SCs was not affected by 

kisspeptin-10 in the in vitro wound-healing ‘scratch’ assay in which cell proliferation 

was inhibited using mitomycin C. Inclusion of mytomycin C in the medium 

precluded an assessment of whether kisspeptin-10 affected cell proliferation. 

Furthermore, to evaluate if metastin treatment alters gene expression pattern, we 

conducted real-time PCR analysis of SCs that were treated with or without 

kisspeptin-10. There was no significant difference in the expression of kiss-1 and 

GPR54 in SCs treated with and without kisspeptin-10. However, Kang et al (2011) 

used human endometrial cancer cell line to examine if the mestastin-GPR54 axis 

influences the migration and invasion of the cells in vitro. They showed that the 

migration of these cell line was significantly inhibited by kisspeptin-10 in the wound-

healing assay, whereas proliferation was not affected. In addition, a recent study has 

reported that kisspeptin-10 inhibited in vivo and in vitro breast cancer and human 

umbilical vein endothelial cell (HUVEC) growth (Song and Zhao, 2015). This 

suggests that primary cultures of bovine ovarian SC cells do not respond to kisspeptin 

in the same manner as several cancer cell lines used as models for cell 

migration/metastasis. It should be noted that the amino acid sequence of bovine and 

human kisspeptin-10 are identical and so species differences in biopotency could not 

explain this lack of effect on bovine cells. 

Our RT-qPCR analysis demonstrated that KiSS-1 and GPR-54 expression in the cow 

follicle was follicle size dependent and different between TC and GC. In the corpus 

luteum, the expression was also shown to vary in a stage- dependent manner. In the 

rat ovary, the expression of KiSS-1 and its receptor at the protein level were also 

reported to be stage dependent, with immunostaining detected in the theca layer of 

growing and pre-ovulatory follicles from oestrus to early pro-oestrus, which then 

moved to the granulosa cell layer of preovulatory follicles in late pro-oestrus. This 

pattern different from that observed in the cow ovary in the present study. After 

ovulation in the rat, expression of KiSS-1 and GPR54 was found in the theca-lutein 

cells of the corpus luteum and expression decreased as the corpus luteum regressed 



100 
 

(Castellano et al., 2006 and Roseweir and Millar, 2008). Some of these findings was 

in agreement with the marked fall in KiSS-1 expression observed in regressing bovine 

CL in the present study.  

A physiological action of kiss-1/receptor in the ovary can be suggested by the 

presence of receptor and ligand. As previously mentioned the expression of KiSS-1 

and its receptor has been reported in several tissues including adipose tissue, 

pancreas, liver, small intestine, peripheral blood lymphocytes, testis, lymph nodes, 

aorta, coronary artery, and umbilical vein, female tract, with highest expression in 

placenta and the central nervous system (Terao et al., 2004; Roman et al., 2012; 

Hussain et al., 2015).  The mRNA KiSS-1 expression in the ovary was firstly 

reported by Terao et al (2004) in a rat study, suggesting a local role of kisspetin in 

reproductive tissues (Terao et al., 2004). The expression of kisspeptin/receptor 

was found in rat theca cells, corpora lutea and interstitial tissues (Castellano et al., 

2006). There are some inconsistent studies even with the same species regarding 

cellular expression of kiss-1/receptor (Shahed and Young, 2009; 

Laoharatchatathanin et al., 2015; García-Ortega et al., 2016; Mondal et al., 2016). 

For instance, the absence of kiss-1/receptor has been demonstrated in GC of rat 

ovary (Castellano et al., 2006; Zhou et al., 2014). whereas, highly expression of 

kiss-1/receptor was found in GC of rat ovary (Peng et al., 2013; 

Laoharatchatathanin et al., 2015; Ricu et al., 2012). According to Ricu et al 

(2012), the expression of KiSS-1 mRNA was strongly expressed in rat GC 

compared with TC and other ovarian cells (Ricu et al., 2012). Whereas, other 

findings showed that the expression of KiSS-1 receptor was found in GC and other 

cells of the ovary. The apparent inconsistencies of the expression of kiss-

1/receptor in the ovary may relate to the variety of methods used to assess their 

existence. Other elements can considerably affect the patterns of expression of the 

kiss-1/receptor system include age and ovarian tissues and cells being obtained 

from different oestrous/menstrual cycle (Castellano et al., 2006; Shahed and 

Young, 2009; Gaytan et al., 2009; Ricu et al., 2012; Mondal et al, 2015; Merhi et 

al., 2016). It has been confirmed in humans that the expression of kiss-1/receptor 

gradually increased as follicles grow, with a peak level at the preovulatory stage 

(Shahed and Young, 2009; Mondal et al., 2015; Mondal et al., 2016). According 

to the previously mentioned observations, the increased expression was due to the 

stimulatory effect of gradually increased gonadotropins (Castellano et al., 2006).  
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For many years, it has been known that the steroid hormone feedback from the 

gonads has a major controlling influence on the HPG axis. Several studies have 

documented the stimulatory action of kisspeptin-10 administration on GnRH, LH and 

FSH secretion (George et al., 2011). As far as we know, no study had examined the 

direct effect of kisspeptin-10 in ovarian tissues. Therefore, the current study appears 

to be the first to examine in vitro whether kisspeptin-10 and a kisspeptin antagonist 

modulate basal and LH-induced secretion of A4 and P4 by TC, basal and FSH-

induced secretion of E2 and P4 by GC and basal and FSK- induced secretion of P4 by 

luteinized TC and GC. Despite an initial indication that basal A4 secretion was 

increased by kisspeptin treatment, this effect was not significant when results from 

six replicate experiments using independent batches of cells were combined. Overall, 

the results from this series of experiments were negative; they showed that, in 

response to kiss-1 and its antagonist, there was no significant change in the 

production of A4, P4 and E2 by the cells in the presence/ absence of LH (TC), FSH 

(GC) and FSK (luteinized TC/GC). Furthermore, there was no effect of kisspeptin-10 

and its antagonist on viable cell number at the end of culture. Thus, although 

kisspeptin-10 did not alter the secretion of sex steroid hormones or cell number, it 

may possibly have other intra-ovarian roles. However, exogenously administered 

kisspeptin-10 exerts a profound stimulatory effect on pituitary gonadotropin secretion 

in several species and this, in turn, would lead to stimulation of gonadal function in 

vivo (Thompson et al., 2004; Dhillo et al., 2005; Dungan et al., 2006). In summary, 

the results show that kiss-1 and its receptor are expressed in different bovine 

endocrine tissues including pituitary, adrenal, testis, ovarian corpus luteum, theca 

cells and granulosa cells. Moreover, changing levels of expression were detected 

during different stages of follicle development. However, the cell culture 

experiments offered no evidence to support the hypothesis that kisspeptin has a 

direct intra-ovarian role to modulate follicular or luteal steroidogenesis.  
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5. Does neuromedin B exert a local modulatory effect on ovarian 

steroidogenesis? 
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5.1. Introduction  

Although the involvement of GnRH in the reproductive axis is fully understood, 

the neuronal system operating upstream of GnRH neurons to regulate the 

hypothalamic-pituitary-gonadal axis via GnRH are still uncertain.  The 

stimulation of GnRH release has been shown to be modulated by numerous 

peptides in in vivo and in vitro experimental models; however, their precise 

physiological roles and relative importance is difficult to establish (Boughton et 

al., 2013). One of these neuropeptides is neuromedin B (NMB), a highly 

conserved decapeptide isolated from porcine spinal cord in 1983 by Minamino et 

al (1983), which is a member of the bombesin-related peptide family in mammals, 

and shown to have various physiological effects, both in the central nervous 

system (CNS) and periphery, including the regulation of exocrine and endocrine 

secretions (Ohki-Hamazaki, 2000). With regard to a potential role of NMB in 

ovarian function, a theca cell microarray study carried out in this laboratory 

(Glister et al., 2013), showed that NMB is expressed in these cells and was 

amongst the most highly down-regulated transcripts in bovine TCs in response to 

BMP6 treatment (~10-fold suppression). This unexpected observation prompted 

the current study reported in this chapter.  

NMB peptide consists of His-Phe-Met residues at its C-terminal and is 

categorized as a candidate of the ranatensin family (Minamino et al., 1983). A 

number of molecular studies have succeeded in defining a high affinity receptor 

for NMB. The NMB receptor (NMBR) is a member of a G-protein coupled 

receptor with seven membrane-spanning regions. The NMBR has a well-

conserved amino acid sequence within various species (Ohki-Hamazaki et al., 

2005). The binding between NMB and its cell surface receptor (NMBR) leads to 

activate several intracellular signaling pathways including phospholipase 

activation, calcium mobilization and protein kinase C (PKC) activation; these are 

responsible for altering the expression of multiple genes, DNA synthesis or 

cellular effects such as secretion. The distribution of NMB as well as its receptor 

is overlapping in various brain areas and digestive tissues (Ohki-Hamazaki, 

2000). Genes encoding NMB and NMBR and their roles especially in reproduction 

are currently unclear (Ma et al., 2016). In humans, the expression of NMB is 

particularly high in the hypothalamus, stomach and colon with low expression 
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levels reported in cerebellum, pancreas and the adrenal glands (Krane et al., 

1988). CNS expression of NMB mRNA is particularly high in the medial preoptic 

area and the arcuate nucleus of the hypothalamus. Amongst peripheral tissues 

testis and the gastrointestinal smooth muscle cells (Ohki-Hamazaki et al., 1997; 

Boughton et al., 2013) also shown high expression levels.  

The effect of NMB reported in peripheral tissues and organs includes an 

involvement in regulation of smooth muscle contraction (Von Schrenck et al., 

1989; Jensen et al., 2008). Reported roles of NMB in the CNS include modulation 

of satiety (Ladenheim et al., 1994), reproduction (Boughton et al., 2013) and 

thermoregulation (Ohki-Hamazaki et al., 1999) along with stress, fear and other 

behavioral responses (Merali et al., 2006; Bédard et al., 2007; Jensen et al., 2008; 

Guo et al., 2015). Additionally, NMB appears to have a significant role in immune 

cells including lymphocytes and leukocytes (Ruff et al., 1985; Narayan et al., 

1990) as well as promoting the growth and proliferation of different types of 

tumour cell including colon cancer (Narayan et al., 1990), lung carcinoma (Viallet 

and Minna, 1989) and prostate cancer (Bologna et al., 1989; Gajjar and Patel, 

2017).  

In this chapter, the aims of the study were firstly to investigate whether NMB and 

its receptor are expressed in a range of bovine endocrine tissues including 

different ovarian compartments. Secondly, to examine whether NMB can 

influence the steroidogenic pathway in cultured ovarian cells. Thirdly, to 

investigate the effect of an NMB antagonist (alone and in combination with 

NMB) on ovarian steroidogenesis in vitro. Fourthly, to investigate whether 

expression of NMB by cultured ovarian cells is regulated by gonadotropins and 

other factors. The laboratory techniques that have been used to address the above 

include a primary ovarian cell culture system (bovine ovarian theca and granulosa 

cells under non-luteinized and luteinized conditions), steroid immunoassay 

(androstenedione, oestradiol and progesterone), immunohistochemistry and real-

time PCR.  
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5.2. Materials and methods 

5.2.1. Cell culture 

Ovaries from randomly cycling cattle were collected from a local abattoir then 

granulosa and theca cells were isolated and cultured according to section 3.1.4. 

All treatments were applied as stated in next section 5.2.2. The spent culture 

medium was collected and retained for hormonal assay and replaced with fresh 

medium with the appropriate treatments every 48 hours. Viable cell number at the 

end of the culture was determined by neutral red assay in section 3.1.9. 

5.2.2. Preparation and administration of treatments  

NMB and NMB (antagonist) were dissolved in water and 0.1% (w/v) acetic acid 

respectively to give a stock concentration of 10-3M. Then stocks were diluted in 

sterile medium to give desired concentrations of the working solutions. A set of 5 

doses was prepared and a 25 μl applied to each well to give a final concentration 

of 10-6, 10-7,10-8, 10-9 and 10-10M respectively. 

LH and FSH were prepared from frozen stock solutions (100μg/ml) that was pre-

aliquoted into cryovials and stored under liquid nitrogen. Then LH and FSH stock 

solutions were diluted in complete medium supplemented with 0.3% (w/v) of 

BSA to give a ’top’concentration of 500ng/ml.  

FSK and DMSO were prepared from stocks of 10mM and dissolved in complete 

medium supplemented with 0.3% (w/v) of BSA to give desired concentrations. 

Prior to the experiments optimum concentration was obtained by test 8 serial 

concentrations of LH and FSH on A4 and E2 secretions. Also 3 concentrations of 

FSK and DMSO were tested to obtain the optimum concentration. 100pg/ml of 

LH, 0.33 ng/ml of FSH and 10μM of FSK and DMSO were considered as an 

optimum concentrations to give a maximum stimulation of A4 (TC), E2 (GC) and 

P4 (LTC, LGC) secretions by the respective cell-types cultured. The initial stock 

solution were diluted in sterile medium and filtered with a 0.2μm membrane filter. 

A 25μl of each treatment were applied to wells to give final concentrations of LH, 

FSH and FSK of 100pg/ml, 0.33ng/ml and 10μM respectively.  
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5.2.3. Gene expression analysis 

5.2.3.1. Sample preparation, total mRNA extraction, purification, cDNA 

synthesis and RT-PCR 

Samples were collected and processed for according to section 3.4.1. Total RNA 

extracts were quantified in section 3.4.2 and tested for integrity in section 3.4.3. 

First-strand cDNA was synthesized in section 3.4.4 following by RT-PCR 

analysis as described in section 3.4.5 using specific primer pairs as show in table 

3.2.    

5.2.3.2. The expression of NMB gene and NMBR in different bovine 

endocrine and ovarian tissues  

Bovine adrenal, pituitary, testis and ovarian GC, TC and CL tissues were 

processed for RNA isolation using Tri-reagent and cDNA synthesis using the AB 

high capacity cDNA synthesis kit as described in section 3.4.1.1, 3.4.1.2  and 

3.4.4. The cDNA samples from GC, TC and CL at different stages of follicle and 

luteal development were kindly provided by my laboratory colleague Dr 

Warakorn Cheewasopit and Dr Moafaq Samir. cDNA samples were used for 

Quantitative RT-PCR for the detection of the expression of NMB gene and NMBR 

using their designed primers; β-actin was used for normalization of gene 

expression as described in section 3.4.5. Melt curve analysis and agarose gel 

electrophoresis were used to verify that each selected primer pair gave a single 

amplicon of the predicted size and Tm.  However, it was not possible to generate 

satisfactory template dilution curves for the NMBR primers as the Ct values 

obtained for pooled cDNA sample were >30; this indicated either that NMBR 

expression levels are very low, or that neither of the designed primer sets were 

adequate. cDNA samples were diluted either 1:10 or 1:50 and 5μl of these diluted 

cDNA samples were used for qPCR. Volume of 2μl of forward and reverse 

primers, and 7μl of QuantiTect SYBR Green 2X “hot start” Master Mix (Qiagen) 

were added. Samples were run for 40 cycles on an AB StepOne plus real-time 

PCR instrument (Applied Biosystems). The method that was used to compare the 

difference between each mRNA transcript was the ΔCt method using β-actin as 

the house keeping control. Resultant ∆Ct values for individual replicates within 

each tissue group were then normalised to the average ∆Ct value of these different 
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tissues to give ΔΔCt values. Finally, ΔΔCt values were converted to fold difference 

for graphical presentation using the formula 2(-ΔΔCt).  

5.2.3.3. The expression of NMB gene in ovarian cells treated with LH, 

FSH, FSK and other factors  

The cDNA samples from cultured ovarian cells analysed for NMB expression 

were kindly provided by my laboratory colleagues Dr Moafaq Samir and Dr 

Claire Glister. Cells which had been treated with LH, FSH and FSK for 7 days 

were used for RNA extraction procedure using Qiagen RNeasy mini-column kits 

followed by cDNA synthesis using the AB high capacity cDNA synthesis kit; 

qPCR was used for the detection of the expression of NMB using as described in 

section 3.4.1.2, 3.4.4 and 3.4.5.  

5.2.4. Hormone immunoassays 

A4, E2 and P4 concentrations in retained spent media were determined by ELISA 

as described in section 3.3.  

5.2.4.1. The effect of NMB, NMB antagonist, LH and FSK on TCs (A4 and 

P4 secretion)  

Bovine ovarian TCs were cultured in 96 well plates as described in section 

3.1.4.2. After 48 hours incubation period, 175μl of cultured medium were 

removed and replaced with control and treatment (containing medium), and then 

plates were placed in the incubator. Media were applied every 48 hours for 6 

days. At two time points (96h, 144h) medium were collected for hormonal assay 

by ELISA.  

Depending on the type of cells (non-luteinized, TC or serum-luteinized, LTC), 

25μl of LH and FSK were added to wells to give final concentration of 100pg/ml 

(TC) and 10μM/ml (LTC) respectively. 25μl of NMB and its antagonist were 

applied to wells to give final concentrations of 10-10, 10-9, 10-8, 10-7 and 10-6M. 

The experimental design evaluated the effect of the presence/absence of LH, 

NMB and NMB antagonist. The A4 and P4 secretion data and viable cell number 

data were analysed by two-way analysis of variance (ANOVA) using the 

statistical program StatView v.5.0.1.  
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5.2.4.2. The effect NMB, NMB antagonist, FSH and FSK on GCs (E2 and 

P4 secretion)  

Bovine ovarian GCs were cultured in 96 well plates as described in section 

3.1.4.1. After 48 hours incubation period, 175μl of cultured medium were 

removed and replaced with control and treatment (containing medium), and then 

plates were placed in the incubator. Media were applied every 48 hours for 6 

days. At two time points (96h, 144h) medium were collected for hormonal assay 

by ELISA.  

Depending on the type of cells (non-luteinized, GC or serum-luteinized, LGC), 

25μl of FSH and FSK were added to wells to give final concentration of 0.33 

ng/ml (GC) and 10μM/ml (LGC) respectively. 25μl of NMB and its antagonist 

were applied to wells to give final concentrations of 10-10, 10-9, 10-8, 10-7 and 10-

6M. The experimental design evaluated the effect of the presence/absence of FSH, 

NMB and NMB antagonist. The E2 and P4 secretion data and viable cell number 

data were analysed by two-way analysis of variance (ANOVA) using the 

statistical program StatView v.5.0.1.  

5.2.5. ApoTox-GloTM Triple assay 

Bovine ovarian nonluteinized GCs were cultured in 96 well plates as described in 

section 3.1.4.1. Cells were treated with/without FSH (0.33ng/ml) and NMB (10-

10and 10-9M). At the end of the culture period 150μl of the culture media was 

removed to leave a final volume of 100μl/well. The Promega ApoTox-Glo assay 

was then applied to the cells described in section 3.1.10. The data were analysed 

by two-way analysis of variance (ANOVA) using the statistical program StatView 

v.5.0.1. 

5.2.6. Immunohistochemistry  

The experiment was carried out as described in section 3.6. Formalin-fixed, wax-

embedded bovine ovary sections were kindly prepared and provided by Dr Mhairi 

Laird in this laboratory.  

 

 



109 
 

5.3. Statistical analysis 

The effects of the various treatments on hormone secretion and gene expression 

were evaluated by two-way analysis of variance (2-way ANOVA). Individual 

pairwise comparisons within different treatments range were subsequently made 

by Fisher’s PLSD. In order to reduce heterogeneity of variance, some dates were 

log-transformed prior to statistical analysis. Unless otherwise stated, results are 

presented mean ±SEM of ≥ 3 independent batches of cultured cells.  
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5.4. Results  

5.4.1. The expression of NMB and it receptor in different bovine endocrine 

tissues 

The relative expression of NMB mRNA in different bovine endocrine tissues 

including pituitary, testis, TC, GC and CL varied significantly (P<0.0001), being 

highest in testis and lowest in pituitary (Figure 5.1). NMBR expression was only 

examined in TC and GC as described below.  

Analysis of follicular GC and TC layers from different size follicles revealed that 

expression of NMB showed significant variation by both follicle category and cell 

type. NMB expression in TC tended to increase with follicles size while the 

opposite trend was observed with GC (Figure 5.2a). Expression of NMBR was 

also significantly affected by follicle size class, being highest in both TC and GC 

of the smallest follicle class and lowest in large regressing follicles with E;P ratio 

<1 (Figure 5.2b). In addition, the expression of NMB was significantly different 

between TC and GC while expression of NMBR was not.  

As shown in Figure 5.3, the expression of NMB in CL tissue was significantly 

higher in the mid-luteal stage compared with regression stage. However, the 

difference between early (growing) and mid-luteal stages was not significant. 
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Figure 5. 1 The relative abundance of mRNA transcripts NMB in different bovine 

endocrine tissues including adrenal gland (A, n=6), corpus luteum (CL, n=17), 

granulosa cell (GC, n=39), pituitary gland (P, n=6), testis (T, n=6) and theca cell 

(TC, n=44). Values are means ±SEM and one-way ANOVA results are shown. 

 

Figure 5. 2 A comparison of the relative abundance of mRNA transcript for (a) 

NMB and (b) NMBR in GC and TC from ovarian follicles. Values are means 

±SEM and summarized two-way ANOVA results are shown. *Numbers in 

parenthesis above bars are n-values. 
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Figure 5. 3 The expression of NMB in CL tissue at growing (G, n=6), mid-luteal 

(M, n=7) and regressing (R, n=4) stages. Values are means ±SEM and results of 

one-way ANOVA and pairwise comparisons are shown. 

5.4.2. The expression of NMB mRNA in cells treated with LH, FSH, FSK 

and other factors 

The expression of NMB in cultured cells treated with/without LH and different 

BMPs (2ng/ml) showed a marked suppressive effect of BMPs (p<0.001) with 

BMP6 evidently the most potent. LH tended to increase NMB expression but the 

effect was not significant (Figure 5.4a). However, expression of NMB in LTC 

treated with FSK was ~3-fold higher compared to control (P<0.0001) (Figure 

5.4c).  

On the other hand, the expression of NMB in cultured GC treated with TNFα 

(10ng/ml) was significantly inhibited under both basal and FSH-induced 

conditions; FSH tended to increase NMB expression but the effect was not 

significant (Figure 5.4b). Likewise expression of NMB by LGC was not affected 

by FSK (Figure 5.4d).  
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Figure 5. 4 Comparison of the relative abundance of mRNA for NMB in (a); non-

luteinized TC cultured in the presence/ absence of LH and different BMPs ligand 

at concentrations of 100pg/ml and 2ng/ml respectively, (b); non-luteinized GC 

cultured in the presence/absence of FSH and TNF 𝛼  at concentrations of 

0.33ng/ml and 10ng/ml respectively, (c); luteinized TC and (d) luteinized GC 

cultured in the presence/absence of 10𝜇M of FSK. Values are means ±SEM (n=3-

7 in dependant batches of cell) and two-way ANOVA results are shown. 

5.4.3. The effect of NMB and its antagonist on basal and LH-induced A4 

and P4 secretion by non-luteinized bovine TC 

As shown in Figures 5.4 and 5.6 basal and LH-stimulated productions of A4 and 

P4 by non-luteinized TC were not affected by NMB or its antagonist. Likewise, 

there was no effect on viable cell number at the end of the culture period. As 

expected, TC responded to LH with increased steroid secretion (P<0.0001).  
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Figure 5. 5 The effects of LH and NMB, alone and in combination, on the 

production of (a) A4 and (b) P4 by non-luteinized bovine TC; panel (c) shows the 

viable cell number at the end of the culture. Values are means ±SEM (n=3 

independent batches of cells) and two-way ANOVA results are shown. 
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Figure 5. 6 The effects of LH and NMB antagonist, alone and in combination, on 

the production of (a) A4 and (b) P4 by non-luteinized bovine TC; panel (c) shows 

the viable cell number at the end of the culture. Values are means ±SEM (n=3 

independent batches of cells) and two-way ANOVA results are shown. *NMBA 

referred to NMB antagonist.  
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5.4.4. The effect of NMB and its antagonist on basal and FSK-induced 

secretion of P4 by luteinized TC  

As shown in Figure 5.7 NMB and its antagonist did not modify basal or FSK-

induced secretion of P4 by luteinized TC, or change viable cell number. However, 

FSK greatly increased P4 secretion and also reduced cell number (P<0.0001).  
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Figure 5. 7 The effects of NMB and its antagonist, alone and in combination, on 

basal and FSK-stimulated production of P4 by luteinized bovine TC (a and c) and 

on viable cell number at the end of the culture (b and d). Values are means ±SEM 

(n=3 independent batches of cells) and two-way ANOVA results are shown. 
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5.4.5. The effect of NMB and its antagonist on basal and FSH-induced E2 

and P4 secretion by non-luteinized bovine GC  

As shown in Figure 5.8 and 5.9 basal and FSH-stimulated productions of E2 and 

P4 by non-luteinized GC was not affected by NMB or its antagonist. NMB tended 

to increase viable cell number at the end of the culture period but the effect was 

not significant (p=0.06). As expected, FSH greatly increased E2 secretion (>20-

fold increase) with little effect on P4 secretion. 
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Figure 5. 8 The effects of FSH and NMB, alone and in combination, on the 

production of (a) E2 and (b) P4 by non-luteinized bovine GC; panel (c) shows the 

viable cell number at the end of the culture. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. 
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Figure 5. 9 The effects of FSH and NMB antagonist, alone and in combination, 

on the production of (a) E2 and (b) P4 by non-luteinized bovine GC; panel (c) 

shows the viable cell number at the end of the culture. Values are means ±SEM 

(n=3 independent batches of cells) and two-way ANOVA results are shown. 
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5.4.6. The effect of NMB and its antagonist, on basal and FSK-stimulated P4 

secretion by luteinized bovine GC 

As shown in Figure 5.10 NMB and its antagonist did not modify basal or FSK-

induced secretion of P4 by luteinized GC or change viable cell number at the end 

of the culture period. However, FSK significantly increased P4 secretion while 

reducing viable cell number. 
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Figure 5. 10 The effects of NMB and its antagonist, alone and in combination, on 

basal and FSK-stimulated production of P4 by luteinized bovine GC (a and c) and 

on viable cell number at the end of the culture (b and d). Values are means ±SEM 

(n=3 independent batches of cells) and two-way ANOVA results are shown. 
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5.4.7. The effect of NMB and FSH on cell viability, cytotoxicity and 

apoptosis by non-luteinized GC  

As shown in Figure 5.11, there were no significant effects of either NMB or FSH 

on GC viability, cytotoxicity and apoptosis as indicated by the Promega ApoTox 

Glo assay.  
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Figure 5. 11 The effect of NMB and FSH on cell (a) viability, (b) cytotoxicity 

and (c) apoptosis by non-luteinized GC. Values are means ±SEM (n=5-6 

independent batches of cells) and two-way ANOVA results are shown. 
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5.4.8. The presence of NMBR in bovine ovary sections  

As shown in Figure 5.12, the expression of NMBR was found in different follicle 

stages including primordial, primary, secondary and antral. Also, NMBR was 

found in both GC and TC at all stages of examined follicles, however, the 

expression appeared to be higher in granulosa than theca layer.  

 

 

Figure 5. 12 Immunohistochemical staining of bovine ovary sections (20x 

objective lens) showing NMBR immunereactivity (brown) in primordial (pF), 

primary (PrF), secondary (SF), early antral (EAF), antral follicles (AF) and in 

thecal (TC) and (GC). No staining was observed in control section treated with 

non-immune rabbit IgG normal (bottom right).  
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5.5. Discussion 

Neuromedin peptides are categorized into 4 classes including (1) Bombesin 

family that involving Neuromedin B and Neuromedin C, (2), Kanassin family that 

involving Neuromedin K and Neuromedin L, (3) Neurotensin family that 

involving Neuromedin N and (4) Neuromedin U and Neuromedin S. These 

various neuromedins have several physiological functions including constrictive 

roles on smooth muscles, control of blood pressure, pain sensations, 

hunger/satiety, bone metastasis and release and regulation of hormones. The 

identification of various physiological functions for neuromedins suggests that 

pharmalogical agonists and antagonists may have potential for development as 

novel therapeutic treatments for various conditions (Gajjar and Patel, 2017). The 

NMB ligand/receptor system is implicated in controlling several physiological 

activities in both human and animals (Ma et al., 2016). Yet, information on the 

anatomical distributions and physiological roles of NMB/NMBR system is still 

limited (Boughton et al 2013; Ma et al., 2016) and to my knowledge there are no 

reports regarding its potential regulatory role in the bovine ovary. 

The experiments reported in this chapter were prompted by the findings of a 

global microarray study carried out in this laboratory showing that NMB 

expression by cultured bovine TC was markedly reduced by BMP-6 treatment 

(Glister et al 2013). Here, we first studied the expression levels of NMB and 

NMBR mRNA among different bovine endocrine tissues with particular emphasis 

on the ovary and its principle cellular compartments (GC, TC, and CL). 

Expression of mRNA for NMB and its receptor were detected by RT-qPCR in all 

endocrine tissues examined and found to vary between different tissues.  In the 

ovary, NMB and NMBR expression was found to vary in a cell-type and follicle 

stage-dependent manner supporting the possibility of a functional involvement in 

aspects of follicle function such as cell proliferation/survival and steroidogenesis. 

This study also confirmed and extended the findings from the above-mentioned 

TC microarray study (Glister et al., 2013) with mRNA expression of both NMB 

and NMBR identified in GC and CL.  As mentioned in section 5.2.3.2. no 

satisfactory template  dilution curves for the NMBR primers were generated using 

pooled bovine ovarian cDNA. The ideal positive control for evaluating the 

efficiency and specificity of the NMBR primers would be bovine brain tissue. 
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However, it was not possible to obtain bovine brain tissue from the 

slaughterhouse because of the UK Specified Bovine Offals Order (1995) that was 

introduced in response to the Bovine Spongiform Encephalopathy outbreak in the 

late 1980s. This bans the collection and supply of bovine brain and spinal chord 

tissue. Although two different sets of NMBR primers were designed and tested 

with limited success, it is possible that additional primer sets may have been more 

effective. Theoretically, an increased amount of cDNA could have been included 

in each qPCR reaction. In practice, however, the limited amount of cDNA 

available for these analyses excluded this option. Despite these doubts about the 

quality of the NMBR primers, and the failure to detect NMBR expression in the 

bovine endocrine tissue sample set, qPCR assays did yield low but measurable 

detection levels in the GC and TC samples from developing follicles. To provide 

more evidence that NMBR is indeed expressed in bovine ovary, an NMBR 

antibody was sourced and used for immunohistochemical staining of bovine ovary 

sections. Positive NMBR immunistaining was evident, supporting the tentative 

mRNA expression data for follicular GC and TC samples analysed by qPCR. 

These initial results led us to carry out further investigations on the potential 

multifunctional role of the NMB/NMBR system in the ovary. These studies 

utilised several in vitro culture models in which TC and GC harvested from fresh 

bovine ovaries are maintained under defined serum-free conditions to preserve a 

non-luteinized phenotype (Glister et al., 2001; Glister et al., 2004). In addition, 

the same cell-types were cultured under serum-supplemented conditions to 

promote spontaneous luteinisation (Kayani et al., 2009) characterised by 

massively increased P4 output and diminished E2 and A4 output by GC and TC 

respectively. Disappointedly, neither NMB nor its antagonist modulated follicular 

or luteal steroidogenesis or cell proliferation/survival in the series of experiments 

that used four different bovine primary cell culture models (non-luteinized and 

serum-luteinized GC and TC). To my knowledge, there are no comparable studies 

in other species exploring direct intra-ovarian role(s) of the NMB/NMBR system 

to modulate follicular or luteal steroidogenesis. However, it is clear from the 

study of Boughton et al (2013) that NMB has a neuroendocrine role to control 

hypothalamic GnRH secretion Nevertheless, the present findings lead us to reject 
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the hypothesis that NMB and its antagonist modulate follicular or luteal 

steroidogenesis or cell proliferation/survival in vitro. 

In the reproductive axis of female pigs, the expression pattern of NMB/NMBR 

mRNA in the hypothalamus and pituitary was measured across the oestrous cycle 

(Ma et al., 2016). Regarding the hypothalamus, the expression patterns of 

NMB/NMBR mRNA were high during pro-oestrus; however, the expression levels 

were not significantly different compared to estrus. Result of study in rats 

suggested a role of NMB to regulate the release of GnRH via regulating the 

secretion of NMBR (Boughton et al., 2013). NMB was found to stimulate GnRH 

release from hypothalamic explants and from hypothalamic GT1-7 cells. In 

regards to the pituitary, a low level of NMB mRNA expression was found during 

estrus, whereas, a high level of NMBR mRNA expression was also detected 

during the same stage. Thus, the suggested effect of NMB on the rat H-P-G axis 

may be to stimulate the GnRH secretion rather than exert a direct effect on the 

pituitary to modulate gonadotrophin secretion (Boughton et al., 2013). According 

to Ma et al., (2016) expression of NMB in porcine ovary peaked during pro-

oestrus, whereas peak NMBR expression occurred during oestrus. This led to the 

suggestion that NMB may regulate ovaries through binding to its own receptor. 

Thus, the previously mentioned data provides some albeit incomplete, evidence 

suggesting roles for NMB in the regulation of the reproductive axis. Additional 

experimental work is needed to further elucidate the potential physiological 

functions performed by the NMB/NMBR system in gonadal regulation.   

Experiments involving an NMBR antagonist revealed an inhibitory effect on cell 

proliferation in different type of cells (Moody et al, 2000; Moody et al., 2010). 

Our results suggested that NMB may up regulate the cell proliferation 

and/survival of non-luteinized GC although the effect was not significant 

(p=0.06). To follow up this tentative finding, a more detailed evaluation of the 

effect of NMB treatment on GC proliferation, viability and apoptosis was 

undertaken using the Promega ApoTox Glo assay kit.  However, no significant 

effect of NMB on any of these parameters was identified and so the above 

tentative finding remains unsubstantiated. 

In conclusion, we found NMB mRNA expression in the bovine adrenal gland, 
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pituitary gland, testis and ovarian GC, TC and CL. NMBR expression was 

tentatively identified in GC and TC although it was not possible to confirm the 

efficiency of the primers used. Despite this, immunohistochemistry supported the 

presence of NMBR protein expression in these ovarian tissues. The presence of 

NMB/NMBR expression in ovarian cell-types suggests that NMB may directly 

influence ovarian follicle function. However, an extensive series of experiments 

on non-luteinized and serum-luteinized GC and TC in primary culture found no 

evidence that NMB or its antagonist modulate follicular or luteal steroidogenesis 

or cell proliferation/survival in vitro. Therefore, further work is needed to 

examine whether NMB can directly affect ovarian function in cattle. High 

expression levels of NMB mRNA were also detected in the testis which may 

imply that NMB functions through autocrine and paracrine in the male gonad. 

Collectively, the results presented here are inconclusive but provide a basis for 

future studies on the functions of NMB in gonadal regulation. 
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6. Role of kisspeptin, neuromedin B and other peptides in regulating 

follicular angiogenesis 
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6.1. Introduction  

Formation of the circulatory system (vascular system) involves two distinct 

mechanisms known as vasculogenesis and angiogenesis (Robinson, 2013). The 

ovary is a very dynamic organ with considerable tissue turnover and remodelling. 

A coordinated interaction of various autocrine, paracrine and endocrine regulators 

is required during ovarian follicular development, ovulation and CL formation to 

control physiologic process such as angiogenesis that underpin tissue turnover and 

remodelling (Osz et al., 2014). The formation of new blood vessels (angiogenesis) 

is a process involving the migration and proliferation of endothelial cells from 

pre-existing ones; this involves a complex series of cellular processes and 

molecular changes. In adults, angiogenesis is largely limited to pathological 

conditions such as tumour growth and wound healing. However, in the 

reproductive tract and especially the ovary it is well established that continual 

angiogenesis is of great importance for ovarian development and function 

(Robinson et al., 2009). The characteristics of ruminants ovarian cycles include 

the recurrent patterns of specific cellular proliferation, differentiation and 

transformation that leads to folliculogenesis, ovulation and formation and function 

of the CL (Berisha et al., 2016). An established vasculature consists of an inner 

lining of endothelial cells linked to mural cells such as pericytes and vascular 

smooth muscle cells, which are ideally located to take an active part in the 

angiogenic process. These vessels continue to be inactive until an angiogenic 

stimulus occurs, involving local upregulation of proangiogenic factors including 

vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 

(FGF-2). In response to the stimulus, the existing vessels turn to dislocate 

throughout the endothelial and mural cellular contacts. During this mechanism, 

several proteases and cytokines are stimulated and the extracellular matrix is 

disrupted (Plendl, 2000). At this point, the endothelial cells migrate and 

directionally in response to the angiogenic stimuli, and proliferate under the effect 

of proangiogenic influences. Once connected and aligned, the endothelial cells 

form a tube with a lumen and the newly formed vessel is then stabilised by the 

recruitment of pericytes. Consequently, angiogenesis is a highly regulated 

mechanism including a balance between a plethora of pro- and anti-angiogenic 

factors (Robinson et al., 2009; Gerhardt and Betsholtz, 2003). Studies in different 



129 
 

mammalian species suggests that, during the bovine ovarian cycle, many vascular 

changes in the follicle facilitate the development of the follicle’s delivery of the 

nutrient and hormonal transportation to maintain oocyte development process 

(Fraser and Lunn, 2000; Ferrara et al., 2003). Coordinated expression of both 

extraovarian factors and intrafollicular regulatory factors produced by theca and 

granulosa cells in an autocrine and paracrine manner are involved in ovarian 

angiogenesis (Greenaway et al., 2005).  

As mentioned previously, VEGF is considered to be a potent regulator for the 

proliferation and migration of vascular endothelial cell (Ferrara, 2004). VEGF is 

found in the bovine CL at high levels and it has a stimulatory role throughout the 

process of luteal angiogenesis in vitro (Robinson et al., 2007; Robinson et al., 

2008). According to several studies, the inhibition of VEGF during the pre-

ovulatory stage leads to suppression of in vivo luteal function and vascularity in 

different species including the cow (Fraser et al., 2000; Wulff et al., 2001; 

Yamashita et al., 2008). The other potent regulator is FGF2, which has a series of 

pro-angiogenic activities (Presta et al., 2005). FGF has a role in the simulation of 

endothelial cells proliferation in bovine corpora lutea and its expression is 

particularly high through the bovine follicular-luteal transition (Gospodarowicz et 

al., 1986; Robinson et al., 2007). Furthermore, the local neutralisation of FGF 

action by direct injection of FGF-2 antibody leads to an alteration of luteal growth 

and function of the developing bovine CL, as observed by the reductions of luteal 

volume and steroidogenesis (Yamashita et al., 2008; Woad et al., 2012). 

Another important regulator of angiogenesis is transforming growth factor-β-1 

(TGF-β), which is involves in several biological mechanisms such as embryonic 

development, cell proliferation and migration, extracellular matrix production and 

differentiation of a numerous cell types (Peshavariya et al., 2014). Bone 

morphogenetic proteins (BMPs) are also implicated in the regulation of 

angiogenesis. BMPs and TGF-β  belong to a large family of structurally and 

multifunctional proteins termed the TGF-β superfamily (Massague, 2000). BMPs 

have been found to be expressed by endothelial cells and vascular smooth muscle 

cells (Schluesener and Meyermann, 1995; Glienke at al., 2000). It has been 

reported that BMPs can inhibit the proliferation of vascular smooth muscle cells 
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and increase the expression of some markers, including those for smooth muscle 

differentiation (Nakaoka et al., 1997; Willette et al., 1999; Valdimarsdottir et al., 

2002). Furthermore, thrombospondin-1 (TSP-1), an extracellular matrix 

glycoprotein that plays a role in cellular phenotype and the structure of the 

extracellular matrix, is also implicated in tissue remodeling that is linked to 

angiogenesis and neoplasia (Lawler, 2002).  

In this chapter, the aims of the study were firstly to investigate the potential role 

of NMB, kisspeptin-10, TGF-β -1, BMP6 and TSP-1 in modulating capillary 

network formation in follicular angiogenesis. Secondly, to examine the effect of 

antagonists of the previously mentioned peptides on follicular angiogenesis. 

These were tested alone and in combination with agonist. The rationale of testing 

the effect of antagonist alone was to unmask the effect of endogenous ligand 

secreted by the cultured cells. Thirdly, to investigate the effect of TGF-β-1 and 

BMP6 (alone and in combination with their antagonists) on ovarian 

steroidogenesis in vitro. Fourthly, to investigate whether expression of 

steroidogenic transcripts and other angiogenic factors by cultured ovarian cells is 

regulated by TGF-β-1 and BMP6. The laboratory techniques that have been used 

to address the above include a primary ovarian angiogenic cell culture system 

(bovine ovarian theca internal layer), steroid immunoassay (androstenedione and 

progesterone), immune-staining and real-time PCR.  

 

 

 

 

 

 

 

 

 

 

 

 

 



131 
 

6.2. Material and methods  

6.2.1. Cell culture  

Randomly cycling bovine ovaries were collected from a local abattoir and thecal 

interna layers were recovered and cells isolated and cultured according to section 

3.1.4.2.   

All treatments were applied as stated in next section 6.2.2. The spent culture 

medium was collected and retained for hormone assay and replaced with fresh 

medium with the appropriate treatments every 24 hours.  

6.2.2. Preparation and administration of treatments 

FGF and VEGF were dissolved in sterile PBS containing at least 0.1% bovine 

serum albumin and 4 mM HCl. Two concentrations of the angiogenic factors were 

prepared to achieve final concentrations of 1 or 10ng/ml respectively as used 

previously in a bovine luteal cell angiogenesis model (Robinson et al., 2008).  

Kisspeptin-10 and kisspeptin 234 (antagonist) were dissolved in water and 20% 

(w/v) acetonitrile / water respectively to give a stock concentration of 10-3M. 

Then stocks were diluted in sterile medium to give desired concentrations of the 

working solutions. A set of 5 doses was prepared and a 25 μl applied to each well 

to give a final concentration of 10-8, 10-7 and 10-6M respectively. 

Neuromedin B was dissolved in water while BIM 23042 (NMB antagonist) was 

dissolved in 0.1% acetic acid to give a stock concentration of 10-3M for both of 

them. Then stocks were diluted in sterile medium to give desired concentrations 

of the working solutions. A set of 3 doses of NMB was prepared and a 

15μl applied to each well to give a final concentration of 10, 100 and 1000ng/ml 

respectively. Another concentration of NMB was prepared (being an optimal dose 

from preliminary results) and 50 μl  applied to each well to give a final 

concentration of 10nM. Two doses of the antagonist were prepared and 50μl 

applied to each well to give a final concentration of 10-8 and 10-7M respectively.  

TGF- β -1 was dissolved in 4mM HCL to give a stock concentration of 

10000ng/ml whereas SB 431542 (TGF-β antagonist) was dissolved in ethanol to 

give a stock concentration of 10mM. Then stocks were diluted in sterile medium 
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to give desired concentrations of the working solutions. A set of 3 doses of TGF-β 

was prepared and a 50μl applied to each well to give a final concentration of 0.1, 

1 and 10ng/ml respectively. According to the dose response curve a 5ng/ml of 

TGF-β was considered as being the optimal effective dose. However, two doses 

of the antagonist were prepared and 50μl applied to each well to give a final 

concentration of 2μM and 10μM respectively.  

BMP-6 was dissolved in sterile 4 mM HCl containing at least 0.1% human or 

bovine serum albumin to give a stock concentration of 20000ng/ml while K02288 

(BMP-6 antagonist) was dissolved in ethanol to give a stock concentration of 

10mM. Then stocks were diluted in sterile medium to give desired concentrations 

of the working solutions. A set of two concentrations of BMP-6 were prepared 

and 50μl applied to each well to give a final concentration of 1 and 5ng/ml 

respectively. According to the dose respond curve a 5ng/ml of BMP6 was 

considered as being the optimal effective dose. However, two doses of the 

antagonist were prepared and 50 μl  applied to each well to give a final 

concentration of 2μM and 10μM respectively.  

Thrompospondin-1 was dissolved in sterile PBS to give a final concentration of 

100 μ g/ml. Then stocks were diluted in sterile medium to give desired 

concentrations of the working solutions. A set of three concentrations of 

thrompospondin-1 were prepared and 50μl applied to each well to give a final 

concentration of 1, 10 and 100ng/ml respectively.  

6.2.3. Follicular angiogenesis cell culture system 

Theca interna cells were seeded at a density of 1×105/ml and maintained for 7 

days. Medium was changed and treatment was applied on day 1, 3 and 5. On day 

7 media either discarded or collected for hormonal assay and the endothelial cells 

were stained for vWF and the degree of network formation determined as 

described in section 3.7.3. Bovine theca layer were cultured in 24 well plates with 

2% of fetal calf serum for the first day of the culture and then grown in serum free 

media until the end of the culture period. Media were removed and cells were 

washed with 1ml of PBS. Then, cells were treated with new medium 

supplemented with desired treatments as described below. At the end of culture, 
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media were either discarded or kept for hormonal assay as described in section 

3.3. Cells were fixed immediately and stained for vWF as described in section 

3.7.3. 

6.2.3.1. Effect of NMB and its antagonist on endothelial cells network 

formation 

Bovine theca cells were treated with NMB and its antagonist along with VEGF 

and FGF (Figure 6.1 and 6.2). A mixture of angiogenic factors (1 ng/ml 

VEGF/FGF and 10 ng/ml VEGF/FGF) was tested and prepared as described in 

section 6.2.2. NMB ligand was added at either 0, 10, 100, 1000ng/ml or 10nM as 

described in section 6.2.2 according to the designed experiment. Then, NMB 

antagonist was prepared as described in section 6.2.2 and after that cells were 

treated in the presence/absence of NMB ligand, NMB antagonist and VEGF/FGF 

as mention in section 6.2.3.  

 

Figure 6. 1 Diagram demonstrates experiment set up in 24-well plate for NMB 

effect on endothelial cells network formation. * NMB (Neuromedin B ligand),V/F 

(VEGF/FGF) and M (media). 
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Figure 6. 2 Diagram demonstrates experiment set up in 24-well plate for NMB 

antagonist effect on endothelial cells network formation. *NMB (neuromedin B 

ligand), V/F (VEGF/FGF), A (neuromedin antagonist) and M (media). Note, only 

images generated for treatments shown in the first two rows were statistically 

evaluated and presented in results. Treatments indicated in the two bottom rows 

were included in the experiments performed but image analysis was not 

undertaken due to lack of time.  
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6.2.3.2. Effect of kisspeptin-10 and its antagonist on endothelial cells 

network formation 

Theca interna cells were treated with Kisspeptin-10 and its antagonist along with 

VEGF and FGF (Figure 6.3). A 1ng/ml of the angiogenic factors VEGF and FGF 

was tested and prepared as described in section 6.2.2. Both Kisspeptin-10 ligand 

and it antagonist were tested at different concentrations including 0, 10-8, 10-7 and 

10-6M as described in section 6.2.2. After that cells were treated with VEGF and 

FGF and in the presence/absence of kisspeptin-10 and its antagonist as mentioned 

in section 6.2.3. 

 

 

Figure 6. 3 Diagram demonstrates experiment set up in 24-well plate for kiss-10 

and its antagonist effect on endothelial cells network formation. *Kiss-10 

(kisspeptin-10 ligand), kiss A (kisspeptin antagonist), V/F (VEGF/FGF) and M 

(media). 
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6.2.3.3. Effect of thrombospondin-1 on endothelial cells network formation  

Theca interna cells were treated with thrmbospondin-1 along with VEGF and FGF 

(Figure 6.4). A 1ng/ml of the angiogenic factors VEGF and FGF was tested and 

prepared as described in section 6.2.2. Thrombospondin-1 was added at a range of 

concentrations (0, 1, 10 and 100ng/ml) as described in section 6.2.2. After that 

cells were treated in the presence/absence thrombosponsin-1 and VEGF and FGF 

as mentioned in section 6.2.3.  

 

 

 

Figure 6. 4 Diagram demonstrates experiment set up in 24-well plate for 

thrombospondin-1 effect on endothelial cells network formation. *TSP-1 

(thrombospondin-1 ligand), V/F (VEGF/FGF) and M (media). 
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6.2.3.4. Effect of TGF-𝛃-1 and its antagonist on endothelial cells network 

formation  

Theca interna cells were treated with TGF-β-1 and its antagonist along with 

VEGF and FGF (Figures 6.5 and 6.6). A 1ng/ml of the angiogenic factors VEGF 

and FGF was tested and prepared as described in section 6.2.2. TGF-β-1 was 

tested at 0, 0.1, 1 and 10ng/ml while two different concentrations (2 and 10μM) of 

its antagonist were tested as described in section 6.2.2. After that cells were 

treated without/with TGF-β-1, its antagonist, VEGF and FGF and in combination 

with ligand optimal doses of ligand and antagonist as mentioned in section 6.2.3.   

 

 

 

Figure 6. 5 Diagram demonstrates experiment set up in 24-well plate for TGF-𝛽-

1 effect on endothelial cells network formation. * TGF-𝛽 (transforming growth 

factor- 𝛽-1), V/F (VEGF/FGF) and M (media). 
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Figure 6. 6 Diagram demonstrates experiment set up in 24-well plate for TGF-𝛽-

1 and its antagonist effect on endothelial cells network formation. * TGF-𝛽 

(transforming growth factor-  𝛽 -1), and TGF- 𝛽  A (TGF- 𝛽  antagonist), V/F 

(VEGF/FGF) and M (media). Note, wells in each row were treated differently to 

one another as indicated in the corresponding cell; hence the empty cells in the 

left hand column. 
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6.2.3.5. Effect of BMP-6 and its antagonist on endothelial cells network 

formation  

Theca interna cells were treated with BMP-6 and its antagonist along with VEGF 

and FGF (Figures 6.7 and 6.8). A 1ng/ml of the angiogenic factors VEGF and 

FGF was tested and prepared as described in section 6.2.2. BMP-6 was tested at 0, 

1, 5ng/ml while two different concentrations (2 and 10μM) of its antagonist were 

tested as described in section 6.2.2. After that cells were treated without/with 

BMP-6, its antagonist, VEGF and FGF and in combination with optimal doses of 

ligand and antagonist as mentioned in section 6.2.3.  

 

 

Figure 6. 7 Diagram demonstrates experiment set up in 24-well plate for BMP-6 

effect on endothelial cells network formation. * BMP-6 (bone morphogenetic 

protein-6), V/F (VEGF/FGF) and M (media). 
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Figure 6. 8 Diagram demonstrates experiment set up in 24-well plate for BMP-6 

and its antagonist effect on endothelial cells network formation. * BMP-6 (bone 

morphogenetic protein-6), BMP-6 A (BMP6 antagonist), V/F (VEGF/FGF) and 

M (media). Note, well in each row were treated differently to one another as 

indicated in the corresponding cell; hence the empty cells in the left hand column.  

 

 

 



141 
 

6.2.4. Hormone immunoassays 

6.2.4.1. The effect of TGF-𝛃-1, BMP6 and their antagonist on TCs (A4 and 

P4 secretion)  

A4 and P4 concentrations in retained spent media were determined by ELISA as 

described in section 3.3. 

6.2.5. Gene expression analysis  

6.2.5.1. Sample preparation, total mRNA extraction, purification, cDNA 

synthesis and RT-PCR 

Samples were collected and processed according to section 3.4.1. Total RNA 

extracts were quantified in section 3.4.2 and tested for integrity in section 3.4.3. 

First-strand cDNA was synthesized in section 3.4.4 following by RT-PCR 

analysis as described in section 3.4.5 using specific primer pairs as show in table 

3.2.    

6.2.5.2. The expression of steroidogenic and other transcripts in theca 

interna angiogenic culture system  

Cultured cells were processed for RNA isolation using Qiagen RNeasy mini kits 

and cDNA was synthesized using the AB high capacity cDNA synthesis kit 

according to the manufacture instructions as described in section 3.4.1.2 and 

3.4.4. Then, cDNA samples were used for Quantitative RT-PCR for the detection 

of the expression of StAR, CYP11A1, CYP17, HSD3B1, LHR, INSL3, INHA, 

NR5A1, TGF-𝛽-1, TGF-𝛽-2, TGF-𝛽-3, VEGFR and FGFR using their designed 

primers and β-actin (ACTB) for normalization of gene expression as described in 

section 3.4.5. The set of primers used to detect the desired genes as well as 

housekeeping gene are listed in table 3.2. Melt curve analysis and agarose gel 

electrophoresis were used to verify that each selected primer pair gave a single 

amplicon of the predicted size and Tm. After that, samples were diluted into 1:10 

and 5μl of these diluted cDNA samples were used for qPCR. Assays were carried 

out in a 142μl volume comprising 2μl of forward and reverse primers, 5μl cDNA 

and 7μl of QuantiTect SYBR Green 2X “hot start” Master Mix (Qiagen). Samples 

were run for 40 cycles on an AB StepOne plus real-time PCR instrument (Applied 
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Biosystems). The method that was used to compare the difference between each 

mRNA transcript was the ΔΔ Ct method using β-actin as the house keeping 

control. Finally, ΔΔCt values were converted to fold difference for graphical 

presentation using the formula 2(-ΔΔCt). 

6.3. Statistical analysis 

The effects of the various treatments on endothelial network formation, hormone 

secretion and gene expression were evaluated by two-way analysis of variance (2-

way ANOVA). Individual pairwise comparisons within different treatments range 

were subsequently made by Fisher’s PLSD. In order to reduce heterogeneity of 

variance, some data were log-transformed prior to statistical analysis. Unless 

otherwise stated, results are presented mean ±SEM of ≥ 3 independent batches of 

cultured cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

6.4. Results  

6.4.1. The effect of NMB and its antagonist on endothelial network 

formation 

Staining for endothelial cells counter in brown using vWF as a marker, revealed 

that a number of networks had formed in each culture (Figure 6.9). Each network 

had a central body of endothelial cells from which a number of branches had 

developed. These networks appeared to be at different stages of development, 

with varying size and degree of branching. Also, the growth of other cell types 

was observed, the nuclei of which could be seen when cells were counter in blue.  

Statistical analysis showed that there was extensive formation of endothelial 

networks with 1 and 10ng/ml of VEGF and FGF (hereafter referred to as V/F) as 

indicated by the % in area of vWF stating when comparing to basal level 

(P<0.0001) (Figures 6.10 and 6.11). However, the effect of NMB and its 

antagonist on basal and V/F induced network formation was not statistically 

significant as shown in (Figures 6.10 and 6.11).  

 

 

Figure 6. 9 Development of endothelial cell network in theca interna system in 

response to two concentrations (1 and 10 ng/ml) of V/F. Endothelial cells were 

stained brown with vWF antibody. (a) Representative control cells; (b) 

representative cells treated with 1ng/ml V/F; (c) representative cells treated with 

10ng/ml V/F.  

 

(a)	 (b)	 (c)	
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Figure 6. 10 The effect of NMB alone and in combination with VEGF and FGF, 

on network formation by cultured theca interna cells. Values are means ±SEM 

(n=5 independent batches of cells) and two-way ANOVA results are shown. 
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Figure 6. 11 The effect of NMB antagonist alone and in combination with VEGF 

and FGF, on network formation by cultured theca interna cells. Values are means 

±SEM (n=3 independent batches of cells) and two-way ANOVA results are 

shown.  
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6.4.2. The effect of kiss-10 and its antagonist on endothelial network 

formation  

As shown in Figures 6.12 and 6.13, there was no significant effect of kisspeptin-

10 or its antagonist on endothelial network formation. 

 

 

 

 

 

 

 

 

 

Figure 6. 12 The effect of kisspeptin-10 in the presence of VEGF and FGF, on 

network formation by cultured theca interna cells. Values are means ±SEM (n=3 

independent batches of cells) and two-way ANOVA results are shown.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 13 The effect of kisspeptin-10 antagonist in the presence of VEGF and 

FGF, on network formation cultured theca interna cells. Values are means ±SEM 

(n=3 independent batches of cells) and two-way ANOVA results are shown.  
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6.4.3. The effect of thrombospondin-1 on endothelial network formation 

Statistical analysis showed that there was extensive formation of endothelial 

network with 1ng/ml doses of V/F in area of vWF staining when compared to 

basal level (P<0.0001). However, the effect of thrombospondin-1 on basal and 

V/F induced network formation was not statistically significant as shown in 

(Figure 6.14).  
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Figure 6. 14 The effect of thrombospondin-1 alone and in the presence/absence of 

VEGF and FGF, on network formation by cultured theca interna cells. Values are 

means ±SEM (n=3 independent batches of cells) and two-way ANOVA results 

are shown.  
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6.4.4. The effect of TGF-𝜷 -1 and its antagonist on endothelial network 

formation  

As previously mentioned, staining for endothelial cells using vWF as a marker, 

showed that a number of networks had formed in each culture. However, TGF-β-

1 significantly reduced endothelial cell network formation under both basal and 

V/F induced conditions (P=0.0049) (Figure 6.15). Also the statistical analysis 

showed that there was significantly extensive formation of endothelial network 

with 1ng/ml dose of V/F in area of vWF staining when compared to basal level 

(P<0.0267) in (Figure 6.15) and (P<0.0001) in (Figure 6.16).  

As shown in figure 6.15, the effect of different treatments on endothelial cell 

network formation was significant (P=0.0002). Furthermore, TGF-β-1 inhibitor at 

2 and 10μM significantly reversed the inhibitory effect of TGF-β-1 ligand on 

network formation on basal and V/F induced endothelial network formation 

(P<0.0001) and (P=0.0007) respectively. Moreover, the combination between the 

ligand and inhibitors doses showed a significant increase in network formation in 

comparison to 5ng/ml dose of TGF-β-1 ligand alone under basal and V/F induced 

conditions (P=0.0033) and (P=0.0002) respectively (Figure 6.16).  
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Figure 6. 15 The effect of TGF- 𝛽 -1 alone and in combination in the 

presence/absence of VEGF and FGF, on network formation by cultured theca 

interna cells. Values are means ±SEM (n=3 independent batches of cells) and 

two-way ANOVA results are shown.  
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Figure 6. 16 The effect of TGF-𝛽-1 and its antagonist alone or in combination on 

basal and VEGF/FGF-induced network formation cultured theca interna cells. 

Values are means ±SEM (n=5 independent batches of cells) and two-way 

ANOVA results are shown. *A (control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of 

TGF-𝛽-1 antagonist only), D (10𝜇M of TGF-𝛽-1 antagonist only), E (5ng/ml of 

TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist) and F (5ng/ml of TGF-𝛽-1 + 10𝜇M of 

TGF-𝛽-1 antagonist).  
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6.4.5. The effect of BMP-6 and its antagonist on endothelial network 

formation  

Figure 6.17 shows that BMP-6 dose dependently decreased V/F induced 

endothelial cell network formation (P=0.0117). Also the statistical analysis 

showed that there was significantly increased formation of endothelial network 

with 1ng/ml dose of V/F in comparison to basal level (P<0.0001). 

According to Figure 6.18, the effect of different BMP-6 and BMP-6 antagonist 

treatments on endothelial cell network formation was not significant overall. 

However, V/F had a highly significant stimulatory effect as seen previously.  

Additional pairwise comparisons indicated that co-treatment with BMP-6 

(5ng/ml) and 10μM induced a significant increased in network formation in 

comparison to 5ng/ml dose of BMP-6 alone, under both basal and V/F conditions 

(B versus E; P=0.016) (Figure 6.18).  

 

 

 

 

 

 

 

 

 

 



150 
 

0 1 5

0

5

10

15
0

1 V/F ng/ml

Treatment P=0.01

V/F P=<0.0001

Trearment*V/F P=0.01 (ANOVA)

BMP-6 (ng/ml)

%
 a

r
e
a

 o
f 

v
W

F
 S

ta
in

in
g

 

Figure 6. 17 The effect of BMP-6 in presence/absence of VEGF and FGF, on 

network formation by cultured theca interna cells. Values are means ±SEM (n=3 

independent batches of cells) and two-way ANOVA results are shown. 
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Figure 6. 18 The effect of BMP-6 and its antagonist alone or in combination with 

VEGF and FGF, on network formation cultured theca interna cells. Values are 

means ±SEM (n=5 independent batches of cells) and two-way ANOVA results 

are shown. *A (control), B (5ng/ml of BMP6 only), C (2𝜇M of BMP6 antagonist 

only), D (10𝜇M of BMP6 antagonist only), E (5ng/ml of BMP6 + 2𝜇M of BMP6 

antagonist) and F (5ng/ml of BMP6 + 10𝜇M of BMP6 antagonist). 
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6.4.6. The effect of TGF-𝜷-1 and its antagonist on A4 and P4 secretion by 

TCs 

As shown in Figure 6.19, the production of both (a) A4 and (b) P4 was 

significantly affected in cultured cells treated with different treatments 

combinations (P=0.0009) and (P<0.001) respectively. However, there was no 

overall difference between basal and V/F stimulated cells.  

In Figure 6.19 (a), there was an increase in A4 production under both basal and 

V/F induced conditions between controls and cells treated with 2μM of TGF-β-1 

inhibitor only (P=0.0002). Additionally, there was a decreased in A4 production 

in cells treated with 10μM TGF-β-1 inhibitor, 5ng/ml TGF-β-1 with 2 and 10μM 

of the inhibitor in comparison with cells treated with 2μM of TGF-β-1 inhibitor 

(P=0.006), (P=0.0002) and (P=0.0003) respectively. 

Figure 6.19 (b) showed a significant decrease in P4 production between control 

cells and cells treated with 5ng/ml TGF-β-1 only (P<0.0001). Whereas, there was 

a significant increase in P4 production in cells treated with two doses of the 

inhibitor alone and in combination with 5ng/ml TGF-β-1 according to basal and 

V/F induced tube formation compared to cells treated with a 5ng/ml of TGF-β-1 

(P=0.01), (P=0.01), (P<0.001) and (P<0.0001) respectively.  
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Figure 6. 19 The effect of TGF-𝛽-1 and its antagonist alone or in combination on 

basal and VEGF/FGF-induced production of (a) A4 and (b) P4 cultured bovine 

theca interna cells. Values are means ±SEM (n=5 independent batches of cells) 

and two-way ANOVA results are shown. *A (control), B (5ng/ml of TGF-𝛽-1 

only), C (2𝜇M of TGF-𝛽-1 antagonist only), D (10𝜇M of TGF-𝛽-1 antagonist 

only), E (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist) and F (5ng/ml of 
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TGF-𝛽-1 + 10𝜇M of TGF-𝛽-1 antagonist). Note, error bars that are not visible are 

smaller than the width of the line drawn.    

6.4.7. The effect of BMP-6 and its antagonist on A4 and P4 secretion by TCs 

As demonstrated in Figure 6.20 the production of (a) A4 was not significantly 

affected in cells treated with different treatments while production of (b) P4 was 

affected (P<0.0003). Neither, V/F alone or in interaction with various treatments 

showed a significant effect on either A4 or P4 production.  

Figure 6.20 (a) there was an increase in A4 production between control cells and 

cells treated with 10μM of BMP-6 inhibitor only (P=0.0246). 10μM of BMP6 

inhibitor promoted a significant increase in A4 production (in basal and V/F 

induced conditions) compare to 5ng/ml of BMP-6 treatment (P=0.02). 

Additionally, there was a significant decrease in A4 production in cells treated 

with the combination of the ligand and the inhibitor compared to 10μM BMP-6 

inhibitor alone (P<0.025). 

On the other hand, Figure 6.20 (b) showed a significant increase in P4 production 

between control cells and cells treated with 10 μ M BMP-6 inhibitor only 

(P=0.0001). Similarly, there was a significant increase in P4 production in cells 

treated with 10μM BMP-6 inhibitor alone compared to cells treated with 5ng/ml 

BMP-6 (P<0.0001). Likewise, 10μM BMP-6 inhibitor promoted a significant 

increase in P4 production compared to 2 μM inhibitor (P=0.0003) Moreover, 

10μM BMP-6 inhibitor alone increased P4 production in comparison to cells 

treated with the combination of ligand and inhibitor, under both basal and V/F 

induced network conditions (P<0.0001) and (P=0.0004) respectively. 
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Figure 6. 20 The effect of BMP-6 and its antagonist alone or in combination on 

the presence/absence of VEGF and FGF, on the production of (a) A4 and (b) P4 

by bovine theca layer cultured cells. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP6 only), C (2𝜇M of BMP6 antagonist only), D (10𝜇M of BMP6 

antagonist only), E (5ng/ml of BMP6 + 2𝜇M of BMP6 antagonist) and F (5ng/ml 

of BMP6 + 10𝜇M of BMP6 antagonist). Note, error bars that are not visible are 

smaller than the width of the line drawn.    
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6.4.8. The expression of steroidogenic and other transcripts in cultured 

theca interna cells treated with TGF𝜷-1 and its inhibitor  

6.4.8.1. StAR 

The expression of StAR in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P=0.0004) among different 

treatments under basal and V/F induced conditions (Figure 6.21). However, there 

was no significant effect of V/F treatment on StAR expression; nor was there a 

statistical interaction between treatment and V/F.  TGF- β -1 inhibitor alone 

significantly increased StAR expression compared to control under both basal and 

V/F induced conditions (P=0.0012). TGF- β -1 reversed the increase in StAR 

expression induced by 2μM of TGF-β-1 inhibitor (P=0.0150).  
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Figure 6. 21 The expression of STAR in cultured cells treated with TGF-𝛽-1 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and D (5ng/ml 

of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.2. CYP11A1 

The expression of CYP11A1 in cultured cells treated with TGF- β -1 and its 

inhibitor alone and in combination varied significantly (P<0.0001) among 

different treatments but there was no significant effect of V/F (Figure 6.22). 

However, the interaction between treatment and V/F effect was significant 

(P=0.0345). TGF-β -1 induced significantly the decrease compared to control 

(P<0.0001). TGF-β-1 inhibitor alone increased significantly the expression of 

CYP11A1 compared to control (P<0.0001). TGF-β-1 in combination with TGF-β-

1 inhibitor decreased significantly the expression of CYP11A1 compared to TGF-

β-1 treatment alone (P<0.0001).  
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Figure 6. 22 The expression of CYP11A1 in cultured cells treated with TGF-𝛽-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and 

D (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.3. CYP17A1 

The expression of CYP17A1 in cultured cells treated with TGF- β -1 and its 

inhibitor alone and in combination varied significantly (P<0.0001). However, 

neither V/F alone nor the interaction between the V/F and treatments showed a 

significant effect (Figure 6.23). There was a significant decrease in response to 

TGF-β -1 in V/F induced endothelial cells (P=0.0276). In contrast, TGF-β -1 

inhibitor increased significantly the expression of CYP17A1 (P=0.0005). Also, 

TGF- β -1 reversed the stimulatory effect of TGF- β -1 inhibitor on CYP17A1 

expression under both basal and V/F-induced endothelial (P=0.0006).  
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Figure 6. 23 The expression of CYP17A1 in cultured cells treated with TGF-𝛽-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and 

D (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.4. HSD3𝑩1 

The expression of HSD3 𝐵 1 in cultured cells treated with TGF- β -1 and its 

inhibitor alone and in combination varied significantly (P<0.0001) in both basal 

and V/F-treated cells (Figure 6.24). However, there was no significant effect of 

V/F or interaction between treatments and V/F.  There was a significant TGF-β-1 

induced decrease under both basal and V/F induced conditions (P=0.0018). TGF-

β-1 inhibitor alone significantly expression of HSD3𝐵1 in both basal and V/F- 

treated cells (P=0.0240). Also, TGF-β-1 inhibitor alone increased expression of 

HSD3𝐵1 compared to TGF-β-1 alone under basal and V/F induced conditions 

(P<0.0001). Likewise, TGF-β-1 in combination with TGF-β-1 inhibitor increased 

expression of HSD3𝐵1 compared to TGF-β-1 alone, but only V/F treated cells 

(P=0.0003).  
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Figure 6. 24 The expression of HSD3𝐵1 in cultured cells treated with TGF-𝛽-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and 

D (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.5. LHR 

The expression of LHR in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P<0.0001) among different 

treatments but there was no significant effect of V/F treatments, or interaction 

between treatments and V/F (Figure 6.25). TGF- β -1 inhibitor increased 

significantly the expression of LHR and this effect was reversed by TGF-β-1 co-

treatment (P<0.0001).  
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Figure 6. 25 The expression of LHR in cultured cells treated with TGF-𝛽-1 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and D (5ng/ml 

of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.6. INSL3 

The expression of INSL3 in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P<0.0001) among different 

treatments under basal and V/F-induced conditions (Figure 6.26). There was a 

significant effect of V/F treatment on INSL3 expression (P=0.0419) while, the 

interaction between treatments and V/F was not significant. TGF- β -1 alone 

increased expression of INSL3 compared to controls under basal conditions 

whereas it decreased expression in V/F- treated cells (P=0.0148). Also, there was 

a significant increased TGF-β -1 inhibitor under both basal and V/F induced 

conditions (P=0.0029). TGF-β-1 inhibitor also reversed the suppressive effect of 

TGF-β-1 under basal and V/F induced conditions (P=0.0033).  
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Figure 6. 26  The expression of INSL3 in cultured cells treated with TGF-𝛽-1 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and D (5ng/ml 

of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.7. INHA 

The expression of INHA in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P=0.0062) among different 

treatments under both basal and V/F induced conditions (Figure 6.27). Likewise, 

there was a significant effect of V/F treatment on INHA expression although no 

interaction between treatment effect and V/F was observed. TGF- β -1 alone 

decreased expression of INHA compared to control under basal conditions 

(P=0.0053). In contrast TGF-β-1 inhibitor increased expression of INHA under 

basal conditions (P=0.0011) and reversed the suppressive effects of TGF-β-1 

(P=0.0294).  
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Figure 6. 27 The expression of INHA in cultured cells treated with TGF-𝛽-1 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and D (5ng/ml 

of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 

 
 



161 
 

6.4.8.8. NR5A1 

The expression of NR5A1 in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P=0.0035) among different 

treatments under basal and V/F induced conditions (Figured 6.28). NR5A1 

expression was also affected by V/F treatment (P=0.0277), but the interaction 

between treatments and V/F was not significant. A small though significant 

decrease in expression of NR5A1 was induced by TGF-β-1 under basal conditions 

(P=0.0331) whereas TGF-β -1 inhibitor alone increased expression of NR5A1 

(P=0.0003).  
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Figure 6. 28 The expression of NR5A1 in cultured cells treated with TGF-𝛽-1 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and D (5ng/ml 

of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.9. TGF𝜷1 

The expression of TGF𝛽1 was not affected by TGF-β-1 and its inhibitor alone 

and in combination, nor by V/F treatment (Figure 6.29).  
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Figure 6. 29 The expression of TGF𝛽1 in cultured cells treated with TGF-𝛽-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and 

D (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.10. TGF𝜷2 

The expression of TGF𝛽2 in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P=0.0153) among different 

treatments (Figure 6.30). However, there was no significant effect of V/F, or 

interaction between treatments and V/F. TGF- β -1 inhibitor alone decreased 

expression of TGF𝛽2 under both basal and V/F induced conditions (P=0.0397), 

and under basal conditions, this effect was reversed by TGF-β-1 (P=0.0020). 
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Figure 6. 30 The expression of TGF𝛽2 in cultured cells treated with TGF-𝛽-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and 

D (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.11. TGF𝜷3 

The expression of TGF𝛽3 was not affected by TGF-β-1 and its inhibitor alone 

and in combination, nor by V/F treatment (Figure 6.31).  

A B C D

0.1

1

10
0

1ng/ml V/F

Treatment P=0.10
V/F P=0.55
Treatment*V/F P=0.24 (ANOVA)

Treatment

T
G

F
ß
3
  

ex
p

re
ss

io
n

(R
el

a
ti

v
e 

tr
a

n
sc

ri
p

t 
a

b
u

n
d

a
n

ce
)

 

Figure 6. 31 The expression of TGF𝛽3 in cultured cells treated with TGF-𝛽-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and 

D (5ng/ml of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.12. FGFR 

The expression of FGFR was not affected by TGF-β-1 and its inhibitor alone and 

in combination, nor by V/F treatment (Figure 6.32). 
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Figure 6. 32 The expression of FGFR in cultured cells treated with TGF-𝛽-1 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of TGF-𝛽-1 only), C (2𝜇M of TGF-𝛽-1 antagonist only) and D (5ng/ml 

of TGF-𝛽-1 + 2𝜇M of TGF-𝛽-1 antagonist). 
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6.4.8.13. VEGFR 

The expression of VEGFR in cultured cells treated with TGF-β-1 and its inhibitor 

alone and in combination varied significantly (P=0.0138) among different 

treatments under basal and V/F induced conditions (Figure 6.33). Although, there 

was a significant effect of V/F on VEGFR expression (P=0.0432), the interaction 

between treatments and V/F was not significant. It can be seen that TGF-β-1 

alone increased significantly the expression of VEGFR compared to controls 

under both basal and V/F induced conditions (P=0.0033). However, expression of 

VEGFR was also increased by TGF-TGF-β-1 inhibitor alone and in combination 

with TGF-β-1 under both basal and V/F induced conditions (P=0.0078).  
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Figure 6. 33 The expression of VEGFR in cultured cells treated with TGF-β-1 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of TGF-β-1 only), C (2μM of TGF-β-1 antagonist only) and 

D (5ng/ml of TGF-β-1 + 2μM of TGF-β-1 antagonist). 
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6.4.9. The expression of steroidogenic and other transcripts in cultured 

theca interna cells treated with BMP-6 and its inhibitor  

6.4.9.1. StAR 

The expression of StAR in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P=0.0019) among different 

treatments under basal and V/F-induced conditions (Figure 6.34). However, there 

was no significant effect of V/F treatment on StAR expression; nor was there a 

statistical interaction between treatment and V/F. BMP-6 inhibitor alone 

significantly increased StAR expression compared to controls under both basal 

and V/F-induced conditions (P=0.0074). BMP-6 reversed the increase in StAR 

expression induced 10μM of BMP-6 inhibitor (P=0.0218).  
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Figure 6. 34 The expression of STAR in cultured cells treated with BMP-6 and its 

inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.2. CYP11A1 

The expression of CYP11A1 in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P=0.0013) among different 

treatments under basal and V/F-induced conditions (Figure 6.35). However, there 

was no significant effect of V/F treatment on CYP11A1 expression; nor was there 

as statistical interaction between treatment and V/F. There was a significant BMP-

6- induced decrease compared to control (P=0.0089). BMP-6 inhibitor alone 

increased significantly the expression of CYP11A1 compared to BMP-6 only 

(P=0.0001). BMP-6 in combination with BMP-6 inhibitor decreased significantly 

the expression of CYP11A1 compared to BMP-6 inhibitor treatment only 

(P=0.0342).  
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Figure 6. 35 The expression of CYP11A1 in cultured cells treated with BMP-6 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D 

(5ng/ml of BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.3. CYP17A1 

The expression of CYP17A1 in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P=0.0349). However, neither V/F 

alone nor the interaction between the V/F and treatments showed a significant 

effect (Figure 6.36). There was a significant increased in response to BMP-6 

inhibitor in both basal and V/F-induced conditions (P=0.0486). Also, BMP-6 

reversed the stimulatory effect of BMP-6 inhibitor on CYP17A1 expression under 

both basal and V/F-induced conditions (P=0.0056).  
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Figure 6. 36 The expression of CYP17A1 in cultured cells treated with BMP-6 

and its inhibitor alone and in combination. Values are means ±SEM (n=5 

independent batches of cells) and two-way ANOVA results are shown. *A 

(control), B (5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D 

(5ng/ml of BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.4. HSD3𝑩1 

The expression of HSD3𝐵1 in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P=0.0016) in both basal and V/F- 

treated cells (Figure 6.37). However, there was no significant effect of V/F or the 

interaction between treatments and V/F. BMP-6 inhibitor alone compared to 

control increased significantly the expression of HSD3𝐵1 in both basal and V/F-

treated cells (P=0.0080). Also, BMP-6 inhibitor alone increased expression of 

HSD3𝐵1 compared to BMP-6 alone under basal and V/F-induced conditions 

(P=0.0010).  
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Figure 6. 37 The expression of HSD3𝐵1 in cultured cells treated with BMP-6 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.5. LHR 

The expression of LHR in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P<0.0001) among different 

treatments but there was no significant effect of V/F treatments, or the interaction 

between treatments and V/F (Figure 6.38). BMP-6 significantly decreased LHR 

expression under V/F-stimulated conditions (P=0.0029). BMP-6 inhibitor 

increased significantly the expression of LHR and this effect was reversed by 

BMP-6 co-treatment (P=0.0270). 
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Figure 6. 38 The expression of LHR in cultured cells treated with BMP-6 and its 

inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.6. INSL3 

The expression of INSL3 in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P<0.0001) among different 

treatments but there was no significant effect of V/F treatment, or interaction 

between treatments and V/F (Figure 6.39). BMP-6 inhibitor alone increased 

expressions of INSL3 compared to controls under basal and V/F-induced 

conditions (P=0.0019). Also, there was a significant increased with BMP-6 

inhibitor under both basal and V/F-induced conditions (P<0.0001). BMP-6 

inhibitor also reversed the suppressive effect of BMP-6 under basal and V/F-

induced conditions (P=0.0002).  
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Figure 6. 39 The expression of INSL3 in cultured cells treated with BMP-6 and its 

inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.7. INHA 

The expression of INHA was not effected by BMP-6 and its inhibitor alone and in 

combination, nor by V/F treatment (Figure 6.40).  
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Figure 6. 40 The expression of INHA in cultured cells treated with BMP-6 and its 

inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.8. NR5A1 

The expression of NR5A1 was not effected by BMP-6 and its inhibitor alone and 

in combination, nor by V/F treatment (Figure 6.41).  
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Figure 6. 41 The expression of NR5A1 in cultured cells treated with BMP-6 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.9. FGFR 

The expression of FGFR was not effected by BMP-6 and its inhibitor alone and in 

combination, nor by V/F treatment (Figure 6.42).  
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Figure 6. 42 The expression of FGFR in cultured cells treated with BMP-6 and its 

inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.4.9.10. VEGFR 

The expression of VEGFR in cultured cells treated with BMP-6 and its inhibitor 

alone and in combination varied significantly (P=0.017) among different 

treatments under basal and V/F-induced conditions (Figure 6.43). Although, there 

was a significant effect of V/F on VEGFR expression (P=0.0180), the interaction 

between treatments and V/F was not significant. It can be seen that BMP-6 

inhibitor alone increased significantly the expression of VEGFR compared to 

controls under both basal and V/F-induced conditions (P=0.0448). However, 

expression of VEGFR was also increased by BMP-6 inhibitor alone and in 

combination with BMP-6 under both basal and V/F-induced conditions 

(P=0.0006).   
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Figure 6. 43 The expression of VEGFR in cultured cells treated with BMP-6 and 

its inhibitor alone and in combination. Values are means ±SEM (n=5 independent 

batches of cells) and two-way ANOVA results are shown. *A (control), B 

(5ng/ml of BMP-6 only), C (10𝜇M of BMP-6 antagonist only) and D (5ng/ml of 

BMP-6 + 10𝜇M of BMP-6 antagonist). 
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6.5. Discussion  

This chapter documents findings on the role of various peptides including NMB, 

kisspeptin-10, TGF-β-1, BMP6 and TSP-1 in modulating basal and FGF/VEGF-

induced ovarian angiogenesis. Although some of the peptides were not of bovine 

source/origin, they either shared identical amino acid sequences or were close 

orthologs of the same biologically active peptides in cattle.  

The most exciting finding from this chapter was that the ability of endothelial 

cells from the theca interna layer of follicles to re-assemble and form capillary-

like networks in vitro. The experimental culture system involved seeding 

collagenase-digested theca interna layer, containing steroidogenic cells as well as 

endothelial cells, in monolayer culture. In order for the endothelial cells network 

to form, a commercial endothelial cell growth supplemented medium with various 

proprietary factors was utilized.  

In vivo, ovarian angiogenesis takes place concurrently with folliculogenesis and 

continues through follicle growth and luteinization (Brown and Russell, 2013). It 

is well established that during development of the bovine CL, both angiogenesis 

and the synthesis of progesterone are enhanced, whereas during subsequent CL 

regression degeneration of the vascular bed is accompanied by a decrease of 

progesterone secretion initiated by the luteolytic action of prostaglandin 

F2α (PGF2α). In CL, the tissue growth rate and angiogenesis rate are comparable 

to those observed in rapidly growing tumors. VEGF and bFGF are considered to 

be major angiogenic factors amongst several factors produced by bovine CL 

(Shirasuna et al., 2009).  Research exploring the regulatory roles of different 

factors in the control of ovarian angiogenesis has increased significantly in the 

past decade. While both VEGF and FGF undoubtedly have important roles, there 

are likely many other factors that play integral roles in vascular remodeling 

involved in follicle growth and CL formation/regression.   
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6.5.1. The role of neuromedin B in modulating basal and FGF/VEGF-

induced ovarian angiogenesis  

As it is previously mentioned, the neuropeptides of the bombesin family involves 

amphibian bombesin and two mammalian bombesin-like peptides, GRP and NMB 

(Erspamer, 1988; Minamino et al., 1983). The action of theses peptides is 

achieved by the specific binding to their respective membrane-bound receptors in 

an autocrine, paracrine or endocrine context. Boughton et al (2013) showed that 

NMB stimulates the reproductive axis through the IVC injection that significantly 

increased plasma LH level in male rats. Also NMB increased GnRH release from 

hypothalamic explants and GT1-7 cells in vitro. It has been reported that most of 

bombesin family members bind in an autocrine manner as a growth factors to 

stimulate directly the proliferation of various human cancer cells. Also bombesin 

and GRP have a role in the regulation of tumor growth through paracrine 

stimulation of angiogenesis. However, the potential stimulatory effect of NMB on 

endothelial angiogenesis has not been fully characterized (Park et al., 2009). Park 

et al (2009) demonstrated that NMB has a novel role as being a pro-angiogenic 

factor. However, potential physiological functions of NMB and NMBR in the 

bovine ovary remain unknown. It has been proposed that the binding between 

NMB and it receptor activates multiple intracellular pathways in various cell lines 

(Ohki-Hamazaki et al., 2003).  Some studies have shown that NMB and NMBR 

activate MEK/ERK 1/2 PI3K/Akt pathways, which are related to cell 

proliferation, survival, angiogenesis and tumorigenesis. Also, it has been observed 

that NMB enhances the capillary-like network formation of HUVECs and 

sprouting from aortic rings; whereas a potent selective NMB receptor antagonist 

completely blocked this action (Charlesworth and Rozengurt, 1997; Park et al., 

2011; Park et al., 2009). In the current study, the expression levels of NMB and 

NMBR mRNA were detected in different bovine endocrine tissues including 

ovarian bovine tissues. In the light of these findings, we hypothesized an 

intrafollicular role(s) of NMB in modulating cell proliferation and angiogenesis in 

vitro. Despite the evidence that NMB is a pro-angiogenic factor, no effect of 

either NMB agonist or antagonist on tube formation was observed when results 

from six replicate experiments using independent batches of cells were combined. 

However, VEGF/FGF mixture had a marked stimulatory effect, being capable of 
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promoting capillary-like tubular structures in the cultured theca internal model. 

This confirms previous findings based on a bovine CL angiogenesis culture model 

(Woad et al., 2012). 

6.5.2. The role of kisspeptin in modulating basal and FGF/VEGF-induced 

ovarian angiogenesis 

Another neuropeptide implicated in the regulation of reproduction is kisspeptin, 

which has a central role in the regulation of GnRH and gonadotrophin secretion. It 

is well known that kisspeptin has a potent inhibitory role in tumour metastasis and 

placentation, which both involve intense angiogenesis (Martino et al., 2015). It 

has been published that kisspeptin-10 significantly inhibited angiogenesis in 

placental vasculature and tube-like structure formation of HUVEC (Ramaesh et 

al., 2010).  According to this study, kisspeptin receptor was found in in the 

placental vascular wall and in endothelial cells of the umbilical cord of human. Ex 

vivo techniques were used as a model for angiogenesis and demonstrated that 

kisspeptin-induced new vessels sprouting from the placental artery. Thus, a 

physiological role of kisspeptin in placental angiogenesis was suggested. Multiple 

processes are involved in angiogenesis including endothelial cell proliferation, 

migration and tube formation. This has been investigated using in vitro model to 

define the role of kisspeptin-10 in endothelial cells angiogenesis. According to 

Ramaesh at al (2010), results showed that the morphogenetic differentiation of 

HUVEC leading to tube formation was inhibited by kisspeptin-10 in a 

concentration dependent manner. It also inhibited their in vitro proliferation and 

migration without affecting their viability or apoptosis (Ramaesh et al., 2010).  

Another study showed that, the expression level of a proangiogenic VEGF-A was 

down-regulated by kisspeptin in human trophoblast cells. This suggested that 

kisspeptin-induced VEGF-A inhibition could adversely affect angiogenesis 

(Francis et al., 2014). We, therefore, hypothesised that kisspeptin-10 plays a role 

in regulating ovarian follicular angiogenesis and aimed to examine its effects in 

vitro on key angiogenic steps. However, the combined results of three replicate 

experiments using independent batches of cells led us to reject the hypothesis as 

neither kisspeptin-10 nor its antagonist had any modulatory effect on tube 
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formation despite our finding (chapter 3) that kiss-1 and its receptor are indeed 

expressed in bovine endocrine tissues including the ovary.  

6.5.3. The role of TGF- 𝜷  in modulating basal and FGF/VEGF-induced 

ovarian angiogenesis  

6.5.3.1. TGF-𝛃 family  

A growing body of evidence suggests that numerous growth factor peptides have 

wide-ranging roles on different tissue and organ systems including the ovary. 

Among these peptides are member of the transforming growth factor-β (TGF-β) 

superfamily. Various TGF-β superfamily member are expressed in ovarian tissues 

including granulosa and theca cells and have their roles as intraovarian regulatory 

molecules in follicle recruitment, proliferation/atresia of granulosa and theca cells, 

steroidogenesis, oocyte maturation, ovulation and luteinisation (Knight and 

Glister, 2003; Knight and Glister, 2006). The actions of TGF- β  superfamily 

ligands are accomplished via the binding to specific transmembrane kinase 

receptors type I and type II Ser/Thr. The differentiation between the two receptors 

is that type I receptors activate downstream of type II receptors and control the 

signaling specificity in the receptor complex. The binding between ligand/type II 

receptor lead to the formation of a heteromeric complex, that transphosphorylates 

and activates the type I receptor, which consequently direct the signal via 

phosphorylating specific receptor-regulated (R-) SMAD transcription factors at 

the two C-terminal Ser residues (Figure 6.44). Upon the activation, heteromeric 

complexes formed via R-SMADs bind to release partner molecules, the Co-

SMAD (SMAD4 in mammals), and accumulate in the nucleus where they 

contribute in the transcriptional control of target genes. Although, there are over 

30 TGF-β family members with diverse roles in mammals, there is a massive 

convergence in signaling to only five type II receptors, seven type I receptors 

(also defined as activin-receptor-like kinases; ALKs) and two main SMAD intra 

cellular pathways (Ten Dijke and Arthur, 2007; Massague and Gomis, 2006; Feng 

et al., 2005).  
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Figure 6. 44 Signal transduction by TGF superfamily members. The signaling 

pathways of transforming growth factor (TGF) super family divided into two 

main pathways according to the SMAD mediators: either SMAD2/3 or 

SMAD1/5/8. The TGF family members bind to specific Ser/Thr kinase type II and 

I receptors; in most cells, TGF signals via TGF-𝛽R2 and ALK5 (also identified as 

TGF receptor-1; TGF-𝛽R1), and bone morphogenetic proteins (BMPs) signal via 

the BMP type II receptor (BMPR2) and ALK1, -2, -3 and -6. The other receptors 

betaglycan and endoglin can regulate signaling through the type II and type I 

receptors.  Betaglycan stimulates the binding of TGF2 to TGF receptors, while 

endoglin may act to achieve a similar role for particular TGF family members and 

their receptors. Soluble endoglin (Sol-Endo) is supposed to sequester ligand and 

thus inactivates receptor binding; whereas, the exact pathway where this occurs is 

controversial as endoglin associates with TGF-𝛽R2 for TGF binding (Venkatesha 

et al., 2006; Barbara et al., 1999). The stimulated type I receptors lead to the 

phosphorylation of specific receptor regulated (R-) SMADs, which are the 

intracellular regulators of TGF members. Activated type I receptors induce the 

phosphorylation of specific receptor regulated (R-) SMADs, which are the 

intracellular effectors of TGF family members. Among most of cell types, TGF 

stimulates SMAD2/3 phosphorylation and BMPs stimulate SMAD1/5/8 

phosphorylation. Activated R-SMADs form heteromeric complexes with SMAD4 

that accumulate in the nucleus, where they control the expression of target genes 
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such as SERPINE1 (plasminogen activator inhibitor) and ID1 (inhibitor of DNA 

binding-1) in cooperation with transcription factors, co-activators and co-

repressors1, 2 (Feng et al., 2005; Massague and Gomis, 2006). Inhibitory 

SMADs, including SMAD6 and SMAD7, can antagonize TGF signaling by 

inhibiting the activation of R-SMADs (Feng et al., 2005). 

6.5.3.2. TGF-𝛃-1  

This chapter will also discuss findings relating to the potential intraovarian roles 

of TGF- β  superfamily members (TGF- β -1 and BMP6) in bovine ovarian 

angiogenesis. In angiogenesis, the role of TGF-β ligands raises the question of 

which ligand isoforms bind to TGF-β receptors to regulate new vessel formation.  

TGF-β-1 is one of the three mammalian isoforms; it is localized to endothelial 

cells during embryogenesis, suggesting it is the most likely of the three isoforms 

to be involved in angiogenesis (Akhurst et al., 1990). TGF-β-1 was therefore 

studied as being a potent stimulus for the proliferation and differentiation of 

endothelial cells, formation of vascular bed and maintaining the integrity of vessel 

walls.  In the vascular biology field, the recognition and identification of 

mutations of TGF-β receptor genes has revealed links with hereditary vascular 

pathologies (Ten Dijke and Arthur, 2007). It is evident that dysregulation of TGF-

β-1 signaling mechanisms contributes to the pathology of fibrosis, neointima 

formation and cancer progression and metastasis (Peshavariya et al., 2014).  

Our data confirmed that TGF-β-1 induced a dose dependant inhibition of basal 

and VEGF/bFGF-induced endothelial network formation, an action that was 

reversed by a TGF-β-1 inhibitor. Moreover, since treatment with the TGF-β-1 

inhibitor alone increased endothelial cell network formation, this suggests 

neutralisation of an endogenous ligand, perhaps TGF-β-1 itself that was shown to 

be expressed by the cultured cells. However, expression of other ligands including 

TGF- β -2 and TGF- β -3 was also detected so it is possible that multiple 

endogenous TGF- β  ligands contribute to the suppression of endothelial cell 

network formation. Further work to explore this possibility could use an RNA 

interference approach to selectively knockdown individual ligands and determine 

how this affects endothelial network formation in this in vitro model. Despite the 
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above finding, some in vitro studies demonstrated that low extracellular TGF-β-1 

levels evoke the proliferation and migration of cells that promote proliferation of 

new vessels in angiogenesis (Lebrin et al., 2004). On the other hand, high 

concentrations of extracellular TGF-β-1 have been associated with cytostasis and 

synthesis of extra cellular matrix proteins that regulated mature or differentiating 

vessels. It is also known that TGF-β family members can function in a paracrine 

manner by activating the production of pro-angiogenic cytokines, including 

(VEGF), TGF-𝛼 and monocyte chemo-attractant protein-1 (MCP1) (Vinals and 

Pouyssegur, 2001; Deckers et al., 2002; Ma et al., 2007). Additionally, TGF-β 

family members may regulate the function of other factors such as switching the 

VEGF pro-survival function into an apoptotic factor for endothelial cells (Ferrari 

et al., 2006; Ten Dijke and Arthur, 2007).   

It is acknowledged that TGF-β, through its surface receptor signaling, can exert a 

dual role in either enhancing pro-angiogenic activity or inhibiting vascular 

angiogenesis mechanisms (Pepper et al., 1993; Mustafa et al., 2012). 

Interestingly, TGF-β-1 along with VEGF acts to modulate apoptosis mechanisms 

preventing excessive vascular sprouts and can even be responsible for initial 

developed sprouting from an existing vascular bed (Ferrari et al., 2006; Ferrari et 

al., 2012). The classic angiogenic response pathway to TGF- β  relies on the 

balance between ALK1 and ALK5 signaling input. The nature function of ALK1 

is predominantly to stimulate sprouting while ALk5 favors the 

resolution/stabilization stage of angiogenesis (Holderfield and Hughes, 2008). 

Consequently, TGF-β can either be pro- or anti-angiogenic according to which 

TGF-RII/Smad mechanism is involved (Kumar et al., 2014). It has been reported 

that TGF- β -1 (5ng/ml) has an inhibitory effect in bovine endothelial cord 

formation via modulating endothelial angiogenic receptor expression in an ALK5 

dependant fashion in vitro. Thus, this inhibitory effect occurred via significant 

upregulation of the TGF- β  accessory receptor endoglin, and SMAD2 

phosphorylation without altering Smad1/5 activation pathway. Our result is in 

agreement with this study (Jarad et al., 2017) and shows that TGF-β-1 dose 

dependently induced the inhibition of endothelial cells network formation under 

both basal conditions and in the presence of the known pro-angiogenic factors 

VEGF and bFGF. It has been suggested that the down regulation of cell surface 
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VEGFR2 and concomitant upregulation of secreted VEGFR2 levels in endothelial 

cell-conditioned medium can be a direct response to ALK5-mediated TGF-β 

signaling (Jarad et al., 2017).  

6.5.4. The effect of TGF-𝜷-1 on the expression of steroidogenic transcripts 

and productions of steroids 

Steroid hormone biosynthesis occurs mainly in the adrenal cortex, testis, ovary 

and placenta (Bhangoo et al., 2006).  As is well known, the first stage of the 

synthesis of steroids is the conversion of cholesterol to pregnenolone via 

cytochrome P450 cholesterol side-chain cleavage (P450scc) enzyme that is 

encoded by the CYP11A1 gene. Then, 3β-hydroxy steroid dehydrogenase/Δ5-Δ4 

isomerases  3β -HSD which is encoded by HSD3B genes metabolized 

pregnenalone to progesterone. The rate-limiting of steroidgenesis is the 

transportation of cholesterol from the outside of the mitochondrial membrane to 

the inside where P450scc resides. This stage is regulated by the steroidogenic 

acute regulatory protein (StAR) which is encoded by the STARD1 gene (Clark et 

al., 1994; Stocco and Clark, 1996). The steroid synthesis stimuli provoke rapidly 

the expression of StAR which consequently catalyzes intermembrane delivery of 

cholesterol to P450scc and thereby the steroidogenesis pathway is initiated 

(LaVoie and King, 2009). 

There is growing evidence that locally secreted growth factors alone or in 

combination with gonadotropins function to regulate the production of steroids in 

theca cells (Ruutiainen and Adashi, 1993; Young and McNeilly, 2012; Knight and 

Glister, 2014). TGF- β  superfamily proteins particularly TGF- β -1 and BMPs 

appear to modulate theca cells steroid production (Sawetawan et al., 1996).  

Ovarian TGF- β -1 expression has been reported in many different species 

including human, rodents, sheep, pigs and cows; it is mainly produced by theca 

cells (Juengel et al., 2004). It has been reported that TGF-β-1 dose dependently 

inhibits the production of androstenedione and increases progesterone production 

in human ovarian theca like tumor cells via the downregulation of 17- 𝛼 -

hydroxylase (CYP17A1) expression (Carr et al., 1996). Previously, TGF-β-1 was 

proven to downregulate steroidgenic acute regulatory protein (StAR) expression 

in a human adrenocortical carcinoma cell line (Brand et al., 1998). The effect of 



185 
 

TGF-β-1 on StAR is significant as StAR is a regulatory protein engaged in the 

transportation of cholesterol from the external to the internal membrane of the 

mitochondria in the adrenal and gonads where it is converted to pregnenolone 

(Sugawara et al., 1995; Stocco et al., 1996). The conversion of cholesterol to 

pregnenolone is a rate limiting stage in steroidogenesis as StAR expression is 

critical in this stage. Thus, the regulation of StAR protein expression mechanism 

is of primary importance. The coloclization of TGF-β-1 and StAR in theca cells 

indicates that TGF-β could regulate the expression of StAR.  

 

In the present study, we also investigated the effect of TGF-β-1 on the production 

of steroids and expression of steroidogenesis-related genes in our bovine theca 

interna angiogenesis model. Our observation appeared to conflict with the 

previously mentioned studies as TGF- β -1 along with the angiogenic factors 

decreased significantly the production of progesterone but did not affect 

androstenedione. This suppression of progesterone secretion was reversed by a 

pharmacological inhibitor of TGF- β -1 action. Moreover, treatment with the 

inhibitor alone increased significantly both androstenedione and progesterone 

production, implying a tonic suppressive action of endogenous TGF-β ligands on 

steroidogenesis. This was supported by the finding that expression of several key 

steroidogenesis-related transcripts, including StAR, CYP11A1, HSD3B1 and 

CYP17A1 was increased in response to the pharmacological inhibitor alone. The 

effect of TGF-β-1 on steroidogenic gene expression was less clear and appeared 

to vary according to whether the cells were co-treated with the angiogenic (V/F). 

In the presence of V/F, TGF-β-1 treatment reduced CYP11A1, HSD3B1 and LHR 

expression about 10-fold and this matched the approximate 10-fold reduction in 

progesterone secretion under the same conditions. These effects were all reversed 

by the pharmacological inhibitor, offering further evidence that the responses to 

TGF- β -1 were specific. In the absence of V/F, only marginal changes in 

progesterone secretion and steroidogenic gene expression were observed in 

response to TGF-β-1. This suggests an interaction between TGF-β, VEGF and/or 

bFGF signalling pathways involved in the regulation of endothelial network 

formation. A preliminary attempt to investigate this was made by examining 

whether TGF- β -1 and the pharmacological inhibitor affected expression of 
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bFGFR or VEGFR. While there was no effect on bFGFR expression, TGF-β-1 

elicited a marked (>10-fold) increase in VEGFR expression suggesting a potential 

upregulation of VEGF signalling. However, this effect was not reversed by the 

pharmacological inhibitor which actually increased VEGFR expression further. 

Further experiments, beyond the scope of the present study, are needed to unravel 

these potentially complex interactions.  

6.5.5. The role of BMP in modulating basal and FGF/VEGF-induced 

ovarian angiogenesis  

6.5.5.1. BMPs 

Other important member of the TGF-β superfamily include the BMPs, which play 

an essential role in the stimulation of osteoblast differentiation, leading to the 

differentiation of progenitor cells into chondrocytes and osteoblasts, endochondral 

ossification and bone formation (Liao et al., 2018). BMPs play numerous 

functions including the regulation of growth, differentiation and apoptosis of 

multiple cell types. It has been reported that various BMPs are associated with 

ovarian follicular development as being autocrine/paracrine regulators of cell 

proliferation and steroidogenesis (Elvin et al., 1999; Shimasaki et al., 1999; 

Knight and Glister, 2006). Similarly to other TGF-β superfamily members, BMPs 

signal by binding to two types of receptors on the cell surface namely 

serine/threonine kinase receptor (type-I and type-II) and forming heteromeric 

complexes with the common partner Smad-4 (Massague and Chen, 2000; 

Miyazono et al., 2000; Miyazawa et al., 2002). A type-I receptor is 

transphosphorylated via the type-II recptor, which consequently stimulates 

transcripitional regulators termed Smads, which regulate gene expression through 

transducing the signal to the nucleus. The activation of BMPs can be achieved 

through the binding to one of three type-II receptors including (BMPRII, activin 

receptor ActRIIA or ActRIIB) and one of three type-I receptors (BMPRIA, 

BMPRIB or ActRIA). Note that these BMP type I receptors are also referred to as 

activin receptor-like kinase (ALK) 3, ALK 6, and ALK2, respectively. The 

specificity of the signal transduction in terms of which Smad pathway is triggered 

is mainly depended on the type-I receptor engaged (Macias-Silva et al., 1998; 

Ebisawa et al., 1999; Valdimarsdottir et al., 2002). Smad-1, -5 and -8 pathways 
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are activated by BMPs while Smad-2 and -3 pathways are activated via activin 

and TGF-β (Miyazono et al., 2000; Miyazawa et al., 2002).   

6.5.5.2. BMP-6 

Previous in vivo and in vitro studies in mice and human reported that BMP 

receptor/Smad activation stimulated endothelial cells migration and tube 

formation. Consequently, a role for BMPs in regulating the organization and 

differentiation of the newly formed capillary network from endothelial cells was 

indicated. It has been suggested that the activation of endothelial cells through 

BMP/Smad was critically reliant on BMP/Smad-stimulated up-regulation of the 

target gene Id1 that is involved in angiogenesis. This finding suggested that BMPs 

are potent proangiogenic factors.  Also, they reported that BMP-6 induced 

phosphorylation of Smad-1, Smad-5, and/or Smad8 in endothelial cells. However, 

this mechanism was distinct from that of TGF- β , which stimulated 

phosphorylation of Smad-2 and Smad-5 through ALK5 and ALK1 respectively, 

and of activin which stimulated only the phosphorylation of Smad2 that was 

possibly regulated through ALK4.  The kinetics of TGF-β − stimulated versus 

BMP-stimulated Smad-5 phosphorylation is different; TGF- β -stimulated 

phosphorylation of Smad-5 is transient, while BMP-6-stimulated phosphorylation 

of Smad-5 is very stable. It is known that BMP-6 and other related family 

members are expressed by vascular system cells including endothelial cells and 

smooth muscle cells that suggested their stimulatory effect on the endothelium in 

an autocrine or paracrine manner (Valdimarsdottir et al., 2002). Thus, BMP6 was 

suggested to stimulate migration and tube formation of bovine aortic endothelial 

cells (Valdimarsdottir et al., 2002). In addition, BMP-6 induced the proliferation 

and migration of mouse embryonic endothelial cells, as well as network formation 

and microvessel development in aortic rings (Ren et al., 2007; David et al., 2009). 

Here, we studied the function of BMP-6 in cultured bovine theca interna cells and 

examined the effect of BMP-6 on endothelial cells tube formation behaviour. 

Interestingly, our observation was not in agreement with the above mentioned 

reports since BMP6 dose-dependently inhibited endothelial cells network 

formation in VEGF/bFGF treated cells. The mechanism by which BMP-6 

modulates tube formation is unknown. However, it is possible that BMP-6 affects 
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transcriptional factors activity that leads to changes in gene expression of 

angiogenesis-related proteins.  

The existence of an intra-ovarian BMP system was first documented in 1999; 

however, the majority of findings have focussed on granulosa cells which were 

considered a key potential target for BMP activities in the ovary (Shimasaki et al., 

1999).  A study conducted by Glister et al (2005), was the first to examine the 

roles of BMPs on basal and LH-induced steroidogenesis using primary cultures 

system of bovine theca interna cells. Their findings indicated that several BMP 

ligands including BMP-6 are potent regulators of basal and LH-induced androgen 

production and cell proliferation/ survival, thus demonstrating intra-follicular 

regulatory actions of BMPs on theca cells. It has been confirmed that ovarian 

follicles expressed several BMPs including BMP-6 in a cell dependant fashion 

and in particular bovine theca cells were shown to express different BMP 

receptors including BMPRIB, BMPRII, ActRIIA and ActRIIB. Besides, BMP-6 is 

expressed by granulosa cells and oocyte, which supports its potential role as an 

intra-follicular paracrine regulator of theca cell action (Glister et al., 2004). While 

Glister et al (2005) found that BMP-6 dose-dependently inhibited basal and LH-

induced A4 production, it moderately increased basal P4 production. As 

previously mentioned, the binding between BMPs ligand and type I and type II 

receptors on the cell surface activates an intracellular signaling mechanism 

involving Smad-1, Smad-5 and/or Smad-8. However, the activation of Smad-2/-3 

mechanism resulted from the activation of activin signaling (Miyazono et al., 

2000; Miyazawa et al., 2002). Consistent with this, Glister et al (2005) found that 

the exposure of bovine theca cells to BMPs including BMP-6 promoted the 

accumulation of phosphorylated (p)Smad-1 (not pSmad-2) in the nucleus, 

whereas, exposure to activin-A led to nuclear accumulation of pSmad-2 (not 

pSmad-1). However, it was not known which combination of type I or II receptors 

were recruited by BMPs or activin in order to achieve Smad activation and the 

steroidogenic response Glister et al., 2005). Nonetheless, at least two type I 

receptors including (BMPRIB and ActRIA) and three type II receptors including 

(BMPRII, ActRIIA and ActRIIB) are expressed by bovine theca cells and 

potentially mediate the actions of BMPs (Glister et al., 2004). Interestingly, 

Glister et al (2005) also noted that the accumulation of pSmad-2 was significantly 
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lower in BMP-treated cells than in control cells. This raises the possibility that 

exogenous BMP may compete for ‘common’ receptor binding with an 

endogenous ligand (perhaps activin or TGF-β) leading to a reduced activin/ TGF-

β signaling through the Smad-2/Smad3 mechanism. We also measured the steroid 

hormones (A4 and P4) in cultured theca cells treated in the presence and absence 

of BMP-6 and its inhibitor. However, our findings were not in agreement with the 

above-mentioned studies since neither A4 nor P4 production were significantly 

affected by BMP-6 in this angiogenesis culture system. A4 production was 

slightly suppressed (non significant) and this is in slight agreement with Glister et 

al (2005). It appears that theca interna cells cultured in the present angiogenesis 

culture model (using proprietary supplemented media) behave differently from 

cells cultured in the defined serum-free culture conditions used by Glister et al 

(2005). This is likely due to the proprietary supplements added by the supplier, 

the identity of which is not known to us. Interestingly, although exogenous BMP-

6 did not significantly affect A4 or P4 production in the present culture system, 

blocking endogenous ligand using a BMP inhibitor significantly increased 

production of both A4 and P4 under both basal and VEGF/bFGF-stimulated 

conditions. This implies that endogenous BMP(s) do indeed exert a suppressive 

action on thecal steroidogenesis in our angiogenesis culture model. This fits with 

previous observation that bovine TC express various BMPs including BMP-6 

(Glister et al., 2010). An inhibitory action of BMP-6 on basal and forskolin-

induced progesterone secretion has also been reported by Kayani et al (2009) who 

cultured bovine theca cells in serum-supplemented culture conditions. 

6.5.6. The effect of BMP6 on the expression of steroidogenic transcripts and 

productions of steroids  

Glister et al (2005) also conducted a semiquantitative RT-PCR experiment for 

mRNA expression levels to examine the mechanism through which several BMPs 

including BMP-6 inhibited A4 and raised P4 production through key regulatory 

proteins and enzymes involved in the steroidogenesis pathway such as StAR, 

CYP11A1, HSD3B1, CYP17A1 and LHR. BMPs including BMP-6 promoted a 

down-regulation in the expression of several transcripts especially CYP17A1, 

which is considered as being a key target for BMP action. Due to the suppression 
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of CYP17A1 expression by BMP-6, the conversion of C21 steroids to C19 would 

be blocked. Expression of StAR, CYP11A1 and HSD3B1 were also inhibited but to 

a lesser extent in comparison to CYP17A1. Therefore, activation of the BMP 

signaling pathway appears likely to affect theca steroidogenesis at various stages 

(Glister et al., 2005). It has been shown that BMP-6 inhibited the expression of 

StAR by cultured rat granulosa cells (Otsuka et al., 2001). The finding in which 

the basal level of P4 secretion was increased in response to cell treated with BMP, 

suggested that, under culture cells environments, these other potential inhibitory 

actions were not rate limiting with respect to thecal C21 steroids synthesis, at least 

in the absence of LH stimulation. Hence, the raised production of P4 in response 

to BMP likely resulted from the reduction rate of the conversion to androgen 

rather than compensating for any reduction in the synthesis rate of P4 that resulted 

from the reduction of StAR expression. Also, the steady-state level of StAR 

mRNA expression does not reflect the functionally active StAR protein which 

was found to be controlled at the post-translational level (Arakane et al., 1997; 

Clark et al., 2001).  

In the current angiogenesis culture model, we used real-time PCR to analyse 

expression of steroidogenic and other transcripts in theca cells treated with BMP-

6 and its inhibitor. Our findings were in agreement with the previously mentioned 

findings for CYP11A1 and LHR mRNA expression level, which were both 

reduced by BMP-6 treatment. The reduced expression of CYP11A1 would fit with 

observed reduction in P4 secretion. The other transcripts examined, including 

CYP17A1 showed little change in response to BMP6 and the differences were not 

statistically significant, perhaps reflecting the lack of effect on A4 secretion we 

observed. However, blocking of endogenous ligand using a BMP inhibitor 

promoted significant increases in mRNA expression for all steroidogenesis-

related transcripts except CYP11A1, and this is consistent with the finding of 

increased P4 and A4 secretion by the cells treated with BMP inhibitor alone. As 

such, these observation reinforce the view that endogenous BMPs expressed by 

the cultured cells exert a suppressive action both angiogenesis and 

steroidogenesis. 



191 
 

6.5.7. The role of TSP-1 in modulating basal and FGF/VEGF-induced 

ovarian angiogenesis  

The physiological angiogenesis mechanisms operating in the ovary likely involve 

a complex cross-talk between pro and anti-angiogenic factors. Several naturally-

occurring angiogenesis inhibitors have been identified in mammalian tissues and 

these are thought to control normal vascular quiescence (Hanahan and Folkman, 

1996). One of these regulatory factors is the thrombospondin (TSP) family that 

includes TSP-1 (Thomas et al., 2007).  TSP-1 is a large multimodular 

glycoprotein (450 kDa) encoded by the THSB1 gene that was originally known as 

a key factor of platelet α-granules (Lawler, 2000 and 2002). TSP-1 has been found 

to be an important matricellular protein involved in different processes including 

cell signaling, wound healing, cell adhesion and angiogenesis (Adams and 

Lawler, 2004 and 2011). The most notable biological function of TSP-1 is the 

suppression of angiogenesis mechanisms in animal models (Silverstein, 2002; Osz 

et al., 2014). The biological effects of TSPs are mediated through the binding to 

the cell surface receptors including CD36 and integrin-associated protein known 

as CD47 (Gao et al., 1996; Carron et al., 2000; Thomas et al., 2007). In fact, a 

novel pattern of expression of TSP family members has been discovered in the 

bovine ovary through follicle growth stages (Greenaway et al., 2005). The 

expression level of TSP was lower in medium and large bovine follicles than in 

small follicles associated with an increase in the expression level of VEGF. TSP 

protein is present in follicular fluid and granulosa cells lining the follicular antrum 

express TSP protein and mRNA. Some TSP-immunopositive theca cells were also 

noted in developing follicles, however, the involvement of these cells in the 

accumulation of TSP in follicular fluid remain unclear (Greenaway et al., 2005). 

This observation was in agreement with reports for other species including human 

and porcine ovarian tissues (Barboni et al., 2000; Kamat et al., 1995). According 

to different studies, VEGF is involved in many biological functions within the 

ovary. VEGF is a stimulator of angiogenesis mechanism in follicles and corpora 

lutea among some mammals (Ferrara et al., 1998; Shimizu et al., 2002). It has also 

been shown that VEGF increases vascular permeability and due to the alteration 

of the vascular permeability within ovarian follicles, the expression of VEGF 

increased in response to exogenous gonadotropins in vivo (Gomez et al., 2003; 
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Wang et al., 2002). Increased expression of VEGF which increases the vascular 

permeability appears to contribute to normal healthy follicles development in 

cows and other species (Petrik et al., 2002; Ferrara et al., 1998; Shimizu et al., 

2002; Greenaway et al., 2005). Given the above, we decided to examine the 

effects of TSP-1 on basal and VEGF/bFGF-induced angiogenesis in our culture 

model. However, combined results of three replicates experiments using 

independent batches of cells produced no evidence to support a role for TSP-1 on 

endothelial tube formation, despite the fact that its expression was confirmed in 

various bovine endocrine tissues including the ovary. 
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6.6. Conclusions 

1. VEGF/FGF mixture had a marked stimulatory effect, being capable of 

promoting capillary-like tubular structures in the cultured theca internal 

model. 

 

2. Despite previous evidence that NMB is a pro-angiogenic factor, no effect 

of either NMB agonist or antagonist on tube formation was observed when 

results from six replicate experiments using independent batches of cells 

were combined. 

 

3. The combined results of three replicate experiments using independent 

batches of cells led us to reject the hypothesis that kisspeptin influences 

thecal angiogenesis; neither kisspeptin-10 nor its antagonist had any 

modulatory effect on tube formation despite our finding (chapter 4) that 

KiSS-1 and its receptor are indeed expressed in bovine endocrine tissue 

including the ovary. 

 

4. Our data confirmed that TGF-β-1 induced a dose dependant inhibition of 

basal and VEGF/bFGF-induced endothelial network formation, an action 

that was reversed by a TGF- β -1 inhibitor. The stimulatory effect of 

treatment with the inhibitor alone suggests neutralization of an 

endogenous  TGF- β ligand that exerts an inhibitory influence on 

endothelial network formation. 

 

5. We also demonstrate that TGF-β -1 along with the angiogenic factors 

decreased significantly the production of progesterone, but not 

androstenedione. This effect on progesterone production was completely 

reversed by the pharmacological inhbitor. 

 

6. The expression of several key steroidogenesis-related transcripts, 

including CYP11A1, HSD3B1 and LHR was also downregulated in cells 

co-treated with TGF-β-1 and angiogenic factors; this effect was reversed 

by the pharmacological inhibitor.  
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7. BMP-6 dose-dependently inhibited endothelial cells network formation in 

VEGF/bFGF treated cells. 

 

8. BMP-6 antagonist alone increased endothelial cells network formation 

under basal conditions, suggesting neutralization of an endogenous BMP-

related ligand.  

 

9. BMP-6 reduced P4 production but did not significantly affect A4 

production in the present culture system whereas blocking endogenous 

ligand using a BMP-6 inhibitor significantly increased production of both 

A4 and P4. 

 

10. Blocking of endogenous ligand using a BMP-6 inhibitor promoted 

significant increases in mRNA expression for all steroidogenesis-related 

transcripts except CYP11A1, consistent with the increase in A4 and P4 

observed. 

 

11.  Despite the fact that THSB1 expression was confirmed in various bovine 

endocrine tissues including the ovary, no evidence emerged to support a 

role for TSP-1 in endothelial tube formation. 
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7. General Discussion and Suggested Future Work  
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It is well known that, due to ethical considerations, the possibility of obtaining 

normal ovarian tissue from women in their reproductive years is extremely 

limited. This limitation does not apply to ovarian tissue from cattle. Bovine 

ovarian physiology has been studied extensively over the years and a great deal is 

known about endocrine and intra-ovarian control of bovine ovarian function and 

fertility. Similarities with the human ovary are considerable and have led various 

research groups to recognise the bovine ovary as a valuable, biomedically-

relevant model. There are several advantages with using bovine ovarian models: 

fresh ovarian tissue for ex-vivo and in-vitro studies is easily available and cheap 

to obtain from the slaughterhouse on a regular basis. Cattle are large enough to 

allow detailed in vivo endocrinological and morphological studies (i.e. serial 

blood sampling, ovarian ultrasonography). Many characteristics of bovine 

reproductive biology are shared with women: they are both monovular, cycle 

continuously while not pregnant, have a 9-month gestation period, their ovaries 

are similar in size (~3cm x 2cm x 1.5cm) and ovarian, follicular and CL 

morphology are similar (Campbell et al., 2003; Sirard, 2017).  

The experimental work reported in this thesis included ex-vivo analysis of gene 

expression in bovine ovarian tissue and use of in vitro models involving primary 

cultures of TC and GC recovered from bovine ovaries. The focus was on an 

examination of potential roles of several regulatory peptides (kisspeptin, NMB) 

that were shown to be expressed, along with their signaling receptors, in the 

bovine ovary. Modulatory effects on GC and TC function (steroidogenesis, cell 

proliferation/survival) were examined and effects on cell migration and follicular 

angiogenesis were also investigated.  

In chapter 4, expression of KiSS-1 gene and its receptor GPR54 were assessed at 

the level of mRNA abundance in different endocrine tissues including the adrenal 

gland, pituitary gland, testis and ovarian GC, TC and CL. Also, mRNA abundance 

in GC, and TC was measured at different stages of follicular development and in 

CL at different stages. The mRNA for kisspeptin and its receptor were detected in 

each of the previously mentioned tissues, with the adrenal gland showing the lowest 

level of expression of kiss-1 gene. Expression of KiSS-1 receptor varied significantly, 

being by far the highest in pituitary and lowest in testis. More interestingly, our 

current data demonstrated for the first time distinct profiles of ovarian KiSS-1 gene 
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and GPR54 expression in theca and granulosa cells from bovine follicles at different 

stages of development. In the corpus luteum, the expression was also shown to vary 

in a stage-dependent manner. Since the present findings only related to detection of 

mRNA expression, useful follow-on work would be to obtain antibodies against 

bovine kisspeptin and GPR54 and use these to confirm expression of the translated 

proteins in bovine ovarian cells. Unfortunately this was not possible during the 

current research as no suitable antibodies were available. It has been reported 

previously that kisspeptin and its receptor are expressed in various tissues apart 

from hypothalamus (Ohtaki et al., 2001; Xu et al., 2012). With regard to the 

reproductive system, the kisspeptin/receptor system is expressed in the ovary, 

female genital tract, placenta and testis of several species including humans 

(Shahed and Young, 2009; Roman et al., 2012; Zhang et al., 2014).   

The extra-hypothalamic functions of kisspeptins have attracted attention in areas 

relating to reproductive biology and clinical reproductive medicine. Several 

studies have documented that the kisspeptin/receptor system may contribute to 

physiological and pathological actions in the ovary (Hu et al., 2017). These 

actions are likely exerted in an autocrine/paracrine manner. The in vitro 

experiments reported in Chapter 4 examined potential intra-ovarian roles of 

kisspeptin/receptor system in regulating different aspects of ovarian function. 

Despite the presence of KiSS-1 and GPR54 mRNA in ovarian TC, GC and CL 

tissue, the present finding offer no evidence that kisspeptin has a direct intra-

ovarian role to modulate follicular or luteal steroidogenesis in the bovine ovary. 

Neither did kisspeptin have any effect on cell migration assessed using wound-

healing (‘scratch’) assays (Chapter 4).  According to studies in chicken GC and 

rat luteal cells, kisspeptin directly induced the secretion of P4 in these species 

respectively (Xiao et al., 2011; Peng et al., 2013). Xiao et al (2011) findings 

showed that mRNA levels of P4 producing enzymes including StAR, P450scc and 

3β-HSD were significantly increased with the treatment of kisspeptin-10 in 

chicken GC. Peng et al (2013) illustrated that kisspeptin alone exerted no effect 

on HSD3B1 mRNA level of rat luteal cells, however this effects was stimulated 

when these cells co-treated with human chorionic gonadotropin (hCG). Thus, an 

indispensable function of ovarian kisspeptin has been suggested in regulating the 

production of P4. On the other hand, Peng et al (2013) studies showed no effect 
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on the production of E2 in rat luteal cells. Yet, the possibility of kisspeptin 

stimulating the synthesis of E2 when its expression peaked among GC of the 

growing follicle throughout the mid- and late- proliferative stage, has not been 

examined. The conclusive demonstration of a direct role(s) of kisspeptin signaling 

in ovarian physiological and/or pathophysiological is still pending, and further 

investigations are required to explore this, preferably in a range of species 

including human. Expanding our knowledge of the expression, functions, and 

molecular pathways of kisspeptin/receptor system in the human and other species 

including cattle ovary is fundamental for understanding whether therapeutic 

interventions targeting kisspeptin signaling can reduce reproductive pathology 

and/or infertility (Hu et al., 2017). 

Experiments reported in chapter 5, were prompted by a theca cell microarray 

dataset generated in this laboratory (Glister et al., 2013) showing that NMB is 

expressed in cultured bovine TC and was amongst the most highly down-

regulated transcripts in response to BMP-6 treatment. Consequently, to follow up 

this observation, NMB gene expression was assessed at the level of mRNA 

abundance in different endocrine tissues including the adrenal gland, pituitary 

gland, testis, GC, TC and CL. Also, mRNA abundance was measured for NMB 

and its receptor in TC and GC at different stages of follicular development, while 

NMB was measured at different corpus luteum stages. The mRNA for NMB was 

detected in all of the previously mentioned tissues. Testis showed the highest level 

of expression of NMB. More interestingly, our current data demonstrated that the 

profiles of ovarian NMB and its receptor expression in TC and GC from follicles at 

different stages of development are clearly distinct. However, a series of in vitro 

experiments carried out using cultured TC and GC offered no evidence that NMB 

has a direct intra-ovarian role to modulate follicular or luteal steroidogenesis. 

According to our mRNA expression data, testis showed the highest level of 

expression, which may imply that NMB functions through autocrine and paracrine 

in the male gonad. Recently published studies on porcine Leydig cells report an 

effect of NMB on testosterone secretion, steroidogenesis, cell proliferation and 

apoptosis. It was confirmed that NMBR was expressed in leydig cells of porcine 

testis. Also, high testosterone secretion was found when these cells treated with a 
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specific dose of NMB (1nM); also NMB increased the proliferation of these cells.  

Moreover, the steroidogenic regulators including StAR, CYP11A1 and 3β-HSD, 

their mRNA and/or proteins were expressed at high level in the Leydig cell. 

Consequently, it has been suggested that the NMB/NMBR system might have a 

vital role in modulating the reproductive function that includes steroidogenesis 

and/or cell growth in porcine Leydig cells (Ma et al., 2018). Given the that 

testicular Leydig cell is the functional equivalent of the ovarian theca cell, it 

might have been expected that a modulatory action of NMB on thecal 

steroidogenesis or cell proliferation/survival would have been observed in the 

present studies; however, as documented in this thesis, no such effects were 

identified in the current bovine cell culture models. 

The experiments reported in chapter 6 were prompted by a published study (Park 

et al., 2009) indicating that NMB is a novel angiogenic peptide. It is well 

established that angiogenesis is of great importance in the ovary due to the 

extensive tissue remodelling involved in cyclic growth/regression of follicles and 

luteal tissue (Reynolds and Redmer, 1999; Fraser and Lunn, 2000; Berisha 

et al., 2010; Berisha et al., 2013). A better understanding of ovarian angiogenesis 

that includes folliculogenesis and CL formation may lead to the elucidation of 

some causes of infertility/subfertility in mammals. Several key regulators of 

angiogenesis have been discovered to have important roles in the ovary including 

VEGF, FGF, angiopoietins (ANPT) and hypoxia-inducible factor (HIF) family 

members (Berisha et al., 2016). In this study, several different peptides, including 

kisspeptin and NMB) were tested for their role in modulating angiogenesis in a 

bovine theca interna angiogenesis culture model adapted from the method 

reported by Robinson et al (2009). It was confirmed that VEGF and FGF had a 

marked stimulatory effect on endothelial tube network formation. However, 

neither NMB nor kisspeptin had any discernible effect on basal or VEGF/FGF-

induced network formation.  

Given the considerable interest in the roles of TGF- β family members in 

regulating ovarian function, it was also decided to investigate potential effects of 

two ligands (TGF-β-1 and BMP-6) in the angiogenesis model. Interestingly, both 

TGF-β-1 and BMP6 induced a dose dependant inhibition of endothelial network 
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formation. Our funding is in agreement with (Jarad et al., 2017) who observed 

that TGF- β -1 (5ng/ml) had an inhibitory effect on bovine endothelial cord 

formation. However, BMP6 was previously reported to stimulate migration and 

tube formation of bovine aortic endothelial cells as well as the proliferation and 

migration of mouse embryonic endothelial cells (Valdimarsdottir et al., 2002; Ren 

et al., 2007; David et al., 2009). 

The underlying reason for these discrepancies between different model systems is 

not yet known but obviously requires further experimentation and analysis. In 

future studies it would be useful to examine the effects of TGF-β-1 and BMP-6 on 

nuclear accumulation of phospho-Smad in the follicular angiogenesis model. This 

would help distinguish which cell type is responding directly to the ligand (i.e 

endothelial cells, steroidogenic cells). It would also be worthwhile carrying out 

more sophisticated image analysis than was undertaken for the present studies. 

This could involve use of proprietary software programs (e.g Image Pro-Plus) to 

quantify parameters such as tube length and number of network branch points in 

the histological sections. Unfortunately, there was insufficient time and funding 

available to carry out this analysis for the present project. Understanding the 

regulatory roles of TGF-β family members in follicular angiogenesis is important 

since these multiple ligands and receptors are expressed in the ovary and are 

known to modulate other aspects of follicle and luteal function including 

steroidogenesis (Knight and Glister, 2006). Future research into angiogenesis is 

likely to yield better understanding of interacting regulatory pathways involved 

and promote the discovery of novel therapeutic strategies for the treatment of 

diseases associated to disregulated angiogenesis, ischaemic disorders and vascular 

regression (Plendl, 2000, Ten Dijke and Arthur, 2007).  

To conclude this thesis Figures 7.1 and 7.2 are schematic diagrams that attempt to 

summarise the experimental work undertaken and the principle findings obtained 

during the course of my research project. 
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Figure 7. 1 Schematic diagram summarizing the potential involvement of 

hypothalamic and ovary-derived kisspeptin and NMB in regulating the H-P-O 

axis. The lower part of the figure indicates the lack of experimental evidence 

obtained to support direct actions at the ovarian level despite the finding that 

kisspeptin, NMB and their cognate receptors (GPR54, NMBR) are expressed by 

ovarian cells.  
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Figure 7. 2 Schematic diagram summarizing findings on the regulatory actions of 

VEGF, FGF, kisspeptin, NMB, BMP-6 and TGF-β-1 on angiogenesis in the 

bovine theca interna culture model. Note that BMP-6 and TGF-β-1 also had an 

inhibitor effect on steroidogenesis in this culture model.  
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